]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
Remove custom root pool import code
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
28 */
29
30 /*
31 * SPA: Storage Pool Allocator
32 *
33 * This file contains all the routines used when modifying on-disk SPA state.
34 * This includes opening, importing, destroying, exporting a pool, and syncing a
35 * pool.
36 */
37
38 #include <sys/zfs_context.h>
39 #include <sys/fm/fs/zfs.h>
40 #include <sys/spa_impl.h>
41 #include <sys/zio.h>
42 #include <sys/zio_checksum.h>
43 #include <sys/dmu.h>
44 #include <sys/dmu_tx.h>
45 #include <sys/zap.h>
46 #include <sys/zil.h>
47 #include <sys/ddt.h>
48 #include <sys/vdev_impl.h>
49 #include <sys/vdev_disk.h>
50 #include <sys/metaslab.h>
51 #include <sys/metaslab_impl.h>
52 #include <sys/uberblock_impl.h>
53 #include <sys/txg.h>
54 #include <sys/avl.h>
55 #include <sys/dmu_traverse.h>
56 #include <sys/dmu_objset.h>
57 #include <sys/unique.h>
58 #include <sys/dsl_pool.h>
59 #include <sys/dsl_dataset.h>
60 #include <sys/dsl_dir.h>
61 #include <sys/dsl_prop.h>
62 #include <sys/dsl_synctask.h>
63 #include <sys/fs/zfs.h>
64 #include <sys/arc.h>
65 #include <sys/callb.h>
66 #include <sys/systeminfo.h>
67 #include <sys/spa_boot.h>
68 #include <sys/zfs_ioctl.h>
69 #include <sys/dsl_scan.h>
70 #include <sys/zfeature.h>
71 #include <sys/dsl_destroy.h>
72 #include <sys/zvol.h>
73
74 #ifdef _KERNEL
75 #include <sys/bootprops.h>
76 #include <sys/callb.h>
77 #include <sys/cpupart.h>
78 #include <sys/pool.h>
79 #include <sys/sysdc.h>
80 #include <sys/zone.h>
81 #endif /* _KERNEL */
82
83 #include "zfs_prop.h"
84 #include "zfs_comutil.h"
85
86 /*
87 * The interval, in seconds, at which failed configuration cache file writes
88 * should be retried.
89 */
90 static int zfs_ccw_retry_interval = 300;
91
92 typedef enum zti_modes {
93 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
94 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
95 ZTI_MODE_NULL, /* don't create a taskq */
96 ZTI_NMODES
97 } zti_modes_t;
98
99 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
100 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
101 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
102 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
103
104 #define ZTI_N(n) ZTI_P(n, 1)
105 #define ZTI_ONE ZTI_N(1)
106
107 typedef struct zio_taskq_info {
108 zti_modes_t zti_mode;
109 uint_t zti_value;
110 uint_t zti_count;
111 } zio_taskq_info_t;
112
113 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
114 "iss", "iss_h", "int", "int_h"
115 };
116
117 /*
118 * This table defines the taskq settings for each ZFS I/O type. When
119 * initializing a pool, we use this table to create an appropriately sized
120 * taskq. Some operations are low volume and therefore have a small, static
121 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
122 * macros. Other operations process a large amount of data; the ZTI_BATCH
123 * macro causes us to create a taskq oriented for throughput. Some operations
124 * are so high frequency and short-lived that the taskq itself can become a a
125 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
126 * additional degree of parallelism specified by the number of threads per-
127 * taskq and the number of taskqs; when dispatching an event in this case, the
128 * particular taskq is chosen at random.
129 *
130 * The different taskq priorities are to handle the different contexts (issue
131 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
132 * need to be handled with minimum delay.
133 */
134 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
135 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
137 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
138 { ZTI_BATCH, ZTI_N(5), ZTI_P(12, 8), ZTI_N(5) }, /* WRITE */
139 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
140 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
141 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
142 };
143
144 static void spa_sync_version(void *arg, dmu_tx_t *tx);
145 static void spa_sync_props(void *arg, dmu_tx_t *tx);
146 static boolean_t spa_has_active_shared_spare(spa_t *spa);
147 static inline int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
148 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
149 char **ereport);
150 static void spa_vdev_resilver_done(spa_t *spa);
151
152 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
153 id_t zio_taskq_psrset_bind = PS_NONE;
154 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
155 uint_t zio_taskq_basedc = 80; /* base duty cycle */
156
157 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
158
159 /*
160 * This (illegal) pool name is used when temporarily importing a spa_t in order
161 * to get the vdev stats associated with the imported devices.
162 */
163 #define TRYIMPORT_NAME "$import"
164
165 /*
166 * ==========================================================================
167 * SPA properties routines
168 * ==========================================================================
169 */
170
171 /*
172 * Add a (source=src, propname=propval) list to an nvlist.
173 */
174 static void
175 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
176 uint64_t intval, zprop_source_t src)
177 {
178 const char *propname = zpool_prop_to_name(prop);
179 nvlist_t *propval;
180
181 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
182 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
183
184 if (strval != NULL)
185 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
186 else
187 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
188
189 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
190 nvlist_free(propval);
191 }
192
193 /*
194 * Get property values from the spa configuration.
195 */
196 static void
197 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
198 {
199 vdev_t *rvd = spa->spa_root_vdev;
200 dsl_pool_t *pool = spa->spa_dsl_pool;
201 uint64_t size, alloc, cap, version;
202 zprop_source_t src = ZPROP_SRC_NONE;
203 spa_config_dirent_t *dp;
204 metaslab_class_t *mc = spa_normal_class(spa);
205
206 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
207
208 if (rvd != NULL) {
209 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
210 size = metaslab_class_get_space(spa_normal_class(spa));
211 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
212 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
213 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
214 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
215 size - alloc, src);
216
217 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
218 metaslab_class_fragmentation(mc), src);
219 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
220 metaslab_class_expandable_space(mc), src);
221 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
222 (spa_mode(spa) == FREAD), src);
223
224 cap = (size == 0) ? 0 : (alloc * 100 / size);
225 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
226
227 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
228 ddt_get_pool_dedup_ratio(spa), src);
229
230 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
231 rvd->vdev_state, src);
232
233 version = spa_version(spa);
234 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
235 src = ZPROP_SRC_DEFAULT;
236 else
237 src = ZPROP_SRC_LOCAL;
238 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
239 }
240
241 if (pool != NULL) {
242 /*
243 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
244 * when opening pools before this version freedir will be NULL.
245 */
246 if (pool->dp_free_dir != NULL) {
247 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
248 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
249 src);
250 } else {
251 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
252 NULL, 0, src);
253 }
254
255 if (pool->dp_leak_dir != NULL) {
256 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
257 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
258 src);
259 } else {
260 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
261 NULL, 0, src);
262 }
263 }
264
265 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
266
267 if (spa->spa_comment != NULL) {
268 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
269 0, ZPROP_SRC_LOCAL);
270 }
271
272 if (spa->spa_root != NULL)
273 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
274 0, ZPROP_SRC_LOCAL);
275
276 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
277 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
278 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
279 } else {
280 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
281 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
282 }
283
284 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
285 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
286 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
287 } else {
288 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
289 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
290 }
291
292 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
293 if (dp->scd_path == NULL) {
294 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
295 "none", 0, ZPROP_SRC_LOCAL);
296 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
297 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
298 dp->scd_path, 0, ZPROP_SRC_LOCAL);
299 }
300 }
301 }
302
303 /*
304 * Get zpool property values.
305 */
306 int
307 spa_prop_get(spa_t *spa, nvlist_t **nvp)
308 {
309 objset_t *mos = spa->spa_meta_objset;
310 zap_cursor_t zc;
311 zap_attribute_t za;
312 int err;
313
314 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
315 if (err)
316 return (err);
317
318 mutex_enter(&spa->spa_props_lock);
319
320 /*
321 * Get properties from the spa config.
322 */
323 spa_prop_get_config(spa, nvp);
324
325 /* If no pool property object, no more prop to get. */
326 if (mos == NULL || spa->spa_pool_props_object == 0) {
327 mutex_exit(&spa->spa_props_lock);
328 goto out;
329 }
330
331 /*
332 * Get properties from the MOS pool property object.
333 */
334 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
335 (err = zap_cursor_retrieve(&zc, &za)) == 0;
336 zap_cursor_advance(&zc)) {
337 uint64_t intval = 0;
338 char *strval = NULL;
339 zprop_source_t src = ZPROP_SRC_DEFAULT;
340 zpool_prop_t prop;
341
342 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
343 continue;
344
345 switch (za.za_integer_length) {
346 case 8:
347 /* integer property */
348 if (za.za_first_integer !=
349 zpool_prop_default_numeric(prop))
350 src = ZPROP_SRC_LOCAL;
351
352 if (prop == ZPOOL_PROP_BOOTFS) {
353 dsl_pool_t *dp;
354 dsl_dataset_t *ds = NULL;
355
356 dp = spa_get_dsl(spa);
357 dsl_pool_config_enter(dp, FTAG);
358 if ((err = dsl_dataset_hold_obj(dp,
359 za.za_first_integer, FTAG, &ds))) {
360 dsl_pool_config_exit(dp, FTAG);
361 break;
362 }
363
364 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
365 KM_SLEEP);
366 dsl_dataset_name(ds, strval);
367 dsl_dataset_rele(ds, FTAG);
368 dsl_pool_config_exit(dp, FTAG);
369 } else {
370 strval = NULL;
371 intval = za.za_first_integer;
372 }
373
374 spa_prop_add_list(*nvp, prop, strval, intval, src);
375
376 if (strval != NULL)
377 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
378
379 break;
380
381 case 1:
382 /* string property */
383 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
384 err = zap_lookup(mos, spa->spa_pool_props_object,
385 za.za_name, 1, za.za_num_integers, strval);
386 if (err) {
387 kmem_free(strval, za.za_num_integers);
388 break;
389 }
390 spa_prop_add_list(*nvp, prop, strval, 0, src);
391 kmem_free(strval, za.za_num_integers);
392 break;
393
394 default:
395 break;
396 }
397 }
398 zap_cursor_fini(&zc);
399 mutex_exit(&spa->spa_props_lock);
400 out:
401 if (err && err != ENOENT) {
402 nvlist_free(*nvp);
403 *nvp = NULL;
404 return (err);
405 }
406
407 return (0);
408 }
409
410 /*
411 * Validate the given pool properties nvlist and modify the list
412 * for the property values to be set.
413 */
414 static int
415 spa_prop_validate(spa_t *spa, nvlist_t *props)
416 {
417 nvpair_t *elem;
418 int error = 0, reset_bootfs = 0;
419 uint64_t objnum = 0;
420 boolean_t has_feature = B_FALSE;
421
422 elem = NULL;
423 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
424 uint64_t intval;
425 char *strval, *slash, *check, *fname;
426 const char *propname = nvpair_name(elem);
427 zpool_prop_t prop = zpool_name_to_prop(propname);
428
429 switch ((int)prop) {
430 case ZPROP_INVAL:
431 if (!zpool_prop_feature(propname)) {
432 error = SET_ERROR(EINVAL);
433 break;
434 }
435
436 /*
437 * Sanitize the input.
438 */
439 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
440 error = SET_ERROR(EINVAL);
441 break;
442 }
443
444 if (nvpair_value_uint64(elem, &intval) != 0) {
445 error = SET_ERROR(EINVAL);
446 break;
447 }
448
449 if (intval != 0) {
450 error = SET_ERROR(EINVAL);
451 break;
452 }
453
454 fname = strchr(propname, '@') + 1;
455 if (zfeature_lookup_name(fname, NULL) != 0) {
456 error = SET_ERROR(EINVAL);
457 break;
458 }
459
460 has_feature = B_TRUE;
461 break;
462
463 case ZPOOL_PROP_VERSION:
464 error = nvpair_value_uint64(elem, &intval);
465 if (!error &&
466 (intval < spa_version(spa) ||
467 intval > SPA_VERSION_BEFORE_FEATURES ||
468 has_feature))
469 error = SET_ERROR(EINVAL);
470 break;
471
472 case ZPOOL_PROP_DELEGATION:
473 case ZPOOL_PROP_AUTOREPLACE:
474 case ZPOOL_PROP_LISTSNAPS:
475 case ZPOOL_PROP_AUTOEXPAND:
476 error = nvpair_value_uint64(elem, &intval);
477 if (!error && intval > 1)
478 error = SET_ERROR(EINVAL);
479 break;
480
481 case ZPOOL_PROP_BOOTFS:
482 /*
483 * If the pool version is less than SPA_VERSION_BOOTFS,
484 * or the pool is still being created (version == 0),
485 * the bootfs property cannot be set.
486 */
487 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
488 error = SET_ERROR(ENOTSUP);
489 break;
490 }
491
492 /*
493 * Make sure the vdev config is bootable
494 */
495 if (!vdev_is_bootable(spa->spa_root_vdev)) {
496 error = SET_ERROR(ENOTSUP);
497 break;
498 }
499
500 reset_bootfs = 1;
501
502 error = nvpair_value_string(elem, &strval);
503
504 if (!error) {
505 objset_t *os;
506 uint64_t propval;
507
508 if (strval == NULL || strval[0] == '\0') {
509 objnum = zpool_prop_default_numeric(
510 ZPOOL_PROP_BOOTFS);
511 break;
512 }
513
514 error = dmu_objset_hold(strval, FTAG, &os);
515 if (error)
516 break;
517
518 /*
519 * Must be ZPL, and its property settings
520 * must be supported by GRUB (compression
521 * is not gzip, and large blocks or large
522 * dnodes are not used).
523 */
524
525 if (dmu_objset_type(os) != DMU_OST_ZFS) {
526 error = SET_ERROR(ENOTSUP);
527 } else if ((error =
528 dsl_prop_get_int_ds(dmu_objset_ds(os),
529 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
530 &propval)) == 0 &&
531 !BOOTFS_COMPRESS_VALID(propval)) {
532 error = SET_ERROR(ENOTSUP);
533 } else if ((error =
534 dsl_prop_get_int_ds(dmu_objset_ds(os),
535 zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
536 &propval)) == 0 &&
537 propval > SPA_OLD_MAXBLOCKSIZE) {
538 error = SET_ERROR(ENOTSUP);
539 } else if ((error =
540 dsl_prop_get_int_ds(dmu_objset_ds(os),
541 zfs_prop_to_name(ZFS_PROP_DNODESIZE),
542 &propval)) == 0 &&
543 propval != ZFS_DNSIZE_LEGACY) {
544 error = SET_ERROR(ENOTSUP);
545 } else {
546 objnum = dmu_objset_id(os);
547 }
548 dmu_objset_rele(os, FTAG);
549 }
550 break;
551
552 case ZPOOL_PROP_FAILUREMODE:
553 error = nvpair_value_uint64(elem, &intval);
554 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
555 intval > ZIO_FAILURE_MODE_PANIC))
556 error = SET_ERROR(EINVAL);
557
558 /*
559 * This is a special case which only occurs when
560 * the pool has completely failed. This allows
561 * the user to change the in-core failmode property
562 * without syncing it out to disk (I/Os might
563 * currently be blocked). We do this by returning
564 * EIO to the caller (spa_prop_set) to trick it
565 * into thinking we encountered a property validation
566 * error.
567 */
568 if (!error && spa_suspended(spa)) {
569 spa->spa_failmode = intval;
570 error = SET_ERROR(EIO);
571 }
572 break;
573
574 case ZPOOL_PROP_CACHEFILE:
575 if ((error = nvpair_value_string(elem, &strval)) != 0)
576 break;
577
578 if (strval[0] == '\0')
579 break;
580
581 if (strcmp(strval, "none") == 0)
582 break;
583
584 if (strval[0] != '/') {
585 error = SET_ERROR(EINVAL);
586 break;
587 }
588
589 slash = strrchr(strval, '/');
590 ASSERT(slash != NULL);
591
592 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
593 strcmp(slash, "/..") == 0)
594 error = SET_ERROR(EINVAL);
595 break;
596
597 case ZPOOL_PROP_COMMENT:
598 if ((error = nvpair_value_string(elem, &strval)) != 0)
599 break;
600 for (check = strval; *check != '\0'; check++) {
601 if (!isprint(*check)) {
602 error = SET_ERROR(EINVAL);
603 break;
604 }
605 }
606 if (strlen(strval) > ZPROP_MAX_COMMENT)
607 error = SET_ERROR(E2BIG);
608 break;
609
610 case ZPOOL_PROP_DEDUPDITTO:
611 if (spa_version(spa) < SPA_VERSION_DEDUP)
612 error = SET_ERROR(ENOTSUP);
613 else
614 error = nvpair_value_uint64(elem, &intval);
615 if (error == 0 &&
616 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
617 error = SET_ERROR(EINVAL);
618 break;
619
620 default:
621 break;
622 }
623
624 if (error)
625 break;
626 }
627
628 if (!error && reset_bootfs) {
629 error = nvlist_remove(props,
630 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
631
632 if (!error) {
633 error = nvlist_add_uint64(props,
634 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
635 }
636 }
637
638 return (error);
639 }
640
641 void
642 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
643 {
644 char *cachefile;
645 spa_config_dirent_t *dp;
646
647 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
648 &cachefile) != 0)
649 return;
650
651 dp = kmem_alloc(sizeof (spa_config_dirent_t),
652 KM_SLEEP);
653
654 if (cachefile[0] == '\0')
655 dp->scd_path = spa_strdup(spa_config_path);
656 else if (strcmp(cachefile, "none") == 0)
657 dp->scd_path = NULL;
658 else
659 dp->scd_path = spa_strdup(cachefile);
660
661 list_insert_head(&spa->spa_config_list, dp);
662 if (need_sync)
663 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
664 }
665
666 int
667 spa_prop_set(spa_t *spa, nvlist_t *nvp)
668 {
669 int error;
670 nvpair_t *elem = NULL;
671 boolean_t need_sync = B_FALSE;
672
673 if ((error = spa_prop_validate(spa, nvp)) != 0)
674 return (error);
675
676 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
677 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
678
679 if (prop == ZPOOL_PROP_CACHEFILE ||
680 prop == ZPOOL_PROP_ALTROOT ||
681 prop == ZPOOL_PROP_READONLY)
682 continue;
683
684 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
685 uint64_t ver;
686
687 if (prop == ZPOOL_PROP_VERSION) {
688 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
689 } else {
690 ASSERT(zpool_prop_feature(nvpair_name(elem)));
691 ver = SPA_VERSION_FEATURES;
692 need_sync = B_TRUE;
693 }
694
695 /* Save time if the version is already set. */
696 if (ver == spa_version(spa))
697 continue;
698
699 /*
700 * In addition to the pool directory object, we might
701 * create the pool properties object, the features for
702 * read object, the features for write object, or the
703 * feature descriptions object.
704 */
705 error = dsl_sync_task(spa->spa_name, NULL,
706 spa_sync_version, &ver,
707 6, ZFS_SPACE_CHECK_RESERVED);
708 if (error)
709 return (error);
710 continue;
711 }
712
713 need_sync = B_TRUE;
714 break;
715 }
716
717 if (need_sync) {
718 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
719 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
720 }
721
722 return (0);
723 }
724
725 /*
726 * If the bootfs property value is dsobj, clear it.
727 */
728 void
729 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
730 {
731 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
732 VERIFY(zap_remove(spa->spa_meta_objset,
733 spa->spa_pool_props_object,
734 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
735 spa->spa_bootfs = 0;
736 }
737 }
738
739 /*ARGSUSED*/
740 static int
741 spa_change_guid_check(void *arg, dmu_tx_t *tx)
742 {
743 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
744 vdev_t *rvd = spa->spa_root_vdev;
745 uint64_t vdev_state;
746 ASSERTV(uint64_t *newguid = arg);
747
748 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
749 vdev_state = rvd->vdev_state;
750 spa_config_exit(spa, SCL_STATE, FTAG);
751
752 if (vdev_state != VDEV_STATE_HEALTHY)
753 return (SET_ERROR(ENXIO));
754
755 ASSERT3U(spa_guid(spa), !=, *newguid);
756
757 return (0);
758 }
759
760 static void
761 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
762 {
763 uint64_t *newguid = arg;
764 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
765 uint64_t oldguid;
766 vdev_t *rvd = spa->spa_root_vdev;
767
768 oldguid = spa_guid(spa);
769
770 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
771 rvd->vdev_guid = *newguid;
772 rvd->vdev_guid_sum += (*newguid - oldguid);
773 vdev_config_dirty(rvd);
774 spa_config_exit(spa, SCL_STATE, FTAG);
775
776 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
777 oldguid, *newguid);
778 }
779
780 /*
781 * Change the GUID for the pool. This is done so that we can later
782 * re-import a pool built from a clone of our own vdevs. We will modify
783 * the root vdev's guid, our own pool guid, and then mark all of our
784 * vdevs dirty. Note that we must make sure that all our vdevs are
785 * online when we do this, or else any vdevs that weren't present
786 * would be orphaned from our pool. We are also going to issue a
787 * sysevent to update any watchers.
788 */
789 int
790 spa_change_guid(spa_t *spa)
791 {
792 int error;
793 uint64_t guid;
794
795 mutex_enter(&spa->spa_vdev_top_lock);
796 mutex_enter(&spa_namespace_lock);
797 guid = spa_generate_guid(NULL);
798
799 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
800 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
801
802 if (error == 0) {
803 spa_config_sync(spa, B_FALSE, B_TRUE);
804 spa_event_notify(spa, NULL, FM_EREPORT_ZFS_POOL_REGUID);
805 }
806
807 mutex_exit(&spa_namespace_lock);
808 mutex_exit(&spa->spa_vdev_top_lock);
809
810 return (error);
811 }
812
813 /*
814 * ==========================================================================
815 * SPA state manipulation (open/create/destroy/import/export)
816 * ==========================================================================
817 */
818
819 static int
820 spa_error_entry_compare(const void *a, const void *b)
821 {
822 spa_error_entry_t *sa = (spa_error_entry_t *)a;
823 spa_error_entry_t *sb = (spa_error_entry_t *)b;
824 int ret;
825
826 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
827 sizeof (zbookmark_phys_t));
828
829 if (ret < 0)
830 return (-1);
831 else if (ret > 0)
832 return (1);
833 else
834 return (0);
835 }
836
837 /*
838 * Utility function which retrieves copies of the current logs and
839 * re-initializes them in the process.
840 */
841 void
842 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
843 {
844 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
845
846 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
847 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
848
849 avl_create(&spa->spa_errlist_scrub,
850 spa_error_entry_compare, sizeof (spa_error_entry_t),
851 offsetof(spa_error_entry_t, se_avl));
852 avl_create(&spa->spa_errlist_last,
853 spa_error_entry_compare, sizeof (spa_error_entry_t),
854 offsetof(spa_error_entry_t, se_avl));
855 }
856
857 static void
858 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
859 {
860 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
861 enum zti_modes mode = ztip->zti_mode;
862 uint_t value = ztip->zti_value;
863 uint_t count = ztip->zti_count;
864 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
865 char name[32];
866 uint_t i, flags = TASKQ_DYNAMIC;
867 boolean_t batch = B_FALSE;
868
869 if (mode == ZTI_MODE_NULL) {
870 tqs->stqs_count = 0;
871 tqs->stqs_taskq = NULL;
872 return;
873 }
874
875 ASSERT3U(count, >, 0);
876
877 tqs->stqs_count = count;
878 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
879
880 switch (mode) {
881 case ZTI_MODE_FIXED:
882 ASSERT3U(value, >=, 1);
883 value = MAX(value, 1);
884 break;
885
886 case ZTI_MODE_BATCH:
887 batch = B_TRUE;
888 flags |= TASKQ_THREADS_CPU_PCT;
889 value = MIN(zio_taskq_batch_pct, 100);
890 break;
891
892 default:
893 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
894 "spa_activate()",
895 zio_type_name[t], zio_taskq_types[q], mode, value);
896 break;
897 }
898
899 for (i = 0; i < count; i++) {
900 taskq_t *tq;
901
902 if (count > 1) {
903 (void) snprintf(name, sizeof (name), "%s_%s_%u",
904 zio_type_name[t], zio_taskq_types[q], i);
905 } else {
906 (void) snprintf(name, sizeof (name), "%s_%s",
907 zio_type_name[t], zio_taskq_types[q]);
908 }
909
910 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
911 if (batch)
912 flags |= TASKQ_DC_BATCH;
913
914 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
915 spa->spa_proc, zio_taskq_basedc, flags);
916 } else {
917 pri_t pri = maxclsyspri;
918 /*
919 * The write issue taskq can be extremely CPU
920 * intensive. Run it at slightly less important
921 * priority than the other taskqs. Under Linux this
922 * means incrementing the priority value on platforms
923 * like illumos it should be decremented.
924 */
925 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
926 pri++;
927
928 tq = taskq_create_proc(name, value, pri, 50,
929 INT_MAX, spa->spa_proc, flags);
930 }
931
932 tqs->stqs_taskq[i] = tq;
933 }
934 }
935
936 static void
937 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
938 {
939 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
940 uint_t i;
941
942 if (tqs->stqs_taskq == NULL) {
943 ASSERT3U(tqs->stqs_count, ==, 0);
944 return;
945 }
946
947 for (i = 0; i < tqs->stqs_count; i++) {
948 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
949 taskq_destroy(tqs->stqs_taskq[i]);
950 }
951
952 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
953 tqs->stqs_taskq = NULL;
954 }
955
956 /*
957 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
958 * Note that a type may have multiple discrete taskqs to avoid lock contention
959 * on the taskq itself. In that case we choose which taskq at random by using
960 * the low bits of gethrtime().
961 */
962 void
963 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
964 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
965 {
966 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
967 taskq_t *tq;
968
969 ASSERT3P(tqs->stqs_taskq, !=, NULL);
970 ASSERT3U(tqs->stqs_count, !=, 0);
971
972 if (tqs->stqs_count == 1) {
973 tq = tqs->stqs_taskq[0];
974 } else {
975 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
976 }
977
978 taskq_dispatch_ent(tq, func, arg, flags, ent);
979 }
980
981 /*
982 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
983 */
984 void
985 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
986 task_func_t *func, void *arg, uint_t flags)
987 {
988 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
989 taskq_t *tq;
990 taskqid_t id;
991
992 ASSERT3P(tqs->stqs_taskq, !=, NULL);
993 ASSERT3U(tqs->stqs_count, !=, 0);
994
995 if (tqs->stqs_count == 1) {
996 tq = tqs->stqs_taskq[0];
997 } else {
998 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
999 }
1000
1001 id = taskq_dispatch(tq, func, arg, flags);
1002 if (id)
1003 taskq_wait_id(tq, id);
1004 }
1005
1006 static void
1007 spa_create_zio_taskqs(spa_t *spa)
1008 {
1009 int t, q;
1010
1011 for (t = 0; t < ZIO_TYPES; t++) {
1012 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1013 spa_taskqs_init(spa, t, q);
1014 }
1015 }
1016 }
1017
1018 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1019 static void
1020 spa_thread(void *arg)
1021 {
1022 callb_cpr_t cprinfo;
1023
1024 spa_t *spa = arg;
1025 user_t *pu = PTOU(curproc);
1026
1027 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1028 spa->spa_name);
1029
1030 ASSERT(curproc != &p0);
1031 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1032 "zpool-%s", spa->spa_name);
1033 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1034
1035 /* bind this thread to the requested psrset */
1036 if (zio_taskq_psrset_bind != PS_NONE) {
1037 pool_lock();
1038 mutex_enter(&cpu_lock);
1039 mutex_enter(&pidlock);
1040 mutex_enter(&curproc->p_lock);
1041
1042 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1043 0, NULL, NULL) == 0) {
1044 curthread->t_bind_pset = zio_taskq_psrset_bind;
1045 } else {
1046 cmn_err(CE_WARN,
1047 "Couldn't bind process for zfs pool \"%s\" to "
1048 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1049 }
1050
1051 mutex_exit(&curproc->p_lock);
1052 mutex_exit(&pidlock);
1053 mutex_exit(&cpu_lock);
1054 pool_unlock();
1055 }
1056
1057 if (zio_taskq_sysdc) {
1058 sysdc_thread_enter(curthread, 100, 0);
1059 }
1060
1061 spa->spa_proc = curproc;
1062 spa->spa_did = curthread->t_did;
1063
1064 spa_create_zio_taskqs(spa);
1065
1066 mutex_enter(&spa->spa_proc_lock);
1067 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1068
1069 spa->spa_proc_state = SPA_PROC_ACTIVE;
1070 cv_broadcast(&spa->spa_proc_cv);
1071
1072 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1073 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1074 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1075 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1076
1077 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1078 spa->spa_proc_state = SPA_PROC_GONE;
1079 spa->spa_proc = &p0;
1080 cv_broadcast(&spa->spa_proc_cv);
1081 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1082
1083 mutex_enter(&curproc->p_lock);
1084 lwp_exit();
1085 }
1086 #endif
1087
1088 /*
1089 * Activate an uninitialized pool.
1090 */
1091 static void
1092 spa_activate(spa_t *spa, int mode)
1093 {
1094 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1095
1096 spa->spa_state = POOL_STATE_ACTIVE;
1097 spa->spa_mode = mode;
1098
1099 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1100 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1101
1102 /* Try to create a covering process */
1103 mutex_enter(&spa->spa_proc_lock);
1104 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1105 ASSERT(spa->spa_proc == &p0);
1106 spa->spa_did = 0;
1107
1108 #ifdef HAVE_SPA_THREAD
1109 /* Only create a process if we're going to be around a while. */
1110 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1111 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1112 NULL, 0) == 0) {
1113 spa->spa_proc_state = SPA_PROC_CREATED;
1114 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1115 cv_wait(&spa->spa_proc_cv,
1116 &spa->spa_proc_lock);
1117 }
1118 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1119 ASSERT(spa->spa_proc != &p0);
1120 ASSERT(spa->spa_did != 0);
1121 } else {
1122 #ifdef _KERNEL
1123 cmn_err(CE_WARN,
1124 "Couldn't create process for zfs pool \"%s\"\n",
1125 spa->spa_name);
1126 #endif
1127 }
1128 }
1129 #endif /* HAVE_SPA_THREAD */
1130 mutex_exit(&spa->spa_proc_lock);
1131
1132 /* If we didn't create a process, we need to create our taskqs. */
1133 if (spa->spa_proc == &p0) {
1134 spa_create_zio_taskqs(spa);
1135 }
1136
1137 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1138 offsetof(vdev_t, vdev_config_dirty_node));
1139 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1140 offsetof(objset_t, os_evicting_node));
1141 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1142 offsetof(vdev_t, vdev_state_dirty_node));
1143
1144 txg_list_create(&spa->spa_vdev_txg_list,
1145 offsetof(struct vdev, vdev_txg_node));
1146
1147 avl_create(&spa->spa_errlist_scrub,
1148 spa_error_entry_compare, sizeof (spa_error_entry_t),
1149 offsetof(spa_error_entry_t, se_avl));
1150 avl_create(&spa->spa_errlist_last,
1151 spa_error_entry_compare, sizeof (spa_error_entry_t),
1152 offsetof(spa_error_entry_t, se_avl));
1153
1154 /*
1155 * This taskq is used to perform zvol-minor-related tasks
1156 * asynchronously. This has several advantages, including easy
1157 * resolution of various deadlocks (zfsonlinux bug #3681).
1158 *
1159 * The taskq must be single threaded to ensure tasks are always
1160 * processed in the order in which they were dispatched.
1161 *
1162 * A taskq per pool allows one to keep the pools independent.
1163 * This way if one pool is suspended, it will not impact another.
1164 *
1165 * The preferred location to dispatch a zvol minor task is a sync
1166 * task. In this context, there is easy access to the spa_t and minimal
1167 * error handling is required because the sync task must succeed.
1168 */
1169 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1170 1, INT_MAX, 0);
1171 }
1172
1173 /*
1174 * Opposite of spa_activate().
1175 */
1176 static void
1177 spa_deactivate(spa_t *spa)
1178 {
1179 int t, q;
1180
1181 ASSERT(spa->spa_sync_on == B_FALSE);
1182 ASSERT(spa->spa_dsl_pool == NULL);
1183 ASSERT(spa->spa_root_vdev == NULL);
1184 ASSERT(spa->spa_async_zio_root == NULL);
1185 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1186
1187 spa_evicting_os_wait(spa);
1188
1189 if (spa->spa_zvol_taskq) {
1190 taskq_destroy(spa->spa_zvol_taskq);
1191 spa->spa_zvol_taskq = NULL;
1192 }
1193
1194 txg_list_destroy(&spa->spa_vdev_txg_list);
1195
1196 list_destroy(&spa->spa_config_dirty_list);
1197 list_destroy(&spa->spa_evicting_os_list);
1198 list_destroy(&spa->spa_state_dirty_list);
1199
1200 taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
1201
1202 for (t = 0; t < ZIO_TYPES; t++) {
1203 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1204 spa_taskqs_fini(spa, t, q);
1205 }
1206 }
1207
1208 metaslab_class_destroy(spa->spa_normal_class);
1209 spa->spa_normal_class = NULL;
1210
1211 metaslab_class_destroy(spa->spa_log_class);
1212 spa->spa_log_class = NULL;
1213
1214 /*
1215 * If this was part of an import or the open otherwise failed, we may
1216 * still have errors left in the queues. Empty them just in case.
1217 */
1218 spa_errlog_drain(spa);
1219
1220 avl_destroy(&spa->spa_errlist_scrub);
1221 avl_destroy(&spa->spa_errlist_last);
1222
1223 spa->spa_state = POOL_STATE_UNINITIALIZED;
1224
1225 mutex_enter(&spa->spa_proc_lock);
1226 if (spa->spa_proc_state != SPA_PROC_NONE) {
1227 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1228 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1229 cv_broadcast(&spa->spa_proc_cv);
1230 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1231 ASSERT(spa->spa_proc != &p0);
1232 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1233 }
1234 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1235 spa->spa_proc_state = SPA_PROC_NONE;
1236 }
1237 ASSERT(spa->spa_proc == &p0);
1238 mutex_exit(&spa->spa_proc_lock);
1239
1240 /*
1241 * We want to make sure spa_thread() has actually exited the ZFS
1242 * module, so that the module can't be unloaded out from underneath
1243 * it.
1244 */
1245 if (spa->spa_did != 0) {
1246 thread_join(spa->spa_did);
1247 spa->spa_did = 0;
1248 }
1249 }
1250
1251 /*
1252 * Verify a pool configuration, and construct the vdev tree appropriately. This
1253 * will create all the necessary vdevs in the appropriate layout, with each vdev
1254 * in the CLOSED state. This will prep the pool before open/creation/import.
1255 * All vdev validation is done by the vdev_alloc() routine.
1256 */
1257 static int
1258 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1259 uint_t id, int atype)
1260 {
1261 nvlist_t **child;
1262 uint_t children;
1263 int error;
1264 int c;
1265
1266 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1267 return (error);
1268
1269 if ((*vdp)->vdev_ops->vdev_op_leaf)
1270 return (0);
1271
1272 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1273 &child, &children);
1274
1275 if (error == ENOENT)
1276 return (0);
1277
1278 if (error) {
1279 vdev_free(*vdp);
1280 *vdp = NULL;
1281 return (SET_ERROR(EINVAL));
1282 }
1283
1284 for (c = 0; c < children; c++) {
1285 vdev_t *vd;
1286 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1287 atype)) != 0) {
1288 vdev_free(*vdp);
1289 *vdp = NULL;
1290 return (error);
1291 }
1292 }
1293
1294 ASSERT(*vdp != NULL);
1295
1296 return (0);
1297 }
1298
1299 /*
1300 * Opposite of spa_load().
1301 */
1302 static void
1303 spa_unload(spa_t *spa)
1304 {
1305 int i;
1306
1307 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1308
1309 /*
1310 * Stop async tasks.
1311 */
1312 spa_async_suspend(spa);
1313
1314 /*
1315 * Stop syncing.
1316 */
1317 if (spa->spa_sync_on) {
1318 txg_sync_stop(spa->spa_dsl_pool);
1319 spa->spa_sync_on = B_FALSE;
1320 }
1321
1322 /*
1323 * Wait for any outstanding async I/O to complete.
1324 */
1325 if (spa->spa_async_zio_root != NULL) {
1326 for (i = 0; i < max_ncpus; i++)
1327 (void) zio_wait(spa->spa_async_zio_root[i]);
1328 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1329 spa->spa_async_zio_root = NULL;
1330 }
1331
1332 bpobj_close(&spa->spa_deferred_bpobj);
1333
1334 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1335
1336 /*
1337 * Close all vdevs.
1338 */
1339 if (spa->spa_root_vdev)
1340 vdev_free(spa->spa_root_vdev);
1341 ASSERT(spa->spa_root_vdev == NULL);
1342
1343 /*
1344 * Close the dsl pool.
1345 */
1346 if (spa->spa_dsl_pool) {
1347 dsl_pool_close(spa->spa_dsl_pool);
1348 spa->spa_dsl_pool = NULL;
1349 spa->spa_meta_objset = NULL;
1350 }
1351
1352 ddt_unload(spa);
1353
1354
1355 /*
1356 * Drop and purge level 2 cache
1357 */
1358 spa_l2cache_drop(spa);
1359
1360 for (i = 0; i < spa->spa_spares.sav_count; i++)
1361 vdev_free(spa->spa_spares.sav_vdevs[i]);
1362 if (spa->spa_spares.sav_vdevs) {
1363 kmem_free(spa->spa_spares.sav_vdevs,
1364 spa->spa_spares.sav_count * sizeof (void *));
1365 spa->spa_spares.sav_vdevs = NULL;
1366 }
1367 if (spa->spa_spares.sav_config) {
1368 nvlist_free(spa->spa_spares.sav_config);
1369 spa->spa_spares.sav_config = NULL;
1370 }
1371 spa->spa_spares.sav_count = 0;
1372
1373 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1374 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1375 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1376 }
1377 if (spa->spa_l2cache.sav_vdevs) {
1378 kmem_free(spa->spa_l2cache.sav_vdevs,
1379 spa->spa_l2cache.sav_count * sizeof (void *));
1380 spa->spa_l2cache.sav_vdevs = NULL;
1381 }
1382 if (spa->spa_l2cache.sav_config) {
1383 nvlist_free(spa->spa_l2cache.sav_config);
1384 spa->spa_l2cache.sav_config = NULL;
1385 }
1386 spa->spa_l2cache.sav_count = 0;
1387
1388 spa->spa_async_suspended = 0;
1389
1390 if (spa->spa_comment != NULL) {
1391 spa_strfree(spa->spa_comment);
1392 spa->spa_comment = NULL;
1393 }
1394
1395 spa_config_exit(spa, SCL_ALL, FTAG);
1396 }
1397
1398 /*
1399 * Load (or re-load) the current list of vdevs describing the active spares for
1400 * this pool. When this is called, we have some form of basic information in
1401 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1402 * then re-generate a more complete list including status information.
1403 */
1404 static void
1405 spa_load_spares(spa_t *spa)
1406 {
1407 nvlist_t **spares;
1408 uint_t nspares;
1409 int i;
1410 vdev_t *vd, *tvd;
1411
1412 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1413
1414 /*
1415 * First, close and free any existing spare vdevs.
1416 */
1417 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1418 vd = spa->spa_spares.sav_vdevs[i];
1419
1420 /* Undo the call to spa_activate() below */
1421 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1422 B_FALSE)) != NULL && tvd->vdev_isspare)
1423 spa_spare_remove(tvd);
1424 vdev_close(vd);
1425 vdev_free(vd);
1426 }
1427
1428 if (spa->spa_spares.sav_vdevs)
1429 kmem_free(spa->spa_spares.sav_vdevs,
1430 spa->spa_spares.sav_count * sizeof (void *));
1431
1432 if (spa->spa_spares.sav_config == NULL)
1433 nspares = 0;
1434 else
1435 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1436 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1437
1438 spa->spa_spares.sav_count = (int)nspares;
1439 spa->spa_spares.sav_vdevs = NULL;
1440
1441 if (nspares == 0)
1442 return;
1443
1444 /*
1445 * Construct the array of vdevs, opening them to get status in the
1446 * process. For each spare, there is potentially two different vdev_t
1447 * structures associated with it: one in the list of spares (used only
1448 * for basic validation purposes) and one in the active vdev
1449 * configuration (if it's spared in). During this phase we open and
1450 * validate each vdev on the spare list. If the vdev also exists in the
1451 * active configuration, then we also mark this vdev as an active spare.
1452 */
1453 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1454 KM_SLEEP);
1455 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1456 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1457 VDEV_ALLOC_SPARE) == 0);
1458 ASSERT(vd != NULL);
1459
1460 spa->spa_spares.sav_vdevs[i] = vd;
1461
1462 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1463 B_FALSE)) != NULL) {
1464 if (!tvd->vdev_isspare)
1465 spa_spare_add(tvd);
1466
1467 /*
1468 * We only mark the spare active if we were successfully
1469 * able to load the vdev. Otherwise, importing a pool
1470 * with a bad active spare would result in strange
1471 * behavior, because multiple pool would think the spare
1472 * is actively in use.
1473 *
1474 * There is a vulnerability here to an equally bizarre
1475 * circumstance, where a dead active spare is later
1476 * brought back to life (onlined or otherwise). Given
1477 * the rarity of this scenario, and the extra complexity
1478 * it adds, we ignore the possibility.
1479 */
1480 if (!vdev_is_dead(tvd))
1481 spa_spare_activate(tvd);
1482 }
1483
1484 vd->vdev_top = vd;
1485 vd->vdev_aux = &spa->spa_spares;
1486
1487 if (vdev_open(vd) != 0)
1488 continue;
1489
1490 if (vdev_validate_aux(vd) == 0)
1491 spa_spare_add(vd);
1492 }
1493
1494 /*
1495 * Recompute the stashed list of spares, with status information
1496 * this time.
1497 */
1498 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1499 DATA_TYPE_NVLIST_ARRAY) == 0);
1500
1501 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1502 KM_SLEEP);
1503 for (i = 0; i < spa->spa_spares.sav_count; i++)
1504 spares[i] = vdev_config_generate(spa,
1505 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1506 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1507 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1508 for (i = 0; i < spa->spa_spares.sav_count; i++)
1509 nvlist_free(spares[i]);
1510 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1511 }
1512
1513 /*
1514 * Load (or re-load) the current list of vdevs describing the active l2cache for
1515 * this pool. When this is called, we have some form of basic information in
1516 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1517 * then re-generate a more complete list including status information.
1518 * Devices which are already active have their details maintained, and are
1519 * not re-opened.
1520 */
1521 static void
1522 spa_load_l2cache(spa_t *spa)
1523 {
1524 nvlist_t **l2cache;
1525 uint_t nl2cache;
1526 int i, j, oldnvdevs;
1527 uint64_t guid;
1528 vdev_t *vd, **oldvdevs, **newvdevs;
1529 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1530
1531 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1532
1533 if (sav->sav_config != NULL) {
1534 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1535 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1536 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1537 } else {
1538 nl2cache = 0;
1539 newvdevs = NULL;
1540 }
1541
1542 oldvdevs = sav->sav_vdevs;
1543 oldnvdevs = sav->sav_count;
1544 sav->sav_vdevs = NULL;
1545 sav->sav_count = 0;
1546
1547 /*
1548 * Process new nvlist of vdevs.
1549 */
1550 for (i = 0; i < nl2cache; i++) {
1551 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1552 &guid) == 0);
1553
1554 newvdevs[i] = NULL;
1555 for (j = 0; j < oldnvdevs; j++) {
1556 vd = oldvdevs[j];
1557 if (vd != NULL && guid == vd->vdev_guid) {
1558 /*
1559 * Retain previous vdev for add/remove ops.
1560 */
1561 newvdevs[i] = vd;
1562 oldvdevs[j] = NULL;
1563 break;
1564 }
1565 }
1566
1567 if (newvdevs[i] == NULL) {
1568 /*
1569 * Create new vdev
1570 */
1571 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1572 VDEV_ALLOC_L2CACHE) == 0);
1573 ASSERT(vd != NULL);
1574 newvdevs[i] = vd;
1575
1576 /*
1577 * Commit this vdev as an l2cache device,
1578 * even if it fails to open.
1579 */
1580 spa_l2cache_add(vd);
1581
1582 vd->vdev_top = vd;
1583 vd->vdev_aux = sav;
1584
1585 spa_l2cache_activate(vd);
1586
1587 if (vdev_open(vd) != 0)
1588 continue;
1589
1590 (void) vdev_validate_aux(vd);
1591
1592 if (!vdev_is_dead(vd))
1593 l2arc_add_vdev(spa, vd);
1594 }
1595 }
1596
1597 /*
1598 * Purge vdevs that were dropped
1599 */
1600 for (i = 0; i < oldnvdevs; i++) {
1601 uint64_t pool;
1602
1603 vd = oldvdevs[i];
1604 if (vd != NULL) {
1605 ASSERT(vd->vdev_isl2cache);
1606
1607 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1608 pool != 0ULL && l2arc_vdev_present(vd))
1609 l2arc_remove_vdev(vd);
1610 vdev_clear_stats(vd);
1611 vdev_free(vd);
1612 }
1613 }
1614
1615 if (oldvdevs)
1616 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1617
1618 if (sav->sav_config == NULL)
1619 goto out;
1620
1621 sav->sav_vdevs = newvdevs;
1622 sav->sav_count = (int)nl2cache;
1623
1624 /*
1625 * Recompute the stashed list of l2cache devices, with status
1626 * information this time.
1627 */
1628 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1629 DATA_TYPE_NVLIST_ARRAY) == 0);
1630
1631 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1632 for (i = 0; i < sav->sav_count; i++)
1633 l2cache[i] = vdev_config_generate(spa,
1634 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1635 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1636 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1637 out:
1638 for (i = 0; i < sav->sav_count; i++)
1639 nvlist_free(l2cache[i]);
1640 if (sav->sav_count)
1641 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1642 }
1643
1644 static int
1645 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1646 {
1647 dmu_buf_t *db;
1648 char *packed = NULL;
1649 size_t nvsize = 0;
1650 int error;
1651 *value = NULL;
1652
1653 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1654 if (error)
1655 return (error);
1656
1657 nvsize = *(uint64_t *)db->db_data;
1658 dmu_buf_rele(db, FTAG);
1659
1660 packed = vmem_alloc(nvsize, KM_SLEEP);
1661 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1662 DMU_READ_PREFETCH);
1663 if (error == 0)
1664 error = nvlist_unpack(packed, nvsize, value, 0);
1665 vmem_free(packed, nvsize);
1666
1667 return (error);
1668 }
1669
1670 /*
1671 * Checks to see if the given vdev could not be opened, in which case we post a
1672 * sysevent to notify the autoreplace code that the device has been removed.
1673 */
1674 static void
1675 spa_check_removed(vdev_t *vd)
1676 {
1677 int c;
1678
1679 for (c = 0; c < vd->vdev_children; c++)
1680 spa_check_removed(vd->vdev_child[c]);
1681
1682 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1683 !vd->vdev_ishole) {
1684 zfs_ereport_post(FM_EREPORT_RESOURCE_AUTOREPLACE,
1685 vd->vdev_spa, vd, NULL, 0, 0);
1686 spa_event_notify(vd->vdev_spa, vd, FM_EREPORT_ZFS_DEVICE_CHECK);
1687 }
1688 }
1689
1690 static void
1691 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1692 {
1693 uint64_t i;
1694
1695 ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1696
1697 vd->vdev_top_zap = mvd->vdev_top_zap;
1698 vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1699
1700 for (i = 0; i < vd->vdev_children; i++) {
1701 spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1702 }
1703 }
1704
1705 /*
1706 * Validate the current config against the MOS config
1707 */
1708 static boolean_t
1709 spa_config_valid(spa_t *spa, nvlist_t *config)
1710 {
1711 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1712 nvlist_t *nv;
1713 int c, i;
1714
1715 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1716
1717 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1718 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1719
1720 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1721
1722 /*
1723 * If we're doing a normal import, then build up any additional
1724 * diagnostic information about missing devices in this config.
1725 * We'll pass this up to the user for further processing.
1726 */
1727 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1728 nvlist_t **child, *nv;
1729 uint64_t idx = 0;
1730
1731 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1732 KM_SLEEP);
1733 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1734
1735 for (c = 0; c < rvd->vdev_children; c++) {
1736 vdev_t *tvd = rvd->vdev_child[c];
1737 vdev_t *mtvd = mrvd->vdev_child[c];
1738
1739 if (tvd->vdev_ops == &vdev_missing_ops &&
1740 mtvd->vdev_ops != &vdev_missing_ops &&
1741 mtvd->vdev_islog)
1742 child[idx++] = vdev_config_generate(spa, mtvd,
1743 B_FALSE, 0);
1744 }
1745
1746 if (idx) {
1747 VERIFY(nvlist_add_nvlist_array(nv,
1748 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1749 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1750 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1751
1752 for (i = 0; i < idx; i++)
1753 nvlist_free(child[i]);
1754 }
1755 nvlist_free(nv);
1756 kmem_free(child, rvd->vdev_children * sizeof (char **));
1757 }
1758
1759 /*
1760 * Compare the root vdev tree with the information we have
1761 * from the MOS config (mrvd). Check each top-level vdev
1762 * with the corresponding MOS config top-level (mtvd).
1763 */
1764 for (c = 0; c < rvd->vdev_children; c++) {
1765 vdev_t *tvd = rvd->vdev_child[c];
1766 vdev_t *mtvd = mrvd->vdev_child[c];
1767
1768 /*
1769 * Resolve any "missing" vdevs in the current configuration.
1770 * If we find that the MOS config has more accurate information
1771 * about the top-level vdev then use that vdev instead.
1772 */
1773 if (tvd->vdev_ops == &vdev_missing_ops &&
1774 mtvd->vdev_ops != &vdev_missing_ops) {
1775
1776 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1777 continue;
1778
1779 /*
1780 * Device specific actions.
1781 */
1782 if (mtvd->vdev_islog) {
1783 spa_set_log_state(spa, SPA_LOG_CLEAR);
1784 } else {
1785 /*
1786 * XXX - once we have 'readonly' pool
1787 * support we should be able to handle
1788 * missing data devices by transitioning
1789 * the pool to readonly.
1790 */
1791 continue;
1792 }
1793
1794 /*
1795 * Swap the missing vdev with the data we were
1796 * able to obtain from the MOS config.
1797 */
1798 vdev_remove_child(rvd, tvd);
1799 vdev_remove_child(mrvd, mtvd);
1800
1801 vdev_add_child(rvd, mtvd);
1802 vdev_add_child(mrvd, tvd);
1803
1804 spa_config_exit(spa, SCL_ALL, FTAG);
1805 vdev_load(mtvd);
1806 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1807
1808 vdev_reopen(rvd);
1809 } else {
1810 if (mtvd->vdev_islog) {
1811 /*
1812 * Load the slog device's state from the MOS
1813 * config since it's possible that the label
1814 * does not contain the most up-to-date
1815 * information.
1816 */
1817 vdev_load_log_state(tvd, mtvd);
1818 vdev_reopen(tvd);
1819 }
1820
1821 /*
1822 * Per-vdev ZAP info is stored exclusively in the MOS.
1823 */
1824 spa_config_valid_zaps(tvd, mtvd);
1825 }
1826 }
1827
1828 vdev_free(mrvd);
1829 spa_config_exit(spa, SCL_ALL, FTAG);
1830
1831 /*
1832 * Ensure we were able to validate the config.
1833 */
1834 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1835 }
1836
1837 /*
1838 * Check for missing log devices
1839 */
1840 static boolean_t
1841 spa_check_logs(spa_t *spa)
1842 {
1843 boolean_t rv = B_FALSE;
1844 dsl_pool_t *dp = spa_get_dsl(spa);
1845
1846 switch (spa->spa_log_state) {
1847 default:
1848 break;
1849 case SPA_LOG_MISSING:
1850 /* need to recheck in case slog has been restored */
1851 case SPA_LOG_UNKNOWN:
1852 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1853 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1854 if (rv)
1855 spa_set_log_state(spa, SPA_LOG_MISSING);
1856 break;
1857 }
1858 return (rv);
1859 }
1860
1861 static boolean_t
1862 spa_passivate_log(spa_t *spa)
1863 {
1864 vdev_t *rvd = spa->spa_root_vdev;
1865 boolean_t slog_found = B_FALSE;
1866 int c;
1867
1868 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1869
1870 if (!spa_has_slogs(spa))
1871 return (B_FALSE);
1872
1873 for (c = 0; c < rvd->vdev_children; c++) {
1874 vdev_t *tvd = rvd->vdev_child[c];
1875 metaslab_group_t *mg = tvd->vdev_mg;
1876
1877 if (tvd->vdev_islog) {
1878 metaslab_group_passivate(mg);
1879 slog_found = B_TRUE;
1880 }
1881 }
1882
1883 return (slog_found);
1884 }
1885
1886 static void
1887 spa_activate_log(spa_t *spa)
1888 {
1889 vdev_t *rvd = spa->spa_root_vdev;
1890 int c;
1891
1892 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1893
1894 for (c = 0; c < rvd->vdev_children; c++) {
1895 vdev_t *tvd = rvd->vdev_child[c];
1896 metaslab_group_t *mg = tvd->vdev_mg;
1897
1898 if (tvd->vdev_islog)
1899 metaslab_group_activate(mg);
1900 }
1901 }
1902
1903 int
1904 spa_offline_log(spa_t *spa)
1905 {
1906 int error;
1907
1908 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1909 NULL, DS_FIND_CHILDREN);
1910 if (error == 0) {
1911 /*
1912 * We successfully offlined the log device, sync out the
1913 * current txg so that the "stubby" block can be removed
1914 * by zil_sync().
1915 */
1916 txg_wait_synced(spa->spa_dsl_pool, 0);
1917 }
1918 return (error);
1919 }
1920
1921 static void
1922 spa_aux_check_removed(spa_aux_vdev_t *sav)
1923 {
1924 int i;
1925
1926 for (i = 0; i < sav->sav_count; i++)
1927 spa_check_removed(sav->sav_vdevs[i]);
1928 }
1929
1930 void
1931 spa_claim_notify(zio_t *zio)
1932 {
1933 spa_t *spa = zio->io_spa;
1934
1935 if (zio->io_error)
1936 return;
1937
1938 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1939 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1940 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1941 mutex_exit(&spa->spa_props_lock);
1942 }
1943
1944 typedef struct spa_load_error {
1945 uint64_t sle_meta_count;
1946 uint64_t sle_data_count;
1947 } spa_load_error_t;
1948
1949 static void
1950 spa_load_verify_done(zio_t *zio)
1951 {
1952 blkptr_t *bp = zio->io_bp;
1953 spa_load_error_t *sle = zio->io_private;
1954 dmu_object_type_t type = BP_GET_TYPE(bp);
1955 int error = zio->io_error;
1956 spa_t *spa = zio->io_spa;
1957
1958 if (error) {
1959 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1960 type != DMU_OT_INTENT_LOG)
1961 atomic_inc_64(&sle->sle_meta_count);
1962 else
1963 atomic_inc_64(&sle->sle_data_count);
1964 }
1965 zio_data_buf_free(zio->io_data, zio->io_size);
1966
1967 mutex_enter(&spa->spa_scrub_lock);
1968 spa->spa_scrub_inflight--;
1969 cv_broadcast(&spa->spa_scrub_io_cv);
1970 mutex_exit(&spa->spa_scrub_lock);
1971 }
1972
1973 /*
1974 * Maximum number of concurrent scrub i/os to create while verifying
1975 * a pool while importing it.
1976 */
1977 int spa_load_verify_maxinflight = 10000;
1978 int spa_load_verify_metadata = B_TRUE;
1979 int spa_load_verify_data = B_TRUE;
1980
1981 /*ARGSUSED*/
1982 static int
1983 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1984 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1985 {
1986 zio_t *rio;
1987 size_t size;
1988 void *data;
1989
1990 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1991 return (0);
1992 /*
1993 * Note: normally this routine will not be called if
1994 * spa_load_verify_metadata is not set. However, it may be useful
1995 * to manually set the flag after the traversal has begun.
1996 */
1997 if (!spa_load_verify_metadata)
1998 return (0);
1999 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
2000 return (0);
2001
2002 rio = arg;
2003 size = BP_GET_PSIZE(bp);
2004 data = zio_data_buf_alloc(size);
2005
2006 mutex_enter(&spa->spa_scrub_lock);
2007 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
2008 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2009 spa->spa_scrub_inflight++;
2010 mutex_exit(&spa->spa_scrub_lock);
2011
2012 zio_nowait(zio_read(rio, spa, bp, data, size,
2013 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2014 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2015 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2016 return (0);
2017 }
2018
2019 /* ARGSUSED */
2020 int
2021 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2022 {
2023 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2024 return (SET_ERROR(ENAMETOOLONG));
2025
2026 return (0);
2027 }
2028
2029 static int
2030 spa_load_verify(spa_t *spa)
2031 {
2032 zio_t *rio;
2033 spa_load_error_t sle = { 0 };
2034 zpool_rewind_policy_t policy;
2035 boolean_t verify_ok = B_FALSE;
2036 int error = 0;
2037
2038 zpool_get_rewind_policy(spa->spa_config, &policy);
2039
2040 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
2041 return (0);
2042
2043 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2044 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2045 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2046 DS_FIND_CHILDREN);
2047 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2048 if (error != 0)
2049 return (error);
2050
2051 rio = zio_root(spa, NULL, &sle,
2052 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2053
2054 if (spa_load_verify_metadata) {
2055 error = traverse_pool(spa, spa->spa_verify_min_txg,
2056 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2057 spa_load_verify_cb, rio);
2058 }
2059
2060 (void) zio_wait(rio);
2061
2062 spa->spa_load_meta_errors = sle.sle_meta_count;
2063 spa->spa_load_data_errors = sle.sle_data_count;
2064
2065 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2066 sle.sle_data_count <= policy.zrp_maxdata) {
2067 int64_t loss = 0;
2068
2069 verify_ok = B_TRUE;
2070 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2071 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2072
2073 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2074 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2075 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2076 VERIFY(nvlist_add_int64(spa->spa_load_info,
2077 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2078 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2079 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2080 } else {
2081 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2082 }
2083
2084 if (error) {
2085 if (error != ENXIO && error != EIO)
2086 error = SET_ERROR(EIO);
2087 return (error);
2088 }
2089
2090 return (verify_ok ? 0 : EIO);
2091 }
2092
2093 /*
2094 * Find a value in the pool props object.
2095 */
2096 static void
2097 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2098 {
2099 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2100 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2101 }
2102
2103 /*
2104 * Find a value in the pool directory object.
2105 */
2106 static int
2107 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2108 {
2109 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2110 name, sizeof (uint64_t), 1, val));
2111 }
2112
2113 static int
2114 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2115 {
2116 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2117 return (err);
2118 }
2119
2120 /*
2121 * Fix up config after a partly-completed split. This is done with the
2122 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2123 * pool have that entry in their config, but only the splitting one contains
2124 * a list of all the guids of the vdevs that are being split off.
2125 *
2126 * This function determines what to do with that list: either rejoin
2127 * all the disks to the pool, or complete the splitting process. To attempt
2128 * the rejoin, each disk that is offlined is marked online again, and
2129 * we do a reopen() call. If the vdev label for every disk that was
2130 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2131 * then we call vdev_split() on each disk, and complete the split.
2132 *
2133 * Otherwise we leave the config alone, with all the vdevs in place in
2134 * the original pool.
2135 */
2136 static void
2137 spa_try_repair(spa_t *spa, nvlist_t *config)
2138 {
2139 uint_t extracted;
2140 uint64_t *glist;
2141 uint_t i, gcount;
2142 nvlist_t *nvl;
2143 vdev_t **vd;
2144 boolean_t attempt_reopen;
2145
2146 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2147 return;
2148
2149 /* check that the config is complete */
2150 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2151 &glist, &gcount) != 0)
2152 return;
2153
2154 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2155
2156 /* attempt to online all the vdevs & validate */
2157 attempt_reopen = B_TRUE;
2158 for (i = 0; i < gcount; i++) {
2159 if (glist[i] == 0) /* vdev is hole */
2160 continue;
2161
2162 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2163 if (vd[i] == NULL) {
2164 /*
2165 * Don't bother attempting to reopen the disks;
2166 * just do the split.
2167 */
2168 attempt_reopen = B_FALSE;
2169 } else {
2170 /* attempt to re-online it */
2171 vd[i]->vdev_offline = B_FALSE;
2172 }
2173 }
2174
2175 if (attempt_reopen) {
2176 vdev_reopen(spa->spa_root_vdev);
2177
2178 /* check each device to see what state it's in */
2179 for (extracted = 0, i = 0; i < gcount; i++) {
2180 if (vd[i] != NULL &&
2181 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2182 break;
2183 ++extracted;
2184 }
2185 }
2186
2187 /*
2188 * If every disk has been moved to the new pool, or if we never
2189 * even attempted to look at them, then we split them off for
2190 * good.
2191 */
2192 if (!attempt_reopen || gcount == extracted) {
2193 for (i = 0; i < gcount; i++)
2194 if (vd[i] != NULL)
2195 vdev_split(vd[i]);
2196 vdev_reopen(spa->spa_root_vdev);
2197 }
2198
2199 kmem_free(vd, gcount * sizeof (vdev_t *));
2200 }
2201
2202 static int
2203 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2204 boolean_t mosconfig)
2205 {
2206 nvlist_t *config = spa->spa_config;
2207 char *ereport = FM_EREPORT_ZFS_POOL;
2208 char *comment;
2209 int error;
2210 uint64_t pool_guid;
2211 nvlist_t *nvl;
2212
2213 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2214 return (SET_ERROR(EINVAL));
2215
2216 ASSERT(spa->spa_comment == NULL);
2217 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2218 spa->spa_comment = spa_strdup(comment);
2219
2220 /*
2221 * Versioning wasn't explicitly added to the label until later, so if
2222 * it's not present treat it as the initial version.
2223 */
2224 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2225 &spa->spa_ubsync.ub_version) != 0)
2226 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2227
2228 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2229 &spa->spa_config_txg);
2230
2231 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2232 spa_guid_exists(pool_guid, 0)) {
2233 error = SET_ERROR(EEXIST);
2234 } else {
2235 spa->spa_config_guid = pool_guid;
2236
2237 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2238 &nvl) == 0) {
2239 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2240 KM_SLEEP) == 0);
2241 }
2242
2243 nvlist_free(spa->spa_load_info);
2244 spa->spa_load_info = fnvlist_alloc();
2245
2246 gethrestime(&spa->spa_loaded_ts);
2247 error = spa_load_impl(spa, pool_guid, config, state, type,
2248 mosconfig, &ereport);
2249 }
2250
2251 /*
2252 * Don't count references from objsets that are already closed
2253 * and are making their way through the eviction process.
2254 */
2255 spa_evicting_os_wait(spa);
2256 spa->spa_minref = refcount_count(&spa->spa_refcount);
2257 if (error) {
2258 if (error != EEXIST) {
2259 spa->spa_loaded_ts.tv_sec = 0;
2260 spa->spa_loaded_ts.tv_nsec = 0;
2261 }
2262 if (error != EBADF) {
2263 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2264 }
2265 }
2266 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2267 spa->spa_ena = 0;
2268
2269 return (error);
2270 }
2271
2272 #ifdef ZFS_DEBUG
2273 /*
2274 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2275 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2276 * spa's per-vdev ZAP list.
2277 */
2278 static uint64_t
2279 vdev_count_verify_zaps(vdev_t *vd)
2280 {
2281 spa_t *spa = vd->vdev_spa;
2282 uint64_t total = 0;
2283 uint64_t i;
2284
2285 if (vd->vdev_top_zap != 0) {
2286 total++;
2287 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2288 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2289 }
2290 if (vd->vdev_leaf_zap != 0) {
2291 total++;
2292 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2293 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2294 }
2295
2296 for (i = 0; i < vd->vdev_children; i++) {
2297 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2298 }
2299
2300 return (total);
2301 }
2302 #endif
2303
2304 /*
2305 * Load an existing storage pool, using the pool's builtin spa_config as a
2306 * source of configuration information.
2307 */
2308 __attribute__((always_inline))
2309 static inline int
2310 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2311 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2312 char **ereport)
2313 {
2314 int error = 0;
2315 nvlist_t *nvroot = NULL;
2316 nvlist_t *label;
2317 vdev_t *rvd;
2318 uberblock_t *ub = &spa->spa_uberblock;
2319 uint64_t children, config_cache_txg = spa->spa_config_txg;
2320 int orig_mode = spa->spa_mode;
2321 int parse, i;
2322 uint64_t obj;
2323 boolean_t missing_feat_write = B_FALSE;
2324 nvlist_t *mos_config;
2325
2326 /*
2327 * If this is an untrusted config, access the pool in read-only mode.
2328 * This prevents things like resilvering recently removed devices.
2329 */
2330 if (!mosconfig)
2331 spa->spa_mode = FREAD;
2332
2333 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2334
2335 spa->spa_load_state = state;
2336
2337 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2338 return (SET_ERROR(EINVAL));
2339
2340 parse = (type == SPA_IMPORT_EXISTING ?
2341 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2342
2343 /*
2344 * Create "The Godfather" zio to hold all async IOs
2345 */
2346 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2347 KM_SLEEP);
2348 for (i = 0; i < max_ncpus; i++) {
2349 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2350 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2351 ZIO_FLAG_GODFATHER);
2352 }
2353
2354 /*
2355 * Parse the configuration into a vdev tree. We explicitly set the
2356 * value that will be returned by spa_version() since parsing the
2357 * configuration requires knowing the version number.
2358 */
2359 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2360 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2361 spa_config_exit(spa, SCL_ALL, FTAG);
2362
2363 if (error != 0)
2364 return (error);
2365
2366 ASSERT(spa->spa_root_vdev == rvd);
2367 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2368 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2369
2370 if (type != SPA_IMPORT_ASSEMBLE) {
2371 ASSERT(spa_guid(spa) == pool_guid);
2372 }
2373
2374 /*
2375 * Try to open all vdevs, loading each label in the process.
2376 */
2377 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2378 error = vdev_open(rvd);
2379 spa_config_exit(spa, SCL_ALL, FTAG);
2380 if (error != 0)
2381 return (error);
2382
2383 /*
2384 * We need to validate the vdev labels against the configuration that
2385 * we have in hand, which is dependent on the setting of mosconfig. If
2386 * mosconfig is true then we're validating the vdev labels based on
2387 * that config. Otherwise, we're validating against the cached config
2388 * (zpool.cache) that was read when we loaded the zfs module, and then
2389 * later we will recursively call spa_load() and validate against
2390 * the vdev config.
2391 *
2392 * If we're assembling a new pool that's been split off from an
2393 * existing pool, the labels haven't yet been updated so we skip
2394 * validation for now.
2395 */
2396 if (type != SPA_IMPORT_ASSEMBLE) {
2397 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2398 error = vdev_validate(rvd, mosconfig);
2399 spa_config_exit(spa, SCL_ALL, FTAG);
2400
2401 if (error != 0)
2402 return (error);
2403
2404 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2405 return (SET_ERROR(ENXIO));
2406 }
2407
2408 /*
2409 * Find the best uberblock.
2410 */
2411 vdev_uberblock_load(rvd, ub, &label);
2412
2413 /*
2414 * If we weren't able to find a single valid uberblock, return failure.
2415 */
2416 if (ub->ub_txg == 0) {
2417 nvlist_free(label);
2418 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2419 }
2420
2421 /*
2422 * If the pool has an unsupported version we can't open it.
2423 */
2424 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2425 nvlist_free(label);
2426 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2427 }
2428
2429 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2430 nvlist_t *features;
2431
2432 /*
2433 * If we weren't able to find what's necessary for reading the
2434 * MOS in the label, return failure.
2435 */
2436 if (label == NULL || nvlist_lookup_nvlist(label,
2437 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2438 nvlist_free(label);
2439 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2440 ENXIO));
2441 }
2442
2443 /*
2444 * Update our in-core representation with the definitive values
2445 * from the label.
2446 */
2447 nvlist_free(spa->spa_label_features);
2448 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2449 }
2450
2451 nvlist_free(label);
2452
2453 /*
2454 * Look through entries in the label nvlist's features_for_read. If
2455 * there is a feature listed there which we don't understand then we
2456 * cannot open a pool.
2457 */
2458 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2459 nvlist_t *unsup_feat;
2460 nvpair_t *nvp;
2461
2462 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2463 0);
2464
2465 for (nvp = nvlist_next_nvpair(spa->spa_label_features, NULL);
2466 nvp != NULL;
2467 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2468 if (!zfeature_is_supported(nvpair_name(nvp))) {
2469 VERIFY(nvlist_add_string(unsup_feat,
2470 nvpair_name(nvp), "") == 0);
2471 }
2472 }
2473
2474 if (!nvlist_empty(unsup_feat)) {
2475 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2476 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2477 nvlist_free(unsup_feat);
2478 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2479 ENOTSUP));
2480 }
2481
2482 nvlist_free(unsup_feat);
2483 }
2484
2485 /*
2486 * If the vdev guid sum doesn't match the uberblock, we have an
2487 * incomplete configuration. We first check to see if the pool
2488 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2489 * If it is, defer the vdev_guid_sum check till later so we
2490 * can handle missing vdevs.
2491 */
2492 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2493 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2494 rvd->vdev_guid_sum != ub->ub_guid_sum)
2495 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2496
2497 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2498 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2499 spa_try_repair(spa, config);
2500 spa_config_exit(spa, SCL_ALL, FTAG);
2501 nvlist_free(spa->spa_config_splitting);
2502 spa->spa_config_splitting = NULL;
2503 }
2504
2505 /*
2506 * Initialize internal SPA structures.
2507 */
2508 spa->spa_state = POOL_STATE_ACTIVE;
2509 spa->spa_ubsync = spa->spa_uberblock;
2510 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2511 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2512 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2513 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2514 spa->spa_claim_max_txg = spa->spa_first_txg;
2515 spa->spa_prev_software_version = ub->ub_software_version;
2516
2517 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2518 if (error)
2519 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2520 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2521
2522 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2523 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2524
2525 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2526 boolean_t missing_feat_read = B_FALSE;
2527 nvlist_t *unsup_feat, *enabled_feat;
2528 spa_feature_t i;
2529
2530 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2531 &spa->spa_feat_for_read_obj) != 0) {
2532 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2533 }
2534
2535 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2536 &spa->spa_feat_for_write_obj) != 0) {
2537 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2538 }
2539
2540 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2541 &spa->spa_feat_desc_obj) != 0) {
2542 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2543 }
2544
2545 enabled_feat = fnvlist_alloc();
2546 unsup_feat = fnvlist_alloc();
2547
2548 if (!spa_features_check(spa, B_FALSE,
2549 unsup_feat, enabled_feat))
2550 missing_feat_read = B_TRUE;
2551
2552 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2553 if (!spa_features_check(spa, B_TRUE,
2554 unsup_feat, enabled_feat)) {
2555 missing_feat_write = B_TRUE;
2556 }
2557 }
2558
2559 fnvlist_add_nvlist(spa->spa_load_info,
2560 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2561
2562 if (!nvlist_empty(unsup_feat)) {
2563 fnvlist_add_nvlist(spa->spa_load_info,
2564 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2565 }
2566
2567 fnvlist_free(enabled_feat);
2568 fnvlist_free(unsup_feat);
2569
2570 if (!missing_feat_read) {
2571 fnvlist_add_boolean(spa->spa_load_info,
2572 ZPOOL_CONFIG_CAN_RDONLY);
2573 }
2574
2575 /*
2576 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2577 * twofold: to determine whether the pool is available for
2578 * import in read-write mode and (if it is not) whether the
2579 * pool is available for import in read-only mode. If the pool
2580 * is available for import in read-write mode, it is displayed
2581 * as available in userland; if it is not available for import
2582 * in read-only mode, it is displayed as unavailable in
2583 * userland. If the pool is available for import in read-only
2584 * mode but not read-write mode, it is displayed as unavailable
2585 * in userland with a special note that the pool is actually
2586 * available for open in read-only mode.
2587 *
2588 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2589 * missing a feature for write, we must first determine whether
2590 * the pool can be opened read-only before returning to
2591 * userland in order to know whether to display the
2592 * abovementioned note.
2593 */
2594 if (missing_feat_read || (missing_feat_write &&
2595 spa_writeable(spa))) {
2596 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2597 ENOTSUP));
2598 }
2599
2600 /*
2601 * Load refcounts for ZFS features from disk into an in-memory
2602 * cache during SPA initialization.
2603 */
2604 for (i = 0; i < SPA_FEATURES; i++) {
2605 uint64_t refcount;
2606
2607 error = feature_get_refcount_from_disk(spa,
2608 &spa_feature_table[i], &refcount);
2609 if (error == 0) {
2610 spa->spa_feat_refcount_cache[i] = refcount;
2611 } else if (error == ENOTSUP) {
2612 spa->spa_feat_refcount_cache[i] =
2613 SPA_FEATURE_DISABLED;
2614 } else {
2615 return (spa_vdev_err(rvd,
2616 VDEV_AUX_CORRUPT_DATA, EIO));
2617 }
2618 }
2619 }
2620
2621 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2622 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2623 &spa->spa_feat_enabled_txg_obj) != 0)
2624 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2625 }
2626
2627 spa->spa_is_initializing = B_TRUE;
2628 error = dsl_pool_open(spa->spa_dsl_pool);
2629 spa->spa_is_initializing = B_FALSE;
2630 if (error != 0)
2631 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2632
2633 if (!mosconfig) {
2634 uint64_t hostid;
2635 nvlist_t *policy = NULL, *nvconfig;
2636
2637 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2638 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2639
2640 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2641 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2642 char *hostname;
2643 unsigned long myhostid = 0;
2644
2645 VERIFY(nvlist_lookup_string(nvconfig,
2646 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2647
2648 #ifdef _KERNEL
2649 myhostid = zone_get_hostid(NULL);
2650 #else /* _KERNEL */
2651 /*
2652 * We're emulating the system's hostid in userland, so
2653 * we can't use zone_get_hostid().
2654 */
2655 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2656 #endif /* _KERNEL */
2657 if (hostid != 0 && myhostid != 0 &&
2658 hostid != myhostid) {
2659 nvlist_free(nvconfig);
2660 cmn_err(CE_WARN, "pool '%s' could not be "
2661 "loaded as it was last accessed by another "
2662 "system (host: %s hostid: 0x%lx). See: "
2663 "http://zfsonlinux.org/msg/ZFS-8000-EY",
2664 spa_name(spa), hostname,
2665 (unsigned long)hostid);
2666 return (SET_ERROR(EBADF));
2667 }
2668 }
2669 if (nvlist_lookup_nvlist(spa->spa_config,
2670 ZPOOL_REWIND_POLICY, &policy) == 0)
2671 VERIFY(nvlist_add_nvlist(nvconfig,
2672 ZPOOL_REWIND_POLICY, policy) == 0);
2673
2674 spa_config_set(spa, nvconfig);
2675 spa_unload(spa);
2676 spa_deactivate(spa);
2677 spa_activate(spa, orig_mode);
2678
2679 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2680 }
2681
2682 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2683 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2684 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2685 if (error != 0)
2686 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2687
2688 /*
2689 * Load the bit that tells us to use the new accounting function
2690 * (raid-z deflation). If we have an older pool, this will not
2691 * be present.
2692 */
2693 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2694 if (error != 0 && error != ENOENT)
2695 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2696
2697 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2698 &spa->spa_creation_version);
2699 if (error != 0 && error != ENOENT)
2700 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2701
2702 /*
2703 * Load the persistent error log. If we have an older pool, this will
2704 * not be present.
2705 */
2706 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2707 if (error != 0 && error != ENOENT)
2708 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2709
2710 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2711 &spa->spa_errlog_scrub);
2712 if (error != 0 && error != ENOENT)
2713 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2714
2715 /*
2716 * Load the history object. If we have an older pool, this
2717 * will not be present.
2718 */
2719 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2720 if (error != 0 && error != ENOENT)
2721 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2722
2723 /*
2724 * Load the per-vdev ZAP map. If we have an older pool, this will not
2725 * be present; in this case, defer its creation to a later time to
2726 * avoid dirtying the MOS this early / out of sync context. See
2727 * spa_sync_config_object.
2728 */
2729
2730 /* The sentinel is only available in the MOS config. */
2731 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2732 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2733
2734 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
2735 &spa->spa_all_vdev_zaps);
2736
2737 if (error != ENOENT && error != 0) {
2738 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2739 } else if (error == 0 && !nvlist_exists(mos_config,
2740 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
2741 /*
2742 * An older version of ZFS overwrote the sentinel value, so
2743 * we have orphaned per-vdev ZAPs in the MOS. Defer their
2744 * destruction to later; see spa_sync_config_object.
2745 */
2746 spa->spa_avz_action = AVZ_ACTION_DESTROY;
2747 /*
2748 * We're assuming that no vdevs have had their ZAPs created
2749 * before this. Better be sure of it.
2750 */
2751 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2752 }
2753 nvlist_free(mos_config);
2754
2755 /*
2756 * If we're assembling the pool from the split-off vdevs of
2757 * an existing pool, we don't want to attach the spares & cache
2758 * devices.
2759 */
2760
2761 /*
2762 * Load any hot spares for this pool.
2763 */
2764 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2765 if (error != 0 && error != ENOENT)
2766 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2767 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2768 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2769 if (load_nvlist(spa, spa->spa_spares.sav_object,
2770 &spa->spa_spares.sav_config) != 0)
2771 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2772
2773 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2774 spa_load_spares(spa);
2775 spa_config_exit(spa, SCL_ALL, FTAG);
2776 } else if (error == 0) {
2777 spa->spa_spares.sav_sync = B_TRUE;
2778 }
2779
2780 /*
2781 * Load any level 2 ARC devices for this pool.
2782 */
2783 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2784 &spa->spa_l2cache.sav_object);
2785 if (error != 0 && error != ENOENT)
2786 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2787 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2788 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2789 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2790 &spa->spa_l2cache.sav_config) != 0)
2791 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2792
2793 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2794 spa_load_l2cache(spa);
2795 spa_config_exit(spa, SCL_ALL, FTAG);
2796 } else if (error == 0) {
2797 spa->spa_l2cache.sav_sync = B_TRUE;
2798 }
2799
2800 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2801
2802 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2803 if (error && error != ENOENT)
2804 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2805
2806 if (error == 0) {
2807 uint64_t autoreplace = 0;
2808
2809 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2810 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2811 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2812 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2813 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2814 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2815 &spa->spa_dedup_ditto);
2816
2817 spa->spa_autoreplace = (autoreplace != 0);
2818 }
2819
2820 /*
2821 * If the 'autoreplace' property is set, then post a resource notifying
2822 * the ZFS DE that it should not issue any faults for unopenable
2823 * devices. We also iterate over the vdevs, and post a sysevent for any
2824 * unopenable vdevs so that the normal autoreplace handler can take
2825 * over.
2826 */
2827 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2828 spa_check_removed(spa->spa_root_vdev);
2829 /*
2830 * For the import case, this is done in spa_import(), because
2831 * at this point we're using the spare definitions from
2832 * the MOS config, not necessarily from the userland config.
2833 */
2834 if (state != SPA_LOAD_IMPORT) {
2835 spa_aux_check_removed(&spa->spa_spares);
2836 spa_aux_check_removed(&spa->spa_l2cache);
2837 }
2838 }
2839
2840 /*
2841 * Load the vdev state for all toplevel vdevs.
2842 */
2843 vdev_load(rvd);
2844
2845 /*
2846 * Propagate the leaf DTLs we just loaded all the way up the tree.
2847 */
2848 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2849 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2850 spa_config_exit(spa, SCL_ALL, FTAG);
2851
2852 /*
2853 * Load the DDTs (dedup tables).
2854 */
2855 error = ddt_load(spa);
2856 if (error != 0)
2857 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2858
2859 spa_update_dspace(spa);
2860
2861 /*
2862 * Validate the config, using the MOS config to fill in any
2863 * information which might be missing. If we fail to validate
2864 * the config then declare the pool unfit for use. If we're
2865 * assembling a pool from a split, the log is not transferred
2866 * over.
2867 */
2868 if (type != SPA_IMPORT_ASSEMBLE) {
2869 nvlist_t *nvconfig;
2870
2871 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2872 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2873
2874 if (!spa_config_valid(spa, nvconfig)) {
2875 nvlist_free(nvconfig);
2876 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2877 ENXIO));
2878 }
2879 nvlist_free(nvconfig);
2880
2881 /*
2882 * Now that we've validated the config, check the state of the
2883 * root vdev. If it can't be opened, it indicates one or
2884 * more toplevel vdevs are faulted.
2885 */
2886 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2887 return (SET_ERROR(ENXIO));
2888
2889 if (spa_writeable(spa) && spa_check_logs(spa)) {
2890 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2891 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2892 }
2893 }
2894
2895 if (missing_feat_write) {
2896 ASSERT(state == SPA_LOAD_TRYIMPORT);
2897
2898 /*
2899 * At this point, we know that we can open the pool in
2900 * read-only mode but not read-write mode. We now have enough
2901 * information and can return to userland.
2902 */
2903 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2904 }
2905
2906 /*
2907 * We've successfully opened the pool, verify that we're ready
2908 * to start pushing transactions.
2909 */
2910 if (state != SPA_LOAD_TRYIMPORT) {
2911 if ((error = spa_load_verify(spa)))
2912 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2913 error));
2914 }
2915
2916 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2917 spa->spa_load_max_txg == UINT64_MAX)) {
2918 dmu_tx_t *tx;
2919 int need_update = B_FALSE;
2920 dsl_pool_t *dp = spa_get_dsl(spa);
2921 int c;
2922
2923 ASSERT(state != SPA_LOAD_TRYIMPORT);
2924
2925 /*
2926 * Claim log blocks that haven't been committed yet.
2927 * This must all happen in a single txg.
2928 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2929 * invoked from zil_claim_log_block()'s i/o done callback.
2930 * Price of rollback is that we abandon the log.
2931 */
2932 spa->spa_claiming = B_TRUE;
2933
2934 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2935 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2936 zil_claim, tx, DS_FIND_CHILDREN);
2937 dmu_tx_commit(tx);
2938
2939 spa->spa_claiming = B_FALSE;
2940
2941 spa_set_log_state(spa, SPA_LOG_GOOD);
2942 spa->spa_sync_on = B_TRUE;
2943 txg_sync_start(spa->spa_dsl_pool);
2944
2945 /*
2946 * Wait for all claims to sync. We sync up to the highest
2947 * claimed log block birth time so that claimed log blocks
2948 * don't appear to be from the future. spa_claim_max_txg
2949 * will have been set for us by either zil_check_log_chain()
2950 * (invoked from spa_check_logs()) or zil_claim() above.
2951 */
2952 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2953
2954 /*
2955 * If the config cache is stale, or we have uninitialized
2956 * metaslabs (see spa_vdev_add()), then update the config.
2957 *
2958 * If this is a verbatim import, trust the current
2959 * in-core spa_config and update the disk labels.
2960 */
2961 if (config_cache_txg != spa->spa_config_txg ||
2962 state == SPA_LOAD_IMPORT ||
2963 state == SPA_LOAD_RECOVER ||
2964 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2965 need_update = B_TRUE;
2966
2967 for (c = 0; c < rvd->vdev_children; c++)
2968 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2969 need_update = B_TRUE;
2970
2971 /*
2972 * Update the config cache asychronously in case we're the
2973 * root pool, in which case the config cache isn't writable yet.
2974 */
2975 if (need_update)
2976 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2977
2978 /*
2979 * Check all DTLs to see if anything needs resilvering.
2980 */
2981 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2982 vdev_resilver_needed(rvd, NULL, NULL))
2983 spa_async_request(spa, SPA_ASYNC_RESILVER);
2984
2985 /*
2986 * Log the fact that we booted up (so that we can detect if
2987 * we rebooted in the middle of an operation).
2988 */
2989 spa_history_log_version(spa, "open");
2990
2991 /*
2992 * Delete any inconsistent datasets.
2993 */
2994 (void) dmu_objset_find(spa_name(spa),
2995 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2996
2997 /*
2998 * Clean up any stale temporary dataset userrefs.
2999 */
3000 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
3001 }
3002
3003 return (0);
3004 }
3005
3006 static int
3007 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
3008 {
3009 int mode = spa->spa_mode;
3010
3011 spa_unload(spa);
3012 spa_deactivate(spa);
3013
3014 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3015
3016 spa_activate(spa, mode);
3017 spa_async_suspend(spa);
3018
3019 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
3020 }
3021
3022 /*
3023 * If spa_load() fails this function will try loading prior txg's. If
3024 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3025 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3026 * function will not rewind the pool and will return the same error as
3027 * spa_load().
3028 */
3029 static int
3030 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
3031 uint64_t max_request, int rewind_flags)
3032 {
3033 nvlist_t *loadinfo = NULL;
3034 nvlist_t *config = NULL;
3035 int load_error, rewind_error;
3036 uint64_t safe_rewind_txg;
3037 uint64_t min_txg;
3038
3039 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3040 spa->spa_load_max_txg = spa->spa_load_txg;
3041 spa_set_log_state(spa, SPA_LOG_CLEAR);
3042 } else {
3043 spa->spa_load_max_txg = max_request;
3044 if (max_request != UINT64_MAX)
3045 spa->spa_extreme_rewind = B_TRUE;
3046 }
3047
3048 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
3049 mosconfig);
3050 if (load_error == 0)
3051 return (0);
3052
3053 if (spa->spa_root_vdev != NULL)
3054 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3055
3056 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3057 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3058
3059 if (rewind_flags & ZPOOL_NEVER_REWIND) {
3060 nvlist_free(config);
3061 return (load_error);
3062 }
3063
3064 if (state == SPA_LOAD_RECOVER) {
3065 /* Price of rolling back is discarding txgs, including log */
3066 spa_set_log_state(spa, SPA_LOG_CLEAR);
3067 } else {
3068 /*
3069 * If we aren't rolling back save the load info from our first
3070 * import attempt so that we can restore it after attempting
3071 * to rewind.
3072 */
3073 loadinfo = spa->spa_load_info;
3074 spa->spa_load_info = fnvlist_alloc();
3075 }
3076
3077 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3078 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3079 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3080 TXG_INITIAL : safe_rewind_txg;
3081
3082 /*
3083 * Continue as long as we're finding errors, we're still within
3084 * the acceptable rewind range, and we're still finding uberblocks
3085 */
3086 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3087 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3088 if (spa->spa_load_max_txg < safe_rewind_txg)
3089 spa->spa_extreme_rewind = B_TRUE;
3090 rewind_error = spa_load_retry(spa, state, mosconfig);
3091 }
3092
3093 spa->spa_extreme_rewind = B_FALSE;
3094 spa->spa_load_max_txg = UINT64_MAX;
3095
3096 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3097 spa_config_set(spa, config);
3098
3099 if (state == SPA_LOAD_RECOVER) {
3100 ASSERT3P(loadinfo, ==, NULL);
3101 return (rewind_error);
3102 } else {
3103 /* Store the rewind info as part of the initial load info */
3104 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3105 spa->spa_load_info);
3106
3107 /* Restore the initial load info */
3108 fnvlist_free(spa->spa_load_info);
3109 spa->spa_load_info = loadinfo;
3110
3111 return (load_error);
3112 }
3113 }
3114
3115 /*
3116 * Pool Open/Import
3117 *
3118 * The import case is identical to an open except that the configuration is sent
3119 * down from userland, instead of grabbed from the configuration cache. For the
3120 * case of an open, the pool configuration will exist in the
3121 * POOL_STATE_UNINITIALIZED state.
3122 *
3123 * The stats information (gen/count/ustats) is used to gather vdev statistics at
3124 * the same time open the pool, without having to keep around the spa_t in some
3125 * ambiguous state.
3126 */
3127 static int
3128 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3129 nvlist_t **config)
3130 {
3131 spa_t *spa;
3132 spa_load_state_t state = SPA_LOAD_OPEN;
3133 int error;
3134 int locked = B_FALSE;
3135 int firstopen = B_FALSE;
3136
3137 *spapp = NULL;
3138
3139 /*
3140 * As disgusting as this is, we need to support recursive calls to this
3141 * function because dsl_dir_open() is called during spa_load(), and ends
3142 * up calling spa_open() again. The real fix is to figure out how to
3143 * avoid dsl_dir_open() calling this in the first place.
3144 */
3145 if (mutex_owner(&spa_namespace_lock) != curthread) {
3146 mutex_enter(&spa_namespace_lock);
3147 locked = B_TRUE;
3148 }
3149
3150 if ((spa = spa_lookup(pool)) == NULL) {
3151 if (locked)
3152 mutex_exit(&spa_namespace_lock);
3153 return (SET_ERROR(ENOENT));
3154 }
3155
3156 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3157 zpool_rewind_policy_t policy;
3158
3159 firstopen = B_TRUE;
3160
3161 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3162 &policy);
3163 if (policy.zrp_request & ZPOOL_DO_REWIND)
3164 state = SPA_LOAD_RECOVER;
3165
3166 spa_activate(spa, spa_mode_global);
3167
3168 if (state != SPA_LOAD_RECOVER)
3169 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3170
3171 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3172 policy.zrp_request);
3173
3174 if (error == EBADF) {
3175 /*
3176 * If vdev_validate() returns failure (indicated by
3177 * EBADF), it indicates that one of the vdevs indicates
3178 * that the pool has been exported or destroyed. If
3179 * this is the case, the config cache is out of sync and
3180 * we should remove the pool from the namespace.
3181 */
3182 spa_unload(spa);
3183 spa_deactivate(spa);
3184 spa_config_sync(spa, B_TRUE, B_TRUE);
3185 spa_remove(spa);
3186 if (locked)
3187 mutex_exit(&spa_namespace_lock);
3188 return (SET_ERROR(ENOENT));
3189 }
3190
3191 if (error) {
3192 /*
3193 * We can't open the pool, but we still have useful
3194 * information: the state of each vdev after the
3195 * attempted vdev_open(). Return this to the user.
3196 */
3197 if (config != NULL && spa->spa_config) {
3198 VERIFY(nvlist_dup(spa->spa_config, config,
3199 KM_SLEEP) == 0);
3200 VERIFY(nvlist_add_nvlist(*config,
3201 ZPOOL_CONFIG_LOAD_INFO,
3202 spa->spa_load_info) == 0);
3203 }
3204 spa_unload(spa);
3205 spa_deactivate(spa);
3206 spa->spa_last_open_failed = error;
3207 if (locked)
3208 mutex_exit(&spa_namespace_lock);
3209 *spapp = NULL;
3210 return (error);
3211 }
3212 }
3213
3214 spa_open_ref(spa, tag);
3215
3216 if (config != NULL)
3217 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3218
3219 /*
3220 * If we've recovered the pool, pass back any information we
3221 * gathered while doing the load.
3222 */
3223 if (state == SPA_LOAD_RECOVER) {
3224 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3225 spa->spa_load_info) == 0);
3226 }
3227
3228 if (locked) {
3229 spa->spa_last_open_failed = 0;
3230 spa->spa_last_ubsync_txg = 0;
3231 spa->spa_load_txg = 0;
3232 mutex_exit(&spa_namespace_lock);
3233 }
3234
3235 if (firstopen)
3236 zvol_create_minors(spa, spa_name(spa), B_TRUE);
3237
3238 *spapp = spa;
3239
3240 return (0);
3241 }
3242
3243 int
3244 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3245 nvlist_t **config)
3246 {
3247 return (spa_open_common(name, spapp, tag, policy, config));
3248 }
3249
3250 int
3251 spa_open(const char *name, spa_t **spapp, void *tag)
3252 {
3253 return (spa_open_common(name, spapp, tag, NULL, NULL));
3254 }
3255
3256 /*
3257 * Lookup the given spa_t, incrementing the inject count in the process,
3258 * preventing it from being exported or destroyed.
3259 */
3260 spa_t *
3261 spa_inject_addref(char *name)
3262 {
3263 spa_t *spa;
3264
3265 mutex_enter(&spa_namespace_lock);
3266 if ((spa = spa_lookup(name)) == NULL) {
3267 mutex_exit(&spa_namespace_lock);
3268 return (NULL);
3269 }
3270 spa->spa_inject_ref++;
3271 mutex_exit(&spa_namespace_lock);
3272
3273 return (spa);
3274 }
3275
3276 void
3277 spa_inject_delref(spa_t *spa)
3278 {
3279 mutex_enter(&spa_namespace_lock);
3280 spa->spa_inject_ref--;
3281 mutex_exit(&spa_namespace_lock);
3282 }
3283
3284 /*
3285 * Add spares device information to the nvlist.
3286 */
3287 static void
3288 spa_add_spares(spa_t *spa, nvlist_t *config)
3289 {
3290 nvlist_t **spares;
3291 uint_t i, nspares;
3292 nvlist_t *nvroot;
3293 uint64_t guid;
3294 vdev_stat_t *vs;
3295 uint_t vsc;
3296 uint64_t pool;
3297
3298 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3299
3300 if (spa->spa_spares.sav_count == 0)
3301 return;
3302
3303 VERIFY(nvlist_lookup_nvlist(config,
3304 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3305 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3306 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3307 if (nspares != 0) {
3308 VERIFY(nvlist_add_nvlist_array(nvroot,
3309 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3310 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3311 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3312
3313 /*
3314 * Go through and find any spares which have since been
3315 * repurposed as an active spare. If this is the case, update
3316 * their status appropriately.
3317 */
3318 for (i = 0; i < nspares; i++) {
3319 VERIFY(nvlist_lookup_uint64(spares[i],
3320 ZPOOL_CONFIG_GUID, &guid) == 0);
3321 if (spa_spare_exists(guid, &pool, NULL) &&
3322 pool != 0ULL) {
3323 VERIFY(nvlist_lookup_uint64_array(
3324 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3325 (uint64_t **)&vs, &vsc) == 0);
3326 vs->vs_state = VDEV_STATE_CANT_OPEN;
3327 vs->vs_aux = VDEV_AUX_SPARED;
3328 }
3329 }
3330 }
3331 }
3332
3333 /*
3334 * Add l2cache device information to the nvlist, including vdev stats.
3335 */
3336 static void
3337 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3338 {
3339 nvlist_t **l2cache;
3340 uint_t i, j, nl2cache;
3341 nvlist_t *nvroot;
3342 uint64_t guid;
3343 vdev_t *vd;
3344 vdev_stat_t *vs;
3345 uint_t vsc;
3346
3347 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3348
3349 if (spa->spa_l2cache.sav_count == 0)
3350 return;
3351
3352 VERIFY(nvlist_lookup_nvlist(config,
3353 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3354 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3355 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3356 if (nl2cache != 0) {
3357 VERIFY(nvlist_add_nvlist_array(nvroot,
3358 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3359 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3360 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3361
3362 /*
3363 * Update level 2 cache device stats.
3364 */
3365
3366 for (i = 0; i < nl2cache; i++) {
3367 VERIFY(nvlist_lookup_uint64(l2cache[i],
3368 ZPOOL_CONFIG_GUID, &guid) == 0);
3369
3370 vd = NULL;
3371 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3372 if (guid ==
3373 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3374 vd = spa->spa_l2cache.sav_vdevs[j];
3375 break;
3376 }
3377 }
3378 ASSERT(vd != NULL);
3379
3380 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3381 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3382 == 0);
3383 vdev_get_stats(vd, vs);
3384 vdev_config_generate_stats(vd, l2cache[i]);
3385
3386 }
3387 }
3388 }
3389
3390 static void
3391 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
3392 {
3393 zap_cursor_t zc;
3394 zap_attribute_t za;
3395
3396 if (spa->spa_feat_for_read_obj != 0) {
3397 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3398 spa->spa_feat_for_read_obj);
3399 zap_cursor_retrieve(&zc, &za) == 0;
3400 zap_cursor_advance(&zc)) {
3401 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3402 za.za_num_integers == 1);
3403 VERIFY0(nvlist_add_uint64(features, za.za_name,
3404 za.za_first_integer));
3405 }
3406 zap_cursor_fini(&zc);
3407 }
3408
3409 if (spa->spa_feat_for_write_obj != 0) {
3410 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3411 spa->spa_feat_for_write_obj);
3412 zap_cursor_retrieve(&zc, &za) == 0;
3413 zap_cursor_advance(&zc)) {
3414 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3415 za.za_num_integers == 1);
3416 VERIFY0(nvlist_add_uint64(features, za.za_name,
3417 za.za_first_integer));
3418 }
3419 zap_cursor_fini(&zc);
3420 }
3421 }
3422
3423 static void
3424 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
3425 {
3426 int i;
3427
3428 for (i = 0; i < SPA_FEATURES; i++) {
3429 zfeature_info_t feature = spa_feature_table[i];
3430 uint64_t refcount;
3431
3432 if (feature_get_refcount(spa, &feature, &refcount) != 0)
3433 continue;
3434
3435 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
3436 }
3437 }
3438
3439 /*
3440 * Store a list of pool features and their reference counts in the
3441 * config.
3442 *
3443 * The first time this is called on a spa, allocate a new nvlist, fetch
3444 * the pool features and reference counts from disk, then save the list
3445 * in the spa. In subsequent calls on the same spa use the saved nvlist
3446 * and refresh its values from the cached reference counts. This
3447 * ensures we don't block here on I/O on a suspended pool so 'zpool
3448 * clear' can resume the pool.
3449 */
3450 static void
3451 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3452 {
3453 nvlist_t *features;
3454
3455 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3456
3457 mutex_enter(&spa->spa_feat_stats_lock);
3458 features = spa->spa_feat_stats;
3459
3460 if (features != NULL) {
3461 spa_feature_stats_from_cache(spa, features);
3462 } else {
3463 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
3464 spa->spa_feat_stats = features;
3465 spa_feature_stats_from_disk(spa, features);
3466 }
3467
3468 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3469 features));
3470
3471 mutex_exit(&spa->spa_feat_stats_lock);
3472 }
3473
3474 int
3475 spa_get_stats(const char *name, nvlist_t **config,
3476 char *altroot, size_t buflen)
3477 {
3478 int error;
3479 spa_t *spa;
3480
3481 *config = NULL;
3482 error = spa_open_common(name, &spa, FTAG, NULL, config);
3483
3484 if (spa != NULL) {
3485 /*
3486 * This still leaves a window of inconsistency where the spares
3487 * or l2cache devices could change and the config would be
3488 * self-inconsistent.
3489 */
3490 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3491
3492 if (*config != NULL) {
3493 uint64_t loadtimes[2];
3494
3495 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3496 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3497 VERIFY(nvlist_add_uint64_array(*config,
3498 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3499
3500 VERIFY(nvlist_add_uint64(*config,
3501 ZPOOL_CONFIG_ERRCOUNT,
3502 spa_get_errlog_size(spa)) == 0);
3503
3504 if (spa_suspended(spa))
3505 VERIFY(nvlist_add_uint64(*config,
3506 ZPOOL_CONFIG_SUSPENDED,
3507 spa->spa_failmode) == 0);
3508
3509 spa_add_spares(spa, *config);
3510 spa_add_l2cache(spa, *config);
3511 spa_add_feature_stats(spa, *config);
3512 }
3513 }
3514
3515 /*
3516 * We want to get the alternate root even for faulted pools, so we cheat
3517 * and call spa_lookup() directly.
3518 */
3519 if (altroot) {
3520 if (spa == NULL) {
3521 mutex_enter(&spa_namespace_lock);
3522 spa = spa_lookup(name);
3523 if (spa)
3524 spa_altroot(spa, altroot, buflen);
3525 else
3526 altroot[0] = '\0';
3527 spa = NULL;
3528 mutex_exit(&spa_namespace_lock);
3529 } else {
3530 spa_altroot(spa, altroot, buflen);
3531 }
3532 }
3533
3534 if (spa != NULL) {
3535 spa_config_exit(spa, SCL_CONFIG, FTAG);
3536 spa_close(spa, FTAG);
3537 }
3538
3539 return (error);
3540 }
3541
3542 /*
3543 * Validate that the auxiliary device array is well formed. We must have an
3544 * array of nvlists, each which describes a valid leaf vdev. If this is an
3545 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3546 * specified, as long as they are well-formed.
3547 */
3548 static int
3549 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3550 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3551 vdev_labeltype_t label)
3552 {
3553 nvlist_t **dev;
3554 uint_t i, ndev;
3555 vdev_t *vd;
3556 int error;
3557
3558 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3559
3560 /*
3561 * It's acceptable to have no devs specified.
3562 */
3563 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3564 return (0);
3565
3566 if (ndev == 0)
3567 return (SET_ERROR(EINVAL));
3568
3569 /*
3570 * Make sure the pool is formatted with a version that supports this
3571 * device type.
3572 */
3573 if (spa_version(spa) < version)
3574 return (SET_ERROR(ENOTSUP));
3575
3576 /*
3577 * Set the pending device list so we correctly handle device in-use
3578 * checking.
3579 */
3580 sav->sav_pending = dev;
3581 sav->sav_npending = ndev;
3582
3583 for (i = 0; i < ndev; i++) {
3584 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3585 mode)) != 0)
3586 goto out;
3587
3588 if (!vd->vdev_ops->vdev_op_leaf) {
3589 vdev_free(vd);
3590 error = SET_ERROR(EINVAL);
3591 goto out;
3592 }
3593
3594 /*
3595 * The L2ARC currently only supports disk devices in
3596 * kernel context. For user-level testing, we allow it.
3597 */
3598 #ifdef _KERNEL
3599 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3600 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3601 error = SET_ERROR(ENOTBLK);
3602 vdev_free(vd);
3603 goto out;
3604 }
3605 #endif
3606 vd->vdev_top = vd;
3607
3608 if ((error = vdev_open(vd)) == 0 &&
3609 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3610 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3611 vd->vdev_guid) == 0);
3612 }
3613
3614 vdev_free(vd);
3615
3616 if (error &&
3617 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3618 goto out;
3619 else
3620 error = 0;
3621 }
3622
3623 out:
3624 sav->sav_pending = NULL;
3625 sav->sav_npending = 0;
3626 return (error);
3627 }
3628
3629 static int
3630 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3631 {
3632 int error;
3633
3634 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3635
3636 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3637 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3638 VDEV_LABEL_SPARE)) != 0) {
3639 return (error);
3640 }
3641
3642 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3643 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3644 VDEV_LABEL_L2CACHE));
3645 }
3646
3647 static void
3648 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3649 const char *config)
3650 {
3651 int i;
3652
3653 if (sav->sav_config != NULL) {
3654 nvlist_t **olddevs;
3655 uint_t oldndevs;
3656 nvlist_t **newdevs;
3657
3658 /*
3659 * Generate new dev list by concatentating with the
3660 * current dev list.
3661 */
3662 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3663 &olddevs, &oldndevs) == 0);
3664
3665 newdevs = kmem_alloc(sizeof (void *) *
3666 (ndevs + oldndevs), KM_SLEEP);
3667 for (i = 0; i < oldndevs; i++)
3668 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3669 KM_SLEEP) == 0);
3670 for (i = 0; i < ndevs; i++)
3671 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3672 KM_SLEEP) == 0);
3673
3674 VERIFY(nvlist_remove(sav->sav_config, config,
3675 DATA_TYPE_NVLIST_ARRAY) == 0);
3676
3677 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3678 config, newdevs, ndevs + oldndevs) == 0);
3679 for (i = 0; i < oldndevs + ndevs; i++)
3680 nvlist_free(newdevs[i]);
3681 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3682 } else {
3683 /*
3684 * Generate a new dev list.
3685 */
3686 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3687 KM_SLEEP) == 0);
3688 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3689 devs, ndevs) == 0);
3690 }
3691 }
3692
3693 /*
3694 * Stop and drop level 2 ARC devices
3695 */
3696 void
3697 spa_l2cache_drop(spa_t *spa)
3698 {
3699 vdev_t *vd;
3700 int i;
3701 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3702
3703 for (i = 0; i < sav->sav_count; i++) {
3704 uint64_t pool;
3705
3706 vd = sav->sav_vdevs[i];
3707 ASSERT(vd != NULL);
3708
3709 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3710 pool != 0ULL && l2arc_vdev_present(vd))
3711 l2arc_remove_vdev(vd);
3712 }
3713 }
3714
3715 /*
3716 * Pool Creation
3717 */
3718 int
3719 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3720 nvlist_t *zplprops)
3721 {
3722 spa_t *spa;
3723 char *altroot = NULL;
3724 vdev_t *rvd;
3725 dsl_pool_t *dp;
3726 dmu_tx_t *tx;
3727 int error = 0;
3728 uint64_t txg = TXG_INITIAL;
3729 nvlist_t **spares, **l2cache;
3730 uint_t nspares, nl2cache;
3731 uint64_t version, obj;
3732 boolean_t has_features;
3733 nvpair_t *elem;
3734 int c, i;
3735 char *poolname;
3736 nvlist_t *nvl;
3737
3738 if (nvlist_lookup_string(props, "tname", &poolname) != 0)
3739 poolname = (char *)pool;
3740
3741 /*
3742 * If this pool already exists, return failure.
3743 */
3744 mutex_enter(&spa_namespace_lock);
3745 if (spa_lookup(poolname) != NULL) {
3746 mutex_exit(&spa_namespace_lock);
3747 return (SET_ERROR(EEXIST));
3748 }
3749
3750 /*
3751 * Allocate a new spa_t structure.
3752 */
3753 nvl = fnvlist_alloc();
3754 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
3755 (void) nvlist_lookup_string(props,
3756 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3757 spa = spa_add(poolname, nvl, altroot);
3758 fnvlist_free(nvl);
3759 spa_activate(spa, spa_mode_global);
3760
3761 if (props && (error = spa_prop_validate(spa, props))) {
3762 spa_deactivate(spa);
3763 spa_remove(spa);
3764 mutex_exit(&spa_namespace_lock);
3765 return (error);
3766 }
3767
3768 /*
3769 * Temporary pool names should never be written to disk.
3770 */
3771 if (poolname != pool)
3772 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
3773
3774 has_features = B_FALSE;
3775 for (elem = nvlist_next_nvpair(props, NULL);
3776 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3777 if (zpool_prop_feature(nvpair_name(elem)))
3778 has_features = B_TRUE;
3779 }
3780
3781 if (has_features || nvlist_lookup_uint64(props,
3782 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3783 version = SPA_VERSION;
3784 }
3785 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3786
3787 spa->spa_first_txg = txg;
3788 spa->spa_uberblock.ub_txg = txg - 1;
3789 spa->spa_uberblock.ub_version = version;
3790 spa->spa_ubsync = spa->spa_uberblock;
3791
3792 /*
3793 * Create "The Godfather" zio to hold all async IOs
3794 */
3795 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3796 KM_SLEEP);
3797 for (i = 0; i < max_ncpus; i++) {
3798 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3799 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3800 ZIO_FLAG_GODFATHER);
3801 }
3802
3803 /*
3804 * Create the root vdev.
3805 */
3806 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3807
3808 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3809
3810 ASSERT(error != 0 || rvd != NULL);
3811 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3812
3813 if (error == 0 && !zfs_allocatable_devs(nvroot))
3814 error = SET_ERROR(EINVAL);
3815
3816 if (error == 0 &&
3817 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3818 (error = spa_validate_aux(spa, nvroot, txg,
3819 VDEV_ALLOC_ADD)) == 0) {
3820 for (c = 0; c < rvd->vdev_children; c++) {
3821 vdev_metaslab_set_size(rvd->vdev_child[c]);
3822 vdev_expand(rvd->vdev_child[c], txg);
3823 }
3824 }
3825
3826 spa_config_exit(spa, SCL_ALL, FTAG);
3827
3828 if (error != 0) {
3829 spa_unload(spa);
3830 spa_deactivate(spa);
3831 spa_remove(spa);
3832 mutex_exit(&spa_namespace_lock);
3833 return (error);
3834 }
3835
3836 /*
3837 * Get the list of spares, if specified.
3838 */
3839 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3840 &spares, &nspares) == 0) {
3841 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3842 KM_SLEEP) == 0);
3843 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3844 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3845 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3846 spa_load_spares(spa);
3847 spa_config_exit(spa, SCL_ALL, FTAG);
3848 spa->spa_spares.sav_sync = B_TRUE;
3849 }
3850
3851 /*
3852 * Get the list of level 2 cache devices, if specified.
3853 */
3854 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3855 &l2cache, &nl2cache) == 0) {
3856 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3857 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3858 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3859 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3860 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3861 spa_load_l2cache(spa);
3862 spa_config_exit(spa, SCL_ALL, FTAG);
3863 spa->spa_l2cache.sav_sync = B_TRUE;
3864 }
3865
3866 spa->spa_is_initializing = B_TRUE;
3867 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3868 spa->spa_meta_objset = dp->dp_meta_objset;
3869 spa->spa_is_initializing = B_FALSE;
3870
3871 /*
3872 * Create DDTs (dedup tables).
3873 */
3874 ddt_create(spa);
3875
3876 spa_update_dspace(spa);
3877
3878 tx = dmu_tx_create_assigned(dp, txg);
3879
3880 /*
3881 * Create the pool config object.
3882 */
3883 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3884 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3885 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3886
3887 if (zap_add(spa->spa_meta_objset,
3888 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3889 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3890 cmn_err(CE_PANIC, "failed to add pool config");
3891 }
3892
3893 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3894 spa_feature_create_zap_objects(spa, tx);
3895
3896 if (zap_add(spa->spa_meta_objset,
3897 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3898 sizeof (uint64_t), 1, &version, tx) != 0) {
3899 cmn_err(CE_PANIC, "failed to add pool version");
3900 }
3901
3902 /* Newly created pools with the right version are always deflated. */
3903 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3904 spa->spa_deflate = TRUE;
3905 if (zap_add(spa->spa_meta_objset,
3906 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3907 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3908 cmn_err(CE_PANIC, "failed to add deflate");
3909 }
3910 }
3911
3912 /*
3913 * Create the deferred-free bpobj. Turn off compression
3914 * because sync-to-convergence takes longer if the blocksize
3915 * keeps changing.
3916 */
3917 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3918 dmu_object_set_compress(spa->spa_meta_objset, obj,
3919 ZIO_COMPRESS_OFF, tx);
3920 if (zap_add(spa->spa_meta_objset,
3921 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3922 sizeof (uint64_t), 1, &obj, tx) != 0) {
3923 cmn_err(CE_PANIC, "failed to add bpobj");
3924 }
3925 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3926 spa->spa_meta_objset, obj));
3927
3928 /*
3929 * Create the pool's history object.
3930 */
3931 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3932 spa_history_create_obj(spa, tx);
3933
3934 /*
3935 * Set pool properties.
3936 */
3937 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3938 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3939 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3940 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3941
3942 if (props != NULL) {
3943 spa_configfile_set(spa, props, B_FALSE);
3944 spa_sync_props(props, tx);
3945 }
3946
3947 dmu_tx_commit(tx);
3948
3949 spa->spa_sync_on = B_TRUE;
3950 txg_sync_start(spa->spa_dsl_pool);
3951
3952 /*
3953 * We explicitly wait for the first transaction to complete so that our
3954 * bean counters are appropriately updated.
3955 */
3956 txg_wait_synced(spa->spa_dsl_pool, txg);
3957
3958 spa_config_sync(spa, B_FALSE, B_TRUE);
3959
3960 spa_history_log_version(spa, "create");
3961
3962 /*
3963 * Don't count references from objsets that are already closed
3964 * and are making their way through the eviction process.
3965 */
3966 spa_evicting_os_wait(spa);
3967 spa->spa_minref = refcount_count(&spa->spa_refcount);
3968
3969 mutex_exit(&spa_namespace_lock);
3970
3971 return (0);
3972 }
3973
3974 /*
3975 * Import a non-root pool into the system.
3976 */
3977 int
3978 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3979 {
3980 spa_t *spa;
3981 char *altroot = NULL;
3982 spa_load_state_t state = SPA_LOAD_IMPORT;
3983 zpool_rewind_policy_t policy;
3984 uint64_t mode = spa_mode_global;
3985 uint64_t readonly = B_FALSE;
3986 int error;
3987 nvlist_t *nvroot;
3988 nvlist_t **spares, **l2cache;
3989 uint_t nspares, nl2cache;
3990
3991 /*
3992 * If a pool with this name exists, return failure.
3993 */
3994 mutex_enter(&spa_namespace_lock);
3995 if (spa_lookup(pool) != NULL) {
3996 mutex_exit(&spa_namespace_lock);
3997 return (SET_ERROR(EEXIST));
3998 }
3999
4000 /*
4001 * Create and initialize the spa structure.
4002 */
4003 (void) nvlist_lookup_string(props,
4004 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4005 (void) nvlist_lookup_uint64(props,
4006 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4007 if (readonly)
4008 mode = FREAD;
4009 spa = spa_add(pool, config, altroot);
4010 spa->spa_import_flags = flags;
4011
4012 /*
4013 * Verbatim import - Take a pool and insert it into the namespace
4014 * as if it had been loaded at boot.
4015 */
4016 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4017 if (props != NULL)
4018 spa_configfile_set(spa, props, B_FALSE);
4019
4020 spa_config_sync(spa, B_FALSE, B_TRUE);
4021
4022 mutex_exit(&spa_namespace_lock);
4023 return (0);
4024 }
4025
4026 spa_activate(spa, mode);
4027
4028 /*
4029 * Don't start async tasks until we know everything is healthy.
4030 */
4031 spa_async_suspend(spa);
4032
4033 zpool_get_rewind_policy(config, &policy);
4034 if (policy.zrp_request & ZPOOL_DO_REWIND)
4035 state = SPA_LOAD_RECOVER;
4036
4037 /*
4038 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
4039 * because the user-supplied config is actually the one to trust when
4040 * doing an import.
4041 */
4042 if (state != SPA_LOAD_RECOVER)
4043 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4044
4045 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4046 policy.zrp_request);
4047
4048 /*
4049 * Propagate anything learned while loading the pool and pass it
4050 * back to caller (i.e. rewind info, missing devices, etc).
4051 */
4052 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4053 spa->spa_load_info) == 0);
4054
4055 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4056 /*
4057 * Toss any existing sparelist, as it doesn't have any validity
4058 * anymore, and conflicts with spa_has_spare().
4059 */
4060 if (spa->spa_spares.sav_config) {
4061 nvlist_free(spa->spa_spares.sav_config);
4062 spa->spa_spares.sav_config = NULL;
4063 spa_load_spares(spa);
4064 }
4065 if (spa->spa_l2cache.sav_config) {
4066 nvlist_free(spa->spa_l2cache.sav_config);
4067 spa->spa_l2cache.sav_config = NULL;
4068 spa_load_l2cache(spa);
4069 }
4070
4071 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4072 &nvroot) == 0);
4073 if (error == 0)
4074 error = spa_validate_aux(spa, nvroot, -1ULL,
4075 VDEV_ALLOC_SPARE);
4076 if (error == 0)
4077 error = spa_validate_aux(spa, nvroot, -1ULL,
4078 VDEV_ALLOC_L2CACHE);
4079 spa_config_exit(spa, SCL_ALL, FTAG);
4080
4081 if (props != NULL)
4082 spa_configfile_set(spa, props, B_FALSE);
4083
4084 if (error != 0 || (props && spa_writeable(spa) &&
4085 (error = spa_prop_set(spa, props)))) {
4086 spa_unload(spa);
4087 spa_deactivate(spa);
4088 spa_remove(spa);
4089 mutex_exit(&spa_namespace_lock);
4090 return (error);
4091 }
4092
4093 spa_async_resume(spa);
4094
4095 /*
4096 * Override any spares and level 2 cache devices as specified by
4097 * the user, as these may have correct device names/devids, etc.
4098 */
4099 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4100 &spares, &nspares) == 0) {
4101 if (spa->spa_spares.sav_config)
4102 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4103 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4104 else
4105 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4106 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4107 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4108 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4109 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4110 spa_load_spares(spa);
4111 spa_config_exit(spa, SCL_ALL, FTAG);
4112 spa->spa_spares.sav_sync = B_TRUE;
4113 }
4114 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4115 &l2cache, &nl2cache) == 0) {
4116 if (spa->spa_l2cache.sav_config)
4117 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4118 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4119 else
4120 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4121 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4122 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4123 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4124 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4125 spa_load_l2cache(spa);
4126 spa_config_exit(spa, SCL_ALL, FTAG);
4127 spa->spa_l2cache.sav_sync = B_TRUE;
4128 }
4129
4130 /*
4131 * Check for any removed devices.
4132 */
4133 if (spa->spa_autoreplace) {
4134 spa_aux_check_removed(&spa->spa_spares);
4135 spa_aux_check_removed(&spa->spa_l2cache);
4136 }
4137
4138 if (spa_writeable(spa)) {
4139 /*
4140 * Update the config cache to include the newly-imported pool.
4141 */
4142 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4143 }
4144
4145 /*
4146 * It's possible that the pool was expanded while it was exported.
4147 * We kick off an async task to handle this for us.
4148 */
4149 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4150
4151 mutex_exit(&spa_namespace_lock);
4152 spa_history_log_version(spa, "import");
4153 zvol_create_minors(spa, pool, B_TRUE);
4154
4155 return (0);
4156 }
4157
4158 nvlist_t *
4159 spa_tryimport(nvlist_t *tryconfig)
4160 {
4161 nvlist_t *config = NULL;
4162 char *poolname;
4163 spa_t *spa;
4164 uint64_t state;
4165 int error;
4166
4167 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4168 return (NULL);
4169
4170 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4171 return (NULL);
4172
4173 /*
4174 * Create and initialize the spa structure.
4175 */
4176 mutex_enter(&spa_namespace_lock);
4177 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4178 spa_activate(spa, FREAD);
4179
4180 /*
4181 * Pass off the heavy lifting to spa_load().
4182 * Pass TRUE for mosconfig because the user-supplied config
4183 * is actually the one to trust when doing an import.
4184 */
4185 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4186
4187 /*
4188 * If 'tryconfig' was at least parsable, return the current config.
4189 */
4190 if (spa->spa_root_vdev != NULL) {
4191 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4192 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4193 poolname) == 0);
4194 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4195 state) == 0);
4196 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4197 spa->spa_uberblock.ub_timestamp) == 0);
4198 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4199 spa->spa_load_info) == 0);
4200 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
4201 spa->spa_errata) == 0);
4202
4203 /*
4204 * If the bootfs property exists on this pool then we
4205 * copy it out so that external consumers can tell which
4206 * pools are bootable.
4207 */
4208 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4209 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4210
4211 /*
4212 * We have to play games with the name since the
4213 * pool was opened as TRYIMPORT_NAME.
4214 */
4215 if (dsl_dsobj_to_dsname(spa_name(spa),
4216 spa->spa_bootfs, tmpname) == 0) {
4217 char *cp;
4218 char *dsname;
4219
4220 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4221
4222 cp = strchr(tmpname, '/');
4223 if (cp == NULL) {
4224 (void) strlcpy(dsname, tmpname,
4225 MAXPATHLEN);
4226 } else {
4227 (void) snprintf(dsname, MAXPATHLEN,
4228 "%s/%s", poolname, ++cp);
4229 }
4230 VERIFY(nvlist_add_string(config,
4231 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4232 kmem_free(dsname, MAXPATHLEN);
4233 }
4234 kmem_free(tmpname, MAXPATHLEN);
4235 }
4236
4237 /*
4238 * Add the list of hot spares and level 2 cache devices.
4239 */
4240 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4241 spa_add_spares(spa, config);
4242 spa_add_l2cache(spa, config);
4243 spa_config_exit(spa, SCL_CONFIG, FTAG);
4244 }
4245
4246 spa_unload(spa);
4247 spa_deactivate(spa);
4248 spa_remove(spa);
4249 mutex_exit(&spa_namespace_lock);
4250
4251 return (config);
4252 }
4253
4254 /*
4255 * Pool export/destroy
4256 *
4257 * The act of destroying or exporting a pool is very simple. We make sure there
4258 * is no more pending I/O and any references to the pool are gone. Then, we
4259 * update the pool state and sync all the labels to disk, removing the
4260 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4261 * we don't sync the labels or remove the configuration cache.
4262 */
4263 static int
4264 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4265 boolean_t force, boolean_t hardforce)
4266 {
4267 spa_t *spa;
4268
4269 if (oldconfig)
4270 *oldconfig = NULL;
4271
4272 if (!(spa_mode_global & FWRITE))
4273 return (SET_ERROR(EROFS));
4274
4275 mutex_enter(&spa_namespace_lock);
4276 if ((spa = spa_lookup(pool)) == NULL) {
4277 mutex_exit(&spa_namespace_lock);
4278 return (SET_ERROR(ENOENT));
4279 }
4280
4281 /*
4282 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4283 * reacquire the namespace lock, and see if we can export.
4284 */
4285 spa_open_ref(spa, FTAG);
4286 mutex_exit(&spa_namespace_lock);
4287 spa_async_suspend(spa);
4288 if (spa->spa_zvol_taskq) {
4289 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
4290 taskq_wait(spa->spa_zvol_taskq);
4291 }
4292 mutex_enter(&spa_namespace_lock);
4293 spa_close(spa, FTAG);
4294
4295 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
4296 goto export_spa;
4297 /*
4298 * The pool will be in core if it's openable, in which case we can
4299 * modify its state. Objsets may be open only because they're dirty,
4300 * so we have to force it to sync before checking spa_refcnt.
4301 */
4302 if (spa->spa_sync_on) {
4303 txg_wait_synced(spa->spa_dsl_pool, 0);
4304 spa_evicting_os_wait(spa);
4305 }
4306
4307 /*
4308 * A pool cannot be exported or destroyed if there are active
4309 * references. If we are resetting a pool, allow references by
4310 * fault injection handlers.
4311 */
4312 if (!spa_refcount_zero(spa) ||
4313 (spa->spa_inject_ref != 0 &&
4314 new_state != POOL_STATE_UNINITIALIZED)) {
4315 spa_async_resume(spa);
4316 mutex_exit(&spa_namespace_lock);
4317 return (SET_ERROR(EBUSY));
4318 }
4319
4320 if (spa->spa_sync_on) {
4321 /*
4322 * A pool cannot be exported if it has an active shared spare.
4323 * This is to prevent other pools stealing the active spare
4324 * from an exported pool. At user's own will, such pool can
4325 * be forcedly exported.
4326 */
4327 if (!force && new_state == POOL_STATE_EXPORTED &&
4328 spa_has_active_shared_spare(spa)) {
4329 spa_async_resume(spa);
4330 mutex_exit(&spa_namespace_lock);
4331 return (SET_ERROR(EXDEV));
4332 }
4333
4334 /*
4335 * We want this to be reflected on every label,
4336 * so mark them all dirty. spa_unload() will do the
4337 * final sync that pushes these changes out.
4338 */
4339 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4340 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4341 spa->spa_state = new_state;
4342 spa->spa_final_txg = spa_last_synced_txg(spa) +
4343 TXG_DEFER_SIZE + 1;
4344 vdev_config_dirty(spa->spa_root_vdev);
4345 spa_config_exit(spa, SCL_ALL, FTAG);
4346 }
4347 }
4348
4349 export_spa:
4350 spa_event_notify(spa, NULL, FM_EREPORT_ZFS_POOL_DESTROY);
4351
4352 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4353 spa_unload(spa);
4354 spa_deactivate(spa);
4355 }
4356
4357 if (oldconfig && spa->spa_config)
4358 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4359
4360 if (new_state != POOL_STATE_UNINITIALIZED) {
4361 if (!hardforce)
4362 spa_config_sync(spa, B_TRUE, B_TRUE);
4363 spa_remove(spa);
4364 }
4365 mutex_exit(&spa_namespace_lock);
4366
4367 return (0);
4368 }
4369
4370 /*
4371 * Destroy a storage pool.
4372 */
4373 int
4374 spa_destroy(char *pool)
4375 {
4376 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4377 B_FALSE, B_FALSE));
4378 }
4379
4380 /*
4381 * Export a storage pool.
4382 */
4383 int
4384 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4385 boolean_t hardforce)
4386 {
4387 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4388 force, hardforce));
4389 }
4390
4391 /*
4392 * Similar to spa_export(), this unloads the spa_t without actually removing it
4393 * from the namespace in any way.
4394 */
4395 int
4396 spa_reset(char *pool)
4397 {
4398 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4399 B_FALSE, B_FALSE));
4400 }
4401
4402 /*
4403 * ==========================================================================
4404 * Device manipulation
4405 * ==========================================================================
4406 */
4407
4408 /*
4409 * Add a device to a storage pool.
4410 */
4411 int
4412 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4413 {
4414 uint64_t txg, id;
4415 int error;
4416 vdev_t *rvd = spa->spa_root_vdev;
4417 vdev_t *vd, *tvd;
4418 nvlist_t **spares, **l2cache;
4419 uint_t nspares, nl2cache;
4420 int c;
4421
4422 ASSERT(spa_writeable(spa));
4423
4424 txg = spa_vdev_enter(spa);
4425
4426 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4427 VDEV_ALLOC_ADD)) != 0)
4428 return (spa_vdev_exit(spa, NULL, txg, error));
4429
4430 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4431
4432 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4433 &nspares) != 0)
4434 nspares = 0;
4435
4436 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4437 &nl2cache) != 0)
4438 nl2cache = 0;
4439
4440 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4441 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4442
4443 if (vd->vdev_children != 0 &&
4444 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4445 return (spa_vdev_exit(spa, vd, txg, error));
4446
4447 /*
4448 * We must validate the spares and l2cache devices after checking the
4449 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4450 */
4451 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4452 return (spa_vdev_exit(spa, vd, txg, error));
4453
4454 /*
4455 * Transfer each new top-level vdev from vd to rvd.
4456 */
4457 for (c = 0; c < vd->vdev_children; c++) {
4458
4459 /*
4460 * Set the vdev id to the first hole, if one exists.
4461 */
4462 for (id = 0; id < rvd->vdev_children; id++) {
4463 if (rvd->vdev_child[id]->vdev_ishole) {
4464 vdev_free(rvd->vdev_child[id]);
4465 break;
4466 }
4467 }
4468 tvd = vd->vdev_child[c];
4469 vdev_remove_child(vd, tvd);
4470 tvd->vdev_id = id;
4471 vdev_add_child(rvd, tvd);
4472 vdev_config_dirty(tvd);
4473 }
4474
4475 if (nspares != 0) {
4476 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4477 ZPOOL_CONFIG_SPARES);
4478 spa_load_spares(spa);
4479 spa->spa_spares.sav_sync = B_TRUE;
4480 }
4481
4482 if (nl2cache != 0) {
4483 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4484 ZPOOL_CONFIG_L2CACHE);
4485 spa_load_l2cache(spa);
4486 spa->spa_l2cache.sav_sync = B_TRUE;
4487 }
4488
4489 /*
4490 * We have to be careful when adding new vdevs to an existing pool.
4491 * If other threads start allocating from these vdevs before we
4492 * sync the config cache, and we lose power, then upon reboot we may
4493 * fail to open the pool because there are DVAs that the config cache
4494 * can't translate. Therefore, we first add the vdevs without
4495 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4496 * and then let spa_config_update() initialize the new metaslabs.
4497 *
4498 * spa_load() checks for added-but-not-initialized vdevs, so that
4499 * if we lose power at any point in this sequence, the remaining
4500 * steps will be completed the next time we load the pool.
4501 */
4502 (void) spa_vdev_exit(spa, vd, txg, 0);
4503
4504 mutex_enter(&spa_namespace_lock);
4505 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4506 mutex_exit(&spa_namespace_lock);
4507
4508 return (0);
4509 }
4510
4511 /*
4512 * Attach a device to a mirror. The arguments are the path to any device
4513 * in the mirror, and the nvroot for the new device. If the path specifies
4514 * a device that is not mirrored, we automatically insert the mirror vdev.
4515 *
4516 * If 'replacing' is specified, the new device is intended to replace the
4517 * existing device; in this case the two devices are made into their own
4518 * mirror using the 'replacing' vdev, which is functionally identical to
4519 * the mirror vdev (it actually reuses all the same ops) but has a few
4520 * extra rules: you can't attach to it after it's been created, and upon
4521 * completion of resilvering, the first disk (the one being replaced)
4522 * is automatically detached.
4523 */
4524 int
4525 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4526 {
4527 uint64_t txg, dtl_max_txg;
4528 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4529 vdev_ops_t *pvops;
4530 char *oldvdpath, *newvdpath;
4531 int newvd_isspare;
4532 int error;
4533 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
4534
4535 ASSERT(spa_writeable(spa));
4536
4537 txg = spa_vdev_enter(spa);
4538
4539 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4540
4541 if (oldvd == NULL)
4542 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4543
4544 if (!oldvd->vdev_ops->vdev_op_leaf)
4545 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4546
4547 pvd = oldvd->vdev_parent;
4548
4549 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4550 VDEV_ALLOC_ATTACH)) != 0)
4551 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4552
4553 if (newrootvd->vdev_children != 1)
4554 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4555
4556 newvd = newrootvd->vdev_child[0];
4557
4558 if (!newvd->vdev_ops->vdev_op_leaf)
4559 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4560
4561 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4562 return (spa_vdev_exit(spa, newrootvd, txg, error));
4563
4564 /*
4565 * Spares can't replace logs
4566 */
4567 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4568 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4569
4570 if (!replacing) {
4571 /*
4572 * For attach, the only allowable parent is a mirror or the root
4573 * vdev.
4574 */
4575 if (pvd->vdev_ops != &vdev_mirror_ops &&
4576 pvd->vdev_ops != &vdev_root_ops)
4577 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4578
4579 pvops = &vdev_mirror_ops;
4580 } else {
4581 /*
4582 * Active hot spares can only be replaced by inactive hot
4583 * spares.
4584 */
4585 if (pvd->vdev_ops == &vdev_spare_ops &&
4586 oldvd->vdev_isspare &&
4587 !spa_has_spare(spa, newvd->vdev_guid))
4588 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4589
4590 /*
4591 * If the source is a hot spare, and the parent isn't already a
4592 * spare, then we want to create a new hot spare. Otherwise, we
4593 * want to create a replacing vdev. The user is not allowed to
4594 * attach to a spared vdev child unless the 'isspare' state is
4595 * the same (spare replaces spare, non-spare replaces
4596 * non-spare).
4597 */
4598 if (pvd->vdev_ops == &vdev_replacing_ops &&
4599 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4600 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4601 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4602 newvd->vdev_isspare != oldvd->vdev_isspare) {
4603 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4604 }
4605
4606 if (newvd->vdev_isspare)
4607 pvops = &vdev_spare_ops;
4608 else
4609 pvops = &vdev_replacing_ops;
4610 }
4611
4612 /*
4613 * Make sure the new device is big enough.
4614 */
4615 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4616 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4617
4618 /*
4619 * The new device cannot have a higher alignment requirement
4620 * than the top-level vdev.
4621 */
4622 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4623 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4624
4625 /*
4626 * If this is an in-place replacement, update oldvd's path and devid
4627 * to make it distinguishable from newvd, and unopenable from now on.
4628 */
4629 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4630 spa_strfree(oldvd->vdev_path);
4631 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4632 KM_SLEEP);
4633 (void) sprintf(oldvd->vdev_path, "%s/%s",
4634 newvd->vdev_path, "old");
4635 if (oldvd->vdev_devid != NULL) {
4636 spa_strfree(oldvd->vdev_devid);
4637 oldvd->vdev_devid = NULL;
4638 }
4639 }
4640
4641 /* mark the device being resilvered */
4642 newvd->vdev_resilver_txg = txg;
4643
4644 /*
4645 * If the parent is not a mirror, or if we're replacing, insert the new
4646 * mirror/replacing/spare vdev above oldvd.
4647 */
4648 if (pvd->vdev_ops != pvops)
4649 pvd = vdev_add_parent(oldvd, pvops);
4650
4651 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4652 ASSERT(pvd->vdev_ops == pvops);
4653 ASSERT(oldvd->vdev_parent == pvd);
4654
4655 /*
4656 * Extract the new device from its root and add it to pvd.
4657 */
4658 vdev_remove_child(newrootvd, newvd);
4659 newvd->vdev_id = pvd->vdev_children;
4660 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4661 vdev_add_child(pvd, newvd);
4662
4663 tvd = newvd->vdev_top;
4664 ASSERT(pvd->vdev_top == tvd);
4665 ASSERT(tvd->vdev_parent == rvd);
4666
4667 vdev_config_dirty(tvd);
4668
4669 /*
4670 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4671 * for any dmu_sync-ed blocks. It will propagate upward when
4672 * spa_vdev_exit() calls vdev_dtl_reassess().
4673 */
4674 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4675
4676 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4677 dtl_max_txg - TXG_INITIAL);
4678
4679 if (newvd->vdev_isspare) {
4680 spa_spare_activate(newvd);
4681 spa_event_notify(spa, newvd, FM_EREPORT_ZFS_DEVICE_SPARE);
4682 }
4683
4684 oldvdpath = spa_strdup(oldvd->vdev_path);
4685 newvdpath = spa_strdup(newvd->vdev_path);
4686 newvd_isspare = newvd->vdev_isspare;
4687
4688 /*
4689 * Mark newvd's DTL dirty in this txg.
4690 */
4691 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4692
4693 /*
4694 * Schedule the resilver to restart in the future. We do this to
4695 * ensure that dmu_sync-ed blocks have been stitched into the
4696 * respective datasets.
4697 */
4698 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4699
4700 /*
4701 * Commit the config
4702 */
4703 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4704
4705 spa_history_log_internal(spa, "vdev attach", NULL,
4706 "%s vdev=%s %s vdev=%s",
4707 replacing && newvd_isspare ? "spare in" :
4708 replacing ? "replace" : "attach", newvdpath,
4709 replacing ? "for" : "to", oldvdpath);
4710
4711 spa_strfree(oldvdpath);
4712 spa_strfree(newvdpath);
4713
4714 if (spa->spa_bootfs)
4715 spa_event_notify(spa, newvd, FM_EREPORT_ZFS_BOOTFS_VDEV_ATTACH);
4716
4717 return (0);
4718 }
4719
4720 /*
4721 * Detach a device from a mirror or replacing vdev.
4722 *
4723 * If 'replace_done' is specified, only detach if the parent
4724 * is a replacing vdev.
4725 */
4726 int
4727 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4728 {
4729 uint64_t txg;
4730 int error;
4731 vdev_t *vd, *pvd, *cvd, *tvd;
4732 boolean_t unspare = B_FALSE;
4733 uint64_t unspare_guid = 0;
4734 char *vdpath;
4735 int c, t;
4736 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
4737 ASSERT(spa_writeable(spa));
4738
4739 txg = spa_vdev_enter(spa);
4740
4741 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4742
4743 if (vd == NULL)
4744 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4745
4746 if (!vd->vdev_ops->vdev_op_leaf)
4747 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4748
4749 pvd = vd->vdev_parent;
4750
4751 /*
4752 * If the parent/child relationship is not as expected, don't do it.
4753 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4754 * vdev that's replacing B with C. The user's intent in replacing
4755 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4756 * the replace by detaching C, the expected behavior is to end up
4757 * M(A,B). But suppose that right after deciding to detach C,
4758 * the replacement of B completes. We would have M(A,C), and then
4759 * ask to detach C, which would leave us with just A -- not what
4760 * the user wanted. To prevent this, we make sure that the
4761 * parent/child relationship hasn't changed -- in this example,
4762 * that C's parent is still the replacing vdev R.
4763 */
4764 if (pvd->vdev_guid != pguid && pguid != 0)
4765 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4766
4767 /*
4768 * Only 'replacing' or 'spare' vdevs can be replaced.
4769 */
4770 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4771 pvd->vdev_ops != &vdev_spare_ops)
4772 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4773
4774 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4775 spa_version(spa) >= SPA_VERSION_SPARES);
4776
4777 /*
4778 * Only mirror, replacing, and spare vdevs support detach.
4779 */
4780 if (pvd->vdev_ops != &vdev_replacing_ops &&
4781 pvd->vdev_ops != &vdev_mirror_ops &&
4782 pvd->vdev_ops != &vdev_spare_ops)
4783 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4784
4785 /*
4786 * If this device has the only valid copy of some data,
4787 * we cannot safely detach it.
4788 */
4789 if (vdev_dtl_required(vd))
4790 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4791
4792 ASSERT(pvd->vdev_children >= 2);
4793
4794 /*
4795 * If we are detaching the second disk from a replacing vdev, then
4796 * check to see if we changed the original vdev's path to have "/old"
4797 * at the end in spa_vdev_attach(). If so, undo that change now.
4798 */
4799 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4800 vd->vdev_path != NULL) {
4801 size_t len = strlen(vd->vdev_path);
4802
4803 for (c = 0; c < pvd->vdev_children; c++) {
4804 cvd = pvd->vdev_child[c];
4805
4806 if (cvd == vd || cvd->vdev_path == NULL)
4807 continue;
4808
4809 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4810 strcmp(cvd->vdev_path + len, "/old") == 0) {
4811 spa_strfree(cvd->vdev_path);
4812 cvd->vdev_path = spa_strdup(vd->vdev_path);
4813 break;
4814 }
4815 }
4816 }
4817
4818 /*
4819 * If we are detaching the original disk from a spare, then it implies
4820 * that the spare should become a real disk, and be removed from the
4821 * active spare list for the pool.
4822 */
4823 if (pvd->vdev_ops == &vdev_spare_ops &&
4824 vd->vdev_id == 0 &&
4825 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4826 unspare = B_TRUE;
4827
4828 /*
4829 * Erase the disk labels so the disk can be used for other things.
4830 * This must be done after all other error cases are handled,
4831 * but before we disembowel vd (so we can still do I/O to it).
4832 * But if we can't do it, don't treat the error as fatal --
4833 * it may be that the unwritability of the disk is the reason
4834 * it's being detached!
4835 */
4836 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4837
4838 /*
4839 * Remove vd from its parent and compact the parent's children.
4840 */
4841 vdev_remove_child(pvd, vd);
4842 vdev_compact_children(pvd);
4843
4844 /*
4845 * Remember one of the remaining children so we can get tvd below.
4846 */
4847 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4848
4849 /*
4850 * If we need to remove the remaining child from the list of hot spares,
4851 * do it now, marking the vdev as no longer a spare in the process.
4852 * We must do this before vdev_remove_parent(), because that can
4853 * change the GUID if it creates a new toplevel GUID. For a similar
4854 * reason, we must remove the spare now, in the same txg as the detach;
4855 * otherwise someone could attach a new sibling, change the GUID, and
4856 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4857 */
4858 if (unspare) {
4859 ASSERT(cvd->vdev_isspare);
4860 spa_spare_remove(cvd);
4861 unspare_guid = cvd->vdev_guid;
4862 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4863 cvd->vdev_unspare = B_TRUE;
4864 }
4865
4866 /*
4867 * If the parent mirror/replacing vdev only has one child,
4868 * the parent is no longer needed. Remove it from the tree.
4869 */
4870 if (pvd->vdev_children == 1) {
4871 if (pvd->vdev_ops == &vdev_spare_ops)
4872 cvd->vdev_unspare = B_FALSE;
4873 vdev_remove_parent(cvd);
4874 }
4875
4876
4877 /*
4878 * We don't set tvd until now because the parent we just removed
4879 * may have been the previous top-level vdev.
4880 */
4881 tvd = cvd->vdev_top;
4882 ASSERT(tvd->vdev_parent == rvd);
4883
4884 /*
4885 * Reevaluate the parent vdev state.
4886 */
4887 vdev_propagate_state(cvd);
4888
4889 /*
4890 * If the 'autoexpand' property is set on the pool then automatically
4891 * try to expand the size of the pool. For example if the device we
4892 * just detached was smaller than the others, it may be possible to
4893 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4894 * first so that we can obtain the updated sizes of the leaf vdevs.
4895 */
4896 if (spa->spa_autoexpand) {
4897 vdev_reopen(tvd);
4898 vdev_expand(tvd, txg);
4899 }
4900
4901 vdev_config_dirty(tvd);
4902
4903 /*
4904 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4905 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4906 * But first make sure we're not on any *other* txg's DTL list, to
4907 * prevent vd from being accessed after it's freed.
4908 */
4909 vdpath = spa_strdup(vd->vdev_path);
4910 for (t = 0; t < TXG_SIZE; t++)
4911 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4912 vd->vdev_detached = B_TRUE;
4913 vdev_dirty(tvd, VDD_DTL, vd, txg);
4914
4915 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_REMOVE);
4916
4917 /* hang on to the spa before we release the lock */
4918 spa_open_ref(spa, FTAG);
4919
4920 error = spa_vdev_exit(spa, vd, txg, 0);
4921
4922 spa_history_log_internal(spa, "detach", NULL,
4923 "vdev=%s", vdpath);
4924 spa_strfree(vdpath);
4925
4926 /*
4927 * If this was the removal of the original device in a hot spare vdev,
4928 * then we want to go through and remove the device from the hot spare
4929 * list of every other pool.
4930 */
4931 if (unspare) {
4932 spa_t *altspa = NULL;
4933
4934 mutex_enter(&spa_namespace_lock);
4935 while ((altspa = spa_next(altspa)) != NULL) {
4936 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4937 altspa == spa)
4938 continue;
4939
4940 spa_open_ref(altspa, FTAG);
4941 mutex_exit(&spa_namespace_lock);
4942 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4943 mutex_enter(&spa_namespace_lock);
4944 spa_close(altspa, FTAG);
4945 }
4946 mutex_exit(&spa_namespace_lock);
4947
4948 /* search the rest of the vdevs for spares to remove */
4949 spa_vdev_resilver_done(spa);
4950 }
4951
4952 /* all done with the spa; OK to release */
4953 mutex_enter(&spa_namespace_lock);
4954 spa_close(spa, FTAG);
4955 mutex_exit(&spa_namespace_lock);
4956
4957 return (error);
4958 }
4959
4960 /*
4961 * Split a set of devices from their mirrors, and create a new pool from them.
4962 */
4963 int
4964 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4965 nvlist_t *props, boolean_t exp)
4966 {
4967 int error = 0;
4968 uint64_t txg, *glist;
4969 spa_t *newspa;
4970 uint_t c, children, lastlog;
4971 nvlist_t **child, *nvl, *tmp;
4972 dmu_tx_t *tx;
4973 char *altroot = NULL;
4974 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4975 boolean_t activate_slog;
4976
4977 ASSERT(spa_writeable(spa));
4978
4979 txg = spa_vdev_enter(spa);
4980
4981 /* clear the log and flush everything up to now */
4982 activate_slog = spa_passivate_log(spa);
4983 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4984 error = spa_offline_log(spa);
4985 txg = spa_vdev_config_enter(spa);
4986
4987 if (activate_slog)
4988 spa_activate_log(spa);
4989
4990 if (error != 0)
4991 return (spa_vdev_exit(spa, NULL, txg, error));
4992
4993 /* check new spa name before going any further */
4994 if (spa_lookup(newname) != NULL)
4995 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4996
4997 /*
4998 * scan through all the children to ensure they're all mirrors
4999 */
5000 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5001 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5002 &children) != 0)
5003 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5004
5005 /* first, check to ensure we've got the right child count */
5006 rvd = spa->spa_root_vdev;
5007 lastlog = 0;
5008 for (c = 0; c < rvd->vdev_children; c++) {
5009 vdev_t *vd = rvd->vdev_child[c];
5010
5011 /* don't count the holes & logs as children */
5012 if (vd->vdev_islog || vd->vdev_ishole) {
5013 if (lastlog == 0)
5014 lastlog = c;
5015 continue;
5016 }
5017
5018 lastlog = 0;
5019 }
5020 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5021 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5022
5023 /* next, ensure no spare or cache devices are part of the split */
5024 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5025 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5026 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5027
5028 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5029 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5030
5031 /* then, loop over each vdev and validate it */
5032 for (c = 0; c < children; c++) {
5033 uint64_t is_hole = 0;
5034
5035 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5036 &is_hole);
5037
5038 if (is_hole != 0) {
5039 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5040 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5041 continue;
5042 } else {
5043 error = SET_ERROR(EINVAL);
5044 break;
5045 }
5046 }
5047
5048 /* which disk is going to be split? */
5049 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5050 &glist[c]) != 0) {
5051 error = SET_ERROR(EINVAL);
5052 break;
5053 }
5054
5055 /* look it up in the spa */
5056 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5057 if (vml[c] == NULL) {
5058 error = SET_ERROR(ENODEV);
5059 break;
5060 }
5061
5062 /* make sure there's nothing stopping the split */
5063 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5064 vml[c]->vdev_islog ||
5065 vml[c]->vdev_ishole ||
5066 vml[c]->vdev_isspare ||
5067 vml[c]->vdev_isl2cache ||
5068 !vdev_writeable(vml[c]) ||
5069 vml[c]->vdev_children != 0 ||
5070 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5071 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5072 error = SET_ERROR(EINVAL);
5073 break;
5074 }
5075
5076 if (vdev_dtl_required(vml[c])) {
5077 error = SET_ERROR(EBUSY);
5078 break;
5079 }
5080
5081 /* we need certain info from the top level */
5082 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5083 vml[c]->vdev_top->vdev_ms_array) == 0);
5084 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5085 vml[c]->vdev_top->vdev_ms_shift) == 0);
5086 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5087 vml[c]->vdev_top->vdev_asize) == 0);
5088 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5089 vml[c]->vdev_top->vdev_ashift) == 0);
5090
5091 /* transfer per-vdev ZAPs */
5092 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5093 VERIFY0(nvlist_add_uint64(child[c],
5094 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5095
5096 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5097 VERIFY0(nvlist_add_uint64(child[c],
5098 ZPOOL_CONFIG_VDEV_TOP_ZAP,
5099 vml[c]->vdev_parent->vdev_top_zap));
5100 }
5101
5102 if (error != 0) {
5103 kmem_free(vml, children * sizeof (vdev_t *));
5104 kmem_free(glist, children * sizeof (uint64_t));
5105 return (spa_vdev_exit(spa, NULL, txg, error));
5106 }
5107
5108 /* stop writers from using the disks */
5109 for (c = 0; c < children; c++) {
5110 if (vml[c] != NULL)
5111 vml[c]->vdev_offline = B_TRUE;
5112 }
5113 vdev_reopen(spa->spa_root_vdev);
5114
5115 /*
5116 * Temporarily record the splitting vdevs in the spa config. This
5117 * will disappear once the config is regenerated.
5118 */
5119 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5120 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5121 glist, children) == 0);
5122 kmem_free(glist, children * sizeof (uint64_t));
5123
5124 mutex_enter(&spa->spa_props_lock);
5125 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5126 nvl) == 0);
5127 mutex_exit(&spa->spa_props_lock);
5128 spa->spa_config_splitting = nvl;
5129 vdev_config_dirty(spa->spa_root_vdev);
5130
5131 /* configure and create the new pool */
5132 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5133 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5134 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5135 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5136 spa_version(spa)) == 0);
5137 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5138 spa->spa_config_txg) == 0);
5139 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5140 spa_generate_guid(NULL)) == 0);
5141 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5142 (void) nvlist_lookup_string(props,
5143 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5144
5145 /* add the new pool to the namespace */
5146 newspa = spa_add(newname, config, altroot);
5147 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5148 newspa->spa_config_txg = spa->spa_config_txg;
5149 spa_set_log_state(newspa, SPA_LOG_CLEAR);
5150
5151 /* release the spa config lock, retaining the namespace lock */
5152 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5153
5154 if (zio_injection_enabled)
5155 zio_handle_panic_injection(spa, FTAG, 1);
5156
5157 spa_activate(newspa, spa_mode_global);
5158 spa_async_suspend(newspa);
5159
5160 /* create the new pool from the disks of the original pool */
5161 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5162 if (error)
5163 goto out;
5164
5165 /* if that worked, generate a real config for the new pool */
5166 if (newspa->spa_root_vdev != NULL) {
5167 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5168 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5169 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5170 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5171 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5172 B_TRUE));
5173 }
5174
5175 /* set the props */
5176 if (props != NULL) {
5177 spa_configfile_set(newspa, props, B_FALSE);
5178 error = spa_prop_set(newspa, props);
5179 if (error)
5180 goto out;
5181 }
5182
5183 /* flush everything */
5184 txg = spa_vdev_config_enter(newspa);
5185 vdev_config_dirty(newspa->spa_root_vdev);
5186 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5187
5188 if (zio_injection_enabled)
5189 zio_handle_panic_injection(spa, FTAG, 2);
5190
5191 spa_async_resume(newspa);
5192
5193 /* finally, update the original pool's config */
5194 txg = spa_vdev_config_enter(spa);
5195 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5196 error = dmu_tx_assign(tx, TXG_WAIT);
5197 if (error != 0)
5198 dmu_tx_abort(tx);
5199 for (c = 0; c < children; c++) {
5200 if (vml[c] != NULL) {
5201 vdev_split(vml[c]);
5202 if (error == 0)
5203 spa_history_log_internal(spa, "detach", tx,
5204 "vdev=%s", vml[c]->vdev_path);
5205
5206 vdev_free(vml[c]);
5207 }
5208 }
5209 spa->spa_avz_action = AVZ_ACTION_REBUILD;
5210 vdev_config_dirty(spa->spa_root_vdev);
5211 spa->spa_config_splitting = NULL;
5212 nvlist_free(nvl);
5213 if (error == 0)
5214 dmu_tx_commit(tx);
5215 (void) spa_vdev_exit(spa, NULL, txg, 0);
5216
5217 if (zio_injection_enabled)
5218 zio_handle_panic_injection(spa, FTAG, 3);
5219
5220 /* split is complete; log a history record */
5221 spa_history_log_internal(newspa, "split", NULL,
5222 "from pool %s", spa_name(spa));
5223
5224 kmem_free(vml, children * sizeof (vdev_t *));
5225
5226 /* if we're not going to mount the filesystems in userland, export */
5227 if (exp)
5228 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5229 B_FALSE, B_FALSE);
5230
5231 return (error);
5232
5233 out:
5234 spa_unload(newspa);
5235 spa_deactivate(newspa);
5236 spa_remove(newspa);
5237
5238 txg = spa_vdev_config_enter(spa);
5239
5240 /* re-online all offlined disks */
5241 for (c = 0; c < children; c++) {
5242 if (vml[c] != NULL)
5243 vml[c]->vdev_offline = B_FALSE;
5244 }
5245 vdev_reopen(spa->spa_root_vdev);
5246
5247 nvlist_free(spa->spa_config_splitting);
5248 spa->spa_config_splitting = NULL;
5249 (void) spa_vdev_exit(spa, NULL, txg, error);
5250
5251 kmem_free(vml, children * sizeof (vdev_t *));
5252 return (error);
5253 }
5254
5255 static nvlist_t *
5256 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5257 {
5258 int i;
5259
5260 for (i = 0; i < count; i++) {
5261 uint64_t guid;
5262
5263 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5264 &guid) == 0);
5265
5266 if (guid == target_guid)
5267 return (nvpp[i]);
5268 }
5269
5270 return (NULL);
5271 }
5272
5273 static void
5274 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5275 nvlist_t *dev_to_remove)
5276 {
5277 nvlist_t **newdev = NULL;
5278 int i, j;
5279
5280 if (count > 1)
5281 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5282
5283 for (i = 0, j = 0; i < count; i++) {
5284 if (dev[i] == dev_to_remove)
5285 continue;
5286 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5287 }
5288
5289 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5290 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5291
5292 for (i = 0; i < count - 1; i++)
5293 nvlist_free(newdev[i]);
5294
5295 if (count > 1)
5296 kmem_free(newdev, (count - 1) * sizeof (void *));
5297 }
5298
5299 /*
5300 * Evacuate the device.
5301 */
5302 static int
5303 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5304 {
5305 uint64_t txg;
5306 int error = 0;
5307
5308 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5309 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5310 ASSERT(vd == vd->vdev_top);
5311
5312 /*
5313 * Evacuate the device. We don't hold the config lock as writer
5314 * since we need to do I/O but we do keep the
5315 * spa_namespace_lock held. Once this completes the device
5316 * should no longer have any blocks allocated on it.
5317 */
5318 if (vd->vdev_islog) {
5319 if (vd->vdev_stat.vs_alloc != 0)
5320 error = spa_offline_log(spa);
5321 } else {
5322 error = SET_ERROR(ENOTSUP);
5323 }
5324
5325 if (error)
5326 return (error);
5327
5328 /*
5329 * The evacuation succeeded. Remove any remaining MOS metadata
5330 * associated with this vdev, and wait for these changes to sync.
5331 */
5332 ASSERT0(vd->vdev_stat.vs_alloc);
5333 txg = spa_vdev_config_enter(spa);
5334 vd->vdev_removing = B_TRUE;
5335 vdev_dirty_leaves(vd, VDD_DTL, txg);
5336 vdev_config_dirty(vd);
5337 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5338
5339 return (0);
5340 }
5341
5342 /*
5343 * Complete the removal by cleaning up the namespace.
5344 */
5345 static void
5346 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5347 {
5348 vdev_t *rvd = spa->spa_root_vdev;
5349 uint64_t id = vd->vdev_id;
5350 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5351
5352 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5353 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5354 ASSERT(vd == vd->vdev_top);
5355
5356 /*
5357 * Only remove any devices which are empty.
5358 */
5359 if (vd->vdev_stat.vs_alloc != 0)
5360 return;
5361
5362 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5363
5364 if (list_link_active(&vd->vdev_state_dirty_node))
5365 vdev_state_clean(vd);
5366 if (list_link_active(&vd->vdev_config_dirty_node))
5367 vdev_config_clean(vd);
5368
5369 vdev_free(vd);
5370
5371 if (last_vdev) {
5372 vdev_compact_children(rvd);
5373 } else {
5374 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5375 vdev_add_child(rvd, vd);
5376 }
5377 vdev_config_dirty(rvd);
5378
5379 /*
5380 * Reassess the health of our root vdev.
5381 */
5382 vdev_reopen(rvd);
5383 }
5384
5385 /*
5386 * Remove a device from the pool -
5387 *
5388 * Removing a device from the vdev namespace requires several steps
5389 * and can take a significant amount of time. As a result we use
5390 * the spa_vdev_config_[enter/exit] functions which allow us to
5391 * grab and release the spa_config_lock while still holding the namespace
5392 * lock. During each step the configuration is synced out.
5393 *
5394 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5395 * devices.
5396 */
5397 int
5398 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5399 {
5400 vdev_t *vd;
5401 metaslab_group_t *mg;
5402 nvlist_t **spares, **l2cache, *nv;
5403 uint64_t txg = 0;
5404 uint_t nspares, nl2cache;
5405 int error = 0;
5406 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5407
5408 ASSERT(spa_writeable(spa));
5409
5410 if (!locked)
5411 txg = spa_vdev_enter(spa);
5412
5413 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5414
5415 if (spa->spa_spares.sav_vdevs != NULL &&
5416 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5417 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5418 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5419 /*
5420 * Only remove the hot spare if it's not currently in use
5421 * in this pool.
5422 */
5423 if (vd == NULL || unspare) {
5424 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5425 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5426 spa_load_spares(spa);
5427 spa->spa_spares.sav_sync = B_TRUE;
5428 } else {
5429 error = SET_ERROR(EBUSY);
5430 }
5431 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5432 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5433 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5434 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5435 /*
5436 * Cache devices can always be removed.
5437 */
5438 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5439 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5440 spa_load_l2cache(spa);
5441 spa->spa_l2cache.sav_sync = B_TRUE;
5442 } else if (vd != NULL && vd->vdev_islog) {
5443 ASSERT(!locked);
5444 ASSERT(vd == vd->vdev_top);
5445
5446 mg = vd->vdev_mg;
5447
5448 /*
5449 * Stop allocating from this vdev.
5450 */
5451 metaslab_group_passivate(mg);
5452
5453 /*
5454 * Wait for the youngest allocations and frees to sync,
5455 * and then wait for the deferral of those frees to finish.
5456 */
5457 spa_vdev_config_exit(spa, NULL,
5458 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5459
5460 /*
5461 * Attempt to evacuate the vdev.
5462 */
5463 error = spa_vdev_remove_evacuate(spa, vd);
5464
5465 txg = spa_vdev_config_enter(spa);
5466
5467 /*
5468 * If we couldn't evacuate the vdev, unwind.
5469 */
5470 if (error) {
5471 metaslab_group_activate(mg);
5472 return (spa_vdev_exit(spa, NULL, txg, error));
5473 }
5474
5475 /*
5476 * Clean up the vdev namespace.
5477 */
5478 spa_vdev_remove_from_namespace(spa, vd);
5479
5480 } else if (vd != NULL) {
5481 /*
5482 * Normal vdevs cannot be removed (yet).
5483 */
5484 error = SET_ERROR(ENOTSUP);
5485 } else {
5486 /*
5487 * There is no vdev of any kind with the specified guid.
5488 */
5489 error = SET_ERROR(ENOENT);
5490 }
5491
5492 if (!locked)
5493 return (spa_vdev_exit(spa, NULL, txg, error));
5494
5495 return (error);
5496 }
5497
5498 /*
5499 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5500 * currently spared, so we can detach it.
5501 */
5502 static vdev_t *
5503 spa_vdev_resilver_done_hunt(vdev_t *vd)
5504 {
5505 vdev_t *newvd, *oldvd;
5506 int c;
5507
5508 for (c = 0; c < vd->vdev_children; c++) {
5509 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5510 if (oldvd != NULL)
5511 return (oldvd);
5512 }
5513
5514 /*
5515 * Check for a completed replacement. We always consider the first
5516 * vdev in the list to be the oldest vdev, and the last one to be
5517 * the newest (see spa_vdev_attach() for how that works). In
5518 * the case where the newest vdev is faulted, we will not automatically
5519 * remove it after a resilver completes. This is OK as it will require
5520 * user intervention to determine which disk the admin wishes to keep.
5521 */
5522 if (vd->vdev_ops == &vdev_replacing_ops) {
5523 ASSERT(vd->vdev_children > 1);
5524
5525 newvd = vd->vdev_child[vd->vdev_children - 1];
5526 oldvd = vd->vdev_child[0];
5527
5528 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5529 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5530 !vdev_dtl_required(oldvd))
5531 return (oldvd);
5532 }
5533
5534 /*
5535 * Check for a completed resilver with the 'unspare' flag set.
5536 */
5537 if (vd->vdev_ops == &vdev_spare_ops) {
5538 vdev_t *first = vd->vdev_child[0];
5539 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5540
5541 if (last->vdev_unspare) {
5542 oldvd = first;
5543 newvd = last;
5544 } else if (first->vdev_unspare) {
5545 oldvd = last;
5546 newvd = first;
5547 } else {
5548 oldvd = NULL;
5549 }
5550
5551 if (oldvd != NULL &&
5552 vdev_dtl_empty(newvd, DTL_MISSING) &&
5553 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5554 !vdev_dtl_required(oldvd))
5555 return (oldvd);
5556
5557 /*
5558 * If there are more than two spares attached to a disk,
5559 * and those spares are not required, then we want to
5560 * attempt to free them up now so that they can be used
5561 * by other pools. Once we're back down to a single
5562 * disk+spare, we stop removing them.
5563 */
5564 if (vd->vdev_children > 2) {
5565 newvd = vd->vdev_child[1];
5566
5567 if (newvd->vdev_isspare && last->vdev_isspare &&
5568 vdev_dtl_empty(last, DTL_MISSING) &&
5569 vdev_dtl_empty(last, DTL_OUTAGE) &&
5570 !vdev_dtl_required(newvd))
5571 return (newvd);
5572 }
5573 }
5574
5575 return (NULL);
5576 }
5577
5578 static void
5579 spa_vdev_resilver_done(spa_t *spa)
5580 {
5581 vdev_t *vd, *pvd, *ppvd;
5582 uint64_t guid, sguid, pguid, ppguid;
5583
5584 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5585
5586 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5587 pvd = vd->vdev_parent;
5588 ppvd = pvd->vdev_parent;
5589 guid = vd->vdev_guid;
5590 pguid = pvd->vdev_guid;
5591 ppguid = ppvd->vdev_guid;
5592 sguid = 0;
5593 /*
5594 * If we have just finished replacing a hot spared device, then
5595 * we need to detach the parent's first child (the original hot
5596 * spare) as well.
5597 */
5598 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5599 ppvd->vdev_children == 2) {
5600 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5601 sguid = ppvd->vdev_child[1]->vdev_guid;
5602 }
5603 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5604
5605 spa_config_exit(spa, SCL_ALL, FTAG);
5606 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5607 return;
5608 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5609 return;
5610 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5611 }
5612
5613 spa_config_exit(spa, SCL_ALL, FTAG);
5614 }
5615
5616 /*
5617 * Update the stored path or FRU for this vdev.
5618 */
5619 int
5620 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5621 boolean_t ispath)
5622 {
5623 vdev_t *vd;
5624 boolean_t sync = B_FALSE;
5625
5626 ASSERT(spa_writeable(spa));
5627
5628 spa_vdev_state_enter(spa, SCL_ALL);
5629
5630 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5631 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5632
5633 if (!vd->vdev_ops->vdev_op_leaf)
5634 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5635
5636 if (ispath) {
5637 if (strcmp(value, vd->vdev_path) != 0) {
5638 spa_strfree(vd->vdev_path);
5639 vd->vdev_path = spa_strdup(value);
5640 sync = B_TRUE;
5641 }
5642 } else {
5643 if (vd->vdev_fru == NULL) {
5644 vd->vdev_fru = spa_strdup(value);
5645 sync = B_TRUE;
5646 } else if (strcmp(value, vd->vdev_fru) != 0) {
5647 spa_strfree(vd->vdev_fru);
5648 vd->vdev_fru = spa_strdup(value);
5649 sync = B_TRUE;
5650 }
5651 }
5652
5653 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5654 }
5655
5656 int
5657 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5658 {
5659 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5660 }
5661
5662 int
5663 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5664 {
5665 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5666 }
5667
5668 /*
5669 * ==========================================================================
5670 * SPA Scanning
5671 * ==========================================================================
5672 */
5673
5674 int
5675 spa_scan_stop(spa_t *spa)
5676 {
5677 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5678 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5679 return (SET_ERROR(EBUSY));
5680 return (dsl_scan_cancel(spa->spa_dsl_pool));
5681 }
5682
5683 int
5684 spa_scan(spa_t *spa, pool_scan_func_t func)
5685 {
5686 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5687
5688 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5689 return (SET_ERROR(ENOTSUP));
5690
5691 /*
5692 * If a resilver was requested, but there is no DTL on a
5693 * writeable leaf device, we have nothing to do.
5694 */
5695 if (func == POOL_SCAN_RESILVER &&
5696 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5697 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5698 return (0);
5699 }
5700
5701 return (dsl_scan(spa->spa_dsl_pool, func));
5702 }
5703
5704 /*
5705 * ==========================================================================
5706 * SPA async task processing
5707 * ==========================================================================
5708 */
5709
5710 static void
5711 spa_async_remove(spa_t *spa, vdev_t *vd)
5712 {
5713 int c;
5714
5715 if (vd->vdev_remove_wanted) {
5716 vd->vdev_remove_wanted = B_FALSE;
5717 vd->vdev_delayed_close = B_FALSE;
5718 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5719
5720 /*
5721 * We want to clear the stats, but we don't want to do a full
5722 * vdev_clear() as that will cause us to throw away
5723 * degraded/faulted state as well as attempt to reopen the
5724 * device, all of which is a waste.
5725 */
5726 vd->vdev_stat.vs_read_errors = 0;
5727 vd->vdev_stat.vs_write_errors = 0;
5728 vd->vdev_stat.vs_checksum_errors = 0;
5729
5730 vdev_state_dirty(vd->vdev_top);
5731 }
5732
5733 for (c = 0; c < vd->vdev_children; c++)
5734 spa_async_remove(spa, vd->vdev_child[c]);
5735 }
5736
5737 static void
5738 spa_async_probe(spa_t *spa, vdev_t *vd)
5739 {
5740 int c;
5741
5742 if (vd->vdev_probe_wanted) {
5743 vd->vdev_probe_wanted = B_FALSE;
5744 vdev_reopen(vd); /* vdev_open() does the actual probe */
5745 }
5746
5747 for (c = 0; c < vd->vdev_children; c++)
5748 spa_async_probe(spa, vd->vdev_child[c]);
5749 }
5750
5751 static void
5752 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5753 {
5754 int c;
5755
5756 if (!spa->spa_autoexpand)
5757 return;
5758
5759 for (c = 0; c < vd->vdev_children; c++) {
5760 vdev_t *cvd = vd->vdev_child[c];
5761 spa_async_autoexpand(spa, cvd);
5762 }
5763
5764 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5765 return;
5766
5767 spa_event_notify(vd->vdev_spa, vd, FM_EREPORT_ZFS_DEVICE_AUTOEXPAND);
5768 }
5769
5770 static void
5771 spa_async_thread(spa_t *spa)
5772 {
5773 int tasks, i;
5774
5775 ASSERT(spa->spa_sync_on);
5776
5777 mutex_enter(&spa->spa_async_lock);
5778 tasks = spa->spa_async_tasks;
5779 spa->spa_async_tasks = 0;
5780 mutex_exit(&spa->spa_async_lock);
5781
5782 /*
5783 * See if the config needs to be updated.
5784 */
5785 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5786 uint64_t old_space, new_space;
5787
5788 mutex_enter(&spa_namespace_lock);
5789 old_space = metaslab_class_get_space(spa_normal_class(spa));
5790 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5791 new_space = metaslab_class_get_space(spa_normal_class(spa));
5792 mutex_exit(&spa_namespace_lock);
5793
5794 /*
5795 * If the pool grew as a result of the config update,
5796 * then log an internal history event.
5797 */
5798 if (new_space != old_space) {
5799 spa_history_log_internal(spa, "vdev online", NULL,
5800 "pool '%s' size: %llu(+%llu)",
5801 spa_name(spa), new_space, new_space - old_space);
5802 }
5803 }
5804
5805 /*
5806 * See if any devices need to be marked REMOVED.
5807 */
5808 if (tasks & SPA_ASYNC_REMOVE) {
5809 spa_vdev_state_enter(spa, SCL_NONE);
5810 spa_async_remove(spa, spa->spa_root_vdev);
5811 for (i = 0; i < spa->spa_l2cache.sav_count; i++)
5812 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5813 for (i = 0; i < spa->spa_spares.sav_count; i++)
5814 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5815 (void) spa_vdev_state_exit(spa, NULL, 0);
5816 }
5817
5818 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5819 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5820 spa_async_autoexpand(spa, spa->spa_root_vdev);
5821 spa_config_exit(spa, SCL_CONFIG, FTAG);
5822 }
5823
5824 /*
5825 * See if any devices need to be probed.
5826 */
5827 if (tasks & SPA_ASYNC_PROBE) {
5828 spa_vdev_state_enter(spa, SCL_NONE);
5829 spa_async_probe(spa, spa->spa_root_vdev);
5830 (void) spa_vdev_state_exit(spa, NULL, 0);
5831 }
5832
5833 /*
5834 * If any devices are done replacing, detach them.
5835 */
5836 if (tasks & SPA_ASYNC_RESILVER_DONE)
5837 spa_vdev_resilver_done(spa);
5838
5839 /*
5840 * Kick off a resilver.
5841 */
5842 if (tasks & SPA_ASYNC_RESILVER)
5843 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5844
5845 /*
5846 * Let the world know that we're done.
5847 */
5848 mutex_enter(&spa->spa_async_lock);
5849 spa->spa_async_thread = NULL;
5850 cv_broadcast(&spa->spa_async_cv);
5851 mutex_exit(&spa->spa_async_lock);
5852 thread_exit();
5853 }
5854
5855 void
5856 spa_async_suspend(spa_t *spa)
5857 {
5858 mutex_enter(&spa->spa_async_lock);
5859 spa->spa_async_suspended++;
5860 while (spa->spa_async_thread != NULL)
5861 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5862 mutex_exit(&spa->spa_async_lock);
5863 }
5864
5865 void
5866 spa_async_resume(spa_t *spa)
5867 {
5868 mutex_enter(&spa->spa_async_lock);
5869 ASSERT(spa->spa_async_suspended != 0);
5870 spa->spa_async_suspended--;
5871 mutex_exit(&spa->spa_async_lock);
5872 }
5873
5874 static boolean_t
5875 spa_async_tasks_pending(spa_t *spa)
5876 {
5877 uint_t non_config_tasks;
5878 uint_t config_task;
5879 boolean_t config_task_suspended;
5880
5881 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5882 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5883 if (spa->spa_ccw_fail_time == 0) {
5884 config_task_suspended = B_FALSE;
5885 } else {
5886 config_task_suspended =
5887 (gethrtime() - spa->spa_ccw_fail_time) <
5888 (zfs_ccw_retry_interval * NANOSEC);
5889 }
5890
5891 return (non_config_tasks || (config_task && !config_task_suspended));
5892 }
5893
5894 static void
5895 spa_async_dispatch(spa_t *spa)
5896 {
5897 mutex_enter(&spa->spa_async_lock);
5898 if (spa_async_tasks_pending(spa) &&
5899 !spa->spa_async_suspended &&
5900 spa->spa_async_thread == NULL &&
5901 rootdir != NULL)
5902 spa->spa_async_thread = thread_create(NULL, 0,
5903 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5904 mutex_exit(&spa->spa_async_lock);
5905 }
5906
5907 void
5908 spa_async_request(spa_t *spa, int task)
5909 {
5910 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5911 mutex_enter(&spa->spa_async_lock);
5912 spa->spa_async_tasks |= task;
5913 mutex_exit(&spa->spa_async_lock);
5914 }
5915
5916 /*
5917 * ==========================================================================
5918 * SPA syncing routines
5919 * ==========================================================================
5920 */
5921
5922 static int
5923 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5924 {
5925 bpobj_t *bpo = arg;
5926 bpobj_enqueue(bpo, bp, tx);
5927 return (0);
5928 }
5929
5930 static int
5931 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5932 {
5933 zio_t *zio = arg;
5934
5935 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5936 zio->io_flags));
5937 return (0);
5938 }
5939
5940 /*
5941 * Note: this simple function is not inlined to make it easier to dtrace the
5942 * amount of time spent syncing frees.
5943 */
5944 static void
5945 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5946 {
5947 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5948 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5949 VERIFY(zio_wait(zio) == 0);
5950 }
5951
5952 /*
5953 * Note: this simple function is not inlined to make it easier to dtrace the
5954 * amount of time spent syncing deferred frees.
5955 */
5956 static void
5957 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5958 {
5959 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5960 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5961 spa_free_sync_cb, zio, tx), ==, 0);
5962 VERIFY0(zio_wait(zio));
5963 }
5964
5965 static void
5966 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5967 {
5968 char *packed = NULL;
5969 size_t bufsize;
5970 size_t nvsize = 0;
5971 dmu_buf_t *db;
5972
5973 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5974
5975 /*
5976 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5977 * information. This avoids the dmu_buf_will_dirty() path and
5978 * saves us a pre-read to get data we don't actually care about.
5979 */
5980 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5981 packed = vmem_alloc(bufsize, KM_SLEEP);
5982
5983 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5984 KM_SLEEP) == 0);
5985 bzero(packed + nvsize, bufsize - nvsize);
5986
5987 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5988
5989 vmem_free(packed, bufsize);
5990
5991 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5992 dmu_buf_will_dirty(db, tx);
5993 *(uint64_t *)db->db_data = nvsize;
5994 dmu_buf_rele(db, FTAG);
5995 }
5996
5997 static void
5998 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5999 const char *config, const char *entry)
6000 {
6001 nvlist_t *nvroot;
6002 nvlist_t **list;
6003 int i;
6004
6005 if (!sav->sav_sync)
6006 return;
6007
6008 /*
6009 * Update the MOS nvlist describing the list of available devices.
6010 * spa_validate_aux() will have already made sure this nvlist is
6011 * valid and the vdevs are labeled appropriately.
6012 */
6013 if (sav->sav_object == 0) {
6014 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6015 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6016 sizeof (uint64_t), tx);
6017 VERIFY(zap_update(spa->spa_meta_objset,
6018 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6019 &sav->sav_object, tx) == 0);
6020 }
6021
6022 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6023 if (sav->sav_count == 0) {
6024 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6025 } else {
6026 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
6027 for (i = 0; i < sav->sav_count; i++)
6028 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6029 B_FALSE, VDEV_CONFIG_L2CACHE);
6030 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6031 sav->sav_count) == 0);
6032 for (i = 0; i < sav->sav_count; i++)
6033 nvlist_free(list[i]);
6034 kmem_free(list, sav->sav_count * sizeof (void *));
6035 }
6036
6037 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6038 nvlist_free(nvroot);
6039
6040 sav->sav_sync = B_FALSE;
6041 }
6042
6043 /*
6044 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6045 * The all-vdev ZAP must be empty.
6046 */
6047 static void
6048 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6049 {
6050 spa_t *spa = vd->vdev_spa;
6051 uint64_t i;
6052
6053 if (vd->vdev_top_zap != 0) {
6054 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6055 vd->vdev_top_zap, tx));
6056 }
6057 if (vd->vdev_leaf_zap != 0) {
6058 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6059 vd->vdev_leaf_zap, tx));
6060 }
6061 for (i = 0; i < vd->vdev_children; i++) {
6062 spa_avz_build(vd->vdev_child[i], avz, tx);
6063 }
6064 }
6065
6066 static void
6067 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6068 {
6069 nvlist_t *config;
6070
6071 /*
6072 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6073 * its config may not be dirty but we still need to build per-vdev ZAPs.
6074 * Similarly, if the pool is being assembled (e.g. after a split), we
6075 * need to rebuild the AVZ although the config may not be dirty.
6076 */
6077 if (list_is_empty(&spa->spa_config_dirty_list) &&
6078 spa->spa_avz_action == AVZ_ACTION_NONE)
6079 return;
6080
6081 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6082
6083 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6084 spa->spa_all_vdev_zaps != 0);
6085
6086 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6087 zap_cursor_t zc;
6088 zap_attribute_t za;
6089
6090 /* Make and build the new AVZ */
6091 uint64_t new_avz = zap_create(spa->spa_meta_objset,
6092 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6093 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6094
6095 /* Diff old AVZ with new one */
6096 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6097 spa->spa_all_vdev_zaps);
6098 zap_cursor_retrieve(&zc, &za) == 0;
6099 zap_cursor_advance(&zc)) {
6100 uint64_t vdzap = za.za_first_integer;
6101 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6102 vdzap) == ENOENT) {
6103 /*
6104 * ZAP is listed in old AVZ but not in new one;
6105 * destroy it
6106 */
6107 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6108 tx));
6109 }
6110 }
6111
6112 zap_cursor_fini(&zc);
6113
6114 /* Destroy the old AVZ */
6115 VERIFY0(zap_destroy(spa->spa_meta_objset,
6116 spa->spa_all_vdev_zaps, tx));
6117
6118 /* Replace the old AVZ in the dir obj with the new one */
6119 VERIFY0(zap_update(spa->spa_meta_objset,
6120 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6121 sizeof (new_avz), 1, &new_avz, tx));
6122
6123 spa->spa_all_vdev_zaps = new_avz;
6124 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6125 zap_cursor_t zc;
6126 zap_attribute_t za;
6127
6128 /* Walk through the AVZ and destroy all listed ZAPs */
6129 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6130 spa->spa_all_vdev_zaps);
6131 zap_cursor_retrieve(&zc, &za) == 0;
6132 zap_cursor_advance(&zc)) {
6133 uint64_t zap = za.za_first_integer;
6134 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6135 }
6136
6137 zap_cursor_fini(&zc);
6138
6139 /* Destroy and unlink the AVZ itself */
6140 VERIFY0(zap_destroy(spa->spa_meta_objset,
6141 spa->spa_all_vdev_zaps, tx));
6142 VERIFY0(zap_remove(spa->spa_meta_objset,
6143 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6144 spa->spa_all_vdev_zaps = 0;
6145 }
6146
6147 if (spa->spa_all_vdev_zaps == 0) {
6148 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6149 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6150 DMU_POOL_VDEV_ZAP_MAP, tx);
6151 }
6152 spa->spa_avz_action = AVZ_ACTION_NONE;
6153
6154 /* Create ZAPs for vdevs that don't have them. */
6155 vdev_construct_zaps(spa->spa_root_vdev, tx);
6156
6157 config = spa_config_generate(spa, spa->spa_root_vdev,
6158 dmu_tx_get_txg(tx), B_FALSE);
6159
6160 /*
6161 * If we're upgrading the spa version then make sure that
6162 * the config object gets updated with the correct version.
6163 */
6164 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6165 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6166 spa->spa_uberblock.ub_version);
6167
6168 spa_config_exit(spa, SCL_STATE, FTAG);
6169
6170 nvlist_free(spa->spa_config_syncing);
6171 spa->spa_config_syncing = config;
6172
6173 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6174 }
6175
6176 static void
6177 spa_sync_version(void *arg, dmu_tx_t *tx)
6178 {
6179 uint64_t *versionp = arg;
6180 uint64_t version = *versionp;
6181 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6182
6183 /*
6184 * Setting the version is special cased when first creating the pool.
6185 */
6186 ASSERT(tx->tx_txg != TXG_INITIAL);
6187
6188 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6189 ASSERT(version >= spa_version(spa));
6190
6191 spa->spa_uberblock.ub_version = version;
6192 vdev_config_dirty(spa->spa_root_vdev);
6193 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6194 }
6195
6196 /*
6197 * Set zpool properties.
6198 */
6199 static void
6200 spa_sync_props(void *arg, dmu_tx_t *tx)
6201 {
6202 nvlist_t *nvp = arg;
6203 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6204 objset_t *mos = spa->spa_meta_objset;
6205 nvpair_t *elem = NULL;
6206
6207 mutex_enter(&spa->spa_props_lock);
6208
6209 while ((elem = nvlist_next_nvpair(nvp, elem))) {
6210 uint64_t intval;
6211 char *strval, *fname;
6212 zpool_prop_t prop;
6213 const char *propname;
6214 zprop_type_t proptype;
6215 spa_feature_t fid;
6216
6217 prop = zpool_name_to_prop(nvpair_name(elem));
6218 switch ((int)prop) {
6219 case ZPROP_INVAL:
6220 /*
6221 * We checked this earlier in spa_prop_validate().
6222 */
6223 ASSERT(zpool_prop_feature(nvpair_name(elem)));
6224
6225 fname = strchr(nvpair_name(elem), '@') + 1;
6226 VERIFY0(zfeature_lookup_name(fname, &fid));
6227
6228 spa_feature_enable(spa, fid, tx);
6229 spa_history_log_internal(spa, "set", tx,
6230 "%s=enabled", nvpair_name(elem));
6231 break;
6232
6233 case ZPOOL_PROP_VERSION:
6234 intval = fnvpair_value_uint64(elem);
6235 /*
6236 * The version is synced seperatly before other
6237 * properties and should be correct by now.
6238 */
6239 ASSERT3U(spa_version(spa), >=, intval);
6240 break;
6241
6242 case ZPOOL_PROP_ALTROOT:
6243 /*
6244 * 'altroot' is a non-persistent property. It should
6245 * have been set temporarily at creation or import time.
6246 */
6247 ASSERT(spa->spa_root != NULL);
6248 break;
6249
6250 case ZPOOL_PROP_READONLY:
6251 case ZPOOL_PROP_CACHEFILE:
6252 /*
6253 * 'readonly' and 'cachefile' are also non-persisitent
6254 * properties.
6255 */
6256 break;
6257 case ZPOOL_PROP_COMMENT:
6258 strval = fnvpair_value_string(elem);
6259 if (spa->spa_comment != NULL)
6260 spa_strfree(spa->spa_comment);
6261 spa->spa_comment = spa_strdup(strval);
6262 /*
6263 * We need to dirty the configuration on all the vdevs
6264 * so that their labels get updated. It's unnecessary
6265 * to do this for pool creation since the vdev's
6266 * configuratoin has already been dirtied.
6267 */
6268 if (tx->tx_txg != TXG_INITIAL)
6269 vdev_config_dirty(spa->spa_root_vdev);
6270 spa_history_log_internal(spa, "set", tx,
6271 "%s=%s", nvpair_name(elem), strval);
6272 break;
6273 default:
6274 /*
6275 * Set pool property values in the poolprops mos object.
6276 */
6277 if (spa->spa_pool_props_object == 0) {
6278 spa->spa_pool_props_object =
6279 zap_create_link(mos, DMU_OT_POOL_PROPS,
6280 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6281 tx);
6282 }
6283
6284 /* normalize the property name */
6285 propname = zpool_prop_to_name(prop);
6286 proptype = zpool_prop_get_type(prop);
6287
6288 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6289 ASSERT(proptype == PROP_TYPE_STRING);
6290 strval = fnvpair_value_string(elem);
6291 VERIFY0(zap_update(mos,
6292 spa->spa_pool_props_object, propname,
6293 1, strlen(strval) + 1, strval, tx));
6294 spa_history_log_internal(spa, "set", tx,
6295 "%s=%s", nvpair_name(elem), strval);
6296 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6297 intval = fnvpair_value_uint64(elem);
6298
6299 if (proptype == PROP_TYPE_INDEX) {
6300 const char *unused;
6301 VERIFY0(zpool_prop_index_to_string(
6302 prop, intval, &unused));
6303 }
6304 VERIFY0(zap_update(mos,
6305 spa->spa_pool_props_object, propname,
6306 8, 1, &intval, tx));
6307 spa_history_log_internal(spa, "set", tx,
6308 "%s=%lld", nvpair_name(elem), intval);
6309 } else {
6310 ASSERT(0); /* not allowed */
6311 }
6312
6313 switch (prop) {
6314 case ZPOOL_PROP_DELEGATION:
6315 spa->spa_delegation = intval;
6316 break;
6317 case ZPOOL_PROP_BOOTFS:
6318 spa->spa_bootfs = intval;
6319 break;
6320 case ZPOOL_PROP_FAILUREMODE:
6321 spa->spa_failmode = intval;
6322 break;
6323 case ZPOOL_PROP_AUTOEXPAND:
6324 spa->spa_autoexpand = intval;
6325 if (tx->tx_txg != TXG_INITIAL)
6326 spa_async_request(spa,
6327 SPA_ASYNC_AUTOEXPAND);
6328 break;
6329 case ZPOOL_PROP_DEDUPDITTO:
6330 spa->spa_dedup_ditto = intval;
6331 break;
6332 default:
6333 break;
6334 }
6335 }
6336
6337 }
6338
6339 mutex_exit(&spa->spa_props_lock);
6340 }
6341
6342 /*
6343 * Perform one-time upgrade on-disk changes. spa_version() does not
6344 * reflect the new version this txg, so there must be no changes this
6345 * txg to anything that the upgrade code depends on after it executes.
6346 * Therefore this must be called after dsl_pool_sync() does the sync
6347 * tasks.
6348 */
6349 static void
6350 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6351 {
6352 dsl_pool_t *dp = spa->spa_dsl_pool;
6353
6354 ASSERT(spa->spa_sync_pass == 1);
6355
6356 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6357
6358 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6359 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6360 dsl_pool_create_origin(dp, tx);
6361
6362 /* Keeping the origin open increases spa_minref */
6363 spa->spa_minref += 3;
6364 }
6365
6366 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6367 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6368 dsl_pool_upgrade_clones(dp, tx);
6369 }
6370
6371 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6372 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6373 dsl_pool_upgrade_dir_clones(dp, tx);
6374
6375 /* Keeping the freedir open increases spa_minref */
6376 spa->spa_minref += 3;
6377 }
6378
6379 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6380 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6381 spa_feature_create_zap_objects(spa, tx);
6382 }
6383
6384 /*
6385 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6386 * when possibility to use lz4 compression for metadata was added
6387 * Old pools that have this feature enabled must be upgraded to have
6388 * this feature active
6389 */
6390 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6391 boolean_t lz4_en = spa_feature_is_enabled(spa,
6392 SPA_FEATURE_LZ4_COMPRESS);
6393 boolean_t lz4_ac = spa_feature_is_active(spa,
6394 SPA_FEATURE_LZ4_COMPRESS);
6395
6396 if (lz4_en && !lz4_ac)
6397 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6398 }
6399 rrw_exit(&dp->dp_config_rwlock, FTAG);
6400 }
6401
6402 /*
6403 * Sync the specified transaction group. New blocks may be dirtied as
6404 * part of the process, so we iterate until it converges.
6405 */
6406 void
6407 spa_sync(spa_t *spa, uint64_t txg)
6408 {
6409 dsl_pool_t *dp = spa->spa_dsl_pool;
6410 objset_t *mos = spa->spa_meta_objset;
6411 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6412 vdev_t *rvd = spa->spa_root_vdev;
6413 vdev_t *vd;
6414 dmu_tx_t *tx;
6415 int error;
6416 int c;
6417
6418 VERIFY(spa_writeable(spa));
6419
6420 /*
6421 * Lock out configuration changes.
6422 */
6423 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6424
6425 spa->spa_syncing_txg = txg;
6426 spa->spa_sync_pass = 0;
6427
6428 /*
6429 * If there are any pending vdev state changes, convert them
6430 * into config changes that go out with this transaction group.
6431 */
6432 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6433 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6434 /*
6435 * We need the write lock here because, for aux vdevs,
6436 * calling vdev_config_dirty() modifies sav_config.
6437 * This is ugly and will become unnecessary when we
6438 * eliminate the aux vdev wart by integrating all vdevs
6439 * into the root vdev tree.
6440 */
6441 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6442 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6443 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6444 vdev_state_clean(vd);
6445 vdev_config_dirty(vd);
6446 }
6447 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6448 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6449 }
6450 spa_config_exit(spa, SCL_STATE, FTAG);
6451
6452 tx = dmu_tx_create_assigned(dp, txg);
6453
6454 spa->spa_sync_starttime = gethrtime();
6455 taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
6456 spa->spa_deadman_tqid = taskq_dispatch_delay(system_taskq,
6457 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
6458 NSEC_TO_TICK(spa->spa_deadman_synctime));
6459
6460 /*
6461 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6462 * set spa_deflate if we have no raid-z vdevs.
6463 */
6464 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6465 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6466 int i;
6467
6468 for (i = 0; i < rvd->vdev_children; i++) {
6469 vd = rvd->vdev_child[i];
6470 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6471 break;
6472 }
6473 if (i == rvd->vdev_children) {
6474 spa->spa_deflate = TRUE;
6475 VERIFY(0 == zap_add(spa->spa_meta_objset,
6476 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6477 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6478 }
6479 }
6480
6481 /*
6482 * Iterate to convergence.
6483 */
6484 do {
6485 int pass = ++spa->spa_sync_pass;
6486
6487 spa_sync_config_object(spa, tx);
6488 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6489 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6490 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6491 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6492 spa_errlog_sync(spa, txg);
6493 dsl_pool_sync(dp, txg);
6494
6495 if (pass < zfs_sync_pass_deferred_free) {
6496 spa_sync_frees(spa, free_bpl, tx);
6497 } else {
6498 /*
6499 * We can not defer frees in pass 1, because
6500 * we sync the deferred frees later in pass 1.
6501 */
6502 ASSERT3U(pass, >, 1);
6503 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6504 &spa->spa_deferred_bpobj, tx);
6505 }
6506
6507 ddt_sync(spa, txg);
6508 dsl_scan_sync(dp, tx);
6509
6510 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)))
6511 vdev_sync(vd, txg);
6512
6513 if (pass == 1) {
6514 spa_sync_upgrades(spa, tx);
6515 ASSERT3U(txg, >=,
6516 spa->spa_uberblock.ub_rootbp.blk_birth);
6517 /*
6518 * Note: We need to check if the MOS is dirty
6519 * because we could have marked the MOS dirty
6520 * without updating the uberblock (e.g. if we
6521 * have sync tasks but no dirty user data). We
6522 * need to check the uberblock's rootbp because
6523 * it is updated if we have synced out dirty
6524 * data (though in this case the MOS will most
6525 * likely also be dirty due to second order
6526 * effects, we don't want to rely on that here).
6527 */
6528 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6529 !dmu_objset_is_dirty(mos, txg)) {
6530 /*
6531 * Nothing changed on the first pass,
6532 * therefore this TXG is a no-op. Avoid
6533 * syncing deferred frees, so that we
6534 * can keep this TXG as a no-op.
6535 */
6536 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6537 txg));
6538 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6539 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6540 break;
6541 }
6542 spa_sync_deferred_frees(spa, tx);
6543 }
6544
6545 } while (dmu_objset_is_dirty(mos, txg));
6546
6547 #ifdef ZFS_DEBUG
6548 if (!list_is_empty(&spa->spa_config_dirty_list)) {
6549 /*
6550 * Make sure that the number of ZAPs for all the vdevs matches
6551 * the number of ZAPs in the per-vdev ZAP list. This only gets
6552 * called if the config is dirty; otherwise there may be
6553 * outstanding AVZ operations that weren't completed in
6554 * spa_sync_config_object.
6555 */
6556 uint64_t all_vdev_zap_entry_count;
6557 ASSERT0(zap_count(spa->spa_meta_objset,
6558 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
6559 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
6560 all_vdev_zap_entry_count);
6561 }
6562 #endif
6563
6564 /*
6565 * Rewrite the vdev configuration (which includes the uberblock)
6566 * to commit the transaction group.
6567 *
6568 * If there are no dirty vdevs, we sync the uberblock to a few
6569 * random top-level vdevs that are known to be visible in the
6570 * config cache (see spa_vdev_add() for a complete description).
6571 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6572 */
6573 for (;;) {
6574 /*
6575 * We hold SCL_STATE to prevent vdev open/close/etc.
6576 * while we're attempting to write the vdev labels.
6577 */
6578 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6579
6580 if (list_is_empty(&spa->spa_config_dirty_list)) {
6581 vdev_t *svd[SPA_DVAS_PER_BP];
6582 int svdcount = 0;
6583 int children = rvd->vdev_children;
6584 int c0 = spa_get_random(children);
6585
6586 for (c = 0; c < children; c++) {
6587 vd = rvd->vdev_child[(c0 + c) % children];
6588 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6589 continue;
6590 svd[svdcount++] = vd;
6591 if (svdcount == SPA_DVAS_PER_BP)
6592 break;
6593 }
6594 error = vdev_config_sync(svd, svdcount, txg);
6595 } else {
6596 error = vdev_config_sync(rvd->vdev_child,
6597 rvd->vdev_children, txg);
6598 }
6599
6600 if (error == 0)
6601 spa->spa_last_synced_guid = rvd->vdev_guid;
6602
6603 spa_config_exit(spa, SCL_STATE, FTAG);
6604
6605 if (error == 0)
6606 break;
6607 zio_suspend(spa, NULL);
6608 zio_resume_wait(spa);
6609 }
6610 dmu_tx_commit(tx);
6611
6612 taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
6613 spa->spa_deadman_tqid = 0;
6614
6615 /*
6616 * Clear the dirty config list.
6617 */
6618 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6619 vdev_config_clean(vd);
6620
6621 /*
6622 * Now that the new config has synced transactionally,
6623 * let it become visible to the config cache.
6624 */
6625 if (spa->spa_config_syncing != NULL) {
6626 spa_config_set(spa, spa->spa_config_syncing);
6627 spa->spa_config_txg = txg;
6628 spa->spa_config_syncing = NULL;
6629 }
6630
6631 spa->spa_ubsync = spa->spa_uberblock;
6632
6633 dsl_pool_sync_done(dp, txg);
6634
6635 /*
6636 * Update usable space statistics.
6637 */
6638 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))))
6639 vdev_sync_done(vd, txg);
6640
6641 spa_update_dspace(spa);
6642
6643 /*
6644 * It had better be the case that we didn't dirty anything
6645 * since vdev_config_sync().
6646 */
6647 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6648 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6649 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6650
6651 spa->spa_sync_pass = 0;
6652
6653 spa_config_exit(spa, SCL_CONFIG, FTAG);
6654
6655 spa_handle_ignored_writes(spa);
6656
6657 /*
6658 * If any async tasks have been requested, kick them off.
6659 */
6660 spa_async_dispatch(spa);
6661 }
6662
6663 /*
6664 * Sync all pools. We don't want to hold the namespace lock across these
6665 * operations, so we take a reference on the spa_t and drop the lock during the
6666 * sync.
6667 */
6668 void
6669 spa_sync_allpools(void)
6670 {
6671 spa_t *spa = NULL;
6672 mutex_enter(&spa_namespace_lock);
6673 while ((spa = spa_next(spa)) != NULL) {
6674 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6675 !spa_writeable(spa) || spa_suspended(spa))
6676 continue;
6677 spa_open_ref(spa, FTAG);
6678 mutex_exit(&spa_namespace_lock);
6679 txg_wait_synced(spa_get_dsl(spa), 0);
6680 mutex_enter(&spa_namespace_lock);
6681 spa_close(spa, FTAG);
6682 }
6683 mutex_exit(&spa_namespace_lock);
6684 }
6685
6686 /*
6687 * ==========================================================================
6688 * Miscellaneous routines
6689 * ==========================================================================
6690 */
6691
6692 /*
6693 * Remove all pools in the system.
6694 */
6695 void
6696 spa_evict_all(void)
6697 {
6698 spa_t *spa;
6699
6700 /*
6701 * Remove all cached state. All pools should be closed now,
6702 * so every spa in the AVL tree should be unreferenced.
6703 */
6704 mutex_enter(&spa_namespace_lock);
6705 while ((spa = spa_next(NULL)) != NULL) {
6706 /*
6707 * Stop async tasks. The async thread may need to detach
6708 * a device that's been replaced, which requires grabbing
6709 * spa_namespace_lock, so we must drop it here.
6710 */
6711 spa_open_ref(spa, FTAG);
6712 mutex_exit(&spa_namespace_lock);
6713 spa_async_suspend(spa);
6714 mutex_enter(&spa_namespace_lock);
6715 spa_close(spa, FTAG);
6716
6717 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6718 spa_unload(spa);
6719 spa_deactivate(spa);
6720 }
6721 spa_remove(spa);
6722 }
6723 mutex_exit(&spa_namespace_lock);
6724 }
6725
6726 vdev_t *
6727 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6728 {
6729 vdev_t *vd;
6730 int i;
6731
6732 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6733 return (vd);
6734
6735 if (aux) {
6736 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6737 vd = spa->spa_l2cache.sav_vdevs[i];
6738 if (vd->vdev_guid == guid)
6739 return (vd);
6740 }
6741
6742 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6743 vd = spa->spa_spares.sav_vdevs[i];
6744 if (vd->vdev_guid == guid)
6745 return (vd);
6746 }
6747 }
6748
6749 return (NULL);
6750 }
6751
6752 void
6753 spa_upgrade(spa_t *spa, uint64_t version)
6754 {
6755 ASSERT(spa_writeable(spa));
6756
6757 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6758
6759 /*
6760 * This should only be called for a non-faulted pool, and since a
6761 * future version would result in an unopenable pool, this shouldn't be
6762 * possible.
6763 */
6764 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6765 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6766
6767 spa->spa_uberblock.ub_version = version;
6768 vdev_config_dirty(spa->spa_root_vdev);
6769
6770 spa_config_exit(spa, SCL_ALL, FTAG);
6771
6772 txg_wait_synced(spa_get_dsl(spa), 0);
6773 }
6774
6775 boolean_t
6776 spa_has_spare(spa_t *spa, uint64_t guid)
6777 {
6778 int i;
6779 uint64_t spareguid;
6780 spa_aux_vdev_t *sav = &spa->spa_spares;
6781
6782 for (i = 0; i < sav->sav_count; i++)
6783 if (sav->sav_vdevs[i]->vdev_guid == guid)
6784 return (B_TRUE);
6785
6786 for (i = 0; i < sav->sav_npending; i++) {
6787 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6788 &spareguid) == 0 && spareguid == guid)
6789 return (B_TRUE);
6790 }
6791
6792 return (B_FALSE);
6793 }
6794
6795 /*
6796 * Check if a pool has an active shared spare device.
6797 * Note: reference count of an active spare is 2, as a spare and as a replace
6798 */
6799 static boolean_t
6800 spa_has_active_shared_spare(spa_t *spa)
6801 {
6802 int i, refcnt;
6803 uint64_t pool;
6804 spa_aux_vdev_t *sav = &spa->spa_spares;
6805
6806 for (i = 0; i < sav->sav_count; i++) {
6807 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6808 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6809 refcnt > 2)
6810 return (B_TRUE);
6811 }
6812
6813 return (B_FALSE);
6814 }
6815
6816 /*
6817 * Post a FM_EREPORT_ZFS_* event from sys/fm/fs/zfs.h. The payload will be
6818 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6819 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6820 * or zdb as real changes.
6821 */
6822 void
6823 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6824 {
6825 #ifdef _KERNEL
6826 zfs_ereport_post(name, spa, vd, NULL, 0, 0);
6827 #endif
6828 }
6829
6830 #if defined(_KERNEL) && defined(HAVE_SPL)
6831 /* state manipulation functions */
6832 EXPORT_SYMBOL(spa_open);
6833 EXPORT_SYMBOL(spa_open_rewind);
6834 EXPORT_SYMBOL(spa_get_stats);
6835 EXPORT_SYMBOL(spa_create);
6836 EXPORT_SYMBOL(spa_import);
6837 EXPORT_SYMBOL(spa_tryimport);
6838 EXPORT_SYMBOL(spa_destroy);
6839 EXPORT_SYMBOL(spa_export);
6840 EXPORT_SYMBOL(spa_reset);
6841 EXPORT_SYMBOL(spa_async_request);
6842 EXPORT_SYMBOL(spa_async_suspend);
6843 EXPORT_SYMBOL(spa_async_resume);
6844 EXPORT_SYMBOL(spa_inject_addref);
6845 EXPORT_SYMBOL(spa_inject_delref);
6846 EXPORT_SYMBOL(spa_scan_stat_init);
6847 EXPORT_SYMBOL(spa_scan_get_stats);
6848
6849 /* device maniion */
6850 EXPORT_SYMBOL(spa_vdev_add);
6851 EXPORT_SYMBOL(spa_vdev_attach);
6852 EXPORT_SYMBOL(spa_vdev_detach);
6853 EXPORT_SYMBOL(spa_vdev_remove);
6854 EXPORT_SYMBOL(spa_vdev_setpath);
6855 EXPORT_SYMBOL(spa_vdev_setfru);
6856 EXPORT_SYMBOL(spa_vdev_split_mirror);
6857
6858 /* spare statech is global across all pools) */
6859 EXPORT_SYMBOL(spa_spare_add);
6860 EXPORT_SYMBOL(spa_spare_remove);
6861 EXPORT_SYMBOL(spa_spare_exists);
6862 EXPORT_SYMBOL(spa_spare_activate);
6863
6864 /* L2ARC statech is global across all pools) */
6865 EXPORT_SYMBOL(spa_l2cache_add);
6866 EXPORT_SYMBOL(spa_l2cache_remove);
6867 EXPORT_SYMBOL(spa_l2cache_exists);
6868 EXPORT_SYMBOL(spa_l2cache_activate);
6869 EXPORT_SYMBOL(spa_l2cache_drop);
6870
6871 /* scanning */
6872 EXPORT_SYMBOL(spa_scan);
6873 EXPORT_SYMBOL(spa_scan_stop);
6874
6875 /* spa syncing */
6876 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
6877 EXPORT_SYMBOL(spa_sync_allpools);
6878
6879 /* properties */
6880 EXPORT_SYMBOL(spa_prop_set);
6881 EXPORT_SYMBOL(spa_prop_get);
6882 EXPORT_SYMBOL(spa_prop_clear_bootfs);
6883
6884 /* asynchronous event notification */
6885 EXPORT_SYMBOL(spa_event_notify);
6886 #endif
6887
6888 #if defined(_KERNEL) && defined(HAVE_SPL)
6889 module_param(spa_load_verify_maxinflight, int, 0644);
6890 MODULE_PARM_DESC(spa_load_verify_maxinflight,
6891 "Max concurrent traversal I/Os while verifying pool during import -X");
6892
6893 module_param(spa_load_verify_metadata, int, 0644);
6894 MODULE_PARM_DESC(spa_load_verify_metadata,
6895 "Set to traverse metadata on pool import");
6896
6897 module_param(spa_load_verify_data, int, 0644);
6898 MODULE_PARM_DESC(spa_load_verify_data,
6899 "Set to traverse data on pool import");
6900
6901 module_param(zio_taskq_batch_pct, uint, 0444);
6902 MODULE_PARM_DESC(zio_taskq_batch_pct,
6903 "Percentage of CPUs to run an IO worker thread");
6904
6905 #endif