]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
Fix incremental receive silently failing for recursive sends
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31 * Copyright 2018 Joyent, Inc.
32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33 * Copyright 2017 Joyent, Inc.
34 * Copyright (c) 2017, Intel Corporation.
35 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36 */
37
38 /*
39 * SPA: Storage Pool Allocator
40 *
41 * This file contains all the routines used when modifying on-disk SPA state.
42 * This includes opening, importing, destroying, exporting a pool, and syncing a
43 * pool.
44 */
45
46 #include <sys/zfs_context.h>
47 #include <sys/fm/fs/zfs.h>
48 #include <sys/spa_impl.h>
49 #include <sys/zio.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/dmu.h>
52 #include <sys/dmu_tx.h>
53 #include <sys/zap.h>
54 #include <sys/zil.h>
55 #include <sys/ddt.h>
56 #include <sys/vdev_impl.h>
57 #include <sys/vdev_removal.h>
58 #include <sys/vdev_indirect_mapping.h>
59 #include <sys/vdev_indirect_births.h>
60 #include <sys/vdev_initialize.h>
61 #include <sys/vdev_rebuild.h>
62 #include <sys/vdev_trim.h>
63 #include <sys/vdev_disk.h>
64 #include <sys/vdev_draid.h>
65 #include <sys/metaslab.h>
66 #include <sys/metaslab_impl.h>
67 #include <sys/mmp.h>
68 #include <sys/uberblock_impl.h>
69 #include <sys/txg.h>
70 #include <sys/avl.h>
71 #include <sys/bpobj.h>
72 #include <sys/dmu_traverse.h>
73 #include <sys/dmu_objset.h>
74 #include <sys/unique.h>
75 #include <sys/dsl_pool.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_dir.h>
78 #include <sys/dsl_prop.h>
79 #include <sys/dsl_synctask.h>
80 #include <sys/fs/zfs.h>
81 #include <sys/arc.h>
82 #include <sys/callb.h>
83 #include <sys/systeminfo.h>
84 #include <sys/zfs_ioctl.h>
85 #include <sys/dsl_scan.h>
86 #include <sys/zfeature.h>
87 #include <sys/dsl_destroy.h>
88 #include <sys/zvol.h>
89
90 #ifdef _KERNEL
91 #include <sys/fm/protocol.h>
92 #include <sys/fm/util.h>
93 #include <sys/callb.h>
94 #include <sys/zone.h>
95 #include <sys/vmsystm.h>
96 #endif /* _KERNEL */
97
98 #include "zfs_prop.h"
99 #include "zfs_comutil.h"
100
101 /*
102 * The interval, in seconds, at which failed configuration cache file writes
103 * should be retried.
104 */
105 int zfs_ccw_retry_interval = 300;
106
107 typedef enum zti_modes {
108 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
109 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
110 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */
111 ZTI_MODE_NULL, /* don't create a taskq */
112 ZTI_NMODES
113 } zti_modes_t;
114
115 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
116 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
117 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
118 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 }
119 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
120
121 #define ZTI_N(n) ZTI_P(n, 1)
122 #define ZTI_ONE ZTI_N(1)
123
124 typedef struct zio_taskq_info {
125 zti_modes_t zti_mode;
126 uint_t zti_value;
127 uint_t zti_count;
128 } zio_taskq_info_t;
129
130 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
131 "iss", "iss_h", "int", "int_h"
132 };
133
134 /*
135 * This table defines the taskq settings for each ZFS I/O type. When
136 * initializing a pool, we use this table to create an appropriately sized
137 * taskq. Some operations are low volume and therefore have a small, static
138 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
139 * macros. Other operations process a large amount of data; the ZTI_BATCH
140 * macro causes us to create a taskq oriented for throughput. Some operations
141 * are so high frequency and short-lived that the taskq itself can become a
142 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
143 * additional degree of parallelism specified by the number of threads per-
144 * taskq and the number of taskqs; when dispatching an event in this case, the
145 * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH,
146 * but with number of taskqs also scaling with number of CPUs.
147 *
148 * The different taskq priorities are to handle the different contexts (issue
149 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
150 * need to be handled with minimum delay.
151 */
152 static const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
153 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
154 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
155 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */
156 { ZTI_BATCH, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */
157 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
158 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
159 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
160 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
161 };
162
163 static void spa_sync_version(void *arg, dmu_tx_t *tx);
164 static void spa_sync_props(void *arg, dmu_tx_t *tx);
165 static boolean_t spa_has_active_shared_spare(spa_t *spa);
166 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
167 const char **ereport);
168 static void spa_vdev_resilver_done(spa_t *spa);
169
170 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */
171 static uint_t zio_taskq_batch_tpq; /* threads per taskq */
172 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
173 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */
174
175 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
176
177 /*
178 * Report any spa_load_verify errors found, but do not fail spa_load.
179 * This is used by zdb to analyze non-idle pools.
180 */
181 boolean_t spa_load_verify_dryrun = B_FALSE;
182
183 /*
184 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
185 * This is used by zdb for spacemaps verification.
186 */
187 boolean_t spa_mode_readable_spacemaps = B_FALSE;
188
189 /*
190 * This (illegal) pool name is used when temporarily importing a spa_t in order
191 * to get the vdev stats associated with the imported devices.
192 */
193 #define TRYIMPORT_NAME "$import"
194
195 /*
196 * For debugging purposes: print out vdev tree during pool import.
197 */
198 static int spa_load_print_vdev_tree = B_FALSE;
199
200 /*
201 * A non-zero value for zfs_max_missing_tvds means that we allow importing
202 * pools with missing top-level vdevs. This is strictly intended for advanced
203 * pool recovery cases since missing data is almost inevitable. Pools with
204 * missing devices can only be imported read-only for safety reasons, and their
205 * fail-mode will be automatically set to "continue".
206 *
207 * With 1 missing vdev we should be able to import the pool and mount all
208 * datasets. User data that was not modified after the missing device has been
209 * added should be recoverable. This means that snapshots created prior to the
210 * addition of that device should be completely intact.
211 *
212 * With 2 missing vdevs, some datasets may fail to mount since there are
213 * dataset statistics that are stored as regular metadata. Some data might be
214 * recoverable if those vdevs were added recently.
215 *
216 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
217 * may be missing entirely. Chances of data recovery are very low. Note that
218 * there are also risks of performing an inadvertent rewind as we might be
219 * missing all the vdevs with the latest uberblocks.
220 */
221 uint64_t zfs_max_missing_tvds = 0;
222
223 /*
224 * The parameters below are similar to zfs_max_missing_tvds but are only
225 * intended for a preliminary open of the pool with an untrusted config which
226 * might be incomplete or out-dated.
227 *
228 * We are more tolerant for pools opened from a cachefile since we could have
229 * an out-dated cachefile where a device removal was not registered.
230 * We could have set the limit arbitrarily high but in the case where devices
231 * are really missing we would want to return the proper error codes; we chose
232 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
233 * and we get a chance to retrieve the trusted config.
234 */
235 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
236
237 /*
238 * In the case where config was assembled by scanning device paths (/dev/dsks
239 * by default) we are less tolerant since all the existing devices should have
240 * been detected and we want spa_load to return the right error codes.
241 */
242 uint64_t zfs_max_missing_tvds_scan = 0;
243
244 /*
245 * Debugging aid that pauses spa_sync() towards the end.
246 */
247 static const boolean_t zfs_pause_spa_sync = B_FALSE;
248
249 /*
250 * Variables to indicate the livelist condense zthr func should wait at certain
251 * points for the livelist to be removed - used to test condense/destroy races
252 */
253 static int zfs_livelist_condense_zthr_pause = 0;
254 static int zfs_livelist_condense_sync_pause = 0;
255
256 /*
257 * Variables to track whether or not condense cancellation has been
258 * triggered in testing.
259 */
260 static int zfs_livelist_condense_sync_cancel = 0;
261 static int zfs_livelist_condense_zthr_cancel = 0;
262
263 /*
264 * Variable to track whether or not extra ALLOC blkptrs were added to a
265 * livelist entry while it was being condensed (caused by the way we track
266 * remapped blkptrs in dbuf_remap_impl)
267 */
268 static int zfs_livelist_condense_new_alloc = 0;
269
270 /*
271 * ==========================================================================
272 * SPA properties routines
273 * ==========================================================================
274 */
275
276 /*
277 * Add a (source=src, propname=propval) list to an nvlist.
278 */
279 static void
280 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
281 uint64_t intval, zprop_source_t src)
282 {
283 const char *propname = zpool_prop_to_name(prop);
284 nvlist_t *propval;
285
286 propval = fnvlist_alloc();
287 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
288
289 if (strval != NULL)
290 fnvlist_add_string(propval, ZPROP_VALUE, strval);
291 else
292 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
293
294 fnvlist_add_nvlist(nvl, propname, propval);
295 nvlist_free(propval);
296 }
297
298 /*
299 * Get property values from the spa configuration.
300 */
301 static void
302 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
303 {
304 vdev_t *rvd = spa->spa_root_vdev;
305 dsl_pool_t *pool = spa->spa_dsl_pool;
306 uint64_t size, alloc, cap, version;
307 const zprop_source_t src = ZPROP_SRC_NONE;
308 spa_config_dirent_t *dp;
309 metaslab_class_t *mc = spa_normal_class(spa);
310
311 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
312
313 if (rvd != NULL) {
314 alloc = metaslab_class_get_alloc(mc);
315 alloc += metaslab_class_get_alloc(spa_special_class(spa));
316 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
317 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
318
319 size = metaslab_class_get_space(mc);
320 size += metaslab_class_get_space(spa_special_class(spa));
321 size += metaslab_class_get_space(spa_dedup_class(spa));
322 size += metaslab_class_get_space(spa_embedded_log_class(spa));
323
324 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
325 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
326 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
327 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
328 size - alloc, src);
329 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
330 spa->spa_checkpoint_info.sci_dspace, src);
331
332 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
333 metaslab_class_fragmentation(mc), src);
334 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
335 metaslab_class_expandable_space(mc), src);
336 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
337 (spa_mode(spa) == SPA_MODE_READ), src);
338
339 cap = (size == 0) ? 0 : (alloc * 100 / size);
340 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
341
342 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
343 ddt_get_pool_dedup_ratio(spa), src);
344
345 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
346 rvd->vdev_state, src);
347
348 version = spa_version(spa);
349 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
350 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
351 version, ZPROP_SRC_DEFAULT);
352 } else {
353 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
354 version, ZPROP_SRC_LOCAL);
355 }
356 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
357 NULL, spa_load_guid(spa), src);
358 }
359
360 if (pool != NULL) {
361 /*
362 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
363 * when opening pools before this version freedir will be NULL.
364 */
365 if (pool->dp_free_dir != NULL) {
366 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
367 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
368 src);
369 } else {
370 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
371 NULL, 0, src);
372 }
373
374 if (pool->dp_leak_dir != NULL) {
375 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
376 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
377 src);
378 } else {
379 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
380 NULL, 0, src);
381 }
382 }
383
384 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
385
386 if (spa->spa_comment != NULL) {
387 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
388 0, ZPROP_SRC_LOCAL);
389 }
390
391 if (spa->spa_compatibility != NULL) {
392 spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
393 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
394 }
395
396 if (spa->spa_root != NULL)
397 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
398 0, ZPROP_SRC_LOCAL);
399
400 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
401 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
402 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
403 } else {
404 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
405 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
406 }
407
408 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
409 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
410 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
411 } else {
412 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
413 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
414 }
415
416 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
417 if (dp->scd_path == NULL) {
418 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
419 "none", 0, ZPROP_SRC_LOCAL);
420 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
421 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
422 dp->scd_path, 0, ZPROP_SRC_LOCAL);
423 }
424 }
425 }
426
427 /*
428 * Get zpool property values.
429 */
430 int
431 spa_prop_get(spa_t *spa, nvlist_t **nvp)
432 {
433 objset_t *mos = spa->spa_meta_objset;
434 zap_cursor_t zc;
435 zap_attribute_t za;
436 dsl_pool_t *dp;
437 int err;
438
439 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
440 if (err)
441 return (err);
442
443 dp = spa_get_dsl(spa);
444 dsl_pool_config_enter(dp, FTAG);
445 mutex_enter(&spa->spa_props_lock);
446
447 /*
448 * Get properties from the spa config.
449 */
450 spa_prop_get_config(spa, nvp);
451
452 /* If no pool property object, no more prop to get. */
453 if (mos == NULL || spa->spa_pool_props_object == 0)
454 goto out;
455
456 /*
457 * Get properties from the MOS pool property object.
458 */
459 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
460 (err = zap_cursor_retrieve(&zc, &za)) == 0;
461 zap_cursor_advance(&zc)) {
462 uint64_t intval = 0;
463 char *strval = NULL;
464 zprop_source_t src = ZPROP_SRC_DEFAULT;
465 zpool_prop_t prop;
466
467 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
468 continue;
469
470 switch (za.za_integer_length) {
471 case 8:
472 /* integer property */
473 if (za.za_first_integer !=
474 zpool_prop_default_numeric(prop))
475 src = ZPROP_SRC_LOCAL;
476
477 if (prop == ZPOOL_PROP_BOOTFS) {
478 dsl_dataset_t *ds = NULL;
479
480 err = dsl_dataset_hold_obj(dp,
481 za.za_first_integer, FTAG, &ds);
482 if (err != 0)
483 break;
484
485 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
486 KM_SLEEP);
487 dsl_dataset_name(ds, strval);
488 dsl_dataset_rele(ds, FTAG);
489 } else {
490 strval = NULL;
491 intval = za.za_first_integer;
492 }
493
494 spa_prop_add_list(*nvp, prop, strval, intval, src);
495
496 if (strval != NULL)
497 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
498
499 break;
500
501 case 1:
502 /* string property */
503 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
504 err = zap_lookup(mos, spa->spa_pool_props_object,
505 za.za_name, 1, za.za_num_integers, strval);
506 if (err) {
507 kmem_free(strval, za.za_num_integers);
508 break;
509 }
510 spa_prop_add_list(*nvp, prop, strval, 0, src);
511 kmem_free(strval, za.za_num_integers);
512 break;
513
514 default:
515 break;
516 }
517 }
518 zap_cursor_fini(&zc);
519 out:
520 mutex_exit(&spa->spa_props_lock);
521 dsl_pool_config_exit(dp, FTAG);
522 if (err && err != ENOENT) {
523 nvlist_free(*nvp);
524 *nvp = NULL;
525 return (err);
526 }
527
528 return (0);
529 }
530
531 /*
532 * Validate the given pool properties nvlist and modify the list
533 * for the property values to be set.
534 */
535 static int
536 spa_prop_validate(spa_t *spa, nvlist_t *props)
537 {
538 nvpair_t *elem;
539 int error = 0, reset_bootfs = 0;
540 uint64_t objnum = 0;
541 boolean_t has_feature = B_FALSE;
542
543 elem = NULL;
544 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
545 uint64_t intval;
546 char *strval, *slash, *check, *fname;
547 const char *propname = nvpair_name(elem);
548 zpool_prop_t prop = zpool_name_to_prop(propname);
549
550 switch (prop) {
551 case ZPOOL_PROP_INVAL:
552 if (!zpool_prop_feature(propname)) {
553 error = SET_ERROR(EINVAL);
554 break;
555 }
556
557 /*
558 * Sanitize the input.
559 */
560 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
561 error = SET_ERROR(EINVAL);
562 break;
563 }
564
565 if (nvpair_value_uint64(elem, &intval) != 0) {
566 error = SET_ERROR(EINVAL);
567 break;
568 }
569
570 if (intval != 0) {
571 error = SET_ERROR(EINVAL);
572 break;
573 }
574
575 fname = strchr(propname, '@') + 1;
576 if (zfeature_lookup_name(fname, NULL) != 0) {
577 error = SET_ERROR(EINVAL);
578 break;
579 }
580
581 has_feature = B_TRUE;
582 break;
583
584 case ZPOOL_PROP_VERSION:
585 error = nvpair_value_uint64(elem, &intval);
586 if (!error &&
587 (intval < spa_version(spa) ||
588 intval > SPA_VERSION_BEFORE_FEATURES ||
589 has_feature))
590 error = SET_ERROR(EINVAL);
591 break;
592
593 case ZPOOL_PROP_DELEGATION:
594 case ZPOOL_PROP_AUTOREPLACE:
595 case ZPOOL_PROP_LISTSNAPS:
596 case ZPOOL_PROP_AUTOEXPAND:
597 case ZPOOL_PROP_AUTOTRIM:
598 error = nvpair_value_uint64(elem, &intval);
599 if (!error && intval > 1)
600 error = SET_ERROR(EINVAL);
601 break;
602
603 case ZPOOL_PROP_MULTIHOST:
604 error = nvpair_value_uint64(elem, &intval);
605 if (!error && intval > 1)
606 error = SET_ERROR(EINVAL);
607
608 if (!error) {
609 uint32_t hostid = zone_get_hostid(NULL);
610 if (hostid)
611 spa->spa_hostid = hostid;
612 else
613 error = SET_ERROR(ENOTSUP);
614 }
615
616 break;
617
618 case ZPOOL_PROP_BOOTFS:
619 /*
620 * If the pool version is less than SPA_VERSION_BOOTFS,
621 * or the pool is still being created (version == 0),
622 * the bootfs property cannot be set.
623 */
624 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
625 error = SET_ERROR(ENOTSUP);
626 break;
627 }
628
629 /*
630 * Make sure the vdev config is bootable
631 */
632 if (!vdev_is_bootable(spa->spa_root_vdev)) {
633 error = SET_ERROR(ENOTSUP);
634 break;
635 }
636
637 reset_bootfs = 1;
638
639 error = nvpair_value_string(elem, &strval);
640
641 if (!error) {
642 objset_t *os;
643
644 if (strval == NULL || strval[0] == '\0') {
645 objnum = zpool_prop_default_numeric(
646 ZPOOL_PROP_BOOTFS);
647 break;
648 }
649
650 error = dmu_objset_hold(strval, FTAG, &os);
651 if (error != 0)
652 break;
653
654 /* Must be ZPL. */
655 if (dmu_objset_type(os) != DMU_OST_ZFS) {
656 error = SET_ERROR(ENOTSUP);
657 } else {
658 objnum = dmu_objset_id(os);
659 }
660 dmu_objset_rele(os, FTAG);
661 }
662 break;
663
664 case ZPOOL_PROP_FAILUREMODE:
665 error = nvpair_value_uint64(elem, &intval);
666 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
667 error = SET_ERROR(EINVAL);
668
669 /*
670 * This is a special case which only occurs when
671 * the pool has completely failed. This allows
672 * the user to change the in-core failmode property
673 * without syncing it out to disk (I/Os might
674 * currently be blocked). We do this by returning
675 * EIO to the caller (spa_prop_set) to trick it
676 * into thinking we encountered a property validation
677 * error.
678 */
679 if (!error && spa_suspended(spa)) {
680 spa->spa_failmode = intval;
681 error = SET_ERROR(EIO);
682 }
683 break;
684
685 case ZPOOL_PROP_CACHEFILE:
686 if ((error = nvpair_value_string(elem, &strval)) != 0)
687 break;
688
689 if (strval[0] == '\0')
690 break;
691
692 if (strcmp(strval, "none") == 0)
693 break;
694
695 if (strval[0] != '/') {
696 error = SET_ERROR(EINVAL);
697 break;
698 }
699
700 slash = strrchr(strval, '/');
701 ASSERT(slash != NULL);
702
703 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
704 strcmp(slash, "/..") == 0)
705 error = SET_ERROR(EINVAL);
706 break;
707
708 case ZPOOL_PROP_COMMENT:
709 if ((error = nvpair_value_string(elem, &strval)) != 0)
710 break;
711 for (check = strval; *check != '\0'; check++) {
712 if (!isprint(*check)) {
713 error = SET_ERROR(EINVAL);
714 break;
715 }
716 }
717 if (strlen(strval) > ZPROP_MAX_COMMENT)
718 error = SET_ERROR(E2BIG);
719 break;
720
721 default:
722 break;
723 }
724
725 if (error)
726 break;
727 }
728
729 (void) nvlist_remove_all(props,
730 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
731
732 if (!error && reset_bootfs) {
733 error = nvlist_remove(props,
734 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
735
736 if (!error) {
737 error = nvlist_add_uint64(props,
738 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
739 }
740 }
741
742 return (error);
743 }
744
745 void
746 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
747 {
748 char *cachefile;
749 spa_config_dirent_t *dp;
750
751 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
752 &cachefile) != 0)
753 return;
754
755 dp = kmem_alloc(sizeof (spa_config_dirent_t),
756 KM_SLEEP);
757
758 if (cachefile[0] == '\0')
759 dp->scd_path = spa_strdup(spa_config_path);
760 else if (strcmp(cachefile, "none") == 0)
761 dp->scd_path = NULL;
762 else
763 dp->scd_path = spa_strdup(cachefile);
764
765 list_insert_head(&spa->spa_config_list, dp);
766 if (need_sync)
767 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
768 }
769
770 int
771 spa_prop_set(spa_t *spa, nvlist_t *nvp)
772 {
773 int error;
774 nvpair_t *elem = NULL;
775 boolean_t need_sync = B_FALSE;
776
777 if ((error = spa_prop_validate(spa, nvp)) != 0)
778 return (error);
779
780 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
781 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
782
783 if (prop == ZPOOL_PROP_CACHEFILE ||
784 prop == ZPOOL_PROP_ALTROOT ||
785 prop == ZPOOL_PROP_READONLY)
786 continue;
787
788 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
789 uint64_t ver = 0;
790
791 if (prop == ZPOOL_PROP_VERSION) {
792 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
793 } else {
794 ASSERT(zpool_prop_feature(nvpair_name(elem)));
795 ver = SPA_VERSION_FEATURES;
796 need_sync = B_TRUE;
797 }
798
799 /* Save time if the version is already set. */
800 if (ver == spa_version(spa))
801 continue;
802
803 /*
804 * In addition to the pool directory object, we might
805 * create the pool properties object, the features for
806 * read object, the features for write object, or the
807 * feature descriptions object.
808 */
809 error = dsl_sync_task(spa->spa_name, NULL,
810 spa_sync_version, &ver,
811 6, ZFS_SPACE_CHECK_RESERVED);
812 if (error)
813 return (error);
814 continue;
815 }
816
817 need_sync = B_TRUE;
818 break;
819 }
820
821 if (need_sync) {
822 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
823 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
824 }
825
826 return (0);
827 }
828
829 /*
830 * If the bootfs property value is dsobj, clear it.
831 */
832 void
833 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
834 {
835 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
836 VERIFY(zap_remove(spa->spa_meta_objset,
837 spa->spa_pool_props_object,
838 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
839 spa->spa_bootfs = 0;
840 }
841 }
842
843 static int
844 spa_change_guid_check(void *arg, dmu_tx_t *tx)
845 {
846 uint64_t *newguid __maybe_unused = arg;
847 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
848 vdev_t *rvd = spa->spa_root_vdev;
849 uint64_t vdev_state;
850
851 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
852 int error = (spa_has_checkpoint(spa)) ?
853 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
854 return (SET_ERROR(error));
855 }
856
857 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
858 vdev_state = rvd->vdev_state;
859 spa_config_exit(spa, SCL_STATE, FTAG);
860
861 if (vdev_state != VDEV_STATE_HEALTHY)
862 return (SET_ERROR(ENXIO));
863
864 ASSERT3U(spa_guid(spa), !=, *newguid);
865
866 return (0);
867 }
868
869 static void
870 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
871 {
872 uint64_t *newguid = arg;
873 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
874 uint64_t oldguid;
875 vdev_t *rvd = spa->spa_root_vdev;
876
877 oldguid = spa_guid(spa);
878
879 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
880 rvd->vdev_guid = *newguid;
881 rvd->vdev_guid_sum += (*newguid - oldguid);
882 vdev_config_dirty(rvd);
883 spa_config_exit(spa, SCL_STATE, FTAG);
884
885 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
886 (u_longlong_t)oldguid, (u_longlong_t)*newguid);
887 }
888
889 /*
890 * Change the GUID for the pool. This is done so that we can later
891 * re-import a pool built from a clone of our own vdevs. We will modify
892 * the root vdev's guid, our own pool guid, and then mark all of our
893 * vdevs dirty. Note that we must make sure that all our vdevs are
894 * online when we do this, or else any vdevs that weren't present
895 * would be orphaned from our pool. We are also going to issue a
896 * sysevent to update any watchers.
897 */
898 int
899 spa_change_guid(spa_t *spa)
900 {
901 int error;
902 uint64_t guid;
903
904 mutex_enter(&spa->spa_vdev_top_lock);
905 mutex_enter(&spa_namespace_lock);
906 guid = spa_generate_guid(NULL);
907
908 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
909 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
910
911 if (error == 0) {
912 /*
913 * Clear the kobj flag from all the vdevs to allow
914 * vdev_cache_process_kobj_evt() to post events to all the
915 * vdevs since GUID is updated.
916 */
917 vdev_clear_kobj_evt(spa->spa_root_vdev);
918 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
919 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
920
921 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
922 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
923 }
924
925 mutex_exit(&spa_namespace_lock);
926 mutex_exit(&spa->spa_vdev_top_lock);
927
928 return (error);
929 }
930
931 /*
932 * ==========================================================================
933 * SPA state manipulation (open/create/destroy/import/export)
934 * ==========================================================================
935 */
936
937 static int
938 spa_error_entry_compare(const void *a, const void *b)
939 {
940 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
941 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
942 int ret;
943
944 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
945 sizeof (zbookmark_phys_t));
946
947 return (TREE_ISIGN(ret));
948 }
949
950 /*
951 * Utility function which retrieves copies of the current logs and
952 * re-initializes them in the process.
953 */
954 void
955 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
956 {
957 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
958
959 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
960 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
961
962 avl_create(&spa->spa_errlist_scrub,
963 spa_error_entry_compare, sizeof (spa_error_entry_t),
964 offsetof(spa_error_entry_t, se_avl));
965 avl_create(&spa->spa_errlist_last,
966 spa_error_entry_compare, sizeof (spa_error_entry_t),
967 offsetof(spa_error_entry_t, se_avl));
968 }
969
970 static void
971 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
972 {
973 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
974 enum zti_modes mode = ztip->zti_mode;
975 uint_t value = ztip->zti_value;
976 uint_t count = ztip->zti_count;
977 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
978 uint_t cpus, flags = TASKQ_DYNAMIC;
979 boolean_t batch = B_FALSE;
980
981 switch (mode) {
982 case ZTI_MODE_FIXED:
983 ASSERT3U(value, >, 0);
984 break;
985
986 case ZTI_MODE_BATCH:
987 batch = B_TRUE;
988 flags |= TASKQ_THREADS_CPU_PCT;
989 value = MIN(zio_taskq_batch_pct, 100);
990 break;
991
992 case ZTI_MODE_SCALE:
993 flags |= TASKQ_THREADS_CPU_PCT;
994 /*
995 * We want more taskqs to reduce lock contention, but we want
996 * less for better request ordering and CPU utilization.
997 */
998 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
999 if (zio_taskq_batch_tpq > 0) {
1000 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1001 zio_taskq_batch_tpq);
1002 } else {
1003 /*
1004 * Prefer 6 threads per taskq, but no more taskqs
1005 * than threads in them on large systems. For 80%:
1006 *
1007 * taskq taskq total
1008 * cpus taskqs percent threads threads
1009 * ------- ------- ------- ------- -------
1010 * 1 1 80% 1 1
1011 * 2 1 80% 1 1
1012 * 4 1 80% 3 3
1013 * 8 2 40% 3 6
1014 * 16 3 27% 4 12
1015 * 32 5 16% 5 25
1016 * 64 7 11% 7 49
1017 * 128 10 8% 10 100
1018 * 256 14 6% 15 210
1019 */
1020 count = 1 + cpus / 6;
1021 while (count * count > cpus)
1022 count--;
1023 }
1024 /* Limit each taskq within 100% to not trigger assertion. */
1025 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1026 value = (zio_taskq_batch_pct + count / 2) / count;
1027 break;
1028
1029 case ZTI_MODE_NULL:
1030 tqs->stqs_count = 0;
1031 tqs->stqs_taskq = NULL;
1032 return;
1033
1034 default:
1035 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1036 "spa_activate()",
1037 zio_type_name[t], zio_taskq_types[q], mode, value);
1038 break;
1039 }
1040
1041 ASSERT3U(count, >, 0);
1042 tqs->stqs_count = count;
1043 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1044
1045 for (uint_t i = 0; i < count; i++) {
1046 taskq_t *tq;
1047 char name[32];
1048
1049 if (count > 1)
1050 (void) snprintf(name, sizeof (name), "%s_%s_%u",
1051 zio_type_name[t], zio_taskq_types[q], i);
1052 else
1053 (void) snprintf(name, sizeof (name), "%s_%s",
1054 zio_type_name[t], zio_taskq_types[q]);
1055
1056 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1057 if (batch)
1058 flags |= TASKQ_DC_BATCH;
1059
1060 (void) zio_taskq_basedc;
1061 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1062 spa->spa_proc, zio_taskq_basedc, flags);
1063 } else {
1064 pri_t pri = maxclsyspri;
1065 /*
1066 * The write issue taskq can be extremely CPU
1067 * intensive. Run it at slightly less important
1068 * priority than the other taskqs.
1069 *
1070 * Under Linux and FreeBSD this means incrementing
1071 * the priority value as opposed to platforms like
1072 * illumos where it should be decremented.
1073 *
1074 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1075 * are equal then a difference between them is
1076 * insignificant.
1077 */
1078 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1079 #if defined(__linux__)
1080 pri++;
1081 #elif defined(__FreeBSD__)
1082 pri += 4;
1083 #else
1084 #error "unknown OS"
1085 #endif
1086 }
1087 tq = taskq_create_proc(name, value, pri, 50,
1088 INT_MAX, spa->spa_proc, flags);
1089 }
1090
1091 tqs->stqs_taskq[i] = tq;
1092 }
1093 }
1094
1095 static void
1096 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1097 {
1098 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1099
1100 if (tqs->stqs_taskq == NULL) {
1101 ASSERT3U(tqs->stqs_count, ==, 0);
1102 return;
1103 }
1104
1105 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1106 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1107 taskq_destroy(tqs->stqs_taskq[i]);
1108 }
1109
1110 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1111 tqs->stqs_taskq = NULL;
1112 }
1113
1114 /*
1115 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1116 * Note that a type may have multiple discrete taskqs to avoid lock contention
1117 * on the taskq itself. In that case we choose which taskq at random by using
1118 * the low bits of gethrtime().
1119 */
1120 void
1121 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1122 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1123 {
1124 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1125 taskq_t *tq;
1126
1127 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1128 ASSERT3U(tqs->stqs_count, !=, 0);
1129
1130 if (tqs->stqs_count == 1) {
1131 tq = tqs->stqs_taskq[0];
1132 } else {
1133 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1134 }
1135
1136 taskq_dispatch_ent(tq, func, arg, flags, ent);
1137 }
1138
1139 /*
1140 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1141 */
1142 void
1143 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1144 task_func_t *func, void *arg, uint_t flags)
1145 {
1146 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1147 taskq_t *tq;
1148 taskqid_t id;
1149
1150 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1151 ASSERT3U(tqs->stqs_count, !=, 0);
1152
1153 if (tqs->stqs_count == 1) {
1154 tq = tqs->stqs_taskq[0];
1155 } else {
1156 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1157 }
1158
1159 id = taskq_dispatch(tq, func, arg, flags);
1160 if (id)
1161 taskq_wait_id(tq, id);
1162 }
1163
1164 static void
1165 spa_create_zio_taskqs(spa_t *spa)
1166 {
1167 for (int t = 0; t < ZIO_TYPES; t++) {
1168 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1169 spa_taskqs_init(spa, t, q);
1170 }
1171 }
1172 }
1173
1174 /*
1175 * Disabled until spa_thread() can be adapted for Linux.
1176 */
1177 #undef HAVE_SPA_THREAD
1178
1179 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1180 static void
1181 spa_thread(void *arg)
1182 {
1183 psetid_t zio_taskq_psrset_bind = PS_NONE;
1184 callb_cpr_t cprinfo;
1185
1186 spa_t *spa = arg;
1187 user_t *pu = PTOU(curproc);
1188
1189 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1190 spa->spa_name);
1191
1192 ASSERT(curproc != &p0);
1193 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1194 "zpool-%s", spa->spa_name);
1195 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1196
1197 /* bind this thread to the requested psrset */
1198 if (zio_taskq_psrset_bind != PS_NONE) {
1199 pool_lock();
1200 mutex_enter(&cpu_lock);
1201 mutex_enter(&pidlock);
1202 mutex_enter(&curproc->p_lock);
1203
1204 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1205 0, NULL, NULL) == 0) {
1206 curthread->t_bind_pset = zio_taskq_psrset_bind;
1207 } else {
1208 cmn_err(CE_WARN,
1209 "Couldn't bind process for zfs pool \"%s\" to "
1210 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1211 }
1212
1213 mutex_exit(&curproc->p_lock);
1214 mutex_exit(&pidlock);
1215 mutex_exit(&cpu_lock);
1216 pool_unlock();
1217 }
1218
1219 if (zio_taskq_sysdc) {
1220 sysdc_thread_enter(curthread, 100, 0);
1221 }
1222
1223 spa->spa_proc = curproc;
1224 spa->spa_did = curthread->t_did;
1225
1226 spa_create_zio_taskqs(spa);
1227
1228 mutex_enter(&spa->spa_proc_lock);
1229 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1230
1231 spa->spa_proc_state = SPA_PROC_ACTIVE;
1232 cv_broadcast(&spa->spa_proc_cv);
1233
1234 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1235 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1236 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1237 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1238
1239 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1240 spa->spa_proc_state = SPA_PROC_GONE;
1241 spa->spa_proc = &p0;
1242 cv_broadcast(&spa->spa_proc_cv);
1243 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1244
1245 mutex_enter(&curproc->p_lock);
1246 lwp_exit();
1247 }
1248 #endif
1249
1250 /*
1251 * Activate an uninitialized pool.
1252 */
1253 static void
1254 spa_activate(spa_t *spa, spa_mode_t mode)
1255 {
1256 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1257
1258 spa->spa_state = POOL_STATE_ACTIVE;
1259 spa->spa_mode = mode;
1260 spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1261
1262 spa->spa_normal_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1263 spa->spa_log_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1264 spa->spa_embedded_log_class =
1265 metaslab_class_create(spa, &zfs_metaslab_ops);
1266 spa->spa_special_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1267 spa->spa_dedup_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1268
1269 /* Try to create a covering process */
1270 mutex_enter(&spa->spa_proc_lock);
1271 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1272 ASSERT(spa->spa_proc == &p0);
1273 spa->spa_did = 0;
1274
1275 (void) spa_create_process;
1276 #ifdef HAVE_SPA_THREAD
1277 /* Only create a process if we're going to be around a while. */
1278 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1279 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1280 NULL, 0) == 0) {
1281 spa->spa_proc_state = SPA_PROC_CREATED;
1282 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1283 cv_wait(&spa->spa_proc_cv,
1284 &spa->spa_proc_lock);
1285 }
1286 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1287 ASSERT(spa->spa_proc != &p0);
1288 ASSERT(spa->spa_did != 0);
1289 } else {
1290 #ifdef _KERNEL
1291 cmn_err(CE_WARN,
1292 "Couldn't create process for zfs pool \"%s\"\n",
1293 spa->spa_name);
1294 #endif
1295 }
1296 }
1297 #endif /* HAVE_SPA_THREAD */
1298 mutex_exit(&spa->spa_proc_lock);
1299
1300 /* If we didn't create a process, we need to create our taskqs. */
1301 if (spa->spa_proc == &p0) {
1302 spa_create_zio_taskqs(spa);
1303 }
1304
1305 for (size_t i = 0; i < TXG_SIZE; i++) {
1306 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1307 ZIO_FLAG_CANFAIL);
1308 }
1309
1310 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1311 offsetof(vdev_t, vdev_config_dirty_node));
1312 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1313 offsetof(objset_t, os_evicting_node));
1314 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1315 offsetof(vdev_t, vdev_state_dirty_node));
1316
1317 txg_list_create(&spa->spa_vdev_txg_list, spa,
1318 offsetof(struct vdev, vdev_txg_node));
1319
1320 avl_create(&spa->spa_errlist_scrub,
1321 spa_error_entry_compare, sizeof (spa_error_entry_t),
1322 offsetof(spa_error_entry_t, se_avl));
1323 avl_create(&spa->spa_errlist_last,
1324 spa_error_entry_compare, sizeof (spa_error_entry_t),
1325 offsetof(spa_error_entry_t, se_avl));
1326 avl_create(&spa->spa_errlist_healed,
1327 spa_error_entry_compare, sizeof (spa_error_entry_t),
1328 offsetof(spa_error_entry_t, se_avl));
1329
1330 spa_activate_os(spa);
1331
1332 spa_keystore_init(&spa->spa_keystore);
1333
1334 /*
1335 * This taskq is used to perform zvol-minor-related tasks
1336 * asynchronously. This has several advantages, including easy
1337 * resolution of various deadlocks.
1338 *
1339 * The taskq must be single threaded to ensure tasks are always
1340 * processed in the order in which they were dispatched.
1341 *
1342 * A taskq per pool allows one to keep the pools independent.
1343 * This way if one pool is suspended, it will not impact another.
1344 *
1345 * The preferred location to dispatch a zvol minor task is a sync
1346 * task. In this context, there is easy access to the spa_t and minimal
1347 * error handling is required because the sync task must succeed.
1348 */
1349 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1350 1, INT_MAX, 0);
1351
1352 /*
1353 * Taskq dedicated to prefetcher threads: this is used to prevent the
1354 * pool traverse code from monopolizing the global (and limited)
1355 * system_taskq by inappropriately scheduling long running tasks on it.
1356 */
1357 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1358 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1359
1360 /*
1361 * The taskq to upgrade datasets in this pool. Currently used by
1362 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1363 */
1364 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1365 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1366 }
1367
1368 /*
1369 * Opposite of spa_activate().
1370 */
1371 static void
1372 spa_deactivate(spa_t *spa)
1373 {
1374 ASSERT(spa->spa_sync_on == B_FALSE);
1375 ASSERT(spa->spa_dsl_pool == NULL);
1376 ASSERT(spa->spa_root_vdev == NULL);
1377 ASSERT(spa->spa_async_zio_root == NULL);
1378 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1379
1380 spa_evicting_os_wait(spa);
1381
1382 if (spa->spa_zvol_taskq) {
1383 taskq_destroy(spa->spa_zvol_taskq);
1384 spa->spa_zvol_taskq = NULL;
1385 }
1386
1387 if (spa->spa_prefetch_taskq) {
1388 taskq_destroy(spa->spa_prefetch_taskq);
1389 spa->spa_prefetch_taskq = NULL;
1390 }
1391
1392 if (spa->spa_upgrade_taskq) {
1393 taskq_destroy(spa->spa_upgrade_taskq);
1394 spa->spa_upgrade_taskq = NULL;
1395 }
1396
1397 txg_list_destroy(&spa->spa_vdev_txg_list);
1398
1399 list_destroy(&spa->spa_config_dirty_list);
1400 list_destroy(&spa->spa_evicting_os_list);
1401 list_destroy(&spa->spa_state_dirty_list);
1402
1403 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1404
1405 for (int t = 0; t < ZIO_TYPES; t++) {
1406 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1407 spa_taskqs_fini(spa, t, q);
1408 }
1409 }
1410
1411 for (size_t i = 0; i < TXG_SIZE; i++) {
1412 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1413 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1414 spa->spa_txg_zio[i] = NULL;
1415 }
1416
1417 metaslab_class_destroy(spa->spa_normal_class);
1418 spa->spa_normal_class = NULL;
1419
1420 metaslab_class_destroy(spa->spa_log_class);
1421 spa->spa_log_class = NULL;
1422
1423 metaslab_class_destroy(spa->spa_embedded_log_class);
1424 spa->spa_embedded_log_class = NULL;
1425
1426 metaslab_class_destroy(spa->spa_special_class);
1427 spa->spa_special_class = NULL;
1428
1429 metaslab_class_destroy(spa->spa_dedup_class);
1430 spa->spa_dedup_class = NULL;
1431
1432 /*
1433 * If this was part of an import or the open otherwise failed, we may
1434 * still have errors left in the queues. Empty them just in case.
1435 */
1436 spa_errlog_drain(spa);
1437 avl_destroy(&spa->spa_errlist_scrub);
1438 avl_destroy(&spa->spa_errlist_last);
1439 avl_destroy(&spa->spa_errlist_healed);
1440
1441 spa_keystore_fini(&spa->spa_keystore);
1442
1443 spa->spa_state = POOL_STATE_UNINITIALIZED;
1444
1445 mutex_enter(&spa->spa_proc_lock);
1446 if (spa->spa_proc_state != SPA_PROC_NONE) {
1447 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1448 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1449 cv_broadcast(&spa->spa_proc_cv);
1450 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1451 ASSERT(spa->spa_proc != &p0);
1452 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1453 }
1454 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1455 spa->spa_proc_state = SPA_PROC_NONE;
1456 }
1457 ASSERT(spa->spa_proc == &p0);
1458 mutex_exit(&spa->spa_proc_lock);
1459
1460 /*
1461 * We want to make sure spa_thread() has actually exited the ZFS
1462 * module, so that the module can't be unloaded out from underneath
1463 * it.
1464 */
1465 if (spa->spa_did != 0) {
1466 thread_join(spa->spa_did);
1467 spa->spa_did = 0;
1468 }
1469
1470 spa_deactivate_os(spa);
1471
1472 }
1473
1474 /*
1475 * Verify a pool configuration, and construct the vdev tree appropriately. This
1476 * will create all the necessary vdevs in the appropriate layout, with each vdev
1477 * in the CLOSED state. This will prep the pool before open/creation/import.
1478 * All vdev validation is done by the vdev_alloc() routine.
1479 */
1480 int
1481 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1482 uint_t id, int atype)
1483 {
1484 nvlist_t **child;
1485 uint_t children;
1486 int error;
1487
1488 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1489 return (error);
1490
1491 if ((*vdp)->vdev_ops->vdev_op_leaf)
1492 return (0);
1493
1494 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1495 &child, &children);
1496
1497 if (error == ENOENT)
1498 return (0);
1499
1500 if (error) {
1501 vdev_free(*vdp);
1502 *vdp = NULL;
1503 return (SET_ERROR(EINVAL));
1504 }
1505
1506 for (int c = 0; c < children; c++) {
1507 vdev_t *vd;
1508 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1509 atype)) != 0) {
1510 vdev_free(*vdp);
1511 *vdp = NULL;
1512 return (error);
1513 }
1514 }
1515
1516 ASSERT(*vdp != NULL);
1517
1518 return (0);
1519 }
1520
1521 static boolean_t
1522 spa_should_flush_logs_on_unload(spa_t *spa)
1523 {
1524 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1525 return (B_FALSE);
1526
1527 if (!spa_writeable(spa))
1528 return (B_FALSE);
1529
1530 if (!spa->spa_sync_on)
1531 return (B_FALSE);
1532
1533 if (spa_state(spa) != POOL_STATE_EXPORTED)
1534 return (B_FALSE);
1535
1536 if (zfs_keep_log_spacemaps_at_export)
1537 return (B_FALSE);
1538
1539 return (B_TRUE);
1540 }
1541
1542 /*
1543 * Opens a transaction that will set the flag that will instruct
1544 * spa_sync to attempt to flush all the metaslabs for that txg.
1545 */
1546 static void
1547 spa_unload_log_sm_flush_all(spa_t *spa)
1548 {
1549 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1550 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1551
1552 ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1553 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1554
1555 dmu_tx_commit(tx);
1556 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1557 }
1558
1559 static void
1560 spa_unload_log_sm_metadata(spa_t *spa)
1561 {
1562 void *cookie = NULL;
1563 spa_log_sm_t *sls;
1564 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1565 &cookie)) != NULL) {
1566 VERIFY0(sls->sls_mscount);
1567 kmem_free(sls, sizeof (spa_log_sm_t));
1568 }
1569
1570 for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1571 e != NULL; e = list_head(&spa->spa_log_summary)) {
1572 VERIFY0(e->lse_mscount);
1573 list_remove(&spa->spa_log_summary, e);
1574 kmem_free(e, sizeof (log_summary_entry_t));
1575 }
1576
1577 spa->spa_unflushed_stats.sus_nblocks = 0;
1578 spa->spa_unflushed_stats.sus_memused = 0;
1579 spa->spa_unflushed_stats.sus_blocklimit = 0;
1580 }
1581
1582 static void
1583 spa_destroy_aux_threads(spa_t *spa)
1584 {
1585 if (spa->spa_condense_zthr != NULL) {
1586 zthr_destroy(spa->spa_condense_zthr);
1587 spa->spa_condense_zthr = NULL;
1588 }
1589 if (spa->spa_checkpoint_discard_zthr != NULL) {
1590 zthr_destroy(spa->spa_checkpoint_discard_zthr);
1591 spa->spa_checkpoint_discard_zthr = NULL;
1592 }
1593 if (spa->spa_livelist_delete_zthr != NULL) {
1594 zthr_destroy(spa->spa_livelist_delete_zthr);
1595 spa->spa_livelist_delete_zthr = NULL;
1596 }
1597 if (spa->spa_livelist_condense_zthr != NULL) {
1598 zthr_destroy(spa->spa_livelist_condense_zthr);
1599 spa->spa_livelist_condense_zthr = NULL;
1600 }
1601 }
1602
1603 /*
1604 * Opposite of spa_load().
1605 */
1606 static void
1607 spa_unload(spa_t *spa)
1608 {
1609 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1610 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1611
1612 spa_import_progress_remove(spa_guid(spa));
1613 spa_load_note(spa, "UNLOADING");
1614
1615 spa_wake_waiters(spa);
1616
1617 /*
1618 * If we have set the spa_final_txg, we have already performed the
1619 * tasks below in spa_export_common(). We should not redo it here since
1620 * we delay the final TXGs beyond what spa_final_txg is set at.
1621 */
1622 if (spa->spa_final_txg == UINT64_MAX) {
1623 /*
1624 * If the log space map feature is enabled and the pool is
1625 * getting exported (but not destroyed), we want to spend some
1626 * time flushing as many metaslabs as we can in an attempt to
1627 * destroy log space maps and save import time.
1628 */
1629 if (spa_should_flush_logs_on_unload(spa))
1630 spa_unload_log_sm_flush_all(spa);
1631
1632 /*
1633 * Stop async tasks.
1634 */
1635 spa_async_suspend(spa);
1636
1637 if (spa->spa_root_vdev) {
1638 vdev_t *root_vdev = spa->spa_root_vdev;
1639 vdev_initialize_stop_all(root_vdev,
1640 VDEV_INITIALIZE_ACTIVE);
1641 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1642 vdev_autotrim_stop_all(spa);
1643 vdev_rebuild_stop_all(spa);
1644 }
1645 }
1646
1647 /*
1648 * Stop syncing.
1649 */
1650 if (spa->spa_sync_on) {
1651 txg_sync_stop(spa->spa_dsl_pool);
1652 spa->spa_sync_on = B_FALSE;
1653 }
1654
1655 /*
1656 * This ensures that there is no async metaslab prefetching
1657 * while we attempt to unload the spa.
1658 */
1659 if (spa->spa_root_vdev != NULL) {
1660 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1661 vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1662 if (vc->vdev_mg != NULL)
1663 taskq_wait(vc->vdev_mg->mg_taskq);
1664 }
1665 }
1666
1667 if (spa->spa_mmp.mmp_thread)
1668 mmp_thread_stop(spa);
1669
1670 /*
1671 * Wait for any outstanding async I/O to complete.
1672 */
1673 if (spa->spa_async_zio_root != NULL) {
1674 for (int i = 0; i < max_ncpus; i++)
1675 (void) zio_wait(spa->spa_async_zio_root[i]);
1676 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1677 spa->spa_async_zio_root = NULL;
1678 }
1679
1680 if (spa->spa_vdev_removal != NULL) {
1681 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1682 spa->spa_vdev_removal = NULL;
1683 }
1684
1685 spa_destroy_aux_threads(spa);
1686
1687 spa_condense_fini(spa);
1688
1689 bpobj_close(&spa->spa_deferred_bpobj);
1690
1691 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1692
1693 /*
1694 * Close all vdevs.
1695 */
1696 if (spa->spa_root_vdev)
1697 vdev_free(spa->spa_root_vdev);
1698 ASSERT(spa->spa_root_vdev == NULL);
1699
1700 /*
1701 * Close the dsl pool.
1702 */
1703 if (spa->spa_dsl_pool) {
1704 dsl_pool_close(spa->spa_dsl_pool);
1705 spa->spa_dsl_pool = NULL;
1706 spa->spa_meta_objset = NULL;
1707 }
1708
1709 ddt_unload(spa);
1710 spa_unload_log_sm_metadata(spa);
1711
1712 /*
1713 * Drop and purge level 2 cache
1714 */
1715 spa_l2cache_drop(spa);
1716
1717 if (spa->spa_spares.sav_vdevs) {
1718 for (int i = 0; i < spa->spa_spares.sav_count; i++)
1719 vdev_free(spa->spa_spares.sav_vdevs[i]);
1720 kmem_free(spa->spa_spares.sav_vdevs,
1721 spa->spa_spares.sav_count * sizeof (void *));
1722 spa->spa_spares.sav_vdevs = NULL;
1723 }
1724 if (spa->spa_spares.sav_config) {
1725 nvlist_free(spa->spa_spares.sav_config);
1726 spa->spa_spares.sav_config = NULL;
1727 }
1728 spa->spa_spares.sav_count = 0;
1729
1730 if (spa->spa_l2cache.sav_vdevs) {
1731 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1732 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1733 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1734 }
1735 kmem_free(spa->spa_l2cache.sav_vdevs,
1736 spa->spa_l2cache.sav_count * sizeof (void *));
1737 spa->spa_l2cache.sav_vdevs = NULL;
1738 }
1739 if (spa->spa_l2cache.sav_config) {
1740 nvlist_free(spa->spa_l2cache.sav_config);
1741 spa->spa_l2cache.sav_config = NULL;
1742 }
1743 spa->spa_l2cache.sav_count = 0;
1744
1745 spa->spa_async_suspended = 0;
1746
1747 spa->spa_indirect_vdevs_loaded = B_FALSE;
1748
1749 if (spa->spa_comment != NULL) {
1750 spa_strfree(spa->spa_comment);
1751 spa->spa_comment = NULL;
1752 }
1753 if (spa->spa_compatibility != NULL) {
1754 spa_strfree(spa->spa_compatibility);
1755 spa->spa_compatibility = NULL;
1756 }
1757
1758 spa_config_exit(spa, SCL_ALL, spa);
1759 }
1760
1761 /*
1762 * Load (or re-load) the current list of vdevs describing the active spares for
1763 * this pool. When this is called, we have some form of basic information in
1764 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1765 * then re-generate a more complete list including status information.
1766 */
1767 void
1768 spa_load_spares(spa_t *spa)
1769 {
1770 nvlist_t **spares;
1771 uint_t nspares;
1772 int i;
1773 vdev_t *vd, *tvd;
1774
1775 #ifndef _KERNEL
1776 /*
1777 * zdb opens both the current state of the pool and the
1778 * checkpointed state (if present), with a different spa_t.
1779 *
1780 * As spare vdevs are shared among open pools, we skip loading
1781 * them when we load the checkpointed state of the pool.
1782 */
1783 if (!spa_writeable(spa))
1784 return;
1785 #endif
1786
1787 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1788
1789 /*
1790 * First, close and free any existing spare vdevs.
1791 */
1792 if (spa->spa_spares.sav_vdevs) {
1793 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1794 vd = spa->spa_spares.sav_vdevs[i];
1795
1796 /* Undo the call to spa_activate() below */
1797 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1798 B_FALSE)) != NULL && tvd->vdev_isspare)
1799 spa_spare_remove(tvd);
1800 vdev_close(vd);
1801 vdev_free(vd);
1802 }
1803
1804 kmem_free(spa->spa_spares.sav_vdevs,
1805 spa->spa_spares.sav_count * sizeof (void *));
1806 }
1807
1808 if (spa->spa_spares.sav_config == NULL)
1809 nspares = 0;
1810 else
1811 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1812 ZPOOL_CONFIG_SPARES, &spares, &nspares));
1813
1814 spa->spa_spares.sav_count = (int)nspares;
1815 spa->spa_spares.sav_vdevs = NULL;
1816
1817 if (nspares == 0)
1818 return;
1819
1820 /*
1821 * Construct the array of vdevs, opening them to get status in the
1822 * process. For each spare, there is potentially two different vdev_t
1823 * structures associated with it: one in the list of spares (used only
1824 * for basic validation purposes) and one in the active vdev
1825 * configuration (if it's spared in). During this phase we open and
1826 * validate each vdev on the spare list. If the vdev also exists in the
1827 * active configuration, then we also mark this vdev as an active spare.
1828 */
1829 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1830 KM_SLEEP);
1831 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1832 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1833 VDEV_ALLOC_SPARE) == 0);
1834 ASSERT(vd != NULL);
1835
1836 spa->spa_spares.sav_vdevs[i] = vd;
1837
1838 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1839 B_FALSE)) != NULL) {
1840 if (!tvd->vdev_isspare)
1841 spa_spare_add(tvd);
1842
1843 /*
1844 * We only mark the spare active if we were successfully
1845 * able to load the vdev. Otherwise, importing a pool
1846 * with a bad active spare would result in strange
1847 * behavior, because multiple pool would think the spare
1848 * is actively in use.
1849 *
1850 * There is a vulnerability here to an equally bizarre
1851 * circumstance, where a dead active spare is later
1852 * brought back to life (onlined or otherwise). Given
1853 * the rarity of this scenario, and the extra complexity
1854 * it adds, we ignore the possibility.
1855 */
1856 if (!vdev_is_dead(tvd))
1857 spa_spare_activate(tvd);
1858 }
1859
1860 vd->vdev_top = vd;
1861 vd->vdev_aux = &spa->spa_spares;
1862
1863 if (vdev_open(vd) != 0)
1864 continue;
1865
1866 if (vdev_validate_aux(vd) == 0)
1867 spa_spare_add(vd);
1868 }
1869
1870 /*
1871 * Recompute the stashed list of spares, with status information
1872 * this time.
1873 */
1874 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
1875
1876 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1877 KM_SLEEP);
1878 for (i = 0; i < spa->spa_spares.sav_count; i++)
1879 spares[i] = vdev_config_generate(spa,
1880 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1881 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
1882 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
1883 spa->spa_spares.sav_count);
1884 for (i = 0; i < spa->spa_spares.sav_count; i++)
1885 nvlist_free(spares[i]);
1886 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1887 }
1888
1889 /*
1890 * Load (or re-load) the current list of vdevs describing the active l2cache for
1891 * this pool. When this is called, we have some form of basic information in
1892 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1893 * then re-generate a more complete list including status information.
1894 * Devices which are already active have their details maintained, and are
1895 * not re-opened.
1896 */
1897 void
1898 spa_load_l2cache(spa_t *spa)
1899 {
1900 nvlist_t **l2cache = NULL;
1901 uint_t nl2cache;
1902 int i, j, oldnvdevs;
1903 uint64_t guid;
1904 vdev_t *vd, **oldvdevs, **newvdevs;
1905 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1906
1907 #ifndef _KERNEL
1908 /*
1909 * zdb opens both the current state of the pool and the
1910 * checkpointed state (if present), with a different spa_t.
1911 *
1912 * As L2 caches are part of the ARC which is shared among open
1913 * pools, we skip loading them when we load the checkpointed
1914 * state of the pool.
1915 */
1916 if (!spa_writeable(spa))
1917 return;
1918 #endif
1919
1920 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1921
1922 oldvdevs = sav->sav_vdevs;
1923 oldnvdevs = sav->sav_count;
1924 sav->sav_vdevs = NULL;
1925 sav->sav_count = 0;
1926
1927 if (sav->sav_config == NULL) {
1928 nl2cache = 0;
1929 newvdevs = NULL;
1930 goto out;
1931 }
1932
1933 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
1934 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
1935 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1936
1937 /*
1938 * Process new nvlist of vdevs.
1939 */
1940 for (i = 0; i < nl2cache; i++) {
1941 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
1942
1943 newvdevs[i] = NULL;
1944 for (j = 0; j < oldnvdevs; j++) {
1945 vd = oldvdevs[j];
1946 if (vd != NULL && guid == vd->vdev_guid) {
1947 /*
1948 * Retain previous vdev for add/remove ops.
1949 */
1950 newvdevs[i] = vd;
1951 oldvdevs[j] = NULL;
1952 break;
1953 }
1954 }
1955
1956 if (newvdevs[i] == NULL) {
1957 /*
1958 * Create new vdev
1959 */
1960 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1961 VDEV_ALLOC_L2CACHE) == 0);
1962 ASSERT(vd != NULL);
1963 newvdevs[i] = vd;
1964
1965 /*
1966 * Commit this vdev as an l2cache device,
1967 * even if it fails to open.
1968 */
1969 spa_l2cache_add(vd);
1970
1971 vd->vdev_top = vd;
1972 vd->vdev_aux = sav;
1973
1974 spa_l2cache_activate(vd);
1975
1976 if (vdev_open(vd) != 0)
1977 continue;
1978
1979 (void) vdev_validate_aux(vd);
1980
1981 if (!vdev_is_dead(vd))
1982 l2arc_add_vdev(spa, vd);
1983
1984 /*
1985 * Upon cache device addition to a pool or pool
1986 * creation with a cache device or if the header
1987 * of the device is invalid we issue an async
1988 * TRIM command for the whole device which will
1989 * execute if l2arc_trim_ahead > 0.
1990 */
1991 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
1992 }
1993 }
1994
1995 sav->sav_vdevs = newvdevs;
1996 sav->sav_count = (int)nl2cache;
1997
1998 /*
1999 * Recompute the stashed list of l2cache devices, with status
2000 * information this time.
2001 */
2002 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2003
2004 if (sav->sav_count > 0)
2005 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2006 KM_SLEEP);
2007 for (i = 0; i < sav->sav_count; i++)
2008 l2cache[i] = vdev_config_generate(spa,
2009 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2010 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2011 (const nvlist_t * const *)l2cache, sav->sav_count);
2012
2013 out:
2014 /*
2015 * Purge vdevs that were dropped
2016 */
2017 if (oldvdevs) {
2018 for (i = 0; i < oldnvdevs; i++) {
2019 uint64_t pool;
2020
2021 vd = oldvdevs[i];
2022 if (vd != NULL) {
2023 ASSERT(vd->vdev_isl2cache);
2024
2025 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2026 pool != 0ULL && l2arc_vdev_present(vd))
2027 l2arc_remove_vdev(vd);
2028 vdev_clear_stats(vd);
2029 vdev_free(vd);
2030 }
2031 }
2032
2033 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2034 }
2035
2036 for (i = 0; i < sav->sav_count; i++)
2037 nvlist_free(l2cache[i]);
2038 if (sav->sav_count)
2039 kmem_free(l2cache, sav->sav_count * sizeof (void *));
2040 }
2041
2042 static int
2043 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2044 {
2045 dmu_buf_t *db;
2046 char *packed = NULL;
2047 size_t nvsize = 0;
2048 int error;
2049 *value = NULL;
2050
2051 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2052 if (error)
2053 return (error);
2054
2055 nvsize = *(uint64_t *)db->db_data;
2056 dmu_buf_rele(db, FTAG);
2057
2058 packed = vmem_alloc(nvsize, KM_SLEEP);
2059 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2060 DMU_READ_PREFETCH);
2061 if (error == 0)
2062 error = nvlist_unpack(packed, nvsize, value, 0);
2063 vmem_free(packed, nvsize);
2064
2065 return (error);
2066 }
2067
2068 /*
2069 * Concrete top-level vdevs that are not missing and are not logs. At every
2070 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2071 */
2072 static uint64_t
2073 spa_healthy_core_tvds(spa_t *spa)
2074 {
2075 vdev_t *rvd = spa->spa_root_vdev;
2076 uint64_t tvds = 0;
2077
2078 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2079 vdev_t *vd = rvd->vdev_child[i];
2080 if (vd->vdev_islog)
2081 continue;
2082 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2083 tvds++;
2084 }
2085
2086 return (tvds);
2087 }
2088
2089 /*
2090 * Checks to see if the given vdev could not be opened, in which case we post a
2091 * sysevent to notify the autoreplace code that the device has been removed.
2092 */
2093 static void
2094 spa_check_removed(vdev_t *vd)
2095 {
2096 for (uint64_t c = 0; c < vd->vdev_children; c++)
2097 spa_check_removed(vd->vdev_child[c]);
2098
2099 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2100 vdev_is_concrete(vd)) {
2101 zfs_post_autoreplace(vd->vdev_spa, vd);
2102 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2103 }
2104 }
2105
2106 static int
2107 spa_check_for_missing_logs(spa_t *spa)
2108 {
2109 vdev_t *rvd = spa->spa_root_vdev;
2110
2111 /*
2112 * If we're doing a normal import, then build up any additional
2113 * diagnostic information about missing log devices.
2114 * We'll pass this up to the user for further processing.
2115 */
2116 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2117 nvlist_t **child, *nv;
2118 uint64_t idx = 0;
2119
2120 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2121 KM_SLEEP);
2122 nv = fnvlist_alloc();
2123
2124 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2125 vdev_t *tvd = rvd->vdev_child[c];
2126
2127 /*
2128 * We consider a device as missing only if it failed
2129 * to open (i.e. offline or faulted is not considered
2130 * as missing).
2131 */
2132 if (tvd->vdev_islog &&
2133 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2134 child[idx++] = vdev_config_generate(spa, tvd,
2135 B_FALSE, VDEV_CONFIG_MISSING);
2136 }
2137 }
2138
2139 if (idx > 0) {
2140 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2141 (const nvlist_t * const *)child, idx);
2142 fnvlist_add_nvlist(spa->spa_load_info,
2143 ZPOOL_CONFIG_MISSING_DEVICES, nv);
2144
2145 for (uint64_t i = 0; i < idx; i++)
2146 nvlist_free(child[i]);
2147 }
2148 nvlist_free(nv);
2149 kmem_free(child, rvd->vdev_children * sizeof (char **));
2150
2151 if (idx > 0) {
2152 spa_load_failed(spa, "some log devices are missing");
2153 vdev_dbgmsg_print_tree(rvd, 2);
2154 return (SET_ERROR(ENXIO));
2155 }
2156 } else {
2157 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2158 vdev_t *tvd = rvd->vdev_child[c];
2159
2160 if (tvd->vdev_islog &&
2161 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2162 spa_set_log_state(spa, SPA_LOG_CLEAR);
2163 spa_load_note(spa, "some log devices are "
2164 "missing, ZIL is dropped.");
2165 vdev_dbgmsg_print_tree(rvd, 2);
2166 break;
2167 }
2168 }
2169 }
2170
2171 return (0);
2172 }
2173
2174 /*
2175 * Check for missing log devices
2176 */
2177 static boolean_t
2178 spa_check_logs(spa_t *spa)
2179 {
2180 boolean_t rv = B_FALSE;
2181 dsl_pool_t *dp = spa_get_dsl(spa);
2182
2183 switch (spa->spa_log_state) {
2184 default:
2185 break;
2186 case SPA_LOG_MISSING:
2187 /* need to recheck in case slog has been restored */
2188 case SPA_LOG_UNKNOWN:
2189 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2190 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2191 if (rv)
2192 spa_set_log_state(spa, SPA_LOG_MISSING);
2193 break;
2194 }
2195 return (rv);
2196 }
2197
2198 /*
2199 * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2200 */
2201 static boolean_t
2202 spa_passivate_log(spa_t *spa)
2203 {
2204 vdev_t *rvd = spa->spa_root_vdev;
2205 boolean_t slog_found = B_FALSE;
2206
2207 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2208
2209 for (int c = 0; c < rvd->vdev_children; c++) {
2210 vdev_t *tvd = rvd->vdev_child[c];
2211
2212 if (tvd->vdev_islog) {
2213 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2214 metaslab_group_passivate(tvd->vdev_mg);
2215 slog_found = B_TRUE;
2216 }
2217 }
2218
2219 return (slog_found);
2220 }
2221
2222 /*
2223 * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2224 */
2225 static void
2226 spa_activate_log(spa_t *spa)
2227 {
2228 vdev_t *rvd = spa->spa_root_vdev;
2229
2230 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2231
2232 for (int c = 0; c < rvd->vdev_children; c++) {
2233 vdev_t *tvd = rvd->vdev_child[c];
2234
2235 if (tvd->vdev_islog) {
2236 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2237 metaslab_group_activate(tvd->vdev_mg);
2238 }
2239 }
2240 }
2241
2242 int
2243 spa_reset_logs(spa_t *spa)
2244 {
2245 int error;
2246
2247 error = dmu_objset_find(spa_name(spa), zil_reset,
2248 NULL, DS_FIND_CHILDREN);
2249 if (error == 0) {
2250 /*
2251 * We successfully offlined the log device, sync out the
2252 * current txg so that the "stubby" block can be removed
2253 * by zil_sync().
2254 */
2255 txg_wait_synced(spa->spa_dsl_pool, 0);
2256 }
2257 return (error);
2258 }
2259
2260 static void
2261 spa_aux_check_removed(spa_aux_vdev_t *sav)
2262 {
2263 for (int i = 0; i < sav->sav_count; i++)
2264 spa_check_removed(sav->sav_vdevs[i]);
2265 }
2266
2267 void
2268 spa_claim_notify(zio_t *zio)
2269 {
2270 spa_t *spa = zio->io_spa;
2271
2272 if (zio->io_error)
2273 return;
2274
2275 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2276 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2277 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2278 mutex_exit(&spa->spa_props_lock);
2279 }
2280
2281 typedef struct spa_load_error {
2282 boolean_t sle_verify_data;
2283 uint64_t sle_meta_count;
2284 uint64_t sle_data_count;
2285 } spa_load_error_t;
2286
2287 static void
2288 spa_load_verify_done(zio_t *zio)
2289 {
2290 blkptr_t *bp = zio->io_bp;
2291 spa_load_error_t *sle = zio->io_private;
2292 dmu_object_type_t type = BP_GET_TYPE(bp);
2293 int error = zio->io_error;
2294 spa_t *spa = zio->io_spa;
2295
2296 abd_free(zio->io_abd);
2297 if (error) {
2298 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2299 type != DMU_OT_INTENT_LOG)
2300 atomic_inc_64(&sle->sle_meta_count);
2301 else
2302 atomic_inc_64(&sle->sle_data_count);
2303 }
2304
2305 mutex_enter(&spa->spa_scrub_lock);
2306 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2307 cv_broadcast(&spa->spa_scrub_io_cv);
2308 mutex_exit(&spa->spa_scrub_lock);
2309 }
2310
2311 /*
2312 * Maximum number of inflight bytes is the log2 fraction of the arc size.
2313 * By default, we set it to 1/16th of the arc.
2314 */
2315 static uint_t spa_load_verify_shift = 4;
2316 static int spa_load_verify_metadata = B_TRUE;
2317 static int spa_load_verify_data = B_TRUE;
2318
2319 static int
2320 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2321 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2322 {
2323 zio_t *rio = arg;
2324 spa_load_error_t *sle = rio->io_private;
2325
2326 (void) zilog, (void) dnp;
2327
2328 /*
2329 * Note: normally this routine will not be called if
2330 * spa_load_verify_metadata is not set. However, it may be useful
2331 * to manually set the flag after the traversal has begun.
2332 */
2333 if (!spa_load_verify_metadata)
2334 return (0);
2335
2336 /*
2337 * Sanity check the block pointer in order to detect obvious damage
2338 * before using the contents in subsequent checks or in zio_read().
2339 * When damaged consider it to be a metadata error since we cannot
2340 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2341 */
2342 if (!zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_LOG)) {
2343 atomic_inc_64(&sle->sle_meta_count);
2344 return (0);
2345 }
2346
2347 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2348 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2349 return (0);
2350
2351 if (!BP_IS_METADATA(bp) &&
2352 (!spa_load_verify_data || !sle->sle_verify_data))
2353 return (0);
2354
2355 uint64_t maxinflight_bytes =
2356 arc_target_bytes() >> spa_load_verify_shift;
2357 size_t size = BP_GET_PSIZE(bp);
2358
2359 mutex_enter(&spa->spa_scrub_lock);
2360 while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2361 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2362 spa->spa_load_verify_bytes += size;
2363 mutex_exit(&spa->spa_scrub_lock);
2364
2365 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2366 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2367 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2368 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2369 return (0);
2370 }
2371
2372 static int
2373 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2374 {
2375 (void) dp, (void) arg;
2376
2377 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2378 return (SET_ERROR(ENAMETOOLONG));
2379
2380 return (0);
2381 }
2382
2383 static int
2384 spa_load_verify(spa_t *spa)
2385 {
2386 zio_t *rio;
2387 spa_load_error_t sle = { 0 };
2388 zpool_load_policy_t policy;
2389 boolean_t verify_ok = B_FALSE;
2390 int error = 0;
2391
2392 zpool_get_load_policy(spa->spa_config, &policy);
2393
2394 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2395 policy.zlp_maxmeta == UINT64_MAX)
2396 return (0);
2397
2398 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2399 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2400 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2401 DS_FIND_CHILDREN);
2402 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2403 if (error != 0)
2404 return (error);
2405
2406 /*
2407 * Verify data only if we are rewinding or error limit was set.
2408 * Otherwise nothing except dbgmsg care about it to waste time.
2409 */
2410 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2411 (policy.zlp_maxdata < UINT64_MAX);
2412
2413 rio = zio_root(spa, NULL, &sle,
2414 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2415
2416 if (spa_load_verify_metadata) {
2417 if (spa->spa_extreme_rewind) {
2418 spa_load_note(spa, "performing a complete scan of the "
2419 "pool since extreme rewind is on. This may take "
2420 "a very long time.\n (spa_load_verify_data=%u, "
2421 "spa_load_verify_metadata=%u)",
2422 spa_load_verify_data, spa_load_verify_metadata);
2423 }
2424
2425 error = traverse_pool(spa, spa->spa_verify_min_txg,
2426 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2427 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2428 }
2429
2430 (void) zio_wait(rio);
2431 ASSERT0(spa->spa_load_verify_bytes);
2432
2433 spa->spa_load_meta_errors = sle.sle_meta_count;
2434 spa->spa_load_data_errors = sle.sle_data_count;
2435
2436 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2437 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2438 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2439 (u_longlong_t)sle.sle_data_count);
2440 }
2441
2442 if (spa_load_verify_dryrun ||
2443 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2444 sle.sle_data_count <= policy.zlp_maxdata)) {
2445 int64_t loss = 0;
2446
2447 verify_ok = B_TRUE;
2448 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2449 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2450
2451 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2452 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2453 spa->spa_load_txg_ts);
2454 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2455 loss);
2456 fnvlist_add_uint64(spa->spa_load_info,
2457 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2458 fnvlist_add_uint64(spa->spa_load_info,
2459 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2460 } else {
2461 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2462 }
2463
2464 if (spa_load_verify_dryrun)
2465 return (0);
2466
2467 if (error) {
2468 if (error != ENXIO && error != EIO)
2469 error = SET_ERROR(EIO);
2470 return (error);
2471 }
2472
2473 return (verify_ok ? 0 : EIO);
2474 }
2475
2476 /*
2477 * Find a value in the pool props object.
2478 */
2479 static void
2480 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2481 {
2482 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2483 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2484 }
2485
2486 /*
2487 * Find a value in the pool directory object.
2488 */
2489 static int
2490 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2491 {
2492 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2493 name, sizeof (uint64_t), 1, val);
2494
2495 if (error != 0 && (error != ENOENT || log_enoent)) {
2496 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2497 "[error=%d]", name, error);
2498 }
2499
2500 return (error);
2501 }
2502
2503 static int
2504 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2505 {
2506 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2507 return (SET_ERROR(err));
2508 }
2509
2510 boolean_t
2511 spa_livelist_delete_check(spa_t *spa)
2512 {
2513 return (spa->spa_livelists_to_delete != 0);
2514 }
2515
2516 static boolean_t
2517 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2518 {
2519 (void) z;
2520 spa_t *spa = arg;
2521 return (spa_livelist_delete_check(spa));
2522 }
2523
2524 static int
2525 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2526 {
2527 spa_t *spa = arg;
2528 zio_free(spa, tx->tx_txg, bp);
2529 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2530 -bp_get_dsize_sync(spa, bp),
2531 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2532 return (0);
2533 }
2534
2535 static int
2536 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2537 {
2538 int err;
2539 zap_cursor_t zc;
2540 zap_attribute_t za;
2541 zap_cursor_init(&zc, os, zap_obj);
2542 err = zap_cursor_retrieve(&zc, &za);
2543 zap_cursor_fini(&zc);
2544 if (err == 0)
2545 *llp = za.za_first_integer;
2546 return (err);
2547 }
2548
2549 /*
2550 * Components of livelist deletion that must be performed in syncing
2551 * context: freeing block pointers and updating the pool-wide data
2552 * structures to indicate how much work is left to do
2553 */
2554 typedef struct sublist_delete_arg {
2555 spa_t *spa;
2556 dsl_deadlist_t *ll;
2557 uint64_t key;
2558 bplist_t *to_free;
2559 } sublist_delete_arg_t;
2560
2561 static void
2562 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2563 {
2564 sublist_delete_arg_t *sda = arg;
2565 spa_t *spa = sda->spa;
2566 dsl_deadlist_t *ll = sda->ll;
2567 uint64_t key = sda->key;
2568 bplist_t *to_free = sda->to_free;
2569
2570 bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2571 dsl_deadlist_remove_entry(ll, key, tx);
2572 }
2573
2574 typedef struct livelist_delete_arg {
2575 spa_t *spa;
2576 uint64_t ll_obj;
2577 uint64_t zap_obj;
2578 } livelist_delete_arg_t;
2579
2580 static void
2581 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2582 {
2583 livelist_delete_arg_t *lda = arg;
2584 spa_t *spa = lda->spa;
2585 uint64_t ll_obj = lda->ll_obj;
2586 uint64_t zap_obj = lda->zap_obj;
2587 objset_t *mos = spa->spa_meta_objset;
2588 uint64_t count;
2589
2590 /* free the livelist and decrement the feature count */
2591 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2592 dsl_deadlist_free(mos, ll_obj, tx);
2593 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2594 VERIFY0(zap_count(mos, zap_obj, &count));
2595 if (count == 0) {
2596 /* no more livelists to delete */
2597 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2598 DMU_POOL_DELETED_CLONES, tx));
2599 VERIFY0(zap_destroy(mos, zap_obj, tx));
2600 spa->spa_livelists_to_delete = 0;
2601 spa_notify_waiters(spa);
2602 }
2603 }
2604
2605 /*
2606 * Load in the value for the livelist to be removed and open it. Then,
2607 * load its first sublist and determine which block pointers should actually
2608 * be freed. Then, call a synctask which performs the actual frees and updates
2609 * the pool-wide livelist data.
2610 */
2611 static void
2612 spa_livelist_delete_cb(void *arg, zthr_t *z)
2613 {
2614 spa_t *spa = arg;
2615 uint64_t ll_obj = 0, count;
2616 objset_t *mos = spa->spa_meta_objset;
2617 uint64_t zap_obj = spa->spa_livelists_to_delete;
2618 /*
2619 * Determine the next livelist to delete. This function should only
2620 * be called if there is at least one deleted clone.
2621 */
2622 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2623 VERIFY0(zap_count(mos, ll_obj, &count));
2624 if (count > 0) {
2625 dsl_deadlist_t *ll;
2626 dsl_deadlist_entry_t *dle;
2627 bplist_t to_free;
2628 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2629 dsl_deadlist_open(ll, mos, ll_obj);
2630 dle = dsl_deadlist_first(ll);
2631 ASSERT3P(dle, !=, NULL);
2632 bplist_create(&to_free);
2633 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2634 z, NULL);
2635 if (err == 0) {
2636 sublist_delete_arg_t sync_arg = {
2637 .spa = spa,
2638 .ll = ll,
2639 .key = dle->dle_mintxg,
2640 .to_free = &to_free
2641 };
2642 zfs_dbgmsg("deleting sublist (id %llu) from"
2643 " livelist %llu, %lld remaining",
2644 (u_longlong_t)dle->dle_bpobj.bpo_object,
2645 (u_longlong_t)ll_obj, (longlong_t)count - 1);
2646 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2647 sublist_delete_sync, &sync_arg, 0,
2648 ZFS_SPACE_CHECK_DESTROY));
2649 } else {
2650 VERIFY3U(err, ==, EINTR);
2651 }
2652 bplist_clear(&to_free);
2653 bplist_destroy(&to_free);
2654 dsl_deadlist_close(ll);
2655 kmem_free(ll, sizeof (dsl_deadlist_t));
2656 } else {
2657 livelist_delete_arg_t sync_arg = {
2658 .spa = spa,
2659 .ll_obj = ll_obj,
2660 .zap_obj = zap_obj
2661 };
2662 zfs_dbgmsg("deletion of livelist %llu completed",
2663 (u_longlong_t)ll_obj);
2664 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2665 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2666 }
2667 }
2668
2669 static void
2670 spa_start_livelist_destroy_thread(spa_t *spa)
2671 {
2672 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2673 spa->spa_livelist_delete_zthr =
2674 zthr_create("z_livelist_destroy",
2675 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
2676 minclsyspri);
2677 }
2678
2679 typedef struct livelist_new_arg {
2680 bplist_t *allocs;
2681 bplist_t *frees;
2682 } livelist_new_arg_t;
2683
2684 static int
2685 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2686 dmu_tx_t *tx)
2687 {
2688 ASSERT(tx == NULL);
2689 livelist_new_arg_t *lna = arg;
2690 if (bp_freed) {
2691 bplist_append(lna->frees, bp);
2692 } else {
2693 bplist_append(lna->allocs, bp);
2694 zfs_livelist_condense_new_alloc++;
2695 }
2696 return (0);
2697 }
2698
2699 typedef struct livelist_condense_arg {
2700 spa_t *spa;
2701 bplist_t to_keep;
2702 uint64_t first_size;
2703 uint64_t next_size;
2704 } livelist_condense_arg_t;
2705
2706 static void
2707 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2708 {
2709 livelist_condense_arg_t *lca = arg;
2710 spa_t *spa = lca->spa;
2711 bplist_t new_frees;
2712 dsl_dataset_t *ds = spa->spa_to_condense.ds;
2713
2714 /* Have we been cancelled? */
2715 if (spa->spa_to_condense.cancelled) {
2716 zfs_livelist_condense_sync_cancel++;
2717 goto out;
2718 }
2719
2720 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2721 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2722 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2723
2724 /*
2725 * It's possible that the livelist was changed while the zthr was
2726 * running. Therefore, we need to check for new blkptrs in the two
2727 * entries being condensed and continue to track them in the livelist.
2728 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2729 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2730 * we need to sort them into two different bplists.
2731 */
2732 uint64_t first_obj = first->dle_bpobj.bpo_object;
2733 uint64_t next_obj = next->dle_bpobj.bpo_object;
2734 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2735 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2736
2737 bplist_create(&new_frees);
2738 livelist_new_arg_t new_bps = {
2739 .allocs = &lca->to_keep,
2740 .frees = &new_frees,
2741 };
2742
2743 if (cur_first_size > lca->first_size) {
2744 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2745 livelist_track_new_cb, &new_bps, lca->first_size));
2746 }
2747 if (cur_next_size > lca->next_size) {
2748 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2749 livelist_track_new_cb, &new_bps, lca->next_size));
2750 }
2751
2752 dsl_deadlist_clear_entry(first, ll, tx);
2753 ASSERT(bpobj_is_empty(&first->dle_bpobj));
2754 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2755
2756 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2757 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2758 bplist_destroy(&new_frees);
2759
2760 char dsname[ZFS_MAX_DATASET_NAME_LEN];
2761 dsl_dataset_name(ds, dsname);
2762 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2763 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2764 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
2765 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
2766 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
2767 (u_longlong_t)cur_next_size,
2768 (u_longlong_t)first->dle_bpobj.bpo_object,
2769 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2770 out:
2771 dmu_buf_rele(ds->ds_dbuf, spa);
2772 spa->spa_to_condense.ds = NULL;
2773 bplist_clear(&lca->to_keep);
2774 bplist_destroy(&lca->to_keep);
2775 kmem_free(lca, sizeof (livelist_condense_arg_t));
2776 spa->spa_to_condense.syncing = B_FALSE;
2777 }
2778
2779 static void
2780 spa_livelist_condense_cb(void *arg, zthr_t *t)
2781 {
2782 while (zfs_livelist_condense_zthr_pause &&
2783 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2784 delay(1);
2785
2786 spa_t *spa = arg;
2787 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2788 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2789 uint64_t first_size, next_size;
2790
2791 livelist_condense_arg_t *lca =
2792 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2793 bplist_create(&lca->to_keep);
2794
2795 /*
2796 * Process the livelists (matching FREEs and ALLOCs) in open context
2797 * so we have minimal work in syncing context to condense.
2798 *
2799 * We save bpobj sizes (first_size and next_size) to use later in
2800 * syncing context to determine if entries were added to these sublists
2801 * while in open context. This is possible because the clone is still
2802 * active and open for normal writes and we want to make sure the new,
2803 * unprocessed blockpointers are inserted into the livelist normally.
2804 *
2805 * Note that dsl_process_sub_livelist() both stores the size number of
2806 * blockpointers and iterates over them while the bpobj's lock held, so
2807 * the sizes returned to us are consistent which what was actually
2808 * processed.
2809 */
2810 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2811 &first_size);
2812 if (err == 0)
2813 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2814 t, &next_size);
2815
2816 if (err == 0) {
2817 while (zfs_livelist_condense_sync_pause &&
2818 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2819 delay(1);
2820
2821 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2822 dmu_tx_mark_netfree(tx);
2823 dmu_tx_hold_space(tx, 1);
2824 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2825 if (err == 0) {
2826 /*
2827 * Prevent the condense zthr restarting before
2828 * the synctask completes.
2829 */
2830 spa->spa_to_condense.syncing = B_TRUE;
2831 lca->spa = spa;
2832 lca->first_size = first_size;
2833 lca->next_size = next_size;
2834 dsl_sync_task_nowait(spa_get_dsl(spa),
2835 spa_livelist_condense_sync, lca, tx);
2836 dmu_tx_commit(tx);
2837 return;
2838 }
2839 }
2840 /*
2841 * Condensing can not continue: either it was externally stopped or
2842 * we were unable to assign to a tx because the pool has run out of
2843 * space. In the second case, we'll just end up trying to condense
2844 * again in a later txg.
2845 */
2846 ASSERT(err != 0);
2847 bplist_clear(&lca->to_keep);
2848 bplist_destroy(&lca->to_keep);
2849 kmem_free(lca, sizeof (livelist_condense_arg_t));
2850 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2851 spa->spa_to_condense.ds = NULL;
2852 if (err == EINTR)
2853 zfs_livelist_condense_zthr_cancel++;
2854 }
2855
2856 /*
2857 * Check that there is something to condense but that a condense is not
2858 * already in progress and that condensing has not been cancelled.
2859 */
2860 static boolean_t
2861 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2862 {
2863 (void) z;
2864 spa_t *spa = arg;
2865 if ((spa->spa_to_condense.ds != NULL) &&
2866 (spa->spa_to_condense.syncing == B_FALSE) &&
2867 (spa->spa_to_condense.cancelled == B_FALSE)) {
2868 return (B_TRUE);
2869 }
2870 return (B_FALSE);
2871 }
2872
2873 static void
2874 spa_start_livelist_condensing_thread(spa_t *spa)
2875 {
2876 spa->spa_to_condense.ds = NULL;
2877 spa->spa_to_condense.first = NULL;
2878 spa->spa_to_condense.next = NULL;
2879 spa->spa_to_condense.syncing = B_FALSE;
2880 spa->spa_to_condense.cancelled = B_FALSE;
2881
2882 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2883 spa->spa_livelist_condense_zthr =
2884 zthr_create("z_livelist_condense",
2885 spa_livelist_condense_cb_check,
2886 spa_livelist_condense_cb, spa, minclsyspri);
2887 }
2888
2889 static void
2890 spa_spawn_aux_threads(spa_t *spa)
2891 {
2892 ASSERT(spa_writeable(spa));
2893
2894 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2895
2896 spa_start_indirect_condensing_thread(spa);
2897 spa_start_livelist_destroy_thread(spa);
2898 spa_start_livelist_condensing_thread(spa);
2899
2900 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2901 spa->spa_checkpoint_discard_zthr =
2902 zthr_create("z_checkpoint_discard",
2903 spa_checkpoint_discard_thread_check,
2904 spa_checkpoint_discard_thread, spa, minclsyspri);
2905 }
2906
2907 /*
2908 * Fix up config after a partly-completed split. This is done with the
2909 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2910 * pool have that entry in their config, but only the splitting one contains
2911 * a list of all the guids of the vdevs that are being split off.
2912 *
2913 * This function determines what to do with that list: either rejoin
2914 * all the disks to the pool, or complete the splitting process. To attempt
2915 * the rejoin, each disk that is offlined is marked online again, and
2916 * we do a reopen() call. If the vdev label for every disk that was
2917 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2918 * then we call vdev_split() on each disk, and complete the split.
2919 *
2920 * Otherwise we leave the config alone, with all the vdevs in place in
2921 * the original pool.
2922 */
2923 static void
2924 spa_try_repair(spa_t *spa, nvlist_t *config)
2925 {
2926 uint_t extracted;
2927 uint64_t *glist;
2928 uint_t i, gcount;
2929 nvlist_t *nvl;
2930 vdev_t **vd;
2931 boolean_t attempt_reopen;
2932
2933 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2934 return;
2935
2936 /* check that the config is complete */
2937 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2938 &glist, &gcount) != 0)
2939 return;
2940
2941 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2942
2943 /* attempt to online all the vdevs & validate */
2944 attempt_reopen = B_TRUE;
2945 for (i = 0; i < gcount; i++) {
2946 if (glist[i] == 0) /* vdev is hole */
2947 continue;
2948
2949 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2950 if (vd[i] == NULL) {
2951 /*
2952 * Don't bother attempting to reopen the disks;
2953 * just do the split.
2954 */
2955 attempt_reopen = B_FALSE;
2956 } else {
2957 /* attempt to re-online it */
2958 vd[i]->vdev_offline = B_FALSE;
2959 }
2960 }
2961
2962 if (attempt_reopen) {
2963 vdev_reopen(spa->spa_root_vdev);
2964
2965 /* check each device to see what state it's in */
2966 for (extracted = 0, i = 0; i < gcount; i++) {
2967 if (vd[i] != NULL &&
2968 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2969 break;
2970 ++extracted;
2971 }
2972 }
2973
2974 /*
2975 * If every disk has been moved to the new pool, or if we never
2976 * even attempted to look at them, then we split them off for
2977 * good.
2978 */
2979 if (!attempt_reopen || gcount == extracted) {
2980 for (i = 0; i < gcount; i++)
2981 if (vd[i] != NULL)
2982 vdev_split(vd[i]);
2983 vdev_reopen(spa->spa_root_vdev);
2984 }
2985
2986 kmem_free(vd, gcount * sizeof (vdev_t *));
2987 }
2988
2989 static int
2990 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2991 {
2992 const char *ereport = FM_EREPORT_ZFS_POOL;
2993 int error;
2994
2995 spa->spa_load_state = state;
2996 (void) spa_import_progress_set_state(spa_guid(spa),
2997 spa_load_state(spa));
2998
2999 gethrestime(&spa->spa_loaded_ts);
3000 error = spa_load_impl(spa, type, &ereport);
3001
3002 /*
3003 * Don't count references from objsets that are already closed
3004 * and are making their way through the eviction process.
3005 */
3006 spa_evicting_os_wait(spa);
3007 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3008 if (error) {
3009 if (error != EEXIST) {
3010 spa->spa_loaded_ts.tv_sec = 0;
3011 spa->spa_loaded_ts.tv_nsec = 0;
3012 }
3013 if (error != EBADF) {
3014 (void) zfs_ereport_post(ereport, spa,
3015 NULL, NULL, NULL, 0);
3016 }
3017 }
3018 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3019 spa->spa_ena = 0;
3020
3021 (void) spa_import_progress_set_state(spa_guid(spa),
3022 spa_load_state(spa));
3023
3024 return (error);
3025 }
3026
3027 #ifdef ZFS_DEBUG
3028 /*
3029 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3030 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3031 * spa's per-vdev ZAP list.
3032 */
3033 static uint64_t
3034 vdev_count_verify_zaps(vdev_t *vd)
3035 {
3036 spa_t *spa = vd->vdev_spa;
3037 uint64_t total = 0;
3038
3039 if (vd->vdev_top_zap != 0) {
3040 total++;
3041 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3042 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3043 }
3044 if (vd->vdev_leaf_zap != 0) {
3045 total++;
3046 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3047 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3048 }
3049
3050 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3051 total += vdev_count_verify_zaps(vd->vdev_child[i]);
3052 }
3053
3054 return (total);
3055 }
3056 #else
3057 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3058 #endif
3059
3060 /*
3061 * Determine whether the activity check is required.
3062 */
3063 static boolean_t
3064 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3065 nvlist_t *config)
3066 {
3067 uint64_t state = 0;
3068 uint64_t hostid = 0;
3069 uint64_t tryconfig_txg = 0;
3070 uint64_t tryconfig_timestamp = 0;
3071 uint16_t tryconfig_mmp_seq = 0;
3072 nvlist_t *nvinfo;
3073
3074 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3075 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3076 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3077 &tryconfig_txg);
3078 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3079 &tryconfig_timestamp);
3080 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3081 &tryconfig_mmp_seq);
3082 }
3083
3084 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3085
3086 /*
3087 * Disable the MMP activity check - This is used by zdb which
3088 * is intended to be used on potentially active pools.
3089 */
3090 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3091 return (B_FALSE);
3092
3093 /*
3094 * Skip the activity check when the MMP feature is disabled.
3095 */
3096 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3097 return (B_FALSE);
3098
3099 /*
3100 * If the tryconfig_ values are nonzero, they are the results of an
3101 * earlier tryimport. If they all match the uberblock we just found,
3102 * then the pool has not changed and we return false so we do not test
3103 * a second time.
3104 */
3105 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3106 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3107 tryconfig_mmp_seq && tryconfig_mmp_seq ==
3108 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3109 return (B_FALSE);
3110
3111 /*
3112 * Allow the activity check to be skipped when importing the pool
3113 * on the same host which last imported it. Since the hostid from
3114 * configuration may be stale use the one read from the label.
3115 */
3116 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3117 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3118
3119 if (hostid == spa_get_hostid(spa))
3120 return (B_FALSE);
3121
3122 /*
3123 * Skip the activity test when the pool was cleanly exported.
3124 */
3125 if (state != POOL_STATE_ACTIVE)
3126 return (B_FALSE);
3127
3128 return (B_TRUE);
3129 }
3130
3131 /*
3132 * Nanoseconds the activity check must watch for changes on-disk.
3133 */
3134 static uint64_t
3135 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3136 {
3137 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3138 uint64_t multihost_interval = MSEC2NSEC(
3139 MMP_INTERVAL_OK(zfs_multihost_interval));
3140 uint64_t import_delay = MAX(NANOSEC, import_intervals *
3141 multihost_interval);
3142
3143 /*
3144 * Local tunables determine a minimum duration except for the case
3145 * where we know when the remote host will suspend the pool if MMP
3146 * writes do not land.
3147 *
3148 * See Big Theory comment at the top of mmp.c for the reasoning behind
3149 * these cases and times.
3150 */
3151
3152 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3153
3154 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3155 MMP_FAIL_INT(ub) > 0) {
3156
3157 /* MMP on remote host will suspend pool after failed writes */
3158 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3159 MMP_IMPORT_SAFETY_FACTOR / 100;
3160
3161 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3162 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3163 "import_intervals=%llu", (u_longlong_t)import_delay,
3164 (u_longlong_t)MMP_FAIL_INT(ub),
3165 (u_longlong_t)MMP_INTERVAL(ub),
3166 (u_longlong_t)import_intervals);
3167
3168 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3169 MMP_FAIL_INT(ub) == 0) {
3170
3171 /* MMP on remote host will never suspend pool */
3172 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3173 ub->ub_mmp_delay) * import_intervals);
3174
3175 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3176 "mmp_interval=%llu ub_mmp_delay=%llu "
3177 "import_intervals=%llu", (u_longlong_t)import_delay,
3178 (u_longlong_t)MMP_INTERVAL(ub),
3179 (u_longlong_t)ub->ub_mmp_delay,
3180 (u_longlong_t)import_intervals);
3181
3182 } else if (MMP_VALID(ub)) {
3183 /*
3184 * zfs-0.7 compatibility case
3185 */
3186
3187 import_delay = MAX(import_delay, (multihost_interval +
3188 ub->ub_mmp_delay) * import_intervals);
3189
3190 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3191 "import_intervals=%llu leaves=%u",
3192 (u_longlong_t)import_delay,
3193 (u_longlong_t)ub->ub_mmp_delay,
3194 (u_longlong_t)import_intervals,
3195 vdev_count_leaves(spa));
3196 } else {
3197 /* Using local tunings is the only reasonable option */
3198 zfs_dbgmsg("pool last imported on non-MMP aware "
3199 "host using import_delay=%llu multihost_interval=%llu "
3200 "import_intervals=%llu", (u_longlong_t)import_delay,
3201 (u_longlong_t)multihost_interval,
3202 (u_longlong_t)import_intervals);
3203 }
3204
3205 return (import_delay);
3206 }
3207
3208 /*
3209 * Perform the import activity check. If the user canceled the import or
3210 * we detected activity then fail.
3211 */
3212 static int
3213 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3214 {
3215 uint64_t txg = ub->ub_txg;
3216 uint64_t timestamp = ub->ub_timestamp;
3217 uint64_t mmp_config = ub->ub_mmp_config;
3218 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3219 uint64_t import_delay;
3220 hrtime_t import_expire;
3221 nvlist_t *mmp_label = NULL;
3222 vdev_t *rvd = spa->spa_root_vdev;
3223 kcondvar_t cv;
3224 kmutex_t mtx;
3225 int error = 0;
3226
3227 cv_init(&cv, NULL, CV_DEFAULT, NULL);
3228 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3229 mutex_enter(&mtx);
3230
3231 /*
3232 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3233 * during the earlier tryimport. If the txg recorded there is 0 then
3234 * the pool is known to be active on another host.
3235 *
3236 * Otherwise, the pool might be in use on another host. Check for
3237 * changes in the uberblocks on disk if necessary.
3238 */
3239 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3240 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3241 ZPOOL_CONFIG_LOAD_INFO);
3242
3243 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3244 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3245 vdev_uberblock_load(rvd, ub, &mmp_label);
3246 error = SET_ERROR(EREMOTEIO);
3247 goto out;
3248 }
3249 }
3250
3251 import_delay = spa_activity_check_duration(spa, ub);
3252
3253 /* Add a small random factor in case of simultaneous imports (0-25%) */
3254 import_delay += import_delay * random_in_range(250) / 1000;
3255
3256 import_expire = gethrtime() + import_delay;
3257
3258 while (gethrtime() < import_expire) {
3259 (void) spa_import_progress_set_mmp_check(spa_guid(spa),
3260 NSEC2SEC(import_expire - gethrtime()));
3261
3262 vdev_uberblock_load(rvd, ub, &mmp_label);
3263
3264 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3265 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3266 zfs_dbgmsg("multihost activity detected "
3267 "txg %llu ub_txg %llu "
3268 "timestamp %llu ub_timestamp %llu "
3269 "mmp_config %#llx ub_mmp_config %#llx",
3270 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3271 (u_longlong_t)timestamp,
3272 (u_longlong_t)ub->ub_timestamp,
3273 (u_longlong_t)mmp_config,
3274 (u_longlong_t)ub->ub_mmp_config);
3275
3276 error = SET_ERROR(EREMOTEIO);
3277 break;
3278 }
3279
3280 if (mmp_label) {
3281 nvlist_free(mmp_label);
3282 mmp_label = NULL;
3283 }
3284
3285 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3286 if (error != -1) {
3287 error = SET_ERROR(EINTR);
3288 break;
3289 }
3290 error = 0;
3291 }
3292
3293 out:
3294 mutex_exit(&mtx);
3295 mutex_destroy(&mtx);
3296 cv_destroy(&cv);
3297
3298 /*
3299 * If the pool is determined to be active store the status in the
3300 * spa->spa_load_info nvlist. If the remote hostname or hostid are
3301 * available from configuration read from disk store them as well.
3302 * This allows 'zpool import' to generate a more useful message.
3303 *
3304 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
3305 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3306 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
3307 */
3308 if (error == EREMOTEIO) {
3309 const char *hostname = "<unknown>";
3310 uint64_t hostid = 0;
3311
3312 if (mmp_label) {
3313 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3314 hostname = fnvlist_lookup_string(mmp_label,
3315 ZPOOL_CONFIG_HOSTNAME);
3316 fnvlist_add_string(spa->spa_load_info,
3317 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3318 }
3319
3320 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3321 hostid = fnvlist_lookup_uint64(mmp_label,
3322 ZPOOL_CONFIG_HOSTID);
3323 fnvlist_add_uint64(spa->spa_load_info,
3324 ZPOOL_CONFIG_MMP_HOSTID, hostid);
3325 }
3326 }
3327
3328 fnvlist_add_uint64(spa->spa_load_info,
3329 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3330 fnvlist_add_uint64(spa->spa_load_info,
3331 ZPOOL_CONFIG_MMP_TXG, 0);
3332
3333 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3334 }
3335
3336 if (mmp_label)
3337 nvlist_free(mmp_label);
3338
3339 return (error);
3340 }
3341
3342 static int
3343 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3344 {
3345 uint64_t hostid;
3346 char *hostname;
3347 uint64_t myhostid = 0;
3348
3349 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3350 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3351 hostname = fnvlist_lookup_string(mos_config,
3352 ZPOOL_CONFIG_HOSTNAME);
3353
3354 myhostid = zone_get_hostid(NULL);
3355
3356 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3357 cmn_err(CE_WARN, "pool '%s' could not be "
3358 "loaded as it was last accessed by "
3359 "another system (host: %s hostid: 0x%llx). "
3360 "See: https://openzfs.github.io/openzfs-docs/msg/"
3361 "ZFS-8000-EY",
3362 spa_name(spa), hostname, (u_longlong_t)hostid);
3363 spa_load_failed(spa, "hostid verification failed: pool "
3364 "last accessed by host: %s (hostid: 0x%llx)",
3365 hostname, (u_longlong_t)hostid);
3366 return (SET_ERROR(EBADF));
3367 }
3368 }
3369
3370 return (0);
3371 }
3372
3373 static int
3374 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3375 {
3376 int error = 0;
3377 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3378 int parse;
3379 vdev_t *rvd;
3380 uint64_t pool_guid;
3381 char *comment;
3382 char *compatibility;
3383
3384 /*
3385 * Versioning wasn't explicitly added to the label until later, so if
3386 * it's not present treat it as the initial version.
3387 */
3388 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3389 &spa->spa_ubsync.ub_version) != 0)
3390 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3391
3392 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3393 spa_load_failed(spa, "invalid config provided: '%s' missing",
3394 ZPOOL_CONFIG_POOL_GUID);
3395 return (SET_ERROR(EINVAL));
3396 }
3397
3398 /*
3399 * If we are doing an import, ensure that the pool is not already
3400 * imported by checking if its pool guid already exists in the
3401 * spa namespace.
3402 *
3403 * The only case that we allow an already imported pool to be
3404 * imported again, is when the pool is checkpointed and we want to
3405 * look at its checkpointed state from userland tools like zdb.
3406 */
3407 #ifdef _KERNEL
3408 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3409 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3410 spa_guid_exists(pool_guid, 0)) {
3411 #else
3412 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3413 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3414 spa_guid_exists(pool_guid, 0) &&
3415 !spa_importing_readonly_checkpoint(spa)) {
3416 #endif
3417 spa_load_failed(spa, "a pool with guid %llu is already open",
3418 (u_longlong_t)pool_guid);
3419 return (SET_ERROR(EEXIST));
3420 }
3421
3422 spa->spa_config_guid = pool_guid;
3423
3424 nvlist_free(spa->spa_load_info);
3425 spa->spa_load_info = fnvlist_alloc();
3426
3427 ASSERT(spa->spa_comment == NULL);
3428 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3429 spa->spa_comment = spa_strdup(comment);
3430
3431 ASSERT(spa->spa_compatibility == NULL);
3432 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3433 &compatibility) == 0)
3434 spa->spa_compatibility = spa_strdup(compatibility);
3435
3436 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3437 &spa->spa_config_txg);
3438
3439 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3440 spa->spa_config_splitting = fnvlist_dup(nvl);
3441
3442 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3443 spa_load_failed(spa, "invalid config provided: '%s' missing",
3444 ZPOOL_CONFIG_VDEV_TREE);
3445 return (SET_ERROR(EINVAL));
3446 }
3447
3448 /*
3449 * Create "The Godfather" zio to hold all async IOs
3450 */
3451 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3452 KM_SLEEP);
3453 for (int i = 0; i < max_ncpus; i++) {
3454 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3455 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3456 ZIO_FLAG_GODFATHER);
3457 }
3458
3459 /*
3460 * Parse the configuration into a vdev tree. We explicitly set the
3461 * value that will be returned by spa_version() since parsing the
3462 * configuration requires knowing the version number.
3463 */
3464 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3465 parse = (type == SPA_IMPORT_EXISTING ?
3466 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3467 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3468 spa_config_exit(spa, SCL_ALL, FTAG);
3469
3470 if (error != 0) {
3471 spa_load_failed(spa, "unable to parse config [error=%d]",
3472 error);
3473 return (error);
3474 }
3475
3476 ASSERT(spa->spa_root_vdev == rvd);
3477 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3478 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3479
3480 if (type != SPA_IMPORT_ASSEMBLE) {
3481 ASSERT(spa_guid(spa) == pool_guid);
3482 }
3483
3484 return (0);
3485 }
3486
3487 /*
3488 * Recursively open all vdevs in the vdev tree. This function is called twice:
3489 * first with the untrusted config, then with the trusted config.
3490 */
3491 static int
3492 spa_ld_open_vdevs(spa_t *spa)
3493 {
3494 int error = 0;
3495
3496 /*
3497 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3498 * missing/unopenable for the root vdev to be still considered openable.
3499 */
3500 if (spa->spa_trust_config) {
3501 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3502 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3503 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3504 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3505 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3506 } else {
3507 spa->spa_missing_tvds_allowed = 0;
3508 }
3509
3510 spa->spa_missing_tvds_allowed =
3511 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3512
3513 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3514 error = vdev_open(spa->spa_root_vdev);
3515 spa_config_exit(spa, SCL_ALL, FTAG);
3516
3517 if (spa->spa_missing_tvds != 0) {
3518 spa_load_note(spa, "vdev tree has %lld missing top-level "
3519 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3520 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3521 /*
3522 * Although theoretically we could allow users to open
3523 * incomplete pools in RW mode, we'd need to add a lot
3524 * of extra logic (e.g. adjust pool space to account
3525 * for missing vdevs).
3526 * This limitation also prevents users from accidentally
3527 * opening the pool in RW mode during data recovery and
3528 * damaging it further.
3529 */
3530 spa_load_note(spa, "pools with missing top-level "
3531 "vdevs can only be opened in read-only mode.");
3532 error = SET_ERROR(ENXIO);
3533 } else {
3534 spa_load_note(spa, "current settings allow for maximum "
3535 "%lld missing top-level vdevs at this stage.",
3536 (u_longlong_t)spa->spa_missing_tvds_allowed);
3537 }
3538 }
3539 if (error != 0) {
3540 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3541 error);
3542 }
3543 if (spa->spa_missing_tvds != 0 || error != 0)
3544 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3545
3546 return (error);
3547 }
3548
3549 /*
3550 * We need to validate the vdev labels against the configuration that
3551 * we have in hand. This function is called twice: first with an untrusted
3552 * config, then with a trusted config. The validation is more strict when the
3553 * config is trusted.
3554 */
3555 static int
3556 spa_ld_validate_vdevs(spa_t *spa)
3557 {
3558 int error = 0;
3559 vdev_t *rvd = spa->spa_root_vdev;
3560
3561 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3562 error = vdev_validate(rvd);
3563 spa_config_exit(spa, SCL_ALL, FTAG);
3564
3565 if (error != 0) {
3566 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3567 return (error);
3568 }
3569
3570 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3571 spa_load_failed(spa, "cannot open vdev tree after invalidating "
3572 "some vdevs");
3573 vdev_dbgmsg_print_tree(rvd, 2);
3574 return (SET_ERROR(ENXIO));
3575 }
3576
3577 return (0);
3578 }
3579
3580 static void
3581 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3582 {
3583 spa->spa_state = POOL_STATE_ACTIVE;
3584 spa->spa_ubsync = spa->spa_uberblock;
3585 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3586 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3587 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3588 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3589 spa->spa_claim_max_txg = spa->spa_first_txg;
3590 spa->spa_prev_software_version = ub->ub_software_version;
3591 }
3592
3593 static int
3594 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3595 {
3596 vdev_t *rvd = spa->spa_root_vdev;
3597 nvlist_t *label;
3598 uberblock_t *ub = &spa->spa_uberblock;
3599 boolean_t activity_check = B_FALSE;
3600
3601 /*
3602 * If we are opening the checkpointed state of the pool by
3603 * rewinding to it, at this point we will have written the
3604 * checkpointed uberblock to the vdev labels, so searching
3605 * the labels will find the right uberblock. However, if
3606 * we are opening the checkpointed state read-only, we have
3607 * not modified the labels. Therefore, we must ignore the
3608 * labels and continue using the spa_uberblock that was set
3609 * by spa_ld_checkpoint_rewind.
3610 *
3611 * Note that it would be fine to ignore the labels when
3612 * rewinding (opening writeable) as well. However, if we
3613 * crash just after writing the labels, we will end up
3614 * searching the labels. Doing so in the common case means
3615 * that this code path gets exercised normally, rather than
3616 * just in the edge case.
3617 */
3618 if (ub->ub_checkpoint_txg != 0 &&
3619 spa_importing_readonly_checkpoint(spa)) {
3620 spa_ld_select_uberblock_done(spa, ub);
3621 return (0);
3622 }
3623
3624 /*
3625 * Find the best uberblock.
3626 */
3627 vdev_uberblock_load(rvd, ub, &label);
3628
3629 /*
3630 * If we weren't able to find a single valid uberblock, return failure.
3631 */
3632 if (ub->ub_txg == 0) {
3633 nvlist_free(label);
3634 spa_load_failed(spa, "no valid uberblock found");
3635 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3636 }
3637
3638 if (spa->spa_load_max_txg != UINT64_MAX) {
3639 (void) spa_import_progress_set_max_txg(spa_guid(spa),
3640 (u_longlong_t)spa->spa_load_max_txg);
3641 }
3642 spa_load_note(spa, "using uberblock with txg=%llu",
3643 (u_longlong_t)ub->ub_txg);
3644
3645
3646 /*
3647 * For pools which have the multihost property on determine if the
3648 * pool is truly inactive and can be safely imported. Prevent
3649 * hosts which don't have a hostid set from importing the pool.
3650 */
3651 activity_check = spa_activity_check_required(spa, ub, label,
3652 spa->spa_config);
3653 if (activity_check) {
3654 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3655 spa_get_hostid(spa) == 0) {
3656 nvlist_free(label);
3657 fnvlist_add_uint64(spa->spa_load_info,
3658 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3659 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3660 }
3661
3662 int error = spa_activity_check(spa, ub, spa->spa_config);
3663 if (error) {
3664 nvlist_free(label);
3665 return (error);
3666 }
3667
3668 fnvlist_add_uint64(spa->spa_load_info,
3669 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3670 fnvlist_add_uint64(spa->spa_load_info,
3671 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3672 fnvlist_add_uint16(spa->spa_load_info,
3673 ZPOOL_CONFIG_MMP_SEQ,
3674 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3675 }
3676
3677 /*
3678 * If the pool has an unsupported version we can't open it.
3679 */
3680 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3681 nvlist_free(label);
3682 spa_load_failed(spa, "version %llu is not supported",
3683 (u_longlong_t)ub->ub_version);
3684 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3685 }
3686
3687 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3688 nvlist_t *features;
3689
3690 /*
3691 * If we weren't able to find what's necessary for reading the
3692 * MOS in the label, return failure.
3693 */
3694 if (label == NULL) {
3695 spa_load_failed(spa, "label config unavailable");
3696 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3697 ENXIO));
3698 }
3699
3700 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3701 &features) != 0) {
3702 nvlist_free(label);
3703 spa_load_failed(spa, "invalid label: '%s' missing",
3704 ZPOOL_CONFIG_FEATURES_FOR_READ);
3705 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3706 ENXIO));
3707 }
3708
3709 /*
3710 * Update our in-core representation with the definitive values
3711 * from the label.
3712 */
3713 nvlist_free(spa->spa_label_features);
3714 spa->spa_label_features = fnvlist_dup(features);
3715 }
3716
3717 nvlist_free(label);
3718
3719 /*
3720 * Look through entries in the label nvlist's features_for_read. If
3721 * there is a feature listed there which we don't understand then we
3722 * cannot open a pool.
3723 */
3724 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3725 nvlist_t *unsup_feat;
3726
3727 unsup_feat = fnvlist_alloc();
3728
3729 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3730 NULL); nvp != NULL;
3731 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3732 if (!zfeature_is_supported(nvpair_name(nvp))) {
3733 fnvlist_add_string(unsup_feat,
3734 nvpair_name(nvp), "");
3735 }
3736 }
3737
3738 if (!nvlist_empty(unsup_feat)) {
3739 fnvlist_add_nvlist(spa->spa_load_info,
3740 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3741 nvlist_free(unsup_feat);
3742 spa_load_failed(spa, "some features are unsupported");
3743 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3744 ENOTSUP));
3745 }
3746
3747 nvlist_free(unsup_feat);
3748 }
3749
3750 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3751 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3752 spa_try_repair(spa, spa->spa_config);
3753 spa_config_exit(spa, SCL_ALL, FTAG);
3754 nvlist_free(spa->spa_config_splitting);
3755 spa->spa_config_splitting = NULL;
3756 }
3757
3758 /*
3759 * Initialize internal SPA structures.
3760 */
3761 spa_ld_select_uberblock_done(spa, ub);
3762
3763 return (0);
3764 }
3765
3766 static int
3767 spa_ld_open_rootbp(spa_t *spa)
3768 {
3769 int error = 0;
3770 vdev_t *rvd = spa->spa_root_vdev;
3771
3772 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3773 if (error != 0) {
3774 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3775 "[error=%d]", error);
3776 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3777 }
3778 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3779
3780 return (0);
3781 }
3782
3783 static int
3784 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3785 boolean_t reloading)
3786 {
3787 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3788 nvlist_t *nv, *mos_config, *policy;
3789 int error = 0, copy_error;
3790 uint64_t healthy_tvds, healthy_tvds_mos;
3791 uint64_t mos_config_txg;
3792
3793 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3794 != 0)
3795 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3796
3797 /*
3798 * If we're assembling a pool from a split, the config provided is
3799 * already trusted so there is nothing to do.
3800 */
3801 if (type == SPA_IMPORT_ASSEMBLE)
3802 return (0);
3803
3804 healthy_tvds = spa_healthy_core_tvds(spa);
3805
3806 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3807 != 0) {
3808 spa_load_failed(spa, "unable to retrieve MOS config");
3809 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3810 }
3811
3812 /*
3813 * If we are doing an open, pool owner wasn't verified yet, thus do
3814 * the verification here.
3815 */
3816 if (spa->spa_load_state == SPA_LOAD_OPEN) {
3817 error = spa_verify_host(spa, mos_config);
3818 if (error != 0) {
3819 nvlist_free(mos_config);
3820 return (error);
3821 }
3822 }
3823
3824 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3825
3826 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3827
3828 /*
3829 * Build a new vdev tree from the trusted config
3830 */
3831 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
3832 if (error != 0) {
3833 nvlist_free(mos_config);
3834 spa_config_exit(spa, SCL_ALL, FTAG);
3835 spa_load_failed(spa, "spa_config_parse failed [error=%d]",
3836 error);
3837 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3838 }
3839
3840 /*
3841 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3842 * obtained by scanning /dev/dsk, then it will have the right vdev
3843 * paths. We update the trusted MOS config with this information.
3844 * We first try to copy the paths with vdev_copy_path_strict, which
3845 * succeeds only when both configs have exactly the same vdev tree.
3846 * If that fails, we fall back to a more flexible method that has a
3847 * best effort policy.
3848 */
3849 copy_error = vdev_copy_path_strict(rvd, mrvd);
3850 if (copy_error != 0 || spa_load_print_vdev_tree) {
3851 spa_load_note(spa, "provided vdev tree:");
3852 vdev_dbgmsg_print_tree(rvd, 2);
3853 spa_load_note(spa, "MOS vdev tree:");
3854 vdev_dbgmsg_print_tree(mrvd, 2);
3855 }
3856 if (copy_error != 0) {
3857 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3858 "back to vdev_copy_path_relaxed");
3859 vdev_copy_path_relaxed(rvd, mrvd);
3860 }
3861
3862 vdev_close(rvd);
3863 vdev_free(rvd);
3864 spa->spa_root_vdev = mrvd;
3865 rvd = mrvd;
3866 spa_config_exit(spa, SCL_ALL, FTAG);
3867
3868 /*
3869 * We will use spa_config if we decide to reload the spa or if spa_load
3870 * fails and we rewind. We must thus regenerate the config using the
3871 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3872 * pass settings on how to load the pool and is not stored in the MOS.
3873 * We copy it over to our new, trusted config.
3874 */
3875 mos_config_txg = fnvlist_lookup_uint64(mos_config,
3876 ZPOOL_CONFIG_POOL_TXG);
3877 nvlist_free(mos_config);
3878 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3879 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3880 &policy) == 0)
3881 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3882 spa_config_set(spa, mos_config);
3883 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3884
3885 /*
3886 * Now that we got the config from the MOS, we should be more strict
3887 * in checking blkptrs and can make assumptions about the consistency
3888 * of the vdev tree. spa_trust_config must be set to true before opening
3889 * vdevs in order for them to be writeable.
3890 */
3891 spa->spa_trust_config = B_TRUE;
3892
3893 /*
3894 * Open and validate the new vdev tree
3895 */
3896 error = spa_ld_open_vdevs(spa);
3897 if (error != 0)
3898 return (error);
3899
3900 error = spa_ld_validate_vdevs(spa);
3901 if (error != 0)
3902 return (error);
3903
3904 if (copy_error != 0 || spa_load_print_vdev_tree) {
3905 spa_load_note(spa, "final vdev tree:");
3906 vdev_dbgmsg_print_tree(rvd, 2);
3907 }
3908
3909 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3910 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3911 /*
3912 * Sanity check to make sure that we are indeed loading the
3913 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3914 * in the config provided and they happened to be the only ones
3915 * to have the latest uberblock, we could involuntarily perform
3916 * an extreme rewind.
3917 */
3918 healthy_tvds_mos = spa_healthy_core_tvds(spa);
3919 if (healthy_tvds_mos - healthy_tvds >=
3920 SPA_SYNC_MIN_VDEVS) {
3921 spa_load_note(spa, "config provided misses too many "
3922 "top-level vdevs compared to MOS (%lld vs %lld). ",
3923 (u_longlong_t)healthy_tvds,
3924 (u_longlong_t)healthy_tvds_mos);
3925 spa_load_note(spa, "vdev tree:");
3926 vdev_dbgmsg_print_tree(rvd, 2);
3927 if (reloading) {
3928 spa_load_failed(spa, "config was already "
3929 "provided from MOS. Aborting.");
3930 return (spa_vdev_err(rvd,
3931 VDEV_AUX_CORRUPT_DATA, EIO));
3932 }
3933 spa_load_note(spa, "spa must be reloaded using MOS "
3934 "config");
3935 return (SET_ERROR(EAGAIN));
3936 }
3937 }
3938
3939 error = spa_check_for_missing_logs(spa);
3940 if (error != 0)
3941 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3942
3943 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3944 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3945 "guid sum (%llu != %llu)",
3946 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3947 (u_longlong_t)rvd->vdev_guid_sum);
3948 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3949 ENXIO));
3950 }
3951
3952 return (0);
3953 }
3954
3955 static int
3956 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3957 {
3958 int error = 0;
3959 vdev_t *rvd = spa->spa_root_vdev;
3960
3961 /*
3962 * Everything that we read before spa_remove_init() must be stored
3963 * on concreted vdevs. Therefore we do this as early as possible.
3964 */
3965 error = spa_remove_init(spa);
3966 if (error != 0) {
3967 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3968 error);
3969 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3970 }
3971
3972 /*
3973 * Retrieve information needed to condense indirect vdev mappings.
3974 */
3975 error = spa_condense_init(spa);
3976 if (error != 0) {
3977 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3978 error);
3979 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3980 }
3981
3982 return (0);
3983 }
3984
3985 static int
3986 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3987 {
3988 int error = 0;
3989 vdev_t *rvd = spa->spa_root_vdev;
3990
3991 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3992 boolean_t missing_feat_read = B_FALSE;
3993 nvlist_t *unsup_feat, *enabled_feat;
3994
3995 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3996 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3997 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3998 }
3999
4000 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4001 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4002 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4003 }
4004
4005 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4006 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4007 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4008 }
4009
4010 enabled_feat = fnvlist_alloc();
4011 unsup_feat = fnvlist_alloc();
4012
4013 if (!spa_features_check(spa, B_FALSE,
4014 unsup_feat, enabled_feat))
4015 missing_feat_read = B_TRUE;
4016
4017 if (spa_writeable(spa) ||
4018 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4019 if (!spa_features_check(spa, B_TRUE,
4020 unsup_feat, enabled_feat)) {
4021 *missing_feat_writep = B_TRUE;
4022 }
4023 }
4024
4025 fnvlist_add_nvlist(spa->spa_load_info,
4026 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4027
4028 if (!nvlist_empty(unsup_feat)) {
4029 fnvlist_add_nvlist(spa->spa_load_info,
4030 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4031 }
4032
4033 fnvlist_free(enabled_feat);
4034 fnvlist_free(unsup_feat);
4035
4036 if (!missing_feat_read) {
4037 fnvlist_add_boolean(spa->spa_load_info,
4038 ZPOOL_CONFIG_CAN_RDONLY);
4039 }
4040
4041 /*
4042 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4043 * twofold: to determine whether the pool is available for
4044 * import in read-write mode and (if it is not) whether the
4045 * pool is available for import in read-only mode. If the pool
4046 * is available for import in read-write mode, it is displayed
4047 * as available in userland; if it is not available for import
4048 * in read-only mode, it is displayed as unavailable in
4049 * userland. If the pool is available for import in read-only
4050 * mode but not read-write mode, it is displayed as unavailable
4051 * in userland with a special note that the pool is actually
4052 * available for open in read-only mode.
4053 *
4054 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4055 * missing a feature for write, we must first determine whether
4056 * the pool can be opened read-only before returning to
4057 * userland in order to know whether to display the
4058 * abovementioned note.
4059 */
4060 if (missing_feat_read || (*missing_feat_writep &&
4061 spa_writeable(spa))) {
4062 spa_load_failed(spa, "pool uses unsupported features");
4063 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4064 ENOTSUP));
4065 }
4066
4067 /*
4068 * Load refcounts for ZFS features from disk into an in-memory
4069 * cache during SPA initialization.
4070 */
4071 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4072 uint64_t refcount;
4073
4074 error = feature_get_refcount_from_disk(spa,
4075 &spa_feature_table[i], &refcount);
4076 if (error == 0) {
4077 spa->spa_feat_refcount_cache[i] = refcount;
4078 } else if (error == ENOTSUP) {
4079 spa->spa_feat_refcount_cache[i] =
4080 SPA_FEATURE_DISABLED;
4081 } else {
4082 spa_load_failed(spa, "error getting refcount "
4083 "for feature %s [error=%d]",
4084 spa_feature_table[i].fi_guid, error);
4085 return (spa_vdev_err(rvd,
4086 VDEV_AUX_CORRUPT_DATA, EIO));
4087 }
4088 }
4089 }
4090
4091 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4092 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4093 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4094 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4095 }
4096
4097 /*
4098 * Encryption was added before bookmark_v2, even though bookmark_v2
4099 * is now a dependency. If this pool has encryption enabled without
4100 * bookmark_v2, trigger an errata message.
4101 */
4102 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4103 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4104 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4105 }
4106
4107 return (0);
4108 }
4109
4110 static int
4111 spa_ld_load_special_directories(spa_t *spa)
4112 {
4113 int error = 0;
4114 vdev_t *rvd = spa->spa_root_vdev;
4115
4116 spa->spa_is_initializing = B_TRUE;
4117 error = dsl_pool_open(spa->spa_dsl_pool);
4118 spa->spa_is_initializing = B_FALSE;
4119 if (error != 0) {
4120 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4121 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4122 }
4123
4124 return (0);
4125 }
4126
4127 static int
4128 spa_ld_get_props(spa_t *spa)
4129 {
4130 int error = 0;
4131 uint64_t obj;
4132 vdev_t *rvd = spa->spa_root_vdev;
4133
4134 /* Grab the checksum salt from the MOS. */
4135 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4136 DMU_POOL_CHECKSUM_SALT, 1,
4137 sizeof (spa->spa_cksum_salt.zcs_bytes),
4138 spa->spa_cksum_salt.zcs_bytes);
4139 if (error == ENOENT) {
4140 /* Generate a new salt for subsequent use */
4141 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4142 sizeof (spa->spa_cksum_salt.zcs_bytes));
4143 } else if (error != 0) {
4144 spa_load_failed(spa, "unable to retrieve checksum salt from "
4145 "MOS [error=%d]", error);
4146 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4147 }
4148
4149 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4150 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4151 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4152 if (error != 0) {
4153 spa_load_failed(spa, "error opening deferred-frees bpobj "
4154 "[error=%d]", error);
4155 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4156 }
4157
4158 /*
4159 * Load the bit that tells us to use the new accounting function
4160 * (raid-z deflation). If we have an older pool, this will not
4161 * be present.
4162 */
4163 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4164 if (error != 0 && error != ENOENT)
4165 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4166
4167 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4168 &spa->spa_creation_version, B_FALSE);
4169 if (error != 0 && error != ENOENT)
4170 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4171
4172 /*
4173 * Load the persistent error log. If we have an older pool, this will
4174 * not be present.
4175 */
4176 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4177 B_FALSE);
4178 if (error != 0 && error != ENOENT)
4179 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4180
4181 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4182 &spa->spa_errlog_scrub, B_FALSE);
4183 if (error != 0 && error != ENOENT)
4184 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4185
4186 /*
4187 * Load the livelist deletion field. If a livelist is queued for
4188 * deletion, indicate that in the spa
4189 */
4190 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4191 &spa->spa_livelists_to_delete, B_FALSE);
4192 if (error != 0 && error != ENOENT)
4193 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4194
4195 /*
4196 * Load the history object. If we have an older pool, this
4197 * will not be present.
4198 */
4199 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4200 if (error != 0 && error != ENOENT)
4201 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4202
4203 /*
4204 * Load the per-vdev ZAP map. If we have an older pool, this will not
4205 * be present; in this case, defer its creation to a later time to
4206 * avoid dirtying the MOS this early / out of sync context. See
4207 * spa_sync_config_object.
4208 */
4209
4210 /* The sentinel is only available in the MOS config. */
4211 nvlist_t *mos_config;
4212 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4213 spa_load_failed(spa, "unable to retrieve MOS config");
4214 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4215 }
4216
4217 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4218 &spa->spa_all_vdev_zaps, B_FALSE);
4219
4220 if (error == ENOENT) {
4221 VERIFY(!nvlist_exists(mos_config,
4222 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4223 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4224 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4225 } else if (error != 0) {
4226 nvlist_free(mos_config);
4227 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4228 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4229 /*
4230 * An older version of ZFS overwrote the sentinel value, so
4231 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4232 * destruction to later; see spa_sync_config_object.
4233 */
4234 spa->spa_avz_action = AVZ_ACTION_DESTROY;
4235 /*
4236 * We're assuming that no vdevs have had their ZAPs created
4237 * before this. Better be sure of it.
4238 */
4239 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4240 }
4241 nvlist_free(mos_config);
4242
4243 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4244
4245 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4246 B_FALSE);
4247 if (error && error != ENOENT)
4248 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4249
4250 if (error == 0) {
4251 uint64_t autoreplace = 0;
4252
4253 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4254 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4255 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4256 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4257 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4258 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4259 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4260 spa->spa_autoreplace = (autoreplace != 0);
4261 }
4262
4263 /*
4264 * If we are importing a pool with missing top-level vdevs,
4265 * we enforce that the pool doesn't panic or get suspended on
4266 * error since the likelihood of missing data is extremely high.
4267 */
4268 if (spa->spa_missing_tvds > 0 &&
4269 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4270 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4271 spa_load_note(spa, "forcing failmode to 'continue' "
4272 "as some top level vdevs are missing");
4273 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4274 }
4275
4276 return (0);
4277 }
4278
4279 static int
4280 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4281 {
4282 int error = 0;
4283 vdev_t *rvd = spa->spa_root_vdev;
4284
4285 /*
4286 * If we're assembling the pool from the split-off vdevs of
4287 * an existing pool, we don't want to attach the spares & cache
4288 * devices.
4289 */
4290
4291 /*
4292 * Load any hot spares for this pool.
4293 */
4294 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4295 B_FALSE);
4296 if (error != 0 && error != ENOENT)
4297 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4298 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4299 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4300 if (load_nvlist(spa, spa->spa_spares.sav_object,
4301 &spa->spa_spares.sav_config) != 0) {
4302 spa_load_failed(spa, "error loading spares nvlist");
4303 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4304 }
4305
4306 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4307 spa_load_spares(spa);
4308 spa_config_exit(spa, SCL_ALL, FTAG);
4309 } else if (error == 0) {
4310 spa->spa_spares.sav_sync = B_TRUE;
4311 }
4312
4313 /*
4314 * Load any level 2 ARC devices for this pool.
4315 */
4316 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4317 &spa->spa_l2cache.sav_object, B_FALSE);
4318 if (error != 0 && error != ENOENT)
4319 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4320 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4321 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4322 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4323 &spa->spa_l2cache.sav_config) != 0) {
4324 spa_load_failed(spa, "error loading l2cache nvlist");
4325 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4326 }
4327
4328 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4329 spa_load_l2cache(spa);
4330 spa_config_exit(spa, SCL_ALL, FTAG);
4331 } else if (error == 0) {
4332 spa->spa_l2cache.sav_sync = B_TRUE;
4333 }
4334
4335 return (0);
4336 }
4337
4338 static int
4339 spa_ld_load_vdev_metadata(spa_t *spa)
4340 {
4341 int error = 0;
4342 vdev_t *rvd = spa->spa_root_vdev;
4343
4344 /*
4345 * If the 'multihost' property is set, then never allow a pool to
4346 * be imported when the system hostid is zero. The exception to
4347 * this rule is zdb which is always allowed to access pools.
4348 */
4349 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4350 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4351 fnvlist_add_uint64(spa->spa_load_info,
4352 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4353 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4354 }
4355
4356 /*
4357 * If the 'autoreplace' property is set, then post a resource notifying
4358 * the ZFS DE that it should not issue any faults for unopenable
4359 * devices. We also iterate over the vdevs, and post a sysevent for any
4360 * unopenable vdevs so that the normal autoreplace handler can take
4361 * over.
4362 */
4363 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4364 spa_check_removed(spa->spa_root_vdev);
4365 /*
4366 * For the import case, this is done in spa_import(), because
4367 * at this point we're using the spare definitions from
4368 * the MOS config, not necessarily from the userland config.
4369 */
4370 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4371 spa_aux_check_removed(&spa->spa_spares);
4372 spa_aux_check_removed(&spa->spa_l2cache);
4373 }
4374 }
4375
4376 /*
4377 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4378 */
4379 error = vdev_load(rvd);
4380 if (error != 0) {
4381 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4382 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4383 }
4384
4385 error = spa_ld_log_spacemaps(spa);
4386 if (error != 0) {
4387 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4388 error);
4389 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4390 }
4391
4392 /*
4393 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4394 */
4395 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4396 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4397 spa_config_exit(spa, SCL_ALL, FTAG);
4398
4399 return (0);
4400 }
4401
4402 static int
4403 spa_ld_load_dedup_tables(spa_t *spa)
4404 {
4405 int error = 0;
4406 vdev_t *rvd = spa->spa_root_vdev;
4407
4408 error = ddt_load(spa);
4409 if (error != 0) {
4410 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4411 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4412 }
4413
4414 return (0);
4415 }
4416
4417 static int
4418 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4419 {
4420 vdev_t *rvd = spa->spa_root_vdev;
4421
4422 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4423 boolean_t missing = spa_check_logs(spa);
4424 if (missing) {
4425 if (spa->spa_missing_tvds != 0) {
4426 spa_load_note(spa, "spa_check_logs failed "
4427 "so dropping the logs");
4428 } else {
4429 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4430 spa_load_failed(spa, "spa_check_logs failed");
4431 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4432 ENXIO));
4433 }
4434 }
4435 }
4436
4437 return (0);
4438 }
4439
4440 static int
4441 spa_ld_verify_pool_data(spa_t *spa)
4442 {
4443 int error = 0;
4444 vdev_t *rvd = spa->spa_root_vdev;
4445
4446 /*
4447 * We've successfully opened the pool, verify that we're ready
4448 * to start pushing transactions.
4449 */
4450 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4451 error = spa_load_verify(spa);
4452 if (error != 0) {
4453 spa_load_failed(spa, "spa_load_verify failed "
4454 "[error=%d]", error);
4455 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4456 error));
4457 }
4458 }
4459
4460 return (0);
4461 }
4462
4463 static void
4464 spa_ld_claim_log_blocks(spa_t *spa)
4465 {
4466 dmu_tx_t *tx;
4467 dsl_pool_t *dp = spa_get_dsl(spa);
4468
4469 /*
4470 * Claim log blocks that haven't been committed yet.
4471 * This must all happen in a single txg.
4472 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4473 * invoked from zil_claim_log_block()'s i/o done callback.
4474 * Price of rollback is that we abandon the log.
4475 */
4476 spa->spa_claiming = B_TRUE;
4477
4478 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4479 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4480 zil_claim, tx, DS_FIND_CHILDREN);
4481 dmu_tx_commit(tx);
4482
4483 spa->spa_claiming = B_FALSE;
4484
4485 spa_set_log_state(spa, SPA_LOG_GOOD);
4486 }
4487
4488 static void
4489 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4490 boolean_t update_config_cache)
4491 {
4492 vdev_t *rvd = spa->spa_root_vdev;
4493 int need_update = B_FALSE;
4494
4495 /*
4496 * If the config cache is stale, or we have uninitialized
4497 * metaslabs (see spa_vdev_add()), then update the config.
4498 *
4499 * If this is a verbatim import, trust the current
4500 * in-core spa_config and update the disk labels.
4501 */
4502 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4503 spa->spa_load_state == SPA_LOAD_IMPORT ||
4504 spa->spa_load_state == SPA_LOAD_RECOVER ||
4505 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4506 need_update = B_TRUE;
4507
4508 for (int c = 0; c < rvd->vdev_children; c++)
4509 if (rvd->vdev_child[c]->vdev_ms_array == 0)
4510 need_update = B_TRUE;
4511
4512 /*
4513 * Update the config cache asynchronously in case we're the
4514 * root pool, in which case the config cache isn't writable yet.
4515 */
4516 if (need_update)
4517 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4518 }
4519
4520 static void
4521 spa_ld_prepare_for_reload(spa_t *spa)
4522 {
4523 spa_mode_t mode = spa->spa_mode;
4524 int async_suspended = spa->spa_async_suspended;
4525
4526 spa_unload(spa);
4527 spa_deactivate(spa);
4528 spa_activate(spa, mode);
4529
4530 /*
4531 * We save the value of spa_async_suspended as it gets reset to 0 by
4532 * spa_unload(). We want to restore it back to the original value before
4533 * returning as we might be calling spa_async_resume() later.
4534 */
4535 spa->spa_async_suspended = async_suspended;
4536 }
4537
4538 static int
4539 spa_ld_read_checkpoint_txg(spa_t *spa)
4540 {
4541 uberblock_t checkpoint;
4542 int error = 0;
4543
4544 ASSERT0(spa->spa_checkpoint_txg);
4545 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4546
4547 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4548 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4549 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4550
4551 if (error == ENOENT)
4552 return (0);
4553
4554 if (error != 0)
4555 return (error);
4556
4557 ASSERT3U(checkpoint.ub_txg, !=, 0);
4558 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4559 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4560 spa->spa_checkpoint_txg = checkpoint.ub_txg;
4561 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4562
4563 return (0);
4564 }
4565
4566 static int
4567 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4568 {
4569 int error = 0;
4570
4571 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4572 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4573
4574 /*
4575 * Never trust the config that is provided unless we are assembling
4576 * a pool following a split.
4577 * This means don't trust blkptrs and the vdev tree in general. This
4578 * also effectively puts the spa in read-only mode since
4579 * spa_writeable() checks for spa_trust_config to be true.
4580 * We will later load a trusted config from the MOS.
4581 */
4582 if (type != SPA_IMPORT_ASSEMBLE)
4583 spa->spa_trust_config = B_FALSE;
4584
4585 /*
4586 * Parse the config provided to create a vdev tree.
4587 */
4588 error = spa_ld_parse_config(spa, type);
4589 if (error != 0)
4590 return (error);
4591
4592 spa_import_progress_add(spa);
4593
4594 /*
4595 * Now that we have the vdev tree, try to open each vdev. This involves
4596 * opening the underlying physical device, retrieving its geometry and
4597 * probing the vdev with a dummy I/O. The state of each vdev will be set
4598 * based on the success of those operations. After this we'll be ready
4599 * to read from the vdevs.
4600 */
4601 error = spa_ld_open_vdevs(spa);
4602 if (error != 0)
4603 return (error);
4604
4605 /*
4606 * Read the label of each vdev and make sure that the GUIDs stored
4607 * there match the GUIDs in the config provided.
4608 * If we're assembling a new pool that's been split off from an
4609 * existing pool, the labels haven't yet been updated so we skip
4610 * validation for now.
4611 */
4612 if (type != SPA_IMPORT_ASSEMBLE) {
4613 error = spa_ld_validate_vdevs(spa);
4614 if (error != 0)
4615 return (error);
4616 }
4617
4618 /*
4619 * Read all vdev labels to find the best uberblock (i.e. latest,
4620 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4621 * get the list of features required to read blkptrs in the MOS from
4622 * the vdev label with the best uberblock and verify that our version
4623 * of zfs supports them all.
4624 */
4625 error = spa_ld_select_uberblock(spa, type);
4626 if (error != 0)
4627 return (error);
4628
4629 /*
4630 * Pass that uberblock to the dsl_pool layer which will open the root
4631 * blkptr. This blkptr points to the latest version of the MOS and will
4632 * allow us to read its contents.
4633 */
4634 error = spa_ld_open_rootbp(spa);
4635 if (error != 0)
4636 return (error);
4637
4638 return (0);
4639 }
4640
4641 static int
4642 spa_ld_checkpoint_rewind(spa_t *spa)
4643 {
4644 uberblock_t checkpoint;
4645 int error = 0;
4646
4647 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4648 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4649
4650 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4651 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4652 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4653
4654 if (error != 0) {
4655 spa_load_failed(spa, "unable to retrieve checkpointed "
4656 "uberblock from the MOS config [error=%d]", error);
4657
4658 if (error == ENOENT)
4659 error = ZFS_ERR_NO_CHECKPOINT;
4660
4661 return (error);
4662 }
4663
4664 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4665 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4666
4667 /*
4668 * We need to update the txg and timestamp of the checkpointed
4669 * uberblock to be higher than the latest one. This ensures that
4670 * the checkpointed uberblock is selected if we were to close and
4671 * reopen the pool right after we've written it in the vdev labels.
4672 * (also see block comment in vdev_uberblock_compare)
4673 */
4674 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4675 checkpoint.ub_timestamp = gethrestime_sec();
4676
4677 /*
4678 * Set current uberblock to be the checkpointed uberblock.
4679 */
4680 spa->spa_uberblock = checkpoint;
4681
4682 /*
4683 * If we are doing a normal rewind, then the pool is open for
4684 * writing and we sync the "updated" checkpointed uberblock to
4685 * disk. Once this is done, we've basically rewound the whole
4686 * pool and there is no way back.
4687 *
4688 * There are cases when we don't want to attempt and sync the
4689 * checkpointed uberblock to disk because we are opening a
4690 * pool as read-only. Specifically, verifying the checkpointed
4691 * state with zdb, and importing the checkpointed state to get
4692 * a "preview" of its content.
4693 */
4694 if (spa_writeable(spa)) {
4695 vdev_t *rvd = spa->spa_root_vdev;
4696
4697 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4698 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4699 int svdcount = 0;
4700 int children = rvd->vdev_children;
4701 int c0 = random_in_range(children);
4702
4703 for (int c = 0; c < children; c++) {
4704 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4705
4706 /* Stop when revisiting the first vdev */
4707 if (c > 0 && svd[0] == vd)
4708 break;
4709
4710 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4711 !vdev_is_concrete(vd))
4712 continue;
4713
4714 svd[svdcount++] = vd;
4715 if (svdcount == SPA_SYNC_MIN_VDEVS)
4716 break;
4717 }
4718 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4719 if (error == 0)
4720 spa->spa_last_synced_guid = rvd->vdev_guid;
4721 spa_config_exit(spa, SCL_ALL, FTAG);
4722
4723 if (error != 0) {
4724 spa_load_failed(spa, "failed to write checkpointed "
4725 "uberblock to the vdev labels [error=%d]", error);
4726 return (error);
4727 }
4728 }
4729
4730 return (0);
4731 }
4732
4733 static int
4734 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4735 boolean_t *update_config_cache)
4736 {
4737 int error;
4738
4739 /*
4740 * Parse the config for pool, open and validate vdevs,
4741 * select an uberblock, and use that uberblock to open
4742 * the MOS.
4743 */
4744 error = spa_ld_mos_init(spa, type);
4745 if (error != 0)
4746 return (error);
4747
4748 /*
4749 * Retrieve the trusted config stored in the MOS and use it to create
4750 * a new, exact version of the vdev tree, then reopen all vdevs.
4751 */
4752 error = spa_ld_trusted_config(spa, type, B_FALSE);
4753 if (error == EAGAIN) {
4754 if (update_config_cache != NULL)
4755 *update_config_cache = B_TRUE;
4756
4757 /*
4758 * Redo the loading process with the trusted config if it is
4759 * too different from the untrusted config.
4760 */
4761 spa_ld_prepare_for_reload(spa);
4762 spa_load_note(spa, "RELOADING");
4763 error = spa_ld_mos_init(spa, type);
4764 if (error != 0)
4765 return (error);
4766
4767 error = spa_ld_trusted_config(spa, type, B_TRUE);
4768 if (error != 0)
4769 return (error);
4770
4771 } else if (error != 0) {
4772 return (error);
4773 }
4774
4775 return (0);
4776 }
4777
4778 /*
4779 * Load an existing storage pool, using the config provided. This config
4780 * describes which vdevs are part of the pool and is later validated against
4781 * partial configs present in each vdev's label and an entire copy of the
4782 * config stored in the MOS.
4783 */
4784 static int
4785 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
4786 {
4787 int error = 0;
4788 boolean_t missing_feat_write = B_FALSE;
4789 boolean_t checkpoint_rewind =
4790 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4791 boolean_t update_config_cache = B_FALSE;
4792
4793 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4794 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4795
4796 spa_load_note(spa, "LOADING");
4797
4798 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4799 if (error != 0)
4800 return (error);
4801
4802 /*
4803 * If we are rewinding to the checkpoint then we need to repeat
4804 * everything we've done so far in this function but this time
4805 * selecting the checkpointed uberblock and using that to open
4806 * the MOS.
4807 */
4808 if (checkpoint_rewind) {
4809 /*
4810 * If we are rewinding to the checkpoint update config cache
4811 * anyway.
4812 */
4813 update_config_cache = B_TRUE;
4814
4815 /*
4816 * Extract the checkpointed uberblock from the current MOS
4817 * and use this as the pool's uberblock from now on. If the
4818 * pool is imported as writeable we also write the checkpoint
4819 * uberblock to the labels, making the rewind permanent.
4820 */
4821 error = spa_ld_checkpoint_rewind(spa);
4822 if (error != 0)
4823 return (error);
4824
4825 /*
4826 * Redo the loading process again with the
4827 * checkpointed uberblock.
4828 */
4829 spa_ld_prepare_for_reload(spa);
4830 spa_load_note(spa, "LOADING checkpointed uberblock");
4831 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4832 if (error != 0)
4833 return (error);
4834 }
4835
4836 /*
4837 * Retrieve the checkpoint txg if the pool has a checkpoint.
4838 */
4839 error = spa_ld_read_checkpoint_txg(spa);
4840 if (error != 0)
4841 return (error);
4842
4843 /*
4844 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4845 * from the pool and their contents were re-mapped to other vdevs. Note
4846 * that everything that we read before this step must have been
4847 * rewritten on concrete vdevs after the last device removal was
4848 * initiated. Otherwise we could be reading from indirect vdevs before
4849 * we have loaded their mappings.
4850 */
4851 error = spa_ld_open_indirect_vdev_metadata(spa);
4852 if (error != 0)
4853 return (error);
4854
4855 /*
4856 * Retrieve the full list of active features from the MOS and check if
4857 * they are all supported.
4858 */
4859 error = spa_ld_check_features(spa, &missing_feat_write);
4860 if (error != 0)
4861 return (error);
4862
4863 /*
4864 * Load several special directories from the MOS needed by the dsl_pool
4865 * layer.
4866 */
4867 error = spa_ld_load_special_directories(spa);
4868 if (error != 0)
4869 return (error);
4870
4871 /*
4872 * Retrieve pool properties from the MOS.
4873 */
4874 error = spa_ld_get_props(spa);
4875 if (error != 0)
4876 return (error);
4877
4878 /*
4879 * Retrieve the list of auxiliary devices - cache devices and spares -
4880 * and open them.
4881 */
4882 error = spa_ld_open_aux_vdevs(spa, type);
4883 if (error != 0)
4884 return (error);
4885
4886 /*
4887 * Load the metadata for all vdevs. Also check if unopenable devices
4888 * should be autoreplaced.
4889 */
4890 error = spa_ld_load_vdev_metadata(spa);
4891 if (error != 0)
4892 return (error);
4893
4894 error = spa_ld_load_dedup_tables(spa);
4895 if (error != 0)
4896 return (error);
4897
4898 /*
4899 * Verify the logs now to make sure we don't have any unexpected errors
4900 * when we claim log blocks later.
4901 */
4902 error = spa_ld_verify_logs(spa, type, ereport);
4903 if (error != 0)
4904 return (error);
4905
4906 if (missing_feat_write) {
4907 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4908
4909 /*
4910 * At this point, we know that we can open the pool in
4911 * read-only mode but not read-write mode. We now have enough
4912 * information and can return to userland.
4913 */
4914 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4915 ENOTSUP));
4916 }
4917
4918 /*
4919 * Traverse the last txgs to make sure the pool was left off in a safe
4920 * state. When performing an extreme rewind, we verify the whole pool,
4921 * which can take a very long time.
4922 */
4923 error = spa_ld_verify_pool_data(spa);
4924 if (error != 0)
4925 return (error);
4926
4927 /*
4928 * Calculate the deflated space for the pool. This must be done before
4929 * we write anything to the pool because we'd need to update the space
4930 * accounting using the deflated sizes.
4931 */
4932 spa_update_dspace(spa);
4933
4934 /*
4935 * We have now retrieved all the information we needed to open the
4936 * pool. If we are importing the pool in read-write mode, a few
4937 * additional steps must be performed to finish the import.
4938 */
4939 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4940 spa->spa_load_max_txg == UINT64_MAX)) {
4941 uint64_t config_cache_txg = spa->spa_config_txg;
4942
4943 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4944
4945 /*
4946 * In case of a checkpoint rewind, log the original txg
4947 * of the checkpointed uberblock.
4948 */
4949 if (checkpoint_rewind) {
4950 spa_history_log_internal(spa, "checkpoint rewind",
4951 NULL, "rewound state to txg=%llu",
4952 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4953 }
4954
4955 /*
4956 * Traverse the ZIL and claim all blocks.
4957 */
4958 spa_ld_claim_log_blocks(spa);
4959
4960 /*
4961 * Kick-off the syncing thread.
4962 */
4963 spa->spa_sync_on = B_TRUE;
4964 txg_sync_start(spa->spa_dsl_pool);
4965 mmp_thread_start(spa);
4966
4967 /*
4968 * Wait for all claims to sync. We sync up to the highest
4969 * claimed log block birth time so that claimed log blocks
4970 * don't appear to be from the future. spa_claim_max_txg
4971 * will have been set for us by ZIL traversal operations
4972 * performed above.
4973 */
4974 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4975
4976 /*
4977 * Check if we need to request an update of the config. On the
4978 * next sync, we would update the config stored in vdev labels
4979 * and the cachefile (by default /etc/zfs/zpool.cache).
4980 */
4981 spa_ld_check_for_config_update(spa, config_cache_txg,
4982 update_config_cache);
4983
4984 /*
4985 * Check if a rebuild was in progress and if so resume it.
4986 * Then check all DTLs to see if anything needs resilvering.
4987 * The resilver will be deferred if a rebuild was started.
4988 */
4989 if (vdev_rebuild_active(spa->spa_root_vdev)) {
4990 vdev_rebuild_restart(spa);
4991 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4992 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4993 spa_async_request(spa, SPA_ASYNC_RESILVER);
4994 }
4995
4996 /*
4997 * Log the fact that we booted up (so that we can detect if
4998 * we rebooted in the middle of an operation).
4999 */
5000 spa_history_log_version(spa, "open", NULL);
5001
5002 spa_restart_removal(spa);
5003 spa_spawn_aux_threads(spa);
5004
5005 /*
5006 * Delete any inconsistent datasets.
5007 *
5008 * Note:
5009 * Since we may be issuing deletes for clones here,
5010 * we make sure to do so after we've spawned all the
5011 * auxiliary threads above (from which the livelist
5012 * deletion zthr is part of).
5013 */
5014 (void) dmu_objset_find(spa_name(spa),
5015 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5016
5017 /*
5018 * Clean up any stale temporary dataset userrefs.
5019 */
5020 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5021
5022 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5023 vdev_initialize_restart(spa->spa_root_vdev);
5024 vdev_trim_restart(spa->spa_root_vdev);
5025 vdev_autotrim_restart(spa);
5026 spa_config_exit(spa, SCL_CONFIG, FTAG);
5027 }
5028
5029 spa_import_progress_remove(spa_guid(spa));
5030 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5031
5032 spa_load_note(spa, "LOADED");
5033
5034 return (0);
5035 }
5036
5037 static int
5038 spa_load_retry(spa_t *spa, spa_load_state_t state)
5039 {
5040 spa_mode_t mode = spa->spa_mode;
5041
5042 spa_unload(spa);
5043 spa_deactivate(spa);
5044
5045 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5046
5047 spa_activate(spa, mode);
5048 spa_async_suspend(spa);
5049
5050 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5051 (u_longlong_t)spa->spa_load_max_txg);
5052
5053 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5054 }
5055
5056 /*
5057 * If spa_load() fails this function will try loading prior txg's. If
5058 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5059 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5060 * function will not rewind the pool and will return the same error as
5061 * spa_load().
5062 */
5063 static int
5064 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5065 int rewind_flags)
5066 {
5067 nvlist_t *loadinfo = NULL;
5068 nvlist_t *config = NULL;
5069 int load_error, rewind_error;
5070 uint64_t safe_rewind_txg;
5071 uint64_t min_txg;
5072
5073 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5074 spa->spa_load_max_txg = spa->spa_load_txg;
5075 spa_set_log_state(spa, SPA_LOG_CLEAR);
5076 } else {
5077 spa->spa_load_max_txg = max_request;
5078 if (max_request != UINT64_MAX)
5079 spa->spa_extreme_rewind = B_TRUE;
5080 }
5081
5082 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5083 if (load_error == 0)
5084 return (0);
5085 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5086 /*
5087 * When attempting checkpoint-rewind on a pool with no
5088 * checkpoint, we should not attempt to load uberblocks
5089 * from previous txgs when spa_load fails.
5090 */
5091 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5092 spa_import_progress_remove(spa_guid(spa));
5093 return (load_error);
5094 }
5095
5096 if (spa->spa_root_vdev != NULL)
5097 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5098
5099 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5100 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5101
5102 if (rewind_flags & ZPOOL_NEVER_REWIND) {
5103 nvlist_free(config);
5104 spa_import_progress_remove(spa_guid(spa));
5105 return (load_error);
5106 }
5107
5108 if (state == SPA_LOAD_RECOVER) {
5109 /* Price of rolling back is discarding txgs, including log */
5110 spa_set_log_state(spa, SPA_LOG_CLEAR);
5111 } else {
5112 /*
5113 * If we aren't rolling back save the load info from our first
5114 * import attempt so that we can restore it after attempting
5115 * to rewind.
5116 */
5117 loadinfo = spa->spa_load_info;
5118 spa->spa_load_info = fnvlist_alloc();
5119 }
5120
5121 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5122 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5123 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5124 TXG_INITIAL : safe_rewind_txg;
5125
5126 /*
5127 * Continue as long as we're finding errors, we're still within
5128 * the acceptable rewind range, and we're still finding uberblocks
5129 */
5130 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5131 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5132 if (spa->spa_load_max_txg < safe_rewind_txg)
5133 spa->spa_extreme_rewind = B_TRUE;
5134 rewind_error = spa_load_retry(spa, state);
5135 }
5136
5137 spa->spa_extreme_rewind = B_FALSE;
5138 spa->spa_load_max_txg = UINT64_MAX;
5139
5140 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5141 spa_config_set(spa, config);
5142 else
5143 nvlist_free(config);
5144
5145 if (state == SPA_LOAD_RECOVER) {
5146 ASSERT3P(loadinfo, ==, NULL);
5147 spa_import_progress_remove(spa_guid(spa));
5148 return (rewind_error);
5149 } else {
5150 /* Store the rewind info as part of the initial load info */
5151 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5152 spa->spa_load_info);
5153
5154 /* Restore the initial load info */
5155 fnvlist_free(spa->spa_load_info);
5156 spa->spa_load_info = loadinfo;
5157
5158 spa_import_progress_remove(spa_guid(spa));
5159 return (load_error);
5160 }
5161 }
5162
5163 /*
5164 * Pool Open/Import
5165 *
5166 * The import case is identical to an open except that the configuration is sent
5167 * down from userland, instead of grabbed from the configuration cache. For the
5168 * case of an open, the pool configuration will exist in the
5169 * POOL_STATE_UNINITIALIZED state.
5170 *
5171 * The stats information (gen/count/ustats) is used to gather vdev statistics at
5172 * the same time open the pool, without having to keep around the spa_t in some
5173 * ambiguous state.
5174 */
5175 static int
5176 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5177 nvlist_t *nvpolicy, nvlist_t **config)
5178 {
5179 spa_t *spa;
5180 spa_load_state_t state = SPA_LOAD_OPEN;
5181 int error;
5182 int locked = B_FALSE;
5183 int firstopen = B_FALSE;
5184
5185 *spapp = NULL;
5186
5187 /*
5188 * As disgusting as this is, we need to support recursive calls to this
5189 * function because dsl_dir_open() is called during spa_load(), and ends
5190 * up calling spa_open() again. The real fix is to figure out how to
5191 * avoid dsl_dir_open() calling this in the first place.
5192 */
5193 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5194 mutex_enter(&spa_namespace_lock);
5195 locked = B_TRUE;
5196 }
5197
5198 if ((spa = spa_lookup(pool)) == NULL) {
5199 if (locked)
5200 mutex_exit(&spa_namespace_lock);
5201 return (SET_ERROR(ENOENT));
5202 }
5203
5204 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5205 zpool_load_policy_t policy;
5206
5207 firstopen = B_TRUE;
5208
5209 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5210 &policy);
5211 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5212 state = SPA_LOAD_RECOVER;
5213
5214 spa_activate(spa, spa_mode_global);
5215
5216 if (state != SPA_LOAD_RECOVER)
5217 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5218 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5219
5220 zfs_dbgmsg("spa_open_common: opening %s", pool);
5221 error = spa_load_best(spa, state, policy.zlp_txg,
5222 policy.zlp_rewind);
5223
5224 if (error == EBADF) {
5225 /*
5226 * If vdev_validate() returns failure (indicated by
5227 * EBADF), it indicates that one of the vdevs indicates
5228 * that the pool has been exported or destroyed. If
5229 * this is the case, the config cache is out of sync and
5230 * we should remove the pool from the namespace.
5231 */
5232 spa_unload(spa);
5233 spa_deactivate(spa);
5234 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5235 spa_remove(spa);
5236 if (locked)
5237 mutex_exit(&spa_namespace_lock);
5238 return (SET_ERROR(ENOENT));
5239 }
5240
5241 if (error) {
5242 /*
5243 * We can't open the pool, but we still have useful
5244 * information: the state of each vdev after the
5245 * attempted vdev_open(). Return this to the user.
5246 */
5247 if (config != NULL && spa->spa_config) {
5248 *config = fnvlist_dup(spa->spa_config);
5249 fnvlist_add_nvlist(*config,
5250 ZPOOL_CONFIG_LOAD_INFO,
5251 spa->spa_load_info);
5252 }
5253 spa_unload(spa);
5254 spa_deactivate(spa);
5255 spa->spa_last_open_failed = error;
5256 if (locked)
5257 mutex_exit(&spa_namespace_lock);
5258 *spapp = NULL;
5259 return (error);
5260 }
5261 }
5262
5263 spa_open_ref(spa, tag);
5264
5265 if (config != NULL)
5266 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5267
5268 /*
5269 * If we've recovered the pool, pass back any information we
5270 * gathered while doing the load.
5271 */
5272 if (state == SPA_LOAD_RECOVER && config != NULL) {
5273 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5274 spa->spa_load_info);
5275 }
5276
5277 if (locked) {
5278 spa->spa_last_open_failed = 0;
5279 spa->spa_last_ubsync_txg = 0;
5280 spa->spa_load_txg = 0;
5281 mutex_exit(&spa_namespace_lock);
5282 }
5283
5284 if (firstopen)
5285 zvol_create_minors_recursive(spa_name(spa));
5286
5287 *spapp = spa;
5288
5289 return (0);
5290 }
5291
5292 int
5293 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5294 nvlist_t *policy, nvlist_t **config)
5295 {
5296 return (spa_open_common(name, spapp, tag, policy, config));
5297 }
5298
5299 int
5300 spa_open(const char *name, spa_t **spapp, const void *tag)
5301 {
5302 return (spa_open_common(name, spapp, tag, NULL, NULL));
5303 }
5304
5305 /*
5306 * Lookup the given spa_t, incrementing the inject count in the process,
5307 * preventing it from being exported or destroyed.
5308 */
5309 spa_t *
5310 spa_inject_addref(char *name)
5311 {
5312 spa_t *spa;
5313
5314 mutex_enter(&spa_namespace_lock);
5315 if ((spa = spa_lookup(name)) == NULL) {
5316 mutex_exit(&spa_namespace_lock);
5317 return (NULL);
5318 }
5319 spa->spa_inject_ref++;
5320 mutex_exit(&spa_namespace_lock);
5321
5322 return (spa);
5323 }
5324
5325 void
5326 spa_inject_delref(spa_t *spa)
5327 {
5328 mutex_enter(&spa_namespace_lock);
5329 spa->spa_inject_ref--;
5330 mutex_exit(&spa_namespace_lock);
5331 }
5332
5333 /*
5334 * Add spares device information to the nvlist.
5335 */
5336 static void
5337 spa_add_spares(spa_t *spa, nvlist_t *config)
5338 {
5339 nvlist_t **spares;
5340 uint_t i, nspares;
5341 nvlist_t *nvroot;
5342 uint64_t guid;
5343 vdev_stat_t *vs;
5344 uint_t vsc;
5345 uint64_t pool;
5346
5347 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5348
5349 if (spa->spa_spares.sav_count == 0)
5350 return;
5351
5352 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5353 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5354 ZPOOL_CONFIG_SPARES, &spares, &nspares));
5355 if (nspares != 0) {
5356 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5357 (const nvlist_t * const *)spares, nspares);
5358 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5359 &spares, &nspares));
5360
5361 /*
5362 * Go through and find any spares which have since been
5363 * repurposed as an active spare. If this is the case, update
5364 * their status appropriately.
5365 */
5366 for (i = 0; i < nspares; i++) {
5367 guid = fnvlist_lookup_uint64(spares[i],
5368 ZPOOL_CONFIG_GUID);
5369 if (spa_spare_exists(guid, &pool, NULL) &&
5370 pool != 0ULL) {
5371 VERIFY0(nvlist_lookup_uint64_array(spares[i],
5372 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs,
5373 &vsc));
5374 vs->vs_state = VDEV_STATE_CANT_OPEN;
5375 vs->vs_aux = VDEV_AUX_SPARED;
5376 }
5377 }
5378 }
5379 }
5380
5381 /*
5382 * Add l2cache device information to the nvlist, including vdev stats.
5383 */
5384 static void
5385 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5386 {
5387 nvlist_t **l2cache;
5388 uint_t i, j, nl2cache;
5389 nvlist_t *nvroot;
5390 uint64_t guid;
5391 vdev_t *vd;
5392 vdev_stat_t *vs;
5393 uint_t vsc;
5394
5395 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5396
5397 if (spa->spa_l2cache.sav_count == 0)
5398 return;
5399
5400 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5401 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5402 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
5403 if (nl2cache != 0) {
5404 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5405 (const nvlist_t * const *)l2cache, nl2cache);
5406 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5407 &l2cache, &nl2cache));
5408
5409 /*
5410 * Update level 2 cache device stats.
5411 */
5412
5413 for (i = 0; i < nl2cache; i++) {
5414 guid = fnvlist_lookup_uint64(l2cache[i],
5415 ZPOOL_CONFIG_GUID);
5416
5417 vd = NULL;
5418 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5419 if (guid ==
5420 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5421 vd = spa->spa_l2cache.sav_vdevs[j];
5422 break;
5423 }
5424 }
5425 ASSERT(vd != NULL);
5426
5427 VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
5428 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5429 vdev_get_stats(vd, vs);
5430 vdev_config_generate_stats(vd, l2cache[i]);
5431
5432 }
5433 }
5434 }
5435
5436 static void
5437 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5438 {
5439 zap_cursor_t zc;
5440 zap_attribute_t za;
5441
5442 if (spa->spa_feat_for_read_obj != 0) {
5443 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5444 spa->spa_feat_for_read_obj);
5445 zap_cursor_retrieve(&zc, &za) == 0;
5446 zap_cursor_advance(&zc)) {
5447 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5448 za.za_num_integers == 1);
5449 VERIFY0(nvlist_add_uint64(features, za.za_name,
5450 za.za_first_integer));
5451 }
5452 zap_cursor_fini(&zc);
5453 }
5454
5455 if (spa->spa_feat_for_write_obj != 0) {
5456 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5457 spa->spa_feat_for_write_obj);
5458 zap_cursor_retrieve(&zc, &za) == 0;
5459 zap_cursor_advance(&zc)) {
5460 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5461 za.za_num_integers == 1);
5462 VERIFY0(nvlist_add_uint64(features, za.za_name,
5463 za.za_first_integer));
5464 }
5465 zap_cursor_fini(&zc);
5466 }
5467 }
5468
5469 static void
5470 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5471 {
5472 int i;
5473
5474 for (i = 0; i < SPA_FEATURES; i++) {
5475 zfeature_info_t feature = spa_feature_table[i];
5476 uint64_t refcount;
5477
5478 if (feature_get_refcount(spa, &feature, &refcount) != 0)
5479 continue;
5480
5481 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5482 }
5483 }
5484
5485 /*
5486 * Store a list of pool features and their reference counts in the
5487 * config.
5488 *
5489 * The first time this is called on a spa, allocate a new nvlist, fetch
5490 * the pool features and reference counts from disk, then save the list
5491 * in the spa. In subsequent calls on the same spa use the saved nvlist
5492 * and refresh its values from the cached reference counts. This
5493 * ensures we don't block here on I/O on a suspended pool so 'zpool
5494 * clear' can resume the pool.
5495 */
5496 static void
5497 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5498 {
5499 nvlist_t *features;
5500
5501 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5502
5503 mutex_enter(&spa->spa_feat_stats_lock);
5504 features = spa->spa_feat_stats;
5505
5506 if (features != NULL) {
5507 spa_feature_stats_from_cache(spa, features);
5508 } else {
5509 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5510 spa->spa_feat_stats = features;
5511 spa_feature_stats_from_disk(spa, features);
5512 }
5513
5514 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5515 features));
5516
5517 mutex_exit(&spa->spa_feat_stats_lock);
5518 }
5519
5520 int
5521 spa_get_stats(const char *name, nvlist_t **config,
5522 char *altroot, size_t buflen)
5523 {
5524 int error;
5525 spa_t *spa;
5526
5527 *config = NULL;
5528 error = spa_open_common(name, &spa, FTAG, NULL, config);
5529
5530 if (spa != NULL) {
5531 /*
5532 * This still leaves a window of inconsistency where the spares
5533 * or l2cache devices could change and the config would be
5534 * self-inconsistent.
5535 */
5536 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5537
5538 if (*config != NULL) {
5539 uint64_t loadtimes[2];
5540
5541 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5542 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5543 fnvlist_add_uint64_array(*config,
5544 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
5545
5546 fnvlist_add_uint64(*config,
5547 ZPOOL_CONFIG_ERRCOUNT,
5548 spa_approx_errlog_size(spa));
5549
5550 if (spa_suspended(spa)) {
5551 fnvlist_add_uint64(*config,
5552 ZPOOL_CONFIG_SUSPENDED,
5553 spa->spa_failmode);
5554 fnvlist_add_uint64(*config,
5555 ZPOOL_CONFIG_SUSPENDED_REASON,
5556 spa->spa_suspended);
5557 }
5558
5559 spa_add_spares(spa, *config);
5560 spa_add_l2cache(spa, *config);
5561 spa_add_feature_stats(spa, *config);
5562 }
5563 }
5564
5565 /*
5566 * We want to get the alternate root even for faulted pools, so we cheat
5567 * and call spa_lookup() directly.
5568 */
5569 if (altroot) {
5570 if (spa == NULL) {
5571 mutex_enter(&spa_namespace_lock);
5572 spa = spa_lookup(name);
5573 if (spa)
5574 spa_altroot(spa, altroot, buflen);
5575 else
5576 altroot[0] = '\0';
5577 spa = NULL;
5578 mutex_exit(&spa_namespace_lock);
5579 } else {
5580 spa_altroot(spa, altroot, buflen);
5581 }
5582 }
5583
5584 if (spa != NULL) {
5585 spa_config_exit(spa, SCL_CONFIG, FTAG);
5586 spa_close(spa, FTAG);
5587 }
5588
5589 return (error);
5590 }
5591
5592 /*
5593 * Validate that the auxiliary device array is well formed. We must have an
5594 * array of nvlists, each which describes a valid leaf vdev. If this is an
5595 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5596 * specified, as long as they are well-formed.
5597 */
5598 static int
5599 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5600 spa_aux_vdev_t *sav, const char *config, uint64_t version,
5601 vdev_labeltype_t label)
5602 {
5603 nvlist_t **dev;
5604 uint_t i, ndev;
5605 vdev_t *vd;
5606 int error;
5607
5608 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5609
5610 /*
5611 * It's acceptable to have no devs specified.
5612 */
5613 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5614 return (0);
5615
5616 if (ndev == 0)
5617 return (SET_ERROR(EINVAL));
5618
5619 /*
5620 * Make sure the pool is formatted with a version that supports this
5621 * device type.
5622 */
5623 if (spa_version(spa) < version)
5624 return (SET_ERROR(ENOTSUP));
5625
5626 /*
5627 * Set the pending device list so we correctly handle device in-use
5628 * checking.
5629 */
5630 sav->sav_pending = dev;
5631 sav->sav_npending = ndev;
5632
5633 for (i = 0; i < ndev; i++) {
5634 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5635 mode)) != 0)
5636 goto out;
5637
5638 if (!vd->vdev_ops->vdev_op_leaf) {
5639 vdev_free(vd);
5640 error = SET_ERROR(EINVAL);
5641 goto out;
5642 }
5643
5644 vd->vdev_top = vd;
5645
5646 if ((error = vdev_open(vd)) == 0 &&
5647 (error = vdev_label_init(vd, crtxg, label)) == 0) {
5648 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5649 vd->vdev_guid);
5650 }
5651
5652 vdev_free(vd);
5653
5654 if (error &&
5655 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5656 goto out;
5657 else
5658 error = 0;
5659 }
5660
5661 out:
5662 sav->sav_pending = NULL;
5663 sav->sav_npending = 0;
5664 return (error);
5665 }
5666
5667 static int
5668 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5669 {
5670 int error;
5671
5672 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5673
5674 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5675 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5676 VDEV_LABEL_SPARE)) != 0) {
5677 return (error);
5678 }
5679
5680 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5681 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5682 VDEV_LABEL_L2CACHE));
5683 }
5684
5685 static void
5686 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5687 const char *config)
5688 {
5689 int i;
5690
5691 if (sav->sav_config != NULL) {
5692 nvlist_t **olddevs;
5693 uint_t oldndevs;
5694 nvlist_t **newdevs;
5695
5696 /*
5697 * Generate new dev list by concatenating with the
5698 * current dev list.
5699 */
5700 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
5701 &olddevs, &oldndevs));
5702
5703 newdevs = kmem_alloc(sizeof (void *) *
5704 (ndevs + oldndevs), KM_SLEEP);
5705 for (i = 0; i < oldndevs; i++)
5706 newdevs[i] = fnvlist_dup(olddevs[i]);
5707 for (i = 0; i < ndevs; i++)
5708 newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
5709
5710 fnvlist_remove(sav->sav_config, config);
5711
5712 fnvlist_add_nvlist_array(sav->sav_config, config,
5713 (const nvlist_t * const *)newdevs, ndevs + oldndevs);
5714 for (i = 0; i < oldndevs + ndevs; i++)
5715 nvlist_free(newdevs[i]);
5716 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5717 } else {
5718 /*
5719 * Generate a new dev list.
5720 */
5721 sav->sav_config = fnvlist_alloc();
5722 fnvlist_add_nvlist_array(sav->sav_config, config,
5723 (const nvlist_t * const *)devs, ndevs);
5724 }
5725 }
5726
5727 /*
5728 * Stop and drop level 2 ARC devices
5729 */
5730 void
5731 spa_l2cache_drop(spa_t *spa)
5732 {
5733 vdev_t *vd;
5734 int i;
5735 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5736
5737 for (i = 0; i < sav->sav_count; i++) {
5738 uint64_t pool;
5739
5740 vd = sav->sav_vdevs[i];
5741 ASSERT(vd != NULL);
5742
5743 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5744 pool != 0ULL && l2arc_vdev_present(vd))
5745 l2arc_remove_vdev(vd);
5746 }
5747 }
5748
5749 /*
5750 * Verify encryption parameters for spa creation. If we are encrypting, we must
5751 * have the encryption feature flag enabled.
5752 */
5753 static int
5754 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5755 boolean_t has_encryption)
5756 {
5757 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5758 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5759 !has_encryption)
5760 return (SET_ERROR(ENOTSUP));
5761
5762 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5763 }
5764
5765 /*
5766 * Pool Creation
5767 */
5768 int
5769 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5770 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5771 {
5772 spa_t *spa;
5773 char *altroot = NULL;
5774 vdev_t *rvd;
5775 dsl_pool_t *dp;
5776 dmu_tx_t *tx;
5777 int error = 0;
5778 uint64_t txg = TXG_INITIAL;
5779 nvlist_t **spares, **l2cache;
5780 uint_t nspares, nl2cache;
5781 uint64_t version, obj, ndraid = 0;
5782 boolean_t has_features;
5783 boolean_t has_encryption;
5784 boolean_t has_allocclass;
5785 spa_feature_t feat;
5786 char *feat_name;
5787 char *poolname;
5788 nvlist_t *nvl;
5789
5790 if (props == NULL ||
5791 nvlist_lookup_string(props, "tname", &poolname) != 0)
5792 poolname = (char *)pool;
5793
5794 /*
5795 * If this pool already exists, return failure.
5796 */
5797 mutex_enter(&spa_namespace_lock);
5798 if (spa_lookup(poolname) != NULL) {
5799 mutex_exit(&spa_namespace_lock);
5800 return (SET_ERROR(EEXIST));
5801 }
5802
5803 /*
5804 * Allocate a new spa_t structure.
5805 */
5806 nvl = fnvlist_alloc();
5807 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5808 (void) nvlist_lookup_string(props,
5809 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5810 spa = spa_add(poolname, nvl, altroot);
5811 fnvlist_free(nvl);
5812 spa_activate(spa, spa_mode_global);
5813
5814 if (props && (error = spa_prop_validate(spa, props))) {
5815 spa_deactivate(spa);
5816 spa_remove(spa);
5817 mutex_exit(&spa_namespace_lock);
5818 return (error);
5819 }
5820
5821 /*
5822 * Temporary pool names should never be written to disk.
5823 */
5824 if (poolname != pool)
5825 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5826
5827 has_features = B_FALSE;
5828 has_encryption = B_FALSE;
5829 has_allocclass = B_FALSE;
5830 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5831 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5832 if (zpool_prop_feature(nvpair_name(elem))) {
5833 has_features = B_TRUE;
5834
5835 feat_name = strchr(nvpair_name(elem), '@') + 1;
5836 VERIFY0(zfeature_lookup_name(feat_name, &feat));
5837 if (feat == SPA_FEATURE_ENCRYPTION)
5838 has_encryption = B_TRUE;
5839 if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5840 has_allocclass = B_TRUE;
5841 }
5842 }
5843
5844 /* verify encryption params, if they were provided */
5845 if (dcp != NULL) {
5846 error = spa_create_check_encryption_params(dcp, has_encryption);
5847 if (error != 0) {
5848 spa_deactivate(spa);
5849 spa_remove(spa);
5850 mutex_exit(&spa_namespace_lock);
5851 return (error);
5852 }
5853 }
5854 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5855 spa_deactivate(spa);
5856 spa_remove(spa);
5857 mutex_exit(&spa_namespace_lock);
5858 return (ENOTSUP);
5859 }
5860
5861 if (has_features || nvlist_lookup_uint64(props,
5862 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5863 version = SPA_VERSION;
5864 }
5865 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5866
5867 spa->spa_first_txg = txg;
5868 spa->spa_uberblock.ub_txg = txg - 1;
5869 spa->spa_uberblock.ub_version = version;
5870 spa->spa_ubsync = spa->spa_uberblock;
5871 spa->spa_load_state = SPA_LOAD_CREATE;
5872 spa->spa_removing_phys.sr_state = DSS_NONE;
5873 spa->spa_removing_phys.sr_removing_vdev = -1;
5874 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5875 spa->spa_indirect_vdevs_loaded = B_TRUE;
5876
5877 /*
5878 * Create "The Godfather" zio to hold all async IOs
5879 */
5880 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5881 KM_SLEEP);
5882 for (int i = 0; i < max_ncpus; i++) {
5883 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5884 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5885 ZIO_FLAG_GODFATHER);
5886 }
5887
5888 /*
5889 * Create the root vdev.
5890 */
5891 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5892
5893 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5894
5895 ASSERT(error != 0 || rvd != NULL);
5896 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5897
5898 if (error == 0 && !zfs_allocatable_devs(nvroot))
5899 error = SET_ERROR(EINVAL);
5900
5901 if (error == 0 &&
5902 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5903 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
5904 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
5905 /*
5906 * instantiate the metaslab groups (this will dirty the vdevs)
5907 * we can no longer error exit past this point
5908 */
5909 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5910 vdev_t *vd = rvd->vdev_child[c];
5911
5912 vdev_metaslab_set_size(vd);
5913 vdev_expand(vd, txg);
5914 }
5915 }
5916
5917 spa_config_exit(spa, SCL_ALL, FTAG);
5918
5919 if (error != 0) {
5920 spa_unload(spa);
5921 spa_deactivate(spa);
5922 spa_remove(spa);
5923 mutex_exit(&spa_namespace_lock);
5924 return (error);
5925 }
5926
5927 /*
5928 * Get the list of spares, if specified.
5929 */
5930 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5931 &spares, &nspares) == 0) {
5932 spa->spa_spares.sav_config = fnvlist_alloc();
5933 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
5934 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
5935 nspares);
5936 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5937 spa_load_spares(spa);
5938 spa_config_exit(spa, SCL_ALL, FTAG);
5939 spa->spa_spares.sav_sync = B_TRUE;
5940 }
5941
5942 /*
5943 * Get the list of level 2 cache devices, if specified.
5944 */
5945 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5946 &l2cache, &nl2cache) == 0) {
5947 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
5948 NV_UNIQUE_NAME, KM_SLEEP));
5949 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5950 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
5951 nl2cache);
5952 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5953 spa_load_l2cache(spa);
5954 spa_config_exit(spa, SCL_ALL, FTAG);
5955 spa->spa_l2cache.sav_sync = B_TRUE;
5956 }
5957
5958 spa->spa_is_initializing = B_TRUE;
5959 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5960 spa->spa_is_initializing = B_FALSE;
5961
5962 /*
5963 * Create DDTs (dedup tables).
5964 */
5965 ddt_create(spa);
5966
5967 spa_update_dspace(spa);
5968
5969 tx = dmu_tx_create_assigned(dp, txg);
5970
5971 /*
5972 * Create the pool's history object.
5973 */
5974 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
5975 spa_history_create_obj(spa, tx);
5976
5977 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5978 spa_history_log_version(spa, "create", tx);
5979
5980 /*
5981 * Create the pool config object.
5982 */
5983 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5984 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5985 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5986
5987 if (zap_add(spa->spa_meta_objset,
5988 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5989 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5990 cmn_err(CE_PANIC, "failed to add pool config");
5991 }
5992
5993 if (zap_add(spa->spa_meta_objset,
5994 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5995 sizeof (uint64_t), 1, &version, tx) != 0) {
5996 cmn_err(CE_PANIC, "failed to add pool version");
5997 }
5998
5999 /* Newly created pools with the right version are always deflated. */
6000 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6001 spa->spa_deflate = TRUE;
6002 if (zap_add(spa->spa_meta_objset,
6003 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6004 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6005 cmn_err(CE_PANIC, "failed to add deflate");
6006 }
6007 }
6008
6009 /*
6010 * Create the deferred-free bpobj. Turn off compression
6011 * because sync-to-convergence takes longer if the blocksize
6012 * keeps changing.
6013 */
6014 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6015 dmu_object_set_compress(spa->spa_meta_objset, obj,
6016 ZIO_COMPRESS_OFF, tx);
6017 if (zap_add(spa->spa_meta_objset,
6018 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6019 sizeof (uint64_t), 1, &obj, tx) != 0) {
6020 cmn_err(CE_PANIC, "failed to add bpobj");
6021 }
6022 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6023 spa->spa_meta_objset, obj));
6024
6025 /*
6026 * Generate some random noise for salted checksums to operate on.
6027 */
6028 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6029 sizeof (spa->spa_cksum_salt.zcs_bytes));
6030
6031 /*
6032 * Set pool properties.
6033 */
6034 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6035 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6036 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6037 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6038 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6039 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6040
6041 if (props != NULL) {
6042 spa_configfile_set(spa, props, B_FALSE);
6043 spa_sync_props(props, tx);
6044 }
6045
6046 for (int i = 0; i < ndraid; i++)
6047 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6048
6049 dmu_tx_commit(tx);
6050
6051 spa->spa_sync_on = B_TRUE;
6052 txg_sync_start(dp);
6053 mmp_thread_start(spa);
6054 txg_wait_synced(dp, txg);
6055
6056 spa_spawn_aux_threads(spa);
6057
6058 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6059
6060 /*
6061 * Don't count references from objsets that are already closed
6062 * and are making their way through the eviction process.
6063 */
6064 spa_evicting_os_wait(spa);
6065 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6066 spa->spa_load_state = SPA_LOAD_NONE;
6067
6068 spa_import_os(spa);
6069
6070 mutex_exit(&spa_namespace_lock);
6071
6072 return (0);
6073 }
6074
6075 /*
6076 * Import a non-root pool into the system.
6077 */
6078 int
6079 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6080 {
6081 spa_t *spa;
6082 char *altroot = NULL;
6083 spa_load_state_t state = SPA_LOAD_IMPORT;
6084 zpool_load_policy_t policy;
6085 spa_mode_t mode = spa_mode_global;
6086 uint64_t readonly = B_FALSE;
6087 int error;
6088 nvlist_t *nvroot;
6089 nvlist_t **spares, **l2cache;
6090 uint_t nspares, nl2cache;
6091
6092 /*
6093 * If a pool with this name exists, return failure.
6094 */
6095 mutex_enter(&spa_namespace_lock);
6096 if (spa_lookup(pool) != NULL) {
6097 mutex_exit(&spa_namespace_lock);
6098 return (SET_ERROR(EEXIST));
6099 }
6100
6101 /*
6102 * Create and initialize the spa structure.
6103 */
6104 (void) nvlist_lookup_string(props,
6105 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6106 (void) nvlist_lookup_uint64(props,
6107 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6108 if (readonly)
6109 mode = SPA_MODE_READ;
6110 spa = spa_add(pool, config, altroot);
6111 spa->spa_import_flags = flags;
6112
6113 /*
6114 * Verbatim import - Take a pool and insert it into the namespace
6115 * as if it had been loaded at boot.
6116 */
6117 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6118 if (props != NULL)
6119 spa_configfile_set(spa, props, B_FALSE);
6120
6121 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6122 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6123 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6124 mutex_exit(&spa_namespace_lock);
6125 return (0);
6126 }
6127
6128 spa_activate(spa, mode);
6129
6130 /*
6131 * Don't start async tasks until we know everything is healthy.
6132 */
6133 spa_async_suspend(spa);
6134
6135 zpool_get_load_policy(config, &policy);
6136 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6137 state = SPA_LOAD_RECOVER;
6138
6139 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6140
6141 if (state != SPA_LOAD_RECOVER) {
6142 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6143 zfs_dbgmsg("spa_import: importing %s", pool);
6144 } else {
6145 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6146 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6147 }
6148 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6149
6150 /*
6151 * Propagate anything learned while loading the pool and pass it
6152 * back to caller (i.e. rewind info, missing devices, etc).
6153 */
6154 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6155
6156 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6157 /*
6158 * Toss any existing sparelist, as it doesn't have any validity
6159 * anymore, and conflicts with spa_has_spare().
6160 */
6161 if (spa->spa_spares.sav_config) {
6162 nvlist_free(spa->spa_spares.sav_config);
6163 spa->spa_spares.sav_config = NULL;
6164 spa_load_spares(spa);
6165 }
6166 if (spa->spa_l2cache.sav_config) {
6167 nvlist_free(spa->spa_l2cache.sav_config);
6168 spa->spa_l2cache.sav_config = NULL;
6169 spa_load_l2cache(spa);
6170 }
6171
6172 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6173 spa_config_exit(spa, SCL_ALL, FTAG);
6174
6175 if (props != NULL)
6176 spa_configfile_set(spa, props, B_FALSE);
6177
6178 if (error != 0 || (props && spa_writeable(spa) &&
6179 (error = spa_prop_set(spa, props)))) {
6180 spa_unload(spa);
6181 spa_deactivate(spa);
6182 spa_remove(spa);
6183 mutex_exit(&spa_namespace_lock);
6184 return (error);
6185 }
6186
6187 spa_async_resume(spa);
6188
6189 /*
6190 * Override any spares and level 2 cache devices as specified by
6191 * the user, as these may have correct device names/devids, etc.
6192 */
6193 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6194 &spares, &nspares) == 0) {
6195 if (spa->spa_spares.sav_config)
6196 fnvlist_remove(spa->spa_spares.sav_config,
6197 ZPOOL_CONFIG_SPARES);
6198 else
6199 spa->spa_spares.sav_config = fnvlist_alloc();
6200 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6201 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6202 nspares);
6203 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6204 spa_load_spares(spa);
6205 spa_config_exit(spa, SCL_ALL, FTAG);
6206 spa->spa_spares.sav_sync = B_TRUE;
6207 }
6208 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6209 &l2cache, &nl2cache) == 0) {
6210 if (spa->spa_l2cache.sav_config)
6211 fnvlist_remove(spa->spa_l2cache.sav_config,
6212 ZPOOL_CONFIG_L2CACHE);
6213 else
6214 spa->spa_l2cache.sav_config = fnvlist_alloc();
6215 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6216 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6217 nl2cache);
6218 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6219 spa_load_l2cache(spa);
6220 spa_config_exit(spa, SCL_ALL, FTAG);
6221 spa->spa_l2cache.sav_sync = B_TRUE;
6222 }
6223
6224 /*
6225 * Check for any removed devices.
6226 */
6227 if (spa->spa_autoreplace) {
6228 spa_aux_check_removed(&spa->spa_spares);
6229 spa_aux_check_removed(&spa->spa_l2cache);
6230 }
6231
6232 if (spa_writeable(spa)) {
6233 /*
6234 * Update the config cache to include the newly-imported pool.
6235 */
6236 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6237 }
6238
6239 /*
6240 * It's possible that the pool was expanded while it was exported.
6241 * We kick off an async task to handle this for us.
6242 */
6243 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6244
6245 spa_history_log_version(spa, "import", NULL);
6246
6247 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6248
6249 mutex_exit(&spa_namespace_lock);
6250
6251 zvol_create_minors_recursive(pool);
6252
6253 spa_import_os(spa);
6254
6255 return (0);
6256 }
6257
6258 nvlist_t *
6259 spa_tryimport(nvlist_t *tryconfig)
6260 {
6261 nvlist_t *config = NULL;
6262 char *poolname, *cachefile;
6263 spa_t *spa;
6264 uint64_t state;
6265 int error;
6266 zpool_load_policy_t policy;
6267
6268 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6269 return (NULL);
6270
6271 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6272 return (NULL);
6273
6274 /*
6275 * Create and initialize the spa structure.
6276 */
6277 mutex_enter(&spa_namespace_lock);
6278 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6279 spa_activate(spa, SPA_MODE_READ);
6280
6281 /*
6282 * Rewind pool if a max txg was provided.
6283 */
6284 zpool_get_load_policy(spa->spa_config, &policy);
6285 if (policy.zlp_txg != UINT64_MAX) {
6286 spa->spa_load_max_txg = policy.zlp_txg;
6287 spa->spa_extreme_rewind = B_TRUE;
6288 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6289 poolname, (longlong_t)policy.zlp_txg);
6290 } else {
6291 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6292 }
6293
6294 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6295 == 0) {
6296 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6297 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6298 } else {
6299 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6300 }
6301
6302 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6303
6304 /*
6305 * If 'tryconfig' was at least parsable, return the current config.
6306 */
6307 if (spa->spa_root_vdev != NULL) {
6308 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6309 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6310 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6311 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6312 spa->spa_uberblock.ub_timestamp);
6313 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6314 spa->spa_load_info);
6315 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6316 spa->spa_errata);
6317
6318 /*
6319 * If the bootfs property exists on this pool then we
6320 * copy it out so that external consumers can tell which
6321 * pools are bootable.
6322 */
6323 if ((!error || error == EEXIST) && spa->spa_bootfs) {
6324 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6325
6326 /*
6327 * We have to play games with the name since the
6328 * pool was opened as TRYIMPORT_NAME.
6329 */
6330 if (dsl_dsobj_to_dsname(spa_name(spa),
6331 spa->spa_bootfs, tmpname) == 0) {
6332 char *cp;
6333 char *dsname;
6334
6335 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6336
6337 cp = strchr(tmpname, '/');
6338 if (cp == NULL) {
6339 (void) strlcpy(dsname, tmpname,
6340 MAXPATHLEN);
6341 } else {
6342 (void) snprintf(dsname, MAXPATHLEN,
6343 "%s/%s", poolname, ++cp);
6344 }
6345 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6346 dsname);
6347 kmem_free(dsname, MAXPATHLEN);
6348 }
6349 kmem_free(tmpname, MAXPATHLEN);
6350 }
6351
6352 /*
6353 * Add the list of hot spares and level 2 cache devices.
6354 */
6355 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6356 spa_add_spares(spa, config);
6357 spa_add_l2cache(spa, config);
6358 spa_config_exit(spa, SCL_CONFIG, FTAG);
6359 }
6360
6361 spa_unload(spa);
6362 spa_deactivate(spa);
6363 spa_remove(spa);
6364 mutex_exit(&spa_namespace_lock);
6365
6366 return (config);
6367 }
6368
6369 /*
6370 * Pool export/destroy
6371 *
6372 * The act of destroying or exporting a pool is very simple. We make sure there
6373 * is no more pending I/O and any references to the pool are gone. Then, we
6374 * update the pool state and sync all the labels to disk, removing the
6375 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6376 * we don't sync the labels or remove the configuration cache.
6377 */
6378 static int
6379 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6380 boolean_t force, boolean_t hardforce)
6381 {
6382 int error;
6383 spa_t *spa;
6384
6385 if (oldconfig)
6386 *oldconfig = NULL;
6387
6388 if (!(spa_mode_global & SPA_MODE_WRITE))
6389 return (SET_ERROR(EROFS));
6390
6391 mutex_enter(&spa_namespace_lock);
6392 if ((spa = spa_lookup(pool)) == NULL) {
6393 mutex_exit(&spa_namespace_lock);
6394 return (SET_ERROR(ENOENT));
6395 }
6396
6397 if (spa->spa_is_exporting) {
6398 /* the pool is being exported by another thread */
6399 mutex_exit(&spa_namespace_lock);
6400 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6401 }
6402 spa->spa_is_exporting = B_TRUE;
6403
6404 /*
6405 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6406 * reacquire the namespace lock, and see if we can export.
6407 */
6408 spa_open_ref(spa, FTAG);
6409 mutex_exit(&spa_namespace_lock);
6410 spa_async_suspend(spa);
6411 if (spa->spa_zvol_taskq) {
6412 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6413 taskq_wait(spa->spa_zvol_taskq);
6414 }
6415 mutex_enter(&spa_namespace_lock);
6416 spa_close(spa, FTAG);
6417
6418 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6419 goto export_spa;
6420 /*
6421 * The pool will be in core if it's openable, in which case we can
6422 * modify its state. Objsets may be open only because they're dirty,
6423 * so we have to force it to sync before checking spa_refcnt.
6424 */
6425 if (spa->spa_sync_on) {
6426 txg_wait_synced(spa->spa_dsl_pool, 0);
6427 spa_evicting_os_wait(spa);
6428 }
6429
6430 /*
6431 * A pool cannot be exported or destroyed if there are active
6432 * references. If we are resetting a pool, allow references by
6433 * fault injection handlers.
6434 */
6435 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6436 error = SET_ERROR(EBUSY);
6437 goto fail;
6438 }
6439
6440 if (spa->spa_sync_on) {
6441 vdev_t *rvd = spa->spa_root_vdev;
6442 /*
6443 * A pool cannot be exported if it has an active shared spare.
6444 * This is to prevent other pools stealing the active spare
6445 * from an exported pool. At user's own will, such pool can
6446 * be forcedly exported.
6447 */
6448 if (!force && new_state == POOL_STATE_EXPORTED &&
6449 spa_has_active_shared_spare(spa)) {
6450 error = SET_ERROR(EXDEV);
6451 goto fail;
6452 }
6453
6454 /*
6455 * We're about to export or destroy this pool. Make sure
6456 * we stop all initialization and trim activity here before
6457 * we set the spa_final_txg. This will ensure that all
6458 * dirty data resulting from the initialization is
6459 * committed to disk before we unload the pool.
6460 */
6461 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6462 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6463 vdev_autotrim_stop_all(spa);
6464 vdev_rebuild_stop_all(spa);
6465
6466 /*
6467 * We want this to be reflected on every label,
6468 * so mark them all dirty. spa_unload() will do the
6469 * final sync that pushes these changes out.
6470 */
6471 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6472 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6473 spa->spa_state = new_state;
6474 vdev_config_dirty(rvd);
6475 spa_config_exit(spa, SCL_ALL, FTAG);
6476 }
6477
6478 /*
6479 * If the log space map feature is enabled and the pool is
6480 * getting exported (but not destroyed), we want to spend some
6481 * time flushing as many metaslabs as we can in an attempt to
6482 * destroy log space maps and save import time. This has to be
6483 * done before we set the spa_final_txg, otherwise
6484 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
6485 * spa_should_flush_logs_on_unload() should be called after
6486 * spa_state has been set to the new_state.
6487 */
6488 if (spa_should_flush_logs_on_unload(spa))
6489 spa_unload_log_sm_flush_all(spa);
6490
6491 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6492 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6493 spa->spa_final_txg = spa_last_synced_txg(spa) +
6494 TXG_DEFER_SIZE + 1;
6495 spa_config_exit(spa, SCL_ALL, FTAG);
6496 }
6497 }
6498
6499 export_spa:
6500 spa_export_os(spa);
6501
6502 if (new_state == POOL_STATE_DESTROYED)
6503 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6504 else if (new_state == POOL_STATE_EXPORTED)
6505 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6506
6507 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6508 spa_unload(spa);
6509 spa_deactivate(spa);
6510 }
6511
6512 if (oldconfig && spa->spa_config)
6513 *oldconfig = fnvlist_dup(spa->spa_config);
6514
6515 if (new_state != POOL_STATE_UNINITIALIZED) {
6516 if (!hardforce)
6517 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
6518 spa_remove(spa);
6519 } else {
6520 /*
6521 * If spa_remove() is not called for this spa_t and
6522 * there is any possibility that it can be reused,
6523 * we make sure to reset the exporting flag.
6524 */
6525 spa->spa_is_exporting = B_FALSE;
6526 }
6527
6528 mutex_exit(&spa_namespace_lock);
6529 return (0);
6530
6531 fail:
6532 spa->spa_is_exporting = B_FALSE;
6533 spa_async_resume(spa);
6534 mutex_exit(&spa_namespace_lock);
6535 return (error);
6536 }
6537
6538 /*
6539 * Destroy a storage pool.
6540 */
6541 int
6542 spa_destroy(const char *pool)
6543 {
6544 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6545 B_FALSE, B_FALSE));
6546 }
6547
6548 /*
6549 * Export a storage pool.
6550 */
6551 int
6552 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6553 boolean_t hardforce)
6554 {
6555 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6556 force, hardforce));
6557 }
6558
6559 /*
6560 * Similar to spa_export(), this unloads the spa_t without actually removing it
6561 * from the namespace in any way.
6562 */
6563 int
6564 spa_reset(const char *pool)
6565 {
6566 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6567 B_FALSE, B_FALSE));
6568 }
6569
6570 /*
6571 * ==========================================================================
6572 * Device manipulation
6573 * ==========================================================================
6574 */
6575
6576 /*
6577 * This is called as a synctask to increment the draid feature flag
6578 */
6579 static void
6580 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
6581 {
6582 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6583 int draid = (int)(uintptr_t)arg;
6584
6585 for (int c = 0; c < draid; c++)
6586 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6587 }
6588
6589 /*
6590 * Add a device to a storage pool.
6591 */
6592 int
6593 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6594 {
6595 uint64_t txg, ndraid = 0;
6596 int error;
6597 vdev_t *rvd = spa->spa_root_vdev;
6598 vdev_t *vd, *tvd;
6599 nvlist_t **spares, **l2cache;
6600 uint_t nspares, nl2cache;
6601
6602 ASSERT(spa_writeable(spa));
6603
6604 txg = spa_vdev_enter(spa);
6605
6606 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6607 VDEV_ALLOC_ADD)) != 0)
6608 return (spa_vdev_exit(spa, NULL, txg, error));
6609
6610 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
6611
6612 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6613 &nspares) != 0)
6614 nspares = 0;
6615
6616 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6617 &nl2cache) != 0)
6618 nl2cache = 0;
6619
6620 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6621 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6622
6623 if (vd->vdev_children != 0 &&
6624 (error = vdev_create(vd, txg, B_FALSE)) != 0) {
6625 return (spa_vdev_exit(spa, vd, txg, error));
6626 }
6627
6628 /*
6629 * The virtual dRAID spares must be added after vdev tree is created
6630 * and the vdev guids are generated. The guid of their associated
6631 * dRAID is stored in the config and used when opening the spare.
6632 */
6633 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
6634 rvd->vdev_children)) == 0) {
6635 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
6636 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
6637 nspares = 0;
6638 } else {
6639 return (spa_vdev_exit(spa, vd, txg, error));
6640 }
6641
6642 /*
6643 * We must validate the spares and l2cache devices after checking the
6644 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
6645 */
6646 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6647 return (spa_vdev_exit(spa, vd, txg, error));
6648
6649 /*
6650 * If we are in the middle of a device removal, we can only add
6651 * devices which match the existing devices in the pool.
6652 * If we are in the middle of a removal, or have some indirect
6653 * vdevs, we can not add raidz or dRAID top levels.
6654 */
6655 if (spa->spa_vdev_removal != NULL ||
6656 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6657 for (int c = 0; c < vd->vdev_children; c++) {
6658 tvd = vd->vdev_child[c];
6659 if (spa->spa_vdev_removal != NULL &&
6660 tvd->vdev_ashift != spa->spa_max_ashift) {
6661 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6662 }
6663 /* Fail if top level vdev is raidz or a dRAID */
6664 if (vdev_get_nparity(tvd) != 0)
6665 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6666
6667 /*
6668 * Need the top level mirror to be
6669 * a mirror of leaf vdevs only
6670 */
6671 if (tvd->vdev_ops == &vdev_mirror_ops) {
6672 for (uint64_t cid = 0;
6673 cid < tvd->vdev_children; cid++) {
6674 vdev_t *cvd = tvd->vdev_child[cid];
6675 if (!cvd->vdev_ops->vdev_op_leaf) {
6676 return (spa_vdev_exit(spa, vd,
6677 txg, EINVAL));
6678 }
6679 }
6680 }
6681 }
6682 }
6683
6684 for (int c = 0; c < vd->vdev_children; c++) {
6685 tvd = vd->vdev_child[c];
6686 vdev_remove_child(vd, tvd);
6687 tvd->vdev_id = rvd->vdev_children;
6688 vdev_add_child(rvd, tvd);
6689 vdev_config_dirty(tvd);
6690 }
6691
6692 if (nspares != 0) {
6693 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6694 ZPOOL_CONFIG_SPARES);
6695 spa_load_spares(spa);
6696 spa->spa_spares.sav_sync = B_TRUE;
6697 }
6698
6699 if (nl2cache != 0) {
6700 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6701 ZPOOL_CONFIG_L2CACHE);
6702 spa_load_l2cache(spa);
6703 spa->spa_l2cache.sav_sync = B_TRUE;
6704 }
6705
6706 /*
6707 * We can't increment a feature while holding spa_vdev so we
6708 * have to do it in a synctask.
6709 */
6710 if (ndraid != 0) {
6711 dmu_tx_t *tx;
6712
6713 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
6714 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
6715 (void *)(uintptr_t)ndraid, tx);
6716 dmu_tx_commit(tx);
6717 }
6718
6719 /*
6720 * We have to be careful when adding new vdevs to an existing pool.
6721 * If other threads start allocating from these vdevs before we
6722 * sync the config cache, and we lose power, then upon reboot we may
6723 * fail to open the pool because there are DVAs that the config cache
6724 * can't translate. Therefore, we first add the vdevs without
6725 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6726 * and then let spa_config_update() initialize the new metaslabs.
6727 *
6728 * spa_load() checks for added-but-not-initialized vdevs, so that
6729 * if we lose power at any point in this sequence, the remaining
6730 * steps will be completed the next time we load the pool.
6731 */
6732 (void) spa_vdev_exit(spa, vd, txg, 0);
6733
6734 mutex_enter(&spa_namespace_lock);
6735 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6736 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6737 mutex_exit(&spa_namespace_lock);
6738
6739 return (0);
6740 }
6741
6742 /*
6743 * Attach a device to a mirror. The arguments are the path to any device
6744 * in the mirror, and the nvroot for the new device. If the path specifies
6745 * a device that is not mirrored, we automatically insert the mirror vdev.
6746 *
6747 * If 'replacing' is specified, the new device is intended to replace the
6748 * existing device; in this case the two devices are made into their own
6749 * mirror using the 'replacing' vdev, which is functionally identical to
6750 * the mirror vdev (it actually reuses all the same ops) but has a few
6751 * extra rules: you can't attach to it after it's been created, and upon
6752 * completion of resilvering, the first disk (the one being replaced)
6753 * is automatically detached.
6754 *
6755 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6756 * should be performed instead of traditional healing reconstruction. From
6757 * an administrators perspective these are both resilver operations.
6758 */
6759 int
6760 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6761 int rebuild)
6762 {
6763 uint64_t txg, dtl_max_txg;
6764 vdev_t *rvd = spa->spa_root_vdev;
6765 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6766 vdev_ops_t *pvops;
6767 char *oldvdpath, *newvdpath;
6768 int newvd_isspare;
6769 int error;
6770
6771 ASSERT(spa_writeable(spa));
6772
6773 txg = spa_vdev_enter(spa);
6774
6775 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6776
6777 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6778 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6779 error = (spa_has_checkpoint(spa)) ?
6780 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6781 return (spa_vdev_exit(spa, NULL, txg, error));
6782 }
6783
6784 if (rebuild) {
6785 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6786 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6787
6788 if (dsl_scan_resilvering(spa_get_dsl(spa)))
6789 return (spa_vdev_exit(spa, NULL, txg,
6790 ZFS_ERR_RESILVER_IN_PROGRESS));
6791 } else {
6792 if (vdev_rebuild_active(rvd))
6793 return (spa_vdev_exit(spa, NULL, txg,
6794 ZFS_ERR_REBUILD_IN_PROGRESS));
6795 }
6796
6797 if (spa->spa_vdev_removal != NULL)
6798 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6799
6800 if (oldvd == NULL)
6801 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6802
6803 if (!oldvd->vdev_ops->vdev_op_leaf)
6804 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6805
6806 pvd = oldvd->vdev_parent;
6807
6808 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6809 VDEV_ALLOC_ATTACH) != 0)
6810 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6811
6812 if (newrootvd->vdev_children != 1)
6813 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6814
6815 newvd = newrootvd->vdev_child[0];
6816
6817 if (!newvd->vdev_ops->vdev_op_leaf)
6818 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6819
6820 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6821 return (spa_vdev_exit(spa, newrootvd, txg, error));
6822
6823 /*
6824 * log, dedup and special vdevs should not be replaced by spares.
6825 */
6826 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
6827 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
6828 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6829 }
6830
6831 /*
6832 * A dRAID spare can only replace a child of its parent dRAID vdev.
6833 */
6834 if (newvd->vdev_ops == &vdev_draid_spare_ops &&
6835 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
6836 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6837 }
6838
6839 if (rebuild) {
6840 /*
6841 * For rebuilds, the top vdev must support reconstruction
6842 * using only space maps. This means the only allowable
6843 * vdevs types are the root vdev, a mirror, or dRAID.
6844 */
6845 tvd = pvd;
6846 if (pvd->vdev_top != NULL)
6847 tvd = pvd->vdev_top;
6848
6849 if (tvd->vdev_ops != &vdev_mirror_ops &&
6850 tvd->vdev_ops != &vdev_root_ops &&
6851 tvd->vdev_ops != &vdev_draid_ops) {
6852 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6853 }
6854 }
6855
6856 if (!replacing) {
6857 /*
6858 * For attach, the only allowable parent is a mirror or the root
6859 * vdev.
6860 */
6861 if (pvd->vdev_ops != &vdev_mirror_ops &&
6862 pvd->vdev_ops != &vdev_root_ops)
6863 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6864
6865 pvops = &vdev_mirror_ops;
6866 } else {
6867 /*
6868 * Active hot spares can only be replaced by inactive hot
6869 * spares.
6870 */
6871 if (pvd->vdev_ops == &vdev_spare_ops &&
6872 oldvd->vdev_isspare &&
6873 !spa_has_spare(spa, newvd->vdev_guid))
6874 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6875
6876 /*
6877 * If the source is a hot spare, and the parent isn't already a
6878 * spare, then we want to create a new hot spare. Otherwise, we
6879 * want to create a replacing vdev. The user is not allowed to
6880 * attach to a spared vdev child unless the 'isspare' state is
6881 * the same (spare replaces spare, non-spare replaces
6882 * non-spare).
6883 */
6884 if (pvd->vdev_ops == &vdev_replacing_ops &&
6885 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6886 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6887 } else if (pvd->vdev_ops == &vdev_spare_ops &&
6888 newvd->vdev_isspare != oldvd->vdev_isspare) {
6889 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6890 }
6891
6892 if (newvd->vdev_isspare)
6893 pvops = &vdev_spare_ops;
6894 else
6895 pvops = &vdev_replacing_ops;
6896 }
6897
6898 /*
6899 * Make sure the new device is big enough.
6900 */
6901 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6902 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6903
6904 /*
6905 * The new device cannot have a higher alignment requirement
6906 * than the top-level vdev.
6907 */
6908 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6909 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6910
6911 /*
6912 * If this is an in-place replacement, update oldvd's path and devid
6913 * to make it distinguishable from newvd, and unopenable from now on.
6914 */
6915 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6916 spa_strfree(oldvd->vdev_path);
6917 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6918 KM_SLEEP);
6919 (void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
6920 "%s/%s", newvd->vdev_path, "old");
6921 if (oldvd->vdev_devid != NULL) {
6922 spa_strfree(oldvd->vdev_devid);
6923 oldvd->vdev_devid = NULL;
6924 }
6925 }
6926
6927 /*
6928 * If the parent is not a mirror, or if we're replacing, insert the new
6929 * mirror/replacing/spare vdev above oldvd.
6930 */
6931 if (pvd->vdev_ops != pvops)
6932 pvd = vdev_add_parent(oldvd, pvops);
6933
6934 ASSERT(pvd->vdev_top->vdev_parent == rvd);
6935 ASSERT(pvd->vdev_ops == pvops);
6936 ASSERT(oldvd->vdev_parent == pvd);
6937
6938 /*
6939 * Extract the new device from its root and add it to pvd.
6940 */
6941 vdev_remove_child(newrootvd, newvd);
6942 newvd->vdev_id = pvd->vdev_children;
6943 newvd->vdev_crtxg = oldvd->vdev_crtxg;
6944 vdev_add_child(pvd, newvd);
6945
6946 /*
6947 * Reevaluate the parent vdev state.
6948 */
6949 vdev_propagate_state(pvd);
6950
6951 tvd = newvd->vdev_top;
6952 ASSERT(pvd->vdev_top == tvd);
6953 ASSERT(tvd->vdev_parent == rvd);
6954
6955 vdev_config_dirty(tvd);
6956
6957 /*
6958 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6959 * for any dmu_sync-ed blocks. It will propagate upward when
6960 * spa_vdev_exit() calls vdev_dtl_reassess().
6961 */
6962 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6963
6964 vdev_dtl_dirty(newvd, DTL_MISSING,
6965 TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
6966
6967 if (newvd->vdev_isspare) {
6968 spa_spare_activate(newvd);
6969 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6970 }
6971
6972 oldvdpath = spa_strdup(oldvd->vdev_path);
6973 newvdpath = spa_strdup(newvd->vdev_path);
6974 newvd_isspare = newvd->vdev_isspare;
6975
6976 /*
6977 * Mark newvd's DTL dirty in this txg.
6978 */
6979 vdev_dirty(tvd, VDD_DTL, newvd, txg);
6980
6981 /*
6982 * Schedule the resilver or rebuild to restart in the future. We do
6983 * this to ensure that dmu_sync-ed blocks have been stitched into the
6984 * respective datasets.
6985 */
6986 if (rebuild) {
6987 newvd->vdev_rebuild_txg = txg;
6988
6989 vdev_rebuild(tvd);
6990 } else {
6991 newvd->vdev_resilver_txg = txg;
6992
6993 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6994 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
6995 vdev_defer_resilver(newvd);
6996 } else {
6997 dsl_scan_restart_resilver(spa->spa_dsl_pool,
6998 dtl_max_txg);
6999 }
7000 }
7001
7002 if (spa->spa_bootfs)
7003 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7004
7005 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7006
7007 /*
7008 * Commit the config
7009 */
7010 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7011
7012 spa_history_log_internal(spa, "vdev attach", NULL,
7013 "%s vdev=%s %s vdev=%s",
7014 replacing && newvd_isspare ? "spare in" :
7015 replacing ? "replace" : "attach", newvdpath,
7016 replacing ? "for" : "to", oldvdpath);
7017
7018 spa_strfree(oldvdpath);
7019 spa_strfree(newvdpath);
7020
7021 return (0);
7022 }
7023
7024 /*
7025 * Detach a device from a mirror or replacing vdev.
7026 *
7027 * If 'replace_done' is specified, only detach if the parent
7028 * is a replacing vdev.
7029 */
7030 int
7031 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7032 {
7033 uint64_t txg;
7034 int error;
7035 vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7036 vdev_t *vd, *pvd, *cvd, *tvd;
7037 boolean_t unspare = B_FALSE;
7038 uint64_t unspare_guid = 0;
7039 char *vdpath;
7040
7041 ASSERT(spa_writeable(spa));
7042
7043 txg = spa_vdev_detach_enter(spa, guid);
7044
7045 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7046
7047 /*
7048 * Besides being called directly from the userland through the
7049 * ioctl interface, spa_vdev_detach() can be potentially called
7050 * at the end of spa_vdev_resilver_done().
7051 *
7052 * In the regular case, when we have a checkpoint this shouldn't
7053 * happen as we never empty the DTLs of a vdev during the scrub
7054 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7055 * should never get here when we have a checkpoint.
7056 *
7057 * That said, even in a case when we checkpoint the pool exactly
7058 * as spa_vdev_resilver_done() calls this function everything
7059 * should be fine as the resilver will return right away.
7060 */
7061 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7062 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7063 error = (spa_has_checkpoint(spa)) ?
7064 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7065 return (spa_vdev_exit(spa, NULL, txg, error));
7066 }
7067
7068 if (vd == NULL)
7069 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7070
7071 if (!vd->vdev_ops->vdev_op_leaf)
7072 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7073
7074 pvd = vd->vdev_parent;
7075
7076 /*
7077 * If the parent/child relationship is not as expected, don't do it.
7078 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7079 * vdev that's replacing B with C. The user's intent in replacing
7080 * is to go from M(A,B) to M(A,C). If the user decides to cancel
7081 * the replace by detaching C, the expected behavior is to end up
7082 * M(A,B). But suppose that right after deciding to detach C,
7083 * the replacement of B completes. We would have M(A,C), and then
7084 * ask to detach C, which would leave us with just A -- not what
7085 * the user wanted. To prevent this, we make sure that the
7086 * parent/child relationship hasn't changed -- in this example,
7087 * that C's parent is still the replacing vdev R.
7088 */
7089 if (pvd->vdev_guid != pguid && pguid != 0)
7090 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7091
7092 /*
7093 * Only 'replacing' or 'spare' vdevs can be replaced.
7094 */
7095 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7096 pvd->vdev_ops != &vdev_spare_ops)
7097 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7098
7099 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7100 spa_version(spa) >= SPA_VERSION_SPARES);
7101
7102 /*
7103 * Only mirror, replacing, and spare vdevs support detach.
7104 */
7105 if (pvd->vdev_ops != &vdev_replacing_ops &&
7106 pvd->vdev_ops != &vdev_mirror_ops &&
7107 pvd->vdev_ops != &vdev_spare_ops)
7108 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7109
7110 /*
7111 * If this device has the only valid copy of some data,
7112 * we cannot safely detach it.
7113 */
7114 if (vdev_dtl_required(vd))
7115 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7116
7117 ASSERT(pvd->vdev_children >= 2);
7118
7119 /*
7120 * If we are detaching the second disk from a replacing vdev, then
7121 * check to see if we changed the original vdev's path to have "/old"
7122 * at the end in spa_vdev_attach(). If so, undo that change now.
7123 */
7124 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7125 vd->vdev_path != NULL) {
7126 size_t len = strlen(vd->vdev_path);
7127
7128 for (int c = 0; c < pvd->vdev_children; c++) {
7129 cvd = pvd->vdev_child[c];
7130
7131 if (cvd == vd || cvd->vdev_path == NULL)
7132 continue;
7133
7134 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7135 strcmp(cvd->vdev_path + len, "/old") == 0) {
7136 spa_strfree(cvd->vdev_path);
7137 cvd->vdev_path = spa_strdup(vd->vdev_path);
7138 break;
7139 }
7140 }
7141 }
7142
7143 /*
7144 * If we are detaching the original disk from a normal spare, then it
7145 * implies that the spare should become a real disk, and be removed
7146 * from the active spare list for the pool. dRAID spares on the
7147 * other hand are coupled to the pool and thus should never be removed
7148 * from the spares list.
7149 */
7150 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7151 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7152
7153 if (last_cvd->vdev_isspare &&
7154 last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7155 unspare = B_TRUE;
7156 }
7157 }
7158
7159 /*
7160 * Erase the disk labels so the disk can be used for other things.
7161 * This must be done after all other error cases are handled,
7162 * but before we disembowel vd (so we can still do I/O to it).
7163 * But if we can't do it, don't treat the error as fatal --
7164 * it may be that the unwritability of the disk is the reason
7165 * it's being detached!
7166 */
7167 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7168
7169 /*
7170 * Remove vd from its parent and compact the parent's children.
7171 */
7172 vdev_remove_child(pvd, vd);
7173 vdev_compact_children(pvd);
7174
7175 /*
7176 * Remember one of the remaining children so we can get tvd below.
7177 */
7178 cvd = pvd->vdev_child[pvd->vdev_children - 1];
7179
7180 /*
7181 * If we need to remove the remaining child from the list of hot spares,
7182 * do it now, marking the vdev as no longer a spare in the process.
7183 * We must do this before vdev_remove_parent(), because that can
7184 * change the GUID if it creates a new toplevel GUID. For a similar
7185 * reason, we must remove the spare now, in the same txg as the detach;
7186 * otherwise someone could attach a new sibling, change the GUID, and
7187 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7188 */
7189 if (unspare) {
7190 ASSERT(cvd->vdev_isspare);
7191 spa_spare_remove(cvd);
7192 unspare_guid = cvd->vdev_guid;
7193 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7194 cvd->vdev_unspare = B_TRUE;
7195 }
7196
7197 /*
7198 * If the parent mirror/replacing vdev only has one child,
7199 * the parent is no longer needed. Remove it from the tree.
7200 */
7201 if (pvd->vdev_children == 1) {
7202 if (pvd->vdev_ops == &vdev_spare_ops)
7203 cvd->vdev_unspare = B_FALSE;
7204 vdev_remove_parent(cvd);
7205 }
7206
7207 /*
7208 * We don't set tvd until now because the parent we just removed
7209 * may have been the previous top-level vdev.
7210 */
7211 tvd = cvd->vdev_top;
7212 ASSERT(tvd->vdev_parent == rvd);
7213
7214 /*
7215 * Reevaluate the parent vdev state.
7216 */
7217 vdev_propagate_state(cvd);
7218
7219 /*
7220 * If the 'autoexpand' property is set on the pool then automatically
7221 * try to expand the size of the pool. For example if the device we
7222 * just detached was smaller than the others, it may be possible to
7223 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7224 * first so that we can obtain the updated sizes of the leaf vdevs.
7225 */
7226 if (spa->spa_autoexpand) {
7227 vdev_reopen(tvd);
7228 vdev_expand(tvd, txg);
7229 }
7230
7231 vdev_config_dirty(tvd);
7232
7233 /*
7234 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
7235 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7236 * But first make sure we're not on any *other* txg's DTL list, to
7237 * prevent vd from being accessed after it's freed.
7238 */
7239 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7240 for (int t = 0; t < TXG_SIZE; t++)
7241 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7242 vd->vdev_detached = B_TRUE;
7243 vdev_dirty(tvd, VDD_DTL, vd, txg);
7244
7245 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7246 spa_notify_waiters(spa);
7247
7248 /* hang on to the spa before we release the lock */
7249 spa_open_ref(spa, FTAG);
7250
7251 error = spa_vdev_exit(spa, vd, txg, 0);
7252
7253 spa_history_log_internal(spa, "detach", NULL,
7254 "vdev=%s", vdpath);
7255 spa_strfree(vdpath);
7256
7257 /*
7258 * If this was the removal of the original device in a hot spare vdev,
7259 * then we want to go through and remove the device from the hot spare
7260 * list of every other pool.
7261 */
7262 if (unspare) {
7263 spa_t *altspa = NULL;
7264
7265 mutex_enter(&spa_namespace_lock);
7266 while ((altspa = spa_next(altspa)) != NULL) {
7267 if (altspa->spa_state != POOL_STATE_ACTIVE ||
7268 altspa == spa)
7269 continue;
7270
7271 spa_open_ref(altspa, FTAG);
7272 mutex_exit(&spa_namespace_lock);
7273 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7274 mutex_enter(&spa_namespace_lock);
7275 spa_close(altspa, FTAG);
7276 }
7277 mutex_exit(&spa_namespace_lock);
7278
7279 /* search the rest of the vdevs for spares to remove */
7280 spa_vdev_resilver_done(spa);
7281 }
7282
7283 /* all done with the spa; OK to release */
7284 mutex_enter(&spa_namespace_lock);
7285 spa_close(spa, FTAG);
7286 mutex_exit(&spa_namespace_lock);
7287
7288 return (error);
7289 }
7290
7291 static int
7292 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7293 list_t *vd_list)
7294 {
7295 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7296
7297 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7298
7299 /* Look up vdev and ensure it's a leaf. */
7300 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7301 if (vd == NULL || vd->vdev_detached) {
7302 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7303 return (SET_ERROR(ENODEV));
7304 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7305 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7306 return (SET_ERROR(EINVAL));
7307 } else if (!vdev_writeable(vd)) {
7308 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7309 return (SET_ERROR(EROFS));
7310 }
7311 mutex_enter(&vd->vdev_initialize_lock);
7312 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7313
7314 /*
7315 * When we activate an initialize action we check to see
7316 * if the vdev_initialize_thread is NULL. We do this instead
7317 * of using the vdev_initialize_state since there might be
7318 * a previous initialization process which has completed but
7319 * the thread is not exited.
7320 */
7321 if (cmd_type == POOL_INITIALIZE_START &&
7322 (vd->vdev_initialize_thread != NULL ||
7323 vd->vdev_top->vdev_removing)) {
7324 mutex_exit(&vd->vdev_initialize_lock);
7325 return (SET_ERROR(EBUSY));
7326 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7327 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7328 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7329 mutex_exit(&vd->vdev_initialize_lock);
7330 return (SET_ERROR(ESRCH));
7331 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7332 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7333 mutex_exit(&vd->vdev_initialize_lock);
7334 return (SET_ERROR(ESRCH));
7335 }
7336
7337 switch (cmd_type) {
7338 case POOL_INITIALIZE_START:
7339 vdev_initialize(vd);
7340 break;
7341 case POOL_INITIALIZE_CANCEL:
7342 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7343 break;
7344 case POOL_INITIALIZE_SUSPEND:
7345 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7346 break;
7347 default:
7348 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7349 }
7350 mutex_exit(&vd->vdev_initialize_lock);
7351
7352 return (0);
7353 }
7354
7355 int
7356 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7357 nvlist_t *vdev_errlist)
7358 {
7359 int total_errors = 0;
7360 list_t vd_list;
7361
7362 list_create(&vd_list, sizeof (vdev_t),
7363 offsetof(vdev_t, vdev_initialize_node));
7364
7365 /*
7366 * We hold the namespace lock through the whole function
7367 * to prevent any changes to the pool while we're starting or
7368 * stopping initialization. The config and state locks are held so that
7369 * we can properly assess the vdev state before we commit to
7370 * the initializing operation.
7371 */
7372 mutex_enter(&spa_namespace_lock);
7373
7374 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7375 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7376 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7377
7378 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7379 &vd_list);
7380 if (error != 0) {
7381 char guid_as_str[MAXNAMELEN];
7382
7383 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7384 "%llu", (unsigned long long)vdev_guid);
7385 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7386 total_errors++;
7387 }
7388 }
7389
7390 /* Wait for all initialize threads to stop. */
7391 vdev_initialize_stop_wait(spa, &vd_list);
7392
7393 /* Sync out the initializing state */
7394 txg_wait_synced(spa->spa_dsl_pool, 0);
7395 mutex_exit(&spa_namespace_lock);
7396
7397 list_destroy(&vd_list);
7398
7399 return (total_errors);
7400 }
7401
7402 static int
7403 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7404 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7405 {
7406 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7407
7408 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7409
7410 /* Look up vdev and ensure it's a leaf. */
7411 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7412 if (vd == NULL || vd->vdev_detached) {
7413 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7414 return (SET_ERROR(ENODEV));
7415 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7416 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7417 return (SET_ERROR(EINVAL));
7418 } else if (!vdev_writeable(vd)) {
7419 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7420 return (SET_ERROR(EROFS));
7421 } else if (!vd->vdev_has_trim) {
7422 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7423 return (SET_ERROR(EOPNOTSUPP));
7424 } else if (secure && !vd->vdev_has_securetrim) {
7425 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7426 return (SET_ERROR(EOPNOTSUPP));
7427 }
7428 mutex_enter(&vd->vdev_trim_lock);
7429 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7430
7431 /*
7432 * When we activate a TRIM action we check to see if the
7433 * vdev_trim_thread is NULL. We do this instead of using the
7434 * vdev_trim_state since there might be a previous TRIM process
7435 * which has completed but the thread is not exited.
7436 */
7437 if (cmd_type == POOL_TRIM_START &&
7438 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7439 mutex_exit(&vd->vdev_trim_lock);
7440 return (SET_ERROR(EBUSY));
7441 } else if (cmd_type == POOL_TRIM_CANCEL &&
7442 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7443 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7444 mutex_exit(&vd->vdev_trim_lock);
7445 return (SET_ERROR(ESRCH));
7446 } else if (cmd_type == POOL_TRIM_SUSPEND &&
7447 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7448 mutex_exit(&vd->vdev_trim_lock);
7449 return (SET_ERROR(ESRCH));
7450 }
7451
7452 switch (cmd_type) {
7453 case POOL_TRIM_START:
7454 vdev_trim(vd, rate, partial, secure);
7455 break;
7456 case POOL_TRIM_CANCEL:
7457 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7458 break;
7459 case POOL_TRIM_SUSPEND:
7460 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7461 break;
7462 default:
7463 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7464 }
7465 mutex_exit(&vd->vdev_trim_lock);
7466
7467 return (0);
7468 }
7469
7470 /*
7471 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7472 * TRIM threads for each child vdev. These threads pass over all of the free
7473 * space in the vdev's metaslabs and issues TRIM commands for that space.
7474 */
7475 int
7476 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7477 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7478 {
7479 int total_errors = 0;
7480 list_t vd_list;
7481
7482 list_create(&vd_list, sizeof (vdev_t),
7483 offsetof(vdev_t, vdev_trim_node));
7484
7485 /*
7486 * We hold the namespace lock through the whole function
7487 * to prevent any changes to the pool while we're starting or
7488 * stopping TRIM. The config and state locks are held so that
7489 * we can properly assess the vdev state before we commit to
7490 * the TRIM operation.
7491 */
7492 mutex_enter(&spa_namespace_lock);
7493
7494 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7495 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7496 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7497
7498 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7499 rate, partial, secure, &vd_list);
7500 if (error != 0) {
7501 char guid_as_str[MAXNAMELEN];
7502
7503 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7504 "%llu", (unsigned long long)vdev_guid);
7505 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7506 total_errors++;
7507 }
7508 }
7509
7510 /* Wait for all TRIM threads to stop. */
7511 vdev_trim_stop_wait(spa, &vd_list);
7512
7513 /* Sync out the TRIM state */
7514 txg_wait_synced(spa->spa_dsl_pool, 0);
7515 mutex_exit(&spa_namespace_lock);
7516
7517 list_destroy(&vd_list);
7518
7519 return (total_errors);
7520 }
7521
7522 /*
7523 * Split a set of devices from their mirrors, and create a new pool from them.
7524 */
7525 int
7526 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
7527 nvlist_t *props, boolean_t exp)
7528 {
7529 int error = 0;
7530 uint64_t txg, *glist;
7531 spa_t *newspa;
7532 uint_t c, children, lastlog;
7533 nvlist_t **child, *nvl, *tmp;
7534 dmu_tx_t *tx;
7535 char *altroot = NULL;
7536 vdev_t *rvd, **vml = NULL; /* vdev modify list */
7537 boolean_t activate_slog;
7538
7539 ASSERT(spa_writeable(spa));
7540
7541 txg = spa_vdev_enter(spa);
7542
7543 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7544 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7545 error = (spa_has_checkpoint(spa)) ?
7546 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7547 return (spa_vdev_exit(spa, NULL, txg, error));
7548 }
7549
7550 /* clear the log and flush everything up to now */
7551 activate_slog = spa_passivate_log(spa);
7552 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7553 error = spa_reset_logs(spa);
7554 txg = spa_vdev_config_enter(spa);
7555
7556 if (activate_slog)
7557 spa_activate_log(spa);
7558
7559 if (error != 0)
7560 return (spa_vdev_exit(spa, NULL, txg, error));
7561
7562 /* check new spa name before going any further */
7563 if (spa_lookup(newname) != NULL)
7564 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7565
7566 /*
7567 * scan through all the children to ensure they're all mirrors
7568 */
7569 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7570 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7571 &children) != 0)
7572 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7573
7574 /* first, check to ensure we've got the right child count */
7575 rvd = spa->spa_root_vdev;
7576 lastlog = 0;
7577 for (c = 0; c < rvd->vdev_children; c++) {
7578 vdev_t *vd = rvd->vdev_child[c];
7579
7580 /* don't count the holes & logs as children */
7581 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7582 !vdev_is_concrete(vd))) {
7583 if (lastlog == 0)
7584 lastlog = c;
7585 continue;
7586 }
7587
7588 lastlog = 0;
7589 }
7590 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7591 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7592
7593 /* next, ensure no spare or cache devices are part of the split */
7594 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7595 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7596 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7597
7598 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7599 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7600
7601 /* then, loop over each vdev and validate it */
7602 for (c = 0; c < children; c++) {
7603 uint64_t is_hole = 0;
7604
7605 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7606 &is_hole);
7607
7608 if (is_hole != 0) {
7609 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7610 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7611 continue;
7612 } else {
7613 error = SET_ERROR(EINVAL);
7614 break;
7615 }
7616 }
7617
7618 /* deal with indirect vdevs */
7619 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7620 &vdev_indirect_ops)
7621 continue;
7622
7623 /* which disk is going to be split? */
7624 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7625 &glist[c]) != 0) {
7626 error = SET_ERROR(EINVAL);
7627 break;
7628 }
7629
7630 /* look it up in the spa */
7631 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7632 if (vml[c] == NULL) {
7633 error = SET_ERROR(ENODEV);
7634 break;
7635 }
7636
7637 /* make sure there's nothing stopping the split */
7638 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7639 vml[c]->vdev_islog ||
7640 !vdev_is_concrete(vml[c]) ||
7641 vml[c]->vdev_isspare ||
7642 vml[c]->vdev_isl2cache ||
7643 !vdev_writeable(vml[c]) ||
7644 vml[c]->vdev_children != 0 ||
7645 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7646 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7647 error = SET_ERROR(EINVAL);
7648 break;
7649 }
7650
7651 if (vdev_dtl_required(vml[c]) ||
7652 vdev_resilver_needed(vml[c], NULL, NULL)) {
7653 error = SET_ERROR(EBUSY);
7654 break;
7655 }
7656
7657 /* we need certain info from the top level */
7658 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7659 vml[c]->vdev_top->vdev_ms_array);
7660 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7661 vml[c]->vdev_top->vdev_ms_shift);
7662 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7663 vml[c]->vdev_top->vdev_asize);
7664 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7665 vml[c]->vdev_top->vdev_ashift);
7666
7667 /* transfer per-vdev ZAPs */
7668 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7669 VERIFY0(nvlist_add_uint64(child[c],
7670 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7671
7672 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7673 VERIFY0(nvlist_add_uint64(child[c],
7674 ZPOOL_CONFIG_VDEV_TOP_ZAP,
7675 vml[c]->vdev_parent->vdev_top_zap));
7676 }
7677
7678 if (error != 0) {
7679 kmem_free(vml, children * sizeof (vdev_t *));
7680 kmem_free(glist, children * sizeof (uint64_t));
7681 return (spa_vdev_exit(spa, NULL, txg, error));
7682 }
7683
7684 /* stop writers from using the disks */
7685 for (c = 0; c < children; c++) {
7686 if (vml[c] != NULL)
7687 vml[c]->vdev_offline = B_TRUE;
7688 }
7689 vdev_reopen(spa->spa_root_vdev);
7690
7691 /*
7692 * Temporarily record the splitting vdevs in the spa config. This
7693 * will disappear once the config is regenerated.
7694 */
7695 nvl = fnvlist_alloc();
7696 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
7697 kmem_free(glist, children * sizeof (uint64_t));
7698
7699 mutex_enter(&spa->spa_props_lock);
7700 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
7701 mutex_exit(&spa->spa_props_lock);
7702 spa->spa_config_splitting = nvl;
7703 vdev_config_dirty(spa->spa_root_vdev);
7704
7705 /* configure and create the new pool */
7706 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
7707 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7708 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
7709 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
7710 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
7711 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7712 spa_generate_guid(NULL));
7713 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7714 (void) nvlist_lookup_string(props,
7715 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7716
7717 /* add the new pool to the namespace */
7718 newspa = spa_add(newname, config, altroot);
7719 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7720 newspa->spa_config_txg = spa->spa_config_txg;
7721 spa_set_log_state(newspa, SPA_LOG_CLEAR);
7722
7723 /* release the spa config lock, retaining the namespace lock */
7724 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7725
7726 if (zio_injection_enabled)
7727 zio_handle_panic_injection(spa, FTAG, 1);
7728
7729 spa_activate(newspa, spa_mode_global);
7730 spa_async_suspend(newspa);
7731
7732 /*
7733 * Temporarily stop the initializing and TRIM activity. We set the
7734 * state to ACTIVE so that we know to resume initializing or TRIM
7735 * once the split has completed.
7736 */
7737 list_t vd_initialize_list;
7738 list_create(&vd_initialize_list, sizeof (vdev_t),
7739 offsetof(vdev_t, vdev_initialize_node));
7740
7741 list_t vd_trim_list;
7742 list_create(&vd_trim_list, sizeof (vdev_t),
7743 offsetof(vdev_t, vdev_trim_node));
7744
7745 for (c = 0; c < children; c++) {
7746 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7747 mutex_enter(&vml[c]->vdev_initialize_lock);
7748 vdev_initialize_stop(vml[c],
7749 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7750 mutex_exit(&vml[c]->vdev_initialize_lock);
7751
7752 mutex_enter(&vml[c]->vdev_trim_lock);
7753 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7754 mutex_exit(&vml[c]->vdev_trim_lock);
7755 }
7756 }
7757
7758 vdev_initialize_stop_wait(spa, &vd_initialize_list);
7759 vdev_trim_stop_wait(spa, &vd_trim_list);
7760
7761 list_destroy(&vd_initialize_list);
7762 list_destroy(&vd_trim_list);
7763
7764 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7765 newspa->spa_is_splitting = B_TRUE;
7766
7767 /* create the new pool from the disks of the original pool */
7768 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7769 if (error)
7770 goto out;
7771
7772 /* if that worked, generate a real config for the new pool */
7773 if (newspa->spa_root_vdev != NULL) {
7774 newspa->spa_config_splitting = fnvlist_alloc();
7775 fnvlist_add_uint64(newspa->spa_config_splitting,
7776 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
7777 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7778 B_TRUE));
7779 }
7780
7781 /* set the props */
7782 if (props != NULL) {
7783 spa_configfile_set(newspa, props, B_FALSE);
7784 error = spa_prop_set(newspa, props);
7785 if (error)
7786 goto out;
7787 }
7788
7789 /* flush everything */
7790 txg = spa_vdev_config_enter(newspa);
7791 vdev_config_dirty(newspa->spa_root_vdev);
7792 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7793
7794 if (zio_injection_enabled)
7795 zio_handle_panic_injection(spa, FTAG, 2);
7796
7797 spa_async_resume(newspa);
7798
7799 /* finally, update the original pool's config */
7800 txg = spa_vdev_config_enter(spa);
7801 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7802 error = dmu_tx_assign(tx, TXG_WAIT);
7803 if (error != 0)
7804 dmu_tx_abort(tx);
7805 for (c = 0; c < children; c++) {
7806 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7807 vdev_t *tvd = vml[c]->vdev_top;
7808
7809 /*
7810 * Need to be sure the detachable VDEV is not
7811 * on any *other* txg's DTL list to prevent it
7812 * from being accessed after it's freed.
7813 */
7814 for (int t = 0; t < TXG_SIZE; t++) {
7815 (void) txg_list_remove_this(
7816 &tvd->vdev_dtl_list, vml[c], t);
7817 }
7818
7819 vdev_split(vml[c]);
7820 if (error == 0)
7821 spa_history_log_internal(spa, "detach", tx,
7822 "vdev=%s", vml[c]->vdev_path);
7823
7824 vdev_free(vml[c]);
7825 }
7826 }
7827 spa->spa_avz_action = AVZ_ACTION_REBUILD;
7828 vdev_config_dirty(spa->spa_root_vdev);
7829 spa->spa_config_splitting = NULL;
7830 nvlist_free(nvl);
7831 if (error == 0)
7832 dmu_tx_commit(tx);
7833 (void) spa_vdev_exit(spa, NULL, txg, 0);
7834
7835 if (zio_injection_enabled)
7836 zio_handle_panic_injection(spa, FTAG, 3);
7837
7838 /* split is complete; log a history record */
7839 spa_history_log_internal(newspa, "split", NULL,
7840 "from pool %s", spa_name(spa));
7841
7842 newspa->spa_is_splitting = B_FALSE;
7843 kmem_free(vml, children * sizeof (vdev_t *));
7844
7845 /* if we're not going to mount the filesystems in userland, export */
7846 if (exp)
7847 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7848 B_FALSE, B_FALSE);
7849
7850 return (error);
7851
7852 out:
7853 spa_unload(newspa);
7854 spa_deactivate(newspa);
7855 spa_remove(newspa);
7856
7857 txg = spa_vdev_config_enter(spa);
7858
7859 /* re-online all offlined disks */
7860 for (c = 0; c < children; c++) {
7861 if (vml[c] != NULL)
7862 vml[c]->vdev_offline = B_FALSE;
7863 }
7864
7865 /* restart initializing or trimming disks as necessary */
7866 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7867 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7868 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7869
7870 vdev_reopen(spa->spa_root_vdev);
7871
7872 nvlist_free(spa->spa_config_splitting);
7873 spa->spa_config_splitting = NULL;
7874 (void) spa_vdev_exit(spa, NULL, txg, error);
7875
7876 kmem_free(vml, children * sizeof (vdev_t *));
7877 return (error);
7878 }
7879
7880 /*
7881 * Find any device that's done replacing, or a vdev marked 'unspare' that's
7882 * currently spared, so we can detach it.
7883 */
7884 static vdev_t *
7885 spa_vdev_resilver_done_hunt(vdev_t *vd)
7886 {
7887 vdev_t *newvd, *oldvd;
7888
7889 for (int c = 0; c < vd->vdev_children; c++) {
7890 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7891 if (oldvd != NULL)
7892 return (oldvd);
7893 }
7894
7895 /*
7896 * Check for a completed replacement. We always consider the first
7897 * vdev in the list to be the oldest vdev, and the last one to be
7898 * the newest (see spa_vdev_attach() for how that works). In
7899 * the case where the newest vdev is faulted, we will not automatically
7900 * remove it after a resilver completes. This is OK as it will require
7901 * user intervention to determine which disk the admin wishes to keep.
7902 */
7903 if (vd->vdev_ops == &vdev_replacing_ops) {
7904 ASSERT(vd->vdev_children > 1);
7905
7906 newvd = vd->vdev_child[vd->vdev_children - 1];
7907 oldvd = vd->vdev_child[0];
7908
7909 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7910 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7911 !vdev_dtl_required(oldvd))
7912 return (oldvd);
7913 }
7914
7915 /*
7916 * Check for a completed resilver with the 'unspare' flag set.
7917 * Also potentially update faulted state.
7918 */
7919 if (vd->vdev_ops == &vdev_spare_ops) {
7920 vdev_t *first = vd->vdev_child[0];
7921 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7922
7923 if (last->vdev_unspare) {
7924 oldvd = first;
7925 newvd = last;
7926 } else if (first->vdev_unspare) {
7927 oldvd = last;
7928 newvd = first;
7929 } else {
7930 oldvd = NULL;
7931 }
7932
7933 if (oldvd != NULL &&
7934 vdev_dtl_empty(newvd, DTL_MISSING) &&
7935 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7936 !vdev_dtl_required(oldvd))
7937 return (oldvd);
7938
7939 vdev_propagate_state(vd);
7940
7941 /*
7942 * If there are more than two spares attached to a disk,
7943 * and those spares are not required, then we want to
7944 * attempt to free them up now so that they can be used
7945 * by other pools. Once we're back down to a single
7946 * disk+spare, we stop removing them.
7947 */
7948 if (vd->vdev_children > 2) {
7949 newvd = vd->vdev_child[1];
7950
7951 if (newvd->vdev_isspare && last->vdev_isspare &&
7952 vdev_dtl_empty(last, DTL_MISSING) &&
7953 vdev_dtl_empty(last, DTL_OUTAGE) &&
7954 !vdev_dtl_required(newvd))
7955 return (newvd);
7956 }
7957 }
7958
7959 return (NULL);
7960 }
7961
7962 static void
7963 spa_vdev_resilver_done(spa_t *spa)
7964 {
7965 vdev_t *vd, *pvd, *ppvd;
7966 uint64_t guid, sguid, pguid, ppguid;
7967
7968 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7969
7970 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7971 pvd = vd->vdev_parent;
7972 ppvd = pvd->vdev_parent;
7973 guid = vd->vdev_guid;
7974 pguid = pvd->vdev_guid;
7975 ppguid = ppvd->vdev_guid;
7976 sguid = 0;
7977 /*
7978 * If we have just finished replacing a hot spared device, then
7979 * we need to detach the parent's first child (the original hot
7980 * spare) as well.
7981 */
7982 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7983 ppvd->vdev_children == 2) {
7984 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7985 sguid = ppvd->vdev_child[1]->vdev_guid;
7986 }
7987 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7988
7989 spa_config_exit(spa, SCL_ALL, FTAG);
7990 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7991 return;
7992 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7993 return;
7994 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7995 }
7996
7997 spa_config_exit(spa, SCL_ALL, FTAG);
7998
7999 /*
8000 * If a detach was not performed above replace waiters will not have
8001 * been notified. In which case we must do so now.
8002 */
8003 spa_notify_waiters(spa);
8004 }
8005
8006 /*
8007 * Update the stored path or FRU for this vdev.
8008 */
8009 static int
8010 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8011 boolean_t ispath)
8012 {
8013 vdev_t *vd;
8014 boolean_t sync = B_FALSE;
8015
8016 ASSERT(spa_writeable(spa));
8017
8018 spa_vdev_state_enter(spa, SCL_ALL);
8019
8020 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8021 return (spa_vdev_state_exit(spa, NULL, ENOENT));
8022
8023 if (!vd->vdev_ops->vdev_op_leaf)
8024 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8025
8026 if (ispath) {
8027 if (strcmp(value, vd->vdev_path) != 0) {
8028 spa_strfree(vd->vdev_path);
8029 vd->vdev_path = spa_strdup(value);
8030 sync = B_TRUE;
8031 }
8032 } else {
8033 if (vd->vdev_fru == NULL) {
8034 vd->vdev_fru = spa_strdup(value);
8035 sync = B_TRUE;
8036 } else if (strcmp(value, vd->vdev_fru) != 0) {
8037 spa_strfree(vd->vdev_fru);
8038 vd->vdev_fru = spa_strdup(value);
8039 sync = B_TRUE;
8040 }
8041 }
8042
8043 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8044 }
8045
8046 int
8047 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8048 {
8049 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8050 }
8051
8052 int
8053 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8054 {
8055 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8056 }
8057
8058 /*
8059 * ==========================================================================
8060 * SPA Scanning
8061 * ==========================================================================
8062 */
8063 int
8064 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8065 {
8066 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8067
8068 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8069 return (SET_ERROR(EBUSY));
8070
8071 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8072 }
8073
8074 int
8075 spa_scan_stop(spa_t *spa)
8076 {
8077 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8078 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8079 return (SET_ERROR(EBUSY));
8080 return (dsl_scan_cancel(spa->spa_dsl_pool));
8081 }
8082
8083 int
8084 spa_scan(spa_t *spa, pool_scan_func_t func)
8085 {
8086 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8087
8088 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8089 return (SET_ERROR(ENOTSUP));
8090
8091 if (func == POOL_SCAN_RESILVER &&
8092 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8093 return (SET_ERROR(ENOTSUP));
8094
8095 /*
8096 * If a resilver was requested, but there is no DTL on a
8097 * writeable leaf device, we have nothing to do.
8098 */
8099 if (func == POOL_SCAN_RESILVER &&
8100 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8101 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8102 return (0);
8103 }
8104
8105 return (dsl_scan(spa->spa_dsl_pool, func));
8106 }
8107
8108 /*
8109 * ==========================================================================
8110 * SPA async task processing
8111 * ==========================================================================
8112 */
8113
8114 static void
8115 spa_async_remove(spa_t *spa, vdev_t *vd)
8116 {
8117 if (vd->vdev_remove_wanted) {
8118 vd->vdev_remove_wanted = B_FALSE;
8119 vd->vdev_delayed_close = B_FALSE;
8120 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8121
8122 /*
8123 * We want to clear the stats, but we don't want to do a full
8124 * vdev_clear() as that will cause us to throw away
8125 * degraded/faulted state as well as attempt to reopen the
8126 * device, all of which is a waste.
8127 */
8128 vd->vdev_stat.vs_read_errors = 0;
8129 vd->vdev_stat.vs_write_errors = 0;
8130 vd->vdev_stat.vs_checksum_errors = 0;
8131
8132 vdev_state_dirty(vd->vdev_top);
8133
8134 /* Tell userspace that the vdev is gone. */
8135 zfs_post_remove(spa, vd);
8136 }
8137
8138 for (int c = 0; c < vd->vdev_children; c++)
8139 spa_async_remove(spa, vd->vdev_child[c]);
8140 }
8141
8142 static void
8143 spa_async_probe(spa_t *spa, vdev_t *vd)
8144 {
8145 if (vd->vdev_probe_wanted) {
8146 vd->vdev_probe_wanted = B_FALSE;
8147 vdev_reopen(vd); /* vdev_open() does the actual probe */
8148 }
8149
8150 for (int c = 0; c < vd->vdev_children; c++)
8151 spa_async_probe(spa, vd->vdev_child[c]);
8152 }
8153
8154 static void
8155 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8156 {
8157 if (!spa->spa_autoexpand)
8158 return;
8159
8160 for (int c = 0; c < vd->vdev_children; c++) {
8161 vdev_t *cvd = vd->vdev_child[c];
8162 spa_async_autoexpand(spa, cvd);
8163 }
8164
8165 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8166 return;
8167
8168 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8169 }
8170
8171 static __attribute__((noreturn)) void
8172 spa_async_thread(void *arg)
8173 {
8174 spa_t *spa = (spa_t *)arg;
8175 dsl_pool_t *dp = spa->spa_dsl_pool;
8176 int tasks;
8177
8178 ASSERT(spa->spa_sync_on);
8179
8180 mutex_enter(&spa->spa_async_lock);
8181 tasks = spa->spa_async_tasks;
8182 spa->spa_async_tasks = 0;
8183 mutex_exit(&spa->spa_async_lock);
8184
8185 /*
8186 * See if the config needs to be updated.
8187 */
8188 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8189 uint64_t old_space, new_space;
8190
8191 mutex_enter(&spa_namespace_lock);
8192 old_space = metaslab_class_get_space(spa_normal_class(spa));
8193 old_space += metaslab_class_get_space(spa_special_class(spa));
8194 old_space += metaslab_class_get_space(spa_dedup_class(spa));
8195 old_space += metaslab_class_get_space(
8196 spa_embedded_log_class(spa));
8197
8198 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8199
8200 new_space = metaslab_class_get_space(spa_normal_class(spa));
8201 new_space += metaslab_class_get_space(spa_special_class(spa));
8202 new_space += metaslab_class_get_space(spa_dedup_class(spa));
8203 new_space += metaslab_class_get_space(
8204 spa_embedded_log_class(spa));
8205 mutex_exit(&spa_namespace_lock);
8206
8207 /*
8208 * If the pool grew as a result of the config update,
8209 * then log an internal history event.
8210 */
8211 if (new_space != old_space) {
8212 spa_history_log_internal(spa, "vdev online", NULL,
8213 "pool '%s' size: %llu(+%llu)",
8214 spa_name(spa), (u_longlong_t)new_space,
8215 (u_longlong_t)(new_space - old_space));
8216 }
8217 }
8218
8219 /*
8220 * See if any devices need to be marked REMOVED.
8221 */
8222 if (tasks & SPA_ASYNC_REMOVE) {
8223 spa_vdev_state_enter(spa, SCL_NONE);
8224 spa_async_remove(spa, spa->spa_root_vdev);
8225 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8226 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8227 for (int i = 0; i < spa->spa_spares.sav_count; i++)
8228 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8229 (void) spa_vdev_state_exit(spa, NULL, 0);
8230 }
8231
8232 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8233 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8234 spa_async_autoexpand(spa, spa->spa_root_vdev);
8235 spa_config_exit(spa, SCL_CONFIG, FTAG);
8236 }
8237
8238 /*
8239 * See if any devices need to be probed.
8240 */
8241 if (tasks & SPA_ASYNC_PROBE) {
8242 spa_vdev_state_enter(spa, SCL_NONE);
8243 spa_async_probe(spa, spa->spa_root_vdev);
8244 (void) spa_vdev_state_exit(spa, NULL, 0);
8245 }
8246
8247 /*
8248 * If any devices are done replacing, detach them.
8249 */
8250 if (tasks & SPA_ASYNC_RESILVER_DONE ||
8251 tasks & SPA_ASYNC_REBUILD_DONE) {
8252 spa_vdev_resilver_done(spa);
8253 }
8254
8255 /*
8256 * Kick off a resilver.
8257 */
8258 if (tasks & SPA_ASYNC_RESILVER &&
8259 !vdev_rebuild_active(spa->spa_root_vdev) &&
8260 (!dsl_scan_resilvering(dp) ||
8261 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8262 dsl_scan_restart_resilver(dp, 0);
8263
8264 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8265 mutex_enter(&spa_namespace_lock);
8266 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8267 vdev_initialize_restart(spa->spa_root_vdev);
8268 spa_config_exit(spa, SCL_CONFIG, FTAG);
8269 mutex_exit(&spa_namespace_lock);
8270 }
8271
8272 if (tasks & SPA_ASYNC_TRIM_RESTART) {
8273 mutex_enter(&spa_namespace_lock);
8274 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8275 vdev_trim_restart(spa->spa_root_vdev);
8276 spa_config_exit(spa, SCL_CONFIG, FTAG);
8277 mutex_exit(&spa_namespace_lock);
8278 }
8279
8280 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8281 mutex_enter(&spa_namespace_lock);
8282 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8283 vdev_autotrim_restart(spa);
8284 spa_config_exit(spa, SCL_CONFIG, FTAG);
8285 mutex_exit(&spa_namespace_lock);
8286 }
8287
8288 /*
8289 * Kick off L2 cache whole device TRIM.
8290 */
8291 if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8292 mutex_enter(&spa_namespace_lock);
8293 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8294 vdev_trim_l2arc(spa);
8295 spa_config_exit(spa, SCL_CONFIG, FTAG);
8296 mutex_exit(&spa_namespace_lock);
8297 }
8298
8299 /*
8300 * Kick off L2 cache rebuilding.
8301 */
8302 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8303 mutex_enter(&spa_namespace_lock);
8304 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8305 l2arc_spa_rebuild_start(spa);
8306 spa_config_exit(spa, SCL_L2ARC, FTAG);
8307 mutex_exit(&spa_namespace_lock);
8308 }
8309
8310 /*
8311 * Let the world know that we're done.
8312 */
8313 mutex_enter(&spa->spa_async_lock);
8314 spa->spa_async_thread = NULL;
8315 cv_broadcast(&spa->spa_async_cv);
8316 mutex_exit(&spa->spa_async_lock);
8317 thread_exit();
8318 }
8319
8320 void
8321 spa_async_suspend(spa_t *spa)
8322 {
8323 mutex_enter(&spa->spa_async_lock);
8324 spa->spa_async_suspended++;
8325 while (spa->spa_async_thread != NULL)
8326 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8327 mutex_exit(&spa->spa_async_lock);
8328
8329 spa_vdev_remove_suspend(spa);
8330
8331 zthr_t *condense_thread = spa->spa_condense_zthr;
8332 if (condense_thread != NULL)
8333 zthr_cancel(condense_thread);
8334
8335 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8336 if (discard_thread != NULL)
8337 zthr_cancel(discard_thread);
8338
8339 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8340 if (ll_delete_thread != NULL)
8341 zthr_cancel(ll_delete_thread);
8342
8343 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8344 if (ll_condense_thread != NULL)
8345 zthr_cancel(ll_condense_thread);
8346 }
8347
8348 void
8349 spa_async_resume(spa_t *spa)
8350 {
8351 mutex_enter(&spa->spa_async_lock);
8352 ASSERT(spa->spa_async_suspended != 0);
8353 spa->spa_async_suspended--;
8354 mutex_exit(&spa->spa_async_lock);
8355 spa_restart_removal(spa);
8356
8357 zthr_t *condense_thread = spa->spa_condense_zthr;
8358 if (condense_thread != NULL)
8359 zthr_resume(condense_thread);
8360
8361 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8362 if (discard_thread != NULL)
8363 zthr_resume(discard_thread);
8364
8365 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8366 if (ll_delete_thread != NULL)
8367 zthr_resume(ll_delete_thread);
8368
8369 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8370 if (ll_condense_thread != NULL)
8371 zthr_resume(ll_condense_thread);
8372 }
8373
8374 static boolean_t
8375 spa_async_tasks_pending(spa_t *spa)
8376 {
8377 uint_t non_config_tasks;
8378 uint_t config_task;
8379 boolean_t config_task_suspended;
8380
8381 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8382 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8383 if (spa->spa_ccw_fail_time == 0) {
8384 config_task_suspended = B_FALSE;
8385 } else {
8386 config_task_suspended =
8387 (gethrtime() - spa->spa_ccw_fail_time) <
8388 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8389 }
8390
8391 return (non_config_tasks || (config_task && !config_task_suspended));
8392 }
8393
8394 static void
8395 spa_async_dispatch(spa_t *spa)
8396 {
8397 mutex_enter(&spa->spa_async_lock);
8398 if (spa_async_tasks_pending(spa) &&
8399 !spa->spa_async_suspended &&
8400 spa->spa_async_thread == NULL)
8401 spa->spa_async_thread = thread_create(NULL, 0,
8402 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8403 mutex_exit(&spa->spa_async_lock);
8404 }
8405
8406 void
8407 spa_async_request(spa_t *spa, int task)
8408 {
8409 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8410 mutex_enter(&spa->spa_async_lock);
8411 spa->spa_async_tasks |= task;
8412 mutex_exit(&spa->spa_async_lock);
8413 }
8414
8415 int
8416 spa_async_tasks(spa_t *spa)
8417 {
8418 return (spa->spa_async_tasks);
8419 }
8420
8421 /*
8422 * ==========================================================================
8423 * SPA syncing routines
8424 * ==========================================================================
8425 */
8426
8427
8428 static int
8429 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8430 dmu_tx_t *tx)
8431 {
8432 bpobj_t *bpo = arg;
8433 bpobj_enqueue(bpo, bp, bp_freed, tx);
8434 return (0);
8435 }
8436
8437 int
8438 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8439 {
8440 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8441 }
8442
8443 int
8444 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8445 {
8446 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8447 }
8448
8449 static int
8450 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8451 {
8452 zio_t *pio = arg;
8453
8454 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8455 pio->io_flags));
8456 return (0);
8457 }
8458
8459 static int
8460 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8461 dmu_tx_t *tx)
8462 {
8463 ASSERT(!bp_freed);
8464 return (spa_free_sync_cb(arg, bp, tx));
8465 }
8466
8467 /*
8468 * Note: this simple function is not inlined to make it easier to dtrace the
8469 * amount of time spent syncing frees.
8470 */
8471 static void
8472 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8473 {
8474 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8475 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8476 VERIFY(zio_wait(zio) == 0);
8477 }
8478
8479 /*
8480 * Note: this simple function is not inlined to make it easier to dtrace the
8481 * amount of time spent syncing deferred frees.
8482 */
8483 static void
8484 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8485 {
8486 if (spa_sync_pass(spa) != 1)
8487 return;
8488
8489 /*
8490 * Note:
8491 * If the log space map feature is active, we stop deferring
8492 * frees to the next TXG and therefore running this function
8493 * would be considered a no-op as spa_deferred_bpobj should
8494 * not have any entries.
8495 *
8496 * That said we run this function anyway (instead of returning
8497 * immediately) for the edge-case scenario where we just
8498 * activated the log space map feature in this TXG but we have
8499 * deferred frees from the previous TXG.
8500 */
8501 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8502 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8503 bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8504 VERIFY0(zio_wait(zio));
8505 }
8506
8507 static void
8508 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8509 {
8510 char *packed = NULL;
8511 size_t bufsize;
8512 size_t nvsize = 0;
8513 dmu_buf_t *db;
8514
8515 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8516
8517 /*
8518 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8519 * information. This avoids the dmu_buf_will_dirty() path and
8520 * saves us a pre-read to get data we don't actually care about.
8521 */
8522 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8523 packed = vmem_alloc(bufsize, KM_SLEEP);
8524
8525 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8526 KM_SLEEP) == 0);
8527 memset(packed + nvsize, 0, bufsize - nvsize);
8528
8529 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8530
8531 vmem_free(packed, bufsize);
8532
8533 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8534 dmu_buf_will_dirty(db, tx);
8535 *(uint64_t *)db->db_data = nvsize;
8536 dmu_buf_rele(db, FTAG);
8537 }
8538
8539 static void
8540 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8541 const char *config, const char *entry)
8542 {
8543 nvlist_t *nvroot;
8544 nvlist_t **list;
8545 int i;
8546
8547 if (!sav->sav_sync)
8548 return;
8549
8550 /*
8551 * Update the MOS nvlist describing the list of available devices.
8552 * spa_validate_aux() will have already made sure this nvlist is
8553 * valid and the vdevs are labeled appropriately.
8554 */
8555 if (sav->sav_object == 0) {
8556 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8557 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8558 sizeof (uint64_t), tx);
8559 VERIFY(zap_update(spa->spa_meta_objset,
8560 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8561 &sav->sav_object, tx) == 0);
8562 }
8563
8564 nvroot = fnvlist_alloc();
8565 if (sav->sav_count == 0) {
8566 fnvlist_add_nvlist_array(nvroot, config,
8567 (const nvlist_t * const *)NULL, 0);
8568 } else {
8569 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8570 for (i = 0; i < sav->sav_count; i++)
8571 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8572 B_FALSE, VDEV_CONFIG_L2CACHE);
8573 fnvlist_add_nvlist_array(nvroot, config,
8574 (const nvlist_t * const *)list, sav->sav_count);
8575 for (i = 0; i < sav->sav_count; i++)
8576 nvlist_free(list[i]);
8577 kmem_free(list, sav->sav_count * sizeof (void *));
8578 }
8579
8580 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8581 nvlist_free(nvroot);
8582
8583 sav->sav_sync = B_FALSE;
8584 }
8585
8586 /*
8587 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8588 * The all-vdev ZAP must be empty.
8589 */
8590 static void
8591 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8592 {
8593 spa_t *spa = vd->vdev_spa;
8594
8595 if (vd->vdev_top_zap != 0) {
8596 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8597 vd->vdev_top_zap, tx));
8598 }
8599 if (vd->vdev_leaf_zap != 0) {
8600 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8601 vd->vdev_leaf_zap, tx));
8602 }
8603 for (uint64_t i = 0; i < vd->vdev_children; i++) {
8604 spa_avz_build(vd->vdev_child[i], avz, tx);
8605 }
8606 }
8607
8608 static void
8609 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8610 {
8611 nvlist_t *config;
8612
8613 /*
8614 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8615 * its config may not be dirty but we still need to build per-vdev ZAPs.
8616 * Similarly, if the pool is being assembled (e.g. after a split), we
8617 * need to rebuild the AVZ although the config may not be dirty.
8618 */
8619 if (list_is_empty(&spa->spa_config_dirty_list) &&
8620 spa->spa_avz_action == AVZ_ACTION_NONE)
8621 return;
8622
8623 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8624
8625 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8626 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8627 spa->spa_all_vdev_zaps != 0);
8628
8629 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8630 /* Make and build the new AVZ */
8631 uint64_t new_avz = zap_create(spa->spa_meta_objset,
8632 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8633 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8634
8635 /* Diff old AVZ with new one */
8636 zap_cursor_t zc;
8637 zap_attribute_t za;
8638
8639 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8640 spa->spa_all_vdev_zaps);
8641 zap_cursor_retrieve(&zc, &za) == 0;
8642 zap_cursor_advance(&zc)) {
8643 uint64_t vdzap = za.za_first_integer;
8644 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8645 vdzap) == ENOENT) {
8646 /*
8647 * ZAP is listed in old AVZ but not in new one;
8648 * destroy it
8649 */
8650 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8651 tx));
8652 }
8653 }
8654
8655 zap_cursor_fini(&zc);
8656
8657 /* Destroy the old AVZ */
8658 VERIFY0(zap_destroy(spa->spa_meta_objset,
8659 spa->spa_all_vdev_zaps, tx));
8660
8661 /* Replace the old AVZ in the dir obj with the new one */
8662 VERIFY0(zap_update(spa->spa_meta_objset,
8663 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8664 sizeof (new_avz), 1, &new_avz, tx));
8665
8666 spa->spa_all_vdev_zaps = new_avz;
8667 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8668 zap_cursor_t zc;
8669 zap_attribute_t za;
8670
8671 /* Walk through the AVZ and destroy all listed ZAPs */
8672 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8673 spa->spa_all_vdev_zaps);
8674 zap_cursor_retrieve(&zc, &za) == 0;
8675 zap_cursor_advance(&zc)) {
8676 uint64_t zap = za.za_first_integer;
8677 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8678 }
8679
8680 zap_cursor_fini(&zc);
8681
8682 /* Destroy and unlink the AVZ itself */
8683 VERIFY0(zap_destroy(spa->spa_meta_objset,
8684 spa->spa_all_vdev_zaps, tx));
8685 VERIFY0(zap_remove(spa->spa_meta_objset,
8686 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8687 spa->spa_all_vdev_zaps = 0;
8688 }
8689
8690 if (spa->spa_all_vdev_zaps == 0) {
8691 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8692 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8693 DMU_POOL_VDEV_ZAP_MAP, tx);
8694 }
8695 spa->spa_avz_action = AVZ_ACTION_NONE;
8696
8697 /* Create ZAPs for vdevs that don't have them. */
8698 vdev_construct_zaps(spa->spa_root_vdev, tx);
8699
8700 config = spa_config_generate(spa, spa->spa_root_vdev,
8701 dmu_tx_get_txg(tx), B_FALSE);
8702
8703 /*
8704 * If we're upgrading the spa version then make sure that
8705 * the config object gets updated with the correct version.
8706 */
8707 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8708 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8709 spa->spa_uberblock.ub_version);
8710
8711 spa_config_exit(spa, SCL_STATE, FTAG);
8712
8713 nvlist_free(spa->spa_config_syncing);
8714 spa->spa_config_syncing = config;
8715
8716 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8717 }
8718
8719 static void
8720 spa_sync_version(void *arg, dmu_tx_t *tx)
8721 {
8722 uint64_t *versionp = arg;
8723 uint64_t version = *versionp;
8724 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8725
8726 /*
8727 * Setting the version is special cased when first creating the pool.
8728 */
8729 ASSERT(tx->tx_txg != TXG_INITIAL);
8730
8731 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8732 ASSERT(version >= spa_version(spa));
8733
8734 spa->spa_uberblock.ub_version = version;
8735 vdev_config_dirty(spa->spa_root_vdev);
8736 spa_history_log_internal(spa, "set", tx, "version=%lld",
8737 (longlong_t)version);
8738 }
8739
8740 /*
8741 * Set zpool properties.
8742 */
8743 static void
8744 spa_sync_props(void *arg, dmu_tx_t *tx)
8745 {
8746 nvlist_t *nvp = arg;
8747 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8748 objset_t *mos = spa->spa_meta_objset;
8749 nvpair_t *elem = NULL;
8750
8751 mutex_enter(&spa->spa_props_lock);
8752
8753 while ((elem = nvlist_next_nvpair(nvp, elem))) {
8754 uint64_t intval;
8755 char *strval, *fname;
8756 zpool_prop_t prop;
8757 const char *propname;
8758 zprop_type_t proptype;
8759 spa_feature_t fid;
8760
8761 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8762 case ZPOOL_PROP_INVAL:
8763 /*
8764 * We checked this earlier in spa_prop_validate().
8765 */
8766 ASSERT(zpool_prop_feature(nvpair_name(elem)));
8767
8768 fname = strchr(nvpair_name(elem), '@') + 1;
8769 VERIFY0(zfeature_lookup_name(fname, &fid));
8770
8771 spa_feature_enable(spa, fid, tx);
8772 spa_history_log_internal(spa, "set", tx,
8773 "%s=enabled", nvpair_name(elem));
8774 break;
8775
8776 case ZPOOL_PROP_VERSION:
8777 intval = fnvpair_value_uint64(elem);
8778 /*
8779 * The version is synced separately before other
8780 * properties and should be correct by now.
8781 */
8782 ASSERT3U(spa_version(spa), >=, intval);
8783 break;
8784
8785 case ZPOOL_PROP_ALTROOT:
8786 /*
8787 * 'altroot' is a non-persistent property. It should
8788 * have been set temporarily at creation or import time.
8789 */
8790 ASSERT(spa->spa_root != NULL);
8791 break;
8792
8793 case ZPOOL_PROP_READONLY:
8794 case ZPOOL_PROP_CACHEFILE:
8795 /*
8796 * 'readonly' and 'cachefile' are also non-persistent
8797 * properties.
8798 */
8799 break;
8800 case ZPOOL_PROP_COMMENT:
8801 strval = fnvpair_value_string(elem);
8802 if (spa->spa_comment != NULL)
8803 spa_strfree(spa->spa_comment);
8804 spa->spa_comment = spa_strdup(strval);
8805 /*
8806 * We need to dirty the configuration on all the vdevs
8807 * so that their labels get updated. We also need to
8808 * update the cache file to keep it in sync with the
8809 * MOS version. It's unnecessary to do this for pool
8810 * creation since the vdev's configuration has already
8811 * been dirtied.
8812 */
8813 if (tx->tx_txg != TXG_INITIAL) {
8814 vdev_config_dirty(spa->spa_root_vdev);
8815 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8816 }
8817 spa_history_log_internal(spa, "set", tx,
8818 "%s=%s", nvpair_name(elem), strval);
8819 break;
8820 case ZPOOL_PROP_COMPATIBILITY:
8821 strval = fnvpair_value_string(elem);
8822 if (spa->spa_compatibility != NULL)
8823 spa_strfree(spa->spa_compatibility);
8824 spa->spa_compatibility = spa_strdup(strval);
8825 /*
8826 * Dirty the configuration on vdevs as above.
8827 */
8828 if (tx->tx_txg != TXG_INITIAL) {
8829 vdev_config_dirty(spa->spa_root_vdev);
8830 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8831 }
8832
8833 spa_history_log_internal(spa, "set", tx,
8834 "%s=%s", nvpair_name(elem), strval);
8835 break;
8836
8837 default:
8838 /*
8839 * Set pool property values in the poolprops mos object.
8840 */
8841 if (spa->spa_pool_props_object == 0) {
8842 spa->spa_pool_props_object =
8843 zap_create_link(mos, DMU_OT_POOL_PROPS,
8844 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8845 tx);
8846 }
8847
8848 /* normalize the property name */
8849 propname = zpool_prop_to_name(prop);
8850 proptype = zpool_prop_get_type(prop);
8851
8852 if (nvpair_type(elem) == DATA_TYPE_STRING) {
8853 ASSERT(proptype == PROP_TYPE_STRING);
8854 strval = fnvpair_value_string(elem);
8855 VERIFY0(zap_update(mos,
8856 spa->spa_pool_props_object, propname,
8857 1, strlen(strval) + 1, strval, tx));
8858 spa_history_log_internal(spa, "set", tx,
8859 "%s=%s", nvpair_name(elem), strval);
8860 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8861 intval = fnvpair_value_uint64(elem);
8862
8863 if (proptype == PROP_TYPE_INDEX) {
8864 const char *unused;
8865 VERIFY0(zpool_prop_index_to_string(
8866 prop, intval, &unused));
8867 }
8868 VERIFY0(zap_update(mos,
8869 spa->spa_pool_props_object, propname,
8870 8, 1, &intval, tx));
8871 spa_history_log_internal(spa, "set", tx,
8872 "%s=%lld", nvpair_name(elem),
8873 (longlong_t)intval);
8874
8875 switch (prop) {
8876 case ZPOOL_PROP_DELEGATION:
8877 spa->spa_delegation = intval;
8878 break;
8879 case ZPOOL_PROP_BOOTFS:
8880 spa->spa_bootfs = intval;
8881 break;
8882 case ZPOOL_PROP_FAILUREMODE:
8883 spa->spa_failmode = intval;
8884 break;
8885 case ZPOOL_PROP_AUTOTRIM:
8886 spa->spa_autotrim = intval;
8887 spa_async_request(spa,
8888 SPA_ASYNC_AUTOTRIM_RESTART);
8889 break;
8890 case ZPOOL_PROP_AUTOEXPAND:
8891 spa->spa_autoexpand = intval;
8892 if (tx->tx_txg != TXG_INITIAL)
8893 spa_async_request(spa,
8894 SPA_ASYNC_AUTOEXPAND);
8895 break;
8896 case ZPOOL_PROP_MULTIHOST:
8897 spa->spa_multihost = intval;
8898 break;
8899 default:
8900 break;
8901 }
8902 } else {
8903 ASSERT(0); /* not allowed */
8904 }
8905 }
8906
8907 }
8908
8909 mutex_exit(&spa->spa_props_lock);
8910 }
8911
8912 /*
8913 * Perform one-time upgrade on-disk changes. spa_version() does not
8914 * reflect the new version this txg, so there must be no changes this
8915 * txg to anything that the upgrade code depends on after it executes.
8916 * Therefore this must be called after dsl_pool_sync() does the sync
8917 * tasks.
8918 */
8919 static void
8920 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8921 {
8922 if (spa_sync_pass(spa) != 1)
8923 return;
8924
8925 dsl_pool_t *dp = spa->spa_dsl_pool;
8926 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8927
8928 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8929 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8930 dsl_pool_create_origin(dp, tx);
8931
8932 /* Keeping the origin open increases spa_minref */
8933 spa->spa_minref += 3;
8934 }
8935
8936 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8937 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8938 dsl_pool_upgrade_clones(dp, tx);
8939 }
8940
8941 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8942 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8943 dsl_pool_upgrade_dir_clones(dp, tx);
8944
8945 /* Keeping the freedir open increases spa_minref */
8946 spa->spa_minref += 3;
8947 }
8948
8949 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8950 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8951 spa_feature_create_zap_objects(spa, tx);
8952 }
8953
8954 /*
8955 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8956 * when possibility to use lz4 compression for metadata was added
8957 * Old pools that have this feature enabled must be upgraded to have
8958 * this feature active
8959 */
8960 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8961 boolean_t lz4_en = spa_feature_is_enabled(spa,
8962 SPA_FEATURE_LZ4_COMPRESS);
8963 boolean_t lz4_ac = spa_feature_is_active(spa,
8964 SPA_FEATURE_LZ4_COMPRESS);
8965
8966 if (lz4_en && !lz4_ac)
8967 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8968 }
8969
8970 /*
8971 * If we haven't written the salt, do so now. Note that the
8972 * feature may not be activated yet, but that's fine since
8973 * the presence of this ZAP entry is backwards compatible.
8974 */
8975 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8976 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8977 VERIFY0(zap_add(spa->spa_meta_objset,
8978 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8979 sizeof (spa->spa_cksum_salt.zcs_bytes),
8980 spa->spa_cksum_salt.zcs_bytes, tx));
8981 }
8982
8983 rrw_exit(&dp->dp_config_rwlock, FTAG);
8984 }
8985
8986 static void
8987 vdev_indirect_state_sync_verify(vdev_t *vd)
8988 {
8989 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
8990 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
8991
8992 if (vd->vdev_ops == &vdev_indirect_ops) {
8993 ASSERT(vim != NULL);
8994 ASSERT(vib != NULL);
8995 }
8996
8997 uint64_t obsolete_sm_object = 0;
8998 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
8999 if (obsolete_sm_object != 0) {
9000 ASSERT(vd->vdev_obsolete_sm != NULL);
9001 ASSERT(vd->vdev_removing ||
9002 vd->vdev_ops == &vdev_indirect_ops);
9003 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9004 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9005 ASSERT3U(obsolete_sm_object, ==,
9006 space_map_object(vd->vdev_obsolete_sm));
9007 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9008 space_map_allocated(vd->vdev_obsolete_sm));
9009 }
9010 ASSERT(vd->vdev_obsolete_segments != NULL);
9011
9012 /*
9013 * Since frees / remaps to an indirect vdev can only
9014 * happen in syncing context, the obsolete segments
9015 * tree must be empty when we start syncing.
9016 */
9017 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9018 }
9019
9020 /*
9021 * Set the top-level vdev's max queue depth. Evaluate each top-level's
9022 * async write queue depth in case it changed. The max queue depth will
9023 * not change in the middle of syncing out this txg.
9024 */
9025 static void
9026 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9027 {
9028 ASSERT(spa_writeable(spa));
9029
9030 vdev_t *rvd = spa->spa_root_vdev;
9031 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9032 zfs_vdev_queue_depth_pct / 100;
9033 metaslab_class_t *normal = spa_normal_class(spa);
9034 metaslab_class_t *special = spa_special_class(spa);
9035 metaslab_class_t *dedup = spa_dedup_class(spa);
9036
9037 uint64_t slots_per_allocator = 0;
9038 for (int c = 0; c < rvd->vdev_children; c++) {
9039 vdev_t *tvd = rvd->vdev_child[c];
9040
9041 metaslab_group_t *mg = tvd->vdev_mg;
9042 if (mg == NULL || !metaslab_group_initialized(mg))
9043 continue;
9044
9045 metaslab_class_t *mc = mg->mg_class;
9046 if (mc != normal && mc != special && mc != dedup)
9047 continue;
9048
9049 /*
9050 * It is safe to do a lock-free check here because only async
9051 * allocations look at mg_max_alloc_queue_depth, and async
9052 * allocations all happen from spa_sync().
9053 */
9054 for (int i = 0; i < mg->mg_allocators; i++) {
9055 ASSERT0(zfs_refcount_count(
9056 &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9057 }
9058 mg->mg_max_alloc_queue_depth = max_queue_depth;
9059
9060 for (int i = 0; i < mg->mg_allocators; i++) {
9061 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9062 zfs_vdev_def_queue_depth;
9063 }
9064 slots_per_allocator += zfs_vdev_def_queue_depth;
9065 }
9066
9067 for (int i = 0; i < spa->spa_alloc_count; i++) {
9068 ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9069 mca_alloc_slots));
9070 ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9071 mca_alloc_slots));
9072 ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9073 mca_alloc_slots));
9074 normal->mc_allocator[i].mca_alloc_max_slots =
9075 slots_per_allocator;
9076 special->mc_allocator[i].mca_alloc_max_slots =
9077 slots_per_allocator;
9078 dedup->mc_allocator[i].mca_alloc_max_slots =
9079 slots_per_allocator;
9080 }
9081 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9082 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9083 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9084 }
9085
9086 static void
9087 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9088 {
9089 ASSERT(spa_writeable(spa));
9090
9091 vdev_t *rvd = spa->spa_root_vdev;
9092 for (int c = 0; c < rvd->vdev_children; c++) {
9093 vdev_t *vd = rvd->vdev_child[c];
9094 vdev_indirect_state_sync_verify(vd);
9095
9096 if (vdev_indirect_should_condense(vd)) {
9097 spa_condense_indirect_start_sync(vd, tx);
9098 break;
9099 }
9100 }
9101 }
9102
9103 static void
9104 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9105 {
9106 objset_t *mos = spa->spa_meta_objset;
9107 dsl_pool_t *dp = spa->spa_dsl_pool;
9108 uint64_t txg = tx->tx_txg;
9109 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9110
9111 do {
9112 int pass = ++spa->spa_sync_pass;
9113
9114 spa_sync_config_object(spa, tx);
9115 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9116 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9117 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9118 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9119 spa_errlog_sync(spa, txg);
9120 dsl_pool_sync(dp, txg);
9121
9122 if (pass < zfs_sync_pass_deferred_free ||
9123 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9124 /*
9125 * If the log space map feature is active we don't
9126 * care about deferred frees and the deferred bpobj
9127 * as the log space map should effectively have the
9128 * same results (i.e. appending only to one object).
9129 */
9130 spa_sync_frees(spa, free_bpl, tx);
9131 } else {
9132 /*
9133 * We can not defer frees in pass 1, because
9134 * we sync the deferred frees later in pass 1.
9135 */
9136 ASSERT3U(pass, >, 1);
9137 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9138 &spa->spa_deferred_bpobj, tx);
9139 }
9140
9141 ddt_sync(spa, txg);
9142 dsl_scan_sync(dp, tx);
9143 svr_sync(spa, tx);
9144 spa_sync_upgrades(spa, tx);
9145
9146 spa_flush_metaslabs(spa, tx);
9147
9148 vdev_t *vd = NULL;
9149 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9150 != NULL)
9151 vdev_sync(vd, txg);
9152
9153 /*
9154 * Note: We need to check if the MOS is dirty because we could
9155 * have marked the MOS dirty without updating the uberblock
9156 * (e.g. if we have sync tasks but no dirty user data). We need
9157 * to check the uberblock's rootbp because it is updated if we
9158 * have synced out dirty data (though in this case the MOS will
9159 * most likely also be dirty due to second order effects, we
9160 * don't want to rely on that here).
9161 */
9162 if (pass == 1 &&
9163 spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
9164 !dmu_objset_is_dirty(mos, txg)) {
9165 /*
9166 * Nothing changed on the first pass, therefore this
9167 * TXG is a no-op. Avoid syncing deferred frees, so
9168 * that we can keep this TXG as a no-op.
9169 */
9170 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9171 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9172 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9173 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9174 break;
9175 }
9176
9177 spa_sync_deferred_frees(spa, tx);
9178 } while (dmu_objset_is_dirty(mos, txg));
9179 }
9180
9181 /*
9182 * Rewrite the vdev configuration (which includes the uberblock) to
9183 * commit the transaction group.
9184 *
9185 * If there are no dirty vdevs, we sync the uberblock to a few random
9186 * top-level vdevs that are known to be visible in the config cache
9187 * (see spa_vdev_add() for a complete description). If there *are* dirty
9188 * vdevs, sync the uberblock to all vdevs.
9189 */
9190 static void
9191 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9192 {
9193 vdev_t *rvd = spa->spa_root_vdev;
9194 uint64_t txg = tx->tx_txg;
9195
9196 for (;;) {
9197 int error = 0;
9198
9199 /*
9200 * We hold SCL_STATE to prevent vdev open/close/etc.
9201 * while we're attempting to write the vdev labels.
9202 */
9203 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9204
9205 if (list_is_empty(&spa->spa_config_dirty_list)) {
9206 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9207 int svdcount = 0;
9208 int children = rvd->vdev_children;
9209 int c0 = random_in_range(children);
9210
9211 for (int c = 0; c < children; c++) {
9212 vdev_t *vd =
9213 rvd->vdev_child[(c0 + c) % children];
9214
9215 /* Stop when revisiting the first vdev */
9216 if (c > 0 && svd[0] == vd)
9217 break;
9218
9219 if (vd->vdev_ms_array == 0 ||
9220 vd->vdev_islog ||
9221 !vdev_is_concrete(vd))
9222 continue;
9223
9224 svd[svdcount++] = vd;
9225 if (svdcount == SPA_SYNC_MIN_VDEVS)
9226 break;
9227 }
9228 error = vdev_config_sync(svd, svdcount, txg);
9229 } else {
9230 error = vdev_config_sync(rvd->vdev_child,
9231 rvd->vdev_children, txg);
9232 }
9233
9234 if (error == 0)
9235 spa->spa_last_synced_guid = rvd->vdev_guid;
9236
9237 spa_config_exit(spa, SCL_STATE, FTAG);
9238
9239 if (error == 0)
9240 break;
9241 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9242 zio_resume_wait(spa);
9243 }
9244 }
9245
9246 /*
9247 * Sync the specified transaction group. New blocks may be dirtied as
9248 * part of the process, so we iterate until it converges.
9249 */
9250 void
9251 spa_sync(spa_t *spa, uint64_t txg)
9252 {
9253 vdev_t *vd = NULL;
9254
9255 VERIFY(spa_writeable(spa));
9256
9257 /*
9258 * Wait for i/os issued in open context that need to complete
9259 * before this txg syncs.
9260 */
9261 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9262 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9263 ZIO_FLAG_CANFAIL);
9264
9265 /*
9266 * Lock out configuration changes.
9267 */
9268 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9269
9270 spa->spa_syncing_txg = txg;
9271 spa->spa_sync_pass = 0;
9272
9273 for (int i = 0; i < spa->spa_alloc_count; i++) {
9274 mutex_enter(&spa->spa_allocs[i].spaa_lock);
9275 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9276 mutex_exit(&spa->spa_allocs[i].spaa_lock);
9277 }
9278
9279 /*
9280 * If there are any pending vdev state changes, convert them
9281 * into config changes that go out with this transaction group.
9282 */
9283 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9284 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9285 /* Avoid holding the write lock unless actually necessary */
9286 if (vd->vdev_aux == NULL) {
9287 vdev_state_clean(vd);
9288 vdev_config_dirty(vd);
9289 continue;
9290 }
9291 /*
9292 * We need the write lock here because, for aux vdevs,
9293 * calling vdev_config_dirty() modifies sav_config.
9294 * This is ugly and will become unnecessary when we
9295 * eliminate the aux vdev wart by integrating all vdevs
9296 * into the root vdev tree.
9297 */
9298 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9299 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9300 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9301 vdev_state_clean(vd);
9302 vdev_config_dirty(vd);
9303 }
9304 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9305 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9306 }
9307 spa_config_exit(spa, SCL_STATE, FTAG);
9308
9309 dsl_pool_t *dp = spa->spa_dsl_pool;
9310 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9311
9312 spa->spa_sync_starttime = gethrtime();
9313 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9314 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9315 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9316 NSEC_TO_TICK(spa->spa_deadman_synctime));
9317
9318 /*
9319 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9320 * set spa_deflate if we have no raid-z vdevs.
9321 */
9322 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9323 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9324 vdev_t *rvd = spa->spa_root_vdev;
9325
9326 int i;
9327 for (i = 0; i < rvd->vdev_children; i++) {
9328 vd = rvd->vdev_child[i];
9329 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9330 break;
9331 }
9332 if (i == rvd->vdev_children) {
9333 spa->spa_deflate = TRUE;
9334 VERIFY0(zap_add(spa->spa_meta_objset,
9335 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9336 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9337 }
9338 }
9339
9340 spa_sync_adjust_vdev_max_queue_depth(spa);
9341
9342 spa_sync_condense_indirect(spa, tx);
9343
9344 spa_sync_iterate_to_convergence(spa, tx);
9345
9346 #ifdef ZFS_DEBUG
9347 if (!list_is_empty(&spa->spa_config_dirty_list)) {
9348 /*
9349 * Make sure that the number of ZAPs for all the vdevs matches
9350 * the number of ZAPs in the per-vdev ZAP list. This only gets
9351 * called if the config is dirty; otherwise there may be
9352 * outstanding AVZ operations that weren't completed in
9353 * spa_sync_config_object.
9354 */
9355 uint64_t all_vdev_zap_entry_count;
9356 ASSERT0(zap_count(spa->spa_meta_objset,
9357 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9358 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9359 all_vdev_zap_entry_count);
9360 }
9361 #endif
9362
9363 if (spa->spa_vdev_removal != NULL) {
9364 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9365 }
9366
9367 spa_sync_rewrite_vdev_config(spa, tx);
9368 dmu_tx_commit(tx);
9369
9370 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9371 spa->spa_deadman_tqid = 0;
9372
9373 /*
9374 * Clear the dirty config list.
9375 */
9376 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9377 vdev_config_clean(vd);
9378
9379 /*
9380 * Now that the new config has synced transactionally,
9381 * let it become visible to the config cache.
9382 */
9383 if (spa->spa_config_syncing != NULL) {
9384 spa_config_set(spa, spa->spa_config_syncing);
9385 spa->spa_config_txg = txg;
9386 spa->spa_config_syncing = NULL;
9387 }
9388
9389 dsl_pool_sync_done(dp, txg);
9390
9391 for (int i = 0; i < spa->spa_alloc_count; i++) {
9392 mutex_enter(&spa->spa_allocs[i].spaa_lock);
9393 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9394 mutex_exit(&spa->spa_allocs[i].spaa_lock);
9395 }
9396
9397 /*
9398 * Update usable space statistics.
9399 */
9400 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9401 != NULL)
9402 vdev_sync_done(vd, txg);
9403
9404 metaslab_class_evict_old(spa->spa_normal_class, txg);
9405 metaslab_class_evict_old(spa->spa_log_class, txg);
9406
9407 spa_sync_close_syncing_log_sm(spa);
9408
9409 spa_update_dspace(spa);
9410
9411 /*
9412 * It had better be the case that we didn't dirty anything
9413 * since vdev_config_sync().
9414 */
9415 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9416 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9417 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9418
9419 while (zfs_pause_spa_sync)
9420 delay(1);
9421
9422 spa->spa_sync_pass = 0;
9423
9424 /*
9425 * Update the last synced uberblock here. We want to do this at
9426 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9427 * will be guaranteed that all the processing associated with
9428 * that txg has been completed.
9429 */
9430 spa->spa_ubsync = spa->spa_uberblock;
9431 spa_config_exit(spa, SCL_CONFIG, FTAG);
9432
9433 spa_handle_ignored_writes(spa);
9434
9435 /*
9436 * If any async tasks have been requested, kick them off.
9437 */
9438 spa_async_dispatch(spa);
9439 }
9440
9441 /*
9442 * Sync all pools. We don't want to hold the namespace lock across these
9443 * operations, so we take a reference on the spa_t and drop the lock during the
9444 * sync.
9445 */
9446 void
9447 spa_sync_allpools(void)
9448 {
9449 spa_t *spa = NULL;
9450 mutex_enter(&spa_namespace_lock);
9451 while ((spa = spa_next(spa)) != NULL) {
9452 if (spa_state(spa) != POOL_STATE_ACTIVE ||
9453 !spa_writeable(spa) || spa_suspended(spa))
9454 continue;
9455 spa_open_ref(spa, FTAG);
9456 mutex_exit(&spa_namespace_lock);
9457 txg_wait_synced(spa_get_dsl(spa), 0);
9458 mutex_enter(&spa_namespace_lock);
9459 spa_close(spa, FTAG);
9460 }
9461 mutex_exit(&spa_namespace_lock);
9462 }
9463
9464 /*
9465 * ==========================================================================
9466 * Miscellaneous routines
9467 * ==========================================================================
9468 */
9469
9470 /*
9471 * Remove all pools in the system.
9472 */
9473 void
9474 spa_evict_all(void)
9475 {
9476 spa_t *spa;
9477
9478 /*
9479 * Remove all cached state. All pools should be closed now,
9480 * so every spa in the AVL tree should be unreferenced.
9481 */
9482 mutex_enter(&spa_namespace_lock);
9483 while ((spa = spa_next(NULL)) != NULL) {
9484 /*
9485 * Stop async tasks. The async thread may need to detach
9486 * a device that's been replaced, which requires grabbing
9487 * spa_namespace_lock, so we must drop it here.
9488 */
9489 spa_open_ref(spa, FTAG);
9490 mutex_exit(&spa_namespace_lock);
9491 spa_async_suspend(spa);
9492 mutex_enter(&spa_namespace_lock);
9493 spa_close(spa, FTAG);
9494
9495 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9496 spa_unload(spa);
9497 spa_deactivate(spa);
9498 }
9499 spa_remove(spa);
9500 }
9501 mutex_exit(&spa_namespace_lock);
9502 }
9503
9504 vdev_t *
9505 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9506 {
9507 vdev_t *vd;
9508 int i;
9509
9510 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9511 return (vd);
9512
9513 if (aux) {
9514 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9515 vd = spa->spa_l2cache.sav_vdevs[i];
9516 if (vd->vdev_guid == guid)
9517 return (vd);
9518 }
9519
9520 for (i = 0; i < spa->spa_spares.sav_count; i++) {
9521 vd = spa->spa_spares.sav_vdevs[i];
9522 if (vd->vdev_guid == guid)
9523 return (vd);
9524 }
9525 }
9526
9527 return (NULL);
9528 }
9529
9530 void
9531 spa_upgrade(spa_t *spa, uint64_t version)
9532 {
9533 ASSERT(spa_writeable(spa));
9534
9535 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9536
9537 /*
9538 * This should only be called for a non-faulted pool, and since a
9539 * future version would result in an unopenable pool, this shouldn't be
9540 * possible.
9541 */
9542 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9543 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9544
9545 spa->spa_uberblock.ub_version = version;
9546 vdev_config_dirty(spa->spa_root_vdev);
9547
9548 spa_config_exit(spa, SCL_ALL, FTAG);
9549
9550 txg_wait_synced(spa_get_dsl(spa), 0);
9551 }
9552
9553 static boolean_t
9554 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
9555 {
9556 (void) spa;
9557 int i;
9558 uint64_t vdev_guid;
9559
9560 for (i = 0; i < sav->sav_count; i++)
9561 if (sav->sav_vdevs[i]->vdev_guid == guid)
9562 return (B_TRUE);
9563
9564 for (i = 0; i < sav->sav_npending; i++) {
9565 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9566 &vdev_guid) == 0 && vdev_guid == guid)
9567 return (B_TRUE);
9568 }
9569
9570 return (B_FALSE);
9571 }
9572
9573 boolean_t
9574 spa_has_l2cache(spa_t *spa, uint64_t guid)
9575 {
9576 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
9577 }
9578
9579 boolean_t
9580 spa_has_spare(spa_t *spa, uint64_t guid)
9581 {
9582 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
9583 }
9584
9585 /*
9586 * Check if a pool has an active shared spare device.
9587 * Note: reference count of an active spare is 2, as a spare and as a replace
9588 */
9589 static boolean_t
9590 spa_has_active_shared_spare(spa_t *spa)
9591 {
9592 int i, refcnt;
9593 uint64_t pool;
9594 spa_aux_vdev_t *sav = &spa->spa_spares;
9595
9596 for (i = 0; i < sav->sav_count; i++) {
9597 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9598 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9599 refcnt > 2)
9600 return (B_TRUE);
9601 }
9602
9603 return (B_FALSE);
9604 }
9605
9606 uint64_t
9607 spa_total_metaslabs(spa_t *spa)
9608 {
9609 vdev_t *rvd = spa->spa_root_vdev;
9610
9611 uint64_t m = 0;
9612 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9613 vdev_t *vd = rvd->vdev_child[c];
9614 if (!vdev_is_concrete(vd))
9615 continue;
9616 m += vd->vdev_ms_count;
9617 }
9618 return (m);
9619 }
9620
9621 /*
9622 * Notify any waiting threads that some activity has switched from being in-
9623 * progress to not-in-progress so that the thread can wake up and determine
9624 * whether it is finished waiting.
9625 */
9626 void
9627 spa_notify_waiters(spa_t *spa)
9628 {
9629 /*
9630 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9631 * happening between the waiting thread's check and cv_wait.
9632 */
9633 mutex_enter(&spa->spa_activities_lock);
9634 cv_broadcast(&spa->spa_activities_cv);
9635 mutex_exit(&spa->spa_activities_lock);
9636 }
9637
9638 /*
9639 * Notify any waiting threads that the pool is exporting, and then block until
9640 * they are finished using the spa_t.
9641 */
9642 void
9643 spa_wake_waiters(spa_t *spa)
9644 {
9645 mutex_enter(&spa->spa_activities_lock);
9646 spa->spa_waiters_cancel = B_TRUE;
9647 cv_broadcast(&spa->spa_activities_cv);
9648 while (spa->spa_waiters != 0)
9649 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9650 spa->spa_waiters_cancel = B_FALSE;
9651 mutex_exit(&spa->spa_activities_lock);
9652 }
9653
9654 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
9655 static boolean_t
9656 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9657 {
9658 spa_t *spa = vd->vdev_spa;
9659
9660 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9661 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9662 ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9663 activity == ZPOOL_WAIT_TRIM);
9664
9665 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9666 &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9667
9668 mutex_exit(&spa->spa_activities_lock);
9669 mutex_enter(lock);
9670 mutex_enter(&spa->spa_activities_lock);
9671
9672 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9673 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9674 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9675 mutex_exit(lock);
9676
9677 if (in_progress)
9678 return (B_TRUE);
9679
9680 for (int i = 0; i < vd->vdev_children; i++) {
9681 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9682 activity))
9683 return (B_TRUE);
9684 }
9685
9686 return (B_FALSE);
9687 }
9688
9689 /*
9690 * If use_guid is true, this checks whether the vdev specified by guid is
9691 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9692 * is being initialized/trimmed. The caller must hold the config lock and
9693 * spa_activities_lock.
9694 */
9695 static int
9696 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9697 zpool_wait_activity_t activity, boolean_t *in_progress)
9698 {
9699 mutex_exit(&spa->spa_activities_lock);
9700 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9701 mutex_enter(&spa->spa_activities_lock);
9702
9703 vdev_t *vd;
9704 if (use_guid) {
9705 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9706 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9707 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9708 return (EINVAL);
9709 }
9710 } else {
9711 vd = spa->spa_root_vdev;
9712 }
9713
9714 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9715
9716 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9717 return (0);
9718 }
9719
9720 /*
9721 * Locking for waiting threads
9722 * ---------------------------
9723 *
9724 * Waiting threads need a way to check whether a given activity is in progress,
9725 * and then, if it is, wait for it to complete. Each activity will have some
9726 * in-memory representation of the relevant on-disk state which can be used to
9727 * determine whether or not the activity is in progress. The in-memory state and
9728 * the locking used to protect it will be different for each activity, and may
9729 * not be suitable for use with a cvar (e.g., some state is protected by the
9730 * config lock). To allow waiting threads to wait without any races, another
9731 * lock, spa_activities_lock, is used.
9732 *
9733 * When the state is checked, both the activity-specific lock (if there is one)
9734 * and spa_activities_lock are held. In some cases, the activity-specific lock
9735 * is acquired explicitly (e.g. the config lock). In others, the locking is
9736 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9737 * thread releases the activity-specific lock and, if the activity is in
9738 * progress, then cv_waits using spa_activities_lock.
9739 *
9740 * The waiting thread is woken when another thread, one completing some
9741 * activity, updates the state of the activity and then calls
9742 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9743 * needs to hold its activity-specific lock when updating the state, and this
9744 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9745 *
9746 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9747 * and because it is held when the waiting thread checks the state of the
9748 * activity, it can never be the case that the completing thread both updates
9749 * the activity state and cv_broadcasts in between the waiting thread's check
9750 * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9751 *
9752 * In order to prevent deadlock, when the waiting thread does its check, in some
9753 * cases it will temporarily drop spa_activities_lock in order to acquire the
9754 * activity-specific lock. The order in which spa_activities_lock and the
9755 * activity specific lock are acquired in the waiting thread is determined by
9756 * the order in which they are acquired in the completing thread; if the
9757 * completing thread calls spa_notify_waiters with the activity-specific lock
9758 * held, then the waiting thread must also acquire the activity-specific lock
9759 * first.
9760 */
9761
9762 static int
9763 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9764 boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9765 {
9766 int error = 0;
9767
9768 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9769
9770 switch (activity) {
9771 case ZPOOL_WAIT_CKPT_DISCARD:
9772 *in_progress =
9773 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9774 zap_contains(spa_meta_objset(spa),
9775 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9776 ENOENT);
9777 break;
9778 case ZPOOL_WAIT_FREE:
9779 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9780 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9781 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9782 spa_livelist_delete_check(spa));
9783 break;
9784 case ZPOOL_WAIT_INITIALIZE:
9785 case ZPOOL_WAIT_TRIM:
9786 error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9787 activity, in_progress);
9788 break;
9789 case ZPOOL_WAIT_REPLACE:
9790 mutex_exit(&spa->spa_activities_lock);
9791 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9792 mutex_enter(&spa->spa_activities_lock);
9793
9794 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9795 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9796 break;
9797 case ZPOOL_WAIT_REMOVE:
9798 *in_progress = (spa->spa_removing_phys.sr_state ==
9799 DSS_SCANNING);
9800 break;
9801 case ZPOOL_WAIT_RESILVER:
9802 if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9803 break;
9804 zfs_fallthrough;
9805 case ZPOOL_WAIT_SCRUB:
9806 {
9807 boolean_t scanning, paused, is_scrub;
9808 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
9809
9810 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9811 scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9812 paused = dsl_scan_is_paused_scrub(scn);
9813 *in_progress = (scanning && !paused &&
9814 is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9815 break;
9816 }
9817 default:
9818 panic("unrecognized value for activity %d", activity);
9819 }
9820
9821 return (error);
9822 }
9823
9824 static int
9825 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9826 boolean_t use_tag, uint64_t tag, boolean_t *waited)
9827 {
9828 /*
9829 * The tag is used to distinguish between instances of an activity.
9830 * 'initialize' and 'trim' are the only activities that we use this for.
9831 * The other activities can only have a single instance in progress in a
9832 * pool at one time, making the tag unnecessary.
9833 *
9834 * There can be multiple devices being replaced at once, but since they
9835 * all finish once resilvering finishes, we don't bother keeping track
9836 * of them individually, we just wait for them all to finish.
9837 */
9838 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9839 activity != ZPOOL_WAIT_TRIM)
9840 return (EINVAL);
9841
9842 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
9843 return (EINVAL);
9844
9845 spa_t *spa;
9846 int error = spa_open(pool, &spa, FTAG);
9847 if (error != 0)
9848 return (error);
9849
9850 /*
9851 * Increment the spa's waiter count so that we can call spa_close and
9852 * still ensure that the spa_t doesn't get freed before this thread is
9853 * finished with it when the pool is exported. We want to call spa_close
9854 * before we start waiting because otherwise the additional ref would
9855 * prevent the pool from being exported or destroyed throughout the
9856 * potentially long wait.
9857 */
9858 mutex_enter(&spa->spa_activities_lock);
9859 spa->spa_waiters++;
9860 spa_close(spa, FTAG);
9861
9862 *waited = B_FALSE;
9863 for (;;) {
9864 boolean_t in_progress;
9865 error = spa_activity_in_progress(spa, activity, use_tag, tag,
9866 &in_progress);
9867
9868 if (error || !in_progress || spa->spa_waiters_cancel)
9869 break;
9870
9871 *waited = B_TRUE;
9872
9873 if (cv_wait_sig(&spa->spa_activities_cv,
9874 &spa->spa_activities_lock) == 0) {
9875 error = EINTR;
9876 break;
9877 }
9878 }
9879
9880 spa->spa_waiters--;
9881 cv_signal(&spa->spa_waiters_cv);
9882 mutex_exit(&spa->spa_activities_lock);
9883
9884 return (error);
9885 }
9886
9887 /*
9888 * Wait for a particular instance of the specified activity to complete, where
9889 * the instance is identified by 'tag'
9890 */
9891 int
9892 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
9893 boolean_t *waited)
9894 {
9895 return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
9896 }
9897
9898 /*
9899 * Wait for all instances of the specified activity complete
9900 */
9901 int
9902 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
9903 {
9904
9905 return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
9906 }
9907
9908 sysevent_t *
9909 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9910 {
9911 sysevent_t *ev = NULL;
9912 #ifdef _KERNEL
9913 nvlist_t *resource;
9914
9915 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
9916 if (resource) {
9917 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
9918 ev->resource = resource;
9919 }
9920 #else
9921 (void) spa, (void) vd, (void) hist_nvl, (void) name;
9922 #endif
9923 return (ev);
9924 }
9925
9926 void
9927 spa_event_post(sysevent_t *ev)
9928 {
9929 #ifdef _KERNEL
9930 if (ev) {
9931 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
9932 kmem_free(ev, sizeof (*ev));
9933 }
9934 #else
9935 (void) ev;
9936 #endif
9937 }
9938
9939 /*
9940 * Post a zevent corresponding to the given sysevent. The 'name' must be one
9941 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
9942 * filled in from the spa and (optionally) the vdev. This doesn't do anything
9943 * in the userland libzpool, as we don't want consumers to misinterpret ztest
9944 * or zdb as real changes.
9945 */
9946 void
9947 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9948 {
9949 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
9950 }
9951
9952 /* state manipulation functions */
9953 EXPORT_SYMBOL(spa_open);
9954 EXPORT_SYMBOL(spa_open_rewind);
9955 EXPORT_SYMBOL(spa_get_stats);
9956 EXPORT_SYMBOL(spa_create);
9957 EXPORT_SYMBOL(spa_import);
9958 EXPORT_SYMBOL(spa_tryimport);
9959 EXPORT_SYMBOL(spa_destroy);
9960 EXPORT_SYMBOL(spa_export);
9961 EXPORT_SYMBOL(spa_reset);
9962 EXPORT_SYMBOL(spa_async_request);
9963 EXPORT_SYMBOL(spa_async_suspend);
9964 EXPORT_SYMBOL(spa_async_resume);
9965 EXPORT_SYMBOL(spa_inject_addref);
9966 EXPORT_SYMBOL(spa_inject_delref);
9967 EXPORT_SYMBOL(spa_scan_stat_init);
9968 EXPORT_SYMBOL(spa_scan_get_stats);
9969
9970 /* device manipulation */
9971 EXPORT_SYMBOL(spa_vdev_add);
9972 EXPORT_SYMBOL(spa_vdev_attach);
9973 EXPORT_SYMBOL(spa_vdev_detach);
9974 EXPORT_SYMBOL(spa_vdev_setpath);
9975 EXPORT_SYMBOL(spa_vdev_setfru);
9976 EXPORT_SYMBOL(spa_vdev_split_mirror);
9977
9978 /* spare statech is global across all pools) */
9979 EXPORT_SYMBOL(spa_spare_add);
9980 EXPORT_SYMBOL(spa_spare_remove);
9981 EXPORT_SYMBOL(spa_spare_exists);
9982 EXPORT_SYMBOL(spa_spare_activate);
9983
9984 /* L2ARC statech is global across all pools) */
9985 EXPORT_SYMBOL(spa_l2cache_add);
9986 EXPORT_SYMBOL(spa_l2cache_remove);
9987 EXPORT_SYMBOL(spa_l2cache_exists);
9988 EXPORT_SYMBOL(spa_l2cache_activate);
9989 EXPORT_SYMBOL(spa_l2cache_drop);
9990
9991 /* scanning */
9992 EXPORT_SYMBOL(spa_scan);
9993 EXPORT_SYMBOL(spa_scan_stop);
9994
9995 /* spa syncing */
9996 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
9997 EXPORT_SYMBOL(spa_sync_allpools);
9998
9999 /* properties */
10000 EXPORT_SYMBOL(spa_prop_set);
10001 EXPORT_SYMBOL(spa_prop_get);
10002 EXPORT_SYMBOL(spa_prop_clear_bootfs);
10003
10004 /* asynchronous event notification */
10005 EXPORT_SYMBOL(spa_event_notify);
10006
10007 /* BEGIN CSTYLED */
10008 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10009 "log2 fraction of arc that can be used by inflight I/Os when "
10010 "verifying pool during import");
10011 /* END CSTYLED */
10012
10013 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
10014 "Set to traverse metadata on pool import");
10015
10016 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
10017 "Set to traverse data on pool import");
10018
10019 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
10020 "Print vdev tree to zfs_dbgmsg during pool import");
10021
10022 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
10023 "Percentage of CPUs to run an IO worker thread");
10024
10025 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
10026 "Number of threads per IO worker taskqueue");
10027
10028 /* BEGIN CSTYLED */
10029 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
10030 "Allow importing pool with up to this number of missing top-level "
10031 "vdevs (in read-only mode)");
10032 /* END CSTYLED */
10033
10034 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
10035 ZMOD_RW, "Set the livelist condense zthr to pause");
10036
10037 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
10038 ZMOD_RW, "Set the livelist condense synctask to pause");
10039
10040 /* BEGIN CSTYLED */
10041 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
10042 INT, ZMOD_RW,
10043 "Whether livelist condensing was canceled in the synctask");
10044
10045 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
10046 INT, ZMOD_RW,
10047 "Whether livelist condensing was canceled in the zthr function");
10048
10049 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
10050 ZMOD_RW,
10051 "Whether extra ALLOC blkptrs were added to a livelist entry while it "
10052 "was being condensed");
10053 /* END CSTYLED */