]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
OpenZFS 9191 - dump vdev tree to zfs_dbgmsg when spa load fails due to missing log...
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2014 Integros [integros.com]
30 * Copyright 2016 Toomas Soome <tsoome@me.com>
31 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
32 * Copyright (c) 2017 Datto Inc.
33 * Copyright 2017 Joyent, Inc.
34 */
35
36 /*
37 * SPA: Storage Pool Allocator
38 *
39 * This file contains all the routines used when modifying on-disk SPA state.
40 * This includes opening, importing, destroying, exporting a pool, and syncing a
41 * pool.
42 */
43
44 #include <sys/zfs_context.h>
45 #include <sys/fm/fs/zfs.h>
46 #include <sys/spa_impl.h>
47 #include <sys/zio.h>
48 #include <sys/zio_checksum.h>
49 #include <sys/dmu.h>
50 #include <sys/dmu_tx.h>
51 #include <sys/zap.h>
52 #include <sys/zil.h>
53 #include <sys/ddt.h>
54 #include <sys/vdev_impl.h>
55 #include <sys/vdev_removal.h>
56 #include <sys/vdev_indirect_mapping.h>
57 #include <sys/vdev_indirect_births.h>
58 #include <sys/vdev_disk.h>
59 #include <sys/metaslab.h>
60 #include <sys/metaslab_impl.h>
61 #include <sys/mmp.h>
62 #include <sys/uberblock_impl.h>
63 #include <sys/txg.h>
64 #include <sys/avl.h>
65 #include <sys/bpobj.h>
66 #include <sys/dmu_traverse.h>
67 #include <sys/dmu_objset.h>
68 #include <sys/unique.h>
69 #include <sys/dsl_pool.h>
70 #include <sys/dsl_dataset.h>
71 #include <sys/dsl_dir.h>
72 #include <sys/dsl_prop.h>
73 #include <sys/dsl_synctask.h>
74 #include <sys/fs/zfs.h>
75 #include <sys/arc.h>
76 #include <sys/callb.h>
77 #include <sys/systeminfo.h>
78 #include <sys/spa_boot.h>
79 #include <sys/zfs_ioctl.h>
80 #include <sys/dsl_scan.h>
81 #include <sys/zfeature.h>
82 #include <sys/dsl_destroy.h>
83 #include <sys/zvol.h>
84
85 #ifdef _KERNEL
86 #include <sys/fm/protocol.h>
87 #include <sys/fm/util.h>
88 #include <sys/bootprops.h>
89 #include <sys/callb.h>
90 #include <sys/cpupart.h>
91 #include <sys/pool.h>
92 #include <sys/sysdc.h>
93 #include <sys/zone.h>
94 #endif /* _KERNEL */
95
96 #include "zfs_prop.h"
97 #include "zfs_comutil.h"
98
99 /*
100 * The interval, in seconds, at which failed configuration cache file writes
101 * should be retried.
102 */
103 int zfs_ccw_retry_interval = 300;
104
105 typedef enum zti_modes {
106 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
107 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
108 ZTI_MODE_NULL, /* don't create a taskq */
109 ZTI_NMODES
110 } zti_modes_t;
111
112 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
113 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
114 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
115 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
116
117 #define ZTI_N(n) ZTI_P(n, 1)
118 #define ZTI_ONE ZTI_N(1)
119
120 typedef struct zio_taskq_info {
121 zti_modes_t zti_mode;
122 uint_t zti_value;
123 uint_t zti_count;
124 } zio_taskq_info_t;
125
126 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
127 "iss", "iss_h", "int", "int_h"
128 };
129
130 /*
131 * This table defines the taskq settings for each ZFS I/O type. When
132 * initializing a pool, we use this table to create an appropriately sized
133 * taskq. Some operations are low volume and therefore have a small, static
134 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
135 * macros. Other operations process a large amount of data; the ZTI_BATCH
136 * macro causes us to create a taskq oriented for throughput. Some operations
137 * are so high frequency and short-lived that the taskq itself can become a a
138 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
139 * additional degree of parallelism specified by the number of threads per-
140 * taskq and the number of taskqs; when dispatching an event in this case, the
141 * particular taskq is chosen at random.
142 *
143 * The different taskq priorities are to handle the different contexts (issue
144 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
145 * need to be handled with minimum delay.
146 */
147 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
148 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
149 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
150 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
151 { ZTI_BATCH, ZTI_N(5), ZTI_P(12, 8), ZTI_N(5) }, /* WRITE */
152 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
153 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
154 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
155 };
156
157 static void spa_sync_version(void *arg, dmu_tx_t *tx);
158 static void spa_sync_props(void *arg, dmu_tx_t *tx);
159 static boolean_t spa_has_active_shared_spare(spa_t *spa);
160 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport,
161 boolean_t reloading);
162 static void spa_vdev_resilver_done(spa_t *spa);
163
164 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
165 id_t zio_taskq_psrset_bind = PS_NONE;
166 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
167 uint_t zio_taskq_basedc = 80; /* base duty cycle */
168
169 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
170
171 /*
172 * Report any spa_load_verify errors found, but do not fail spa_load.
173 * This is used by zdb to analyze non-idle pools.
174 */
175 boolean_t spa_load_verify_dryrun = B_FALSE;
176
177 /*
178 * This (illegal) pool name is used when temporarily importing a spa_t in order
179 * to get the vdev stats associated with the imported devices.
180 */
181 #define TRYIMPORT_NAME "$import"
182
183 /*
184 * For debugging purposes: print out vdev tree during pool import.
185 */
186 int spa_load_print_vdev_tree = B_FALSE;
187
188 /*
189 * A non-zero value for zfs_max_missing_tvds means that we allow importing
190 * pools with missing top-level vdevs. This is strictly intended for advanced
191 * pool recovery cases since missing data is almost inevitable. Pools with
192 * missing devices can only be imported read-only for safety reasons, and their
193 * fail-mode will be automatically set to "continue".
194 *
195 * With 1 missing vdev we should be able to import the pool and mount all
196 * datasets. User data that was not modified after the missing device has been
197 * added should be recoverable. This means that snapshots created prior to the
198 * addition of that device should be completely intact.
199 *
200 * With 2 missing vdevs, some datasets may fail to mount since there are
201 * dataset statistics that are stored as regular metadata. Some data might be
202 * recoverable if those vdevs were added recently.
203 *
204 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
205 * may be missing entirely. Chances of data recovery are very low. Note that
206 * there are also risks of performing an inadvertent rewind as we might be
207 * missing all the vdevs with the latest uberblocks.
208 */
209 unsigned long zfs_max_missing_tvds = 0;
210
211 /*
212 * The parameters below are similar to zfs_max_missing_tvds but are only
213 * intended for a preliminary open of the pool with an untrusted config which
214 * might be incomplete or out-dated.
215 *
216 * We are more tolerant for pools opened from a cachefile since we could have
217 * an out-dated cachefile where a device removal was not registered.
218 * We could have set the limit arbitrarily high but in the case where devices
219 * are really missing we would want to return the proper error codes; we chose
220 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
221 * and we get a chance to retrieve the trusted config.
222 */
223 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
224 /*
225 * In the case where config was assembled by scanning device paths (/dev/dsks
226 * by default) we are less tolerant since all the existing devices should have
227 * been detected and we want spa_load to return the right error codes.
228 */
229 uint64_t zfs_max_missing_tvds_scan = 0;
230
231 /*
232 * ==========================================================================
233 * SPA properties routines
234 * ==========================================================================
235 */
236
237 /*
238 * Add a (source=src, propname=propval) list to an nvlist.
239 */
240 static void
241 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
242 uint64_t intval, zprop_source_t src)
243 {
244 const char *propname = zpool_prop_to_name(prop);
245 nvlist_t *propval;
246
247 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
248 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
249
250 if (strval != NULL)
251 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
252 else
253 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
254
255 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
256 nvlist_free(propval);
257 }
258
259 /*
260 * Get property values from the spa configuration.
261 */
262 static void
263 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
264 {
265 vdev_t *rvd = spa->spa_root_vdev;
266 dsl_pool_t *pool = spa->spa_dsl_pool;
267 uint64_t size, alloc, cap, version;
268 const zprop_source_t src = ZPROP_SRC_NONE;
269 spa_config_dirent_t *dp;
270 metaslab_class_t *mc = spa_normal_class(spa);
271
272 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
273
274 if (rvd != NULL) {
275 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
276 size = metaslab_class_get_space(spa_normal_class(spa));
277 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
278 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
279 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
280 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
281 size - alloc, src);
282
283 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
284 metaslab_class_fragmentation(mc), src);
285 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
286 metaslab_class_expandable_space(mc), src);
287 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
288 (spa_mode(spa) == FREAD), src);
289
290 cap = (size == 0) ? 0 : (alloc * 100 / size);
291 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
292
293 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
294 ddt_get_pool_dedup_ratio(spa), src);
295
296 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
297 rvd->vdev_state, src);
298
299 version = spa_version(spa);
300 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
301 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
302 version, ZPROP_SRC_DEFAULT);
303 } else {
304 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
305 version, ZPROP_SRC_LOCAL);
306 }
307 }
308
309 if (pool != NULL) {
310 /*
311 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
312 * when opening pools before this version freedir will be NULL.
313 */
314 if (pool->dp_free_dir != NULL) {
315 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
316 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
317 src);
318 } else {
319 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
320 NULL, 0, src);
321 }
322
323 if (pool->dp_leak_dir != NULL) {
324 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
325 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
326 src);
327 } else {
328 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
329 NULL, 0, src);
330 }
331 }
332
333 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
334
335 if (spa->spa_comment != NULL) {
336 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
337 0, ZPROP_SRC_LOCAL);
338 }
339
340 if (spa->spa_root != NULL)
341 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
342 0, ZPROP_SRC_LOCAL);
343
344 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
345 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
346 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
347 } else {
348 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
349 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
350 }
351
352 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
353 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
354 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
355 } else {
356 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
357 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
358 }
359
360 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
361 if (dp->scd_path == NULL) {
362 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
363 "none", 0, ZPROP_SRC_LOCAL);
364 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
365 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
366 dp->scd_path, 0, ZPROP_SRC_LOCAL);
367 }
368 }
369 }
370
371 /*
372 * Get zpool property values.
373 */
374 int
375 spa_prop_get(spa_t *spa, nvlist_t **nvp)
376 {
377 objset_t *mos = spa->spa_meta_objset;
378 zap_cursor_t zc;
379 zap_attribute_t za;
380 int err;
381
382 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
383 if (err)
384 return (err);
385
386 mutex_enter(&spa->spa_props_lock);
387
388 /*
389 * Get properties from the spa config.
390 */
391 spa_prop_get_config(spa, nvp);
392
393 /* If no pool property object, no more prop to get. */
394 if (mos == NULL || spa->spa_pool_props_object == 0) {
395 mutex_exit(&spa->spa_props_lock);
396 goto out;
397 }
398
399 /*
400 * Get properties from the MOS pool property object.
401 */
402 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
403 (err = zap_cursor_retrieve(&zc, &za)) == 0;
404 zap_cursor_advance(&zc)) {
405 uint64_t intval = 0;
406 char *strval = NULL;
407 zprop_source_t src = ZPROP_SRC_DEFAULT;
408 zpool_prop_t prop;
409
410 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
411 continue;
412
413 switch (za.za_integer_length) {
414 case 8:
415 /* integer property */
416 if (za.za_first_integer !=
417 zpool_prop_default_numeric(prop))
418 src = ZPROP_SRC_LOCAL;
419
420 if (prop == ZPOOL_PROP_BOOTFS) {
421 dsl_pool_t *dp;
422 dsl_dataset_t *ds = NULL;
423
424 dp = spa_get_dsl(spa);
425 dsl_pool_config_enter(dp, FTAG);
426 if ((err = dsl_dataset_hold_obj(dp,
427 za.za_first_integer, FTAG, &ds))) {
428 dsl_pool_config_exit(dp, FTAG);
429 break;
430 }
431
432 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
433 KM_SLEEP);
434 dsl_dataset_name(ds, strval);
435 dsl_dataset_rele(ds, FTAG);
436 dsl_pool_config_exit(dp, FTAG);
437 } else {
438 strval = NULL;
439 intval = za.za_first_integer;
440 }
441
442 spa_prop_add_list(*nvp, prop, strval, intval, src);
443
444 if (strval != NULL)
445 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
446
447 break;
448
449 case 1:
450 /* string property */
451 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
452 err = zap_lookup(mos, spa->spa_pool_props_object,
453 za.za_name, 1, za.za_num_integers, strval);
454 if (err) {
455 kmem_free(strval, za.za_num_integers);
456 break;
457 }
458 spa_prop_add_list(*nvp, prop, strval, 0, src);
459 kmem_free(strval, za.za_num_integers);
460 break;
461
462 default:
463 break;
464 }
465 }
466 zap_cursor_fini(&zc);
467 mutex_exit(&spa->spa_props_lock);
468 out:
469 if (err && err != ENOENT) {
470 nvlist_free(*nvp);
471 *nvp = NULL;
472 return (err);
473 }
474
475 return (0);
476 }
477
478 /*
479 * Validate the given pool properties nvlist and modify the list
480 * for the property values to be set.
481 */
482 static int
483 spa_prop_validate(spa_t *spa, nvlist_t *props)
484 {
485 nvpair_t *elem;
486 int error = 0, reset_bootfs = 0;
487 uint64_t objnum = 0;
488 boolean_t has_feature = B_FALSE;
489
490 elem = NULL;
491 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
492 uint64_t intval;
493 char *strval, *slash, *check, *fname;
494 const char *propname = nvpair_name(elem);
495 zpool_prop_t prop = zpool_name_to_prop(propname);
496
497 switch (prop) {
498 case ZPOOL_PROP_INVAL:
499 if (!zpool_prop_feature(propname)) {
500 error = SET_ERROR(EINVAL);
501 break;
502 }
503
504 /*
505 * Sanitize the input.
506 */
507 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
508 error = SET_ERROR(EINVAL);
509 break;
510 }
511
512 if (nvpair_value_uint64(elem, &intval) != 0) {
513 error = SET_ERROR(EINVAL);
514 break;
515 }
516
517 if (intval != 0) {
518 error = SET_ERROR(EINVAL);
519 break;
520 }
521
522 fname = strchr(propname, '@') + 1;
523 if (zfeature_lookup_name(fname, NULL) != 0) {
524 error = SET_ERROR(EINVAL);
525 break;
526 }
527
528 has_feature = B_TRUE;
529 break;
530
531 case ZPOOL_PROP_VERSION:
532 error = nvpair_value_uint64(elem, &intval);
533 if (!error &&
534 (intval < spa_version(spa) ||
535 intval > SPA_VERSION_BEFORE_FEATURES ||
536 has_feature))
537 error = SET_ERROR(EINVAL);
538 break;
539
540 case ZPOOL_PROP_DELEGATION:
541 case ZPOOL_PROP_AUTOREPLACE:
542 case ZPOOL_PROP_LISTSNAPS:
543 case ZPOOL_PROP_AUTOEXPAND:
544 error = nvpair_value_uint64(elem, &intval);
545 if (!error && intval > 1)
546 error = SET_ERROR(EINVAL);
547 break;
548
549 case ZPOOL_PROP_MULTIHOST:
550 error = nvpair_value_uint64(elem, &intval);
551 if (!error && intval > 1)
552 error = SET_ERROR(EINVAL);
553
554 if (!error && !spa_get_hostid())
555 error = SET_ERROR(ENOTSUP);
556
557 break;
558
559 case ZPOOL_PROP_BOOTFS:
560 /*
561 * If the pool version is less than SPA_VERSION_BOOTFS,
562 * or the pool is still being created (version == 0),
563 * the bootfs property cannot be set.
564 */
565 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
566 error = SET_ERROR(ENOTSUP);
567 break;
568 }
569
570 /*
571 * Make sure the vdev config is bootable
572 */
573 if (!vdev_is_bootable(spa->spa_root_vdev)) {
574 error = SET_ERROR(ENOTSUP);
575 break;
576 }
577
578 reset_bootfs = 1;
579
580 error = nvpair_value_string(elem, &strval);
581
582 if (!error) {
583 objset_t *os;
584 uint64_t propval;
585
586 if (strval == NULL || strval[0] == '\0') {
587 objnum = zpool_prop_default_numeric(
588 ZPOOL_PROP_BOOTFS);
589 break;
590 }
591
592 error = dmu_objset_hold(strval, FTAG, &os);
593 if (error)
594 break;
595
596 /*
597 * Must be ZPL, and its property settings
598 * must be supported by GRUB (compression
599 * is not gzip, and large blocks or large
600 * dnodes are not used).
601 */
602
603 if (dmu_objset_type(os) != DMU_OST_ZFS) {
604 error = SET_ERROR(ENOTSUP);
605 } else if ((error =
606 dsl_prop_get_int_ds(dmu_objset_ds(os),
607 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
608 &propval)) == 0 &&
609 !BOOTFS_COMPRESS_VALID(propval)) {
610 error = SET_ERROR(ENOTSUP);
611 } else if ((error =
612 dsl_prop_get_int_ds(dmu_objset_ds(os),
613 zfs_prop_to_name(ZFS_PROP_DNODESIZE),
614 &propval)) == 0 &&
615 propval != ZFS_DNSIZE_LEGACY) {
616 error = SET_ERROR(ENOTSUP);
617 } else {
618 objnum = dmu_objset_id(os);
619 }
620 dmu_objset_rele(os, FTAG);
621 }
622 break;
623
624 case ZPOOL_PROP_FAILUREMODE:
625 error = nvpair_value_uint64(elem, &intval);
626 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
627 error = SET_ERROR(EINVAL);
628
629 /*
630 * This is a special case which only occurs when
631 * the pool has completely failed. This allows
632 * the user to change the in-core failmode property
633 * without syncing it out to disk (I/Os might
634 * currently be blocked). We do this by returning
635 * EIO to the caller (spa_prop_set) to trick it
636 * into thinking we encountered a property validation
637 * error.
638 */
639 if (!error && spa_suspended(spa)) {
640 spa->spa_failmode = intval;
641 error = SET_ERROR(EIO);
642 }
643 break;
644
645 case ZPOOL_PROP_CACHEFILE:
646 if ((error = nvpair_value_string(elem, &strval)) != 0)
647 break;
648
649 if (strval[0] == '\0')
650 break;
651
652 if (strcmp(strval, "none") == 0)
653 break;
654
655 if (strval[0] != '/') {
656 error = SET_ERROR(EINVAL);
657 break;
658 }
659
660 slash = strrchr(strval, '/');
661 ASSERT(slash != NULL);
662
663 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
664 strcmp(slash, "/..") == 0)
665 error = SET_ERROR(EINVAL);
666 break;
667
668 case ZPOOL_PROP_COMMENT:
669 if ((error = nvpair_value_string(elem, &strval)) != 0)
670 break;
671 for (check = strval; *check != '\0'; check++) {
672 if (!isprint(*check)) {
673 error = SET_ERROR(EINVAL);
674 break;
675 }
676 }
677 if (strlen(strval) > ZPROP_MAX_COMMENT)
678 error = SET_ERROR(E2BIG);
679 break;
680
681 case ZPOOL_PROP_DEDUPDITTO:
682 if (spa_version(spa) < SPA_VERSION_DEDUP)
683 error = SET_ERROR(ENOTSUP);
684 else
685 error = nvpair_value_uint64(elem, &intval);
686 if (error == 0 &&
687 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
688 error = SET_ERROR(EINVAL);
689 break;
690
691 default:
692 break;
693 }
694
695 if (error)
696 break;
697 }
698
699 if (!error && reset_bootfs) {
700 error = nvlist_remove(props,
701 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
702
703 if (!error) {
704 error = nvlist_add_uint64(props,
705 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
706 }
707 }
708
709 return (error);
710 }
711
712 void
713 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
714 {
715 char *cachefile;
716 spa_config_dirent_t *dp;
717
718 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
719 &cachefile) != 0)
720 return;
721
722 dp = kmem_alloc(sizeof (spa_config_dirent_t),
723 KM_SLEEP);
724
725 if (cachefile[0] == '\0')
726 dp->scd_path = spa_strdup(spa_config_path);
727 else if (strcmp(cachefile, "none") == 0)
728 dp->scd_path = NULL;
729 else
730 dp->scd_path = spa_strdup(cachefile);
731
732 list_insert_head(&spa->spa_config_list, dp);
733 if (need_sync)
734 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
735 }
736
737 int
738 spa_prop_set(spa_t *spa, nvlist_t *nvp)
739 {
740 int error;
741 nvpair_t *elem = NULL;
742 boolean_t need_sync = B_FALSE;
743
744 if ((error = spa_prop_validate(spa, nvp)) != 0)
745 return (error);
746
747 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
748 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
749
750 if (prop == ZPOOL_PROP_CACHEFILE ||
751 prop == ZPOOL_PROP_ALTROOT ||
752 prop == ZPOOL_PROP_READONLY)
753 continue;
754
755 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
756 uint64_t ver;
757
758 if (prop == ZPOOL_PROP_VERSION) {
759 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
760 } else {
761 ASSERT(zpool_prop_feature(nvpair_name(elem)));
762 ver = SPA_VERSION_FEATURES;
763 need_sync = B_TRUE;
764 }
765
766 /* Save time if the version is already set. */
767 if (ver == spa_version(spa))
768 continue;
769
770 /*
771 * In addition to the pool directory object, we might
772 * create the pool properties object, the features for
773 * read object, the features for write object, or the
774 * feature descriptions object.
775 */
776 error = dsl_sync_task(spa->spa_name, NULL,
777 spa_sync_version, &ver,
778 6, ZFS_SPACE_CHECK_RESERVED);
779 if (error)
780 return (error);
781 continue;
782 }
783
784 need_sync = B_TRUE;
785 break;
786 }
787
788 if (need_sync) {
789 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
790 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
791 }
792
793 return (0);
794 }
795
796 /*
797 * If the bootfs property value is dsobj, clear it.
798 */
799 void
800 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
801 {
802 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
803 VERIFY(zap_remove(spa->spa_meta_objset,
804 spa->spa_pool_props_object,
805 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
806 spa->spa_bootfs = 0;
807 }
808 }
809
810 /*ARGSUSED*/
811 static int
812 spa_change_guid_check(void *arg, dmu_tx_t *tx)
813 {
814 ASSERTV(uint64_t *newguid = arg);
815 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
816 vdev_t *rvd = spa->spa_root_vdev;
817 uint64_t vdev_state;
818
819 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
820 vdev_state = rvd->vdev_state;
821 spa_config_exit(spa, SCL_STATE, FTAG);
822
823 if (vdev_state != VDEV_STATE_HEALTHY)
824 return (SET_ERROR(ENXIO));
825
826 ASSERT3U(spa_guid(spa), !=, *newguid);
827
828 return (0);
829 }
830
831 static void
832 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
833 {
834 uint64_t *newguid = arg;
835 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
836 uint64_t oldguid;
837 vdev_t *rvd = spa->spa_root_vdev;
838
839 oldguid = spa_guid(spa);
840
841 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
842 rvd->vdev_guid = *newguid;
843 rvd->vdev_guid_sum += (*newguid - oldguid);
844 vdev_config_dirty(rvd);
845 spa_config_exit(spa, SCL_STATE, FTAG);
846
847 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
848 oldguid, *newguid);
849 }
850
851 /*
852 * Change the GUID for the pool. This is done so that we can later
853 * re-import a pool built from a clone of our own vdevs. We will modify
854 * the root vdev's guid, our own pool guid, and then mark all of our
855 * vdevs dirty. Note that we must make sure that all our vdevs are
856 * online when we do this, or else any vdevs that weren't present
857 * would be orphaned from our pool. We are also going to issue a
858 * sysevent to update any watchers.
859 */
860 int
861 spa_change_guid(spa_t *spa)
862 {
863 int error;
864 uint64_t guid;
865
866 mutex_enter(&spa->spa_vdev_top_lock);
867 mutex_enter(&spa_namespace_lock);
868 guid = spa_generate_guid(NULL);
869
870 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
871 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
872
873 if (error == 0) {
874 spa_write_cachefile(spa, B_FALSE, B_TRUE);
875 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
876 }
877
878 mutex_exit(&spa_namespace_lock);
879 mutex_exit(&spa->spa_vdev_top_lock);
880
881 return (error);
882 }
883
884 /*
885 * ==========================================================================
886 * SPA state manipulation (open/create/destroy/import/export)
887 * ==========================================================================
888 */
889
890 static int
891 spa_error_entry_compare(const void *a, const void *b)
892 {
893 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
894 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
895 int ret;
896
897 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
898 sizeof (zbookmark_phys_t));
899
900 return (AVL_ISIGN(ret));
901 }
902
903 /*
904 * Utility function which retrieves copies of the current logs and
905 * re-initializes them in the process.
906 */
907 void
908 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
909 {
910 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
911
912 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
913 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
914
915 avl_create(&spa->spa_errlist_scrub,
916 spa_error_entry_compare, sizeof (spa_error_entry_t),
917 offsetof(spa_error_entry_t, se_avl));
918 avl_create(&spa->spa_errlist_last,
919 spa_error_entry_compare, sizeof (spa_error_entry_t),
920 offsetof(spa_error_entry_t, se_avl));
921 }
922
923 static void
924 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
925 {
926 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
927 enum zti_modes mode = ztip->zti_mode;
928 uint_t value = ztip->zti_value;
929 uint_t count = ztip->zti_count;
930 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
931 char name[32];
932 uint_t flags = 0;
933 boolean_t batch = B_FALSE;
934
935 if (mode == ZTI_MODE_NULL) {
936 tqs->stqs_count = 0;
937 tqs->stqs_taskq = NULL;
938 return;
939 }
940
941 ASSERT3U(count, >, 0);
942
943 tqs->stqs_count = count;
944 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
945
946 switch (mode) {
947 case ZTI_MODE_FIXED:
948 ASSERT3U(value, >=, 1);
949 value = MAX(value, 1);
950 flags |= TASKQ_DYNAMIC;
951 break;
952
953 case ZTI_MODE_BATCH:
954 batch = B_TRUE;
955 flags |= TASKQ_THREADS_CPU_PCT;
956 value = MIN(zio_taskq_batch_pct, 100);
957 break;
958
959 default:
960 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
961 "spa_activate()",
962 zio_type_name[t], zio_taskq_types[q], mode, value);
963 break;
964 }
965
966 for (uint_t i = 0; i < count; i++) {
967 taskq_t *tq;
968
969 if (count > 1) {
970 (void) snprintf(name, sizeof (name), "%s_%s_%u",
971 zio_type_name[t], zio_taskq_types[q], i);
972 } else {
973 (void) snprintf(name, sizeof (name), "%s_%s",
974 zio_type_name[t], zio_taskq_types[q]);
975 }
976
977 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
978 if (batch)
979 flags |= TASKQ_DC_BATCH;
980
981 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
982 spa->spa_proc, zio_taskq_basedc, flags);
983 } else {
984 pri_t pri = maxclsyspri;
985 /*
986 * The write issue taskq can be extremely CPU
987 * intensive. Run it at slightly less important
988 * priority than the other taskqs. Under Linux this
989 * means incrementing the priority value on platforms
990 * like illumos it should be decremented.
991 */
992 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
993 pri++;
994
995 tq = taskq_create_proc(name, value, pri, 50,
996 INT_MAX, spa->spa_proc, flags);
997 }
998
999 tqs->stqs_taskq[i] = tq;
1000 }
1001 }
1002
1003 static void
1004 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1005 {
1006 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1007
1008 if (tqs->stqs_taskq == NULL) {
1009 ASSERT3U(tqs->stqs_count, ==, 0);
1010 return;
1011 }
1012
1013 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1014 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1015 taskq_destroy(tqs->stqs_taskq[i]);
1016 }
1017
1018 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1019 tqs->stqs_taskq = NULL;
1020 }
1021
1022 /*
1023 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1024 * Note that a type may have multiple discrete taskqs to avoid lock contention
1025 * on the taskq itself. In that case we choose which taskq at random by using
1026 * the low bits of gethrtime().
1027 */
1028 void
1029 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1030 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1031 {
1032 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1033 taskq_t *tq;
1034
1035 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1036 ASSERT3U(tqs->stqs_count, !=, 0);
1037
1038 if (tqs->stqs_count == 1) {
1039 tq = tqs->stqs_taskq[0];
1040 } else {
1041 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1042 }
1043
1044 taskq_dispatch_ent(tq, func, arg, flags, ent);
1045 }
1046
1047 /*
1048 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1049 */
1050 void
1051 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1052 task_func_t *func, void *arg, uint_t flags)
1053 {
1054 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1055 taskq_t *tq;
1056 taskqid_t id;
1057
1058 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1059 ASSERT3U(tqs->stqs_count, !=, 0);
1060
1061 if (tqs->stqs_count == 1) {
1062 tq = tqs->stqs_taskq[0];
1063 } else {
1064 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1065 }
1066
1067 id = taskq_dispatch(tq, func, arg, flags);
1068 if (id)
1069 taskq_wait_id(tq, id);
1070 }
1071
1072 static void
1073 spa_create_zio_taskqs(spa_t *spa)
1074 {
1075 for (int t = 0; t < ZIO_TYPES; t++) {
1076 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1077 spa_taskqs_init(spa, t, q);
1078 }
1079 }
1080 }
1081
1082 /*
1083 * Disabled until spa_thread() can be adapted for Linux.
1084 */
1085 #undef HAVE_SPA_THREAD
1086
1087 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1088 static void
1089 spa_thread(void *arg)
1090 {
1091 callb_cpr_t cprinfo;
1092
1093 spa_t *spa = arg;
1094 user_t *pu = PTOU(curproc);
1095
1096 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1097 spa->spa_name);
1098
1099 ASSERT(curproc != &p0);
1100 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1101 "zpool-%s", spa->spa_name);
1102 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1103
1104 /* bind this thread to the requested psrset */
1105 if (zio_taskq_psrset_bind != PS_NONE) {
1106 pool_lock();
1107 mutex_enter(&cpu_lock);
1108 mutex_enter(&pidlock);
1109 mutex_enter(&curproc->p_lock);
1110
1111 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1112 0, NULL, NULL) == 0) {
1113 curthread->t_bind_pset = zio_taskq_psrset_bind;
1114 } else {
1115 cmn_err(CE_WARN,
1116 "Couldn't bind process for zfs pool \"%s\" to "
1117 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1118 }
1119
1120 mutex_exit(&curproc->p_lock);
1121 mutex_exit(&pidlock);
1122 mutex_exit(&cpu_lock);
1123 pool_unlock();
1124 }
1125
1126 if (zio_taskq_sysdc) {
1127 sysdc_thread_enter(curthread, 100, 0);
1128 }
1129
1130 spa->spa_proc = curproc;
1131 spa->spa_did = curthread->t_did;
1132
1133 spa_create_zio_taskqs(spa);
1134
1135 mutex_enter(&spa->spa_proc_lock);
1136 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1137
1138 spa->spa_proc_state = SPA_PROC_ACTIVE;
1139 cv_broadcast(&spa->spa_proc_cv);
1140
1141 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1142 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1143 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1144 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1145
1146 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1147 spa->spa_proc_state = SPA_PROC_GONE;
1148 spa->spa_proc = &p0;
1149 cv_broadcast(&spa->spa_proc_cv);
1150 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1151
1152 mutex_enter(&curproc->p_lock);
1153 lwp_exit();
1154 }
1155 #endif
1156
1157 /*
1158 * Activate an uninitialized pool.
1159 */
1160 static void
1161 spa_activate(spa_t *spa, int mode)
1162 {
1163 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1164
1165 spa->spa_state = POOL_STATE_ACTIVE;
1166 spa->spa_mode = mode;
1167
1168 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1169 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1170
1171 /* Try to create a covering process */
1172 mutex_enter(&spa->spa_proc_lock);
1173 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1174 ASSERT(spa->spa_proc == &p0);
1175 spa->spa_did = 0;
1176
1177 #ifdef HAVE_SPA_THREAD
1178 /* Only create a process if we're going to be around a while. */
1179 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1180 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1181 NULL, 0) == 0) {
1182 spa->spa_proc_state = SPA_PROC_CREATED;
1183 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1184 cv_wait(&spa->spa_proc_cv,
1185 &spa->spa_proc_lock);
1186 }
1187 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1188 ASSERT(spa->spa_proc != &p0);
1189 ASSERT(spa->spa_did != 0);
1190 } else {
1191 #ifdef _KERNEL
1192 cmn_err(CE_WARN,
1193 "Couldn't create process for zfs pool \"%s\"\n",
1194 spa->spa_name);
1195 #endif
1196 }
1197 }
1198 #endif /* HAVE_SPA_THREAD */
1199 mutex_exit(&spa->spa_proc_lock);
1200
1201 /* If we didn't create a process, we need to create our taskqs. */
1202 if (spa->spa_proc == &p0) {
1203 spa_create_zio_taskqs(spa);
1204 }
1205
1206 for (size_t i = 0; i < TXG_SIZE; i++)
1207 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 0);
1208
1209 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1210 offsetof(vdev_t, vdev_config_dirty_node));
1211 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1212 offsetof(objset_t, os_evicting_node));
1213 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1214 offsetof(vdev_t, vdev_state_dirty_node));
1215
1216 txg_list_create(&spa->spa_vdev_txg_list, spa,
1217 offsetof(struct vdev, vdev_txg_node));
1218
1219 avl_create(&spa->spa_errlist_scrub,
1220 spa_error_entry_compare, sizeof (spa_error_entry_t),
1221 offsetof(spa_error_entry_t, se_avl));
1222 avl_create(&spa->spa_errlist_last,
1223 spa_error_entry_compare, sizeof (spa_error_entry_t),
1224 offsetof(spa_error_entry_t, se_avl));
1225
1226 spa_keystore_init(&spa->spa_keystore);
1227
1228 /*
1229 * This taskq is used to perform zvol-minor-related tasks
1230 * asynchronously. This has several advantages, including easy
1231 * resolution of various deadlocks (zfsonlinux bug #3681).
1232 *
1233 * The taskq must be single threaded to ensure tasks are always
1234 * processed in the order in which they were dispatched.
1235 *
1236 * A taskq per pool allows one to keep the pools independent.
1237 * This way if one pool is suspended, it will not impact another.
1238 *
1239 * The preferred location to dispatch a zvol minor task is a sync
1240 * task. In this context, there is easy access to the spa_t and minimal
1241 * error handling is required because the sync task must succeed.
1242 */
1243 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1244 1, INT_MAX, 0);
1245
1246 /*
1247 * Taskq dedicated to prefetcher threads: this is used to prevent the
1248 * pool traverse code from monopolizing the global (and limited)
1249 * system_taskq by inappropriately scheduling long running tasks on it.
1250 */
1251 spa->spa_prefetch_taskq = taskq_create("z_prefetch", boot_ncpus,
1252 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1253
1254 /*
1255 * The taskq to upgrade datasets in this pool. Currently used by
1256 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1257 */
1258 spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus,
1259 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1260 }
1261
1262 /*
1263 * Opposite of spa_activate().
1264 */
1265 static void
1266 spa_deactivate(spa_t *spa)
1267 {
1268 ASSERT(spa->spa_sync_on == B_FALSE);
1269 ASSERT(spa->spa_dsl_pool == NULL);
1270 ASSERT(spa->spa_root_vdev == NULL);
1271 ASSERT(spa->spa_async_zio_root == NULL);
1272 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1273
1274 spa_evicting_os_wait(spa);
1275
1276 if (spa->spa_zvol_taskq) {
1277 taskq_destroy(spa->spa_zvol_taskq);
1278 spa->spa_zvol_taskq = NULL;
1279 }
1280
1281 if (spa->spa_prefetch_taskq) {
1282 taskq_destroy(spa->spa_prefetch_taskq);
1283 spa->spa_prefetch_taskq = NULL;
1284 }
1285
1286 if (spa->spa_upgrade_taskq) {
1287 taskq_destroy(spa->spa_upgrade_taskq);
1288 spa->spa_upgrade_taskq = NULL;
1289 }
1290
1291 txg_list_destroy(&spa->spa_vdev_txg_list);
1292
1293 list_destroy(&spa->spa_config_dirty_list);
1294 list_destroy(&spa->spa_evicting_os_list);
1295 list_destroy(&spa->spa_state_dirty_list);
1296
1297 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1298
1299 for (int t = 0; t < ZIO_TYPES; t++) {
1300 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1301 spa_taskqs_fini(spa, t, q);
1302 }
1303 }
1304
1305 for (size_t i = 0; i < TXG_SIZE; i++) {
1306 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1307 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1308 spa->spa_txg_zio[i] = NULL;
1309 }
1310
1311 metaslab_class_destroy(spa->spa_normal_class);
1312 spa->spa_normal_class = NULL;
1313
1314 metaslab_class_destroy(spa->spa_log_class);
1315 spa->spa_log_class = NULL;
1316
1317 /*
1318 * If this was part of an import or the open otherwise failed, we may
1319 * still have errors left in the queues. Empty them just in case.
1320 */
1321 spa_errlog_drain(spa);
1322 avl_destroy(&spa->spa_errlist_scrub);
1323 avl_destroy(&spa->spa_errlist_last);
1324
1325 spa_keystore_fini(&spa->spa_keystore);
1326
1327 spa->spa_state = POOL_STATE_UNINITIALIZED;
1328
1329 mutex_enter(&spa->spa_proc_lock);
1330 if (spa->spa_proc_state != SPA_PROC_NONE) {
1331 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1332 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1333 cv_broadcast(&spa->spa_proc_cv);
1334 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1335 ASSERT(spa->spa_proc != &p0);
1336 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1337 }
1338 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1339 spa->spa_proc_state = SPA_PROC_NONE;
1340 }
1341 ASSERT(spa->spa_proc == &p0);
1342 mutex_exit(&spa->spa_proc_lock);
1343
1344 /*
1345 * We want to make sure spa_thread() has actually exited the ZFS
1346 * module, so that the module can't be unloaded out from underneath
1347 * it.
1348 */
1349 if (spa->spa_did != 0) {
1350 thread_join(spa->spa_did);
1351 spa->spa_did = 0;
1352 }
1353 }
1354
1355 /*
1356 * Verify a pool configuration, and construct the vdev tree appropriately. This
1357 * will create all the necessary vdevs in the appropriate layout, with each vdev
1358 * in the CLOSED state. This will prep the pool before open/creation/import.
1359 * All vdev validation is done by the vdev_alloc() routine.
1360 */
1361 static int
1362 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1363 uint_t id, int atype)
1364 {
1365 nvlist_t **child;
1366 uint_t children;
1367 int error;
1368
1369 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1370 return (error);
1371
1372 if ((*vdp)->vdev_ops->vdev_op_leaf)
1373 return (0);
1374
1375 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1376 &child, &children);
1377
1378 if (error == ENOENT)
1379 return (0);
1380
1381 if (error) {
1382 vdev_free(*vdp);
1383 *vdp = NULL;
1384 return (SET_ERROR(EINVAL));
1385 }
1386
1387 for (int c = 0; c < children; c++) {
1388 vdev_t *vd;
1389 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1390 atype)) != 0) {
1391 vdev_free(*vdp);
1392 *vdp = NULL;
1393 return (error);
1394 }
1395 }
1396
1397 ASSERT(*vdp != NULL);
1398
1399 return (0);
1400 }
1401
1402 /*
1403 * Opposite of spa_load().
1404 */
1405 static void
1406 spa_unload(spa_t *spa)
1407 {
1408 int i;
1409
1410 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1411
1412 spa_load_note(spa, "UNLOADING");
1413
1414 /*
1415 * Stop async tasks.
1416 */
1417 spa_async_suspend(spa);
1418
1419 /*
1420 * Stop syncing.
1421 */
1422 if (spa->spa_sync_on) {
1423 txg_sync_stop(spa->spa_dsl_pool);
1424 spa->spa_sync_on = B_FALSE;
1425 }
1426
1427 /*
1428 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1429 * to call it earlier, before we wait for async i/o to complete.
1430 * This ensures that there is no async metaslab prefetching, by
1431 * calling taskq_wait(mg_taskq).
1432 */
1433 if (spa->spa_root_vdev != NULL) {
1434 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1435 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1436 vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1437 spa_config_exit(spa, SCL_ALL, FTAG);
1438 }
1439
1440 if (spa->spa_mmp.mmp_thread)
1441 mmp_thread_stop(spa);
1442
1443 /*
1444 * Wait for any outstanding async I/O to complete.
1445 */
1446 if (spa->spa_async_zio_root != NULL) {
1447 for (int i = 0; i < max_ncpus; i++)
1448 (void) zio_wait(spa->spa_async_zio_root[i]);
1449 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1450 spa->spa_async_zio_root = NULL;
1451 }
1452
1453 if (spa->spa_vdev_removal != NULL) {
1454 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1455 spa->spa_vdev_removal = NULL;
1456 }
1457
1458 if (spa->spa_condense_zthr != NULL) {
1459 ASSERT(!zthr_isrunning(spa->spa_condense_zthr));
1460 zthr_destroy(spa->spa_condense_zthr);
1461 spa->spa_condense_zthr = NULL;
1462 }
1463
1464 spa_condense_fini(spa);
1465
1466 bpobj_close(&spa->spa_deferred_bpobj);
1467
1468 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1469
1470 /*
1471 * Close all vdevs.
1472 */
1473 if (spa->spa_root_vdev)
1474 vdev_free(spa->spa_root_vdev);
1475 ASSERT(spa->spa_root_vdev == NULL);
1476
1477 /*
1478 * Close the dsl pool.
1479 */
1480 if (spa->spa_dsl_pool) {
1481 dsl_pool_close(spa->spa_dsl_pool);
1482 spa->spa_dsl_pool = NULL;
1483 spa->spa_meta_objset = NULL;
1484 }
1485
1486 ddt_unload(spa);
1487
1488 /*
1489 * Drop and purge level 2 cache
1490 */
1491 spa_l2cache_drop(spa);
1492
1493 for (i = 0; i < spa->spa_spares.sav_count; i++)
1494 vdev_free(spa->spa_spares.sav_vdevs[i]);
1495 if (spa->spa_spares.sav_vdevs) {
1496 kmem_free(spa->spa_spares.sav_vdevs,
1497 spa->spa_spares.sav_count * sizeof (void *));
1498 spa->spa_spares.sav_vdevs = NULL;
1499 }
1500 if (spa->spa_spares.sav_config) {
1501 nvlist_free(spa->spa_spares.sav_config);
1502 spa->spa_spares.sav_config = NULL;
1503 }
1504 spa->spa_spares.sav_count = 0;
1505
1506 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1507 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1508 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1509 }
1510 if (spa->spa_l2cache.sav_vdevs) {
1511 kmem_free(spa->spa_l2cache.sav_vdevs,
1512 spa->spa_l2cache.sav_count * sizeof (void *));
1513 spa->spa_l2cache.sav_vdevs = NULL;
1514 }
1515 if (spa->spa_l2cache.sav_config) {
1516 nvlist_free(spa->spa_l2cache.sav_config);
1517 spa->spa_l2cache.sav_config = NULL;
1518 }
1519 spa->spa_l2cache.sav_count = 0;
1520
1521 spa->spa_async_suspended = 0;
1522
1523 spa->spa_indirect_vdevs_loaded = B_FALSE;
1524
1525 if (spa->spa_comment != NULL) {
1526 spa_strfree(spa->spa_comment);
1527 spa->spa_comment = NULL;
1528 }
1529
1530 spa_config_exit(spa, SCL_ALL, FTAG);
1531 }
1532
1533 /*
1534 * Load (or re-load) the current list of vdevs describing the active spares for
1535 * this pool. When this is called, we have some form of basic information in
1536 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1537 * then re-generate a more complete list including status information.
1538 */
1539 void
1540 spa_load_spares(spa_t *spa)
1541 {
1542 nvlist_t **spares;
1543 uint_t nspares;
1544 int i;
1545 vdev_t *vd, *tvd;
1546
1547 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1548
1549 /*
1550 * First, close and free any existing spare vdevs.
1551 */
1552 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1553 vd = spa->spa_spares.sav_vdevs[i];
1554
1555 /* Undo the call to spa_activate() below */
1556 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1557 B_FALSE)) != NULL && tvd->vdev_isspare)
1558 spa_spare_remove(tvd);
1559 vdev_close(vd);
1560 vdev_free(vd);
1561 }
1562
1563 if (spa->spa_spares.sav_vdevs)
1564 kmem_free(spa->spa_spares.sav_vdevs,
1565 spa->spa_spares.sav_count * sizeof (void *));
1566
1567 if (spa->spa_spares.sav_config == NULL)
1568 nspares = 0;
1569 else
1570 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1571 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1572
1573 spa->spa_spares.sav_count = (int)nspares;
1574 spa->spa_spares.sav_vdevs = NULL;
1575
1576 if (nspares == 0)
1577 return;
1578
1579 /*
1580 * Construct the array of vdevs, opening them to get status in the
1581 * process. For each spare, there is potentially two different vdev_t
1582 * structures associated with it: one in the list of spares (used only
1583 * for basic validation purposes) and one in the active vdev
1584 * configuration (if it's spared in). During this phase we open and
1585 * validate each vdev on the spare list. If the vdev also exists in the
1586 * active configuration, then we also mark this vdev as an active spare.
1587 */
1588 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1589 KM_SLEEP);
1590 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1591 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1592 VDEV_ALLOC_SPARE) == 0);
1593 ASSERT(vd != NULL);
1594
1595 spa->spa_spares.sav_vdevs[i] = vd;
1596
1597 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1598 B_FALSE)) != NULL) {
1599 if (!tvd->vdev_isspare)
1600 spa_spare_add(tvd);
1601
1602 /*
1603 * We only mark the spare active if we were successfully
1604 * able to load the vdev. Otherwise, importing a pool
1605 * with a bad active spare would result in strange
1606 * behavior, because multiple pool would think the spare
1607 * is actively in use.
1608 *
1609 * There is a vulnerability here to an equally bizarre
1610 * circumstance, where a dead active spare is later
1611 * brought back to life (onlined or otherwise). Given
1612 * the rarity of this scenario, and the extra complexity
1613 * it adds, we ignore the possibility.
1614 */
1615 if (!vdev_is_dead(tvd))
1616 spa_spare_activate(tvd);
1617 }
1618
1619 vd->vdev_top = vd;
1620 vd->vdev_aux = &spa->spa_spares;
1621
1622 if (vdev_open(vd) != 0)
1623 continue;
1624
1625 if (vdev_validate_aux(vd) == 0)
1626 spa_spare_add(vd);
1627 }
1628
1629 /*
1630 * Recompute the stashed list of spares, with status information
1631 * this time.
1632 */
1633 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1634 DATA_TYPE_NVLIST_ARRAY) == 0);
1635
1636 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1637 KM_SLEEP);
1638 for (i = 0; i < spa->spa_spares.sav_count; i++)
1639 spares[i] = vdev_config_generate(spa,
1640 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1641 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1642 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1643 for (i = 0; i < spa->spa_spares.sav_count; i++)
1644 nvlist_free(spares[i]);
1645 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1646 }
1647
1648 /*
1649 * Load (or re-load) the current list of vdevs describing the active l2cache for
1650 * this pool. When this is called, we have some form of basic information in
1651 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1652 * then re-generate a more complete list including status information.
1653 * Devices which are already active have their details maintained, and are
1654 * not re-opened.
1655 */
1656 void
1657 spa_load_l2cache(spa_t *spa)
1658 {
1659 nvlist_t **l2cache = NULL;
1660 uint_t nl2cache;
1661 int i, j, oldnvdevs;
1662 uint64_t guid;
1663 vdev_t *vd, **oldvdevs, **newvdevs;
1664 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1665
1666 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1667
1668 oldvdevs = sav->sav_vdevs;
1669 oldnvdevs = sav->sav_count;
1670 sav->sav_vdevs = NULL;
1671 sav->sav_count = 0;
1672
1673 if (sav->sav_config == NULL) {
1674 nl2cache = 0;
1675 newvdevs = NULL;
1676 goto out;
1677 }
1678
1679 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1680 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1681 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1682
1683 /*
1684 * Process new nvlist of vdevs.
1685 */
1686 for (i = 0; i < nl2cache; i++) {
1687 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1688 &guid) == 0);
1689
1690 newvdevs[i] = NULL;
1691 for (j = 0; j < oldnvdevs; j++) {
1692 vd = oldvdevs[j];
1693 if (vd != NULL && guid == vd->vdev_guid) {
1694 /*
1695 * Retain previous vdev for add/remove ops.
1696 */
1697 newvdevs[i] = vd;
1698 oldvdevs[j] = NULL;
1699 break;
1700 }
1701 }
1702
1703 if (newvdevs[i] == NULL) {
1704 /*
1705 * Create new vdev
1706 */
1707 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1708 VDEV_ALLOC_L2CACHE) == 0);
1709 ASSERT(vd != NULL);
1710 newvdevs[i] = vd;
1711
1712 /*
1713 * Commit this vdev as an l2cache device,
1714 * even if it fails to open.
1715 */
1716 spa_l2cache_add(vd);
1717
1718 vd->vdev_top = vd;
1719 vd->vdev_aux = sav;
1720
1721 spa_l2cache_activate(vd);
1722
1723 if (vdev_open(vd) != 0)
1724 continue;
1725
1726 (void) vdev_validate_aux(vd);
1727
1728 if (!vdev_is_dead(vd))
1729 l2arc_add_vdev(spa, vd);
1730 }
1731 }
1732
1733 sav->sav_vdevs = newvdevs;
1734 sav->sav_count = (int)nl2cache;
1735
1736 /*
1737 * Recompute the stashed list of l2cache devices, with status
1738 * information this time.
1739 */
1740 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1741 DATA_TYPE_NVLIST_ARRAY) == 0);
1742
1743 if (sav->sav_count > 0)
1744 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
1745 KM_SLEEP);
1746 for (i = 0; i < sav->sav_count; i++)
1747 l2cache[i] = vdev_config_generate(spa,
1748 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1749 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1750 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1751
1752 out:
1753 /*
1754 * Purge vdevs that were dropped
1755 */
1756 for (i = 0; i < oldnvdevs; i++) {
1757 uint64_t pool;
1758
1759 vd = oldvdevs[i];
1760 if (vd != NULL) {
1761 ASSERT(vd->vdev_isl2cache);
1762
1763 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1764 pool != 0ULL && l2arc_vdev_present(vd))
1765 l2arc_remove_vdev(vd);
1766 vdev_clear_stats(vd);
1767 vdev_free(vd);
1768 }
1769 }
1770
1771 if (oldvdevs)
1772 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1773
1774 for (i = 0; i < sav->sav_count; i++)
1775 nvlist_free(l2cache[i]);
1776 if (sav->sav_count)
1777 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1778 }
1779
1780 static int
1781 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1782 {
1783 dmu_buf_t *db;
1784 char *packed = NULL;
1785 size_t nvsize = 0;
1786 int error;
1787 *value = NULL;
1788
1789 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1790 if (error)
1791 return (error);
1792
1793 nvsize = *(uint64_t *)db->db_data;
1794 dmu_buf_rele(db, FTAG);
1795
1796 packed = vmem_alloc(nvsize, KM_SLEEP);
1797 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1798 DMU_READ_PREFETCH);
1799 if (error == 0)
1800 error = nvlist_unpack(packed, nvsize, value, 0);
1801 vmem_free(packed, nvsize);
1802
1803 return (error);
1804 }
1805
1806 /*
1807 * Concrete top-level vdevs that are not missing and are not logs. At every
1808 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1809 */
1810 static uint64_t
1811 spa_healthy_core_tvds(spa_t *spa)
1812 {
1813 vdev_t *rvd = spa->spa_root_vdev;
1814 uint64_t tvds = 0;
1815
1816 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1817 vdev_t *vd = rvd->vdev_child[i];
1818 if (vd->vdev_islog)
1819 continue;
1820 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1821 tvds++;
1822 }
1823
1824 return (tvds);
1825 }
1826
1827 /*
1828 * Checks to see if the given vdev could not be opened, in which case we post a
1829 * sysevent to notify the autoreplace code that the device has been removed.
1830 */
1831 static void
1832 spa_check_removed(vdev_t *vd)
1833 {
1834 for (uint64_t c = 0; c < vd->vdev_children; c++)
1835 spa_check_removed(vd->vdev_child[c]);
1836
1837 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1838 vdev_is_concrete(vd)) {
1839 zfs_post_autoreplace(vd->vdev_spa, vd);
1840 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1841 }
1842 }
1843
1844 static int
1845 spa_check_for_missing_logs(spa_t *spa)
1846 {
1847 vdev_t *rvd = spa->spa_root_vdev;
1848
1849 /*
1850 * If we're doing a normal import, then build up any additional
1851 * diagnostic information about missing log devices.
1852 * We'll pass this up to the user for further processing.
1853 */
1854 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1855 nvlist_t **child, *nv;
1856 uint64_t idx = 0;
1857
1858 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
1859 KM_SLEEP);
1860 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1861
1862 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1863 vdev_t *tvd = rvd->vdev_child[c];
1864
1865 /*
1866 * We consider a device as missing only if it failed
1867 * to open (i.e. offline or faulted is not considered
1868 * as missing).
1869 */
1870 if (tvd->vdev_islog &&
1871 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1872 child[idx++] = vdev_config_generate(spa, tvd,
1873 B_FALSE, VDEV_CONFIG_MISSING);
1874 }
1875 }
1876
1877 if (idx > 0) {
1878 fnvlist_add_nvlist_array(nv,
1879 ZPOOL_CONFIG_CHILDREN, child, idx);
1880 fnvlist_add_nvlist(spa->spa_load_info,
1881 ZPOOL_CONFIG_MISSING_DEVICES, nv);
1882
1883 for (uint64_t i = 0; i < idx; i++)
1884 nvlist_free(child[i]);
1885 }
1886 nvlist_free(nv);
1887 kmem_free(child, rvd->vdev_children * sizeof (char **));
1888
1889 if (idx > 0) {
1890 spa_load_failed(spa, "some log devices are missing");
1891 vdev_dbgmsg_print_tree(rvd, 2);
1892 return (SET_ERROR(ENXIO));
1893 }
1894 } else {
1895 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1896 vdev_t *tvd = rvd->vdev_child[c];
1897
1898 if (tvd->vdev_islog &&
1899 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1900 spa_set_log_state(spa, SPA_LOG_CLEAR);
1901 spa_load_note(spa, "some log devices are "
1902 "missing, ZIL is dropped.");
1903 vdev_dbgmsg_print_tree(rvd, 2);
1904 break;
1905 }
1906 }
1907 }
1908
1909 return (0);
1910 }
1911
1912 /*
1913 * Check for missing log devices
1914 */
1915 static boolean_t
1916 spa_check_logs(spa_t *spa)
1917 {
1918 boolean_t rv = B_FALSE;
1919 dsl_pool_t *dp = spa_get_dsl(spa);
1920
1921 switch (spa->spa_log_state) {
1922 default:
1923 break;
1924 case SPA_LOG_MISSING:
1925 /* need to recheck in case slog has been restored */
1926 case SPA_LOG_UNKNOWN:
1927 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1928 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1929 if (rv)
1930 spa_set_log_state(spa, SPA_LOG_MISSING);
1931 break;
1932 }
1933 return (rv);
1934 }
1935
1936 static boolean_t
1937 spa_passivate_log(spa_t *spa)
1938 {
1939 vdev_t *rvd = spa->spa_root_vdev;
1940 boolean_t slog_found = B_FALSE;
1941
1942 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1943
1944 if (!spa_has_slogs(spa))
1945 return (B_FALSE);
1946
1947 for (int c = 0; c < rvd->vdev_children; c++) {
1948 vdev_t *tvd = rvd->vdev_child[c];
1949 metaslab_group_t *mg = tvd->vdev_mg;
1950
1951 if (tvd->vdev_islog) {
1952 metaslab_group_passivate(mg);
1953 slog_found = B_TRUE;
1954 }
1955 }
1956
1957 return (slog_found);
1958 }
1959
1960 static void
1961 spa_activate_log(spa_t *spa)
1962 {
1963 vdev_t *rvd = spa->spa_root_vdev;
1964
1965 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1966
1967 for (int c = 0; c < rvd->vdev_children; c++) {
1968 vdev_t *tvd = rvd->vdev_child[c];
1969 metaslab_group_t *mg = tvd->vdev_mg;
1970
1971 if (tvd->vdev_islog)
1972 metaslab_group_activate(mg);
1973 }
1974 }
1975
1976 int
1977 spa_reset_logs(spa_t *spa)
1978 {
1979 int error;
1980
1981 error = dmu_objset_find(spa_name(spa), zil_reset,
1982 NULL, DS_FIND_CHILDREN);
1983 if (error == 0) {
1984 /*
1985 * We successfully offlined the log device, sync out the
1986 * current txg so that the "stubby" block can be removed
1987 * by zil_sync().
1988 */
1989 txg_wait_synced(spa->spa_dsl_pool, 0);
1990 }
1991 return (error);
1992 }
1993
1994 static void
1995 spa_aux_check_removed(spa_aux_vdev_t *sav)
1996 {
1997 for (int i = 0; i < sav->sav_count; i++)
1998 spa_check_removed(sav->sav_vdevs[i]);
1999 }
2000
2001 void
2002 spa_claim_notify(zio_t *zio)
2003 {
2004 spa_t *spa = zio->io_spa;
2005
2006 if (zio->io_error)
2007 return;
2008
2009 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2010 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2011 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2012 mutex_exit(&spa->spa_props_lock);
2013 }
2014
2015 typedef struct spa_load_error {
2016 uint64_t sle_meta_count;
2017 uint64_t sle_data_count;
2018 } spa_load_error_t;
2019
2020 static void
2021 spa_load_verify_done(zio_t *zio)
2022 {
2023 blkptr_t *bp = zio->io_bp;
2024 spa_load_error_t *sle = zio->io_private;
2025 dmu_object_type_t type = BP_GET_TYPE(bp);
2026 int error = zio->io_error;
2027 spa_t *spa = zio->io_spa;
2028
2029 abd_free(zio->io_abd);
2030 if (error) {
2031 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2032 type != DMU_OT_INTENT_LOG)
2033 atomic_inc_64(&sle->sle_meta_count);
2034 else
2035 atomic_inc_64(&sle->sle_data_count);
2036 }
2037
2038 mutex_enter(&spa->spa_scrub_lock);
2039 spa->spa_load_verify_ios--;
2040 cv_broadcast(&spa->spa_scrub_io_cv);
2041 mutex_exit(&spa->spa_scrub_lock);
2042 }
2043
2044 /*
2045 * Maximum number of concurrent scrub i/os to create while verifying
2046 * a pool while importing it.
2047 */
2048 int spa_load_verify_maxinflight = 10000;
2049 int spa_load_verify_metadata = B_TRUE;
2050 int spa_load_verify_data = B_TRUE;
2051
2052 /*ARGSUSED*/
2053 static int
2054 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2055 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2056 {
2057 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2058 return (0);
2059 /*
2060 * Note: normally this routine will not be called if
2061 * spa_load_verify_metadata is not set. However, it may be useful
2062 * to manually set the flag after the traversal has begun.
2063 */
2064 if (!spa_load_verify_metadata)
2065 return (0);
2066 if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2067 return (0);
2068
2069 zio_t *rio = arg;
2070 size_t size = BP_GET_PSIZE(bp);
2071
2072 mutex_enter(&spa->spa_scrub_lock);
2073 while (spa->spa_load_verify_ios >= spa_load_verify_maxinflight)
2074 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2075 spa->spa_load_verify_ios++;
2076 mutex_exit(&spa->spa_scrub_lock);
2077
2078 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2079 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2080 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2081 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2082 return (0);
2083 }
2084
2085 /* ARGSUSED */
2086 int
2087 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2088 {
2089 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2090 return (SET_ERROR(ENAMETOOLONG));
2091
2092 return (0);
2093 }
2094
2095 static int
2096 spa_load_verify(spa_t *spa)
2097 {
2098 zio_t *rio;
2099 spa_load_error_t sle = { 0 };
2100 zpool_rewind_policy_t policy;
2101 boolean_t verify_ok = B_FALSE;
2102 int error = 0;
2103
2104 zpool_get_rewind_policy(spa->spa_config, &policy);
2105
2106 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
2107 return (0);
2108
2109 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2110 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2111 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2112 DS_FIND_CHILDREN);
2113 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2114 if (error != 0)
2115 return (error);
2116
2117 rio = zio_root(spa, NULL, &sle,
2118 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2119
2120 if (spa_load_verify_metadata) {
2121 if (spa->spa_extreme_rewind) {
2122 spa_load_note(spa, "performing a complete scan of the "
2123 "pool since extreme rewind is on. This may take "
2124 "a very long time.\n (spa_load_verify_data=%u, "
2125 "spa_load_verify_metadata=%u)",
2126 spa_load_verify_data, spa_load_verify_metadata);
2127 }
2128 error = traverse_pool(spa, spa->spa_verify_min_txg,
2129 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2130 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2131 }
2132
2133 (void) zio_wait(rio);
2134
2135 spa->spa_load_meta_errors = sle.sle_meta_count;
2136 spa->spa_load_data_errors = sle.sle_data_count;
2137
2138 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2139 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2140 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2141 (u_longlong_t)sle.sle_data_count);
2142 }
2143
2144 if (spa_load_verify_dryrun ||
2145 (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2146 sle.sle_data_count <= policy.zrp_maxdata)) {
2147 int64_t loss = 0;
2148
2149 verify_ok = B_TRUE;
2150 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2151 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2152
2153 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2154 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2155 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2156 VERIFY(nvlist_add_int64(spa->spa_load_info,
2157 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2158 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2159 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2160 } else {
2161 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2162 }
2163
2164 if (spa_load_verify_dryrun)
2165 return (0);
2166
2167 if (error) {
2168 if (error != ENXIO && error != EIO)
2169 error = SET_ERROR(EIO);
2170 return (error);
2171 }
2172
2173 return (verify_ok ? 0 : EIO);
2174 }
2175
2176 /*
2177 * Find a value in the pool props object.
2178 */
2179 static void
2180 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2181 {
2182 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2183 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2184 }
2185
2186 /*
2187 * Find a value in the pool directory object.
2188 */
2189 static int
2190 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2191 {
2192 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2193 name, sizeof (uint64_t), 1, val);
2194
2195 if (error != 0 && (error != ENOENT || log_enoent)) {
2196 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2197 "[error=%d]", name, error);
2198 }
2199
2200 return (error);
2201 }
2202
2203 static int
2204 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2205 {
2206 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2207 return (SET_ERROR(err));
2208 }
2209
2210 static void
2211 spa_spawn_aux_threads(spa_t *spa)
2212 {
2213 ASSERT(spa_writeable(spa));
2214
2215 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2216
2217 spa_start_indirect_condensing_thread(spa);
2218 }
2219
2220 /*
2221 * Fix up config after a partly-completed split. This is done with the
2222 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2223 * pool have that entry in their config, but only the splitting one contains
2224 * a list of all the guids of the vdevs that are being split off.
2225 *
2226 * This function determines what to do with that list: either rejoin
2227 * all the disks to the pool, or complete the splitting process. To attempt
2228 * the rejoin, each disk that is offlined is marked online again, and
2229 * we do a reopen() call. If the vdev label for every disk that was
2230 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2231 * then we call vdev_split() on each disk, and complete the split.
2232 *
2233 * Otherwise we leave the config alone, with all the vdevs in place in
2234 * the original pool.
2235 */
2236 static void
2237 spa_try_repair(spa_t *spa, nvlist_t *config)
2238 {
2239 uint_t extracted;
2240 uint64_t *glist;
2241 uint_t i, gcount;
2242 nvlist_t *nvl;
2243 vdev_t **vd;
2244 boolean_t attempt_reopen;
2245
2246 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2247 return;
2248
2249 /* check that the config is complete */
2250 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2251 &glist, &gcount) != 0)
2252 return;
2253
2254 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2255
2256 /* attempt to online all the vdevs & validate */
2257 attempt_reopen = B_TRUE;
2258 for (i = 0; i < gcount; i++) {
2259 if (glist[i] == 0) /* vdev is hole */
2260 continue;
2261
2262 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2263 if (vd[i] == NULL) {
2264 /*
2265 * Don't bother attempting to reopen the disks;
2266 * just do the split.
2267 */
2268 attempt_reopen = B_FALSE;
2269 } else {
2270 /* attempt to re-online it */
2271 vd[i]->vdev_offline = B_FALSE;
2272 }
2273 }
2274
2275 if (attempt_reopen) {
2276 vdev_reopen(spa->spa_root_vdev);
2277
2278 /* check each device to see what state it's in */
2279 for (extracted = 0, i = 0; i < gcount; i++) {
2280 if (vd[i] != NULL &&
2281 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2282 break;
2283 ++extracted;
2284 }
2285 }
2286
2287 /*
2288 * If every disk has been moved to the new pool, or if we never
2289 * even attempted to look at them, then we split them off for
2290 * good.
2291 */
2292 if (!attempt_reopen || gcount == extracted) {
2293 for (i = 0; i < gcount; i++)
2294 if (vd[i] != NULL)
2295 vdev_split(vd[i]);
2296 vdev_reopen(spa->spa_root_vdev);
2297 }
2298
2299 kmem_free(vd, gcount * sizeof (vdev_t *));
2300 }
2301
2302 static int
2303 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2304 {
2305 char *ereport = FM_EREPORT_ZFS_POOL;
2306 int error;
2307
2308 spa->spa_load_state = state;
2309
2310 gethrestime(&spa->spa_loaded_ts);
2311 error = spa_load_impl(spa, type, &ereport, B_FALSE);
2312
2313 /*
2314 * Don't count references from objsets that are already closed
2315 * and are making their way through the eviction process.
2316 */
2317 spa_evicting_os_wait(spa);
2318 spa->spa_minref = refcount_count(&spa->spa_refcount);
2319 if (error) {
2320 if (error != EEXIST) {
2321 spa->spa_loaded_ts.tv_sec = 0;
2322 spa->spa_loaded_ts.tv_nsec = 0;
2323 }
2324 if (error != EBADF) {
2325 zfs_ereport_post(ereport, spa, NULL, NULL, NULL, 0, 0);
2326 }
2327 }
2328 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2329 spa->spa_ena = 0;
2330
2331 return (error);
2332 }
2333
2334 #ifdef ZFS_DEBUG
2335 /*
2336 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2337 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2338 * spa's per-vdev ZAP list.
2339 */
2340 static uint64_t
2341 vdev_count_verify_zaps(vdev_t *vd)
2342 {
2343 spa_t *spa = vd->vdev_spa;
2344 uint64_t total = 0;
2345
2346 if (vd->vdev_top_zap != 0) {
2347 total++;
2348 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2349 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2350 }
2351 if (vd->vdev_leaf_zap != 0) {
2352 total++;
2353 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2354 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2355 }
2356
2357 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2358 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2359 }
2360
2361 return (total);
2362 }
2363 #endif
2364
2365 /*
2366 * Determine whether the activity check is required.
2367 */
2368 static boolean_t
2369 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2370 nvlist_t *config)
2371 {
2372 uint64_t state = 0;
2373 uint64_t hostid = 0;
2374 uint64_t tryconfig_txg = 0;
2375 uint64_t tryconfig_timestamp = 0;
2376 nvlist_t *nvinfo;
2377
2378 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2379 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2380 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2381 &tryconfig_txg);
2382 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2383 &tryconfig_timestamp);
2384 }
2385
2386 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2387
2388 /*
2389 * Disable the MMP activity check - This is used by zdb which
2390 * is intended to be used on potentially active pools.
2391 */
2392 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2393 return (B_FALSE);
2394
2395 /*
2396 * Skip the activity check when the MMP feature is disabled.
2397 */
2398 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2399 return (B_FALSE);
2400 /*
2401 * If the tryconfig_* values are nonzero, they are the results of an
2402 * earlier tryimport. If they match the uberblock we just found, then
2403 * the pool has not changed and we return false so we do not test a
2404 * second time.
2405 */
2406 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2407 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp)
2408 return (B_FALSE);
2409
2410 /*
2411 * Allow the activity check to be skipped when importing the pool
2412 * on the same host which last imported it. Since the hostid from
2413 * configuration may be stale use the one read from the label.
2414 */
2415 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
2416 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
2417
2418 if (hostid == spa_get_hostid())
2419 return (B_FALSE);
2420
2421 /*
2422 * Skip the activity test when the pool was cleanly exported.
2423 */
2424 if (state != POOL_STATE_ACTIVE)
2425 return (B_FALSE);
2426
2427 return (B_TRUE);
2428 }
2429
2430 /*
2431 * Perform the import activity check. If the user canceled the import or
2432 * we detected activity then fail.
2433 */
2434 static int
2435 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
2436 {
2437 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
2438 uint64_t txg = ub->ub_txg;
2439 uint64_t timestamp = ub->ub_timestamp;
2440 uint64_t import_delay = NANOSEC;
2441 hrtime_t import_expire;
2442 nvlist_t *mmp_label = NULL;
2443 vdev_t *rvd = spa->spa_root_vdev;
2444 kcondvar_t cv;
2445 kmutex_t mtx;
2446 int error = 0;
2447
2448 cv_init(&cv, NULL, CV_DEFAULT, NULL);
2449 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
2450 mutex_enter(&mtx);
2451
2452 /*
2453 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
2454 * during the earlier tryimport. If the txg recorded there is 0 then
2455 * the pool is known to be active on another host.
2456 *
2457 * Otherwise, the pool might be in use on another node. Check for
2458 * changes in the uberblocks on disk if necessary.
2459 */
2460 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2461 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
2462 ZPOOL_CONFIG_LOAD_INFO);
2463
2464 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
2465 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
2466 vdev_uberblock_load(rvd, ub, &mmp_label);
2467 error = SET_ERROR(EREMOTEIO);
2468 goto out;
2469 }
2470 }
2471
2472 /*
2473 * Preferentially use the zfs_multihost_interval from the node which
2474 * last imported the pool. This value is stored in an MMP uberblock as.
2475 *
2476 * ub_mmp_delay * vdev_count_leaves() == zfs_multihost_interval
2477 */
2478 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay)
2479 import_delay = MAX(import_delay, import_intervals *
2480 ub->ub_mmp_delay * MAX(vdev_count_leaves(spa), 1));
2481
2482 /* Apply a floor using the local default values. */
2483 import_delay = MAX(import_delay, import_intervals *
2484 MSEC2NSEC(MAX(zfs_multihost_interval, MMP_MIN_INTERVAL)));
2485
2486 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu import_intervals=%u "
2487 "leaves=%u", import_delay, ub->ub_mmp_delay, import_intervals,
2488 vdev_count_leaves(spa));
2489
2490 /* Add a small random factor in case of simultaneous imports (0-25%) */
2491 import_expire = gethrtime() + import_delay +
2492 (import_delay * spa_get_random(250) / 1000);
2493
2494 while (gethrtime() < import_expire) {
2495 vdev_uberblock_load(rvd, ub, &mmp_label);
2496
2497 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp) {
2498 error = SET_ERROR(EREMOTEIO);
2499 break;
2500 }
2501
2502 if (mmp_label) {
2503 nvlist_free(mmp_label);
2504 mmp_label = NULL;
2505 }
2506
2507 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
2508 if (error != -1) {
2509 error = SET_ERROR(EINTR);
2510 break;
2511 }
2512 error = 0;
2513 }
2514
2515 out:
2516 mutex_exit(&mtx);
2517 mutex_destroy(&mtx);
2518 cv_destroy(&cv);
2519
2520 /*
2521 * If the pool is determined to be active store the status in the
2522 * spa->spa_load_info nvlist. If the remote hostname or hostid are
2523 * available from configuration read from disk store them as well.
2524 * This allows 'zpool import' to generate a more useful message.
2525 *
2526 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
2527 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
2528 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
2529 */
2530 if (error == EREMOTEIO) {
2531 char *hostname = "<unknown>";
2532 uint64_t hostid = 0;
2533
2534 if (mmp_label) {
2535 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
2536 hostname = fnvlist_lookup_string(mmp_label,
2537 ZPOOL_CONFIG_HOSTNAME);
2538 fnvlist_add_string(spa->spa_load_info,
2539 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
2540 }
2541
2542 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
2543 hostid = fnvlist_lookup_uint64(mmp_label,
2544 ZPOOL_CONFIG_HOSTID);
2545 fnvlist_add_uint64(spa->spa_load_info,
2546 ZPOOL_CONFIG_MMP_HOSTID, hostid);
2547 }
2548 }
2549
2550 fnvlist_add_uint64(spa->spa_load_info,
2551 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
2552 fnvlist_add_uint64(spa->spa_load_info,
2553 ZPOOL_CONFIG_MMP_TXG, 0);
2554
2555 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
2556 }
2557
2558 if (mmp_label)
2559 nvlist_free(mmp_label);
2560
2561 return (error);
2562 }
2563
2564 static int
2565 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2566 {
2567 uint64_t hostid;
2568 char *hostname;
2569 uint64_t myhostid = 0;
2570
2571 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2572 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2573 hostname = fnvlist_lookup_string(mos_config,
2574 ZPOOL_CONFIG_HOSTNAME);
2575
2576 myhostid = zone_get_hostid(NULL);
2577
2578 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2579 cmn_err(CE_WARN, "pool '%s' could not be "
2580 "loaded as it was last accessed by "
2581 "another system (host: %s hostid: 0x%llx). "
2582 "See: http://illumos.org/msg/ZFS-8000-EY",
2583 spa_name(spa), hostname, (u_longlong_t)hostid);
2584 spa_load_failed(spa, "hostid verification failed: pool "
2585 "last accessed by host: %s (hostid: 0x%llx)",
2586 hostname, (u_longlong_t)hostid);
2587 return (SET_ERROR(EBADF));
2588 }
2589 }
2590
2591 return (0);
2592 }
2593
2594 static int
2595 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2596 {
2597 int error = 0;
2598 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2599 int parse;
2600 vdev_t *rvd;
2601 uint64_t pool_guid;
2602 char *comment;
2603
2604 /*
2605 * Versioning wasn't explicitly added to the label until later, so if
2606 * it's not present treat it as the initial version.
2607 */
2608 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2609 &spa->spa_ubsync.ub_version) != 0)
2610 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2611
2612 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2613 spa_load_failed(spa, "invalid config provided: '%s' missing",
2614 ZPOOL_CONFIG_POOL_GUID);
2615 return (SET_ERROR(EINVAL));
2616 }
2617
2618 if ((spa->spa_load_state == SPA_LOAD_IMPORT || spa->spa_load_state ==
2619 SPA_LOAD_TRYIMPORT) && spa_guid_exists(pool_guid, 0)) {
2620 spa_load_failed(spa, "a pool with guid %llu is already open",
2621 (u_longlong_t)pool_guid);
2622 return (SET_ERROR(EEXIST));
2623 }
2624
2625 spa->spa_config_guid = pool_guid;
2626
2627 nvlist_free(spa->spa_load_info);
2628 spa->spa_load_info = fnvlist_alloc();
2629
2630 ASSERT(spa->spa_comment == NULL);
2631 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2632 spa->spa_comment = spa_strdup(comment);
2633
2634 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2635 &spa->spa_config_txg);
2636
2637 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2638 spa->spa_config_splitting = fnvlist_dup(nvl);
2639
2640 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2641 spa_load_failed(spa, "invalid config provided: '%s' missing",
2642 ZPOOL_CONFIG_VDEV_TREE);
2643 return (SET_ERROR(EINVAL));
2644 }
2645
2646 /*
2647 * Create "The Godfather" zio to hold all async IOs
2648 */
2649 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2650 KM_SLEEP);
2651 for (int i = 0; i < max_ncpus; i++) {
2652 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2653 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2654 ZIO_FLAG_GODFATHER);
2655 }
2656
2657 /*
2658 * Parse the configuration into a vdev tree. We explicitly set the
2659 * value that will be returned by spa_version() since parsing the
2660 * configuration requires knowing the version number.
2661 */
2662 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2663 parse = (type == SPA_IMPORT_EXISTING ?
2664 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2665 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2666 spa_config_exit(spa, SCL_ALL, FTAG);
2667
2668 if (error != 0) {
2669 spa_load_failed(spa, "unable to parse config [error=%d]",
2670 error);
2671 return (error);
2672 }
2673
2674 ASSERT(spa->spa_root_vdev == rvd);
2675 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2676 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2677
2678 if (type != SPA_IMPORT_ASSEMBLE) {
2679 ASSERT(spa_guid(spa) == pool_guid);
2680 }
2681
2682 return (0);
2683 }
2684
2685 /*
2686 * Recursively open all vdevs in the vdev tree. This function is called twice:
2687 * first with the untrusted config, then with the trusted config.
2688 */
2689 static int
2690 spa_ld_open_vdevs(spa_t *spa)
2691 {
2692 int error = 0;
2693
2694 /*
2695 * spa_missing_tvds_allowed defines how many top-level vdevs can be
2696 * missing/unopenable for the root vdev to be still considered openable.
2697 */
2698 if (spa->spa_trust_config) {
2699 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2700 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2701 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2702 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2703 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2704 } else {
2705 spa->spa_missing_tvds_allowed = 0;
2706 }
2707
2708 spa->spa_missing_tvds_allowed =
2709 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2710
2711 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2712 error = vdev_open(spa->spa_root_vdev);
2713 spa_config_exit(spa, SCL_ALL, FTAG);
2714
2715 if (spa->spa_missing_tvds != 0) {
2716 spa_load_note(spa, "vdev tree has %lld missing top-level "
2717 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2718 if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2719 /*
2720 * Although theoretically we could allow users to open
2721 * incomplete pools in RW mode, we'd need to add a lot
2722 * of extra logic (e.g. adjust pool space to account
2723 * for missing vdevs).
2724 * This limitation also prevents users from accidentally
2725 * opening the pool in RW mode during data recovery and
2726 * damaging it further.
2727 */
2728 spa_load_note(spa, "pools with missing top-level "
2729 "vdevs can only be opened in read-only mode.");
2730 error = SET_ERROR(ENXIO);
2731 } else {
2732 spa_load_note(spa, "current settings allow for maximum "
2733 "%lld missing top-level vdevs at this stage.",
2734 (u_longlong_t)spa->spa_missing_tvds_allowed);
2735 }
2736 }
2737 if (error != 0) {
2738 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2739 error);
2740 }
2741 if (spa->spa_missing_tvds != 0 || error != 0)
2742 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2743
2744 return (error);
2745 }
2746
2747 /*
2748 * We need to validate the vdev labels against the configuration that
2749 * we have in hand. This function is called twice: first with an untrusted
2750 * config, then with a trusted config. The validation is more strict when the
2751 * config is trusted.
2752 */
2753 static int
2754 spa_ld_validate_vdevs(spa_t *spa)
2755 {
2756 int error = 0;
2757 vdev_t *rvd = spa->spa_root_vdev;
2758
2759 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2760 error = vdev_validate(rvd);
2761 spa_config_exit(spa, SCL_ALL, FTAG);
2762
2763 if (error != 0) {
2764 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2765 return (error);
2766 }
2767
2768 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2769 spa_load_failed(spa, "cannot open vdev tree after invalidating "
2770 "some vdevs");
2771 vdev_dbgmsg_print_tree(rvd, 2);
2772 return (SET_ERROR(ENXIO));
2773 }
2774
2775 return (0);
2776 }
2777
2778 static int
2779 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2780 {
2781 vdev_t *rvd = spa->spa_root_vdev;
2782 nvlist_t *label;
2783 uberblock_t *ub = &spa->spa_uberblock;
2784 boolean_t activity_check = B_FALSE;
2785
2786 /*
2787 * Find the best uberblock.
2788 */
2789 vdev_uberblock_load(rvd, ub, &label);
2790
2791 /*
2792 * If we weren't able to find a single valid uberblock, return failure.
2793 */
2794 if (ub->ub_txg == 0) {
2795 nvlist_free(label);
2796 spa_load_failed(spa, "no valid uberblock found");
2797 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2798 }
2799
2800 spa_load_note(spa, "using uberblock with txg=%llu",
2801 (u_longlong_t)ub->ub_txg);
2802
2803
2804 /*
2805 * For pools which have the multihost property on determine if the
2806 * pool is truly inactive and can be safely imported. Prevent
2807 * hosts which don't have a hostid set from importing the pool.
2808 */
2809 activity_check = spa_activity_check_required(spa, ub, label,
2810 spa->spa_config);
2811 if (activity_check) {
2812 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
2813 spa_get_hostid() == 0) {
2814 nvlist_free(label);
2815 fnvlist_add_uint64(spa->spa_load_info,
2816 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
2817 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
2818 }
2819
2820 int error = spa_activity_check(spa, ub, spa->spa_config);
2821 if (error) {
2822 nvlist_free(label);
2823 return (error);
2824 }
2825
2826 fnvlist_add_uint64(spa->spa_load_info,
2827 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
2828 fnvlist_add_uint64(spa->spa_load_info,
2829 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
2830 }
2831
2832 /*
2833 * If the pool has an unsupported version we can't open it.
2834 */
2835 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2836 nvlist_free(label);
2837 spa_load_failed(spa, "version %llu is not supported",
2838 (u_longlong_t)ub->ub_version);
2839 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2840 }
2841
2842 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2843 nvlist_t *features;
2844
2845 /*
2846 * If we weren't able to find what's necessary for reading the
2847 * MOS in the label, return failure.
2848 */
2849 if (label == NULL) {
2850 spa_load_failed(spa, "label config unavailable");
2851 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2852 ENXIO));
2853 }
2854
2855 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
2856 &features) != 0) {
2857 nvlist_free(label);
2858 spa_load_failed(spa, "invalid label: '%s' missing",
2859 ZPOOL_CONFIG_FEATURES_FOR_READ);
2860 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2861 ENXIO));
2862 }
2863
2864 /*
2865 * Update our in-core representation with the definitive values
2866 * from the label.
2867 */
2868 nvlist_free(spa->spa_label_features);
2869 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2870 }
2871
2872 nvlist_free(label);
2873
2874 /*
2875 * Look through entries in the label nvlist's features_for_read. If
2876 * there is a feature listed there which we don't understand then we
2877 * cannot open a pool.
2878 */
2879 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2880 nvlist_t *unsup_feat;
2881
2882 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2883 0);
2884
2885 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2886 NULL); nvp != NULL;
2887 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2888 if (!zfeature_is_supported(nvpair_name(nvp))) {
2889 VERIFY(nvlist_add_string(unsup_feat,
2890 nvpair_name(nvp), "") == 0);
2891 }
2892 }
2893
2894 if (!nvlist_empty(unsup_feat)) {
2895 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2896 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2897 nvlist_free(unsup_feat);
2898 spa_load_failed(spa, "some features are unsupported");
2899 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2900 ENOTSUP));
2901 }
2902
2903 nvlist_free(unsup_feat);
2904 }
2905
2906 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2907 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2908 spa_try_repair(spa, spa->spa_config);
2909 spa_config_exit(spa, SCL_ALL, FTAG);
2910 nvlist_free(spa->spa_config_splitting);
2911 spa->spa_config_splitting = NULL;
2912 }
2913
2914 /*
2915 * Initialize internal SPA structures.
2916 */
2917 spa->spa_state = POOL_STATE_ACTIVE;
2918 spa->spa_ubsync = spa->spa_uberblock;
2919 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2920 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2921 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2922 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2923 spa->spa_claim_max_txg = spa->spa_first_txg;
2924 spa->spa_prev_software_version = ub->ub_software_version;
2925
2926 return (0);
2927 }
2928
2929 static int
2930 spa_ld_open_rootbp(spa_t *spa)
2931 {
2932 int error = 0;
2933 vdev_t *rvd = spa->spa_root_vdev;
2934
2935 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2936 if (error != 0) {
2937 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
2938 "[error=%d]", error);
2939 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2940 }
2941 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2942
2943 return (0);
2944 }
2945
2946 static int
2947 spa_ld_load_trusted_config(spa_t *spa, spa_import_type_t type,
2948 boolean_t reloading)
2949 {
2950 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
2951 nvlist_t *nv, *mos_config, *policy;
2952 int error = 0, copy_error;
2953 uint64_t healthy_tvds, healthy_tvds_mos;
2954 uint64_t mos_config_txg;
2955
2956 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
2957 != 0)
2958 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2959
2960 /*
2961 * If we're assembling a pool from a split, the config provided is
2962 * already trusted so there is nothing to do.
2963 */
2964 if (type == SPA_IMPORT_ASSEMBLE)
2965 return (0);
2966
2967 healthy_tvds = spa_healthy_core_tvds(spa);
2968
2969 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
2970 != 0) {
2971 spa_load_failed(spa, "unable to retrieve MOS config");
2972 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2973 }
2974
2975 /*
2976 * If we are doing an open, pool owner wasn't verified yet, thus do
2977 * the verification here.
2978 */
2979 if (spa->spa_load_state == SPA_LOAD_OPEN) {
2980 error = spa_verify_host(spa, mos_config);
2981 if (error != 0) {
2982 nvlist_free(mos_config);
2983 return (error);
2984 }
2985 }
2986
2987 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
2988
2989 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2990
2991 /*
2992 * Build a new vdev tree from the trusted config
2993 */
2994 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
2995
2996 /*
2997 * Vdev paths in the MOS may be obsolete. If the untrusted config was
2998 * obtained by scanning /dev/dsk, then it will have the right vdev
2999 * paths. We update the trusted MOS config with this information.
3000 * We first try to copy the paths with vdev_copy_path_strict, which
3001 * succeeds only when both configs have exactly the same vdev tree.
3002 * If that fails, we fall back to a more flexible method that has a
3003 * best effort policy.
3004 */
3005 copy_error = vdev_copy_path_strict(rvd, mrvd);
3006 if (copy_error != 0 || spa_load_print_vdev_tree) {
3007 spa_load_note(spa, "provided vdev tree:");
3008 vdev_dbgmsg_print_tree(rvd, 2);
3009 spa_load_note(spa, "MOS vdev tree:");
3010 vdev_dbgmsg_print_tree(mrvd, 2);
3011 }
3012 if (copy_error != 0) {
3013 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3014 "back to vdev_copy_path_relaxed");
3015 vdev_copy_path_relaxed(rvd, mrvd);
3016 }
3017
3018 vdev_close(rvd);
3019 vdev_free(rvd);
3020 spa->spa_root_vdev = mrvd;
3021 rvd = mrvd;
3022 spa_config_exit(spa, SCL_ALL, FTAG);
3023
3024 /*
3025 * We will use spa_config if we decide to reload the spa or if spa_load
3026 * fails and we rewind. We must thus regenerate the config using the
3027 * MOS information with the updated paths. Rewind policy is an import
3028 * setting and is not in the MOS. We copy it over to our new, trusted
3029 * config.
3030 */
3031 mos_config_txg = fnvlist_lookup_uint64(mos_config,
3032 ZPOOL_CONFIG_POOL_TXG);
3033 nvlist_free(mos_config);
3034 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3035 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_REWIND_POLICY,
3036 &policy) == 0)
3037 fnvlist_add_nvlist(mos_config, ZPOOL_REWIND_POLICY, policy);
3038 spa_config_set(spa, mos_config);
3039 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3040
3041 /*
3042 * Now that we got the config from the MOS, we should be more strict
3043 * in checking blkptrs and can make assumptions about the consistency
3044 * of the vdev tree. spa_trust_config must be set to true before opening
3045 * vdevs in order for them to be writeable.
3046 */
3047 spa->spa_trust_config = B_TRUE;
3048
3049 /*
3050 * Open and validate the new vdev tree
3051 */
3052 error = spa_ld_open_vdevs(spa);
3053 if (error != 0)
3054 return (error);
3055
3056 error = spa_ld_validate_vdevs(spa);
3057 if (error != 0)
3058 return (error);
3059
3060 if (copy_error != 0 || spa_load_print_vdev_tree) {
3061 spa_load_note(spa, "final vdev tree:");
3062 vdev_dbgmsg_print_tree(rvd, 2);
3063 }
3064
3065 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3066 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3067 /*
3068 * Sanity check to make sure that we are indeed loading the
3069 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3070 * in the config provided and they happened to be the only ones
3071 * to have the latest uberblock, we could involuntarily perform
3072 * an extreme rewind.
3073 */
3074 healthy_tvds_mos = spa_healthy_core_tvds(spa);
3075 if (healthy_tvds_mos - healthy_tvds >=
3076 SPA_SYNC_MIN_VDEVS) {
3077 spa_load_note(spa, "config provided misses too many "
3078 "top-level vdevs compared to MOS (%lld vs %lld). ",
3079 (u_longlong_t)healthy_tvds,
3080 (u_longlong_t)healthy_tvds_mos);
3081 spa_load_note(spa, "vdev tree:");
3082 vdev_dbgmsg_print_tree(rvd, 2);
3083 if (reloading) {
3084 spa_load_failed(spa, "config was already "
3085 "provided from MOS. Aborting.");
3086 return (spa_vdev_err(rvd,
3087 VDEV_AUX_CORRUPT_DATA, EIO));
3088 }
3089 spa_load_note(spa, "spa must be reloaded using MOS "
3090 "config");
3091 return (SET_ERROR(EAGAIN));
3092 }
3093 }
3094
3095 error = spa_check_for_missing_logs(spa);
3096 if (error != 0)
3097 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3098
3099 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3100 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3101 "guid sum (%llu != %llu)",
3102 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3103 (u_longlong_t)rvd->vdev_guid_sum);
3104 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3105 ENXIO));
3106 }
3107
3108 return (0);
3109 }
3110
3111 static int
3112 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3113 {
3114 int error = 0;
3115 vdev_t *rvd = spa->spa_root_vdev;
3116
3117 /*
3118 * Everything that we read before spa_remove_init() must be stored
3119 * on concreted vdevs. Therefore we do this as early as possible.
3120 */
3121 error = spa_remove_init(spa);
3122 if (error != 0) {
3123 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3124 error);
3125 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3126 }
3127
3128 /*
3129 * Retrieve information needed to condense indirect vdev mappings.
3130 */
3131 error = spa_condense_init(spa);
3132 if (error != 0) {
3133 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3134 error);
3135 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3136 }
3137
3138 return (0);
3139 }
3140
3141 static int
3142 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3143 {
3144 int error = 0;
3145 vdev_t *rvd = spa->spa_root_vdev;
3146
3147 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3148 boolean_t missing_feat_read = B_FALSE;
3149 nvlist_t *unsup_feat, *enabled_feat;
3150
3151 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3152 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3153 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3154 }
3155
3156 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3157 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3158 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3159 }
3160
3161 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3162 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3163 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3164 }
3165
3166 enabled_feat = fnvlist_alloc();
3167 unsup_feat = fnvlist_alloc();
3168
3169 if (!spa_features_check(spa, B_FALSE,
3170 unsup_feat, enabled_feat))
3171 missing_feat_read = B_TRUE;
3172
3173 if (spa_writeable(spa) ||
3174 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3175 if (!spa_features_check(spa, B_TRUE,
3176 unsup_feat, enabled_feat)) {
3177 *missing_feat_writep = B_TRUE;
3178 }
3179 }
3180
3181 fnvlist_add_nvlist(spa->spa_load_info,
3182 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3183
3184 if (!nvlist_empty(unsup_feat)) {
3185 fnvlist_add_nvlist(spa->spa_load_info,
3186 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3187 }
3188
3189 fnvlist_free(enabled_feat);
3190 fnvlist_free(unsup_feat);
3191
3192 if (!missing_feat_read) {
3193 fnvlist_add_boolean(spa->spa_load_info,
3194 ZPOOL_CONFIG_CAN_RDONLY);
3195 }
3196
3197 /*
3198 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3199 * twofold: to determine whether the pool is available for
3200 * import in read-write mode and (if it is not) whether the
3201 * pool is available for import in read-only mode. If the pool
3202 * is available for import in read-write mode, it is displayed
3203 * as available in userland; if it is not available for import
3204 * in read-only mode, it is displayed as unavailable in
3205 * userland. If the pool is available for import in read-only
3206 * mode but not read-write mode, it is displayed as unavailable
3207 * in userland with a special note that the pool is actually
3208 * available for open in read-only mode.
3209 *
3210 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3211 * missing a feature for write, we must first determine whether
3212 * the pool can be opened read-only before returning to
3213 * userland in order to know whether to display the
3214 * abovementioned note.
3215 */
3216 if (missing_feat_read || (*missing_feat_writep &&
3217 spa_writeable(spa))) {
3218 spa_load_failed(spa, "pool uses unsupported features");
3219 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3220 ENOTSUP));
3221 }
3222
3223 /*
3224 * Load refcounts for ZFS features from disk into an in-memory
3225 * cache during SPA initialization.
3226 */
3227 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3228 uint64_t refcount;
3229
3230 error = feature_get_refcount_from_disk(spa,
3231 &spa_feature_table[i], &refcount);
3232 if (error == 0) {
3233 spa->spa_feat_refcount_cache[i] = refcount;
3234 } else if (error == ENOTSUP) {
3235 spa->spa_feat_refcount_cache[i] =
3236 SPA_FEATURE_DISABLED;
3237 } else {
3238 spa_load_failed(spa, "error getting refcount "
3239 "for feature %s [error=%d]",
3240 spa_feature_table[i].fi_guid, error);
3241 return (spa_vdev_err(rvd,
3242 VDEV_AUX_CORRUPT_DATA, EIO));
3243 }
3244 }
3245 }
3246
3247 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3248 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3249 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3250 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3251 }
3252
3253 return (0);
3254 }
3255
3256 static int
3257 spa_ld_load_special_directories(spa_t *spa)
3258 {
3259 int error = 0;
3260 vdev_t *rvd = spa->spa_root_vdev;
3261
3262 spa->spa_is_initializing = B_TRUE;
3263 error = dsl_pool_open(spa->spa_dsl_pool);
3264 spa->spa_is_initializing = B_FALSE;
3265 if (error != 0) {
3266 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3267 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3268 }
3269
3270 return (0);
3271 }
3272
3273 static int
3274 spa_ld_get_props(spa_t *spa)
3275 {
3276 int error = 0;
3277 uint64_t obj;
3278 vdev_t *rvd = spa->spa_root_vdev;
3279
3280 /* Grab the checksum salt from the MOS. */
3281 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3282 DMU_POOL_CHECKSUM_SALT, 1,
3283 sizeof (spa->spa_cksum_salt.zcs_bytes),
3284 spa->spa_cksum_salt.zcs_bytes);
3285 if (error == ENOENT) {
3286 /* Generate a new salt for subsequent use */
3287 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3288 sizeof (spa->spa_cksum_salt.zcs_bytes));
3289 } else if (error != 0) {
3290 spa_load_failed(spa, "unable to retrieve checksum salt from "
3291 "MOS [error=%d]", error);
3292 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3293 }
3294
3295 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3296 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3297 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3298 if (error != 0) {
3299 spa_load_failed(spa, "error opening deferred-frees bpobj "
3300 "[error=%d]", error);
3301 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3302 }
3303
3304 /*
3305 * Load the bit that tells us to use the new accounting function
3306 * (raid-z deflation). If we have an older pool, this will not
3307 * be present.
3308 */
3309 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3310 if (error != 0 && error != ENOENT)
3311 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3312
3313 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
3314 &spa->spa_creation_version, B_FALSE);
3315 if (error != 0 && error != ENOENT)
3316 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3317
3318 /*
3319 * Load the persistent error log. If we have an older pool, this will
3320 * not be present.
3321 */
3322 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
3323 B_FALSE);
3324 if (error != 0 && error != ENOENT)
3325 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3326
3327 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
3328 &spa->spa_errlog_scrub, B_FALSE);
3329 if (error != 0 && error != ENOENT)
3330 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3331
3332 /*
3333 * Load the history object. If we have an older pool, this
3334 * will not be present.
3335 */
3336 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
3337 if (error != 0 && error != ENOENT)
3338 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3339
3340 /*
3341 * Load the per-vdev ZAP map. If we have an older pool, this will not
3342 * be present; in this case, defer its creation to a later time to
3343 * avoid dirtying the MOS this early / out of sync context. See
3344 * spa_sync_config_object.
3345 */
3346
3347 /* The sentinel is only available in the MOS config. */
3348 nvlist_t *mos_config;
3349 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
3350 spa_load_failed(spa, "unable to retrieve MOS config");
3351 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3352 }
3353
3354 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3355 &spa->spa_all_vdev_zaps, B_FALSE);
3356
3357 if (error == ENOENT) {
3358 VERIFY(!nvlist_exists(mos_config,
3359 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3360 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3361 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3362 } else if (error != 0) {
3363 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3364 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3365 /*
3366 * An older version of ZFS overwrote the sentinel value, so
3367 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3368 * destruction to later; see spa_sync_config_object.
3369 */
3370 spa->spa_avz_action = AVZ_ACTION_DESTROY;
3371 /*
3372 * We're assuming that no vdevs have had their ZAPs created
3373 * before this. Better be sure of it.
3374 */
3375 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3376 }
3377 nvlist_free(mos_config);
3378
3379 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3380
3381 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3382 B_FALSE);
3383 if (error && error != ENOENT)
3384 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3385
3386 if (error == 0) {
3387 uint64_t autoreplace;
3388
3389 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3390 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3391 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3392 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3393 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3394 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
3395 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3396 &spa->spa_dedup_ditto);
3397
3398 spa->spa_autoreplace = (autoreplace != 0);
3399 }
3400
3401 /*
3402 * If we are importing a pool with missing top-level vdevs,
3403 * we enforce that the pool doesn't panic or get suspended on
3404 * error since the likelihood of missing data is extremely high.
3405 */
3406 if (spa->spa_missing_tvds > 0 &&
3407 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3408 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3409 spa_load_note(spa, "forcing failmode to 'continue' "
3410 "as some top level vdevs are missing");
3411 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3412 }
3413
3414 return (0);
3415 }
3416
3417 static int
3418 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3419 {
3420 int error = 0;
3421 vdev_t *rvd = spa->spa_root_vdev;
3422
3423 /*
3424 * If we're assembling the pool from the split-off vdevs of
3425 * an existing pool, we don't want to attach the spares & cache
3426 * devices.
3427 */
3428
3429 /*
3430 * Load any hot spares for this pool.
3431 */
3432 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3433 B_FALSE);
3434 if (error != 0 && error != ENOENT)
3435 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3436 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3437 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3438 if (load_nvlist(spa, spa->spa_spares.sav_object,
3439 &spa->spa_spares.sav_config) != 0) {
3440 spa_load_failed(spa, "error loading spares nvlist");
3441 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3442 }
3443
3444 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3445 spa_load_spares(spa);
3446 spa_config_exit(spa, SCL_ALL, FTAG);
3447 } else if (error == 0) {
3448 spa->spa_spares.sav_sync = B_TRUE;
3449 }
3450
3451 /*
3452 * Load any level 2 ARC devices for this pool.
3453 */
3454 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3455 &spa->spa_l2cache.sav_object, B_FALSE);
3456 if (error != 0 && error != ENOENT)
3457 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3458 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3459 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3460 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3461 &spa->spa_l2cache.sav_config) != 0) {
3462 spa_load_failed(spa, "error loading l2cache nvlist");
3463 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3464 }
3465
3466 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3467 spa_load_l2cache(spa);
3468 spa_config_exit(spa, SCL_ALL, FTAG);
3469 } else if (error == 0) {
3470 spa->spa_l2cache.sav_sync = B_TRUE;
3471 }
3472
3473 return (0);
3474 }
3475
3476 static int
3477 spa_ld_load_vdev_metadata(spa_t *spa)
3478 {
3479 int error = 0;
3480 vdev_t *rvd = spa->spa_root_vdev;
3481
3482 /*
3483 * If the 'multihost' property is set, then never allow a pool to
3484 * be imported when the system hostid is zero. The exception to
3485 * this rule is zdb which is always allowed to access pools.
3486 */
3487 if (spa_multihost(spa) && spa_get_hostid() == 0 &&
3488 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
3489 fnvlist_add_uint64(spa->spa_load_info,
3490 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3491 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3492 }
3493
3494 /*
3495 * If the 'autoreplace' property is set, then post a resource notifying
3496 * the ZFS DE that it should not issue any faults for unopenable
3497 * devices. We also iterate over the vdevs, and post a sysevent for any
3498 * unopenable vdevs so that the normal autoreplace handler can take
3499 * over.
3500 */
3501 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3502 spa_check_removed(spa->spa_root_vdev);
3503 /*
3504 * For the import case, this is done in spa_import(), because
3505 * at this point we're using the spare definitions from
3506 * the MOS config, not necessarily from the userland config.
3507 */
3508 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3509 spa_aux_check_removed(&spa->spa_spares);
3510 spa_aux_check_removed(&spa->spa_l2cache);
3511 }
3512 }
3513
3514 /*
3515 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3516 */
3517 error = vdev_load(rvd);
3518 if (error != 0) {
3519 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3520 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3521 }
3522
3523 /*
3524 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3525 */
3526 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3527 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3528 spa_config_exit(spa, SCL_ALL, FTAG);
3529
3530 return (0);
3531 }
3532
3533 static int
3534 spa_ld_load_dedup_tables(spa_t *spa)
3535 {
3536 int error = 0;
3537 vdev_t *rvd = spa->spa_root_vdev;
3538
3539 error = ddt_load(spa);
3540 if (error != 0) {
3541 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3542 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3543 }
3544
3545 return (0);
3546 }
3547
3548 static int
3549 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3550 {
3551 vdev_t *rvd = spa->spa_root_vdev;
3552
3553 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3554 boolean_t missing = spa_check_logs(spa);
3555 if (missing) {
3556 if (spa->spa_missing_tvds != 0) {
3557 spa_load_note(spa, "spa_check_logs failed "
3558 "so dropping the logs");
3559 } else {
3560 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3561 spa_load_failed(spa, "spa_check_logs failed");
3562 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3563 ENXIO));
3564 }
3565 }
3566 }
3567
3568 return (0);
3569 }
3570
3571 static int
3572 spa_ld_verify_pool_data(spa_t *spa)
3573 {
3574 int error = 0;
3575 vdev_t *rvd = spa->spa_root_vdev;
3576
3577 /*
3578 * We've successfully opened the pool, verify that we're ready
3579 * to start pushing transactions.
3580 */
3581 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3582 error = spa_load_verify(spa);
3583 if (error != 0) {
3584 spa_load_failed(spa, "spa_load_verify failed "
3585 "[error=%d]", error);
3586 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3587 error));
3588 }
3589 }
3590
3591 return (0);
3592 }
3593
3594 static void
3595 spa_ld_claim_log_blocks(spa_t *spa)
3596 {
3597 dmu_tx_t *tx;
3598 dsl_pool_t *dp = spa_get_dsl(spa);
3599
3600 /*
3601 * Claim log blocks that haven't been committed yet.
3602 * This must all happen in a single txg.
3603 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3604 * invoked from zil_claim_log_block()'s i/o done callback.
3605 * Price of rollback is that we abandon the log.
3606 */
3607 spa->spa_claiming = B_TRUE;
3608
3609 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3610 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3611 zil_claim, tx, DS_FIND_CHILDREN);
3612 dmu_tx_commit(tx);
3613
3614 spa->spa_claiming = B_FALSE;
3615
3616 spa_set_log_state(spa, SPA_LOG_GOOD);
3617 }
3618
3619 static void
3620 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3621 boolean_t reloading)
3622 {
3623 vdev_t *rvd = spa->spa_root_vdev;
3624 int need_update = B_FALSE;
3625
3626 /*
3627 * If the config cache is stale, or we have uninitialized
3628 * metaslabs (see spa_vdev_add()), then update the config.
3629 *
3630 * If this is a verbatim import, trust the current
3631 * in-core spa_config and update the disk labels.
3632 */
3633 if (reloading || config_cache_txg != spa->spa_config_txg ||
3634 spa->spa_load_state == SPA_LOAD_IMPORT ||
3635 spa->spa_load_state == SPA_LOAD_RECOVER ||
3636 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3637 need_update = B_TRUE;
3638
3639 for (int c = 0; c < rvd->vdev_children; c++)
3640 if (rvd->vdev_child[c]->vdev_ms_array == 0)
3641 need_update = B_TRUE;
3642
3643 /*
3644 * Update the config cache asychronously in case we're the
3645 * root pool, in which case the config cache isn't writable yet.
3646 */
3647 if (need_update)
3648 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3649 }
3650
3651 static void
3652 spa_ld_prepare_for_reload(spa_t *spa)
3653 {
3654 int mode = spa->spa_mode;
3655 int async_suspended = spa->spa_async_suspended;
3656
3657 spa_unload(spa);
3658 spa_deactivate(spa);
3659 spa_activate(spa, mode);
3660
3661 /*
3662 * We save the value of spa_async_suspended as it gets reset to 0 by
3663 * spa_unload(). We want to restore it back to the original value before
3664 * returning as we might be calling spa_async_resume() later.
3665 */
3666 spa->spa_async_suspended = async_suspended;
3667 }
3668
3669 /*
3670 * Load an existing storage pool, using the config provided. This config
3671 * describes which vdevs are part of the pool and is later validated against
3672 * partial configs present in each vdev's label and an entire copy of the
3673 * config stored in the MOS.
3674 */
3675 static int
3676 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport,
3677 boolean_t reloading)
3678 {
3679 int error = 0;
3680 boolean_t missing_feat_write = B_FALSE;
3681
3682 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3683 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3684
3685 /*
3686 * Never trust the config that is provided unless we are assembling
3687 * a pool following a split.
3688 * This means don't trust blkptrs and the vdev tree in general. This
3689 * also effectively puts the spa in read-only mode since
3690 * spa_writeable() checks for spa_trust_config to be true.
3691 * We will later load a trusted config from the MOS.
3692 */
3693 if (type != SPA_IMPORT_ASSEMBLE)
3694 spa->spa_trust_config = B_FALSE;
3695
3696 if (reloading)
3697 spa_load_note(spa, "RELOADING");
3698 else
3699 spa_load_note(spa, "LOADING");
3700
3701 /*
3702 * Parse the config provided to create a vdev tree.
3703 */
3704 error = spa_ld_parse_config(spa, type);
3705 if (error != 0)
3706 return (error);
3707
3708 /*
3709 * Now that we have the vdev tree, try to open each vdev. This involves
3710 * opening the underlying physical device, retrieving its geometry and
3711 * probing the vdev with a dummy I/O. The state of each vdev will be set
3712 * based on the success of those operations. After this we'll be ready
3713 * to read from the vdevs.
3714 */
3715 error = spa_ld_open_vdevs(spa);
3716 if (error != 0)
3717 return (error);
3718
3719 /*
3720 * Read the label of each vdev and make sure that the GUIDs stored
3721 * there match the GUIDs in the config provided.
3722 * If we're assembling a new pool that's been split off from an
3723 * existing pool, the labels haven't yet been updated so we skip
3724 * validation for now.
3725 */
3726 if (type != SPA_IMPORT_ASSEMBLE) {
3727 error = spa_ld_validate_vdevs(spa);
3728 if (error != 0)
3729 return (error);
3730 }
3731
3732 /*
3733 * Read vdev labels to find the best uberblock (i.e. latest, unless
3734 * spa_load_max_txg is set) and store it in spa_uberblock. We get the
3735 * list of features required to read blkptrs in the MOS from the vdev
3736 * label with the best uberblock and verify that our version of zfs
3737 * supports them all.
3738 */
3739 error = spa_ld_select_uberblock(spa, type);
3740 if (error != 0)
3741 return (error);
3742
3743 /*
3744 * Pass that uberblock to the dsl_pool layer which will open the root
3745 * blkptr. This blkptr points to the latest version of the MOS and will
3746 * allow us to read its contents.
3747 */
3748 error = spa_ld_open_rootbp(spa);
3749 if (error != 0)
3750 return (error);
3751
3752 /*
3753 * Retrieve the trusted config stored in the MOS and use it to create
3754 * a new, exact version of the vdev tree, then reopen all vdevs.
3755 */
3756 error = spa_ld_load_trusted_config(spa, type, reloading);
3757 if (error == EAGAIN) {
3758 VERIFY(!reloading);
3759 /*
3760 * Redo the loading process with the trusted config if it is
3761 * too different from the untrusted config.
3762 */
3763 spa_ld_prepare_for_reload(spa);
3764 return (spa_load_impl(spa, type, ereport, B_TRUE));
3765 } else if (error != 0) {
3766 return (error);
3767 }
3768
3769 /*
3770 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
3771 * from the pool and their contents were re-mapped to other vdevs. Note
3772 * that everything that we read before this step must have been
3773 * rewritten on concrete vdevs after the last device removal was
3774 * initiated. Otherwise we could be reading from indirect vdevs before
3775 * we have loaded their mappings.
3776 */
3777 error = spa_ld_open_indirect_vdev_metadata(spa);
3778 if (error != 0)
3779 return (error);
3780
3781 /*
3782 * Retrieve the full list of active features from the MOS and check if
3783 * they are all supported.
3784 */
3785 error = spa_ld_check_features(spa, &missing_feat_write);
3786 if (error != 0)
3787 return (error);
3788
3789 /*
3790 * Load several special directories from the MOS needed by the dsl_pool
3791 * layer.
3792 */
3793 error = spa_ld_load_special_directories(spa);
3794 if (error != 0)
3795 return (error);
3796
3797 /*
3798 * Retrieve pool properties from the MOS.
3799 */
3800 error = spa_ld_get_props(spa);
3801 if (error != 0)
3802 return (error);
3803
3804 /*
3805 * Retrieve the list of auxiliary devices - cache devices and spares -
3806 * and open them.
3807 */
3808 error = spa_ld_open_aux_vdevs(spa, type);
3809 if (error != 0)
3810 return (error);
3811
3812 /*
3813 * Load the metadata for all vdevs. Also check if unopenable devices
3814 * should be autoreplaced.
3815 */
3816 error = spa_ld_load_vdev_metadata(spa);
3817 if (error != 0)
3818 return (error);
3819
3820 error = spa_ld_load_dedup_tables(spa);
3821 if (error != 0)
3822 return (error);
3823
3824 /*
3825 * Verify the logs now to make sure we don't have any unexpected errors
3826 * when we claim log blocks later.
3827 */
3828 error = spa_ld_verify_logs(spa, type, ereport);
3829 if (error != 0)
3830 return (error);
3831
3832 if (missing_feat_write) {
3833 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
3834
3835 /*
3836 * At this point, we know that we can open the pool in
3837 * read-only mode but not read-write mode. We now have enough
3838 * information and can return to userland.
3839 */
3840 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
3841 ENOTSUP));
3842 }
3843
3844 /*
3845 * Traverse the last txgs to make sure the pool was left off in a safe
3846 * state. When performing an extreme rewind, we verify the whole pool,
3847 * which can take a very long time.
3848 */
3849 error = spa_ld_verify_pool_data(spa);
3850 if (error != 0)
3851 return (error);
3852
3853 /*
3854 * Calculate the deflated space for the pool. This must be done before
3855 * we write anything to the pool because we'd need to update the space
3856 * accounting using the deflated sizes.
3857 */
3858 spa_update_dspace(spa);
3859
3860 /*
3861 * We have now retrieved all the information we needed to open the
3862 * pool. If we are importing the pool in read-write mode, a few
3863 * additional steps must be performed to finish the import.
3864 */
3865 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
3866 spa->spa_load_max_txg == UINT64_MAX)) {
3867 uint64_t config_cache_txg = spa->spa_config_txg;
3868
3869 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
3870
3871 /*
3872 * Traverse the ZIL and claim all blocks.
3873 */
3874 spa_ld_claim_log_blocks(spa);
3875
3876 /*
3877 * Kick-off the syncing thread.
3878 */
3879 spa->spa_sync_on = B_TRUE;
3880 txg_sync_start(spa->spa_dsl_pool);
3881 mmp_thread_start(spa);
3882
3883 /*
3884 * Wait for all claims to sync. We sync up to the highest
3885 * claimed log block birth time so that claimed log blocks
3886 * don't appear to be from the future. spa_claim_max_txg
3887 * will have been set for us by ZIL traversal operations
3888 * performed above.
3889 */
3890 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
3891
3892 /*
3893 * Check if we need to request an update of the config. On the
3894 * next sync, we would update the config stored in vdev labels
3895 * and the cachefile (by default /etc/zfs/zpool.cache).
3896 */
3897 spa_ld_check_for_config_update(spa, config_cache_txg,
3898 reloading);
3899
3900 /*
3901 * Check all DTLs to see if anything needs resilvering.
3902 */
3903 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
3904 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3905 spa_async_request(spa, SPA_ASYNC_RESILVER);
3906
3907 /*
3908 * Log the fact that we booted up (so that we can detect if
3909 * we rebooted in the middle of an operation).
3910 */
3911 spa_history_log_version(spa, "open", NULL);
3912
3913 /*
3914 * Delete any inconsistent datasets.
3915 */
3916 (void) dmu_objset_find(spa_name(spa),
3917 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
3918
3919 /*
3920 * Clean up any stale temporary dataset userrefs.
3921 */
3922 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
3923
3924 spa_restart_removal(spa);
3925
3926 spa_spawn_aux_threads(spa);
3927 }
3928
3929 spa_load_note(spa, "LOADED");
3930
3931 return (0);
3932 }
3933
3934 static int
3935 spa_load_retry(spa_t *spa, spa_load_state_t state)
3936 {
3937 int mode = spa->spa_mode;
3938
3939 spa_unload(spa);
3940 spa_deactivate(spa);
3941
3942 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3943
3944 spa_activate(spa, mode);
3945 spa_async_suspend(spa);
3946
3947 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
3948 (u_longlong_t)spa->spa_load_max_txg);
3949
3950 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
3951 }
3952
3953 /*
3954 * If spa_load() fails this function will try loading prior txg's. If
3955 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3956 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3957 * function will not rewind the pool and will return the same error as
3958 * spa_load().
3959 */
3960 static int
3961 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
3962 int rewind_flags)
3963 {
3964 nvlist_t *loadinfo = NULL;
3965 nvlist_t *config = NULL;
3966 int load_error, rewind_error;
3967 uint64_t safe_rewind_txg;
3968 uint64_t min_txg;
3969
3970 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3971 spa->spa_load_max_txg = spa->spa_load_txg;
3972 spa_set_log_state(spa, SPA_LOG_CLEAR);
3973 } else {
3974 spa->spa_load_max_txg = max_request;
3975 if (max_request != UINT64_MAX)
3976 spa->spa_extreme_rewind = B_TRUE;
3977 }
3978
3979 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
3980 if (load_error == 0)
3981 return (0);
3982
3983 if (spa->spa_root_vdev != NULL)
3984 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3985
3986 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3987 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3988
3989 if (rewind_flags & ZPOOL_NEVER_REWIND) {
3990 nvlist_free(config);
3991 return (load_error);
3992 }
3993
3994 if (state == SPA_LOAD_RECOVER) {
3995 /* Price of rolling back is discarding txgs, including log */
3996 spa_set_log_state(spa, SPA_LOG_CLEAR);
3997 } else {
3998 /*
3999 * If we aren't rolling back save the load info from our first
4000 * import attempt so that we can restore it after attempting
4001 * to rewind.
4002 */
4003 loadinfo = spa->spa_load_info;
4004 spa->spa_load_info = fnvlist_alloc();
4005 }
4006
4007 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
4008 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
4009 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
4010 TXG_INITIAL : safe_rewind_txg;
4011
4012 /*
4013 * Continue as long as we're finding errors, we're still within
4014 * the acceptable rewind range, and we're still finding uberblocks
4015 */
4016 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
4017 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
4018 if (spa->spa_load_max_txg < safe_rewind_txg)
4019 spa->spa_extreme_rewind = B_TRUE;
4020 rewind_error = spa_load_retry(spa, state);
4021 }
4022
4023 spa->spa_extreme_rewind = B_FALSE;
4024 spa->spa_load_max_txg = UINT64_MAX;
4025
4026 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
4027 spa_config_set(spa, config);
4028 else
4029 nvlist_free(config);
4030
4031 if (state == SPA_LOAD_RECOVER) {
4032 ASSERT3P(loadinfo, ==, NULL);
4033 return (rewind_error);
4034 } else {
4035 /* Store the rewind info as part of the initial load info */
4036 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4037 spa->spa_load_info);
4038
4039 /* Restore the initial load info */
4040 fnvlist_free(spa->spa_load_info);
4041 spa->spa_load_info = loadinfo;
4042
4043 return (load_error);
4044 }
4045 }
4046
4047 /*
4048 * Pool Open/Import
4049 *
4050 * The import case is identical to an open except that the configuration is sent
4051 * down from userland, instead of grabbed from the configuration cache. For the
4052 * case of an open, the pool configuration will exist in the
4053 * POOL_STATE_UNINITIALIZED state.
4054 *
4055 * The stats information (gen/count/ustats) is used to gather vdev statistics at
4056 * the same time open the pool, without having to keep around the spa_t in some
4057 * ambiguous state.
4058 */
4059 static int
4060 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
4061 nvlist_t **config)
4062 {
4063 spa_t *spa;
4064 spa_load_state_t state = SPA_LOAD_OPEN;
4065 int error;
4066 int locked = B_FALSE;
4067 int firstopen = B_FALSE;
4068
4069 *spapp = NULL;
4070
4071 /*
4072 * As disgusting as this is, we need to support recursive calls to this
4073 * function because dsl_dir_open() is called during spa_load(), and ends
4074 * up calling spa_open() again. The real fix is to figure out how to
4075 * avoid dsl_dir_open() calling this in the first place.
4076 */
4077 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
4078 mutex_enter(&spa_namespace_lock);
4079 locked = B_TRUE;
4080 }
4081
4082 if ((spa = spa_lookup(pool)) == NULL) {
4083 if (locked)
4084 mutex_exit(&spa_namespace_lock);
4085 return (SET_ERROR(ENOENT));
4086 }
4087
4088 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
4089 zpool_rewind_policy_t policy;
4090
4091 firstopen = B_TRUE;
4092
4093 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
4094 &policy);
4095 if (policy.zrp_request & ZPOOL_DO_REWIND)
4096 state = SPA_LOAD_RECOVER;
4097
4098 spa_activate(spa, spa_mode_global);
4099
4100 if (state != SPA_LOAD_RECOVER)
4101 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4102 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4103
4104 zfs_dbgmsg("spa_open_common: opening %s", pool);
4105 error = spa_load_best(spa, state, policy.zrp_txg,
4106 policy.zrp_request);
4107
4108 if (error == EBADF) {
4109 /*
4110 * If vdev_validate() returns failure (indicated by
4111 * EBADF), it indicates that one of the vdevs indicates
4112 * that the pool has been exported or destroyed. If
4113 * this is the case, the config cache is out of sync and
4114 * we should remove the pool from the namespace.
4115 */
4116 spa_unload(spa);
4117 spa_deactivate(spa);
4118 spa_write_cachefile(spa, B_TRUE, B_TRUE);
4119 spa_remove(spa);
4120 if (locked)
4121 mutex_exit(&spa_namespace_lock);
4122 return (SET_ERROR(ENOENT));
4123 }
4124
4125 if (error) {
4126 /*
4127 * We can't open the pool, but we still have useful
4128 * information: the state of each vdev after the
4129 * attempted vdev_open(). Return this to the user.
4130 */
4131 if (config != NULL && spa->spa_config) {
4132 VERIFY(nvlist_dup(spa->spa_config, config,
4133 KM_SLEEP) == 0);
4134 VERIFY(nvlist_add_nvlist(*config,
4135 ZPOOL_CONFIG_LOAD_INFO,
4136 spa->spa_load_info) == 0);
4137 }
4138 spa_unload(spa);
4139 spa_deactivate(spa);
4140 spa->spa_last_open_failed = error;
4141 if (locked)
4142 mutex_exit(&spa_namespace_lock);
4143 *spapp = NULL;
4144 return (error);
4145 }
4146 }
4147
4148 spa_open_ref(spa, tag);
4149
4150 if (config != NULL)
4151 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4152
4153 /*
4154 * If we've recovered the pool, pass back any information we
4155 * gathered while doing the load.
4156 */
4157 if (state == SPA_LOAD_RECOVER) {
4158 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
4159 spa->spa_load_info) == 0);
4160 }
4161
4162 if (locked) {
4163 spa->spa_last_open_failed = 0;
4164 spa->spa_last_ubsync_txg = 0;
4165 spa->spa_load_txg = 0;
4166 mutex_exit(&spa_namespace_lock);
4167 }
4168
4169 if (firstopen)
4170 zvol_create_minors(spa, spa_name(spa), B_TRUE);
4171
4172 *spapp = spa;
4173
4174 return (0);
4175 }
4176
4177 int
4178 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
4179 nvlist_t **config)
4180 {
4181 return (spa_open_common(name, spapp, tag, policy, config));
4182 }
4183
4184 int
4185 spa_open(const char *name, spa_t **spapp, void *tag)
4186 {
4187 return (spa_open_common(name, spapp, tag, NULL, NULL));
4188 }
4189
4190 /*
4191 * Lookup the given spa_t, incrementing the inject count in the process,
4192 * preventing it from being exported or destroyed.
4193 */
4194 spa_t *
4195 spa_inject_addref(char *name)
4196 {
4197 spa_t *spa;
4198
4199 mutex_enter(&spa_namespace_lock);
4200 if ((spa = spa_lookup(name)) == NULL) {
4201 mutex_exit(&spa_namespace_lock);
4202 return (NULL);
4203 }
4204 spa->spa_inject_ref++;
4205 mutex_exit(&spa_namespace_lock);
4206
4207 return (spa);
4208 }
4209
4210 void
4211 spa_inject_delref(spa_t *spa)
4212 {
4213 mutex_enter(&spa_namespace_lock);
4214 spa->spa_inject_ref--;
4215 mutex_exit(&spa_namespace_lock);
4216 }
4217
4218 /*
4219 * Add spares device information to the nvlist.
4220 */
4221 static void
4222 spa_add_spares(spa_t *spa, nvlist_t *config)
4223 {
4224 nvlist_t **spares;
4225 uint_t i, nspares;
4226 nvlist_t *nvroot;
4227 uint64_t guid;
4228 vdev_stat_t *vs;
4229 uint_t vsc;
4230 uint64_t pool;
4231
4232 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4233
4234 if (spa->spa_spares.sav_count == 0)
4235 return;
4236
4237 VERIFY(nvlist_lookup_nvlist(config,
4238 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4239 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4240 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4241 if (nspares != 0) {
4242 VERIFY(nvlist_add_nvlist_array(nvroot,
4243 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4244 VERIFY(nvlist_lookup_nvlist_array(nvroot,
4245 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4246
4247 /*
4248 * Go through and find any spares which have since been
4249 * repurposed as an active spare. If this is the case, update
4250 * their status appropriately.
4251 */
4252 for (i = 0; i < nspares; i++) {
4253 VERIFY(nvlist_lookup_uint64(spares[i],
4254 ZPOOL_CONFIG_GUID, &guid) == 0);
4255 if (spa_spare_exists(guid, &pool, NULL) &&
4256 pool != 0ULL) {
4257 VERIFY(nvlist_lookup_uint64_array(
4258 spares[i], ZPOOL_CONFIG_VDEV_STATS,
4259 (uint64_t **)&vs, &vsc) == 0);
4260 vs->vs_state = VDEV_STATE_CANT_OPEN;
4261 vs->vs_aux = VDEV_AUX_SPARED;
4262 }
4263 }
4264 }
4265 }
4266
4267 /*
4268 * Add l2cache device information to the nvlist, including vdev stats.
4269 */
4270 static void
4271 spa_add_l2cache(spa_t *spa, nvlist_t *config)
4272 {
4273 nvlist_t **l2cache;
4274 uint_t i, j, nl2cache;
4275 nvlist_t *nvroot;
4276 uint64_t guid;
4277 vdev_t *vd;
4278 vdev_stat_t *vs;
4279 uint_t vsc;
4280
4281 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4282
4283 if (spa->spa_l2cache.sav_count == 0)
4284 return;
4285
4286 VERIFY(nvlist_lookup_nvlist(config,
4287 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4288 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4289 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4290 if (nl2cache != 0) {
4291 VERIFY(nvlist_add_nvlist_array(nvroot,
4292 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4293 VERIFY(nvlist_lookup_nvlist_array(nvroot,
4294 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4295
4296 /*
4297 * Update level 2 cache device stats.
4298 */
4299
4300 for (i = 0; i < nl2cache; i++) {
4301 VERIFY(nvlist_lookup_uint64(l2cache[i],
4302 ZPOOL_CONFIG_GUID, &guid) == 0);
4303
4304 vd = NULL;
4305 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
4306 if (guid ==
4307 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
4308 vd = spa->spa_l2cache.sav_vdevs[j];
4309 break;
4310 }
4311 }
4312 ASSERT(vd != NULL);
4313
4314 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
4315 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
4316 == 0);
4317 vdev_get_stats(vd, vs);
4318 vdev_config_generate_stats(vd, l2cache[i]);
4319
4320 }
4321 }
4322 }
4323
4324 static void
4325 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
4326 {
4327 zap_cursor_t zc;
4328 zap_attribute_t za;
4329
4330 if (spa->spa_feat_for_read_obj != 0) {
4331 for (zap_cursor_init(&zc, spa->spa_meta_objset,
4332 spa->spa_feat_for_read_obj);
4333 zap_cursor_retrieve(&zc, &za) == 0;
4334 zap_cursor_advance(&zc)) {
4335 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4336 za.za_num_integers == 1);
4337 VERIFY0(nvlist_add_uint64(features, za.za_name,
4338 za.za_first_integer));
4339 }
4340 zap_cursor_fini(&zc);
4341 }
4342
4343 if (spa->spa_feat_for_write_obj != 0) {
4344 for (zap_cursor_init(&zc, spa->spa_meta_objset,
4345 spa->spa_feat_for_write_obj);
4346 zap_cursor_retrieve(&zc, &za) == 0;
4347 zap_cursor_advance(&zc)) {
4348 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4349 za.za_num_integers == 1);
4350 VERIFY0(nvlist_add_uint64(features, za.za_name,
4351 za.za_first_integer));
4352 }
4353 zap_cursor_fini(&zc);
4354 }
4355 }
4356
4357 static void
4358 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
4359 {
4360 int i;
4361
4362 for (i = 0; i < SPA_FEATURES; i++) {
4363 zfeature_info_t feature = spa_feature_table[i];
4364 uint64_t refcount;
4365
4366 if (feature_get_refcount(spa, &feature, &refcount) != 0)
4367 continue;
4368
4369 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
4370 }
4371 }
4372
4373 /*
4374 * Store a list of pool features and their reference counts in the
4375 * config.
4376 *
4377 * The first time this is called on a spa, allocate a new nvlist, fetch
4378 * the pool features and reference counts from disk, then save the list
4379 * in the spa. In subsequent calls on the same spa use the saved nvlist
4380 * and refresh its values from the cached reference counts. This
4381 * ensures we don't block here on I/O on a suspended pool so 'zpool
4382 * clear' can resume the pool.
4383 */
4384 static void
4385 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
4386 {
4387 nvlist_t *features;
4388
4389 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4390
4391 mutex_enter(&spa->spa_feat_stats_lock);
4392 features = spa->spa_feat_stats;
4393
4394 if (features != NULL) {
4395 spa_feature_stats_from_cache(spa, features);
4396 } else {
4397 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
4398 spa->spa_feat_stats = features;
4399 spa_feature_stats_from_disk(spa, features);
4400 }
4401
4402 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
4403 features));
4404
4405 mutex_exit(&spa->spa_feat_stats_lock);
4406 }
4407
4408 int
4409 spa_get_stats(const char *name, nvlist_t **config,
4410 char *altroot, size_t buflen)
4411 {
4412 int error;
4413 spa_t *spa;
4414
4415 *config = NULL;
4416 error = spa_open_common(name, &spa, FTAG, NULL, config);
4417
4418 if (spa != NULL) {
4419 /*
4420 * This still leaves a window of inconsistency where the spares
4421 * or l2cache devices could change and the config would be
4422 * self-inconsistent.
4423 */
4424 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4425
4426 if (*config != NULL) {
4427 uint64_t loadtimes[2];
4428
4429 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4430 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4431 VERIFY(nvlist_add_uint64_array(*config,
4432 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4433
4434 VERIFY(nvlist_add_uint64(*config,
4435 ZPOOL_CONFIG_ERRCOUNT,
4436 spa_get_errlog_size(spa)) == 0);
4437
4438 if (spa_suspended(spa)) {
4439 VERIFY(nvlist_add_uint64(*config,
4440 ZPOOL_CONFIG_SUSPENDED,
4441 spa->spa_failmode) == 0);
4442 VERIFY(nvlist_add_uint64(*config,
4443 ZPOOL_CONFIG_SUSPENDED_REASON,
4444 spa->spa_suspended) == 0);
4445 }
4446
4447 spa_add_spares(spa, *config);
4448 spa_add_l2cache(spa, *config);
4449 spa_add_feature_stats(spa, *config);
4450 }
4451 }
4452
4453 /*
4454 * We want to get the alternate root even for faulted pools, so we cheat
4455 * and call spa_lookup() directly.
4456 */
4457 if (altroot) {
4458 if (spa == NULL) {
4459 mutex_enter(&spa_namespace_lock);
4460 spa = spa_lookup(name);
4461 if (spa)
4462 spa_altroot(spa, altroot, buflen);
4463 else
4464 altroot[0] = '\0';
4465 spa = NULL;
4466 mutex_exit(&spa_namespace_lock);
4467 } else {
4468 spa_altroot(spa, altroot, buflen);
4469 }
4470 }
4471
4472 if (spa != NULL) {
4473 spa_config_exit(spa, SCL_CONFIG, FTAG);
4474 spa_close(spa, FTAG);
4475 }
4476
4477 return (error);
4478 }
4479
4480 /*
4481 * Validate that the auxiliary device array is well formed. We must have an
4482 * array of nvlists, each which describes a valid leaf vdev. If this is an
4483 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4484 * specified, as long as they are well-formed.
4485 */
4486 static int
4487 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4488 spa_aux_vdev_t *sav, const char *config, uint64_t version,
4489 vdev_labeltype_t label)
4490 {
4491 nvlist_t **dev;
4492 uint_t i, ndev;
4493 vdev_t *vd;
4494 int error;
4495
4496 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4497
4498 /*
4499 * It's acceptable to have no devs specified.
4500 */
4501 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4502 return (0);
4503
4504 if (ndev == 0)
4505 return (SET_ERROR(EINVAL));
4506
4507 /*
4508 * Make sure the pool is formatted with a version that supports this
4509 * device type.
4510 */
4511 if (spa_version(spa) < version)
4512 return (SET_ERROR(ENOTSUP));
4513
4514 /*
4515 * Set the pending device list so we correctly handle device in-use
4516 * checking.
4517 */
4518 sav->sav_pending = dev;
4519 sav->sav_npending = ndev;
4520
4521 for (i = 0; i < ndev; i++) {
4522 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4523 mode)) != 0)
4524 goto out;
4525
4526 if (!vd->vdev_ops->vdev_op_leaf) {
4527 vdev_free(vd);
4528 error = SET_ERROR(EINVAL);
4529 goto out;
4530 }
4531
4532 vd->vdev_top = vd;
4533
4534 if ((error = vdev_open(vd)) == 0 &&
4535 (error = vdev_label_init(vd, crtxg, label)) == 0) {
4536 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4537 vd->vdev_guid) == 0);
4538 }
4539
4540 vdev_free(vd);
4541
4542 if (error &&
4543 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4544 goto out;
4545 else
4546 error = 0;
4547 }
4548
4549 out:
4550 sav->sav_pending = NULL;
4551 sav->sav_npending = 0;
4552 return (error);
4553 }
4554
4555 static int
4556 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4557 {
4558 int error;
4559
4560 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4561
4562 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4563 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4564 VDEV_LABEL_SPARE)) != 0) {
4565 return (error);
4566 }
4567
4568 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4569 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4570 VDEV_LABEL_L2CACHE));
4571 }
4572
4573 static void
4574 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4575 const char *config)
4576 {
4577 int i;
4578
4579 if (sav->sav_config != NULL) {
4580 nvlist_t **olddevs;
4581 uint_t oldndevs;
4582 nvlist_t **newdevs;
4583
4584 /*
4585 * Generate new dev list by concatenating with the
4586 * current dev list.
4587 */
4588 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4589 &olddevs, &oldndevs) == 0);
4590
4591 newdevs = kmem_alloc(sizeof (void *) *
4592 (ndevs + oldndevs), KM_SLEEP);
4593 for (i = 0; i < oldndevs; i++)
4594 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
4595 KM_SLEEP) == 0);
4596 for (i = 0; i < ndevs; i++)
4597 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
4598 KM_SLEEP) == 0);
4599
4600 VERIFY(nvlist_remove(sav->sav_config, config,
4601 DATA_TYPE_NVLIST_ARRAY) == 0);
4602
4603 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
4604 config, newdevs, ndevs + oldndevs) == 0);
4605 for (i = 0; i < oldndevs + ndevs; i++)
4606 nvlist_free(newdevs[i]);
4607 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
4608 } else {
4609 /*
4610 * Generate a new dev list.
4611 */
4612 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
4613 KM_SLEEP) == 0);
4614 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
4615 devs, ndevs) == 0);
4616 }
4617 }
4618
4619 /*
4620 * Stop and drop level 2 ARC devices
4621 */
4622 void
4623 spa_l2cache_drop(spa_t *spa)
4624 {
4625 vdev_t *vd;
4626 int i;
4627 spa_aux_vdev_t *sav = &spa->spa_l2cache;
4628
4629 for (i = 0; i < sav->sav_count; i++) {
4630 uint64_t pool;
4631
4632 vd = sav->sav_vdevs[i];
4633 ASSERT(vd != NULL);
4634
4635 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
4636 pool != 0ULL && l2arc_vdev_present(vd))
4637 l2arc_remove_vdev(vd);
4638 }
4639 }
4640
4641 /*
4642 * Verify encryption parameters for spa creation. If we are encrypting, we must
4643 * have the encryption feature flag enabled.
4644 */
4645 static int
4646 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
4647 boolean_t has_encryption)
4648 {
4649 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
4650 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
4651 !has_encryption)
4652 return (SET_ERROR(ENOTSUP));
4653
4654 return (dmu_objset_create_crypt_check(NULL, dcp));
4655 }
4656
4657 /*
4658 * Pool Creation
4659 */
4660 int
4661 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
4662 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
4663 {
4664 spa_t *spa;
4665 char *altroot = NULL;
4666 vdev_t *rvd;
4667 dsl_pool_t *dp;
4668 dmu_tx_t *tx;
4669 int error = 0;
4670 uint64_t txg = TXG_INITIAL;
4671 nvlist_t **spares, **l2cache;
4672 uint_t nspares, nl2cache;
4673 uint64_t version, obj, root_dsobj = 0;
4674 boolean_t has_features;
4675 boolean_t has_encryption;
4676 spa_feature_t feat;
4677 char *feat_name;
4678 char *poolname;
4679 nvlist_t *nvl;
4680
4681 if (nvlist_lookup_string(props, "tname", &poolname) != 0)
4682 poolname = (char *)pool;
4683
4684 /*
4685 * If this pool already exists, return failure.
4686 */
4687 mutex_enter(&spa_namespace_lock);
4688 if (spa_lookup(poolname) != NULL) {
4689 mutex_exit(&spa_namespace_lock);
4690 return (SET_ERROR(EEXIST));
4691 }
4692
4693 /*
4694 * Allocate a new spa_t structure.
4695 */
4696 nvl = fnvlist_alloc();
4697 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
4698 (void) nvlist_lookup_string(props,
4699 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4700 spa = spa_add(poolname, nvl, altroot);
4701 fnvlist_free(nvl);
4702 spa_activate(spa, spa_mode_global);
4703
4704 if (props && (error = spa_prop_validate(spa, props))) {
4705 spa_deactivate(spa);
4706 spa_remove(spa);
4707 mutex_exit(&spa_namespace_lock);
4708 return (error);
4709 }
4710
4711 /*
4712 * Temporary pool names should never be written to disk.
4713 */
4714 if (poolname != pool)
4715 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
4716
4717 has_features = B_FALSE;
4718 has_encryption = B_FALSE;
4719 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
4720 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
4721 if (zpool_prop_feature(nvpair_name(elem))) {
4722 has_features = B_TRUE;
4723
4724 feat_name = strchr(nvpair_name(elem), '@') + 1;
4725 VERIFY0(zfeature_lookup_name(feat_name, &feat));
4726 if (feat == SPA_FEATURE_ENCRYPTION)
4727 has_encryption = B_TRUE;
4728 }
4729 }
4730
4731 /* verify encryption params, if they were provided */
4732 if (dcp != NULL) {
4733 error = spa_create_check_encryption_params(dcp, has_encryption);
4734 if (error != 0) {
4735 spa_deactivate(spa);
4736 spa_remove(spa);
4737 mutex_exit(&spa_namespace_lock);
4738 return (error);
4739 }
4740 }
4741
4742 if (has_features || nvlist_lookup_uint64(props,
4743 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
4744 version = SPA_VERSION;
4745 }
4746 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
4747
4748 spa->spa_first_txg = txg;
4749 spa->spa_uberblock.ub_txg = txg - 1;
4750 spa->spa_uberblock.ub_version = version;
4751 spa->spa_ubsync = spa->spa_uberblock;
4752 spa->spa_load_state = SPA_LOAD_CREATE;
4753 spa->spa_removing_phys.sr_state = DSS_NONE;
4754 spa->spa_removing_phys.sr_removing_vdev = -1;
4755 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
4756
4757 /*
4758 * Create "The Godfather" zio to hold all async IOs
4759 */
4760 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4761 KM_SLEEP);
4762 for (int i = 0; i < max_ncpus; i++) {
4763 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4764 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4765 ZIO_FLAG_GODFATHER);
4766 }
4767
4768 /*
4769 * Create the root vdev.
4770 */
4771 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4772
4773 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
4774
4775 ASSERT(error != 0 || rvd != NULL);
4776 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
4777
4778 if (error == 0 && !zfs_allocatable_devs(nvroot))
4779 error = SET_ERROR(EINVAL);
4780
4781 if (error == 0 &&
4782 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
4783 (error = spa_validate_aux(spa, nvroot, txg,
4784 VDEV_ALLOC_ADD)) == 0) {
4785 for (int c = 0; c < rvd->vdev_children; c++) {
4786 vdev_metaslab_set_size(rvd->vdev_child[c]);
4787 vdev_expand(rvd->vdev_child[c], txg);
4788 }
4789 }
4790
4791 spa_config_exit(spa, SCL_ALL, FTAG);
4792
4793 if (error != 0) {
4794 spa_unload(spa);
4795 spa_deactivate(spa);
4796 spa_remove(spa);
4797 mutex_exit(&spa_namespace_lock);
4798 return (error);
4799 }
4800
4801 /*
4802 * Get the list of spares, if specified.
4803 */
4804 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4805 &spares, &nspares) == 0) {
4806 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
4807 KM_SLEEP) == 0);
4808 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4809 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4810 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4811 spa_load_spares(spa);
4812 spa_config_exit(spa, SCL_ALL, FTAG);
4813 spa->spa_spares.sav_sync = B_TRUE;
4814 }
4815
4816 /*
4817 * Get the list of level 2 cache devices, if specified.
4818 */
4819 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4820 &l2cache, &nl2cache) == 0) {
4821 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4822 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4823 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4824 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4825 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4826 spa_load_l2cache(spa);
4827 spa_config_exit(spa, SCL_ALL, FTAG);
4828 spa->spa_l2cache.sav_sync = B_TRUE;
4829 }
4830
4831 spa->spa_is_initializing = B_TRUE;
4832 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
4833 spa->spa_is_initializing = B_FALSE;
4834
4835 /*
4836 * Create DDTs (dedup tables).
4837 */
4838 ddt_create(spa);
4839
4840 spa_update_dspace(spa);
4841
4842 tx = dmu_tx_create_assigned(dp, txg);
4843
4844 /*
4845 * Create the pool's history object.
4846 */
4847 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
4848 spa_history_create_obj(spa, tx);
4849
4850 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
4851 spa_history_log_version(spa, "create", tx);
4852
4853 /*
4854 * Create the pool config object.
4855 */
4856 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
4857 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
4858 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
4859
4860 if (zap_add(spa->spa_meta_objset,
4861 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
4862 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
4863 cmn_err(CE_PANIC, "failed to add pool config");
4864 }
4865
4866 if (zap_add(spa->spa_meta_objset,
4867 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
4868 sizeof (uint64_t), 1, &version, tx) != 0) {
4869 cmn_err(CE_PANIC, "failed to add pool version");
4870 }
4871
4872 /* Newly created pools with the right version are always deflated. */
4873 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
4874 spa->spa_deflate = TRUE;
4875 if (zap_add(spa->spa_meta_objset,
4876 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4877 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
4878 cmn_err(CE_PANIC, "failed to add deflate");
4879 }
4880 }
4881
4882 /*
4883 * Create the deferred-free bpobj. Turn off compression
4884 * because sync-to-convergence takes longer if the blocksize
4885 * keeps changing.
4886 */
4887 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
4888 dmu_object_set_compress(spa->spa_meta_objset, obj,
4889 ZIO_COMPRESS_OFF, tx);
4890 if (zap_add(spa->spa_meta_objset,
4891 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
4892 sizeof (uint64_t), 1, &obj, tx) != 0) {
4893 cmn_err(CE_PANIC, "failed to add bpobj");
4894 }
4895 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
4896 spa->spa_meta_objset, obj));
4897
4898 /*
4899 * Generate some random noise for salted checksums to operate on.
4900 */
4901 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4902 sizeof (spa->spa_cksum_salt.zcs_bytes));
4903
4904 /*
4905 * Set pool properties.
4906 */
4907 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
4908 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4909 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
4910 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
4911 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
4912
4913 if (props != NULL) {
4914 spa_configfile_set(spa, props, B_FALSE);
4915 spa_sync_props(props, tx);
4916 }
4917
4918 dmu_tx_commit(tx);
4919
4920 /*
4921 * If the root dataset is encrypted we will need to create key mappings
4922 * for the zio layer before we start to write any data to disk and hold
4923 * them until after the first txg has been synced. Waiting for the first
4924 * transaction to complete also ensures that our bean counters are
4925 * appropriately updated.
4926 */
4927 if (dp->dp_root_dir->dd_crypto_obj != 0) {
4928 root_dsobj = dsl_dir_phys(dp->dp_root_dir)->dd_head_dataset_obj;
4929 VERIFY0(spa_keystore_create_mapping_impl(spa, root_dsobj,
4930 dp->dp_root_dir, FTAG));
4931 }
4932
4933 spa->spa_sync_on = B_TRUE;
4934 txg_sync_start(dp);
4935 mmp_thread_start(spa);
4936 txg_wait_synced(dp, txg);
4937
4938 if (dp->dp_root_dir->dd_crypto_obj != 0)
4939 VERIFY0(spa_keystore_remove_mapping(spa, root_dsobj, FTAG));
4940
4941 spa_spawn_aux_threads(spa);
4942
4943 spa_write_cachefile(spa, B_FALSE, B_TRUE);
4944
4945 /*
4946 * Don't count references from objsets that are already closed
4947 * and are making their way through the eviction process.
4948 */
4949 spa_evicting_os_wait(spa);
4950 spa->spa_minref = refcount_count(&spa->spa_refcount);
4951 spa->spa_load_state = SPA_LOAD_NONE;
4952
4953 mutex_exit(&spa_namespace_lock);
4954
4955 return (0);
4956 }
4957
4958 /*
4959 * Import a non-root pool into the system.
4960 */
4961 int
4962 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4963 {
4964 spa_t *spa;
4965 char *altroot = NULL;
4966 spa_load_state_t state = SPA_LOAD_IMPORT;
4967 zpool_rewind_policy_t policy;
4968 uint64_t mode = spa_mode_global;
4969 uint64_t readonly = B_FALSE;
4970 int error;
4971 nvlist_t *nvroot;
4972 nvlist_t **spares, **l2cache;
4973 uint_t nspares, nl2cache;
4974
4975 /*
4976 * If a pool with this name exists, return failure.
4977 */
4978 mutex_enter(&spa_namespace_lock);
4979 if (spa_lookup(pool) != NULL) {
4980 mutex_exit(&spa_namespace_lock);
4981 return (SET_ERROR(EEXIST));
4982 }
4983
4984 /*
4985 * Create and initialize the spa structure.
4986 */
4987 (void) nvlist_lookup_string(props,
4988 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4989 (void) nvlist_lookup_uint64(props,
4990 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4991 if (readonly)
4992 mode = FREAD;
4993 spa = spa_add(pool, config, altroot);
4994 spa->spa_import_flags = flags;
4995
4996 /*
4997 * Verbatim import - Take a pool and insert it into the namespace
4998 * as if it had been loaded at boot.
4999 */
5000 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5001 if (props != NULL)
5002 spa_configfile_set(spa, props, B_FALSE);
5003
5004 spa_write_cachefile(spa, B_FALSE, B_TRUE);
5005 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5006 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5007 mutex_exit(&spa_namespace_lock);
5008 return (0);
5009 }
5010
5011 spa_activate(spa, mode);
5012
5013 /*
5014 * Don't start async tasks until we know everything is healthy.
5015 */
5016 spa_async_suspend(spa);
5017
5018 zpool_get_rewind_policy(config, &policy);
5019 if (policy.zrp_request & ZPOOL_DO_REWIND)
5020 state = SPA_LOAD_RECOVER;
5021
5022 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5023
5024 if (state != SPA_LOAD_RECOVER) {
5025 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5026 zfs_dbgmsg("spa_import: importing %s", pool);
5027 } else {
5028 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5029 "(RECOVERY MODE)", pool, (longlong_t)policy.zrp_txg);
5030 }
5031 error = spa_load_best(spa, state, policy.zrp_txg, policy.zrp_request);
5032
5033 /*
5034 * Propagate anything learned while loading the pool and pass it
5035 * back to caller (i.e. rewind info, missing devices, etc).
5036 */
5037 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5038 spa->spa_load_info) == 0);
5039
5040 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5041 /*
5042 * Toss any existing sparelist, as it doesn't have any validity
5043 * anymore, and conflicts with spa_has_spare().
5044 */
5045 if (spa->spa_spares.sav_config) {
5046 nvlist_free(spa->spa_spares.sav_config);
5047 spa->spa_spares.sav_config = NULL;
5048 spa_load_spares(spa);
5049 }
5050 if (spa->spa_l2cache.sav_config) {
5051 nvlist_free(spa->spa_l2cache.sav_config);
5052 spa->spa_l2cache.sav_config = NULL;
5053 spa_load_l2cache(spa);
5054 }
5055
5056 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5057 &nvroot) == 0);
5058 spa_config_exit(spa, SCL_ALL, FTAG);
5059
5060 if (props != NULL)
5061 spa_configfile_set(spa, props, B_FALSE);
5062
5063 if (error != 0 || (props && spa_writeable(spa) &&
5064 (error = spa_prop_set(spa, props)))) {
5065 spa_unload(spa);
5066 spa_deactivate(spa);
5067 spa_remove(spa);
5068 mutex_exit(&spa_namespace_lock);
5069 return (error);
5070 }
5071
5072 spa_async_resume(spa);
5073
5074 /*
5075 * Override any spares and level 2 cache devices as specified by
5076 * the user, as these may have correct device names/devids, etc.
5077 */
5078 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5079 &spares, &nspares) == 0) {
5080 if (spa->spa_spares.sav_config)
5081 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
5082 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
5083 else
5084 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
5085 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5086 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5087 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5088 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5089 spa_load_spares(spa);
5090 spa_config_exit(spa, SCL_ALL, FTAG);
5091 spa->spa_spares.sav_sync = B_TRUE;
5092 }
5093 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5094 &l2cache, &nl2cache) == 0) {
5095 if (spa->spa_l2cache.sav_config)
5096 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
5097 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
5098 else
5099 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5100 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5101 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5102 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5103 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5104 spa_load_l2cache(spa);
5105 spa_config_exit(spa, SCL_ALL, FTAG);
5106 spa->spa_l2cache.sav_sync = B_TRUE;
5107 }
5108
5109 /*
5110 * Check for any removed devices.
5111 */
5112 if (spa->spa_autoreplace) {
5113 spa_aux_check_removed(&spa->spa_spares);
5114 spa_aux_check_removed(&spa->spa_l2cache);
5115 }
5116
5117 if (spa_writeable(spa)) {
5118 /*
5119 * Update the config cache to include the newly-imported pool.
5120 */
5121 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5122 }
5123
5124 /*
5125 * It's possible that the pool was expanded while it was exported.
5126 * We kick off an async task to handle this for us.
5127 */
5128 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5129
5130 spa_history_log_version(spa, "import", NULL);
5131
5132 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5133
5134 zvol_create_minors(spa, pool, B_TRUE);
5135
5136 mutex_exit(&spa_namespace_lock);
5137
5138 return (0);
5139 }
5140
5141 nvlist_t *
5142 spa_tryimport(nvlist_t *tryconfig)
5143 {
5144 nvlist_t *config = NULL;
5145 char *poolname, *cachefile;
5146 spa_t *spa;
5147 uint64_t state;
5148 int error;
5149 zpool_rewind_policy_t policy;
5150
5151 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
5152 return (NULL);
5153
5154 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
5155 return (NULL);
5156
5157 /*
5158 * Create and initialize the spa structure.
5159 */
5160 mutex_enter(&spa_namespace_lock);
5161 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
5162 spa_activate(spa, FREAD);
5163
5164 /*
5165 * Rewind pool if a max txg was provided. Note that even though we
5166 * retrieve the complete rewind policy, only the rewind txg is relevant
5167 * for tryimport.
5168 */
5169 zpool_get_rewind_policy(spa->spa_config, &policy);
5170 if (policy.zrp_txg != UINT64_MAX) {
5171 spa->spa_load_max_txg = policy.zrp_txg;
5172 spa->spa_extreme_rewind = B_TRUE;
5173 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
5174 poolname, (longlong_t)policy.zrp_txg);
5175 } else {
5176 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
5177 }
5178
5179 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
5180 == 0) {
5181 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
5182 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5183 } else {
5184 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
5185 }
5186
5187 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
5188
5189 /*
5190 * If 'tryconfig' was at least parsable, return the current config.
5191 */
5192 if (spa->spa_root_vdev != NULL) {
5193 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5194 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
5195 poolname) == 0);
5196 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5197 state) == 0);
5198 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
5199 spa->spa_uberblock.ub_timestamp) == 0);
5200 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5201 spa->spa_load_info) == 0);
5202 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
5203 spa->spa_errata) == 0);
5204
5205 /*
5206 * If the bootfs property exists on this pool then we
5207 * copy it out so that external consumers can tell which
5208 * pools are bootable.
5209 */
5210 if ((!error || error == EEXIST) && spa->spa_bootfs) {
5211 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5212
5213 /*
5214 * We have to play games with the name since the
5215 * pool was opened as TRYIMPORT_NAME.
5216 */
5217 if (dsl_dsobj_to_dsname(spa_name(spa),
5218 spa->spa_bootfs, tmpname) == 0) {
5219 char *cp;
5220 char *dsname;
5221
5222 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5223
5224 cp = strchr(tmpname, '/');
5225 if (cp == NULL) {
5226 (void) strlcpy(dsname, tmpname,
5227 MAXPATHLEN);
5228 } else {
5229 (void) snprintf(dsname, MAXPATHLEN,
5230 "%s/%s", poolname, ++cp);
5231 }
5232 VERIFY(nvlist_add_string(config,
5233 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
5234 kmem_free(dsname, MAXPATHLEN);
5235 }
5236 kmem_free(tmpname, MAXPATHLEN);
5237 }
5238
5239 /*
5240 * Add the list of hot spares and level 2 cache devices.
5241 */
5242 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5243 spa_add_spares(spa, config);
5244 spa_add_l2cache(spa, config);
5245 spa_config_exit(spa, SCL_CONFIG, FTAG);
5246 }
5247
5248 spa_unload(spa);
5249 spa_deactivate(spa);
5250 spa_remove(spa);
5251 mutex_exit(&spa_namespace_lock);
5252
5253 return (config);
5254 }
5255
5256 /*
5257 * Pool export/destroy
5258 *
5259 * The act of destroying or exporting a pool is very simple. We make sure there
5260 * is no more pending I/O and any references to the pool are gone. Then, we
5261 * update the pool state and sync all the labels to disk, removing the
5262 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
5263 * we don't sync the labels or remove the configuration cache.
5264 */
5265 static int
5266 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5267 boolean_t force, boolean_t hardforce)
5268 {
5269 spa_t *spa;
5270
5271 if (oldconfig)
5272 *oldconfig = NULL;
5273
5274 if (!(spa_mode_global & FWRITE))
5275 return (SET_ERROR(EROFS));
5276
5277 mutex_enter(&spa_namespace_lock);
5278 if ((spa = spa_lookup(pool)) == NULL) {
5279 mutex_exit(&spa_namespace_lock);
5280 return (SET_ERROR(ENOENT));
5281 }
5282
5283 /*
5284 * Put a hold on the pool, drop the namespace lock, stop async tasks,
5285 * reacquire the namespace lock, and see if we can export.
5286 */
5287 spa_open_ref(spa, FTAG);
5288 mutex_exit(&spa_namespace_lock);
5289 spa_async_suspend(spa);
5290 if (spa->spa_zvol_taskq) {
5291 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
5292 taskq_wait(spa->spa_zvol_taskq);
5293 }
5294 mutex_enter(&spa_namespace_lock);
5295 spa_close(spa, FTAG);
5296
5297 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
5298 goto export_spa;
5299 /*
5300 * The pool will be in core if it's openable, in which case we can
5301 * modify its state. Objsets may be open only because they're dirty,
5302 * so we have to force it to sync before checking spa_refcnt.
5303 */
5304 if (spa->spa_sync_on) {
5305 txg_wait_synced(spa->spa_dsl_pool, 0);
5306 spa_evicting_os_wait(spa);
5307 }
5308
5309 /*
5310 * A pool cannot be exported or destroyed if there are active
5311 * references. If we are resetting a pool, allow references by
5312 * fault injection handlers.
5313 */
5314 if (!spa_refcount_zero(spa) ||
5315 (spa->spa_inject_ref != 0 &&
5316 new_state != POOL_STATE_UNINITIALIZED)) {
5317 spa_async_resume(spa);
5318 mutex_exit(&spa_namespace_lock);
5319 return (SET_ERROR(EBUSY));
5320 }
5321
5322 if (spa->spa_sync_on) {
5323 /*
5324 * A pool cannot be exported if it has an active shared spare.
5325 * This is to prevent other pools stealing the active spare
5326 * from an exported pool. At user's own will, such pool can
5327 * be forcedly exported.
5328 */
5329 if (!force && new_state == POOL_STATE_EXPORTED &&
5330 spa_has_active_shared_spare(spa)) {
5331 spa_async_resume(spa);
5332 mutex_exit(&spa_namespace_lock);
5333 return (SET_ERROR(EXDEV));
5334 }
5335
5336 /*
5337 * We want this to be reflected on every label,
5338 * so mark them all dirty. spa_unload() will do the
5339 * final sync that pushes these changes out.
5340 */
5341 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
5342 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5343 spa->spa_state = new_state;
5344 spa->spa_final_txg = spa_last_synced_txg(spa) +
5345 TXG_DEFER_SIZE + 1;
5346 vdev_config_dirty(spa->spa_root_vdev);
5347 spa_config_exit(spa, SCL_ALL, FTAG);
5348 }
5349 }
5350
5351 export_spa:
5352 if (new_state == POOL_STATE_DESTROYED)
5353 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
5354 else if (new_state == POOL_STATE_EXPORTED)
5355 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
5356
5357 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5358 spa_unload(spa);
5359 spa_deactivate(spa);
5360 }
5361
5362 if (oldconfig && spa->spa_config)
5363 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
5364
5365 if (new_state != POOL_STATE_UNINITIALIZED) {
5366 if (!hardforce)
5367 spa_write_cachefile(spa, B_TRUE, B_TRUE);
5368 spa_remove(spa);
5369 }
5370 mutex_exit(&spa_namespace_lock);
5371
5372 return (0);
5373 }
5374
5375 /*
5376 * Destroy a storage pool.
5377 */
5378 int
5379 spa_destroy(char *pool)
5380 {
5381 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
5382 B_FALSE, B_FALSE));
5383 }
5384
5385 /*
5386 * Export a storage pool.
5387 */
5388 int
5389 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
5390 boolean_t hardforce)
5391 {
5392 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
5393 force, hardforce));
5394 }
5395
5396 /*
5397 * Similar to spa_export(), this unloads the spa_t without actually removing it
5398 * from the namespace in any way.
5399 */
5400 int
5401 spa_reset(char *pool)
5402 {
5403 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
5404 B_FALSE, B_FALSE));
5405 }
5406
5407 /*
5408 * ==========================================================================
5409 * Device manipulation
5410 * ==========================================================================
5411 */
5412
5413 /*
5414 * Add a device to a storage pool.
5415 */
5416 int
5417 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
5418 {
5419 uint64_t txg, id;
5420 int error;
5421 vdev_t *rvd = spa->spa_root_vdev;
5422 vdev_t *vd, *tvd;
5423 nvlist_t **spares, **l2cache;
5424 uint_t nspares, nl2cache;
5425
5426 ASSERT(spa_writeable(spa));
5427
5428 txg = spa_vdev_enter(spa);
5429
5430 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
5431 VDEV_ALLOC_ADD)) != 0)
5432 return (spa_vdev_exit(spa, NULL, txg, error));
5433
5434 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
5435
5436 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
5437 &nspares) != 0)
5438 nspares = 0;
5439
5440 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
5441 &nl2cache) != 0)
5442 nl2cache = 0;
5443
5444 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
5445 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5446
5447 if (vd->vdev_children != 0 &&
5448 (error = vdev_create(vd, txg, B_FALSE)) != 0)
5449 return (spa_vdev_exit(spa, vd, txg, error));
5450
5451 /*
5452 * We must validate the spares and l2cache devices after checking the
5453 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
5454 */
5455 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
5456 return (spa_vdev_exit(spa, vd, txg, error));
5457
5458 /*
5459 * If we are in the middle of a device removal, we can only add
5460 * devices which match the existing devices in the pool.
5461 * If we are in the middle of a removal, or have some indirect
5462 * vdevs, we can not add raidz toplevels.
5463 */
5464 if (spa->spa_vdev_removal != NULL ||
5465 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5466 for (int c = 0; c < vd->vdev_children; c++) {
5467 tvd = vd->vdev_child[c];
5468 if (spa->spa_vdev_removal != NULL &&
5469 tvd->vdev_ashift != spa->spa_max_ashift) {
5470 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5471 }
5472 /* Fail if top level vdev is raidz */
5473 if (tvd->vdev_ops == &vdev_raidz_ops) {
5474 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5475 }
5476 /*
5477 * Need the top level mirror to be
5478 * a mirror of leaf vdevs only
5479 */
5480 if (tvd->vdev_ops == &vdev_mirror_ops) {
5481 for (uint64_t cid = 0;
5482 cid < tvd->vdev_children; cid++) {
5483 vdev_t *cvd = tvd->vdev_child[cid];
5484 if (!cvd->vdev_ops->vdev_op_leaf) {
5485 return (spa_vdev_exit(spa, vd,
5486 txg, EINVAL));
5487 }
5488 }
5489 }
5490 }
5491 }
5492
5493 for (int c = 0; c < vd->vdev_children; c++) {
5494
5495 /*
5496 * Set the vdev id to the first hole, if one exists.
5497 */
5498 for (id = 0; id < rvd->vdev_children; id++) {
5499 if (rvd->vdev_child[id]->vdev_ishole) {
5500 vdev_free(rvd->vdev_child[id]);
5501 break;
5502 }
5503 }
5504 tvd = vd->vdev_child[c];
5505 vdev_remove_child(vd, tvd);
5506 tvd->vdev_id = id;
5507 vdev_add_child(rvd, tvd);
5508 vdev_config_dirty(tvd);
5509 }
5510
5511 if (nspares != 0) {
5512 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
5513 ZPOOL_CONFIG_SPARES);
5514 spa_load_spares(spa);
5515 spa->spa_spares.sav_sync = B_TRUE;
5516 }
5517
5518 if (nl2cache != 0) {
5519 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
5520 ZPOOL_CONFIG_L2CACHE);
5521 spa_load_l2cache(spa);
5522 spa->spa_l2cache.sav_sync = B_TRUE;
5523 }
5524
5525 /*
5526 * We have to be careful when adding new vdevs to an existing pool.
5527 * If other threads start allocating from these vdevs before we
5528 * sync the config cache, and we lose power, then upon reboot we may
5529 * fail to open the pool because there are DVAs that the config cache
5530 * can't translate. Therefore, we first add the vdevs without
5531 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
5532 * and then let spa_config_update() initialize the new metaslabs.
5533 *
5534 * spa_load() checks for added-but-not-initialized vdevs, so that
5535 * if we lose power at any point in this sequence, the remaining
5536 * steps will be completed the next time we load the pool.
5537 */
5538 (void) spa_vdev_exit(spa, vd, txg, 0);
5539
5540 mutex_enter(&spa_namespace_lock);
5541 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5542 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
5543 mutex_exit(&spa_namespace_lock);
5544
5545 return (0);
5546 }
5547
5548 /*
5549 * Attach a device to a mirror. The arguments are the path to any device
5550 * in the mirror, and the nvroot for the new device. If the path specifies
5551 * a device that is not mirrored, we automatically insert the mirror vdev.
5552 *
5553 * If 'replacing' is specified, the new device is intended to replace the
5554 * existing device; in this case the two devices are made into their own
5555 * mirror using the 'replacing' vdev, which is functionally identical to
5556 * the mirror vdev (it actually reuses all the same ops) but has a few
5557 * extra rules: you can't attach to it after it's been created, and upon
5558 * completion of resilvering, the first disk (the one being replaced)
5559 * is automatically detached.
5560 */
5561 int
5562 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
5563 {
5564 uint64_t txg, dtl_max_txg;
5565 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
5566 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
5567 vdev_ops_t *pvops;
5568 char *oldvdpath, *newvdpath;
5569 int newvd_isspare;
5570 int error;
5571
5572 ASSERT(spa_writeable(spa));
5573
5574 txg = spa_vdev_enter(spa);
5575
5576 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
5577
5578 if (spa->spa_vdev_removal != NULL)
5579 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5580
5581 if (oldvd == NULL)
5582 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5583
5584 if (!oldvd->vdev_ops->vdev_op_leaf)
5585 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5586
5587 pvd = oldvd->vdev_parent;
5588
5589 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
5590 VDEV_ALLOC_ATTACH)) != 0)
5591 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5592
5593 if (newrootvd->vdev_children != 1)
5594 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5595
5596 newvd = newrootvd->vdev_child[0];
5597
5598 if (!newvd->vdev_ops->vdev_op_leaf)
5599 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5600
5601 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
5602 return (spa_vdev_exit(spa, newrootvd, txg, error));
5603
5604 /*
5605 * Spares can't replace logs
5606 */
5607 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
5608 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5609
5610 if (!replacing) {
5611 /*
5612 * For attach, the only allowable parent is a mirror or the root
5613 * vdev.
5614 */
5615 if (pvd->vdev_ops != &vdev_mirror_ops &&
5616 pvd->vdev_ops != &vdev_root_ops)
5617 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5618
5619 pvops = &vdev_mirror_ops;
5620 } else {
5621 /*
5622 * Active hot spares can only be replaced by inactive hot
5623 * spares.
5624 */
5625 if (pvd->vdev_ops == &vdev_spare_ops &&
5626 oldvd->vdev_isspare &&
5627 !spa_has_spare(spa, newvd->vdev_guid))
5628 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5629
5630 /*
5631 * If the source is a hot spare, and the parent isn't already a
5632 * spare, then we want to create a new hot spare. Otherwise, we
5633 * want to create a replacing vdev. The user is not allowed to
5634 * attach to a spared vdev child unless the 'isspare' state is
5635 * the same (spare replaces spare, non-spare replaces
5636 * non-spare).
5637 */
5638 if (pvd->vdev_ops == &vdev_replacing_ops &&
5639 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
5640 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5641 } else if (pvd->vdev_ops == &vdev_spare_ops &&
5642 newvd->vdev_isspare != oldvd->vdev_isspare) {
5643 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5644 }
5645
5646 if (newvd->vdev_isspare)
5647 pvops = &vdev_spare_ops;
5648 else
5649 pvops = &vdev_replacing_ops;
5650 }
5651
5652 /*
5653 * Make sure the new device is big enough.
5654 */
5655 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
5656 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
5657
5658 /*
5659 * The new device cannot have a higher alignment requirement
5660 * than the top-level vdev.
5661 */
5662 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
5663 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
5664
5665 /*
5666 * If this is an in-place replacement, update oldvd's path and devid
5667 * to make it distinguishable from newvd, and unopenable from now on.
5668 */
5669 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
5670 spa_strfree(oldvd->vdev_path);
5671 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
5672 KM_SLEEP);
5673 (void) sprintf(oldvd->vdev_path, "%s/%s",
5674 newvd->vdev_path, "old");
5675 if (oldvd->vdev_devid != NULL) {
5676 spa_strfree(oldvd->vdev_devid);
5677 oldvd->vdev_devid = NULL;
5678 }
5679 }
5680
5681 /* mark the device being resilvered */
5682 newvd->vdev_resilver_txg = txg;
5683
5684 /*
5685 * If the parent is not a mirror, or if we're replacing, insert the new
5686 * mirror/replacing/spare vdev above oldvd.
5687 */
5688 if (pvd->vdev_ops != pvops)
5689 pvd = vdev_add_parent(oldvd, pvops);
5690
5691 ASSERT(pvd->vdev_top->vdev_parent == rvd);
5692 ASSERT(pvd->vdev_ops == pvops);
5693 ASSERT(oldvd->vdev_parent == pvd);
5694
5695 /*
5696 * Extract the new device from its root and add it to pvd.
5697 */
5698 vdev_remove_child(newrootvd, newvd);
5699 newvd->vdev_id = pvd->vdev_children;
5700 newvd->vdev_crtxg = oldvd->vdev_crtxg;
5701 vdev_add_child(pvd, newvd);
5702
5703 /*
5704 * Reevaluate the parent vdev state.
5705 */
5706 vdev_propagate_state(pvd);
5707
5708 tvd = newvd->vdev_top;
5709 ASSERT(pvd->vdev_top == tvd);
5710 ASSERT(tvd->vdev_parent == rvd);
5711
5712 vdev_config_dirty(tvd);
5713
5714 /*
5715 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
5716 * for any dmu_sync-ed blocks. It will propagate upward when
5717 * spa_vdev_exit() calls vdev_dtl_reassess().
5718 */
5719 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
5720
5721 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
5722 dtl_max_txg - TXG_INITIAL);
5723
5724 if (newvd->vdev_isspare) {
5725 spa_spare_activate(newvd);
5726 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
5727 }
5728
5729 oldvdpath = spa_strdup(oldvd->vdev_path);
5730 newvdpath = spa_strdup(newvd->vdev_path);
5731 newvd_isspare = newvd->vdev_isspare;
5732
5733 /*
5734 * Mark newvd's DTL dirty in this txg.
5735 */
5736 vdev_dirty(tvd, VDD_DTL, newvd, txg);
5737
5738 /*
5739 * Schedule the resilver to restart in the future. We do this to
5740 * ensure that dmu_sync-ed blocks have been stitched into the
5741 * respective datasets.
5742 */
5743 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
5744
5745 if (spa->spa_bootfs)
5746 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
5747
5748 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
5749
5750 /*
5751 * Commit the config
5752 */
5753 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
5754
5755 spa_history_log_internal(spa, "vdev attach", NULL,
5756 "%s vdev=%s %s vdev=%s",
5757 replacing && newvd_isspare ? "spare in" :
5758 replacing ? "replace" : "attach", newvdpath,
5759 replacing ? "for" : "to", oldvdpath);
5760
5761 spa_strfree(oldvdpath);
5762 spa_strfree(newvdpath);
5763
5764 return (0);
5765 }
5766
5767 /*
5768 * Detach a device from a mirror or replacing vdev.
5769 *
5770 * If 'replace_done' is specified, only detach if the parent
5771 * is a replacing vdev.
5772 */
5773 int
5774 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
5775 {
5776 uint64_t txg;
5777 int error;
5778 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
5779 vdev_t *vd, *pvd, *cvd, *tvd;
5780 boolean_t unspare = B_FALSE;
5781 uint64_t unspare_guid = 0;
5782 char *vdpath;
5783
5784 ASSERT(spa_writeable(spa));
5785
5786 txg = spa_vdev_enter(spa);
5787
5788 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5789
5790 if (vd == NULL)
5791 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5792
5793 if (!vd->vdev_ops->vdev_op_leaf)
5794 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5795
5796 pvd = vd->vdev_parent;
5797
5798 /*
5799 * If the parent/child relationship is not as expected, don't do it.
5800 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5801 * vdev that's replacing B with C. The user's intent in replacing
5802 * is to go from M(A,B) to M(A,C). If the user decides to cancel
5803 * the replace by detaching C, the expected behavior is to end up
5804 * M(A,B). But suppose that right after deciding to detach C,
5805 * the replacement of B completes. We would have M(A,C), and then
5806 * ask to detach C, which would leave us with just A -- not what
5807 * the user wanted. To prevent this, we make sure that the
5808 * parent/child relationship hasn't changed -- in this example,
5809 * that C's parent is still the replacing vdev R.
5810 */
5811 if (pvd->vdev_guid != pguid && pguid != 0)
5812 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5813
5814 /*
5815 * Only 'replacing' or 'spare' vdevs can be replaced.
5816 */
5817 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5818 pvd->vdev_ops != &vdev_spare_ops)
5819 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5820
5821 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5822 spa_version(spa) >= SPA_VERSION_SPARES);
5823
5824 /*
5825 * Only mirror, replacing, and spare vdevs support detach.
5826 */
5827 if (pvd->vdev_ops != &vdev_replacing_ops &&
5828 pvd->vdev_ops != &vdev_mirror_ops &&
5829 pvd->vdev_ops != &vdev_spare_ops)
5830 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5831
5832 /*
5833 * If this device has the only valid copy of some data,
5834 * we cannot safely detach it.
5835 */
5836 if (vdev_dtl_required(vd))
5837 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5838
5839 ASSERT(pvd->vdev_children >= 2);
5840
5841 /*
5842 * If we are detaching the second disk from a replacing vdev, then
5843 * check to see if we changed the original vdev's path to have "/old"
5844 * at the end in spa_vdev_attach(). If so, undo that change now.
5845 */
5846 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5847 vd->vdev_path != NULL) {
5848 size_t len = strlen(vd->vdev_path);
5849
5850 for (int c = 0; c < pvd->vdev_children; c++) {
5851 cvd = pvd->vdev_child[c];
5852
5853 if (cvd == vd || cvd->vdev_path == NULL)
5854 continue;
5855
5856 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5857 strcmp(cvd->vdev_path + len, "/old") == 0) {
5858 spa_strfree(cvd->vdev_path);
5859 cvd->vdev_path = spa_strdup(vd->vdev_path);
5860 break;
5861 }
5862 }
5863 }
5864
5865 /*
5866 * If we are detaching the original disk from a spare, then it implies
5867 * that the spare should become a real disk, and be removed from the
5868 * active spare list for the pool.
5869 */
5870 if (pvd->vdev_ops == &vdev_spare_ops &&
5871 vd->vdev_id == 0 &&
5872 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5873 unspare = B_TRUE;
5874
5875 /*
5876 * Erase the disk labels so the disk can be used for other things.
5877 * This must be done after all other error cases are handled,
5878 * but before we disembowel vd (so we can still do I/O to it).
5879 * But if we can't do it, don't treat the error as fatal --
5880 * it may be that the unwritability of the disk is the reason
5881 * it's being detached!
5882 */
5883 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5884
5885 /*
5886 * Remove vd from its parent and compact the parent's children.
5887 */
5888 vdev_remove_child(pvd, vd);
5889 vdev_compact_children(pvd);
5890
5891 /*
5892 * Remember one of the remaining children so we can get tvd below.
5893 */
5894 cvd = pvd->vdev_child[pvd->vdev_children - 1];
5895
5896 /*
5897 * If we need to remove the remaining child from the list of hot spares,
5898 * do it now, marking the vdev as no longer a spare in the process.
5899 * We must do this before vdev_remove_parent(), because that can
5900 * change the GUID if it creates a new toplevel GUID. For a similar
5901 * reason, we must remove the spare now, in the same txg as the detach;
5902 * otherwise someone could attach a new sibling, change the GUID, and
5903 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5904 */
5905 if (unspare) {
5906 ASSERT(cvd->vdev_isspare);
5907 spa_spare_remove(cvd);
5908 unspare_guid = cvd->vdev_guid;
5909 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5910 cvd->vdev_unspare = B_TRUE;
5911 }
5912
5913 /*
5914 * If the parent mirror/replacing vdev only has one child,
5915 * the parent is no longer needed. Remove it from the tree.
5916 */
5917 if (pvd->vdev_children == 1) {
5918 if (pvd->vdev_ops == &vdev_spare_ops)
5919 cvd->vdev_unspare = B_FALSE;
5920 vdev_remove_parent(cvd);
5921 }
5922
5923
5924 /*
5925 * We don't set tvd until now because the parent we just removed
5926 * may have been the previous top-level vdev.
5927 */
5928 tvd = cvd->vdev_top;
5929 ASSERT(tvd->vdev_parent == rvd);
5930
5931 /*
5932 * Reevaluate the parent vdev state.
5933 */
5934 vdev_propagate_state(cvd);
5935
5936 /*
5937 * If the 'autoexpand' property is set on the pool then automatically
5938 * try to expand the size of the pool. For example if the device we
5939 * just detached was smaller than the others, it may be possible to
5940 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5941 * first so that we can obtain the updated sizes of the leaf vdevs.
5942 */
5943 if (spa->spa_autoexpand) {
5944 vdev_reopen(tvd);
5945 vdev_expand(tvd, txg);
5946 }
5947
5948 vdev_config_dirty(tvd);
5949
5950 /*
5951 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
5952 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5953 * But first make sure we're not on any *other* txg's DTL list, to
5954 * prevent vd from being accessed after it's freed.
5955 */
5956 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
5957 for (int t = 0; t < TXG_SIZE; t++)
5958 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5959 vd->vdev_detached = B_TRUE;
5960 vdev_dirty(tvd, VDD_DTL, vd, txg);
5961
5962 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
5963
5964 /* hang on to the spa before we release the lock */
5965 spa_open_ref(spa, FTAG);
5966
5967 error = spa_vdev_exit(spa, vd, txg, 0);
5968
5969 spa_history_log_internal(spa, "detach", NULL,
5970 "vdev=%s", vdpath);
5971 spa_strfree(vdpath);
5972
5973 /*
5974 * If this was the removal of the original device in a hot spare vdev,
5975 * then we want to go through and remove the device from the hot spare
5976 * list of every other pool.
5977 */
5978 if (unspare) {
5979 spa_t *altspa = NULL;
5980
5981 mutex_enter(&spa_namespace_lock);
5982 while ((altspa = spa_next(altspa)) != NULL) {
5983 if (altspa->spa_state != POOL_STATE_ACTIVE ||
5984 altspa == spa)
5985 continue;
5986
5987 spa_open_ref(altspa, FTAG);
5988 mutex_exit(&spa_namespace_lock);
5989 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5990 mutex_enter(&spa_namespace_lock);
5991 spa_close(altspa, FTAG);
5992 }
5993 mutex_exit(&spa_namespace_lock);
5994
5995 /* search the rest of the vdevs for spares to remove */
5996 spa_vdev_resilver_done(spa);
5997 }
5998
5999 /* all done with the spa; OK to release */
6000 mutex_enter(&spa_namespace_lock);
6001 spa_close(spa, FTAG);
6002 mutex_exit(&spa_namespace_lock);
6003
6004 return (error);
6005 }
6006
6007 /*
6008 * Split a set of devices from their mirrors, and create a new pool from them.
6009 */
6010 int
6011 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
6012 nvlist_t *props, boolean_t exp)
6013 {
6014 int error = 0;
6015 uint64_t txg, *glist;
6016 spa_t *newspa;
6017 uint_t c, children, lastlog;
6018 nvlist_t **child, *nvl, *tmp;
6019 dmu_tx_t *tx;
6020 char *altroot = NULL;
6021 vdev_t *rvd, **vml = NULL; /* vdev modify list */
6022 boolean_t activate_slog;
6023
6024 ASSERT(spa_writeable(spa));
6025
6026 txg = spa_vdev_enter(spa);
6027
6028 /* clear the log and flush everything up to now */
6029 activate_slog = spa_passivate_log(spa);
6030 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6031 error = spa_reset_logs(spa);
6032 txg = spa_vdev_config_enter(spa);
6033
6034 if (activate_slog)
6035 spa_activate_log(spa);
6036
6037 if (error != 0)
6038 return (spa_vdev_exit(spa, NULL, txg, error));
6039
6040 /* check new spa name before going any further */
6041 if (spa_lookup(newname) != NULL)
6042 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
6043
6044 /*
6045 * scan through all the children to ensure they're all mirrors
6046 */
6047 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
6048 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
6049 &children) != 0)
6050 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6051
6052 /* first, check to ensure we've got the right child count */
6053 rvd = spa->spa_root_vdev;
6054 lastlog = 0;
6055 for (c = 0; c < rvd->vdev_children; c++) {
6056 vdev_t *vd = rvd->vdev_child[c];
6057
6058 /* don't count the holes & logs as children */
6059 if (vd->vdev_islog || !vdev_is_concrete(vd)) {
6060 if (lastlog == 0)
6061 lastlog = c;
6062 continue;
6063 }
6064
6065 lastlog = 0;
6066 }
6067 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
6068 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6069
6070 /* next, ensure no spare or cache devices are part of the split */
6071 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
6072 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
6073 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6074
6075 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
6076 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
6077
6078 /* then, loop over each vdev and validate it */
6079 for (c = 0; c < children; c++) {
6080 uint64_t is_hole = 0;
6081
6082 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
6083 &is_hole);
6084
6085 if (is_hole != 0) {
6086 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
6087 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
6088 continue;
6089 } else {
6090 error = SET_ERROR(EINVAL);
6091 break;
6092 }
6093 }
6094
6095 /* which disk is going to be split? */
6096 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
6097 &glist[c]) != 0) {
6098 error = SET_ERROR(EINVAL);
6099 break;
6100 }
6101
6102 /* look it up in the spa */
6103 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
6104 if (vml[c] == NULL) {
6105 error = SET_ERROR(ENODEV);
6106 break;
6107 }
6108
6109 /* make sure there's nothing stopping the split */
6110 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
6111 vml[c]->vdev_islog ||
6112 !vdev_is_concrete(vml[c]) ||
6113 vml[c]->vdev_isspare ||
6114 vml[c]->vdev_isl2cache ||
6115 !vdev_writeable(vml[c]) ||
6116 vml[c]->vdev_children != 0 ||
6117 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
6118 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
6119 error = SET_ERROR(EINVAL);
6120 break;
6121 }
6122
6123 if (vdev_dtl_required(vml[c])) {
6124 error = SET_ERROR(EBUSY);
6125 break;
6126 }
6127
6128 /* we need certain info from the top level */
6129 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
6130 vml[c]->vdev_top->vdev_ms_array) == 0);
6131 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
6132 vml[c]->vdev_top->vdev_ms_shift) == 0);
6133 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
6134 vml[c]->vdev_top->vdev_asize) == 0);
6135 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
6136 vml[c]->vdev_top->vdev_ashift) == 0);
6137
6138 /* transfer per-vdev ZAPs */
6139 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
6140 VERIFY0(nvlist_add_uint64(child[c],
6141 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
6142
6143 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
6144 VERIFY0(nvlist_add_uint64(child[c],
6145 ZPOOL_CONFIG_VDEV_TOP_ZAP,
6146 vml[c]->vdev_parent->vdev_top_zap));
6147 }
6148
6149 if (error != 0) {
6150 kmem_free(vml, children * sizeof (vdev_t *));
6151 kmem_free(glist, children * sizeof (uint64_t));
6152 return (spa_vdev_exit(spa, NULL, txg, error));
6153 }
6154
6155 /* stop writers from using the disks */
6156 for (c = 0; c < children; c++) {
6157 if (vml[c] != NULL)
6158 vml[c]->vdev_offline = B_TRUE;
6159 }
6160 vdev_reopen(spa->spa_root_vdev);
6161
6162 /*
6163 * Temporarily record the splitting vdevs in the spa config. This
6164 * will disappear once the config is regenerated.
6165 */
6166 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6167 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
6168 glist, children) == 0);
6169 kmem_free(glist, children * sizeof (uint64_t));
6170
6171 mutex_enter(&spa->spa_props_lock);
6172 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
6173 nvl) == 0);
6174 mutex_exit(&spa->spa_props_lock);
6175 spa->spa_config_splitting = nvl;
6176 vdev_config_dirty(spa->spa_root_vdev);
6177
6178 /* configure and create the new pool */
6179 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
6180 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
6181 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
6182 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6183 spa_version(spa)) == 0);
6184 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
6185 spa->spa_config_txg) == 0);
6186 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
6187 spa_generate_guid(NULL)) == 0);
6188 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
6189 (void) nvlist_lookup_string(props,
6190 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6191
6192 /* add the new pool to the namespace */
6193 newspa = spa_add(newname, config, altroot);
6194 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
6195 newspa->spa_config_txg = spa->spa_config_txg;
6196 spa_set_log_state(newspa, SPA_LOG_CLEAR);
6197
6198 /* release the spa config lock, retaining the namespace lock */
6199 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6200
6201 if (zio_injection_enabled)
6202 zio_handle_panic_injection(spa, FTAG, 1);
6203
6204 spa_activate(newspa, spa_mode_global);
6205 spa_async_suspend(newspa);
6206
6207 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
6208
6209 /* create the new pool from the disks of the original pool */
6210 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
6211 if (error)
6212 goto out;
6213
6214 /* if that worked, generate a real config for the new pool */
6215 if (newspa->spa_root_vdev != NULL) {
6216 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
6217 NV_UNIQUE_NAME, KM_SLEEP) == 0);
6218 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
6219 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
6220 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
6221 B_TRUE));
6222 }
6223
6224 /* set the props */
6225 if (props != NULL) {
6226 spa_configfile_set(newspa, props, B_FALSE);
6227 error = spa_prop_set(newspa, props);
6228 if (error)
6229 goto out;
6230 }
6231
6232 /* flush everything */
6233 txg = spa_vdev_config_enter(newspa);
6234 vdev_config_dirty(newspa->spa_root_vdev);
6235 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
6236
6237 if (zio_injection_enabled)
6238 zio_handle_panic_injection(spa, FTAG, 2);
6239
6240 spa_async_resume(newspa);
6241
6242 /* finally, update the original pool's config */
6243 txg = spa_vdev_config_enter(spa);
6244 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
6245 error = dmu_tx_assign(tx, TXG_WAIT);
6246 if (error != 0)
6247 dmu_tx_abort(tx);
6248 for (c = 0; c < children; c++) {
6249 if (vml[c] != NULL) {
6250 vdev_split(vml[c]);
6251 if (error == 0)
6252 spa_history_log_internal(spa, "detach", tx,
6253 "vdev=%s", vml[c]->vdev_path);
6254
6255 vdev_free(vml[c]);
6256 }
6257 }
6258 spa->spa_avz_action = AVZ_ACTION_REBUILD;
6259 vdev_config_dirty(spa->spa_root_vdev);
6260 spa->spa_config_splitting = NULL;
6261 nvlist_free(nvl);
6262 if (error == 0)
6263 dmu_tx_commit(tx);
6264 (void) spa_vdev_exit(spa, NULL, txg, 0);
6265
6266 if (zio_injection_enabled)
6267 zio_handle_panic_injection(spa, FTAG, 3);
6268
6269 /* split is complete; log a history record */
6270 spa_history_log_internal(newspa, "split", NULL,
6271 "from pool %s", spa_name(spa));
6272
6273 kmem_free(vml, children * sizeof (vdev_t *));
6274
6275 /* if we're not going to mount the filesystems in userland, export */
6276 if (exp)
6277 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
6278 B_FALSE, B_FALSE);
6279
6280 return (error);
6281
6282 out:
6283 spa_unload(newspa);
6284 spa_deactivate(newspa);
6285 spa_remove(newspa);
6286
6287 txg = spa_vdev_config_enter(spa);
6288
6289 /* re-online all offlined disks */
6290 for (c = 0; c < children; c++) {
6291 if (vml[c] != NULL)
6292 vml[c]->vdev_offline = B_FALSE;
6293 }
6294 vdev_reopen(spa->spa_root_vdev);
6295
6296 nvlist_free(spa->spa_config_splitting);
6297 spa->spa_config_splitting = NULL;
6298 (void) spa_vdev_exit(spa, NULL, txg, error);
6299
6300 kmem_free(vml, children * sizeof (vdev_t *));
6301 return (error);
6302 }
6303
6304 /*
6305 * Find any device that's done replacing, or a vdev marked 'unspare' that's
6306 * currently spared, so we can detach it.
6307 */
6308 static vdev_t *
6309 spa_vdev_resilver_done_hunt(vdev_t *vd)
6310 {
6311 vdev_t *newvd, *oldvd;
6312
6313 for (int c = 0; c < vd->vdev_children; c++) {
6314 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
6315 if (oldvd != NULL)
6316 return (oldvd);
6317 }
6318
6319 /*
6320 * Check for a completed replacement. We always consider the first
6321 * vdev in the list to be the oldest vdev, and the last one to be
6322 * the newest (see spa_vdev_attach() for how that works). In
6323 * the case where the newest vdev is faulted, we will not automatically
6324 * remove it after a resilver completes. This is OK as it will require
6325 * user intervention to determine which disk the admin wishes to keep.
6326 */
6327 if (vd->vdev_ops == &vdev_replacing_ops) {
6328 ASSERT(vd->vdev_children > 1);
6329
6330 newvd = vd->vdev_child[vd->vdev_children - 1];
6331 oldvd = vd->vdev_child[0];
6332
6333 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
6334 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6335 !vdev_dtl_required(oldvd))
6336 return (oldvd);
6337 }
6338
6339 /*
6340 * Check for a completed resilver with the 'unspare' flag set.
6341 */
6342 if (vd->vdev_ops == &vdev_spare_ops) {
6343 vdev_t *first = vd->vdev_child[0];
6344 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
6345
6346 if (last->vdev_unspare) {
6347 oldvd = first;
6348 newvd = last;
6349 } else if (first->vdev_unspare) {
6350 oldvd = last;
6351 newvd = first;
6352 } else {
6353 oldvd = NULL;
6354 }
6355
6356 if (oldvd != NULL &&
6357 vdev_dtl_empty(newvd, DTL_MISSING) &&
6358 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6359 !vdev_dtl_required(oldvd))
6360 return (oldvd);
6361
6362 /*
6363 * If there are more than two spares attached to a disk,
6364 * and those spares are not required, then we want to
6365 * attempt to free them up now so that they can be used
6366 * by other pools. Once we're back down to a single
6367 * disk+spare, we stop removing them.
6368 */
6369 if (vd->vdev_children > 2) {
6370 newvd = vd->vdev_child[1];
6371
6372 if (newvd->vdev_isspare && last->vdev_isspare &&
6373 vdev_dtl_empty(last, DTL_MISSING) &&
6374 vdev_dtl_empty(last, DTL_OUTAGE) &&
6375 !vdev_dtl_required(newvd))
6376 return (newvd);
6377 }
6378 }
6379
6380 return (NULL);
6381 }
6382
6383 static void
6384 spa_vdev_resilver_done(spa_t *spa)
6385 {
6386 vdev_t *vd, *pvd, *ppvd;
6387 uint64_t guid, sguid, pguid, ppguid;
6388
6389 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6390
6391 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
6392 pvd = vd->vdev_parent;
6393 ppvd = pvd->vdev_parent;
6394 guid = vd->vdev_guid;
6395 pguid = pvd->vdev_guid;
6396 ppguid = ppvd->vdev_guid;
6397 sguid = 0;
6398 /*
6399 * If we have just finished replacing a hot spared device, then
6400 * we need to detach the parent's first child (the original hot
6401 * spare) as well.
6402 */
6403 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
6404 ppvd->vdev_children == 2) {
6405 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
6406 sguid = ppvd->vdev_child[1]->vdev_guid;
6407 }
6408 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
6409
6410 spa_config_exit(spa, SCL_ALL, FTAG);
6411 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
6412 return;
6413 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
6414 return;
6415 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6416 }
6417
6418 spa_config_exit(spa, SCL_ALL, FTAG);
6419 }
6420
6421 /*
6422 * Update the stored path or FRU for this vdev.
6423 */
6424 int
6425 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
6426 boolean_t ispath)
6427 {
6428 vdev_t *vd;
6429 boolean_t sync = B_FALSE;
6430
6431 ASSERT(spa_writeable(spa));
6432
6433 spa_vdev_state_enter(spa, SCL_ALL);
6434
6435 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
6436 return (spa_vdev_state_exit(spa, NULL, ENOENT));
6437
6438 if (!vd->vdev_ops->vdev_op_leaf)
6439 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
6440
6441 if (ispath) {
6442 if (strcmp(value, vd->vdev_path) != 0) {
6443 spa_strfree(vd->vdev_path);
6444 vd->vdev_path = spa_strdup(value);
6445 sync = B_TRUE;
6446 }
6447 } else {
6448 if (vd->vdev_fru == NULL) {
6449 vd->vdev_fru = spa_strdup(value);
6450 sync = B_TRUE;
6451 } else if (strcmp(value, vd->vdev_fru) != 0) {
6452 spa_strfree(vd->vdev_fru);
6453 vd->vdev_fru = spa_strdup(value);
6454 sync = B_TRUE;
6455 }
6456 }
6457
6458 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
6459 }
6460
6461 int
6462 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
6463 {
6464 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
6465 }
6466
6467 int
6468 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
6469 {
6470 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
6471 }
6472
6473 /*
6474 * ==========================================================================
6475 * SPA Scanning
6476 * ==========================================================================
6477 */
6478 int
6479 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
6480 {
6481 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6482
6483 if (dsl_scan_resilvering(spa->spa_dsl_pool))
6484 return (SET_ERROR(EBUSY));
6485
6486 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
6487 }
6488
6489 int
6490 spa_scan_stop(spa_t *spa)
6491 {
6492 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6493 if (dsl_scan_resilvering(spa->spa_dsl_pool))
6494 return (SET_ERROR(EBUSY));
6495 return (dsl_scan_cancel(spa->spa_dsl_pool));
6496 }
6497
6498 int
6499 spa_scan(spa_t *spa, pool_scan_func_t func)
6500 {
6501 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6502
6503 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6504 return (SET_ERROR(ENOTSUP));
6505
6506 /*
6507 * If a resilver was requested, but there is no DTL on a
6508 * writeable leaf device, we have nothing to do.
6509 */
6510 if (func == POOL_SCAN_RESILVER &&
6511 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
6512 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
6513 return (0);
6514 }
6515
6516 return (dsl_scan(spa->spa_dsl_pool, func));
6517 }
6518
6519 /*
6520 * ==========================================================================
6521 * SPA async task processing
6522 * ==========================================================================
6523 */
6524
6525 static void
6526 spa_async_remove(spa_t *spa, vdev_t *vd)
6527 {
6528 if (vd->vdev_remove_wanted) {
6529 vd->vdev_remove_wanted = B_FALSE;
6530 vd->vdev_delayed_close = B_FALSE;
6531 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
6532
6533 /*
6534 * We want to clear the stats, but we don't want to do a full
6535 * vdev_clear() as that will cause us to throw away
6536 * degraded/faulted state as well as attempt to reopen the
6537 * device, all of which is a waste.
6538 */
6539 vd->vdev_stat.vs_read_errors = 0;
6540 vd->vdev_stat.vs_write_errors = 0;
6541 vd->vdev_stat.vs_checksum_errors = 0;
6542
6543 vdev_state_dirty(vd->vdev_top);
6544 }
6545
6546 for (int c = 0; c < vd->vdev_children; c++)
6547 spa_async_remove(spa, vd->vdev_child[c]);
6548 }
6549
6550 static void
6551 spa_async_probe(spa_t *spa, vdev_t *vd)
6552 {
6553 if (vd->vdev_probe_wanted) {
6554 vd->vdev_probe_wanted = B_FALSE;
6555 vdev_reopen(vd); /* vdev_open() does the actual probe */
6556 }
6557
6558 for (int c = 0; c < vd->vdev_children; c++)
6559 spa_async_probe(spa, vd->vdev_child[c]);
6560 }
6561
6562 static void
6563 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6564 {
6565 if (!spa->spa_autoexpand)
6566 return;
6567
6568 for (int c = 0; c < vd->vdev_children; c++) {
6569 vdev_t *cvd = vd->vdev_child[c];
6570 spa_async_autoexpand(spa, cvd);
6571 }
6572
6573 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6574 return;
6575
6576 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
6577 }
6578
6579 static void
6580 spa_async_thread(void *arg)
6581 {
6582 spa_t *spa = (spa_t *)arg;
6583 int tasks;
6584
6585 ASSERT(spa->spa_sync_on);
6586
6587 mutex_enter(&spa->spa_async_lock);
6588 tasks = spa->spa_async_tasks;
6589 spa->spa_async_tasks = 0;
6590 mutex_exit(&spa->spa_async_lock);
6591
6592 /*
6593 * See if the config needs to be updated.
6594 */
6595 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6596 uint64_t old_space, new_space;
6597
6598 mutex_enter(&spa_namespace_lock);
6599 old_space = metaslab_class_get_space(spa_normal_class(spa));
6600 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6601 new_space = metaslab_class_get_space(spa_normal_class(spa));
6602 mutex_exit(&spa_namespace_lock);
6603
6604 /*
6605 * If the pool grew as a result of the config update,
6606 * then log an internal history event.
6607 */
6608 if (new_space != old_space) {
6609 spa_history_log_internal(spa, "vdev online", NULL,
6610 "pool '%s' size: %llu(+%llu)",
6611 spa_name(spa), new_space, new_space - old_space);
6612 }
6613 }
6614
6615 /*
6616 * See if any devices need to be marked REMOVED.
6617 */
6618 if (tasks & SPA_ASYNC_REMOVE) {
6619 spa_vdev_state_enter(spa, SCL_NONE);
6620 spa_async_remove(spa, spa->spa_root_vdev);
6621 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6622 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6623 for (int i = 0; i < spa->spa_spares.sav_count; i++)
6624 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6625 (void) spa_vdev_state_exit(spa, NULL, 0);
6626 }
6627
6628 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6629 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6630 spa_async_autoexpand(spa, spa->spa_root_vdev);
6631 spa_config_exit(spa, SCL_CONFIG, FTAG);
6632 }
6633
6634 /*
6635 * See if any devices need to be probed.
6636 */
6637 if (tasks & SPA_ASYNC_PROBE) {
6638 spa_vdev_state_enter(spa, SCL_NONE);
6639 spa_async_probe(spa, spa->spa_root_vdev);
6640 (void) spa_vdev_state_exit(spa, NULL, 0);
6641 }
6642
6643 /*
6644 * If any devices are done replacing, detach them.
6645 */
6646 if (tasks & SPA_ASYNC_RESILVER_DONE)
6647 spa_vdev_resilver_done(spa);
6648
6649 /*
6650 * Kick off a resilver.
6651 */
6652 if (tasks & SPA_ASYNC_RESILVER)
6653 dsl_resilver_restart(spa->spa_dsl_pool, 0);
6654
6655 /*
6656 * Let the world know that we're done.
6657 */
6658 mutex_enter(&spa->spa_async_lock);
6659 spa->spa_async_thread = NULL;
6660 cv_broadcast(&spa->spa_async_cv);
6661 mutex_exit(&spa->spa_async_lock);
6662 thread_exit();
6663 }
6664
6665 void
6666 spa_async_suspend(spa_t *spa)
6667 {
6668 mutex_enter(&spa->spa_async_lock);
6669 spa->spa_async_suspended++;
6670 while (spa->spa_async_thread != NULL)
6671 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6672 mutex_exit(&spa->spa_async_lock);
6673
6674 spa_vdev_remove_suspend(spa);
6675
6676 zthr_t *condense_thread = spa->spa_condense_zthr;
6677 if (condense_thread != NULL && zthr_isrunning(condense_thread))
6678 VERIFY0(zthr_cancel(condense_thread));
6679 }
6680
6681 void
6682 spa_async_resume(spa_t *spa)
6683 {
6684 mutex_enter(&spa->spa_async_lock);
6685 ASSERT(spa->spa_async_suspended != 0);
6686 spa->spa_async_suspended--;
6687 mutex_exit(&spa->spa_async_lock);
6688 spa_restart_removal(spa);
6689
6690 zthr_t *condense_thread = spa->spa_condense_zthr;
6691 if (condense_thread != NULL && !zthr_isrunning(condense_thread))
6692 zthr_resume(condense_thread);
6693 }
6694
6695 static boolean_t
6696 spa_async_tasks_pending(spa_t *spa)
6697 {
6698 uint_t non_config_tasks;
6699 uint_t config_task;
6700 boolean_t config_task_suspended;
6701
6702 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
6703 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6704 if (spa->spa_ccw_fail_time == 0) {
6705 config_task_suspended = B_FALSE;
6706 } else {
6707 config_task_suspended =
6708 (gethrtime() - spa->spa_ccw_fail_time) <
6709 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
6710 }
6711
6712 return (non_config_tasks || (config_task && !config_task_suspended));
6713 }
6714
6715 static void
6716 spa_async_dispatch(spa_t *spa)
6717 {
6718 mutex_enter(&spa->spa_async_lock);
6719 if (spa_async_tasks_pending(spa) &&
6720 !spa->spa_async_suspended &&
6721 spa->spa_async_thread == NULL &&
6722 rootdir != NULL)
6723 spa->spa_async_thread = thread_create(NULL, 0,
6724 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6725 mutex_exit(&spa->spa_async_lock);
6726 }
6727
6728 void
6729 spa_async_request(spa_t *spa, int task)
6730 {
6731 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6732 mutex_enter(&spa->spa_async_lock);
6733 spa->spa_async_tasks |= task;
6734 mutex_exit(&spa->spa_async_lock);
6735 }
6736
6737 /*
6738 * ==========================================================================
6739 * SPA syncing routines
6740 * ==========================================================================
6741 */
6742
6743 static int
6744 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6745 {
6746 bpobj_t *bpo = arg;
6747 bpobj_enqueue(bpo, bp, tx);
6748 return (0);
6749 }
6750
6751 static int
6752 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6753 {
6754 zio_t *zio = arg;
6755
6756 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6757 zio->io_flags));
6758 return (0);
6759 }
6760
6761 /*
6762 * Note: this simple function is not inlined to make it easier to dtrace the
6763 * amount of time spent syncing frees.
6764 */
6765 static void
6766 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6767 {
6768 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6769 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6770 VERIFY(zio_wait(zio) == 0);
6771 }
6772
6773 /*
6774 * Note: this simple function is not inlined to make it easier to dtrace the
6775 * amount of time spent syncing deferred frees.
6776 */
6777 static void
6778 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6779 {
6780 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6781 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6782 spa_free_sync_cb, zio, tx), ==, 0);
6783 VERIFY0(zio_wait(zio));
6784 }
6785
6786 static void
6787 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6788 {
6789 char *packed = NULL;
6790 size_t bufsize;
6791 size_t nvsize = 0;
6792 dmu_buf_t *db;
6793
6794 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6795
6796 /*
6797 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6798 * information. This avoids the dmu_buf_will_dirty() path and
6799 * saves us a pre-read to get data we don't actually care about.
6800 */
6801 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6802 packed = vmem_alloc(bufsize, KM_SLEEP);
6803
6804 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6805 KM_SLEEP) == 0);
6806 bzero(packed + nvsize, bufsize - nvsize);
6807
6808 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6809
6810 vmem_free(packed, bufsize);
6811
6812 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6813 dmu_buf_will_dirty(db, tx);
6814 *(uint64_t *)db->db_data = nvsize;
6815 dmu_buf_rele(db, FTAG);
6816 }
6817
6818 static void
6819 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6820 const char *config, const char *entry)
6821 {
6822 nvlist_t *nvroot;
6823 nvlist_t **list;
6824 int i;
6825
6826 if (!sav->sav_sync)
6827 return;
6828
6829 /*
6830 * Update the MOS nvlist describing the list of available devices.
6831 * spa_validate_aux() will have already made sure this nvlist is
6832 * valid and the vdevs are labeled appropriately.
6833 */
6834 if (sav->sav_object == 0) {
6835 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6836 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6837 sizeof (uint64_t), tx);
6838 VERIFY(zap_update(spa->spa_meta_objset,
6839 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6840 &sav->sav_object, tx) == 0);
6841 }
6842
6843 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6844 if (sav->sav_count == 0) {
6845 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6846 } else {
6847 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
6848 for (i = 0; i < sav->sav_count; i++)
6849 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6850 B_FALSE, VDEV_CONFIG_L2CACHE);
6851 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6852 sav->sav_count) == 0);
6853 for (i = 0; i < sav->sav_count; i++)
6854 nvlist_free(list[i]);
6855 kmem_free(list, sav->sav_count * sizeof (void *));
6856 }
6857
6858 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6859 nvlist_free(nvroot);
6860
6861 sav->sav_sync = B_FALSE;
6862 }
6863
6864 /*
6865 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6866 * The all-vdev ZAP must be empty.
6867 */
6868 static void
6869 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6870 {
6871 spa_t *spa = vd->vdev_spa;
6872
6873 if (vd->vdev_top_zap != 0) {
6874 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6875 vd->vdev_top_zap, tx));
6876 }
6877 if (vd->vdev_leaf_zap != 0) {
6878 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6879 vd->vdev_leaf_zap, tx));
6880 }
6881 for (uint64_t i = 0; i < vd->vdev_children; i++) {
6882 spa_avz_build(vd->vdev_child[i], avz, tx);
6883 }
6884 }
6885
6886 static void
6887 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6888 {
6889 nvlist_t *config;
6890
6891 /*
6892 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6893 * its config may not be dirty but we still need to build per-vdev ZAPs.
6894 * Similarly, if the pool is being assembled (e.g. after a split), we
6895 * need to rebuild the AVZ although the config may not be dirty.
6896 */
6897 if (list_is_empty(&spa->spa_config_dirty_list) &&
6898 spa->spa_avz_action == AVZ_ACTION_NONE)
6899 return;
6900
6901 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6902
6903 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6904 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
6905 spa->spa_all_vdev_zaps != 0);
6906
6907 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6908 /* Make and build the new AVZ */
6909 uint64_t new_avz = zap_create(spa->spa_meta_objset,
6910 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6911 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6912
6913 /* Diff old AVZ with new one */
6914 zap_cursor_t zc;
6915 zap_attribute_t za;
6916
6917 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6918 spa->spa_all_vdev_zaps);
6919 zap_cursor_retrieve(&zc, &za) == 0;
6920 zap_cursor_advance(&zc)) {
6921 uint64_t vdzap = za.za_first_integer;
6922 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6923 vdzap) == ENOENT) {
6924 /*
6925 * ZAP is listed in old AVZ but not in new one;
6926 * destroy it
6927 */
6928 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6929 tx));
6930 }
6931 }
6932
6933 zap_cursor_fini(&zc);
6934
6935 /* Destroy the old AVZ */
6936 VERIFY0(zap_destroy(spa->spa_meta_objset,
6937 spa->spa_all_vdev_zaps, tx));
6938
6939 /* Replace the old AVZ in the dir obj with the new one */
6940 VERIFY0(zap_update(spa->spa_meta_objset,
6941 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6942 sizeof (new_avz), 1, &new_avz, tx));
6943
6944 spa->spa_all_vdev_zaps = new_avz;
6945 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6946 zap_cursor_t zc;
6947 zap_attribute_t za;
6948
6949 /* Walk through the AVZ and destroy all listed ZAPs */
6950 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6951 spa->spa_all_vdev_zaps);
6952 zap_cursor_retrieve(&zc, &za) == 0;
6953 zap_cursor_advance(&zc)) {
6954 uint64_t zap = za.za_first_integer;
6955 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6956 }
6957
6958 zap_cursor_fini(&zc);
6959
6960 /* Destroy and unlink the AVZ itself */
6961 VERIFY0(zap_destroy(spa->spa_meta_objset,
6962 spa->spa_all_vdev_zaps, tx));
6963 VERIFY0(zap_remove(spa->spa_meta_objset,
6964 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6965 spa->spa_all_vdev_zaps = 0;
6966 }
6967
6968 if (spa->spa_all_vdev_zaps == 0) {
6969 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6970 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6971 DMU_POOL_VDEV_ZAP_MAP, tx);
6972 }
6973 spa->spa_avz_action = AVZ_ACTION_NONE;
6974
6975 /* Create ZAPs for vdevs that don't have them. */
6976 vdev_construct_zaps(spa->spa_root_vdev, tx);
6977
6978 config = spa_config_generate(spa, spa->spa_root_vdev,
6979 dmu_tx_get_txg(tx), B_FALSE);
6980
6981 /*
6982 * If we're upgrading the spa version then make sure that
6983 * the config object gets updated with the correct version.
6984 */
6985 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6986 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6987 spa->spa_uberblock.ub_version);
6988
6989 spa_config_exit(spa, SCL_STATE, FTAG);
6990
6991 nvlist_free(spa->spa_config_syncing);
6992 spa->spa_config_syncing = config;
6993
6994 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6995 }
6996
6997 static void
6998 spa_sync_version(void *arg, dmu_tx_t *tx)
6999 {
7000 uint64_t *versionp = arg;
7001 uint64_t version = *versionp;
7002 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7003
7004 /*
7005 * Setting the version is special cased when first creating the pool.
7006 */
7007 ASSERT(tx->tx_txg != TXG_INITIAL);
7008
7009 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
7010 ASSERT(version >= spa_version(spa));
7011
7012 spa->spa_uberblock.ub_version = version;
7013 vdev_config_dirty(spa->spa_root_vdev);
7014 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
7015 }
7016
7017 /*
7018 * Set zpool properties.
7019 */
7020 static void
7021 spa_sync_props(void *arg, dmu_tx_t *tx)
7022 {
7023 nvlist_t *nvp = arg;
7024 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7025 objset_t *mos = spa->spa_meta_objset;
7026 nvpair_t *elem = NULL;
7027
7028 mutex_enter(&spa->spa_props_lock);
7029
7030 while ((elem = nvlist_next_nvpair(nvp, elem))) {
7031 uint64_t intval;
7032 char *strval, *fname;
7033 zpool_prop_t prop;
7034 const char *propname;
7035 zprop_type_t proptype;
7036 spa_feature_t fid;
7037
7038 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
7039 case ZPOOL_PROP_INVAL:
7040 /*
7041 * We checked this earlier in spa_prop_validate().
7042 */
7043 ASSERT(zpool_prop_feature(nvpair_name(elem)));
7044
7045 fname = strchr(nvpair_name(elem), '@') + 1;
7046 VERIFY0(zfeature_lookup_name(fname, &fid));
7047
7048 spa_feature_enable(spa, fid, tx);
7049 spa_history_log_internal(spa, "set", tx,
7050 "%s=enabled", nvpair_name(elem));
7051 break;
7052
7053 case ZPOOL_PROP_VERSION:
7054 intval = fnvpair_value_uint64(elem);
7055 /*
7056 * The version is synced separately before other
7057 * properties and should be correct by now.
7058 */
7059 ASSERT3U(spa_version(spa), >=, intval);
7060 break;
7061
7062 case ZPOOL_PROP_ALTROOT:
7063 /*
7064 * 'altroot' is a non-persistent property. It should
7065 * have been set temporarily at creation or import time.
7066 */
7067 ASSERT(spa->spa_root != NULL);
7068 break;
7069
7070 case ZPOOL_PROP_READONLY:
7071 case ZPOOL_PROP_CACHEFILE:
7072 /*
7073 * 'readonly' and 'cachefile' are also non-persisitent
7074 * properties.
7075 */
7076 break;
7077 case ZPOOL_PROP_COMMENT:
7078 strval = fnvpair_value_string(elem);
7079 if (spa->spa_comment != NULL)
7080 spa_strfree(spa->spa_comment);
7081 spa->spa_comment = spa_strdup(strval);
7082 /*
7083 * We need to dirty the configuration on all the vdevs
7084 * so that their labels get updated. It's unnecessary
7085 * to do this for pool creation since the vdev's
7086 * configuration has already been dirtied.
7087 */
7088 if (tx->tx_txg != TXG_INITIAL)
7089 vdev_config_dirty(spa->spa_root_vdev);
7090 spa_history_log_internal(spa, "set", tx,
7091 "%s=%s", nvpair_name(elem), strval);
7092 break;
7093 default:
7094 /*
7095 * Set pool property values in the poolprops mos object.
7096 */
7097 if (spa->spa_pool_props_object == 0) {
7098 spa->spa_pool_props_object =
7099 zap_create_link(mos, DMU_OT_POOL_PROPS,
7100 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
7101 tx);
7102 }
7103
7104 /* normalize the property name */
7105 propname = zpool_prop_to_name(prop);
7106 proptype = zpool_prop_get_type(prop);
7107
7108 if (nvpair_type(elem) == DATA_TYPE_STRING) {
7109 ASSERT(proptype == PROP_TYPE_STRING);
7110 strval = fnvpair_value_string(elem);
7111 VERIFY0(zap_update(mos,
7112 spa->spa_pool_props_object, propname,
7113 1, strlen(strval) + 1, strval, tx));
7114 spa_history_log_internal(spa, "set", tx,
7115 "%s=%s", nvpair_name(elem), strval);
7116 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
7117 intval = fnvpair_value_uint64(elem);
7118
7119 if (proptype == PROP_TYPE_INDEX) {
7120 const char *unused;
7121 VERIFY0(zpool_prop_index_to_string(
7122 prop, intval, &unused));
7123 }
7124 VERIFY0(zap_update(mos,
7125 spa->spa_pool_props_object, propname,
7126 8, 1, &intval, tx));
7127 spa_history_log_internal(spa, "set", tx,
7128 "%s=%lld", nvpair_name(elem), intval);
7129 } else {
7130 ASSERT(0); /* not allowed */
7131 }
7132
7133 switch (prop) {
7134 case ZPOOL_PROP_DELEGATION:
7135 spa->spa_delegation = intval;
7136 break;
7137 case ZPOOL_PROP_BOOTFS:
7138 spa->spa_bootfs = intval;
7139 break;
7140 case ZPOOL_PROP_FAILUREMODE:
7141 spa->spa_failmode = intval;
7142 break;
7143 case ZPOOL_PROP_AUTOEXPAND:
7144 spa->spa_autoexpand = intval;
7145 if (tx->tx_txg != TXG_INITIAL)
7146 spa_async_request(spa,
7147 SPA_ASYNC_AUTOEXPAND);
7148 break;
7149 case ZPOOL_PROP_MULTIHOST:
7150 spa->spa_multihost = intval;
7151 break;
7152 case ZPOOL_PROP_DEDUPDITTO:
7153 spa->spa_dedup_ditto = intval;
7154 break;
7155 default:
7156 break;
7157 }
7158 }
7159
7160 }
7161
7162 mutex_exit(&spa->spa_props_lock);
7163 }
7164
7165 /*
7166 * Perform one-time upgrade on-disk changes. spa_version() does not
7167 * reflect the new version this txg, so there must be no changes this
7168 * txg to anything that the upgrade code depends on after it executes.
7169 * Therefore this must be called after dsl_pool_sync() does the sync
7170 * tasks.
7171 */
7172 static void
7173 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
7174 {
7175 dsl_pool_t *dp = spa->spa_dsl_pool;
7176
7177 ASSERT(spa->spa_sync_pass == 1);
7178
7179 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
7180
7181 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
7182 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
7183 dsl_pool_create_origin(dp, tx);
7184
7185 /* Keeping the origin open increases spa_minref */
7186 spa->spa_minref += 3;
7187 }
7188
7189 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
7190 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
7191 dsl_pool_upgrade_clones(dp, tx);
7192 }
7193
7194 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
7195 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
7196 dsl_pool_upgrade_dir_clones(dp, tx);
7197
7198 /* Keeping the freedir open increases spa_minref */
7199 spa->spa_minref += 3;
7200 }
7201
7202 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
7203 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7204 spa_feature_create_zap_objects(spa, tx);
7205 }
7206
7207 /*
7208 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
7209 * when possibility to use lz4 compression for metadata was added
7210 * Old pools that have this feature enabled must be upgraded to have
7211 * this feature active
7212 */
7213 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7214 boolean_t lz4_en = spa_feature_is_enabled(spa,
7215 SPA_FEATURE_LZ4_COMPRESS);
7216 boolean_t lz4_ac = spa_feature_is_active(spa,
7217 SPA_FEATURE_LZ4_COMPRESS);
7218
7219 if (lz4_en && !lz4_ac)
7220 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
7221 }
7222
7223 /*
7224 * If we haven't written the salt, do so now. Note that the
7225 * feature may not be activated yet, but that's fine since
7226 * the presence of this ZAP entry is backwards compatible.
7227 */
7228 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7229 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
7230 VERIFY0(zap_add(spa->spa_meta_objset,
7231 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
7232 sizeof (spa->spa_cksum_salt.zcs_bytes),
7233 spa->spa_cksum_salt.zcs_bytes, tx));
7234 }
7235
7236 rrw_exit(&dp->dp_config_rwlock, FTAG);
7237 }
7238
7239 static void
7240 vdev_indirect_state_sync_verify(vdev_t *vd)
7241 {
7242 ASSERTV(vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping);
7243 ASSERTV(vdev_indirect_births_t *vib = vd->vdev_indirect_births);
7244
7245 if (vd->vdev_ops == &vdev_indirect_ops) {
7246 ASSERT(vim != NULL);
7247 ASSERT(vib != NULL);
7248 }
7249
7250 if (vdev_obsolete_sm_object(vd) != 0) {
7251 ASSERT(vd->vdev_obsolete_sm != NULL);
7252 ASSERT(vd->vdev_removing ||
7253 vd->vdev_ops == &vdev_indirect_ops);
7254 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
7255 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
7256
7257 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
7258 space_map_object(vd->vdev_obsolete_sm));
7259 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
7260 space_map_allocated(vd->vdev_obsolete_sm));
7261 }
7262 ASSERT(vd->vdev_obsolete_segments != NULL);
7263
7264 /*
7265 * Since frees / remaps to an indirect vdev can only
7266 * happen in syncing context, the obsolete segments
7267 * tree must be empty when we start syncing.
7268 */
7269 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
7270 }
7271
7272 /*
7273 * Sync the specified transaction group. New blocks may be dirtied as
7274 * part of the process, so we iterate until it converges.
7275 */
7276 void
7277 spa_sync(spa_t *spa, uint64_t txg)
7278 {
7279 dsl_pool_t *dp = spa->spa_dsl_pool;
7280 objset_t *mos = spa->spa_meta_objset;
7281 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
7282 vdev_t *rvd = spa->spa_root_vdev;
7283 vdev_t *vd;
7284 dmu_tx_t *tx;
7285 int error;
7286 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
7287 zfs_vdev_queue_depth_pct / 100;
7288
7289 VERIFY(spa_writeable(spa));
7290
7291 /*
7292 * Wait for i/os issued in open context that need to complete
7293 * before this txg syncs.
7294 */
7295 VERIFY0(zio_wait(spa->spa_txg_zio[txg & TXG_MASK]));
7296 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 0);
7297
7298 /*
7299 * Lock out configuration changes.
7300 */
7301 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7302
7303 spa->spa_syncing_txg = txg;
7304 spa->spa_sync_pass = 0;
7305
7306 mutex_enter(&spa->spa_alloc_lock);
7307 VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
7308 mutex_exit(&spa->spa_alloc_lock);
7309
7310 /*
7311 * If there are any pending vdev state changes, convert them
7312 * into config changes that go out with this transaction group.
7313 */
7314 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7315 while (list_head(&spa->spa_state_dirty_list) != NULL) {
7316 /*
7317 * We need the write lock here because, for aux vdevs,
7318 * calling vdev_config_dirty() modifies sav_config.
7319 * This is ugly and will become unnecessary when we
7320 * eliminate the aux vdev wart by integrating all vdevs
7321 * into the root vdev tree.
7322 */
7323 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7324 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
7325 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
7326 vdev_state_clean(vd);
7327 vdev_config_dirty(vd);
7328 }
7329 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7330 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7331 }
7332 spa_config_exit(spa, SCL_STATE, FTAG);
7333
7334 tx = dmu_tx_create_assigned(dp, txg);
7335
7336 spa->spa_sync_starttime = gethrtime();
7337 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
7338 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
7339 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
7340 NSEC_TO_TICK(spa->spa_deadman_synctime));
7341
7342 /*
7343 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
7344 * set spa_deflate if we have no raid-z vdevs.
7345 */
7346 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
7347 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
7348 int i;
7349
7350 for (i = 0; i < rvd->vdev_children; i++) {
7351 vd = rvd->vdev_child[i];
7352 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
7353 break;
7354 }
7355 if (i == rvd->vdev_children) {
7356 spa->spa_deflate = TRUE;
7357 VERIFY(0 == zap_add(spa->spa_meta_objset,
7358 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
7359 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
7360 }
7361 }
7362
7363 /*
7364 * Set the top-level vdev's max queue depth. Evaluate each
7365 * top-level's async write queue depth in case it changed.
7366 * The max queue depth will not change in the middle of syncing
7367 * out this txg.
7368 */
7369 uint64_t queue_depth_total = 0;
7370 for (int c = 0; c < rvd->vdev_children; c++) {
7371 vdev_t *tvd = rvd->vdev_child[c];
7372 metaslab_group_t *mg = tvd->vdev_mg;
7373
7374 if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
7375 !metaslab_group_initialized(mg))
7376 continue;
7377
7378 /*
7379 * It is safe to do a lock-free check here because only async
7380 * allocations look at mg_max_alloc_queue_depth, and async
7381 * allocations all happen from spa_sync().
7382 */
7383 ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
7384 mg->mg_max_alloc_queue_depth = max_queue_depth;
7385 queue_depth_total += mg->mg_max_alloc_queue_depth;
7386 }
7387 metaslab_class_t *mc = spa_normal_class(spa);
7388 ASSERT0(refcount_count(&mc->mc_alloc_slots));
7389 mc->mc_alloc_max_slots = queue_depth_total;
7390 mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
7391
7392 ASSERT3U(mc->mc_alloc_max_slots, <=,
7393 max_queue_depth * rvd->vdev_children);
7394
7395 for (int c = 0; c < rvd->vdev_children; c++) {
7396 vdev_t *vd = rvd->vdev_child[c];
7397 vdev_indirect_state_sync_verify(vd);
7398
7399 if (vdev_indirect_should_condense(vd)) {
7400 spa_condense_indirect_start_sync(vd, tx);
7401 break;
7402 }
7403 }
7404
7405 /*
7406 * Iterate to convergence.
7407 */
7408 do {
7409 int pass = ++spa->spa_sync_pass;
7410
7411 spa_sync_config_object(spa, tx);
7412 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
7413 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
7414 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
7415 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
7416 spa_errlog_sync(spa, txg);
7417 dsl_pool_sync(dp, txg);
7418
7419 if (pass < zfs_sync_pass_deferred_free) {
7420 spa_sync_frees(spa, free_bpl, tx);
7421 } else {
7422 /*
7423 * We can not defer frees in pass 1, because
7424 * we sync the deferred frees later in pass 1.
7425 */
7426 ASSERT3U(pass, >, 1);
7427 bplist_iterate(free_bpl, bpobj_enqueue_cb,
7428 &spa->spa_deferred_bpobj, tx);
7429 }
7430
7431 ddt_sync(spa, txg);
7432 dsl_scan_sync(dp, tx);
7433
7434 if (spa->spa_vdev_removal != NULL)
7435 svr_sync(spa, tx);
7436
7437 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
7438 != NULL)
7439 vdev_sync(vd, txg);
7440
7441 if (pass == 1) {
7442 spa_sync_upgrades(spa, tx);
7443 ASSERT3U(txg, >=,
7444 spa->spa_uberblock.ub_rootbp.blk_birth);
7445 /*
7446 * Note: We need to check if the MOS is dirty
7447 * because we could have marked the MOS dirty
7448 * without updating the uberblock (e.g. if we
7449 * have sync tasks but no dirty user data). We
7450 * need to check the uberblock's rootbp because
7451 * it is updated if we have synced out dirty
7452 * data (though in this case the MOS will most
7453 * likely also be dirty due to second order
7454 * effects, we don't want to rely on that here).
7455 */
7456 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
7457 !dmu_objset_is_dirty(mos, txg)) {
7458 /*
7459 * Nothing changed on the first pass,
7460 * therefore this TXG is a no-op. Avoid
7461 * syncing deferred frees, so that we
7462 * can keep this TXG as a no-op.
7463 */
7464 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
7465 txg));
7466 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7467 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
7468 break;
7469 }
7470 spa_sync_deferred_frees(spa, tx);
7471 }
7472
7473 } while (dmu_objset_is_dirty(mos, txg));
7474
7475 #ifdef ZFS_DEBUG
7476 if (!list_is_empty(&spa->spa_config_dirty_list)) {
7477 /*
7478 * Make sure that the number of ZAPs for all the vdevs matches
7479 * the number of ZAPs in the per-vdev ZAP list. This only gets
7480 * called if the config is dirty; otherwise there may be
7481 * outstanding AVZ operations that weren't completed in
7482 * spa_sync_config_object.
7483 */
7484 uint64_t all_vdev_zap_entry_count;
7485 ASSERT0(zap_count(spa->spa_meta_objset,
7486 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
7487 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
7488 all_vdev_zap_entry_count);
7489 }
7490 #endif
7491
7492 if (spa->spa_vdev_removal != NULL) {
7493 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
7494 }
7495
7496 /*
7497 * Rewrite the vdev configuration (which includes the uberblock)
7498 * to commit the transaction group.
7499 *
7500 * If there are no dirty vdevs, we sync the uberblock to a few
7501 * random top-level vdevs that are known to be visible in the
7502 * config cache (see spa_vdev_add() for a complete description).
7503 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
7504 */
7505 for (;;) {
7506 /*
7507 * We hold SCL_STATE to prevent vdev open/close/etc.
7508 * while we're attempting to write the vdev labels.
7509 */
7510 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7511
7512 if (list_is_empty(&spa->spa_config_dirty_list)) {
7513 vdev_t *svd[SPA_SYNC_MIN_VDEVS];
7514 int svdcount = 0;
7515 int children = rvd->vdev_children;
7516 int c0 = spa_get_random(children);
7517
7518 for (int c = 0; c < children; c++) {
7519 vd = rvd->vdev_child[(c0 + c) % children];
7520 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
7521 !vdev_is_concrete(vd))
7522 continue;
7523 svd[svdcount++] = vd;
7524 if (svdcount == SPA_SYNC_MIN_VDEVS)
7525 break;
7526 }
7527 error = vdev_config_sync(svd, svdcount, txg);
7528 } else {
7529 error = vdev_config_sync(rvd->vdev_child,
7530 rvd->vdev_children, txg);
7531 }
7532
7533 if (error == 0)
7534 spa->spa_last_synced_guid = rvd->vdev_guid;
7535
7536 spa_config_exit(spa, SCL_STATE, FTAG);
7537
7538 if (error == 0)
7539 break;
7540 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
7541 zio_resume_wait(spa);
7542 }
7543 dmu_tx_commit(tx);
7544
7545 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
7546 spa->spa_deadman_tqid = 0;
7547
7548 /*
7549 * Clear the dirty config list.
7550 */
7551 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
7552 vdev_config_clean(vd);
7553
7554 /*
7555 * Now that the new config has synced transactionally,
7556 * let it become visible to the config cache.
7557 */
7558 if (spa->spa_config_syncing != NULL) {
7559 spa_config_set(spa, spa->spa_config_syncing);
7560 spa->spa_config_txg = txg;
7561 spa->spa_config_syncing = NULL;
7562 }
7563
7564 dsl_pool_sync_done(dp, txg);
7565
7566 mutex_enter(&spa->spa_alloc_lock);
7567 VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
7568 mutex_exit(&spa->spa_alloc_lock);
7569
7570 /*
7571 * Update usable space statistics.
7572 */
7573 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))))
7574 vdev_sync_done(vd, txg);
7575
7576 spa_update_dspace(spa);
7577
7578 /*
7579 * It had better be the case that we didn't dirty anything
7580 * since vdev_config_sync().
7581 */
7582 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
7583 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7584 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
7585
7586 spa->spa_sync_pass = 0;
7587
7588 /*
7589 * Update the last synced uberblock here. We want to do this at
7590 * the end of spa_sync() so that consumers of spa_last_synced_txg()
7591 * will be guaranteed that all the processing associated with
7592 * that txg has been completed.
7593 */
7594 spa->spa_ubsync = spa->spa_uberblock;
7595 spa_config_exit(spa, SCL_CONFIG, FTAG);
7596
7597 spa_handle_ignored_writes(spa);
7598
7599 /*
7600 * If any async tasks have been requested, kick them off.
7601 */
7602 spa_async_dispatch(spa);
7603 }
7604
7605 /*
7606 * Sync all pools. We don't want to hold the namespace lock across these
7607 * operations, so we take a reference on the spa_t and drop the lock during the
7608 * sync.
7609 */
7610 void
7611 spa_sync_allpools(void)
7612 {
7613 spa_t *spa = NULL;
7614 mutex_enter(&spa_namespace_lock);
7615 while ((spa = spa_next(spa)) != NULL) {
7616 if (spa_state(spa) != POOL_STATE_ACTIVE ||
7617 !spa_writeable(spa) || spa_suspended(spa))
7618 continue;
7619 spa_open_ref(spa, FTAG);
7620 mutex_exit(&spa_namespace_lock);
7621 txg_wait_synced(spa_get_dsl(spa), 0);
7622 mutex_enter(&spa_namespace_lock);
7623 spa_close(spa, FTAG);
7624 }
7625 mutex_exit(&spa_namespace_lock);
7626 }
7627
7628 /*
7629 * ==========================================================================
7630 * Miscellaneous routines
7631 * ==========================================================================
7632 */
7633
7634 /*
7635 * Remove all pools in the system.
7636 */
7637 void
7638 spa_evict_all(void)
7639 {
7640 spa_t *spa;
7641
7642 /*
7643 * Remove all cached state. All pools should be closed now,
7644 * so every spa in the AVL tree should be unreferenced.
7645 */
7646 mutex_enter(&spa_namespace_lock);
7647 while ((spa = spa_next(NULL)) != NULL) {
7648 /*
7649 * Stop async tasks. The async thread may need to detach
7650 * a device that's been replaced, which requires grabbing
7651 * spa_namespace_lock, so we must drop it here.
7652 */
7653 spa_open_ref(spa, FTAG);
7654 mutex_exit(&spa_namespace_lock);
7655 spa_async_suspend(spa);
7656 mutex_enter(&spa_namespace_lock);
7657 spa_close(spa, FTAG);
7658
7659 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7660 spa_unload(spa);
7661 spa_deactivate(spa);
7662 }
7663 spa_remove(spa);
7664 }
7665 mutex_exit(&spa_namespace_lock);
7666 }
7667
7668 vdev_t *
7669 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
7670 {
7671 vdev_t *vd;
7672 int i;
7673
7674 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
7675 return (vd);
7676
7677 if (aux) {
7678 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
7679 vd = spa->spa_l2cache.sav_vdevs[i];
7680 if (vd->vdev_guid == guid)
7681 return (vd);
7682 }
7683
7684 for (i = 0; i < spa->spa_spares.sav_count; i++) {
7685 vd = spa->spa_spares.sav_vdevs[i];
7686 if (vd->vdev_guid == guid)
7687 return (vd);
7688 }
7689 }
7690
7691 return (NULL);
7692 }
7693
7694 void
7695 spa_upgrade(spa_t *spa, uint64_t version)
7696 {
7697 ASSERT(spa_writeable(spa));
7698
7699 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7700
7701 /*
7702 * This should only be called for a non-faulted pool, and since a
7703 * future version would result in an unopenable pool, this shouldn't be
7704 * possible.
7705 */
7706 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
7707 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
7708
7709 spa->spa_uberblock.ub_version = version;
7710 vdev_config_dirty(spa->spa_root_vdev);
7711
7712 spa_config_exit(spa, SCL_ALL, FTAG);
7713
7714 txg_wait_synced(spa_get_dsl(spa), 0);
7715 }
7716
7717 boolean_t
7718 spa_has_spare(spa_t *spa, uint64_t guid)
7719 {
7720 int i;
7721 uint64_t spareguid;
7722 spa_aux_vdev_t *sav = &spa->spa_spares;
7723
7724 for (i = 0; i < sav->sav_count; i++)
7725 if (sav->sav_vdevs[i]->vdev_guid == guid)
7726 return (B_TRUE);
7727
7728 for (i = 0; i < sav->sav_npending; i++) {
7729 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
7730 &spareguid) == 0 && spareguid == guid)
7731 return (B_TRUE);
7732 }
7733
7734 return (B_FALSE);
7735 }
7736
7737 /*
7738 * Check if a pool has an active shared spare device.
7739 * Note: reference count of an active spare is 2, as a spare and as a replace
7740 */
7741 static boolean_t
7742 spa_has_active_shared_spare(spa_t *spa)
7743 {
7744 int i, refcnt;
7745 uint64_t pool;
7746 spa_aux_vdev_t *sav = &spa->spa_spares;
7747
7748 for (i = 0; i < sav->sav_count; i++) {
7749 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7750 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7751 refcnt > 2)
7752 return (B_TRUE);
7753 }
7754
7755 return (B_FALSE);
7756 }
7757
7758 sysevent_t *
7759 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7760 {
7761 sysevent_t *ev = NULL;
7762 #ifdef _KERNEL
7763 nvlist_t *resource;
7764
7765 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
7766 if (resource) {
7767 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
7768 ev->resource = resource;
7769 }
7770 #endif
7771 return (ev);
7772 }
7773
7774 void
7775 spa_event_post(sysevent_t *ev)
7776 {
7777 #ifdef _KERNEL
7778 if (ev) {
7779 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
7780 kmem_free(ev, sizeof (*ev));
7781 }
7782 #endif
7783 }
7784
7785 /*
7786 * Post a zevent corresponding to the given sysevent. The 'name' must be one
7787 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
7788 * filled in from the spa and (optionally) the vdev. This doesn't do anything
7789 * in the userland libzpool, as we don't want consumers to misinterpret ztest
7790 * or zdb as real changes.
7791 */
7792 void
7793 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7794 {
7795 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
7796 }
7797
7798 #if defined(_KERNEL) && defined(HAVE_SPL)
7799 /* state manipulation functions */
7800 EXPORT_SYMBOL(spa_open);
7801 EXPORT_SYMBOL(spa_open_rewind);
7802 EXPORT_SYMBOL(spa_get_stats);
7803 EXPORT_SYMBOL(spa_create);
7804 EXPORT_SYMBOL(spa_import);
7805 EXPORT_SYMBOL(spa_tryimport);
7806 EXPORT_SYMBOL(spa_destroy);
7807 EXPORT_SYMBOL(spa_export);
7808 EXPORT_SYMBOL(spa_reset);
7809 EXPORT_SYMBOL(spa_async_request);
7810 EXPORT_SYMBOL(spa_async_suspend);
7811 EXPORT_SYMBOL(spa_async_resume);
7812 EXPORT_SYMBOL(spa_inject_addref);
7813 EXPORT_SYMBOL(spa_inject_delref);
7814 EXPORT_SYMBOL(spa_scan_stat_init);
7815 EXPORT_SYMBOL(spa_scan_get_stats);
7816
7817 /* device maniion */
7818 EXPORT_SYMBOL(spa_vdev_add);
7819 EXPORT_SYMBOL(spa_vdev_attach);
7820 EXPORT_SYMBOL(spa_vdev_detach);
7821 EXPORT_SYMBOL(spa_vdev_setpath);
7822 EXPORT_SYMBOL(spa_vdev_setfru);
7823 EXPORT_SYMBOL(spa_vdev_split_mirror);
7824
7825 /* spare statech is global across all pools) */
7826 EXPORT_SYMBOL(spa_spare_add);
7827 EXPORT_SYMBOL(spa_spare_remove);
7828 EXPORT_SYMBOL(spa_spare_exists);
7829 EXPORT_SYMBOL(spa_spare_activate);
7830
7831 /* L2ARC statech is global across all pools) */
7832 EXPORT_SYMBOL(spa_l2cache_add);
7833 EXPORT_SYMBOL(spa_l2cache_remove);
7834 EXPORT_SYMBOL(spa_l2cache_exists);
7835 EXPORT_SYMBOL(spa_l2cache_activate);
7836 EXPORT_SYMBOL(spa_l2cache_drop);
7837
7838 /* scanning */
7839 EXPORT_SYMBOL(spa_scan);
7840 EXPORT_SYMBOL(spa_scan_stop);
7841
7842 /* spa syncing */
7843 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
7844 EXPORT_SYMBOL(spa_sync_allpools);
7845
7846 /* properties */
7847 EXPORT_SYMBOL(spa_prop_set);
7848 EXPORT_SYMBOL(spa_prop_get);
7849 EXPORT_SYMBOL(spa_prop_clear_bootfs);
7850
7851 /* asynchronous event notification */
7852 EXPORT_SYMBOL(spa_event_notify);
7853 #endif
7854
7855 #if defined(_KERNEL) && defined(HAVE_SPL)
7856 module_param(spa_load_verify_maxinflight, int, 0644);
7857 MODULE_PARM_DESC(spa_load_verify_maxinflight,
7858 "Max concurrent traversal I/Os while verifying pool during import -X");
7859
7860 module_param(spa_load_verify_metadata, int, 0644);
7861 MODULE_PARM_DESC(spa_load_verify_metadata,
7862 "Set to traverse metadata on pool import");
7863
7864 module_param(spa_load_verify_data, int, 0644);
7865 MODULE_PARM_DESC(spa_load_verify_data,
7866 "Set to traverse data on pool import");
7867
7868 module_param(spa_load_print_vdev_tree, int, 0644);
7869 MODULE_PARM_DESC(spa_load_print_vdev_tree,
7870 "Print vdev tree to zfs_dbgmsg during pool import");
7871
7872 /* CSTYLED */
7873 module_param(zio_taskq_batch_pct, uint, 0444);
7874 MODULE_PARM_DESC(zio_taskq_batch_pct,
7875 "Percentage of CPUs to run an IO worker thread");
7876
7877 /* BEGIN CSTYLED */
7878 module_param(zfs_max_missing_tvds, ulong, 0644);
7879 MODULE_PARM_DESC(zfs_max_missing_tvds,
7880 "Allow importing pool with up to this number of missing top-level vdevs"
7881 " (in read-only mode)");
7882 /* END CSTYLED */
7883
7884 #endif