]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
async zvol minor node creation interferes with receive
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31 * Copyright 2018 Joyent, Inc.
32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33 * Copyright 2017 Joyent, Inc.
34 * Copyright (c) 2017, Intel Corporation.
35 */
36
37 /*
38 * SPA: Storage Pool Allocator
39 *
40 * This file contains all the routines used when modifying on-disk SPA state.
41 * This includes opening, importing, destroying, exporting a pool, and syncing a
42 * pool.
43 */
44
45 #include <sys/zfs_context.h>
46 #include <sys/fm/fs/zfs.h>
47 #include <sys/spa_impl.h>
48 #include <sys/zio.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/dmu.h>
51 #include <sys/dmu_tx.h>
52 #include <sys/zap.h>
53 #include <sys/zil.h>
54 #include <sys/ddt.h>
55 #include <sys/vdev_impl.h>
56 #include <sys/vdev_removal.h>
57 #include <sys/vdev_indirect_mapping.h>
58 #include <sys/vdev_indirect_births.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_trim.h>
61 #include <sys/vdev_disk.h>
62 #include <sys/metaslab.h>
63 #include <sys/metaslab_impl.h>
64 #include <sys/mmp.h>
65 #include <sys/uberblock_impl.h>
66 #include <sys/txg.h>
67 #include <sys/avl.h>
68 #include <sys/bpobj.h>
69 #include <sys/dmu_traverse.h>
70 #include <sys/dmu_objset.h>
71 #include <sys/unique.h>
72 #include <sys/dsl_pool.h>
73 #include <sys/dsl_dataset.h>
74 #include <sys/dsl_dir.h>
75 #include <sys/dsl_prop.h>
76 #include <sys/dsl_synctask.h>
77 #include <sys/fs/zfs.h>
78 #include <sys/arc.h>
79 #include <sys/callb.h>
80 #include <sys/systeminfo.h>
81 #include <sys/spa_boot.h>
82 #include <sys/zfs_ioctl.h>
83 #include <sys/dsl_scan.h>
84 #include <sys/zfeature.h>
85 #include <sys/dsl_destroy.h>
86 #include <sys/zvol.h>
87
88 #ifdef _KERNEL
89 #include <sys/fm/protocol.h>
90 #include <sys/fm/util.h>
91 #include <sys/callb.h>
92 #include <sys/zone.h>
93 #include <sys/vmsystm.h>
94 #endif /* _KERNEL */
95
96 #include "zfs_prop.h"
97 #include "zfs_comutil.h"
98
99 /*
100 * The interval, in seconds, at which failed configuration cache file writes
101 * should be retried.
102 */
103 int zfs_ccw_retry_interval = 300;
104
105 typedef enum zti_modes {
106 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
107 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
108 ZTI_MODE_NULL, /* don't create a taskq */
109 ZTI_NMODES
110 } zti_modes_t;
111
112 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
113 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
114 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
115 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
116
117 #define ZTI_N(n) ZTI_P(n, 1)
118 #define ZTI_ONE ZTI_N(1)
119
120 typedef struct zio_taskq_info {
121 zti_modes_t zti_mode;
122 uint_t zti_value;
123 uint_t zti_count;
124 } zio_taskq_info_t;
125
126 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
127 "iss", "iss_h", "int", "int_h"
128 };
129
130 /*
131 * This table defines the taskq settings for each ZFS I/O type. When
132 * initializing a pool, we use this table to create an appropriately sized
133 * taskq. Some operations are low volume and therefore have a small, static
134 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
135 * macros. Other operations process a large amount of data; the ZTI_BATCH
136 * macro causes us to create a taskq oriented for throughput. Some operations
137 * are so high frequency and short-lived that the taskq itself can become a
138 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
139 * additional degree of parallelism specified by the number of threads per-
140 * taskq and the number of taskqs; when dispatching an event in this case, the
141 * particular taskq is chosen at random.
142 *
143 * The different taskq priorities are to handle the different contexts (issue
144 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
145 * need to be handled with minimum delay.
146 */
147 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
148 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
149 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
150 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
151 { ZTI_BATCH, ZTI_N(5), ZTI_P(12, 8), ZTI_N(5) }, /* WRITE */
152 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
153 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
154 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
155 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
156 };
157
158 static void spa_sync_version(void *arg, dmu_tx_t *tx);
159 static void spa_sync_props(void *arg, dmu_tx_t *tx);
160 static boolean_t spa_has_active_shared_spare(spa_t *spa);
161 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
162 static void spa_vdev_resilver_done(spa_t *spa);
163
164 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
165 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
166 uint_t zio_taskq_basedc = 80; /* base duty cycle */
167
168 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
169
170 /*
171 * Report any spa_load_verify errors found, but do not fail spa_load.
172 * This is used by zdb to analyze non-idle pools.
173 */
174 boolean_t spa_load_verify_dryrun = B_FALSE;
175
176 /*
177 * This (illegal) pool name is used when temporarily importing a spa_t in order
178 * to get the vdev stats associated with the imported devices.
179 */
180 #define TRYIMPORT_NAME "$import"
181
182 /*
183 * For debugging purposes: print out vdev tree during pool import.
184 */
185 int spa_load_print_vdev_tree = B_FALSE;
186
187 /*
188 * A non-zero value for zfs_max_missing_tvds means that we allow importing
189 * pools with missing top-level vdevs. This is strictly intended for advanced
190 * pool recovery cases since missing data is almost inevitable. Pools with
191 * missing devices can only be imported read-only for safety reasons, and their
192 * fail-mode will be automatically set to "continue".
193 *
194 * With 1 missing vdev we should be able to import the pool and mount all
195 * datasets. User data that was not modified after the missing device has been
196 * added should be recoverable. This means that snapshots created prior to the
197 * addition of that device should be completely intact.
198 *
199 * With 2 missing vdevs, some datasets may fail to mount since there are
200 * dataset statistics that are stored as regular metadata. Some data might be
201 * recoverable if those vdevs were added recently.
202 *
203 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
204 * may be missing entirely. Chances of data recovery are very low. Note that
205 * there are also risks of performing an inadvertent rewind as we might be
206 * missing all the vdevs with the latest uberblocks.
207 */
208 unsigned long zfs_max_missing_tvds = 0;
209
210 /*
211 * The parameters below are similar to zfs_max_missing_tvds but are only
212 * intended for a preliminary open of the pool with an untrusted config which
213 * might be incomplete or out-dated.
214 *
215 * We are more tolerant for pools opened from a cachefile since we could have
216 * an out-dated cachefile where a device removal was not registered.
217 * We could have set the limit arbitrarily high but in the case where devices
218 * are really missing we would want to return the proper error codes; we chose
219 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
220 * and we get a chance to retrieve the trusted config.
221 */
222 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
223
224 /*
225 * In the case where config was assembled by scanning device paths (/dev/dsks
226 * by default) we are less tolerant since all the existing devices should have
227 * been detected and we want spa_load to return the right error codes.
228 */
229 uint64_t zfs_max_missing_tvds_scan = 0;
230
231 /*
232 * Debugging aid that pauses spa_sync() towards the end.
233 */
234 boolean_t zfs_pause_spa_sync = B_FALSE;
235
236 /*
237 * Variables to indicate the livelist condense zthr func should wait at certain
238 * points for the livelist to be removed - used to test condense/destroy races
239 */
240 int zfs_livelist_condense_zthr_pause = 0;
241 int zfs_livelist_condense_sync_pause = 0;
242
243 /*
244 * Variables to track whether or not condense cancellation has been
245 * triggered in testing.
246 */
247 int zfs_livelist_condense_sync_cancel = 0;
248 int zfs_livelist_condense_zthr_cancel = 0;
249
250 /*
251 * Variable to track whether or not extra ALLOC blkptrs were added to a
252 * livelist entry while it was being condensed (caused by the way we track
253 * remapped blkptrs in dbuf_remap_impl)
254 */
255 int zfs_livelist_condense_new_alloc = 0;
256
257 /*
258 * ==========================================================================
259 * SPA properties routines
260 * ==========================================================================
261 */
262
263 /*
264 * Add a (source=src, propname=propval) list to an nvlist.
265 */
266 static void
267 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
268 uint64_t intval, zprop_source_t src)
269 {
270 const char *propname = zpool_prop_to_name(prop);
271 nvlist_t *propval;
272
273 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
274 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
275
276 if (strval != NULL)
277 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
278 else
279 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
280
281 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
282 nvlist_free(propval);
283 }
284
285 /*
286 * Get property values from the spa configuration.
287 */
288 static void
289 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
290 {
291 vdev_t *rvd = spa->spa_root_vdev;
292 dsl_pool_t *pool = spa->spa_dsl_pool;
293 uint64_t size, alloc, cap, version;
294 const zprop_source_t src = ZPROP_SRC_NONE;
295 spa_config_dirent_t *dp;
296 metaslab_class_t *mc = spa_normal_class(spa);
297
298 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
299
300 if (rvd != NULL) {
301 alloc = metaslab_class_get_alloc(mc);
302 alloc += metaslab_class_get_alloc(spa_special_class(spa));
303 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
304
305 size = metaslab_class_get_space(mc);
306 size += metaslab_class_get_space(spa_special_class(spa));
307 size += metaslab_class_get_space(spa_dedup_class(spa));
308
309 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
310 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
311 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
312 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
313 size - alloc, src);
314 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
315 spa->spa_checkpoint_info.sci_dspace, src);
316
317 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
318 metaslab_class_fragmentation(mc), src);
319 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
320 metaslab_class_expandable_space(mc), src);
321 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
322 (spa_mode(spa) == SPA_MODE_READ), src);
323
324 cap = (size == 0) ? 0 : (alloc * 100 / size);
325 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
326
327 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
328 ddt_get_pool_dedup_ratio(spa), src);
329
330 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
331 rvd->vdev_state, src);
332
333 version = spa_version(spa);
334 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
335 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
336 version, ZPROP_SRC_DEFAULT);
337 } else {
338 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
339 version, ZPROP_SRC_LOCAL);
340 }
341 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
342 NULL, spa_load_guid(spa), src);
343 }
344
345 if (pool != NULL) {
346 /*
347 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
348 * when opening pools before this version freedir will be NULL.
349 */
350 if (pool->dp_free_dir != NULL) {
351 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
352 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
353 src);
354 } else {
355 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
356 NULL, 0, src);
357 }
358
359 if (pool->dp_leak_dir != NULL) {
360 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
361 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
362 src);
363 } else {
364 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
365 NULL, 0, src);
366 }
367 }
368
369 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
370
371 if (spa->spa_comment != NULL) {
372 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
373 0, ZPROP_SRC_LOCAL);
374 }
375
376 if (spa->spa_root != NULL)
377 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
378 0, ZPROP_SRC_LOCAL);
379
380 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
381 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
382 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
383 } else {
384 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
385 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
386 }
387
388 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
389 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
390 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
391 } else {
392 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
393 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
394 }
395
396 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
397 if (dp->scd_path == NULL) {
398 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
399 "none", 0, ZPROP_SRC_LOCAL);
400 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
401 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
402 dp->scd_path, 0, ZPROP_SRC_LOCAL);
403 }
404 }
405 }
406
407 /*
408 * Get zpool property values.
409 */
410 int
411 spa_prop_get(spa_t *spa, nvlist_t **nvp)
412 {
413 objset_t *mos = spa->spa_meta_objset;
414 zap_cursor_t zc;
415 zap_attribute_t za;
416 int err;
417
418 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
419 if (err)
420 return (err);
421
422 mutex_enter(&spa->spa_props_lock);
423
424 /*
425 * Get properties from the spa config.
426 */
427 spa_prop_get_config(spa, nvp);
428
429 /* If no pool property object, no more prop to get. */
430 if (mos == NULL || spa->spa_pool_props_object == 0) {
431 mutex_exit(&spa->spa_props_lock);
432 goto out;
433 }
434
435 /*
436 * Get properties from the MOS pool property object.
437 */
438 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
439 (err = zap_cursor_retrieve(&zc, &za)) == 0;
440 zap_cursor_advance(&zc)) {
441 uint64_t intval = 0;
442 char *strval = NULL;
443 zprop_source_t src = ZPROP_SRC_DEFAULT;
444 zpool_prop_t prop;
445
446 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
447 continue;
448
449 switch (za.za_integer_length) {
450 case 8:
451 /* integer property */
452 if (za.za_first_integer !=
453 zpool_prop_default_numeric(prop))
454 src = ZPROP_SRC_LOCAL;
455
456 if (prop == ZPOOL_PROP_BOOTFS) {
457 dsl_pool_t *dp;
458 dsl_dataset_t *ds = NULL;
459
460 dp = spa_get_dsl(spa);
461 dsl_pool_config_enter(dp, FTAG);
462 err = dsl_dataset_hold_obj(dp,
463 za.za_first_integer, FTAG, &ds);
464 if (err != 0) {
465 dsl_pool_config_exit(dp, FTAG);
466 break;
467 }
468
469 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
470 KM_SLEEP);
471 dsl_dataset_name(ds, strval);
472 dsl_dataset_rele(ds, FTAG);
473 dsl_pool_config_exit(dp, FTAG);
474 } else {
475 strval = NULL;
476 intval = za.za_first_integer;
477 }
478
479 spa_prop_add_list(*nvp, prop, strval, intval, src);
480
481 if (strval != NULL)
482 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
483
484 break;
485
486 case 1:
487 /* string property */
488 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
489 err = zap_lookup(mos, spa->spa_pool_props_object,
490 za.za_name, 1, za.za_num_integers, strval);
491 if (err) {
492 kmem_free(strval, za.za_num_integers);
493 break;
494 }
495 spa_prop_add_list(*nvp, prop, strval, 0, src);
496 kmem_free(strval, za.za_num_integers);
497 break;
498
499 default:
500 break;
501 }
502 }
503 zap_cursor_fini(&zc);
504 mutex_exit(&spa->spa_props_lock);
505 out:
506 if (err && err != ENOENT) {
507 nvlist_free(*nvp);
508 *nvp = NULL;
509 return (err);
510 }
511
512 return (0);
513 }
514
515 /*
516 * Validate the given pool properties nvlist and modify the list
517 * for the property values to be set.
518 */
519 static int
520 spa_prop_validate(spa_t *spa, nvlist_t *props)
521 {
522 nvpair_t *elem;
523 int error = 0, reset_bootfs = 0;
524 uint64_t objnum = 0;
525 boolean_t has_feature = B_FALSE;
526
527 elem = NULL;
528 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
529 uint64_t intval;
530 char *strval, *slash, *check, *fname;
531 const char *propname = nvpair_name(elem);
532 zpool_prop_t prop = zpool_name_to_prop(propname);
533
534 switch (prop) {
535 case ZPOOL_PROP_INVAL:
536 if (!zpool_prop_feature(propname)) {
537 error = SET_ERROR(EINVAL);
538 break;
539 }
540
541 /*
542 * Sanitize the input.
543 */
544 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
545 error = SET_ERROR(EINVAL);
546 break;
547 }
548
549 if (nvpair_value_uint64(elem, &intval) != 0) {
550 error = SET_ERROR(EINVAL);
551 break;
552 }
553
554 if (intval != 0) {
555 error = SET_ERROR(EINVAL);
556 break;
557 }
558
559 fname = strchr(propname, '@') + 1;
560 if (zfeature_lookup_name(fname, NULL) != 0) {
561 error = SET_ERROR(EINVAL);
562 break;
563 }
564
565 has_feature = B_TRUE;
566 break;
567
568 case ZPOOL_PROP_VERSION:
569 error = nvpair_value_uint64(elem, &intval);
570 if (!error &&
571 (intval < spa_version(spa) ||
572 intval > SPA_VERSION_BEFORE_FEATURES ||
573 has_feature))
574 error = SET_ERROR(EINVAL);
575 break;
576
577 case ZPOOL_PROP_DELEGATION:
578 case ZPOOL_PROP_AUTOREPLACE:
579 case ZPOOL_PROP_LISTSNAPS:
580 case ZPOOL_PROP_AUTOEXPAND:
581 case ZPOOL_PROP_AUTOTRIM:
582 error = nvpair_value_uint64(elem, &intval);
583 if (!error && intval > 1)
584 error = SET_ERROR(EINVAL);
585 break;
586
587 case ZPOOL_PROP_MULTIHOST:
588 error = nvpair_value_uint64(elem, &intval);
589 if (!error && intval > 1)
590 error = SET_ERROR(EINVAL);
591
592 if (!error) {
593 uint32_t hostid = zone_get_hostid(NULL);
594 if (hostid)
595 spa->spa_hostid = hostid;
596 else
597 error = SET_ERROR(ENOTSUP);
598 }
599
600 break;
601
602 case ZPOOL_PROP_BOOTFS:
603 /*
604 * If the pool version is less than SPA_VERSION_BOOTFS,
605 * or the pool is still being created (version == 0),
606 * the bootfs property cannot be set.
607 */
608 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
609 error = SET_ERROR(ENOTSUP);
610 break;
611 }
612
613 /*
614 * Make sure the vdev config is bootable
615 */
616 if (!vdev_is_bootable(spa->spa_root_vdev)) {
617 error = SET_ERROR(ENOTSUP);
618 break;
619 }
620
621 reset_bootfs = 1;
622
623 error = nvpair_value_string(elem, &strval);
624
625 if (!error) {
626 objset_t *os;
627 uint64_t propval;
628
629 if (strval == NULL || strval[0] == '\0') {
630 objnum = zpool_prop_default_numeric(
631 ZPOOL_PROP_BOOTFS);
632 break;
633 }
634
635 error = dmu_objset_hold(strval, FTAG, &os);
636 if (error != 0)
637 break;
638
639 /*
640 * Must be ZPL, and its property settings
641 * must be supported by GRUB (compression
642 * is not gzip, and large dnodes are not
643 * used).
644 */
645
646 if (dmu_objset_type(os) != DMU_OST_ZFS) {
647 error = SET_ERROR(ENOTSUP);
648 } else if ((error =
649 dsl_prop_get_int_ds(dmu_objset_ds(os),
650 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
651 &propval)) == 0 &&
652 !BOOTFS_COMPRESS_VALID(propval)) {
653 error = SET_ERROR(ENOTSUP);
654 } else if ((error =
655 dsl_prop_get_int_ds(dmu_objset_ds(os),
656 zfs_prop_to_name(ZFS_PROP_DNODESIZE),
657 &propval)) == 0 &&
658 propval != ZFS_DNSIZE_LEGACY) {
659 error = SET_ERROR(ENOTSUP);
660 } else {
661 objnum = dmu_objset_id(os);
662 }
663 dmu_objset_rele(os, FTAG);
664 }
665 break;
666
667 case ZPOOL_PROP_FAILUREMODE:
668 error = nvpair_value_uint64(elem, &intval);
669 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
670 error = SET_ERROR(EINVAL);
671
672 /*
673 * This is a special case which only occurs when
674 * the pool has completely failed. This allows
675 * the user to change the in-core failmode property
676 * without syncing it out to disk (I/Os might
677 * currently be blocked). We do this by returning
678 * EIO to the caller (spa_prop_set) to trick it
679 * into thinking we encountered a property validation
680 * error.
681 */
682 if (!error && spa_suspended(spa)) {
683 spa->spa_failmode = intval;
684 error = SET_ERROR(EIO);
685 }
686 break;
687
688 case ZPOOL_PROP_CACHEFILE:
689 if ((error = nvpair_value_string(elem, &strval)) != 0)
690 break;
691
692 if (strval[0] == '\0')
693 break;
694
695 if (strcmp(strval, "none") == 0)
696 break;
697
698 if (strval[0] != '/') {
699 error = SET_ERROR(EINVAL);
700 break;
701 }
702
703 slash = strrchr(strval, '/');
704 ASSERT(slash != NULL);
705
706 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
707 strcmp(slash, "/..") == 0)
708 error = SET_ERROR(EINVAL);
709 break;
710
711 case ZPOOL_PROP_COMMENT:
712 if ((error = nvpair_value_string(elem, &strval)) != 0)
713 break;
714 for (check = strval; *check != '\0'; check++) {
715 if (!isprint(*check)) {
716 error = SET_ERROR(EINVAL);
717 break;
718 }
719 }
720 if (strlen(strval) > ZPROP_MAX_COMMENT)
721 error = SET_ERROR(E2BIG);
722 break;
723
724 default:
725 break;
726 }
727
728 if (error)
729 break;
730 }
731
732 (void) nvlist_remove_all(props,
733 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
734
735 if (!error && reset_bootfs) {
736 error = nvlist_remove(props,
737 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
738
739 if (!error) {
740 error = nvlist_add_uint64(props,
741 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
742 }
743 }
744
745 return (error);
746 }
747
748 void
749 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
750 {
751 char *cachefile;
752 spa_config_dirent_t *dp;
753
754 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
755 &cachefile) != 0)
756 return;
757
758 dp = kmem_alloc(sizeof (spa_config_dirent_t),
759 KM_SLEEP);
760
761 if (cachefile[0] == '\0')
762 dp->scd_path = spa_strdup(spa_config_path);
763 else if (strcmp(cachefile, "none") == 0)
764 dp->scd_path = NULL;
765 else
766 dp->scd_path = spa_strdup(cachefile);
767
768 list_insert_head(&spa->spa_config_list, dp);
769 if (need_sync)
770 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
771 }
772
773 int
774 spa_prop_set(spa_t *spa, nvlist_t *nvp)
775 {
776 int error;
777 nvpair_t *elem = NULL;
778 boolean_t need_sync = B_FALSE;
779
780 if ((error = spa_prop_validate(spa, nvp)) != 0)
781 return (error);
782
783 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
784 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
785
786 if (prop == ZPOOL_PROP_CACHEFILE ||
787 prop == ZPOOL_PROP_ALTROOT ||
788 prop == ZPOOL_PROP_READONLY)
789 continue;
790
791 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
792 uint64_t ver;
793
794 if (prop == ZPOOL_PROP_VERSION) {
795 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
796 } else {
797 ASSERT(zpool_prop_feature(nvpair_name(elem)));
798 ver = SPA_VERSION_FEATURES;
799 need_sync = B_TRUE;
800 }
801
802 /* Save time if the version is already set. */
803 if (ver == spa_version(spa))
804 continue;
805
806 /*
807 * In addition to the pool directory object, we might
808 * create the pool properties object, the features for
809 * read object, the features for write object, or the
810 * feature descriptions object.
811 */
812 error = dsl_sync_task(spa->spa_name, NULL,
813 spa_sync_version, &ver,
814 6, ZFS_SPACE_CHECK_RESERVED);
815 if (error)
816 return (error);
817 continue;
818 }
819
820 need_sync = B_TRUE;
821 break;
822 }
823
824 if (need_sync) {
825 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
826 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
827 }
828
829 return (0);
830 }
831
832 /*
833 * If the bootfs property value is dsobj, clear it.
834 */
835 void
836 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
837 {
838 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
839 VERIFY(zap_remove(spa->spa_meta_objset,
840 spa->spa_pool_props_object,
841 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
842 spa->spa_bootfs = 0;
843 }
844 }
845
846 /*ARGSUSED*/
847 static int
848 spa_change_guid_check(void *arg, dmu_tx_t *tx)
849 {
850 uint64_t *newguid __maybe_unused = arg;
851 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
852 vdev_t *rvd = spa->spa_root_vdev;
853 uint64_t vdev_state;
854
855 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
856 int error = (spa_has_checkpoint(spa)) ?
857 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
858 return (SET_ERROR(error));
859 }
860
861 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
862 vdev_state = rvd->vdev_state;
863 spa_config_exit(spa, SCL_STATE, FTAG);
864
865 if (vdev_state != VDEV_STATE_HEALTHY)
866 return (SET_ERROR(ENXIO));
867
868 ASSERT3U(spa_guid(spa), !=, *newguid);
869
870 return (0);
871 }
872
873 static void
874 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
875 {
876 uint64_t *newguid = arg;
877 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
878 uint64_t oldguid;
879 vdev_t *rvd = spa->spa_root_vdev;
880
881 oldguid = spa_guid(spa);
882
883 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
884 rvd->vdev_guid = *newguid;
885 rvd->vdev_guid_sum += (*newguid - oldguid);
886 vdev_config_dirty(rvd);
887 spa_config_exit(spa, SCL_STATE, FTAG);
888
889 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
890 (u_longlong_t)oldguid, (u_longlong_t)*newguid);
891 }
892
893 /*
894 * Change the GUID for the pool. This is done so that we can later
895 * re-import a pool built from a clone of our own vdevs. We will modify
896 * the root vdev's guid, our own pool guid, and then mark all of our
897 * vdevs dirty. Note that we must make sure that all our vdevs are
898 * online when we do this, or else any vdevs that weren't present
899 * would be orphaned from our pool. We are also going to issue a
900 * sysevent to update any watchers.
901 */
902 int
903 spa_change_guid(spa_t *spa)
904 {
905 int error;
906 uint64_t guid;
907
908 mutex_enter(&spa->spa_vdev_top_lock);
909 mutex_enter(&spa_namespace_lock);
910 guid = spa_generate_guid(NULL);
911
912 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
913 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
914
915 if (error == 0) {
916 spa_write_cachefile(spa, B_FALSE, B_TRUE);
917 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
918 }
919
920 mutex_exit(&spa_namespace_lock);
921 mutex_exit(&spa->spa_vdev_top_lock);
922
923 return (error);
924 }
925
926 /*
927 * ==========================================================================
928 * SPA state manipulation (open/create/destroy/import/export)
929 * ==========================================================================
930 */
931
932 static int
933 spa_error_entry_compare(const void *a, const void *b)
934 {
935 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
936 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
937 int ret;
938
939 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
940 sizeof (zbookmark_phys_t));
941
942 return (TREE_ISIGN(ret));
943 }
944
945 /*
946 * Utility function which retrieves copies of the current logs and
947 * re-initializes them in the process.
948 */
949 void
950 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
951 {
952 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
953
954 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
955 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
956
957 avl_create(&spa->spa_errlist_scrub,
958 spa_error_entry_compare, sizeof (spa_error_entry_t),
959 offsetof(spa_error_entry_t, se_avl));
960 avl_create(&spa->spa_errlist_last,
961 spa_error_entry_compare, sizeof (spa_error_entry_t),
962 offsetof(spa_error_entry_t, se_avl));
963 }
964
965 static void
966 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
967 {
968 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
969 enum zti_modes mode = ztip->zti_mode;
970 uint_t value = ztip->zti_value;
971 uint_t count = ztip->zti_count;
972 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
973 uint_t flags = 0;
974 boolean_t batch = B_FALSE;
975
976 if (mode == ZTI_MODE_NULL) {
977 tqs->stqs_count = 0;
978 tqs->stqs_taskq = NULL;
979 return;
980 }
981
982 ASSERT3U(count, >, 0);
983
984 tqs->stqs_count = count;
985 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
986
987 switch (mode) {
988 case ZTI_MODE_FIXED:
989 ASSERT3U(value, >=, 1);
990 value = MAX(value, 1);
991 flags |= TASKQ_DYNAMIC;
992 break;
993
994 case ZTI_MODE_BATCH:
995 batch = B_TRUE;
996 flags |= TASKQ_THREADS_CPU_PCT;
997 value = MIN(zio_taskq_batch_pct, 100);
998 break;
999
1000 default:
1001 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1002 "spa_activate()",
1003 zio_type_name[t], zio_taskq_types[q], mode, value);
1004 break;
1005 }
1006
1007 for (uint_t i = 0; i < count; i++) {
1008 taskq_t *tq;
1009 char name[32];
1010
1011 (void) snprintf(name, sizeof (name), "%s_%s",
1012 zio_type_name[t], zio_taskq_types[q]);
1013
1014 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1015 if (batch)
1016 flags |= TASKQ_DC_BATCH;
1017
1018 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1019 spa->spa_proc, zio_taskq_basedc, flags);
1020 } else {
1021 pri_t pri = maxclsyspri;
1022 /*
1023 * The write issue taskq can be extremely CPU
1024 * intensive. Run it at slightly less important
1025 * priority than the other taskqs. Under Linux this
1026 * means incrementing the priority value on platforms
1027 * like illumos it should be decremented.
1028 */
1029 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
1030 pri++;
1031
1032 tq = taskq_create_proc(name, value, pri, 50,
1033 INT_MAX, spa->spa_proc, flags);
1034 }
1035
1036 tqs->stqs_taskq[i] = tq;
1037 }
1038 }
1039
1040 static void
1041 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1042 {
1043 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1044
1045 if (tqs->stqs_taskq == NULL) {
1046 ASSERT3U(tqs->stqs_count, ==, 0);
1047 return;
1048 }
1049
1050 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1051 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1052 taskq_destroy(tqs->stqs_taskq[i]);
1053 }
1054
1055 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1056 tqs->stqs_taskq = NULL;
1057 }
1058
1059 /*
1060 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1061 * Note that a type may have multiple discrete taskqs to avoid lock contention
1062 * on the taskq itself. In that case we choose which taskq at random by using
1063 * the low bits of gethrtime().
1064 */
1065 void
1066 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1067 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1068 {
1069 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1070 taskq_t *tq;
1071
1072 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1073 ASSERT3U(tqs->stqs_count, !=, 0);
1074
1075 if (tqs->stqs_count == 1) {
1076 tq = tqs->stqs_taskq[0];
1077 } else {
1078 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1079 }
1080
1081 taskq_dispatch_ent(tq, func, arg, flags, ent);
1082 }
1083
1084 /*
1085 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1086 */
1087 void
1088 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1089 task_func_t *func, void *arg, uint_t flags)
1090 {
1091 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1092 taskq_t *tq;
1093 taskqid_t id;
1094
1095 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1096 ASSERT3U(tqs->stqs_count, !=, 0);
1097
1098 if (tqs->stqs_count == 1) {
1099 tq = tqs->stqs_taskq[0];
1100 } else {
1101 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1102 }
1103
1104 id = taskq_dispatch(tq, func, arg, flags);
1105 if (id)
1106 taskq_wait_id(tq, id);
1107 }
1108
1109 static void
1110 spa_create_zio_taskqs(spa_t *spa)
1111 {
1112 for (int t = 0; t < ZIO_TYPES; t++) {
1113 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1114 spa_taskqs_init(spa, t, q);
1115 }
1116 }
1117 }
1118
1119 /*
1120 * Disabled until spa_thread() can be adapted for Linux.
1121 */
1122 #undef HAVE_SPA_THREAD
1123
1124 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1125 static void
1126 spa_thread(void *arg)
1127 {
1128 psetid_t zio_taskq_psrset_bind = PS_NONE;
1129 callb_cpr_t cprinfo;
1130
1131 spa_t *spa = arg;
1132 user_t *pu = PTOU(curproc);
1133
1134 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1135 spa->spa_name);
1136
1137 ASSERT(curproc != &p0);
1138 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1139 "zpool-%s", spa->spa_name);
1140 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1141
1142 /* bind this thread to the requested psrset */
1143 if (zio_taskq_psrset_bind != PS_NONE) {
1144 pool_lock();
1145 mutex_enter(&cpu_lock);
1146 mutex_enter(&pidlock);
1147 mutex_enter(&curproc->p_lock);
1148
1149 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1150 0, NULL, NULL) == 0) {
1151 curthread->t_bind_pset = zio_taskq_psrset_bind;
1152 } else {
1153 cmn_err(CE_WARN,
1154 "Couldn't bind process for zfs pool \"%s\" to "
1155 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1156 }
1157
1158 mutex_exit(&curproc->p_lock);
1159 mutex_exit(&pidlock);
1160 mutex_exit(&cpu_lock);
1161 pool_unlock();
1162 }
1163
1164 if (zio_taskq_sysdc) {
1165 sysdc_thread_enter(curthread, 100, 0);
1166 }
1167
1168 spa->spa_proc = curproc;
1169 spa->spa_did = curthread->t_did;
1170
1171 spa_create_zio_taskqs(spa);
1172
1173 mutex_enter(&spa->spa_proc_lock);
1174 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1175
1176 spa->spa_proc_state = SPA_PROC_ACTIVE;
1177 cv_broadcast(&spa->spa_proc_cv);
1178
1179 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1180 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1181 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1182 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1183
1184 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1185 spa->spa_proc_state = SPA_PROC_GONE;
1186 spa->spa_proc = &p0;
1187 cv_broadcast(&spa->spa_proc_cv);
1188 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1189
1190 mutex_enter(&curproc->p_lock);
1191 lwp_exit();
1192 }
1193 #endif
1194
1195 /*
1196 * Activate an uninitialized pool.
1197 */
1198 static void
1199 spa_activate(spa_t *spa, spa_mode_t mode)
1200 {
1201 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1202
1203 spa->spa_state = POOL_STATE_ACTIVE;
1204 spa->spa_mode = mode;
1205
1206 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1207 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1208 spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1209 spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops);
1210
1211 /* Try to create a covering process */
1212 mutex_enter(&spa->spa_proc_lock);
1213 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1214 ASSERT(spa->spa_proc == &p0);
1215 spa->spa_did = 0;
1216
1217 #ifdef HAVE_SPA_THREAD
1218 /* Only create a process if we're going to be around a while. */
1219 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1220 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1221 NULL, 0) == 0) {
1222 spa->spa_proc_state = SPA_PROC_CREATED;
1223 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1224 cv_wait(&spa->spa_proc_cv,
1225 &spa->spa_proc_lock);
1226 }
1227 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1228 ASSERT(spa->spa_proc != &p0);
1229 ASSERT(spa->spa_did != 0);
1230 } else {
1231 #ifdef _KERNEL
1232 cmn_err(CE_WARN,
1233 "Couldn't create process for zfs pool \"%s\"\n",
1234 spa->spa_name);
1235 #endif
1236 }
1237 }
1238 #endif /* HAVE_SPA_THREAD */
1239 mutex_exit(&spa->spa_proc_lock);
1240
1241 /* If we didn't create a process, we need to create our taskqs. */
1242 if (spa->spa_proc == &p0) {
1243 spa_create_zio_taskqs(spa);
1244 }
1245
1246 for (size_t i = 0; i < TXG_SIZE; i++) {
1247 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1248 ZIO_FLAG_CANFAIL);
1249 }
1250
1251 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1252 offsetof(vdev_t, vdev_config_dirty_node));
1253 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1254 offsetof(objset_t, os_evicting_node));
1255 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1256 offsetof(vdev_t, vdev_state_dirty_node));
1257
1258 txg_list_create(&spa->spa_vdev_txg_list, spa,
1259 offsetof(struct vdev, vdev_txg_node));
1260
1261 avl_create(&spa->spa_errlist_scrub,
1262 spa_error_entry_compare, sizeof (spa_error_entry_t),
1263 offsetof(spa_error_entry_t, se_avl));
1264 avl_create(&spa->spa_errlist_last,
1265 spa_error_entry_compare, sizeof (spa_error_entry_t),
1266 offsetof(spa_error_entry_t, se_avl));
1267
1268 spa_keystore_init(&spa->spa_keystore);
1269
1270 /*
1271 * This taskq is used to perform zvol-minor-related tasks
1272 * asynchronously. This has several advantages, including easy
1273 * resolution of various deadlocks (zfsonlinux bug #3681).
1274 *
1275 * The taskq must be single threaded to ensure tasks are always
1276 * processed in the order in which they were dispatched.
1277 *
1278 * A taskq per pool allows one to keep the pools independent.
1279 * This way if one pool is suspended, it will not impact another.
1280 *
1281 * The preferred location to dispatch a zvol minor task is a sync
1282 * task. In this context, there is easy access to the spa_t and minimal
1283 * error handling is required because the sync task must succeed.
1284 */
1285 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1286 1, INT_MAX, 0);
1287
1288 /*
1289 * Taskq dedicated to prefetcher threads: this is used to prevent the
1290 * pool traverse code from monopolizing the global (and limited)
1291 * system_taskq by inappropriately scheduling long running tasks on it.
1292 */
1293 spa->spa_prefetch_taskq = taskq_create("z_prefetch", boot_ncpus,
1294 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1295
1296 /*
1297 * The taskq to upgrade datasets in this pool. Currently used by
1298 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1299 */
1300 spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus,
1301 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1302 }
1303
1304 /*
1305 * Opposite of spa_activate().
1306 */
1307 static void
1308 spa_deactivate(spa_t *spa)
1309 {
1310 ASSERT(spa->spa_sync_on == B_FALSE);
1311 ASSERT(spa->spa_dsl_pool == NULL);
1312 ASSERT(spa->spa_root_vdev == NULL);
1313 ASSERT(spa->spa_async_zio_root == NULL);
1314 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1315
1316 spa_evicting_os_wait(spa);
1317
1318 if (spa->spa_zvol_taskq) {
1319 taskq_destroy(spa->spa_zvol_taskq);
1320 spa->spa_zvol_taskq = NULL;
1321 }
1322
1323 if (spa->spa_prefetch_taskq) {
1324 taskq_destroy(spa->spa_prefetch_taskq);
1325 spa->spa_prefetch_taskq = NULL;
1326 }
1327
1328 if (spa->spa_upgrade_taskq) {
1329 taskq_destroy(spa->spa_upgrade_taskq);
1330 spa->spa_upgrade_taskq = NULL;
1331 }
1332
1333 txg_list_destroy(&spa->spa_vdev_txg_list);
1334
1335 list_destroy(&spa->spa_config_dirty_list);
1336 list_destroy(&spa->spa_evicting_os_list);
1337 list_destroy(&spa->spa_state_dirty_list);
1338
1339 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1340
1341 for (int t = 0; t < ZIO_TYPES; t++) {
1342 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1343 spa_taskqs_fini(spa, t, q);
1344 }
1345 }
1346
1347 for (size_t i = 0; i < TXG_SIZE; i++) {
1348 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1349 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1350 spa->spa_txg_zio[i] = NULL;
1351 }
1352
1353 metaslab_class_destroy(spa->spa_normal_class);
1354 spa->spa_normal_class = NULL;
1355
1356 metaslab_class_destroy(spa->spa_log_class);
1357 spa->spa_log_class = NULL;
1358
1359 metaslab_class_destroy(spa->spa_special_class);
1360 spa->spa_special_class = NULL;
1361
1362 metaslab_class_destroy(spa->spa_dedup_class);
1363 spa->spa_dedup_class = NULL;
1364
1365 /*
1366 * If this was part of an import or the open otherwise failed, we may
1367 * still have errors left in the queues. Empty them just in case.
1368 */
1369 spa_errlog_drain(spa);
1370 avl_destroy(&spa->spa_errlist_scrub);
1371 avl_destroy(&spa->spa_errlist_last);
1372
1373 spa_keystore_fini(&spa->spa_keystore);
1374
1375 spa->spa_state = POOL_STATE_UNINITIALIZED;
1376
1377 mutex_enter(&spa->spa_proc_lock);
1378 if (spa->spa_proc_state != SPA_PROC_NONE) {
1379 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1380 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1381 cv_broadcast(&spa->spa_proc_cv);
1382 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1383 ASSERT(spa->spa_proc != &p0);
1384 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1385 }
1386 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1387 spa->spa_proc_state = SPA_PROC_NONE;
1388 }
1389 ASSERT(spa->spa_proc == &p0);
1390 mutex_exit(&spa->spa_proc_lock);
1391
1392 /*
1393 * We want to make sure spa_thread() has actually exited the ZFS
1394 * module, so that the module can't be unloaded out from underneath
1395 * it.
1396 */
1397 if (spa->spa_did != 0) {
1398 thread_join(spa->spa_did);
1399 spa->spa_did = 0;
1400 }
1401 }
1402
1403 /*
1404 * Verify a pool configuration, and construct the vdev tree appropriately. This
1405 * will create all the necessary vdevs in the appropriate layout, with each vdev
1406 * in the CLOSED state. This will prep the pool before open/creation/import.
1407 * All vdev validation is done by the vdev_alloc() routine.
1408 */
1409 int
1410 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1411 uint_t id, int atype)
1412 {
1413 nvlist_t **child;
1414 uint_t children;
1415 int error;
1416
1417 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1418 return (error);
1419
1420 if ((*vdp)->vdev_ops->vdev_op_leaf)
1421 return (0);
1422
1423 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1424 &child, &children);
1425
1426 if (error == ENOENT)
1427 return (0);
1428
1429 if (error) {
1430 vdev_free(*vdp);
1431 *vdp = NULL;
1432 return (SET_ERROR(EINVAL));
1433 }
1434
1435 for (int c = 0; c < children; c++) {
1436 vdev_t *vd;
1437 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1438 atype)) != 0) {
1439 vdev_free(*vdp);
1440 *vdp = NULL;
1441 return (error);
1442 }
1443 }
1444
1445 ASSERT(*vdp != NULL);
1446
1447 return (0);
1448 }
1449
1450 static boolean_t
1451 spa_should_flush_logs_on_unload(spa_t *spa)
1452 {
1453 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1454 return (B_FALSE);
1455
1456 if (!spa_writeable(spa))
1457 return (B_FALSE);
1458
1459 if (!spa->spa_sync_on)
1460 return (B_FALSE);
1461
1462 if (spa_state(spa) != POOL_STATE_EXPORTED)
1463 return (B_FALSE);
1464
1465 if (zfs_keep_log_spacemaps_at_export)
1466 return (B_FALSE);
1467
1468 return (B_TRUE);
1469 }
1470
1471 /*
1472 * Opens a transaction that will set the flag that will instruct
1473 * spa_sync to attempt to flush all the metaslabs for that txg.
1474 */
1475 static void
1476 spa_unload_log_sm_flush_all(spa_t *spa)
1477 {
1478 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1479 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1480
1481 ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1482 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1483
1484 dmu_tx_commit(tx);
1485 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1486 }
1487
1488 static void
1489 spa_unload_log_sm_metadata(spa_t *spa)
1490 {
1491 void *cookie = NULL;
1492 spa_log_sm_t *sls;
1493 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1494 &cookie)) != NULL) {
1495 VERIFY0(sls->sls_mscount);
1496 kmem_free(sls, sizeof (spa_log_sm_t));
1497 }
1498
1499 for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1500 e != NULL; e = list_head(&spa->spa_log_summary)) {
1501 VERIFY0(e->lse_mscount);
1502 list_remove(&spa->spa_log_summary, e);
1503 kmem_free(e, sizeof (log_summary_entry_t));
1504 }
1505
1506 spa->spa_unflushed_stats.sus_nblocks = 0;
1507 spa->spa_unflushed_stats.sus_memused = 0;
1508 spa->spa_unflushed_stats.sus_blocklimit = 0;
1509 }
1510
1511 static void
1512 spa_destroy_aux_threads(spa_t *spa)
1513 {
1514 if (spa->spa_condense_zthr != NULL) {
1515 zthr_destroy(spa->spa_condense_zthr);
1516 spa->spa_condense_zthr = NULL;
1517 }
1518 if (spa->spa_checkpoint_discard_zthr != NULL) {
1519 zthr_destroy(spa->spa_checkpoint_discard_zthr);
1520 spa->spa_checkpoint_discard_zthr = NULL;
1521 }
1522 if (spa->spa_livelist_delete_zthr != NULL) {
1523 zthr_destroy(spa->spa_livelist_delete_zthr);
1524 spa->spa_livelist_delete_zthr = NULL;
1525 }
1526 if (spa->spa_livelist_condense_zthr != NULL) {
1527 zthr_destroy(spa->spa_livelist_condense_zthr);
1528 spa->spa_livelist_condense_zthr = NULL;
1529 }
1530 }
1531
1532 /*
1533 * Opposite of spa_load().
1534 */
1535 static void
1536 spa_unload(spa_t *spa)
1537 {
1538 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1539 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1540
1541 spa_import_progress_remove(spa_guid(spa));
1542 spa_load_note(spa, "UNLOADING");
1543
1544 spa_wake_waiters(spa);
1545
1546 /*
1547 * If the log space map feature is enabled and the pool is getting
1548 * exported (but not destroyed), we want to spend some time flushing
1549 * as many metaslabs as we can in an attempt to destroy log space
1550 * maps and save import time.
1551 */
1552 if (spa_should_flush_logs_on_unload(spa))
1553 spa_unload_log_sm_flush_all(spa);
1554
1555 /*
1556 * Stop async tasks.
1557 */
1558 spa_async_suspend(spa);
1559
1560 if (spa->spa_root_vdev) {
1561 vdev_t *root_vdev = spa->spa_root_vdev;
1562 vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE);
1563 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1564 vdev_autotrim_stop_all(spa);
1565 }
1566
1567 /*
1568 * Stop syncing.
1569 */
1570 if (spa->spa_sync_on) {
1571 txg_sync_stop(spa->spa_dsl_pool);
1572 spa->spa_sync_on = B_FALSE;
1573 }
1574
1575 /*
1576 * This ensures that there is no async metaslab prefetching
1577 * while we attempt to unload the spa.
1578 */
1579 if (spa->spa_root_vdev != NULL) {
1580 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1581 vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1582 if (vc->vdev_mg != NULL)
1583 taskq_wait(vc->vdev_mg->mg_taskq);
1584 }
1585 }
1586
1587 if (spa->spa_mmp.mmp_thread)
1588 mmp_thread_stop(spa);
1589
1590 /*
1591 * Wait for any outstanding async I/O to complete.
1592 */
1593 if (spa->spa_async_zio_root != NULL) {
1594 for (int i = 0; i < max_ncpus; i++)
1595 (void) zio_wait(spa->spa_async_zio_root[i]);
1596 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1597 spa->spa_async_zio_root = NULL;
1598 }
1599
1600 if (spa->spa_vdev_removal != NULL) {
1601 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1602 spa->spa_vdev_removal = NULL;
1603 }
1604
1605 spa_destroy_aux_threads(spa);
1606
1607 spa_condense_fini(spa);
1608
1609 bpobj_close(&spa->spa_deferred_bpobj);
1610
1611 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1612
1613 /*
1614 * Close all vdevs.
1615 */
1616 if (spa->spa_root_vdev)
1617 vdev_free(spa->spa_root_vdev);
1618 ASSERT(spa->spa_root_vdev == NULL);
1619
1620 /*
1621 * Close the dsl pool.
1622 */
1623 if (spa->spa_dsl_pool) {
1624 dsl_pool_close(spa->spa_dsl_pool);
1625 spa->spa_dsl_pool = NULL;
1626 spa->spa_meta_objset = NULL;
1627 }
1628
1629 ddt_unload(spa);
1630 spa_unload_log_sm_metadata(spa);
1631
1632 /*
1633 * Drop and purge level 2 cache
1634 */
1635 spa_l2cache_drop(spa);
1636
1637 for (int i = 0; i < spa->spa_spares.sav_count; i++)
1638 vdev_free(spa->spa_spares.sav_vdevs[i]);
1639 if (spa->spa_spares.sav_vdevs) {
1640 kmem_free(spa->spa_spares.sav_vdevs,
1641 spa->spa_spares.sav_count * sizeof (void *));
1642 spa->spa_spares.sav_vdevs = NULL;
1643 }
1644 if (spa->spa_spares.sav_config) {
1645 nvlist_free(spa->spa_spares.sav_config);
1646 spa->spa_spares.sav_config = NULL;
1647 }
1648 spa->spa_spares.sav_count = 0;
1649
1650 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1651 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1652 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1653 }
1654 if (spa->spa_l2cache.sav_vdevs) {
1655 kmem_free(spa->spa_l2cache.sav_vdevs,
1656 spa->spa_l2cache.sav_count * sizeof (void *));
1657 spa->spa_l2cache.sav_vdevs = NULL;
1658 }
1659 if (spa->spa_l2cache.sav_config) {
1660 nvlist_free(spa->spa_l2cache.sav_config);
1661 spa->spa_l2cache.sav_config = NULL;
1662 }
1663 spa->spa_l2cache.sav_count = 0;
1664
1665 spa->spa_async_suspended = 0;
1666
1667 spa->spa_indirect_vdevs_loaded = B_FALSE;
1668
1669 if (spa->spa_comment != NULL) {
1670 spa_strfree(spa->spa_comment);
1671 spa->spa_comment = NULL;
1672 }
1673
1674 spa_config_exit(spa, SCL_ALL, spa);
1675 }
1676
1677 /*
1678 * Load (or re-load) the current list of vdevs describing the active spares for
1679 * this pool. When this is called, we have some form of basic information in
1680 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1681 * then re-generate a more complete list including status information.
1682 */
1683 void
1684 spa_load_spares(spa_t *spa)
1685 {
1686 nvlist_t **spares;
1687 uint_t nspares;
1688 int i;
1689 vdev_t *vd, *tvd;
1690
1691 #ifndef _KERNEL
1692 /*
1693 * zdb opens both the current state of the pool and the
1694 * checkpointed state (if present), with a different spa_t.
1695 *
1696 * As spare vdevs are shared among open pools, we skip loading
1697 * them when we load the checkpointed state of the pool.
1698 */
1699 if (!spa_writeable(spa))
1700 return;
1701 #endif
1702
1703 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1704
1705 /*
1706 * First, close and free any existing spare vdevs.
1707 */
1708 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1709 vd = spa->spa_spares.sav_vdevs[i];
1710
1711 /* Undo the call to spa_activate() below */
1712 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1713 B_FALSE)) != NULL && tvd->vdev_isspare)
1714 spa_spare_remove(tvd);
1715 vdev_close(vd);
1716 vdev_free(vd);
1717 }
1718
1719 if (spa->spa_spares.sav_vdevs)
1720 kmem_free(spa->spa_spares.sav_vdevs,
1721 spa->spa_spares.sav_count * sizeof (void *));
1722
1723 if (spa->spa_spares.sav_config == NULL)
1724 nspares = 0;
1725 else
1726 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1727 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1728
1729 spa->spa_spares.sav_count = (int)nspares;
1730 spa->spa_spares.sav_vdevs = NULL;
1731
1732 if (nspares == 0)
1733 return;
1734
1735 /*
1736 * Construct the array of vdevs, opening them to get status in the
1737 * process. For each spare, there is potentially two different vdev_t
1738 * structures associated with it: one in the list of spares (used only
1739 * for basic validation purposes) and one in the active vdev
1740 * configuration (if it's spared in). During this phase we open and
1741 * validate each vdev on the spare list. If the vdev also exists in the
1742 * active configuration, then we also mark this vdev as an active spare.
1743 */
1744 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1745 KM_SLEEP);
1746 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1747 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1748 VDEV_ALLOC_SPARE) == 0);
1749 ASSERT(vd != NULL);
1750
1751 spa->spa_spares.sav_vdevs[i] = vd;
1752
1753 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1754 B_FALSE)) != NULL) {
1755 if (!tvd->vdev_isspare)
1756 spa_spare_add(tvd);
1757
1758 /*
1759 * We only mark the spare active if we were successfully
1760 * able to load the vdev. Otherwise, importing a pool
1761 * with a bad active spare would result in strange
1762 * behavior, because multiple pool would think the spare
1763 * is actively in use.
1764 *
1765 * There is a vulnerability here to an equally bizarre
1766 * circumstance, where a dead active spare is later
1767 * brought back to life (onlined or otherwise). Given
1768 * the rarity of this scenario, and the extra complexity
1769 * it adds, we ignore the possibility.
1770 */
1771 if (!vdev_is_dead(tvd))
1772 spa_spare_activate(tvd);
1773 }
1774
1775 vd->vdev_top = vd;
1776 vd->vdev_aux = &spa->spa_spares;
1777
1778 if (vdev_open(vd) != 0)
1779 continue;
1780
1781 if (vdev_validate_aux(vd) == 0)
1782 spa_spare_add(vd);
1783 }
1784
1785 /*
1786 * Recompute the stashed list of spares, with status information
1787 * this time.
1788 */
1789 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1790 DATA_TYPE_NVLIST_ARRAY) == 0);
1791
1792 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1793 KM_SLEEP);
1794 for (i = 0; i < spa->spa_spares.sav_count; i++)
1795 spares[i] = vdev_config_generate(spa,
1796 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1797 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1798 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1799 for (i = 0; i < spa->spa_spares.sav_count; i++)
1800 nvlist_free(spares[i]);
1801 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1802 }
1803
1804 /*
1805 * Load (or re-load) the current list of vdevs describing the active l2cache for
1806 * this pool. When this is called, we have some form of basic information in
1807 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1808 * then re-generate a more complete list including status information.
1809 * Devices which are already active have their details maintained, and are
1810 * not re-opened.
1811 */
1812 void
1813 spa_load_l2cache(spa_t *spa)
1814 {
1815 nvlist_t **l2cache = NULL;
1816 uint_t nl2cache;
1817 int i, j, oldnvdevs;
1818 uint64_t guid;
1819 vdev_t *vd, **oldvdevs, **newvdevs;
1820 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1821
1822 #ifndef _KERNEL
1823 /*
1824 * zdb opens both the current state of the pool and the
1825 * checkpointed state (if present), with a different spa_t.
1826 *
1827 * As L2 caches are part of the ARC which is shared among open
1828 * pools, we skip loading them when we load the checkpointed
1829 * state of the pool.
1830 */
1831 if (!spa_writeable(spa))
1832 return;
1833 #endif
1834
1835 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1836
1837 oldvdevs = sav->sav_vdevs;
1838 oldnvdevs = sav->sav_count;
1839 sav->sav_vdevs = NULL;
1840 sav->sav_count = 0;
1841
1842 if (sav->sav_config == NULL) {
1843 nl2cache = 0;
1844 newvdevs = NULL;
1845 goto out;
1846 }
1847
1848 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1849 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1850 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1851
1852 /*
1853 * Process new nvlist of vdevs.
1854 */
1855 for (i = 0; i < nl2cache; i++) {
1856 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1857 &guid) == 0);
1858
1859 newvdevs[i] = NULL;
1860 for (j = 0; j < oldnvdevs; j++) {
1861 vd = oldvdevs[j];
1862 if (vd != NULL && guid == vd->vdev_guid) {
1863 /*
1864 * Retain previous vdev for add/remove ops.
1865 */
1866 newvdevs[i] = vd;
1867 oldvdevs[j] = NULL;
1868 break;
1869 }
1870 }
1871
1872 if (newvdevs[i] == NULL) {
1873 /*
1874 * Create new vdev
1875 */
1876 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1877 VDEV_ALLOC_L2CACHE) == 0);
1878 ASSERT(vd != NULL);
1879 newvdevs[i] = vd;
1880
1881 /*
1882 * Commit this vdev as an l2cache device,
1883 * even if it fails to open.
1884 */
1885 spa_l2cache_add(vd);
1886
1887 vd->vdev_top = vd;
1888 vd->vdev_aux = sav;
1889
1890 spa_l2cache_activate(vd);
1891
1892 if (vdev_open(vd) != 0)
1893 continue;
1894
1895 (void) vdev_validate_aux(vd);
1896
1897 if (!vdev_is_dead(vd))
1898 l2arc_add_vdev(spa, vd);
1899 }
1900 }
1901
1902 sav->sav_vdevs = newvdevs;
1903 sav->sav_count = (int)nl2cache;
1904
1905 /*
1906 * Recompute the stashed list of l2cache devices, with status
1907 * information this time.
1908 */
1909 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1910 DATA_TYPE_NVLIST_ARRAY) == 0);
1911
1912 if (sav->sav_count > 0)
1913 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
1914 KM_SLEEP);
1915 for (i = 0; i < sav->sav_count; i++)
1916 l2cache[i] = vdev_config_generate(spa,
1917 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1918 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1919 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1920
1921 out:
1922 /*
1923 * Purge vdevs that were dropped
1924 */
1925 for (i = 0; i < oldnvdevs; i++) {
1926 uint64_t pool;
1927
1928 vd = oldvdevs[i];
1929 if (vd != NULL) {
1930 ASSERT(vd->vdev_isl2cache);
1931
1932 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1933 pool != 0ULL && l2arc_vdev_present(vd))
1934 l2arc_remove_vdev(vd);
1935 vdev_clear_stats(vd);
1936 vdev_free(vd);
1937 }
1938 }
1939
1940 if (oldvdevs)
1941 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1942
1943 for (i = 0; i < sav->sav_count; i++)
1944 nvlist_free(l2cache[i]);
1945 if (sav->sav_count)
1946 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1947 }
1948
1949 static int
1950 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1951 {
1952 dmu_buf_t *db;
1953 char *packed = NULL;
1954 size_t nvsize = 0;
1955 int error;
1956 *value = NULL;
1957
1958 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1959 if (error)
1960 return (error);
1961
1962 nvsize = *(uint64_t *)db->db_data;
1963 dmu_buf_rele(db, FTAG);
1964
1965 packed = vmem_alloc(nvsize, KM_SLEEP);
1966 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1967 DMU_READ_PREFETCH);
1968 if (error == 0)
1969 error = nvlist_unpack(packed, nvsize, value, 0);
1970 vmem_free(packed, nvsize);
1971
1972 return (error);
1973 }
1974
1975 /*
1976 * Concrete top-level vdevs that are not missing and are not logs. At every
1977 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1978 */
1979 static uint64_t
1980 spa_healthy_core_tvds(spa_t *spa)
1981 {
1982 vdev_t *rvd = spa->spa_root_vdev;
1983 uint64_t tvds = 0;
1984
1985 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1986 vdev_t *vd = rvd->vdev_child[i];
1987 if (vd->vdev_islog)
1988 continue;
1989 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1990 tvds++;
1991 }
1992
1993 return (tvds);
1994 }
1995
1996 /*
1997 * Checks to see if the given vdev could not be opened, in which case we post a
1998 * sysevent to notify the autoreplace code that the device has been removed.
1999 */
2000 static void
2001 spa_check_removed(vdev_t *vd)
2002 {
2003 for (uint64_t c = 0; c < vd->vdev_children; c++)
2004 spa_check_removed(vd->vdev_child[c]);
2005
2006 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2007 vdev_is_concrete(vd)) {
2008 zfs_post_autoreplace(vd->vdev_spa, vd);
2009 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2010 }
2011 }
2012
2013 static int
2014 spa_check_for_missing_logs(spa_t *spa)
2015 {
2016 vdev_t *rvd = spa->spa_root_vdev;
2017
2018 /*
2019 * If we're doing a normal import, then build up any additional
2020 * diagnostic information about missing log devices.
2021 * We'll pass this up to the user for further processing.
2022 */
2023 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2024 nvlist_t **child, *nv;
2025 uint64_t idx = 0;
2026
2027 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2028 KM_SLEEP);
2029 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2030
2031 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2032 vdev_t *tvd = rvd->vdev_child[c];
2033
2034 /*
2035 * We consider a device as missing only if it failed
2036 * to open (i.e. offline or faulted is not considered
2037 * as missing).
2038 */
2039 if (tvd->vdev_islog &&
2040 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2041 child[idx++] = vdev_config_generate(spa, tvd,
2042 B_FALSE, VDEV_CONFIG_MISSING);
2043 }
2044 }
2045
2046 if (idx > 0) {
2047 fnvlist_add_nvlist_array(nv,
2048 ZPOOL_CONFIG_CHILDREN, child, idx);
2049 fnvlist_add_nvlist(spa->spa_load_info,
2050 ZPOOL_CONFIG_MISSING_DEVICES, nv);
2051
2052 for (uint64_t i = 0; i < idx; i++)
2053 nvlist_free(child[i]);
2054 }
2055 nvlist_free(nv);
2056 kmem_free(child, rvd->vdev_children * sizeof (char **));
2057
2058 if (idx > 0) {
2059 spa_load_failed(spa, "some log devices are missing");
2060 vdev_dbgmsg_print_tree(rvd, 2);
2061 return (SET_ERROR(ENXIO));
2062 }
2063 } else {
2064 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2065 vdev_t *tvd = rvd->vdev_child[c];
2066
2067 if (tvd->vdev_islog &&
2068 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2069 spa_set_log_state(spa, SPA_LOG_CLEAR);
2070 spa_load_note(spa, "some log devices are "
2071 "missing, ZIL is dropped.");
2072 vdev_dbgmsg_print_tree(rvd, 2);
2073 break;
2074 }
2075 }
2076 }
2077
2078 return (0);
2079 }
2080
2081 /*
2082 * Check for missing log devices
2083 */
2084 static boolean_t
2085 spa_check_logs(spa_t *spa)
2086 {
2087 boolean_t rv = B_FALSE;
2088 dsl_pool_t *dp = spa_get_dsl(spa);
2089
2090 switch (spa->spa_log_state) {
2091 default:
2092 break;
2093 case SPA_LOG_MISSING:
2094 /* need to recheck in case slog has been restored */
2095 case SPA_LOG_UNKNOWN:
2096 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2097 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2098 if (rv)
2099 spa_set_log_state(spa, SPA_LOG_MISSING);
2100 break;
2101 }
2102 return (rv);
2103 }
2104
2105 static boolean_t
2106 spa_passivate_log(spa_t *spa)
2107 {
2108 vdev_t *rvd = spa->spa_root_vdev;
2109 boolean_t slog_found = B_FALSE;
2110
2111 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2112
2113 if (!spa_has_slogs(spa))
2114 return (B_FALSE);
2115
2116 for (int c = 0; c < rvd->vdev_children; c++) {
2117 vdev_t *tvd = rvd->vdev_child[c];
2118 metaslab_group_t *mg = tvd->vdev_mg;
2119
2120 if (tvd->vdev_islog) {
2121 metaslab_group_passivate(mg);
2122 slog_found = B_TRUE;
2123 }
2124 }
2125
2126 return (slog_found);
2127 }
2128
2129 static void
2130 spa_activate_log(spa_t *spa)
2131 {
2132 vdev_t *rvd = spa->spa_root_vdev;
2133
2134 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2135
2136 for (int c = 0; c < rvd->vdev_children; c++) {
2137 vdev_t *tvd = rvd->vdev_child[c];
2138 metaslab_group_t *mg = tvd->vdev_mg;
2139
2140 if (tvd->vdev_islog)
2141 metaslab_group_activate(mg);
2142 }
2143 }
2144
2145 int
2146 spa_reset_logs(spa_t *spa)
2147 {
2148 int error;
2149
2150 error = dmu_objset_find(spa_name(spa), zil_reset,
2151 NULL, DS_FIND_CHILDREN);
2152 if (error == 0) {
2153 /*
2154 * We successfully offlined the log device, sync out the
2155 * current txg so that the "stubby" block can be removed
2156 * by zil_sync().
2157 */
2158 txg_wait_synced(spa->spa_dsl_pool, 0);
2159 }
2160 return (error);
2161 }
2162
2163 static void
2164 spa_aux_check_removed(spa_aux_vdev_t *sav)
2165 {
2166 for (int i = 0; i < sav->sav_count; i++)
2167 spa_check_removed(sav->sav_vdevs[i]);
2168 }
2169
2170 void
2171 spa_claim_notify(zio_t *zio)
2172 {
2173 spa_t *spa = zio->io_spa;
2174
2175 if (zio->io_error)
2176 return;
2177
2178 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2179 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2180 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2181 mutex_exit(&spa->spa_props_lock);
2182 }
2183
2184 typedef struct spa_load_error {
2185 uint64_t sle_meta_count;
2186 uint64_t sle_data_count;
2187 } spa_load_error_t;
2188
2189 static void
2190 spa_load_verify_done(zio_t *zio)
2191 {
2192 blkptr_t *bp = zio->io_bp;
2193 spa_load_error_t *sle = zio->io_private;
2194 dmu_object_type_t type = BP_GET_TYPE(bp);
2195 int error = zio->io_error;
2196 spa_t *spa = zio->io_spa;
2197
2198 abd_free(zio->io_abd);
2199 if (error) {
2200 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2201 type != DMU_OT_INTENT_LOG)
2202 atomic_inc_64(&sle->sle_meta_count);
2203 else
2204 atomic_inc_64(&sle->sle_data_count);
2205 }
2206
2207 mutex_enter(&spa->spa_scrub_lock);
2208 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2209 cv_broadcast(&spa->spa_scrub_io_cv);
2210 mutex_exit(&spa->spa_scrub_lock);
2211 }
2212
2213 /*
2214 * Maximum number of inflight bytes is the log2 fraction of the arc size.
2215 * By default, we set it to 1/16th of the arc.
2216 */
2217 int spa_load_verify_shift = 4;
2218 int spa_load_verify_metadata = B_TRUE;
2219 int spa_load_verify_data = B_TRUE;
2220
2221 /*ARGSUSED*/
2222 static int
2223 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2224 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2225 {
2226 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2227 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2228 return (0);
2229 /*
2230 * Note: normally this routine will not be called if
2231 * spa_load_verify_metadata is not set. However, it may be useful
2232 * to manually set the flag after the traversal has begun.
2233 */
2234 if (!spa_load_verify_metadata)
2235 return (0);
2236 if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2237 return (0);
2238
2239 uint64_t maxinflight_bytes =
2240 arc_target_bytes() >> spa_load_verify_shift;
2241 zio_t *rio = arg;
2242 size_t size = BP_GET_PSIZE(bp);
2243
2244 mutex_enter(&spa->spa_scrub_lock);
2245 while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2246 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2247 spa->spa_load_verify_bytes += size;
2248 mutex_exit(&spa->spa_scrub_lock);
2249
2250 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2251 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2252 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2253 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2254 return (0);
2255 }
2256
2257 /* ARGSUSED */
2258 int
2259 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2260 {
2261 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2262 return (SET_ERROR(ENAMETOOLONG));
2263
2264 return (0);
2265 }
2266
2267 static int
2268 spa_load_verify(spa_t *spa)
2269 {
2270 zio_t *rio;
2271 spa_load_error_t sle = { 0 };
2272 zpool_load_policy_t policy;
2273 boolean_t verify_ok = B_FALSE;
2274 int error = 0;
2275
2276 zpool_get_load_policy(spa->spa_config, &policy);
2277
2278 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2279 return (0);
2280
2281 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2282 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2283 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2284 DS_FIND_CHILDREN);
2285 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2286 if (error != 0)
2287 return (error);
2288
2289 rio = zio_root(spa, NULL, &sle,
2290 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2291
2292 if (spa_load_verify_metadata) {
2293 if (spa->spa_extreme_rewind) {
2294 spa_load_note(spa, "performing a complete scan of the "
2295 "pool since extreme rewind is on. This may take "
2296 "a very long time.\n (spa_load_verify_data=%u, "
2297 "spa_load_verify_metadata=%u)",
2298 spa_load_verify_data, spa_load_verify_metadata);
2299 }
2300
2301 error = traverse_pool(spa, spa->spa_verify_min_txg,
2302 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2303 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2304 }
2305
2306 (void) zio_wait(rio);
2307 ASSERT0(spa->spa_load_verify_bytes);
2308
2309 spa->spa_load_meta_errors = sle.sle_meta_count;
2310 spa->spa_load_data_errors = sle.sle_data_count;
2311
2312 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2313 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2314 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2315 (u_longlong_t)sle.sle_data_count);
2316 }
2317
2318 if (spa_load_verify_dryrun ||
2319 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2320 sle.sle_data_count <= policy.zlp_maxdata)) {
2321 int64_t loss = 0;
2322
2323 verify_ok = B_TRUE;
2324 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2325 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2326
2327 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2328 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2329 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2330 VERIFY(nvlist_add_int64(spa->spa_load_info,
2331 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2332 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2333 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2334 } else {
2335 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2336 }
2337
2338 if (spa_load_verify_dryrun)
2339 return (0);
2340
2341 if (error) {
2342 if (error != ENXIO && error != EIO)
2343 error = SET_ERROR(EIO);
2344 return (error);
2345 }
2346
2347 return (verify_ok ? 0 : EIO);
2348 }
2349
2350 /*
2351 * Find a value in the pool props object.
2352 */
2353 static void
2354 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2355 {
2356 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2357 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2358 }
2359
2360 /*
2361 * Find a value in the pool directory object.
2362 */
2363 static int
2364 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2365 {
2366 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2367 name, sizeof (uint64_t), 1, val);
2368
2369 if (error != 0 && (error != ENOENT || log_enoent)) {
2370 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2371 "[error=%d]", name, error);
2372 }
2373
2374 return (error);
2375 }
2376
2377 static int
2378 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2379 {
2380 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2381 return (SET_ERROR(err));
2382 }
2383
2384 boolean_t
2385 spa_livelist_delete_check(spa_t *spa)
2386 {
2387 return (spa->spa_livelists_to_delete != 0);
2388 }
2389
2390 /* ARGSUSED */
2391 static boolean_t
2392 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2393 {
2394 spa_t *spa = arg;
2395 return (spa_livelist_delete_check(spa));
2396 }
2397
2398 static int
2399 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2400 {
2401 spa_t *spa = arg;
2402 zio_free(spa, tx->tx_txg, bp);
2403 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2404 -bp_get_dsize_sync(spa, bp),
2405 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2406 return (0);
2407 }
2408
2409 static int
2410 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2411 {
2412 int err;
2413 zap_cursor_t zc;
2414 zap_attribute_t za;
2415 zap_cursor_init(&zc, os, zap_obj);
2416 err = zap_cursor_retrieve(&zc, &za);
2417 zap_cursor_fini(&zc);
2418 if (err == 0)
2419 *llp = za.za_first_integer;
2420 return (err);
2421 }
2422
2423 /*
2424 * Components of livelist deletion that must be performed in syncing
2425 * context: freeing block pointers and updating the pool-wide data
2426 * structures to indicate how much work is left to do
2427 */
2428 typedef struct sublist_delete_arg {
2429 spa_t *spa;
2430 dsl_deadlist_t *ll;
2431 uint64_t key;
2432 bplist_t *to_free;
2433 } sublist_delete_arg_t;
2434
2435 static void
2436 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2437 {
2438 sublist_delete_arg_t *sda = arg;
2439 spa_t *spa = sda->spa;
2440 dsl_deadlist_t *ll = sda->ll;
2441 uint64_t key = sda->key;
2442 bplist_t *to_free = sda->to_free;
2443
2444 bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2445 dsl_deadlist_remove_entry(ll, key, tx);
2446 }
2447
2448 typedef struct livelist_delete_arg {
2449 spa_t *spa;
2450 uint64_t ll_obj;
2451 uint64_t zap_obj;
2452 } livelist_delete_arg_t;
2453
2454 static void
2455 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2456 {
2457 livelist_delete_arg_t *lda = arg;
2458 spa_t *spa = lda->spa;
2459 uint64_t ll_obj = lda->ll_obj;
2460 uint64_t zap_obj = lda->zap_obj;
2461 objset_t *mos = spa->spa_meta_objset;
2462 uint64_t count;
2463
2464 /* free the livelist and decrement the feature count */
2465 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2466 dsl_deadlist_free(mos, ll_obj, tx);
2467 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2468 VERIFY0(zap_count(mos, zap_obj, &count));
2469 if (count == 0) {
2470 /* no more livelists to delete */
2471 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2472 DMU_POOL_DELETED_CLONES, tx));
2473 VERIFY0(zap_destroy(mos, zap_obj, tx));
2474 spa->spa_livelists_to_delete = 0;
2475 spa_notify_waiters(spa);
2476 }
2477 }
2478
2479 /*
2480 * Load in the value for the livelist to be removed and open it. Then,
2481 * load its first sublist and determine which block pointers should actually
2482 * be freed. Then, call a synctask which performs the actual frees and updates
2483 * the pool-wide livelist data.
2484 */
2485 /* ARGSUSED */
2486 void
2487 spa_livelist_delete_cb(void *arg, zthr_t *z)
2488 {
2489 spa_t *spa = arg;
2490 uint64_t ll_obj = 0, count;
2491 objset_t *mos = spa->spa_meta_objset;
2492 uint64_t zap_obj = spa->spa_livelists_to_delete;
2493 /*
2494 * Determine the next livelist to delete. This function should only
2495 * be called if there is at least one deleted clone.
2496 */
2497 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2498 VERIFY0(zap_count(mos, ll_obj, &count));
2499 if (count > 0) {
2500 dsl_deadlist_t ll = { 0 };
2501 dsl_deadlist_entry_t *dle;
2502 bplist_t to_free;
2503 dsl_deadlist_open(&ll, mos, ll_obj);
2504 dle = dsl_deadlist_first(&ll);
2505 ASSERT3P(dle, !=, NULL);
2506 bplist_create(&to_free);
2507 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2508 z, NULL);
2509 if (err == 0) {
2510 sublist_delete_arg_t sync_arg = {
2511 .spa = spa,
2512 .ll = &ll,
2513 .key = dle->dle_mintxg,
2514 .to_free = &to_free
2515 };
2516 zfs_dbgmsg("deleting sublist (id %llu) from"
2517 " livelist %llu, %d remaining",
2518 dle->dle_bpobj.bpo_object, ll_obj, count - 1);
2519 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2520 sublist_delete_sync, &sync_arg, 0,
2521 ZFS_SPACE_CHECK_DESTROY));
2522 } else {
2523 ASSERT(err == EINTR);
2524 }
2525 bplist_clear(&to_free);
2526 bplist_destroy(&to_free);
2527 dsl_deadlist_close(&ll);
2528 } else {
2529 livelist_delete_arg_t sync_arg = {
2530 .spa = spa,
2531 .ll_obj = ll_obj,
2532 .zap_obj = zap_obj
2533 };
2534 zfs_dbgmsg("deletion of livelist %llu completed", ll_obj);
2535 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2536 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2537 }
2538 }
2539
2540 void
2541 spa_start_livelist_destroy_thread(spa_t *spa)
2542 {
2543 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2544 spa->spa_livelist_delete_zthr = zthr_create(
2545 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa);
2546 }
2547
2548 typedef struct livelist_new_arg {
2549 bplist_t *allocs;
2550 bplist_t *frees;
2551 } livelist_new_arg_t;
2552
2553 static int
2554 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2555 dmu_tx_t *tx)
2556 {
2557 ASSERT(tx == NULL);
2558 livelist_new_arg_t *lna = arg;
2559 if (bp_freed) {
2560 bplist_append(lna->frees, bp);
2561 } else {
2562 bplist_append(lna->allocs, bp);
2563 zfs_livelist_condense_new_alloc++;
2564 }
2565 return (0);
2566 }
2567
2568 typedef struct livelist_condense_arg {
2569 spa_t *spa;
2570 bplist_t to_keep;
2571 uint64_t first_size;
2572 uint64_t next_size;
2573 } livelist_condense_arg_t;
2574
2575 static void
2576 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2577 {
2578 livelist_condense_arg_t *lca = arg;
2579 spa_t *spa = lca->spa;
2580 bplist_t new_frees;
2581 dsl_dataset_t *ds = spa->spa_to_condense.ds;
2582
2583 /* Have we been cancelled? */
2584 if (spa->spa_to_condense.cancelled) {
2585 zfs_livelist_condense_sync_cancel++;
2586 goto out;
2587 }
2588
2589 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2590 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2591 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2592
2593 /*
2594 * It's possible that the livelist was changed while the zthr was
2595 * running. Therefore, we need to check for new blkptrs in the two
2596 * entries being condensed and continue to track them in the livelist.
2597 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2598 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2599 * we need to sort them into two different bplists.
2600 */
2601 uint64_t first_obj = first->dle_bpobj.bpo_object;
2602 uint64_t next_obj = next->dle_bpobj.bpo_object;
2603 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2604 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2605
2606 bplist_create(&new_frees);
2607 livelist_new_arg_t new_bps = {
2608 .allocs = &lca->to_keep,
2609 .frees = &new_frees,
2610 };
2611
2612 if (cur_first_size > lca->first_size) {
2613 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2614 livelist_track_new_cb, &new_bps, lca->first_size));
2615 }
2616 if (cur_next_size > lca->next_size) {
2617 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2618 livelist_track_new_cb, &new_bps, lca->next_size));
2619 }
2620
2621 dsl_deadlist_clear_entry(first, ll, tx);
2622 ASSERT(bpobj_is_empty(&first->dle_bpobj));
2623 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2624
2625 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2626 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2627 bplist_destroy(&new_frees);
2628
2629 char dsname[ZFS_MAX_DATASET_NAME_LEN];
2630 dsl_dataset_name(ds, dsname);
2631 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2632 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2633 "(%llu blkptrs)", tx->tx_txg, dsname, ds->ds_object, first_obj,
2634 cur_first_size, next_obj, cur_next_size,
2635 first->dle_bpobj.bpo_object,
2636 first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2637 out:
2638 dmu_buf_rele(ds->ds_dbuf, spa);
2639 spa->spa_to_condense.ds = NULL;
2640 bplist_clear(&lca->to_keep);
2641 bplist_destroy(&lca->to_keep);
2642 kmem_free(lca, sizeof (livelist_condense_arg_t));
2643 spa->spa_to_condense.syncing = B_FALSE;
2644 }
2645
2646 void
2647 spa_livelist_condense_cb(void *arg, zthr_t *t)
2648 {
2649 while (zfs_livelist_condense_zthr_pause &&
2650 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2651 delay(1);
2652
2653 spa_t *spa = arg;
2654 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2655 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2656 uint64_t first_size, next_size;
2657
2658 livelist_condense_arg_t *lca =
2659 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2660 bplist_create(&lca->to_keep);
2661
2662 /*
2663 * Process the livelists (matching FREEs and ALLOCs) in open context
2664 * so we have minimal work in syncing context to condense.
2665 *
2666 * We save bpobj sizes (first_size and next_size) to use later in
2667 * syncing context to determine if entries were added to these sublists
2668 * while in open context. This is possible because the clone is still
2669 * active and open for normal writes and we want to make sure the new,
2670 * unprocessed blockpointers are inserted into the livelist normally.
2671 *
2672 * Note that dsl_process_sub_livelist() both stores the size number of
2673 * blockpointers and iterates over them while the bpobj's lock held, so
2674 * the sizes returned to us are consistent which what was actually
2675 * processed.
2676 */
2677 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2678 &first_size);
2679 if (err == 0)
2680 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2681 t, &next_size);
2682
2683 if (err == 0) {
2684 while (zfs_livelist_condense_sync_pause &&
2685 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2686 delay(1);
2687
2688 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2689 dmu_tx_mark_netfree(tx);
2690 dmu_tx_hold_space(tx, 1);
2691 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2692 if (err == 0) {
2693 /*
2694 * Prevent the condense zthr restarting before
2695 * the synctask completes.
2696 */
2697 spa->spa_to_condense.syncing = B_TRUE;
2698 lca->spa = spa;
2699 lca->first_size = first_size;
2700 lca->next_size = next_size;
2701 dsl_sync_task_nowait(spa_get_dsl(spa),
2702 spa_livelist_condense_sync, lca, 0,
2703 ZFS_SPACE_CHECK_NONE, tx);
2704 dmu_tx_commit(tx);
2705 return;
2706 }
2707 }
2708 /*
2709 * Condensing can not continue: either it was externally stopped or
2710 * we were unable to assign to a tx because the pool has run out of
2711 * space. In the second case, we'll just end up trying to condense
2712 * again in a later txg.
2713 */
2714 ASSERT(err != 0);
2715 bplist_clear(&lca->to_keep);
2716 bplist_destroy(&lca->to_keep);
2717 kmem_free(lca, sizeof (livelist_condense_arg_t));
2718 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2719 spa->spa_to_condense.ds = NULL;
2720 if (err == EINTR)
2721 zfs_livelist_condense_zthr_cancel++;
2722 }
2723
2724 /* ARGSUSED */
2725 /*
2726 * Check that there is something to condense but that a condense is not
2727 * already in progress and that condensing has not been cancelled.
2728 */
2729 static boolean_t
2730 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2731 {
2732 spa_t *spa = arg;
2733 if ((spa->spa_to_condense.ds != NULL) &&
2734 (spa->spa_to_condense.syncing == B_FALSE) &&
2735 (spa->spa_to_condense.cancelled == B_FALSE)) {
2736 return (B_TRUE);
2737 }
2738 return (B_FALSE);
2739 }
2740
2741 void
2742 spa_start_livelist_condensing_thread(spa_t *spa)
2743 {
2744 spa->spa_to_condense.ds = NULL;
2745 spa->spa_to_condense.first = NULL;
2746 spa->spa_to_condense.next = NULL;
2747 spa->spa_to_condense.syncing = B_FALSE;
2748 spa->spa_to_condense.cancelled = B_FALSE;
2749
2750 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2751 spa->spa_livelist_condense_zthr = zthr_create(
2752 spa_livelist_condense_cb_check, spa_livelist_condense_cb, spa);
2753 }
2754
2755 static void
2756 spa_spawn_aux_threads(spa_t *spa)
2757 {
2758 ASSERT(spa_writeable(spa));
2759
2760 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2761
2762 spa_start_indirect_condensing_thread(spa);
2763 spa_start_livelist_destroy_thread(spa);
2764 spa_start_livelist_condensing_thread(spa);
2765
2766 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2767 spa->spa_checkpoint_discard_zthr =
2768 zthr_create(spa_checkpoint_discard_thread_check,
2769 spa_checkpoint_discard_thread, spa);
2770 }
2771
2772 /*
2773 * Fix up config after a partly-completed split. This is done with the
2774 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2775 * pool have that entry in their config, but only the splitting one contains
2776 * a list of all the guids of the vdevs that are being split off.
2777 *
2778 * This function determines what to do with that list: either rejoin
2779 * all the disks to the pool, or complete the splitting process. To attempt
2780 * the rejoin, each disk that is offlined is marked online again, and
2781 * we do a reopen() call. If the vdev label for every disk that was
2782 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2783 * then we call vdev_split() on each disk, and complete the split.
2784 *
2785 * Otherwise we leave the config alone, with all the vdevs in place in
2786 * the original pool.
2787 */
2788 static void
2789 spa_try_repair(spa_t *spa, nvlist_t *config)
2790 {
2791 uint_t extracted;
2792 uint64_t *glist;
2793 uint_t i, gcount;
2794 nvlist_t *nvl;
2795 vdev_t **vd;
2796 boolean_t attempt_reopen;
2797
2798 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2799 return;
2800
2801 /* check that the config is complete */
2802 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2803 &glist, &gcount) != 0)
2804 return;
2805
2806 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2807
2808 /* attempt to online all the vdevs & validate */
2809 attempt_reopen = B_TRUE;
2810 for (i = 0; i < gcount; i++) {
2811 if (glist[i] == 0) /* vdev is hole */
2812 continue;
2813
2814 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2815 if (vd[i] == NULL) {
2816 /*
2817 * Don't bother attempting to reopen the disks;
2818 * just do the split.
2819 */
2820 attempt_reopen = B_FALSE;
2821 } else {
2822 /* attempt to re-online it */
2823 vd[i]->vdev_offline = B_FALSE;
2824 }
2825 }
2826
2827 if (attempt_reopen) {
2828 vdev_reopen(spa->spa_root_vdev);
2829
2830 /* check each device to see what state it's in */
2831 for (extracted = 0, i = 0; i < gcount; i++) {
2832 if (vd[i] != NULL &&
2833 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2834 break;
2835 ++extracted;
2836 }
2837 }
2838
2839 /*
2840 * If every disk has been moved to the new pool, or if we never
2841 * even attempted to look at them, then we split them off for
2842 * good.
2843 */
2844 if (!attempt_reopen || gcount == extracted) {
2845 for (i = 0; i < gcount; i++)
2846 if (vd[i] != NULL)
2847 vdev_split(vd[i]);
2848 vdev_reopen(spa->spa_root_vdev);
2849 }
2850
2851 kmem_free(vd, gcount * sizeof (vdev_t *));
2852 }
2853
2854 static int
2855 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2856 {
2857 char *ereport = FM_EREPORT_ZFS_POOL;
2858 int error;
2859
2860 spa->spa_load_state = state;
2861 (void) spa_import_progress_set_state(spa_guid(spa),
2862 spa_load_state(spa));
2863
2864 gethrestime(&spa->spa_loaded_ts);
2865 error = spa_load_impl(spa, type, &ereport);
2866
2867 /*
2868 * Don't count references from objsets that are already closed
2869 * and are making their way through the eviction process.
2870 */
2871 spa_evicting_os_wait(spa);
2872 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2873 if (error) {
2874 if (error != EEXIST) {
2875 spa->spa_loaded_ts.tv_sec = 0;
2876 spa->spa_loaded_ts.tv_nsec = 0;
2877 }
2878 if (error != EBADF) {
2879 zfs_ereport_post(ereport, spa, NULL, NULL, NULL, 0, 0);
2880 }
2881 }
2882 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2883 spa->spa_ena = 0;
2884
2885 (void) spa_import_progress_set_state(spa_guid(spa),
2886 spa_load_state(spa));
2887
2888 return (error);
2889 }
2890
2891 #ifdef ZFS_DEBUG
2892 /*
2893 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2894 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2895 * spa's per-vdev ZAP list.
2896 */
2897 static uint64_t
2898 vdev_count_verify_zaps(vdev_t *vd)
2899 {
2900 spa_t *spa = vd->vdev_spa;
2901 uint64_t total = 0;
2902
2903 if (vd->vdev_top_zap != 0) {
2904 total++;
2905 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2906 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2907 }
2908 if (vd->vdev_leaf_zap != 0) {
2909 total++;
2910 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2911 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2912 }
2913
2914 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2915 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2916 }
2917
2918 return (total);
2919 }
2920 #endif
2921
2922 /*
2923 * Determine whether the activity check is required.
2924 */
2925 static boolean_t
2926 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2927 nvlist_t *config)
2928 {
2929 uint64_t state = 0;
2930 uint64_t hostid = 0;
2931 uint64_t tryconfig_txg = 0;
2932 uint64_t tryconfig_timestamp = 0;
2933 uint16_t tryconfig_mmp_seq = 0;
2934 nvlist_t *nvinfo;
2935
2936 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2937 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2938 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2939 &tryconfig_txg);
2940 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2941 &tryconfig_timestamp);
2942 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
2943 &tryconfig_mmp_seq);
2944 }
2945
2946 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2947
2948 /*
2949 * Disable the MMP activity check - This is used by zdb which
2950 * is intended to be used on potentially active pools.
2951 */
2952 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2953 return (B_FALSE);
2954
2955 /*
2956 * Skip the activity check when the MMP feature is disabled.
2957 */
2958 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2959 return (B_FALSE);
2960
2961 /*
2962 * If the tryconfig_ values are nonzero, they are the results of an
2963 * earlier tryimport. If they all match the uberblock we just found,
2964 * then the pool has not changed and we return false so we do not test
2965 * a second time.
2966 */
2967 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2968 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
2969 tryconfig_mmp_seq && tryconfig_mmp_seq ==
2970 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
2971 return (B_FALSE);
2972
2973 /*
2974 * Allow the activity check to be skipped when importing the pool
2975 * on the same host which last imported it. Since the hostid from
2976 * configuration may be stale use the one read from the label.
2977 */
2978 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
2979 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
2980
2981 if (hostid == spa_get_hostid(spa))
2982 return (B_FALSE);
2983
2984 /*
2985 * Skip the activity test when the pool was cleanly exported.
2986 */
2987 if (state != POOL_STATE_ACTIVE)
2988 return (B_FALSE);
2989
2990 return (B_TRUE);
2991 }
2992
2993 /*
2994 * Nanoseconds the activity check must watch for changes on-disk.
2995 */
2996 static uint64_t
2997 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
2998 {
2999 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3000 uint64_t multihost_interval = MSEC2NSEC(
3001 MMP_INTERVAL_OK(zfs_multihost_interval));
3002 uint64_t import_delay = MAX(NANOSEC, import_intervals *
3003 multihost_interval);
3004
3005 /*
3006 * Local tunables determine a minimum duration except for the case
3007 * where we know when the remote host will suspend the pool if MMP
3008 * writes do not land.
3009 *
3010 * See Big Theory comment at the top of mmp.c for the reasoning behind
3011 * these cases and times.
3012 */
3013
3014 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3015
3016 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3017 MMP_FAIL_INT(ub) > 0) {
3018
3019 /* MMP on remote host will suspend pool after failed writes */
3020 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3021 MMP_IMPORT_SAFETY_FACTOR / 100;
3022
3023 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3024 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3025 "import_intervals=%u", import_delay, MMP_FAIL_INT(ub),
3026 MMP_INTERVAL(ub), import_intervals);
3027
3028 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3029 MMP_FAIL_INT(ub) == 0) {
3030
3031 /* MMP on remote host will never suspend pool */
3032 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3033 ub->ub_mmp_delay) * import_intervals);
3034
3035 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3036 "mmp_interval=%llu ub_mmp_delay=%llu "
3037 "import_intervals=%u", import_delay, MMP_INTERVAL(ub),
3038 ub->ub_mmp_delay, import_intervals);
3039
3040 } else if (MMP_VALID(ub)) {
3041 /*
3042 * zfs-0.7 compatibility case
3043 */
3044
3045 import_delay = MAX(import_delay, (multihost_interval +
3046 ub->ub_mmp_delay) * import_intervals);
3047
3048 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3049 "import_intervals=%u leaves=%u", import_delay,
3050 ub->ub_mmp_delay, import_intervals,
3051 vdev_count_leaves(spa));
3052 } else {
3053 /* Using local tunings is the only reasonable option */
3054 zfs_dbgmsg("pool last imported on non-MMP aware "
3055 "host using import_delay=%llu multihost_interval=%llu "
3056 "import_intervals=%u", import_delay, multihost_interval,
3057 import_intervals);
3058 }
3059
3060 return (import_delay);
3061 }
3062
3063 /*
3064 * Perform the import activity check. If the user canceled the import or
3065 * we detected activity then fail.
3066 */
3067 static int
3068 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3069 {
3070 uint64_t txg = ub->ub_txg;
3071 uint64_t timestamp = ub->ub_timestamp;
3072 uint64_t mmp_config = ub->ub_mmp_config;
3073 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3074 uint64_t import_delay;
3075 hrtime_t import_expire;
3076 nvlist_t *mmp_label = NULL;
3077 vdev_t *rvd = spa->spa_root_vdev;
3078 kcondvar_t cv;
3079 kmutex_t mtx;
3080 int error = 0;
3081
3082 cv_init(&cv, NULL, CV_DEFAULT, NULL);
3083 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3084 mutex_enter(&mtx);
3085
3086 /*
3087 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3088 * during the earlier tryimport. If the txg recorded there is 0 then
3089 * the pool is known to be active on another host.
3090 *
3091 * Otherwise, the pool might be in use on another host. Check for
3092 * changes in the uberblocks on disk if necessary.
3093 */
3094 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3095 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3096 ZPOOL_CONFIG_LOAD_INFO);
3097
3098 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3099 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3100 vdev_uberblock_load(rvd, ub, &mmp_label);
3101 error = SET_ERROR(EREMOTEIO);
3102 goto out;
3103 }
3104 }
3105
3106 import_delay = spa_activity_check_duration(spa, ub);
3107
3108 /* Add a small random factor in case of simultaneous imports (0-25%) */
3109 import_delay += import_delay * spa_get_random(250) / 1000;
3110
3111 import_expire = gethrtime() + import_delay;
3112
3113 while (gethrtime() < import_expire) {
3114 (void) spa_import_progress_set_mmp_check(spa_guid(spa),
3115 NSEC2SEC(import_expire - gethrtime()));
3116
3117 vdev_uberblock_load(rvd, ub, &mmp_label);
3118
3119 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3120 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3121 zfs_dbgmsg("multihost activity detected "
3122 "txg %llu ub_txg %llu "
3123 "timestamp %llu ub_timestamp %llu "
3124 "mmp_config %#llx ub_mmp_config %#llx",
3125 txg, ub->ub_txg, timestamp, ub->ub_timestamp,
3126 mmp_config, ub->ub_mmp_config);
3127
3128 error = SET_ERROR(EREMOTEIO);
3129 break;
3130 }
3131
3132 if (mmp_label) {
3133 nvlist_free(mmp_label);
3134 mmp_label = NULL;
3135 }
3136
3137 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3138 if (error != -1) {
3139 error = SET_ERROR(EINTR);
3140 break;
3141 }
3142 error = 0;
3143 }
3144
3145 out:
3146 mutex_exit(&mtx);
3147 mutex_destroy(&mtx);
3148 cv_destroy(&cv);
3149
3150 /*
3151 * If the pool is determined to be active store the status in the
3152 * spa->spa_load_info nvlist. If the remote hostname or hostid are
3153 * available from configuration read from disk store them as well.
3154 * This allows 'zpool import' to generate a more useful message.
3155 *
3156 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
3157 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3158 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
3159 */
3160 if (error == EREMOTEIO) {
3161 char *hostname = "<unknown>";
3162 uint64_t hostid = 0;
3163
3164 if (mmp_label) {
3165 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3166 hostname = fnvlist_lookup_string(mmp_label,
3167 ZPOOL_CONFIG_HOSTNAME);
3168 fnvlist_add_string(spa->spa_load_info,
3169 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3170 }
3171
3172 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3173 hostid = fnvlist_lookup_uint64(mmp_label,
3174 ZPOOL_CONFIG_HOSTID);
3175 fnvlist_add_uint64(spa->spa_load_info,
3176 ZPOOL_CONFIG_MMP_HOSTID, hostid);
3177 }
3178 }
3179
3180 fnvlist_add_uint64(spa->spa_load_info,
3181 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3182 fnvlist_add_uint64(spa->spa_load_info,
3183 ZPOOL_CONFIG_MMP_TXG, 0);
3184
3185 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3186 }
3187
3188 if (mmp_label)
3189 nvlist_free(mmp_label);
3190
3191 return (error);
3192 }
3193
3194 static int
3195 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3196 {
3197 uint64_t hostid;
3198 char *hostname;
3199 uint64_t myhostid = 0;
3200
3201 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3202 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3203 hostname = fnvlist_lookup_string(mos_config,
3204 ZPOOL_CONFIG_HOSTNAME);
3205
3206 myhostid = zone_get_hostid(NULL);
3207
3208 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3209 cmn_err(CE_WARN, "pool '%s' could not be "
3210 "loaded as it was last accessed by "
3211 "another system (host: %s hostid: 0x%llx). "
3212 "See: http://illumos.org/msg/ZFS-8000-EY",
3213 spa_name(spa), hostname, (u_longlong_t)hostid);
3214 spa_load_failed(spa, "hostid verification failed: pool "
3215 "last accessed by host: %s (hostid: 0x%llx)",
3216 hostname, (u_longlong_t)hostid);
3217 return (SET_ERROR(EBADF));
3218 }
3219 }
3220
3221 return (0);
3222 }
3223
3224 static int
3225 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3226 {
3227 int error = 0;
3228 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3229 int parse;
3230 vdev_t *rvd;
3231 uint64_t pool_guid;
3232 char *comment;
3233
3234 /*
3235 * Versioning wasn't explicitly added to the label until later, so if
3236 * it's not present treat it as the initial version.
3237 */
3238 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3239 &spa->spa_ubsync.ub_version) != 0)
3240 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3241
3242 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3243 spa_load_failed(spa, "invalid config provided: '%s' missing",
3244 ZPOOL_CONFIG_POOL_GUID);
3245 return (SET_ERROR(EINVAL));
3246 }
3247
3248 /*
3249 * If we are doing an import, ensure that the pool is not already
3250 * imported by checking if its pool guid already exists in the
3251 * spa namespace.
3252 *
3253 * The only case that we allow an already imported pool to be
3254 * imported again, is when the pool is checkpointed and we want to
3255 * look at its checkpointed state from userland tools like zdb.
3256 */
3257 #ifdef _KERNEL
3258 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3259 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3260 spa_guid_exists(pool_guid, 0)) {
3261 #else
3262 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3263 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3264 spa_guid_exists(pool_guid, 0) &&
3265 !spa_importing_readonly_checkpoint(spa)) {
3266 #endif
3267 spa_load_failed(spa, "a pool with guid %llu is already open",
3268 (u_longlong_t)pool_guid);
3269 return (SET_ERROR(EEXIST));
3270 }
3271
3272 spa->spa_config_guid = pool_guid;
3273
3274 nvlist_free(spa->spa_load_info);
3275 spa->spa_load_info = fnvlist_alloc();
3276
3277 ASSERT(spa->spa_comment == NULL);
3278 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3279 spa->spa_comment = spa_strdup(comment);
3280
3281 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3282 &spa->spa_config_txg);
3283
3284 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3285 spa->spa_config_splitting = fnvlist_dup(nvl);
3286
3287 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3288 spa_load_failed(spa, "invalid config provided: '%s' missing",
3289 ZPOOL_CONFIG_VDEV_TREE);
3290 return (SET_ERROR(EINVAL));
3291 }
3292
3293 /*
3294 * Create "The Godfather" zio to hold all async IOs
3295 */
3296 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3297 KM_SLEEP);
3298 for (int i = 0; i < max_ncpus; i++) {
3299 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3300 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3301 ZIO_FLAG_GODFATHER);
3302 }
3303
3304 /*
3305 * Parse the configuration into a vdev tree. We explicitly set the
3306 * value that will be returned by spa_version() since parsing the
3307 * configuration requires knowing the version number.
3308 */
3309 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3310 parse = (type == SPA_IMPORT_EXISTING ?
3311 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3312 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3313 spa_config_exit(spa, SCL_ALL, FTAG);
3314
3315 if (error != 0) {
3316 spa_load_failed(spa, "unable to parse config [error=%d]",
3317 error);
3318 return (error);
3319 }
3320
3321 ASSERT(spa->spa_root_vdev == rvd);
3322 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3323 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3324
3325 if (type != SPA_IMPORT_ASSEMBLE) {
3326 ASSERT(spa_guid(spa) == pool_guid);
3327 }
3328
3329 return (0);
3330 }
3331
3332 /*
3333 * Recursively open all vdevs in the vdev tree. This function is called twice:
3334 * first with the untrusted config, then with the trusted config.
3335 */
3336 static int
3337 spa_ld_open_vdevs(spa_t *spa)
3338 {
3339 int error = 0;
3340
3341 /*
3342 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3343 * missing/unopenable for the root vdev to be still considered openable.
3344 */
3345 if (spa->spa_trust_config) {
3346 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3347 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3348 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3349 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3350 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3351 } else {
3352 spa->spa_missing_tvds_allowed = 0;
3353 }
3354
3355 spa->spa_missing_tvds_allowed =
3356 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3357
3358 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3359 error = vdev_open(spa->spa_root_vdev);
3360 spa_config_exit(spa, SCL_ALL, FTAG);
3361
3362 if (spa->spa_missing_tvds != 0) {
3363 spa_load_note(spa, "vdev tree has %lld missing top-level "
3364 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3365 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3366 /*
3367 * Although theoretically we could allow users to open
3368 * incomplete pools in RW mode, we'd need to add a lot
3369 * of extra logic (e.g. adjust pool space to account
3370 * for missing vdevs).
3371 * This limitation also prevents users from accidentally
3372 * opening the pool in RW mode during data recovery and
3373 * damaging it further.
3374 */
3375 spa_load_note(spa, "pools with missing top-level "
3376 "vdevs can only be opened in read-only mode.");
3377 error = SET_ERROR(ENXIO);
3378 } else {
3379 spa_load_note(spa, "current settings allow for maximum "
3380 "%lld missing top-level vdevs at this stage.",
3381 (u_longlong_t)spa->spa_missing_tvds_allowed);
3382 }
3383 }
3384 if (error != 0) {
3385 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3386 error);
3387 }
3388 if (spa->spa_missing_tvds != 0 || error != 0)
3389 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3390
3391 return (error);
3392 }
3393
3394 /*
3395 * We need to validate the vdev labels against the configuration that
3396 * we have in hand. This function is called twice: first with an untrusted
3397 * config, then with a trusted config. The validation is more strict when the
3398 * config is trusted.
3399 */
3400 static int
3401 spa_ld_validate_vdevs(spa_t *spa)
3402 {
3403 int error = 0;
3404 vdev_t *rvd = spa->spa_root_vdev;
3405
3406 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3407 error = vdev_validate(rvd);
3408 spa_config_exit(spa, SCL_ALL, FTAG);
3409
3410 if (error != 0) {
3411 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3412 return (error);
3413 }
3414
3415 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3416 spa_load_failed(spa, "cannot open vdev tree after invalidating "
3417 "some vdevs");
3418 vdev_dbgmsg_print_tree(rvd, 2);
3419 return (SET_ERROR(ENXIO));
3420 }
3421
3422 return (0);
3423 }
3424
3425 static void
3426 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3427 {
3428 spa->spa_state = POOL_STATE_ACTIVE;
3429 spa->spa_ubsync = spa->spa_uberblock;
3430 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3431 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3432 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3433 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3434 spa->spa_claim_max_txg = spa->spa_first_txg;
3435 spa->spa_prev_software_version = ub->ub_software_version;
3436 }
3437
3438 static int
3439 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3440 {
3441 vdev_t *rvd = spa->spa_root_vdev;
3442 nvlist_t *label;
3443 uberblock_t *ub = &spa->spa_uberblock;
3444 boolean_t activity_check = B_FALSE;
3445
3446 /*
3447 * If we are opening the checkpointed state of the pool by
3448 * rewinding to it, at this point we will have written the
3449 * checkpointed uberblock to the vdev labels, so searching
3450 * the labels will find the right uberblock. However, if
3451 * we are opening the checkpointed state read-only, we have
3452 * not modified the labels. Therefore, we must ignore the
3453 * labels and continue using the spa_uberblock that was set
3454 * by spa_ld_checkpoint_rewind.
3455 *
3456 * Note that it would be fine to ignore the labels when
3457 * rewinding (opening writeable) as well. However, if we
3458 * crash just after writing the labels, we will end up
3459 * searching the labels. Doing so in the common case means
3460 * that this code path gets exercised normally, rather than
3461 * just in the edge case.
3462 */
3463 if (ub->ub_checkpoint_txg != 0 &&
3464 spa_importing_readonly_checkpoint(spa)) {
3465 spa_ld_select_uberblock_done(spa, ub);
3466 return (0);
3467 }
3468
3469 /*
3470 * Find the best uberblock.
3471 */
3472 vdev_uberblock_load(rvd, ub, &label);
3473
3474 /*
3475 * If we weren't able to find a single valid uberblock, return failure.
3476 */
3477 if (ub->ub_txg == 0) {
3478 nvlist_free(label);
3479 spa_load_failed(spa, "no valid uberblock found");
3480 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3481 }
3482
3483 if (spa->spa_load_max_txg != UINT64_MAX) {
3484 (void) spa_import_progress_set_max_txg(spa_guid(spa),
3485 (u_longlong_t)spa->spa_load_max_txg);
3486 }
3487 spa_load_note(spa, "using uberblock with txg=%llu",
3488 (u_longlong_t)ub->ub_txg);
3489
3490
3491 /*
3492 * For pools which have the multihost property on determine if the
3493 * pool is truly inactive and can be safely imported. Prevent
3494 * hosts which don't have a hostid set from importing the pool.
3495 */
3496 activity_check = spa_activity_check_required(spa, ub, label,
3497 spa->spa_config);
3498 if (activity_check) {
3499 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3500 spa_get_hostid(spa) == 0) {
3501 nvlist_free(label);
3502 fnvlist_add_uint64(spa->spa_load_info,
3503 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3504 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3505 }
3506
3507 int error = spa_activity_check(spa, ub, spa->spa_config);
3508 if (error) {
3509 nvlist_free(label);
3510 return (error);
3511 }
3512
3513 fnvlist_add_uint64(spa->spa_load_info,
3514 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3515 fnvlist_add_uint64(spa->spa_load_info,
3516 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3517 fnvlist_add_uint16(spa->spa_load_info,
3518 ZPOOL_CONFIG_MMP_SEQ,
3519 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3520 }
3521
3522 /*
3523 * If the pool has an unsupported version we can't open it.
3524 */
3525 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3526 nvlist_free(label);
3527 spa_load_failed(spa, "version %llu is not supported",
3528 (u_longlong_t)ub->ub_version);
3529 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3530 }
3531
3532 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3533 nvlist_t *features;
3534
3535 /*
3536 * If we weren't able to find what's necessary for reading the
3537 * MOS in the label, return failure.
3538 */
3539 if (label == NULL) {
3540 spa_load_failed(spa, "label config unavailable");
3541 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3542 ENXIO));
3543 }
3544
3545 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3546 &features) != 0) {
3547 nvlist_free(label);
3548 spa_load_failed(spa, "invalid label: '%s' missing",
3549 ZPOOL_CONFIG_FEATURES_FOR_READ);
3550 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3551 ENXIO));
3552 }
3553
3554 /*
3555 * Update our in-core representation with the definitive values
3556 * from the label.
3557 */
3558 nvlist_free(spa->spa_label_features);
3559 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
3560 }
3561
3562 nvlist_free(label);
3563
3564 /*
3565 * Look through entries in the label nvlist's features_for_read. If
3566 * there is a feature listed there which we don't understand then we
3567 * cannot open a pool.
3568 */
3569 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3570 nvlist_t *unsup_feat;
3571
3572 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
3573 0);
3574
3575 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3576 NULL); nvp != NULL;
3577 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3578 if (!zfeature_is_supported(nvpair_name(nvp))) {
3579 VERIFY(nvlist_add_string(unsup_feat,
3580 nvpair_name(nvp), "") == 0);
3581 }
3582 }
3583
3584 if (!nvlist_empty(unsup_feat)) {
3585 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
3586 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
3587 nvlist_free(unsup_feat);
3588 spa_load_failed(spa, "some features are unsupported");
3589 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3590 ENOTSUP));
3591 }
3592
3593 nvlist_free(unsup_feat);
3594 }
3595
3596 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3597 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3598 spa_try_repair(spa, spa->spa_config);
3599 spa_config_exit(spa, SCL_ALL, FTAG);
3600 nvlist_free(spa->spa_config_splitting);
3601 spa->spa_config_splitting = NULL;
3602 }
3603
3604 /*
3605 * Initialize internal SPA structures.
3606 */
3607 spa_ld_select_uberblock_done(spa, ub);
3608
3609 return (0);
3610 }
3611
3612 static int
3613 spa_ld_open_rootbp(spa_t *spa)
3614 {
3615 int error = 0;
3616 vdev_t *rvd = spa->spa_root_vdev;
3617
3618 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3619 if (error != 0) {
3620 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3621 "[error=%d]", error);
3622 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3623 }
3624 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3625
3626 return (0);
3627 }
3628
3629 static int
3630 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3631 boolean_t reloading)
3632 {
3633 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3634 nvlist_t *nv, *mos_config, *policy;
3635 int error = 0, copy_error;
3636 uint64_t healthy_tvds, healthy_tvds_mos;
3637 uint64_t mos_config_txg;
3638
3639 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3640 != 0)
3641 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3642
3643 /*
3644 * If we're assembling a pool from a split, the config provided is
3645 * already trusted so there is nothing to do.
3646 */
3647 if (type == SPA_IMPORT_ASSEMBLE)
3648 return (0);
3649
3650 healthy_tvds = spa_healthy_core_tvds(spa);
3651
3652 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3653 != 0) {
3654 spa_load_failed(spa, "unable to retrieve MOS config");
3655 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3656 }
3657
3658 /*
3659 * If we are doing an open, pool owner wasn't verified yet, thus do
3660 * the verification here.
3661 */
3662 if (spa->spa_load_state == SPA_LOAD_OPEN) {
3663 error = spa_verify_host(spa, mos_config);
3664 if (error != 0) {
3665 nvlist_free(mos_config);
3666 return (error);
3667 }
3668 }
3669
3670 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3671
3672 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3673
3674 /*
3675 * Build a new vdev tree from the trusted config
3676 */
3677 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
3678
3679 /*
3680 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3681 * obtained by scanning /dev/dsk, then it will have the right vdev
3682 * paths. We update the trusted MOS config with this information.
3683 * We first try to copy the paths with vdev_copy_path_strict, which
3684 * succeeds only when both configs have exactly the same vdev tree.
3685 * If that fails, we fall back to a more flexible method that has a
3686 * best effort policy.
3687 */
3688 copy_error = vdev_copy_path_strict(rvd, mrvd);
3689 if (copy_error != 0 || spa_load_print_vdev_tree) {
3690 spa_load_note(spa, "provided vdev tree:");
3691 vdev_dbgmsg_print_tree(rvd, 2);
3692 spa_load_note(spa, "MOS vdev tree:");
3693 vdev_dbgmsg_print_tree(mrvd, 2);
3694 }
3695 if (copy_error != 0) {
3696 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3697 "back to vdev_copy_path_relaxed");
3698 vdev_copy_path_relaxed(rvd, mrvd);
3699 }
3700
3701 vdev_close(rvd);
3702 vdev_free(rvd);
3703 spa->spa_root_vdev = mrvd;
3704 rvd = mrvd;
3705 spa_config_exit(spa, SCL_ALL, FTAG);
3706
3707 /*
3708 * We will use spa_config if we decide to reload the spa or if spa_load
3709 * fails and we rewind. We must thus regenerate the config using the
3710 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3711 * pass settings on how to load the pool and is not stored in the MOS.
3712 * We copy it over to our new, trusted config.
3713 */
3714 mos_config_txg = fnvlist_lookup_uint64(mos_config,
3715 ZPOOL_CONFIG_POOL_TXG);
3716 nvlist_free(mos_config);
3717 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3718 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3719 &policy) == 0)
3720 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3721 spa_config_set(spa, mos_config);
3722 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3723
3724 /*
3725 * Now that we got the config from the MOS, we should be more strict
3726 * in checking blkptrs and can make assumptions about the consistency
3727 * of the vdev tree. spa_trust_config must be set to true before opening
3728 * vdevs in order for them to be writeable.
3729 */
3730 spa->spa_trust_config = B_TRUE;
3731
3732 /*
3733 * Open and validate the new vdev tree
3734 */
3735 error = spa_ld_open_vdevs(spa);
3736 if (error != 0)
3737 return (error);
3738
3739 error = spa_ld_validate_vdevs(spa);
3740 if (error != 0)
3741 return (error);
3742
3743 if (copy_error != 0 || spa_load_print_vdev_tree) {
3744 spa_load_note(spa, "final vdev tree:");
3745 vdev_dbgmsg_print_tree(rvd, 2);
3746 }
3747
3748 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3749 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3750 /*
3751 * Sanity check to make sure that we are indeed loading the
3752 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3753 * in the config provided and they happened to be the only ones
3754 * to have the latest uberblock, we could involuntarily perform
3755 * an extreme rewind.
3756 */
3757 healthy_tvds_mos = spa_healthy_core_tvds(spa);
3758 if (healthy_tvds_mos - healthy_tvds >=
3759 SPA_SYNC_MIN_VDEVS) {
3760 spa_load_note(spa, "config provided misses too many "
3761 "top-level vdevs compared to MOS (%lld vs %lld). ",
3762 (u_longlong_t)healthy_tvds,
3763 (u_longlong_t)healthy_tvds_mos);
3764 spa_load_note(spa, "vdev tree:");
3765 vdev_dbgmsg_print_tree(rvd, 2);
3766 if (reloading) {
3767 spa_load_failed(spa, "config was already "
3768 "provided from MOS. Aborting.");
3769 return (spa_vdev_err(rvd,
3770 VDEV_AUX_CORRUPT_DATA, EIO));
3771 }
3772 spa_load_note(spa, "spa must be reloaded using MOS "
3773 "config");
3774 return (SET_ERROR(EAGAIN));
3775 }
3776 }
3777
3778 error = spa_check_for_missing_logs(spa);
3779 if (error != 0)
3780 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3781
3782 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3783 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3784 "guid sum (%llu != %llu)",
3785 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3786 (u_longlong_t)rvd->vdev_guid_sum);
3787 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3788 ENXIO));
3789 }
3790
3791 return (0);
3792 }
3793
3794 static int
3795 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3796 {
3797 int error = 0;
3798 vdev_t *rvd = spa->spa_root_vdev;
3799
3800 /*
3801 * Everything that we read before spa_remove_init() must be stored
3802 * on concreted vdevs. Therefore we do this as early as possible.
3803 */
3804 error = spa_remove_init(spa);
3805 if (error != 0) {
3806 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3807 error);
3808 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3809 }
3810
3811 /*
3812 * Retrieve information needed to condense indirect vdev mappings.
3813 */
3814 error = spa_condense_init(spa);
3815 if (error != 0) {
3816 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3817 error);
3818 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3819 }
3820
3821 return (0);
3822 }
3823
3824 static int
3825 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3826 {
3827 int error = 0;
3828 vdev_t *rvd = spa->spa_root_vdev;
3829
3830 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3831 boolean_t missing_feat_read = B_FALSE;
3832 nvlist_t *unsup_feat, *enabled_feat;
3833
3834 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3835 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3836 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3837 }
3838
3839 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3840 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3841 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3842 }
3843
3844 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3845 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3846 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3847 }
3848
3849 enabled_feat = fnvlist_alloc();
3850 unsup_feat = fnvlist_alloc();
3851
3852 if (!spa_features_check(spa, B_FALSE,
3853 unsup_feat, enabled_feat))
3854 missing_feat_read = B_TRUE;
3855
3856 if (spa_writeable(spa) ||
3857 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3858 if (!spa_features_check(spa, B_TRUE,
3859 unsup_feat, enabled_feat)) {
3860 *missing_feat_writep = B_TRUE;
3861 }
3862 }
3863
3864 fnvlist_add_nvlist(spa->spa_load_info,
3865 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3866
3867 if (!nvlist_empty(unsup_feat)) {
3868 fnvlist_add_nvlist(spa->spa_load_info,
3869 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3870 }
3871
3872 fnvlist_free(enabled_feat);
3873 fnvlist_free(unsup_feat);
3874
3875 if (!missing_feat_read) {
3876 fnvlist_add_boolean(spa->spa_load_info,
3877 ZPOOL_CONFIG_CAN_RDONLY);
3878 }
3879
3880 /*
3881 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3882 * twofold: to determine whether the pool is available for
3883 * import in read-write mode and (if it is not) whether the
3884 * pool is available for import in read-only mode. If the pool
3885 * is available for import in read-write mode, it is displayed
3886 * as available in userland; if it is not available for import
3887 * in read-only mode, it is displayed as unavailable in
3888 * userland. If the pool is available for import in read-only
3889 * mode but not read-write mode, it is displayed as unavailable
3890 * in userland with a special note that the pool is actually
3891 * available for open in read-only mode.
3892 *
3893 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3894 * missing a feature for write, we must first determine whether
3895 * the pool can be opened read-only before returning to
3896 * userland in order to know whether to display the
3897 * abovementioned note.
3898 */
3899 if (missing_feat_read || (*missing_feat_writep &&
3900 spa_writeable(spa))) {
3901 spa_load_failed(spa, "pool uses unsupported features");
3902 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3903 ENOTSUP));
3904 }
3905
3906 /*
3907 * Load refcounts for ZFS features from disk into an in-memory
3908 * cache during SPA initialization.
3909 */
3910 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3911 uint64_t refcount;
3912
3913 error = feature_get_refcount_from_disk(spa,
3914 &spa_feature_table[i], &refcount);
3915 if (error == 0) {
3916 spa->spa_feat_refcount_cache[i] = refcount;
3917 } else if (error == ENOTSUP) {
3918 spa->spa_feat_refcount_cache[i] =
3919 SPA_FEATURE_DISABLED;
3920 } else {
3921 spa_load_failed(spa, "error getting refcount "
3922 "for feature %s [error=%d]",
3923 spa_feature_table[i].fi_guid, error);
3924 return (spa_vdev_err(rvd,
3925 VDEV_AUX_CORRUPT_DATA, EIO));
3926 }
3927 }
3928 }
3929
3930 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3931 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3932 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3933 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3934 }
3935
3936 /*
3937 * Encryption was added before bookmark_v2, even though bookmark_v2
3938 * is now a dependency. If this pool has encryption enabled without
3939 * bookmark_v2, trigger an errata message.
3940 */
3941 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
3942 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
3943 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
3944 }
3945
3946 return (0);
3947 }
3948
3949 static int
3950 spa_ld_load_special_directories(spa_t *spa)
3951 {
3952 int error = 0;
3953 vdev_t *rvd = spa->spa_root_vdev;
3954
3955 spa->spa_is_initializing = B_TRUE;
3956 error = dsl_pool_open(spa->spa_dsl_pool);
3957 spa->spa_is_initializing = B_FALSE;
3958 if (error != 0) {
3959 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3960 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3961 }
3962
3963 return (0);
3964 }
3965
3966 static int
3967 spa_ld_get_props(spa_t *spa)
3968 {
3969 int error = 0;
3970 uint64_t obj;
3971 vdev_t *rvd = spa->spa_root_vdev;
3972
3973 /* Grab the checksum salt from the MOS. */
3974 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3975 DMU_POOL_CHECKSUM_SALT, 1,
3976 sizeof (spa->spa_cksum_salt.zcs_bytes),
3977 spa->spa_cksum_salt.zcs_bytes);
3978 if (error == ENOENT) {
3979 /* Generate a new salt for subsequent use */
3980 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3981 sizeof (spa->spa_cksum_salt.zcs_bytes));
3982 } else if (error != 0) {
3983 spa_load_failed(spa, "unable to retrieve checksum salt from "
3984 "MOS [error=%d]", error);
3985 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3986 }
3987
3988 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3989 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3990 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3991 if (error != 0) {
3992 spa_load_failed(spa, "error opening deferred-frees bpobj "
3993 "[error=%d]", error);
3994 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3995 }
3996
3997 /*
3998 * Load the bit that tells us to use the new accounting function
3999 * (raid-z deflation). If we have an older pool, this will not
4000 * be present.
4001 */
4002 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4003 if (error != 0 && error != ENOENT)
4004 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4005
4006 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4007 &spa->spa_creation_version, B_FALSE);
4008 if (error != 0 && error != ENOENT)
4009 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4010
4011 /*
4012 * Load the persistent error log. If we have an older pool, this will
4013 * not be present.
4014 */
4015 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4016 B_FALSE);
4017 if (error != 0 && error != ENOENT)
4018 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4019
4020 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4021 &spa->spa_errlog_scrub, B_FALSE);
4022 if (error != 0 && error != ENOENT)
4023 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4024
4025 /*
4026 * Load the livelist deletion field. If a livelist is queued for
4027 * deletion, indicate that in the spa
4028 */
4029 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4030 &spa->spa_livelists_to_delete, B_FALSE);
4031 if (error != 0 && error != ENOENT)
4032 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4033
4034 /*
4035 * Load the history object. If we have an older pool, this
4036 * will not be present.
4037 */
4038 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4039 if (error != 0 && error != ENOENT)
4040 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4041
4042 /*
4043 * Load the per-vdev ZAP map. If we have an older pool, this will not
4044 * be present; in this case, defer its creation to a later time to
4045 * avoid dirtying the MOS this early / out of sync context. See
4046 * spa_sync_config_object.
4047 */
4048
4049 /* The sentinel is only available in the MOS config. */
4050 nvlist_t *mos_config;
4051 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4052 spa_load_failed(spa, "unable to retrieve MOS config");
4053 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4054 }
4055
4056 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4057 &spa->spa_all_vdev_zaps, B_FALSE);
4058
4059 if (error == ENOENT) {
4060 VERIFY(!nvlist_exists(mos_config,
4061 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4062 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4063 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4064 } else if (error != 0) {
4065 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4066 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4067 /*
4068 * An older version of ZFS overwrote the sentinel value, so
4069 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4070 * destruction to later; see spa_sync_config_object.
4071 */
4072 spa->spa_avz_action = AVZ_ACTION_DESTROY;
4073 /*
4074 * We're assuming that no vdevs have had their ZAPs created
4075 * before this. Better be sure of it.
4076 */
4077 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4078 }
4079 nvlist_free(mos_config);
4080
4081 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4082
4083 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4084 B_FALSE);
4085 if (error && error != ENOENT)
4086 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4087
4088 if (error == 0) {
4089 uint64_t autoreplace;
4090
4091 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4092 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4093 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4094 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4095 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4096 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4097 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4098 spa->spa_autoreplace = (autoreplace != 0);
4099 }
4100
4101 /*
4102 * If we are importing a pool with missing top-level vdevs,
4103 * we enforce that the pool doesn't panic or get suspended on
4104 * error since the likelihood of missing data is extremely high.
4105 */
4106 if (spa->spa_missing_tvds > 0 &&
4107 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4108 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4109 spa_load_note(spa, "forcing failmode to 'continue' "
4110 "as some top level vdevs are missing");
4111 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4112 }
4113
4114 return (0);
4115 }
4116
4117 static int
4118 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4119 {
4120 int error = 0;
4121 vdev_t *rvd = spa->spa_root_vdev;
4122
4123 /*
4124 * If we're assembling the pool from the split-off vdevs of
4125 * an existing pool, we don't want to attach the spares & cache
4126 * devices.
4127 */
4128
4129 /*
4130 * Load any hot spares for this pool.
4131 */
4132 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4133 B_FALSE);
4134 if (error != 0 && error != ENOENT)
4135 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4136 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4137 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4138 if (load_nvlist(spa, spa->spa_spares.sav_object,
4139 &spa->spa_spares.sav_config) != 0) {
4140 spa_load_failed(spa, "error loading spares nvlist");
4141 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4142 }
4143
4144 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4145 spa_load_spares(spa);
4146 spa_config_exit(spa, SCL_ALL, FTAG);
4147 } else if (error == 0) {
4148 spa->spa_spares.sav_sync = B_TRUE;
4149 }
4150
4151 /*
4152 * Load any level 2 ARC devices for this pool.
4153 */
4154 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4155 &spa->spa_l2cache.sav_object, B_FALSE);
4156 if (error != 0 && error != ENOENT)
4157 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4158 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4159 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4160 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4161 &spa->spa_l2cache.sav_config) != 0) {
4162 spa_load_failed(spa, "error loading l2cache nvlist");
4163 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4164 }
4165
4166 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4167 spa_load_l2cache(spa);
4168 spa_config_exit(spa, SCL_ALL, FTAG);
4169 } else if (error == 0) {
4170 spa->spa_l2cache.sav_sync = B_TRUE;
4171 }
4172
4173 return (0);
4174 }
4175
4176 static int
4177 spa_ld_load_vdev_metadata(spa_t *spa)
4178 {
4179 int error = 0;
4180 vdev_t *rvd = spa->spa_root_vdev;
4181
4182 /*
4183 * If the 'multihost' property is set, then never allow a pool to
4184 * be imported when the system hostid is zero. The exception to
4185 * this rule is zdb which is always allowed to access pools.
4186 */
4187 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4188 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4189 fnvlist_add_uint64(spa->spa_load_info,
4190 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4191 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4192 }
4193
4194 /*
4195 * If the 'autoreplace' property is set, then post a resource notifying
4196 * the ZFS DE that it should not issue any faults for unopenable
4197 * devices. We also iterate over the vdevs, and post a sysevent for any
4198 * unopenable vdevs so that the normal autoreplace handler can take
4199 * over.
4200 */
4201 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4202 spa_check_removed(spa->spa_root_vdev);
4203 /*
4204 * For the import case, this is done in spa_import(), because
4205 * at this point we're using the spare definitions from
4206 * the MOS config, not necessarily from the userland config.
4207 */
4208 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4209 spa_aux_check_removed(&spa->spa_spares);
4210 spa_aux_check_removed(&spa->spa_l2cache);
4211 }
4212 }
4213
4214 /*
4215 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4216 */
4217 error = vdev_load(rvd);
4218 if (error != 0) {
4219 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4220 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4221 }
4222
4223 error = spa_ld_log_spacemaps(spa);
4224 if (error != 0) {
4225 spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]",
4226 error);
4227 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4228 }
4229
4230 /*
4231 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4232 */
4233 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4234 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
4235 spa_config_exit(spa, SCL_ALL, FTAG);
4236
4237 return (0);
4238 }
4239
4240 static int
4241 spa_ld_load_dedup_tables(spa_t *spa)
4242 {
4243 int error = 0;
4244 vdev_t *rvd = spa->spa_root_vdev;
4245
4246 error = ddt_load(spa);
4247 if (error != 0) {
4248 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4249 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4250 }
4251
4252 return (0);
4253 }
4254
4255 static int
4256 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
4257 {
4258 vdev_t *rvd = spa->spa_root_vdev;
4259
4260 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4261 boolean_t missing = spa_check_logs(spa);
4262 if (missing) {
4263 if (spa->spa_missing_tvds != 0) {
4264 spa_load_note(spa, "spa_check_logs failed "
4265 "so dropping the logs");
4266 } else {
4267 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4268 spa_load_failed(spa, "spa_check_logs failed");
4269 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4270 ENXIO));
4271 }
4272 }
4273 }
4274
4275 return (0);
4276 }
4277
4278 static int
4279 spa_ld_verify_pool_data(spa_t *spa)
4280 {
4281 int error = 0;
4282 vdev_t *rvd = spa->spa_root_vdev;
4283
4284 /*
4285 * We've successfully opened the pool, verify that we're ready
4286 * to start pushing transactions.
4287 */
4288 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4289 error = spa_load_verify(spa);
4290 if (error != 0) {
4291 spa_load_failed(spa, "spa_load_verify failed "
4292 "[error=%d]", error);
4293 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4294 error));
4295 }
4296 }
4297
4298 return (0);
4299 }
4300
4301 static void
4302 spa_ld_claim_log_blocks(spa_t *spa)
4303 {
4304 dmu_tx_t *tx;
4305 dsl_pool_t *dp = spa_get_dsl(spa);
4306
4307 /*
4308 * Claim log blocks that haven't been committed yet.
4309 * This must all happen in a single txg.
4310 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4311 * invoked from zil_claim_log_block()'s i/o done callback.
4312 * Price of rollback is that we abandon the log.
4313 */
4314 spa->spa_claiming = B_TRUE;
4315
4316 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4317 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4318 zil_claim, tx, DS_FIND_CHILDREN);
4319 dmu_tx_commit(tx);
4320
4321 spa->spa_claiming = B_FALSE;
4322
4323 spa_set_log_state(spa, SPA_LOG_GOOD);
4324 }
4325
4326 static void
4327 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4328 boolean_t update_config_cache)
4329 {
4330 vdev_t *rvd = spa->spa_root_vdev;
4331 int need_update = B_FALSE;
4332
4333 /*
4334 * If the config cache is stale, or we have uninitialized
4335 * metaslabs (see spa_vdev_add()), then update the config.
4336 *
4337 * If this is a verbatim import, trust the current
4338 * in-core spa_config and update the disk labels.
4339 */
4340 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4341 spa->spa_load_state == SPA_LOAD_IMPORT ||
4342 spa->spa_load_state == SPA_LOAD_RECOVER ||
4343 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4344 need_update = B_TRUE;
4345
4346 for (int c = 0; c < rvd->vdev_children; c++)
4347 if (rvd->vdev_child[c]->vdev_ms_array == 0)
4348 need_update = B_TRUE;
4349
4350 /*
4351 * Update the config cache asynchronously in case we're the
4352 * root pool, in which case the config cache isn't writable yet.
4353 */
4354 if (need_update)
4355 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4356 }
4357
4358 static void
4359 spa_ld_prepare_for_reload(spa_t *spa)
4360 {
4361 spa_mode_t mode = spa->spa_mode;
4362 int async_suspended = spa->spa_async_suspended;
4363
4364 spa_unload(spa);
4365 spa_deactivate(spa);
4366 spa_activate(spa, mode);
4367
4368 /*
4369 * We save the value of spa_async_suspended as it gets reset to 0 by
4370 * spa_unload(). We want to restore it back to the original value before
4371 * returning as we might be calling spa_async_resume() later.
4372 */
4373 spa->spa_async_suspended = async_suspended;
4374 }
4375
4376 static int
4377 spa_ld_read_checkpoint_txg(spa_t *spa)
4378 {
4379 uberblock_t checkpoint;
4380 int error = 0;
4381
4382 ASSERT0(spa->spa_checkpoint_txg);
4383 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4384
4385 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4386 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4387 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4388
4389 if (error == ENOENT)
4390 return (0);
4391
4392 if (error != 0)
4393 return (error);
4394
4395 ASSERT3U(checkpoint.ub_txg, !=, 0);
4396 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4397 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4398 spa->spa_checkpoint_txg = checkpoint.ub_txg;
4399 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4400
4401 return (0);
4402 }
4403
4404 static int
4405 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4406 {
4407 int error = 0;
4408
4409 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4410 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4411
4412 /*
4413 * Never trust the config that is provided unless we are assembling
4414 * a pool following a split.
4415 * This means don't trust blkptrs and the vdev tree in general. This
4416 * also effectively puts the spa in read-only mode since
4417 * spa_writeable() checks for spa_trust_config to be true.
4418 * We will later load a trusted config from the MOS.
4419 */
4420 if (type != SPA_IMPORT_ASSEMBLE)
4421 spa->spa_trust_config = B_FALSE;
4422
4423 /*
4424 * Parse the config provided to create a vdev tree.
4425 */
4426 error = spa_ld_parse_config(spa, type);
4427 if (error != 0)
4428 return (error);
4429
4430 spa_import_progress_add(spa);
4431
4432 /*
4433 * Now that we have the vdev tree, try to open each vdev. This involves
4434 * opening the underlying physical device, retrieving its geometry and
4435 * probing the vdev with a dummy I/O. The state of each vdev will be set
4436 * based on the success of those operations. After this we'll be ready
4437 * to read from the vdevs.
4438 */
4439 error = spa_ld_open_vdevs(spa);
4440 if (error != 0)
4441 return (error);
4442
4443 /*
4444 * Read the label of each vdev and make sure that the GUIDs stored
4445 * there match the GUIDs in the config provided.
4446 * If we're assembling a new pool that's been split off from an
4447 * existing pool, the labels haven't yet been updated so we skip
4448 * validation for now.
4449 */
4450 if (type != SPA_IMPORT_ASSEMBLE) {
4451 error = spa_ld_validate_vdevs(spa);
4452 if (error != 0)
4453 return (error);
4454 }
4455
4456 /*
4457 * Read all vdev labels to find the best uberblock (i.e. latest,
4458 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4459 * get the list of features required to read blkptrs in the MOS from
4460 * the vdev label with the best uberblock and verify that our version
4461 * of zfs supports them all.
4462 */
4463 error = spa_ld_select_uberblock(spa, type);
4464 if (error != 0)
4465 return (error);
4466
4467 /*
4468 * Pass that uberblock to the dsl_pool layer which will open the root
4469 * blkptr. This blkptr points to the latest version of the MOS and will
4470 * allow us to read its contents.
4471 */
4472 error = spa_ld_open_rootbp(spa);
4473 if (error != 0)
4474 return (error);
4475
4476 return (0);
4477 }
4478
4479 static int
4480 spa_ld_checkpoint_rewind(spa_t *spa)
4481 {
4482 uberblock_t checkpoint;
4483 int error = 0;
4484
4485 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4486 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4487
4488 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4489 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4490 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4491
4492 if (error != 0) {
4493 spa_load_failed(spa, "unable to retrieve checkpointed "
4494 "uberblock from the MOS config [error=%d]", error);
4495
4496 if (error == ENOENT)
4497 error = ZFS_ERR_NO_CHECKPOINT;
4498
4499 return (error);
4500 }
4501
4502 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4503 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4504
4505 /*
4506 * We need to update the txg and timestamp of the checkpointed
4507 * uberblock to be higher than the latest one. This ensures that
4508 * the checkpointed uberblock is selected if we were to close and
4509 * reopen the pool right after we've written it in the vdev labels.
4510 * (also see block comment in vdev_uberblock_compare)
4511 */
4512 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4513 checkpoint.ub_timestamp = gethrestime_sec();
4514
4515 /*
4516 * Set current uberblock to be the checkpointed uberblock.
4517 */
4518 spa->spa_uberblock = checkpoint;
4519
4520 /*
4521 * If we are doing a normal rewind, then the pool is open for
4522 * writing and we sync the "updated" checkpointed uberblock to
4523 * disk. Once this is done, we've basically rewound the whole
4524 * pool and there is no way back.
4525 *
4526 * There are cases when we don't want to attempt and sync the
4527 * checkpointed uberblock to disk because we are opening a
4528 * pool as read-only. Specifically, verifying the checkpointed
4529 * state with zdb, and importing the checkpointed state to get
4530 * a "preview" of its content.
4531 */
4532 if (spa_writeable(spa)) {
4533 vdev_t *rvd = spa->spa_root_vdev;
4534
4535 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4536 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4537 int svdcount = 0;
4538 int children = rvd->vdev_children;
4539 int c0 = spa_get_random(children);
4540
4541 for (int c = 0; c < children; c++) {
4542 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4543
4544 /* Stop when revisiting the first vdev */
4545 if (c > 0 && svd[0] == vd)
4546 break;
4547
4548 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4549 !vdev_is_concrete(vd))
4550 continue;
4551
4552 svd[svdcount++] = vd;
4553 if (svdcount == SPA_SYNC_MIN_VDEVS)
4554 break;
4555 }
4556 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4557 if (error == 0)
4558 spa->spa_last_synced_guid = rvd->vdev_guid;
4559 spa_config_exit(spa, SCL_ALL, FTAG);
4560
4561 if (error != 0) {
4562 spa_load_failed(spa, "failed to write checkpointed "
4563 "uberblock to the vdev labels [error=%d]", error);
4564 return (error);
4565 }
4566 }
4567
4568 return (0);
4569 }
4570
4571 static int
4572 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4573 boolean_t *update_config_cache)
4574 {
4575 int error;
4576
4577 /*
4578 * Parse the config for pool, open and validate vdevs,
4579 * select an uberblock, and use that uberblock to open
4580 * the MOS.
4581 */
4582 error = spa_ld_mos_init(spa, type);
4583 if (error != 0)
4584 return (error);
4585
4586 /*
4587 * Retrieve the trusted config stored in the MOS and use it to create
4588 * a new, exact version of the vdev tree, then reopen all vdevs.
4589 */
4590 error = spa_ld_trusted_config(spa, type, B_FALSE);
4591 if (error == EAGAIN) {
4592 if (update_config_cache != NULL)
4593 *update_config_cache = B_TRUE;
4594
4595 /*
4596 * Redo the loading process with the trusted config if it is
4597 * too different from the untrusted config.
4598 */
4599 spa_ld_prepare_for_reload(spa);
4600 spa_load_note(spa, "RELOADING");
4601 error = spa_ld_mos_init(spa, type);
4602 if (error != 0)
4603 return (error);
4604
4605 error = spa_ld_trusted_config(spa, type, B_TRUE);
4606 if (error != 0)
4607 return (error);
4608
4609 } else if (error != 0) {
4610 return (error);
4611 }
4612
4613 return (0);
4614 }
4615
4616 /*
4617 * Load an existing storage pool, using the config provided. This config
4618 * describes which vdevs are part of the pool and is later validated against
4619 * partial configs present in each vdev's label and an entire copy of the
4620 * config stored in the MOS.
4621 */
4622 static int
4623 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
4624 {
4625 int error = 0;
4626 boolean_t missing_feat_write = B_FALSE;
4627 boolean_t checkpoint_rewind =
4628 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4629 boolean_t update_config_cache = B_FALSE;
4630
4631 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4632 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4633
4634 spa_load_note(spa, "LOADING");
4635
4636 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4637 if (error != 0)
4638 return (error);
4639
4640 /*
4641 * If we are rewinding to the checkpoint then we need to repeat
4642 * everything we've done so far in this function but this time
4643 * selecting the checkpointed uberblock and using that to open
4644 * the MOS.
4645 */
4646 if (checkpoint_rewind) {
4647 /*
4648 * If we are rewinding to the checkpoint update config cache
4649 * anyway.
4650 */
4651 update_config_cache = B_TRUE;
4652
4653 /*
4654 * Extract the checkpointed uberblock from the current MOS
4655 * and use this as the pool's uberblock from now on. If the
4656 * pool is imported as writeable we also write the checkpoint
4657 * uberblock to the labels, making the rewind permanent.
4658 */
4659 error = spa_ld_checkpoint_rewind(spa);
4660 if (error != 0)
4661 return (error);
4662
4663 /*
4664 * Redo the loading process again with the
4665 * checkpointed uberblock.
4666 */
4667 spa_ld_prepare_for_reload(spa);
4668 spa_load_note(spa, "LOADING checkpointed uberblock");
4669 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4670 if (error != 0)
4671 return (error);
4672 }
4673
4674 /*
4675 * Retrieve the checkpoint txg if the pool has a checkpoint.
4676 */
4677 error = spa_ld_read_checkpoint_txg(spa);
4678 if (error != 0)
4679 return (error);
4680
4681 /*
4682 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4683 * from the pool and their contents were re-mapped to other vdevs. Note
4684 * that everything that we read before this step must have been
4685 * rewritten on concrete vdevs after the last device removal was
4686 * initiated. Otherwise we could be reading from indirect vdevs before
4687 * we have loaded their mappings.
4688 */
4689 error = spa_ld_open_indirect_vdev_metadata(spa);
4690 if (error != 0)
4691 return (error);
4692
4693 /*
4694 * Retrieve the full list of active features from the MOS and check if
4695 * they are all supported.
4696 */
4697 error = spa_ld_check_features(spa, &missing_feat_write);
4698 if (error != 0)
4699 return (error);
4700
4701 /*
4702 * Load several special directories from the MOS needed by the dsl_pool
4703 * layer.
4704 */
4705 error = spa_ld_load_special_directories(spa);
4706 if (error != 0)
4707 return (error);
4708
4709 /*
4710 * Retrieve pool properties from the MOS.
4711 */
4712 error = spa_ld_get_props(spa);
4713 if (error != 0)
4714 return (error);
4715
4716 /*
4717 * Retrieve the list of auxiliary devices - cache devices and spares -
4718 * and open them.
4719 */
4720 error = spa_ld_open_aux_vdevs(spa, type);
4721 if (error != 0)
4722 return (error);
4723
4724 /*
4725 * Load the metadata for all vdevs. Also check if unopenable devices
4726 * should be autoreplaced.
4727 */
4728 error = spa_ld_load_vdev_metadata(spa);
4729 if (error != 0)
4730 return (error);
4731
4732 error = spa_ld_load_dedup_tables(spa);
4733 if (error != 0)
4734 return (error);
4735
4736 /*
4737 * Verify the logs now to make sure we don't have any unexpected errors
4738 * when we claim log blocks later.
4739 */
4740 error = spa_ld_verify_logs(spa, type, ereport);
4741 if (error != 0)
4742 return (error);
4743
4744 if (missing_feat_write) {
4745 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4746
4747 /*
4748 * At this point, we know that we can open the pool in
4749 * read-only mode but not read-write mode. We now have enough
4750 * information and can return to userland.
4751 */
4752 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4753 ENOTSUP));
4754 }
4755
4756 /*
4757 * Traverse the last txgs to make sure the pool was left off in a safe
4758 * state. When performing an extreme rewind, we verify the whole pool,
4759 * which can take a very long time.
4760 */
4761 error = spa_ld_verify_pool_data(spa);
4762 if (error != 0)
4763 return (error);
4764
4765 /*
4766 * Calculate the deflated space for the pool. This must be done before
4767 * we write anything to the pool because we'd need to update the space
4768 * accounting using the deflated sizes.
4769 */
4770 spa_update_dspace(spa);
4771
4772 /*
4773 * We have now retrieved all the information we needed to open the
4774 * pool. If we are importing the pool in read-write mode, a few
4775 * additional steps must be performed to finish the import.
4776 */
4777 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4778 spa->spa_load_max_txg == UINT64_MAX)) {
4779 uint64_t config_cache_txg = spa->spa_config_txg;
4780
4781 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4782
4783 /*
4784 * In case of a checkpoint rewind, log the original txg
4785 * of the checkpointed uberblock.
4786 */
4787 if (checkpoint_rewind) {
4788 spa_history_log_internal(spa, "checkpoint rewind",
4789 NULL, "rewound state to txg=%llu",
4790 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4791 }
4792
4793 /*
4794 * Traverse the ZIL and claim all blocks.
4795 */
4796 spa_ld_claim_log_blocks(spa);
4797
4798 /*
4799 * Kick-off the syncing thread.
4800 */
4801 spa->spa_sync_on = B_TRUE;
4802 txg_sync_start(spa->spa_dsl_pool);
4803 mmp_thread_start(spa);
4804
4805 /*
4806 * Wait for all claims to sync. We sync up to the highest
4807 * claimed log block birth time so that claimed log blocks
4808 * don't appear to be from the future. spa_claim_max_txg
4809 * will have been set for us by ZIL traversal operations
4810 * performed above.
4811 */
4812 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4813
4814 /*
4815 * Check if we need to request an update of the config. On the
4816 * next sync, we would update the config stored in vdev labels
4817 * and the cachefile (by default /etc/zfs/zpool.cache).
4818 */
4819 spa_ld_check_for_config_update(spa, config_cache_txg,
4820 update_config_cache);
4821
4822 /*
4823 * Check all DTLs to see if anything needs resilvering.
4824 */
4825 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4826 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4827 spa_async_request(spa, SPA_ASYNC_RESILVER);
4828
4829 /*
4830 * Log the fact that we booted up (so that we can detect if
4831 * we rebooted in the middle of an operation).
4832 */
4833 spa_history_log_version(spa, "open", NULL);
4834
4835 spa_restart_removal(spa);
4836 spa_spawn_aux_threads(spa);
4837
4838 /*
4839 * Delete any inconsistent datasets.
4840 *
4841 * Note:
4842 * Since we may be issuing deletes for clones here,
4843 * we make sure to do so after we've spawned all the
4844 * auxiliary threads above (from which the livelist
4845 * deletion zthr is part of).
4846 */
4847 (void) dmu_objset_find(spa_name(spa),
4848 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4849
4850 /*
4851 * Clean up any stale temporary dataset userrefs.
4852 */
4853 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4854
4855 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4856 vdev_initialize_restart(spa->spa_root_vdev);
4857 vdev_trim_restart(spa->spa_root_vdev);
4858 vdev_autotrim_restart(spa);
4859 spa_config_exit(spa, SCL_CONFIG, FTAG);
4860 }
4861
4862 spa_import_progress_remove(spa_guid(spa));
4863 spa_load_note(spa, "LOADED");
4864
4865 return (0);
4866 }
4867
4868 static int
4869 spa_load_retry(spa_t *spa, spa_load_state_t state)
4870 {
4871 spa_mode_t mode = spa->spa_mode;
4872
4873 spa_unload(spa);
4874 spa_deactivate(spa);
4875
4876 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4877
4878 spa_activate(spa, mode);
4879 spa_async_suspend(spa);
4880
4881 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4882 (u_longlong_t)spa->spa_load_max_txg);
4883
4884 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4885 }
4886
4887 /*
4888 * If spa_load() fails this function will try loading prior txg's. If
4889 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4890 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
4891 * function will not rewind the pool and will return the same error as
4892 * spa_load().
4893 */
4894 static int
4895 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
4896 int rewind_flags)
4897 {
4898 nvlist_t *loadinfo = NULL;
4899 nvlist_t *config = NULL;
4900 int load_error, rewind_error;
4901 uint64_t safe_rewind_txg;
4902 uint64_t min_txg;
4903
4904 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
4905 spa->spa_load_max_txg = spa->spa_load_txg;
4906 spa_set_log_state(spa, SPA_LOG_CLEAR);
4907 } else {
4908 spa->spa_load_max_txg = max_request;
4909 if (max_request != UINT64_MAX)
4910 spa->spa_extreme_rewind = B_TRUE;
4911 }
4912
4913 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
4914 if (load_error == 0)
4915 return (0);
4916 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
4917 /*
4918 * When attempting checkpoint-rewind on a pool with no
4919 * checkpoint, we should not attempt to load uberblocks
4920 * from previous txgs when spa_load fails.
4921 */
4922 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4923 spa_import_progress_remove(spa_guid(spa));
4924 return (load_error);
4925 }
4926
4927 if (spa->spa_root_vdev != NULL)
4928 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4929
4930 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
4931 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
4932
4933 if (rewind_flags & ZPOOL_NEVER_REWIND) {
4934 nvlist_free(config);
4935 spa_import_progress_remove(spa_guid(spa));
4936 return (load_error);
4937 }
4938
4939 if (state == SPA_LOAD_RECOVER) {
4940 /* Price of rolling back is discarding txgs, including log */
4941 spa_set_log_state(spa, SPA_LOG_CLEAR);
4942 } else {
4943 /*
4944 * If we aren't rolling back save the load info from our first
4945 * import attempt so that we can restore it after attempting
4946 * to rewind.
4947 */
4948 loadinfo = spa->spa_load_info;
4949 spa->spa_load_info = fnvlist_alloc();
4950 }
4951
4952 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
4953 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
4954 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
4955 TXG_INITIAL : safe_rewind_txg;
4956
4957 /*
4958 * Continue as long as we're finding errors, we're still within
4959 * the acceptable rewind range, and we're still finding uberblocks
4960 */
4961 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
4962 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
4963 if (spa->spa_load_max_txg < safe_rewind_txg)
4964 spa->spa_extreme_rewind = B_TRUE;
4965 rewind_error = spa_load_retry(spa, state);
4966 }
4967
4968 spa->spa_extreme_rewind = B_FALSE;
4969 spa->spa_load_max_txg = UINT64_MAX;
4970
4971 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
4972 spa_config_set(spa, config);
4973 else
4974 nvlist_free(config);
4975
4976 if (state == SPA_LOAD_RECOVER) {
4977 ASSERT3P(loadinfo, ==, NULL);
4978 spa_import_progress_remove(spa_guid(spa));
4979 return (rewind_error);
4980 } else {
4981 /* Store the rewind info as part of the initial load info */
4982 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4983 spa->spa_load_info);
4984
4985 /* Restore the initial load info */
4986 fnvlist_free(spa->spa_load_info);
4987 spa->spa_load_info = loadinfo;
4988
4989 spa_import_progress_remove(spa_guid(spa));
4990 return (load_error);
4991 }
4992 }
4993
4994 /*
4995 * Pool Open/Import
4996 *
4997 * The import case is identical to an open except that the configuration is sent
4998 * down from userland, instead of grabbed from the configuration cache. For the
4999 * case of an open, the pool configuration will exist in the
5000 * POOL_STATE_UNINITIALIZED state.
5001 *
5002 * The stats information (gen/count/ustats) is used to gather vdev statistics at
5003 * the same time open the pool, without having to keep around the spa_t in some
5004 * ambiguous state.
5005 */
5006 static int
5007 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
5008 nvlist_t **config)
5009 {
5010 spa_t *spa;
5011 spa_load_state_t state = SPA_LOAD_OPEN;
5012 int error;
5013 int locked = B_FALSE;
5014 int firstopen = B_FALSE;
5015
5016 *spapp = NULL;
5017
5018 /*
5019 * As disgusting as this is, we need to support recursive calls to this
5020 * function because dsl_dir_open() is called during spa_load(), and ends
5021 * up calling spa_open() again. The real fix is to figure out how to
5022 * avoid dsl_dir_open() calling this in the first place.
5023 */
5024 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5025 mutex_enter(&spa_namespace_lock);
5026 locked = B_TRUE;
5027 }
5028
5029 if ((spa = spa_lookup(pool)) == NULL) {
5030 if (locked)
5031 mutex_exit(&spa_namespace_lock);
5032 return (SET_ERROR(ENOENT));
5033 }
5034
5035 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5036 zpool_load_policy_t policy;
5037
5038 firstopen = B_TRUE;
5039
5040 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5041 &policy);
5042 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5043 state = SPA_LOAD_RECOVER;
5044
5045 spa_activate(spa, spa_mode_global);
5046
5047 if (state != SPA_LOAD_RECOVER)
5048 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5049 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5050
5051 zfs_dbgmsg("spa_open_common: opening %s", pool);
5052 error = spa_load_best(spa, state, policy.zlp_txg,
5053 policy.zlp_rewind);
5054
5055 if (error == EBADF) {
5056 /*
5057 * If vdev_validate() returns failure (indicated by
5058 * EBADF), it indicates that one of the vdevs indicates
5059 * that the pool has been exported or destroyed. If
5060 * this is the case, the config cache is out of sync and
5061 * we should remove the pool from the namespace.
5062 */
5063 spa_unload(spa);
5064 spa_deactivate(spa);
5065 spa_write_cachefile(spa, B_TRUE, B_TRUE);
5066 spa_remove(spa);
5067 if (locked)
5068 mutex_exit(&spa_namespace_lock);
5069 return (SET_ERROR(ENOENT));
5070 }
5071
5072 if (error) {
5073 /*
5074 * We can't open the pool, but we still have useful
5075 * information: the state of each vdev after the
5076 * attempted vdev_open(). Return this to the user.
5077 */
5078 if (config != NULL && spa->spa_config) {
5079 VERIFY(nvlist_dup(spa->spa_config, config,
5080 KM_SLEEP) == 0);
5081 VERIFY(nvlist_add_nvlist(*config,
5082 ZPOOL_CONFIG_LOAD_INFO,
5083 spa->spa_load_info) == 0);
5084 }
5085 spa_unload(spa);
5086 spa_deactivate(spa);
5087 spa->spa_last_open_failed = error;
5088 if (locked)
5089 mutex_exit(&spa_namespace_lock);
5090 *spapp = NULL;
5091 return (error);
5092 }
5093 }
5094
5095 spa_open_ref(spa, tag);
5096
5097 if (config != NULL)
5098 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5099
5100 /*
5101 * If we've recovered the pool, pass back any information we
5102 * gathered while doing the load.
5103 */
5104 if (state == SPA_LOAD_RECOVER) {
5105 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5106 spa->spa_load_info) == 0);
5107 }
5108
5109 if (locked) {
5110 spa->spa_last_open_failed = 0;
5111 spa->spa_last_ubsync_txg = 0;
5112 spa->spa_load_txg = 0;
5113 mutex_exit(&spa_namespace_lock);
5114 }
5115
5116 if (firstopen)
5117 zvol_create_minors_recursive(spa_name(spa));
5118
5119 *spapp = spa;
5120
5121 return (0);
5122 }
5123
5124 int
5125 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
5126 nvlist_t **config)
5127 {
5128 return (spa_open_common(name, spapp, tag, policy, config));
5129 }
5130
5131 int
5132 spa_open(const char *name, spa_t **spapp, void *tag)
5133 {
5134 return (spa_open_common(name, spapp, tag, NULL, NULL));
5135 }
5136
5137 /*
5138 * Lookup the given spa_t, incrementing the inject count in the process,
5139 * preventing it from being exported or destroyed.
5140 */
5141 spa_t *
5142 spa_inject_addref(char *name)
5143 {
5144 spa_t *spa;
5145
5146 mutex_enter(&spa_namespace_lock);
5147 if ((spa = spa_lookup(name)) == NULL) {
5148 mutex_exit(&spa_namespace_lock);
5149 return (NULL);
5150 }
5151 spa->spa_inject_ref++;
5152 mutex_exit(&spa_namespace_lock);
5153
5154 return (spa);
5155 }
5156
5157 void
5158 spa_inject_delref(spa_t *spa)
5159 {
5160 mutex_enter(&spa_namespace_lock);
5161 spa->spa_inject_ref--;
5162 mutex_exit(&spa_namespace_lock);
5163 }
5164
5165 /*
5166 * Add spares device information to the nvlist.
5167 */
5168 static void
5169 spa_add_spares(spa_t *spa, nvlist_t *config)
5170 {
5171 nvlist_t **spares;
5172 uint_t i, nspares;
5173 nvlist_t *nvroot;
5174 uint64_t guid;
5175 vdev_stat_t *vs;
5176 uint_t vsc;
5177 uint64_t pool;
5178
5179 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5180
5181 if (spa->spa_spares.sav_count == 0)
5182 return;
5183
5184 VERIFY(nvlist_lookup_nvlist(config,
5185 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
5186 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5187 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
5188 if (nspares != 0) {
5189 VERIFY(nvlist_add_nvlist_array(nvroot,
5190 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5191 VERIFY(nvlist_lookup_nvlist_array(nvroot,
5192 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
5193
5194 /*
5195 * Go through and find any spares which have since been
5196 * repurposed as an active spare. If this is the case, update
5197 * their status appropriately.
5198 */
5199 for (i = 0; i < nspares; i++) {
5200 VERIFY(nvlist_lookup_uint64(spares[i],
5201 ZPOOL_CONFIG_GUID, &guid) == 0);
5202 if (spa_spare_exists(guid, &pool, NULL) &&
5203 pool != 0ULL) {
5204 VERIFY(nvlist_lookup_uint64_array(
5205 spares[i], ZPOOL_CONFIG_VDEV_STATS,
5206 (uint64_t **)&vs, &vsc) == 0);
5207 vs->vs_state = VDEV_STATE_CANT_OPEN;
5208 vs->vs_aux = VDEV_AUX_SPARED;
5209 }
5210 }
5211 }
5212 }
5213
5214 /*
5215 * Add l2cache device information to the nvlist, including vdev stats.
5216 */
5217 static void
5218 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5219 {
5220 nvlist_t **l2cache;
5221 uint_t i, j, nl2cache;
5222 nvlist_t *nvroot;
5223 uint64_t guid;
5224 vdev_t *vd;
5225 vdev_stat_t *vs;
5226 uint_t vsc;
5227
5228 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5229
5230 if (spa->spa_l2cache.sav_count == 0)
5231 return;
5232
5233 VERIFY(nvlist_lookup_nvlist(config,
5234 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
5235 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5236 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
5237 if (nl2cache != 0) {
5238 VERIFY(nvlist_add_nvlist_array(nvroot,
5239 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5240 VERIFY(nvlist_lookup_nvlist_array(nvroot,
5241 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
5242
5243 /*
5244 * Update level 2 cache device stats.
5245 */
5246
5247 for (i = 0; i < nl2cache; i++) {
5248 VERIFY(nvlist_lookup_uint64(l2cache[i],
5249 ZPOOL_CONFIG_GUID, &guid) == 0);
5250
5251 vd = NULL;
5252 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5253 if (guid ==
5254 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5255 vd = spa->spa_l2cache.sav_vdevs[j];
5256 break;
5257 }
5258 }
5259 ASSERT(vd != NULL);
5260
5261 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
5262 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
5263 == 0);
5264 vdev_get_stats(vd, vs);
5265 vdev_config_generate_stats(vd, l2cache[i]);
5266
5267 }
5268 }
5269 }
5270
5271 static void
5272 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5273 {
5274 zap_cursor_t zc;
5275 zap_attribute_t za;
5276
5277 if (spa->spa_feat_for_read_obj != 0) {
5278 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5279 spa->spa_feat_for_read_obj);
5280 zap_cursor_retrieve(&zc, &za) == 0;
5281 zap_cursor_advance(&zc)) {
5282 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5283 za.za_num_integers == 1);
5284 VERIFY0(nvlist_add_uint64(features, za.za_name,
5285 za.za_first_integer));
5286 }
5287 zap_cursor_fini(&zc);
5288 }
5289
5290 if (spa->spa_feat_for_write_obj != 0) {
5291 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5292 spa->spa_feat_for_write_obj);
5293 zap_cursor_retrieve(&zc, &za) == 0;
5294 zap_cursor_advance(&zc)) {
5295 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5296 za.za_num_integers == 1);
5297 VERIFY0(nvlist_add_uint64(features, za.za_name,
5298 za.za_first_integer));
5299 }
5300 zap_cursor_fini(&zc);
5301 }
5302 }
5303
5304 static void
5305 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5306 {
5307 int i;
5308
5309 for (i = 0; i < SPA_FEATURES; i++) {
5310 zfeature_info_t feature = spa_feature_table[i];
5311 uint64_t refcount;
5312
5313 if (feature_get_refcount(spa, &feature, &refcount) != 0)
5314 continue;
5315
5316 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5317 }
5318 }
5319
5320 /*
5321 * Store a list of pool features and their reference counts in the
5322 * config.
5323 *
5324 * The first time this is called on a spa, allocate a new nvlist, fetch
5325 * the pool features and reference counts from disk, then save the list
5326 * in the spa. In subsequent calls on the same spa use the saved nvlist
5327 * and refresh its values from the cached reference counts. This
5328 * ensures we don't block here on I/O on a suspended pool so 'zpool
5329 * clear' can resume the pool.
5330 */
5331 static void
5332 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5333 {
5334 nvlist_t *features;
5335
5336 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5337
5338 mutex_enter(&spa->spa_feat_stats_lock);
5339 features = spa->spa_feat_stats;
5340
5341 if (features != NULL) {
5342 spa_feature_stats_from_cache(spa, features);
5343 } else {
5344 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5345 spa->spa_feat_stats = features;
5346 spa_feature_stats_from_disk(spa, features);
5347 }
5348
5349 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5350 features));
5351
5352 mutex_exit(&spa->spa_feat_stats_lock);
5353 }
5354
5355 int
5356 spa_get_stats(const char *name, nvlist_t **config,
5357 char *altroot, size_t buflen)
5358 {
5359 int error;
5360 spa_t *spa;
5361
5362 *config = NULL;
5363 error = spa_open_common(name, &spa, FTAG, NULL, config);
5364
5365 if (spa != NULL) {
5366 /*
5367 * This still leaves a window of inconsistency where the spares
5368 * or l2cache devices could change and the config would be
5369 * self-inconsistent.
5370 */
5371 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5372
5373 if (*config != NULL) {
5374 uint64_t loadtimes[2];
5375
5376 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5377 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5378 VERIFY(nvlist_add_uint64_array(*config,
5379 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
5380
5381 VERIFY(nvlist_add_uint64(*config,
5382 ZPOOL_CONFIG_ERRCOUNT,
5383 spa_get_errlog_size(spa)) == 0);
5384
5385 if (spa_suspended(spa)) {
5386 VERIFY(nvlist_add_uint64(*config,
5387 ZPOOL_CONFIG_SUSPENDED,
5388 spa->spa_failmode) == 0);
5389 VERIFY(nvlist_add_uint64(*config,
5390 ZPOOL_CONFIG_SUSPENDED_REASON,
5391 spa->spa_suspended) == 0);
5392 }
5393
5394 spa_add_spares(spa, *config);
5395 spa_add_l2cache(spa, *config);
5396 spa_add_feature_stats(spa, *config);
5397 }
5398 }
5399
5400 /*
5401 * We want to get the alternate root even for faulted pools, so we cheat
5402 * and call spa_lookup() directly.
5403 */
5404 if (altroot) {
5405 if (spa == NULL) {
5406 mutex_enter(&spa_namespace_lock);
5407 spa = spa_lookup(name);
5408 if (spa)
5409 spa_altroot(spa, altroot, buflen);
5410 else
5411 altroot[0] = '\0';
5412 spa = NULL;
5413 mutex_exit(&spa_namespace_lock);
5414 } else {
5415 spa_altroot(spa, altroot, buflen);
5416 }
5417 }
5418
5419 if (spa != NULL) {
5420 spa_config_exit(spa, SCL_CONFIG, FTAG);
5421 spa_close(spa, FTAG);
5422 }
5423
5424 return (error);
5425 }
5426
5427 /*
5428 * Validate that the auxiliary device array is well formed. We must have an
5429 * array of nvlists, each which describes a valid leaf vdev. If this is an
5430 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5431 * specified, as long as they are well-formed.
5432 */
5433 static int
5434 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5435 spa_aux_vdev_t *sav, const char *config, uint64_t version,
5436 vdev_labeltype_t label)
5437 {
5438 nvlist_t **dev;
5439 uint_t i, ndev;
5440 vdev_t *vd;
5441 int error;
5442
5443 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5444
5445 /*
5446 * It's acceptable to have no devs specified.
5447 */
5448 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5449 return (0);
5450
5451 if (ndev == 0)
5452 return (SET_ERROR(EINVAL));
5453
5454 /*
5455 * Make sure the pool is formatted with a version that supports this
5456 * device type.
5457 */
5458 if (spa_version(spa) < version)
5459 return (SET_ERROR(ENOTSUP));
5460
5461 /*
5462 * Set the pending device list so we correctly handle device in-use
5463 * checking.
5464 */
5465 sav->sav_pending = dev;
5466 sav->sav_npending = ndev;
5467
5468 for (i = 0; i < ndev; i++) {
5469 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5470 mode)) != 0)
5471 goto out;
5472
5473 if (!vd->vdev_ops->vdev_op_leaf) {
5474 vdev_free(vd);
5475 error = SET_ERROR(EINVAL);
5476 goto out;
5477 }
5478
5479 vd->vdev_top = vd;
5480
5481 if ((error = vdev_open(vd)) == 0 &&
5482 (error = vdev_label_init(vd, crtxg, label)) == 0) {
5483 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5484 vd->vdev_guid) == 0);
5485 }
5486
5487 vdev_free(vd);
5488
5489 if (error &&
5490 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5491 goto out;
5492 else
5493 error = 0;
5494 }
5495
5496 out:
5497 sav->sav_pending = NULL;
5498 sav->sav_npending = 0;
5499 return (error);
5500 }
5501
5502 static int
5503 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5504 {
5505 int error;
5506
5507 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5508
5509 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5510 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5511 VDEV_LABEL_SPARE)) != 0) {
5512 return (error);
5513 }
5514
5515 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5516 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5517 VDEV_LABEL_L2CACHE));
5518 }
5519
5520 static void
5521 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5522 const char *config)
5523 {
5524 int i;
5525
5526 if (sav->sav_config != NULL) {
5527 nvlist_t **olddevs;
5528 uint_t oldndevs;
5529 nvlist_t **newdevs;
5530
5531 /*
5532 * Generate new dev list by concatenating with the
5533 * current dev list.
5534 */
5535 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
5536 &olddevs, &oldndevs) == 0);
5537
5538 newdevs = kmem_alloc(sizeof (void *) *
5539 (ndevs + oldndevs), KM_SLEEP);
5540 for (i = 0; i < oldndevs; i++)
5541 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
5542 KM_SLEEP) == 0);
5543 for (i = 0; i < ndevs; i++)
5544 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
5545 KM_SLEEP) == 0);
5546
5547 VERIFY(nvlist_remove(sav->sav_config, config,
5548 DATA_TYPE_NVLIST_ARRAY) == 0);
5549
5550 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
5551 config, newdevs, ndevs + oldndevs) == 0);
5552 for (i = 0; i < oldndevs + ndevs; i++)
5553 nvlist_free(newdevs[i]);
5554 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5555 } else {
5556 /*
5557 * Generate a new dev list.
5558 */
5559 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
5560 KM_SLEEP) == 0);
5561 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
5562 devs, ndevs) == 0);
5563 }
5564 }
5565
5566 /*
5567 * Stop and drop level 2 ARC devices
5568 */
5569 void
5570 spa_l2cache_drop(spa_t *spa)
5571 {
5572 vdev_t *vd;
5573 int i;
5574 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5575
5576 for (i = 0; i < sav->sav_count; i++) {
5577 uint64_t pool;
5578
5579 vd = sav->sav_vdevs[i];
5580 ASSERT(vd != NULL);
5581
5582 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5583 pool != 0ULL && l2arc_vdev_present(vd))
5584 l2arc_remove_vdev(vd);
5585 }
5586 }
5587
5588 /*
5589 * Verify encryption parameters for spa creation. If we are encrypting, we must
5590 * have the encryption feature flag enabled.
5591 */
5592 static int
5593 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5594 boolean_t has_encryption)
5595 {
5596 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5597 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5598 !has_encryption)
5599 return (SET_ERROR(ENOTSUP));
5600
5601 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5602 }
5603
5604 /*
5605 * Pool Creation
5606 */
5607 int
5608 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5609 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5610 {
5611 spa_t *spa;
5612 char *altroot = NULL;
5613 vdev_t *rvd;
5614 dsl_pool_t *dp;
5615 dmu_tx_t *tx;
5616 int error = 0;
5617 uint64_t txg = TXG_INITIAL;
5618 nvlist_t **spares, **l2cache;
5619 uint_t nspares, nl2cache;
5620 uint64_t version, obj;
5621 boolean_t has_features;
5622 boolean_t has_encryption;
5623 boolean_t has_allocclass;
5624 spa_feature_t feat;
5625 char *feat_name;
5626 char *poolname;
5627 nvlist_t *nvl;
5628
5629 if (props == NULL ||
5630 nvlist_lookup_string(props, "tname", &poolname) != 0)
5631 poolname = (char *)pool;
5632
5633 /*
5634 * If this pool already exists, return failure.
5635 */
5636 mutex_enter(&spa_namespace_lock);
5637 if (spa_lookup(poolname) != NULL) {
5638 mutex_exit(&spa_namespace_lock);
5639 return (SET_ERROR(EEXIST));
5640 }
5641
5642 /*
5643 * Allocate a new spa_t structure.
5644 */
5645 nvl = fnvlist_alloc();
5646 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5647 (void) nvlist_lookup_string(props,
5648 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5649 spa = spa_add(poolname, nvl, altroot);
5650 fnvlist_free(nvl);
5651 spa_activate(spa, spa_mode_global);
5652
5653 if (props && (error = spa_prop_validate(spa, props))) {
5654 spa_deactivate(spa);
5655 spa_remove(spa);
5656 mutex_exit(&spa_namespace_lock);
5657 return (error);
5658 }
5659
5660 /*
5661 * Temporary pool names should never be written to disk.
5662 */
5663 if (poolname != pool)
5664 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5665
5666 has_features = B_FALSE;
5667 has_encryption = B_FALSE;
5668 has_allocclass = B_FALSE;
5669 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5670 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5671 if (zpool_prop_feature(nvpair_name(elem))) {
5672 has_features = B_TRUE;
5673
5674 feat_name = strchr(nvpair_name(elem), '@') + 1;
5675 VERIFY0(zfeature_lookup_name(feat_name, &feat));
5676 if (feat == SPA_FEATURE_ENCRYPTION)
5677 has_encryption = B_TRUE;
5678 if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5679 has_allocclass = B_TRUE;
5680 }
5681 }
5682
5683 /* verify encryption params, if they were provided */
5684 if (dcp != NULL) {
5685 error = spa_create_check_encryption_params(dcp, has_encryption);
5686 if (error != 0) {
5687 spa_deactivate(spa);
5688 spa_remove(spa);
5689 mutex_exit(&spa_namespace_lock);
5690 return (error);
5691 }
5692 }
5693 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5694 spa_deactivate(spa);
5695 spa_remove(spa);
5696 mutex_exit(&spa_namespace_lock);
5697 return (ENOTSUP);
5698 }
5699
5700 if (has_features || nvlist_lookup_uint64(props,
5701 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5702 version = SPA_VERSION;
5703 }
5704 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5705
5706 spa->spa_first_txg = txg;
5707 spa->spa_uberblock.ub_txg = txg - 1;
5708 spa->spa_uberblock.ub_version = version;
5709 spa->spa_ubsync = spa->spa_uberblock;
5710 spa->spa_load_state = SPA_LOAD_CREATE;
5711 spa->spa_removing_phys.sr_state = DSS_NONE;
5712 spa->spa_removing_phys.sr_removing_vdev = -1;
5713 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5714 spa->spa_indirect_vdevs_loaded = B_TRUE;
5715
5716 /*
5717 * Create "The Godfather" zio to hold all async IOs
5718 */
5719 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5720 KM_SLEEP);
5721 for (int i = 0; i < max_ncpus; i++) {
5722 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5723 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5724 ZIO_FLAG_GODFATHER);
5725 }
5726
5727 /*
5728 * Create the root vdev.
5729 */
5730 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5731
5732 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5733
5734 ASSERT(error != 0 || rvd != NULL);
5735 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5736
5737 if (error == 0 && !zfs_allocatable_devs(nvroot))
5738 error = SET_ERROR(EINVAL);
5739
5740 if (error == 0 &&
5741 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5742 (error = spa_validate_aux(spa, nvroot, txg,
5743 VDEV_ALLOC_ADD)) == 0) {
5744 /*
5745 * instantiate the metaslab groups (this will dirty the vdevs)
5746 * we can no longer error exit past this point
5747 */
5748 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5749 vdev_t *vd = rvd->vdev_child[c];
5750
5751 vdev_metaslab_set_size(vd);
5752 vdev_expand(vd, txg);
5753 }
5754 }
5755
5756 spa_config_exit(spa, SCL_ALL, FTAG);
5757
5758 if (error != 0) {
5759 spa_unload(spa);
5760 spa_deactivate(spa);
5761 spa_remove(spa);
5762 mutex_exit(&spa_namespace_lock);
5763 return (error);
5764 }
5765
5766 /*
5767 * Get the list of spares, if specified.
5768 */
5769 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5770 &spares, &nspares) == 0) {
5771 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
5772 KM_SLEEP) == 0);
5773 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5774 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5775 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5776 spa_load_spares(spa);
5777 spa_config_exit(spa, SCL_ALL, FTAG);
5778 spa->spa_spares.sav_sync = B_TRUE;
5779 }
5780
5781 /*
5782 * Get the list of level 2 cache devices, if specified.
5783 */
5784 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5785 &l2cache, &nl2cache) == 0) {
5786 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5787 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5788 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5789 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5790 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5791 spa_load_l2cache(spa);
5792 spa_config_exit(spa, SCL_ALL, FTAG);
5793 spa->spa_l2cache.sav_sync = B_TRUE;
5794 }
5795
5796 spa->spa_is_initializing = B_TRUE;
5797 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5798 spa->spa_is_initializing = B_FALSE;
5799
5800 /*
5801 * Create DDTs (dedup tables).
5802 */
5803 ddt_create(spa);
5804
5805 spa_update_dspace(spa);
5806
5807 tx = dmu_tx_create_assigned(dp, txg);
5808
5809 /*
5810 * Create the pool's history object.
5811 */
5812 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
5813 spa_history_create_obj(spa, tx);
5814
5815 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5816 spa_history_log_version(spa, "create", tx);
5817
5818 /*
5819 * Create the pool config object.
5820 */
5821 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5822 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5823 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5824
5825 if (zap_add(spa->spa_meta_objset,
5826 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5827 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5828 cmn_err(CE_PANIC, "failed to add pool config");
5829 }
5830
5831 if (zap_add(spa->spa_meta_objset,
5832 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5833 sizeof (uint64_t), 1, &version, tx) != 0) {
5834 cmn_err(CE_PANIC, "failed to add pool version");
5835 }
5836
5837 /* Newly created pools with the right version are always deflated. */
5838 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5839 spa->spa_deflate = TRUE;
5840 if (zap_add(spa->spa_meta_objset,
5841 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5842 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5843 cmn_err(CE_PANIC, "failed to add deflate");
5844 }
5845 }
5846
5847 /*
5848 * Create the deferred-free bpobj. Turn off compression
5849 * because sync-to-convergence takes longer if the blocksize
5850 * keeps changing.
5851 */
5852 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5853 dmu_object_set_compress(spa->spa_meta_objset, obj,
5854 ZIO_COMPRESS_OFF, tx);
5855 if (zap_add(spa->spa_meta_objset,
5856 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5857 sizeof (uint64_t), 1, &obj, tx) != 0) {
5858 cmn_err(CE_PANIC, "failed to add bpobj");
5859 }
5860 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5861 spa->spa_meta_objset, obj));
5862
5863 /*
5864 * Generate some random noise for salted checksums to operate on.
5865 */
5866 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5867 sizeof (spa->spa_cksum_salt.zcs_bytes));
5868
5869 /*
5870 * Set pool properties.
5871 */
5872 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5873 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5874 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5875 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5876 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5877 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
5878
5879 if (props != NULL) {
5880 spa_configfile_set(spa, props, B_FALSE);
5881 spa_sync_props(props, tx);
5882 }
5883
5884 dmu_tx_commit(tx);
5885
5886 spa->spa_sync_on = B_TRUE;
5887 txg_sync_start(dp);
5888 mmp_thread_start(spa);
5889 txg_wait_synced(dp, txg);
5890
5891 spa_spawn_aux_threads(spa);
5892
5893 spa_write_cachefile(spa, B_FALSE, B_TRUE);
5894
5895 /*
5896 * Don't count references from objsets that are already closed
5897 * and are making their way through the eviction process.
5898 */
5899 spa_evicting_os_wait(spa);
5900 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
5901 spa->spa_load_state = SPA_LOAD_NONE;
5902
5903 mutex_exit(&spa_namespace_lock);
5904
5905 return (0);
5906 }
5907
5908 /*
5909 * Import a non-root pool into the system.
5910 */
5911 int
5912 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5913 {
5914 spa_t *spa;
5915 char *altroot = NULL;
5916 spa_load_state_t state = SPA_LOAD_IMPORT;
5917 zpool_load_policy_t policy;
5918 spa_mode_t mode = spa_mode_global;
5919 uint64_t readonly = B_FALSE;
5920 int error;
5921 nvlist_t *nvroot;
5922 nvlist_t **spares, **l2cache;
5923 uint_t nspares, nl2cache;
5924
5925 /*
5926 * If a pool with this name exists, return failure.
5927 */
5928 mutex_enter(&spa_namespace_lock);
5929 if (spa_lookup(pool) != NULL) {
5930 mutex_exit(&spa_namespace_lock);
5931 return (SET_ERROR(EEXIST));
5932 }
5933
5934 /*
5935 * Create and initialize the spa structure.
5936 */
5937 (void) nvlist_lookup_string(props,
5938 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5939 (void) nvlist_lookup_uint64(props,
5940 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5941 if (readonly)
5942 mode = SPA_MODE_READ;
5943 spa = spa_add(pool, config, altroot);
5944 spa->spa_import_flags = flags;
5945
5946 /*
5947 * Verbatim import - Take a pool and insert it into the namespace
5948 * as if it had been loaded at boot.
5949 */
5950 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5951 if (props != NULL)
5952 spa_configfile_set(spa, props, B_FALSE);
5953
5954 spa_write_cachefile(spa, B_FALSE, B_TRUE);
5955 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5956 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5957 mutex_exit(&spa_namespace_lock);
5958 return (0);
5959 }
5960
5961 spa_activate(spa, mode);
5962
5963 /*
5964 * Don't start async tasks until we know everything is healthy.
5965 */
5966 spa_async_suspend(spa);
5967
5968 zpool_get_load_policy(config, &policy);
5969 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5970 state = SPA_LOAD_RECOVER;
5971
5972 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5973
5974 if (state != SPA_LOAD_RECOVER) {
5975 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5976 zfs_dbgmsg("spa_import: importing %s", pool);
5977 } else {
5978 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5979 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5980 }
5981 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5982
5983 /*
5984 * Propagate anything learned while loading the pool and pass it
5985 * back to caller (i.e. rewind info, missing devices, etc).
5986 */
5987 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5988 spa->spa_load_info) == 0);
5989
5990 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5991 /*
5992 * Toss any existing sparelist, as it doesn't have any validity
5993 * anymore, and conflicts with spa_has_spare().
5994 */
5995 if (spa->spa_spares.sav_config) {
5996 nvlist_free(spa->spa_spares.sav_config);
5997 spa->spa_spares.sav_config = NULL;
5998 spa_load_spares(spa);
5999 }
6000 if (spa->spa_l2cache.sav_config) {
6001 nvlist_free(spa->spa_l2cache.sav_config);
6002 spa->spa_l2cache.sav_config = NULL;
6003 spa_load_l2cache(spa);
6004 }
6005
6006 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
6007 &nvroot) == 0);
6008 spa_config_exit(spa, SCL_ALL, FTAG);
6009
6010 if (props != NULL)
6011 spa_configfile_set(spa, props, B_FALSE);
6012
6013 if (error != 0 || (props && spa_writeable(spa) &&
6014 (error = spa_prop_set(spa, props)))) {
6015 spa_unload(spa);
6016 spa_deactivate(spa);
6017 spa_remove(spa);
6018 mutex_exit(&spa_namespace_lock);
6019 return (error);
6020 }
6021
6022 spa_async_resume(spa);
6023
6024 /*
6025 * Override any spares and level 2 cache devices as specified by
6026 * the user, as these may have correct device names/devids, etc.
6027 */
6028 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6029 &spares, &nspares) == 0) {
6030 if (spa->spa_spares.sav_config)
6031 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
6032 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
6033 else
6034 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
6035 NV_UNIQUE_NAME, KM_SLEEP) == 0);
6036 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
6037 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
6038 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6039 spa_load_spares(spa);
6040 spa_config_exit(spa, SCL_ALL, FTAG);
6041 spa->spa_spares.sav_sync = B_TRUE;
6042 }
6043 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6044 &l2cache, &nl2cache) == 0) {
6045 if (spa->spa_l2cache.sav_config)
6046 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
6047 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
6048 else
6049 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
6050 NV_UNIQUE_NAME, KM_SLEEP) == 0);
6051 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6052 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
6053 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6054 spa_load_l2cache(spa);
6055 spa_config_exit(spa, SCL_ALL, FTAG);
6056 spa->spa_l2cache.sav_sync = B_TRUE;
6057 }
6058
6059 /*
6060 * Check for any removed devices.
6061 */
6062 if (spa->spa_autoreplace) {
6063 spa_aux_check_removed(&spa->spa_spares);
6064 spa_aux_check_removed(&spa->spa_l2cache);
6065 }
6066
6067 if (spa_writeable(spa)) {
6068 /*
6069 * Update the config cache to include the newly-imported pool.
6070 */
6071 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6072 }
6073
6074 /*
6075 * It's possible that the pool was expanded while it was exported.
6076 * We kick off an async task to handle this for us.
6077 */
6078 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6079
6080 spa_history_log_version(spa, "import", NULL);
6081
6082 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6083
6084 mutex_exit(&spa_namespace_lock);
6085
6086 zvol_create_minors_recursive(pool);
6087
6088 return (0);
6089 }
6090
6091 nvlist_t *
6092 spa_tryimport(nvlist_t *tryconfig)
6093 {
6094 nvlist_t *config = NULL;
6095 char *poolname, *cachefile;
6096 spa_t *spa;
6097 uint64_t state;
6098 int error;
6099 zpool_load_policy_t policy;
6100
6101 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6102 return (NULL);
6103
6104 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6105 return (NULL);
6106
6107 /*
6108 * Create and initialize the spa structure.
6109 */
6110 mutex_enter(&spa_namespace_lock);
6111 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6112 spa_activate(spa, SPA_MODE_READ);
6113
6114 /*
6115 * Rewind pool if a max txg was provided.
6116 */
6117 zpool_get_load_policy(spa->spa_config, &policy);
6118 if (policy.zlp_txg != UINT64_MAX) {
6119 spa->spa_load_max_txg = policy.zlp_txg;
6120 spa->spa_extreme_rewind = B_TRUE;
6121 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6122 poolname, (longlong_t)policy.zlp_txg);
6123 } else {
6124 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6125 }
6126
6127 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6128 == 0) {
6129 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6130 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6131 } else {
6132 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6133 }
6134
6135 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6136
6137 /*
6138 * If 'tryconfig' was at least parsable, return the current config.
6139 */
6140 if (spa->spa_root_vdev != NULL) {
6141 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6142 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
6143 poolname) == 0);
6144 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
6145 state) == 0);
6146 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6147 spa->spa_uberblock.ub_timestamp) == 0);
6148 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6149 spa->spa_load_info) == 0);
6150 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6151 spa->spa_errata) == 0);
6152
6153 /*
6154 * If the bootfs property exists on this pool then we
6155 * copy it out so that external consumers can tell which
6156 * pools are bootable.
6157 */
6158 if ((!error || error == EEXIST) && spa->spa_bootfs) {
6159 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6160
6161 /*
6162 * We have to play games with the name since the
6163 * pool was opened as TRYIMPORT_NAME.
6164 */
6165 if (dsl_dsobj_to_dsname(spa_name(spa),
6166 spa->spa_bootfs, tmpname) == 0) {
6167 char *cp;
6168 char *dsname;
6169
6170 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6171
6172 cp = strchr(tmpname, '/');
6173 if (cp == NULL) {
6174 (void) strlcpy(dsname, tmpname,
6175 MAXPATHLEN);
6176 } else {
6177 (void) snprintf(dsname, MAXPATHLEN,
6178 "%s/%s", poolname, ++cp);
6179 }
6180 VERIFY(nvlist_add_string(config,
6181 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
6182 kmem_free(dsname, MAXPATHLEN);
6183 }
6184 kmem_free(tmpname, MAXPATHLEN);
6185 }
6186
6187 /*
6188 * Add the list of hot spares and level 2 cache devices.
6189 */
6190 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6191 spa_add_spares(spa, config);
6192 spa_add_l2cache(spa, config);
6193 spa_config_exit(spa, SCL_CONFIG, FTAG);
6194 }
6195
6196 spa_unload(spa);
6197 spa_deactivate(spa);
6198 spa_remove(spa);
6199 mutex_exit(&spa_namespace_lock);
6200
6201 return (config);
6202 }
6203
6204 /*
6205 * Pool export/destroy
6206 *
6207 * The act of destroying or exporting a pool is very simple. We make sure there
6208 * is no more pending I/O and any references to the pool are gone. Then, we
6209 * update the pool state and sync all the labels to disk, removing the
6210 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6211 * we don't sync the labels or remove the configuration cache.
6212 */
6213 static int
6214 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
6215 boolean_t force, boolean_t hardforce)
6216 {
6217 spa_t *spa;
6218
6219 if (oldconfig)
6220 *oldconfig = NULL;
6221
6222 if (!(spa_mode_global & SPA_MODE_WRITE))
6223 return (SET_ERROR(EROFS));
6224
6225 mutex_enter(&spa_namespace_lock);
6226 if ((spa = spa_lookup(pool)) == NULL) {
6227 mutex_exit(&spa_namespace_lock);
6228 return (SET_ERROR(ENOENT));
6229 }
6230
6231 if (spa->spa_is_exporting) {
6232 /* the pool is being exported by another thread */
6233 mutex_exit(&spa_namespace_lock);
6234 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6235 }
6236 spa->spa_is_exporting = B_TRUE;
6237
6238 /*
6239 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6240 * reacquire the namespace lock, and see if we can export.
6241 */
6242 spa_open_ref(spa, FTAG);
6243 mutex_exit(&spa_namespace_lock);
6244 spa_async_suspend(spa);
6245 if (spa->spa_zvol_taskq) {
6246 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6247 taskq_wait(spa->spa_zvol_taskq);
6248 }
6249 mutex_enter(&spa_namespace_lock);
6250 spa_close(spa, FTAG);
6251
6252 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6253 goto export_spa;
6254 /*
6255 * The pool will be in core if it's openable, in which case we can
6256 * modify its state. Objsets may be open only because they're dirty,
6257 * so we have to force it to sync before checking spa_refcnt.
6258 */
6259 if (spa->spa_sync_on) {
6260 txg_wait_synced(spa->spa_dsl_pool, 0);
6261 spa_evicting_os_wait(spa);
6262 }
6263
6264 /*
6265 * A pool cannot be exported or destroyed if there are active
6266 * references. If we are resetting a pool, allow references by
6267 * fault injection handlers.
6268 */
6269 if (!spa_refcount_zero(spa) ||
6270 (spa->spa_inject_ref != 0 &&
6271 new_state != POOL_STATE_UNINITIALIZED)) {
6272 spa_async_resume(spa);
6273 spa->spa_is_exporting = B_FALSE;
6274 mutex_exit(&spa_namespace_lock);
6275 return (SET_ERROR(EBUSY));
6276 }
6277
6278 if (spa->spa_sync_on) {
6279 /*
6280 * A pool cannot be exported if it has an active shared spare.
6281 * This is to prevent other pools stealing the active spare
6282 * from an exported pool. At user's own will, such pool can
6283 * be forcedly exported.
6284 */
6285 if (!force && new_state == POOL_STATE_EXPORTED &&
6286 spa_has_active_shared_spare(spa)) {
6287 spa_async_resume(spa);
6288 spa->spa_is_exporting = B_FALSE;
6289 mutex_exit(&spa_namespace_lock);
6290 return (SET_ERROR(EXDEV));
6291 }
6292
6293 /*
6294 * We're about to export or destroy this pool. Make sure
6295 * we stop all initialization and trim activity here before
6296 * we set the spa_final_txg. This will ensure that all
6297 * dirty data resulting from the initialization is
6298 * committed to disk before we unload the pool.
6299 */
6300 if (spa->spa_root_vdev != NULL) {
6301 vdev_t *rvd = spa->spa_root_vdev;
6302 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6303 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6304 vdev_autotrim_stop_all(spa);
6305 }
6306
6307 /*
6308 * We want this to be reflected on every label,
6309 * so mark them all dirty. spa_unload() will do the
6310 * final sync that pushes these changes out.
6311 */
6312 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6313 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6314 spa->spa_state = new_state;
6315 spa->spa_final_txg = spa_last_synced_txg(spa) +
6316 TXG_DEFER_SIZE + 1;
6317 vdev_config_dirty(spa->spa_root_vdev);
6318 spa_config_exit(spa, SCL_ALL, FTAG);
6319 }
6320 }
6321
6322 export_spa:
6323 if (new_state == POOL_STATE_DESTROYED)
6324 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6325 else if (new_state == POOL_STATE_EXPORTED)
6326 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6327
6328 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6329 spa_unload(spa);
6330 spa_deactivate(spa);
6331 }
6332
6333 if (oldconfig && spa->spa_config)
6334 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
6335
6336 if (new_state != POOL_STATE_UNINITIALIZED) {
6337 if (!hardforce)
6338 spa_write_cachefile(spa, B_TRUE, B_TRUE);
6339 spa_remove(spa);
6340 } else {
6341 /*
6342 * If spa_remove() is not called for this spa_t and
6343 * there is any possibility that it can be reused,
6344 * we make sure to reset the exporting flag.
6345 */
6346 spa->spa_is_exporting = B_FALSE;
6347 }
6348
6349 mutex_exit(&spa_namespace_lock);
6350 return (0);
6351 }
6352
6353 /*
6354 * Destroy a storage pool.
6355 */
6356 int
6357 spa_destroy(char *pool)
6358 {
6359 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6360 B_FALSE, B_FALSE));
6361 }
6362
6363 /*
6364 * Export a storage pool.
6365 */
6366 int
6367 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
6368 boolean_t hardforce)
6369 {
6370 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6371 force, hardforce));
6372 }
6373
6374 /*
6375 * Similar to spa_export(), this unloads the spa_t without actually removing it
6376 * from the namespace in any way.
6377 */
6378 int
6379 spa_reset(char *pool)
6380 {
6381 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6382 B_FALSE, B_FALSE));
6383 }
6384
6385 /*
6386 * ==========================================================================
6387 * Device manipulation
6388 * ==========================================================================
6389 */
6390
6391 /*
6392 * Add a device to a storage pool.
6393 */
6394 int
6395 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6396 {
6397 uint64_t txg;
6398 int error;
6399 vdev_t *rvd = spa->spa_root_vdev;
6400 vdev_t *vd, *tvd;
6401 nvlist_t **spares, **l2cache;
6402 uint_t nspares, nl2cache;
6403
6404 ASSERT(spa_writeable(spa));
6405
6406 txg = spa_vdev_enter(spa);
6407
6408 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6409 VDEV_ALLOC_ADD)) != 0)
6410 return (spa_vdev_exit(spa, NULL, txg, error));
6411
6412 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
6413
6414 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6415 &nspares) != 0)
6416 nspares = 0;
6417
6418 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6419 &nl2cache) != 0)
6420 nl2cache = 0;
6421
6422 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6423 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6424
6425 if (vd->vdev_children != 0 &&
6426 (error = vdev_create(vd, txg, B_FALSE)) != 0)
6427 return (spa_vdev_exit(spa, vd, txg, error));
6428
6429 /*
6430 * We must validate the spares and l2cache devices after checking the
6431 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
6432 */
6433 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6434 return (spa_vdev_exit(spa, vd, txg, error));
6435
6436 /*
6437 * If we are in the middle of a device removal, we can only add
6438 * devices which match the existing devices in the pool.
6439 * If we are in the middle of a removal, or have some indirect
6440 * vdevs, we can not add raidz toplevels.
6441 */
6442 if (spa->spa_vdev_removal != NULL ||
6443 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6444 for (int c = 0; c < vd->vdev_children; c++) {
6445 tvd = vd->vdev_child[c];
6446 if (spa->spa_vdev_removal != NULL &&
6447 tvd->vdev_ashift != spa->spa_max_ashift) {
6448 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6449 }
6450 /* Fail if top level vdev is raidz */
6451 if (tvd->vdev_ops == &vdev_raidz_ops) {
6452 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6453 }
6454 /*
6455 * Need the top level mirror to be
6456 * a mirror of leaf vdevs only
6457 */
6458 if (tvd->vdev_ops == &vdev_mirror_ops) {
6459 for (uint64_t cid = 0;
6460 cid < tvd->vdev_children; cid++) {
6461 vdev_t *cvd = tvd->vdev_child[cid];
6462 if (!cvd->vdev_ops->vdev_op_leaf) {
6463 return (spa_vdev_exit(spa, vd,
6464 txg, EINVAL));
6465 }
6466 }
6467 }
6468 }
6469 }
6470
6471 for (int c = 0; c < vd->vdev_children; c++) {
6472 tvd = vd->vdev_child[c];
6473 vdev_remove_child(vd, tvd);
6474 tvd->vdev_id = rvd->vdev_children;
6475 vdev_add_child(rvd, tvd);
6476 vdev_config_dirty(tvd);
6477 }
6478
6479 if (nspares != 0) {
6480 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6481 ZPOOL_CONFIG_SPARES);
6482 spa_load_spares(spa);
6483 spa->spa_spares.sav_sync = B_TRUE;
6484 }
6485
6486 if (nl2cache != 0) {
6487 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6488 ZPOOL_CONFIG_L2CACHE);
6489 spa_load_l2cache(spa);
6490 spa->spa_l2cache.sav_sync = B_TRUE;
6491 }
6492
6493 /*
6494 * We have to be careful when adding new vdevs to an existing pool.
6495 * If other threads start allocating from these vdevs before we
6496 * sync the config cache, and we lose power, then upon reboot we may
6497 * fail to open the pool because there are DVAs that the config cache
6498 * can't translate. Therefore, we first add the vdevs without
6499 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6500 * and then let spa_config_update() initialize the new metaslabs.
6501 *
6502 * spa_load() checks for added-but-not-initialized vdevs, so that
6503 * if we lose power at any point in this sequence, the remaining
6504 * steps will be completed the next time we load the pool.
6505 */
6506 (void) spa_vdev_exit(spa, vd, txg, 0);
6507
6508 mutex_enter(&spa_namespace_lock);
6509 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6510 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6511 mutex_exit(&spa_namespace_lock);
6512
6513 return (0);
6514 }
6515
6516 /*
6517 * Attach a device to a mirror. The arguments are the path to any device
6518 * in the mirror, and the nvroot for the new device. If the path specifies
6519 * a device that is not mirrored, we automatically insert the mirror vdev.
6520 *
6521 * If 'replacing' is specified, the new device is intended to replace the
6522 * existing device; in this case the two devices are made into their own
6523 * mirror using the 'replacing' vdev, which is functionally identical to
6524 * the mirror vdev (it actually reuses all the same ops) but has a few
6525 * extra rules: you can't attach to it after it's been created, and upon
6526 * completion of resilvering, the first disk (the one being replaced)
6527 * is automatically detached.
6528 */
6529 int
6530 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
6531 {
6532 uint64_t txg, dtl_max_txg;
6533 vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
6534 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6535 vdev_ops_t *pvops;
6536 char *oldvdpath, *newvdpath;
6537 int newvd_isspare;
6538 int error;
6539
6540 ASSERT(spa_writeable(spa));
6541
6542 txg = spa_vdev_enter(spa);
6543
6544 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6545
6546 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6547 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6548 error = (spa_has_checkpoint(spa)) ?
6549 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6550 return (spa_vdev_exit(spa, NULL, txg, error));
6551 }
6552
6553 if (spa->spa_vdev_removal != NULL)
6554 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6555
6556 if (oldvd == NULL)
6557 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6558
6559 if (!oldvd->vdev_ops->vdev_op_leaf)
6560 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6561
6562 pvd = oldvd->vdev_parent;
6563
6564 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6565 VDEV_ALLOC_ATTACH)) != 0)
6566 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6567
6568 if (newrootvd->vdev_children != 1)
6569 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6570
6571 newvd = newrootvd->vdev_child[0];
6572
6573 if (!newvd->vdev_ops->vdev_op_leaf)
6574 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6575
6576 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6577 return (spa_vdev_exit(spa, newrootvd, txg, error));
6578
6579 /*
6580 * Spares can't replace logs
6581 */
6582 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6583 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6584
6585 if (!replacing) {
6586 /*
6587 * For attach, the only allowable parent is a mirror or the root
6588 * vdev.
6589 */
6590 if (pvd->vdev_ops != &vdev_mirror_ops &&
6591 pvd->vdev_ops != &vdev_root_ops)
6592 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6593
6594 pvops = &vdev_mirror_ops;
6595 } else {
6596 /*
6597 * Active hot spares can only be replaced by inactive hot
6598 * spares.
6599 */
6600 if (pvd->vdev_ops == &vdev_spare_ops &&
6601 oldvd->vdev_isspare &&
6602 !spa_has_spare(spa, newvd->vdev_guid))
6603 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6604
6605 /*
6606 * If the source is a hot spare, and the parent isn't already a
6607 * spare, then we want to create a new hot spare. Otherwise, we
6608 * want to create a replacing vdev. The user is not allowed to
6609 * attach to a spared vdev child unless the 'isspare' state is
6610 * the same (spare replaces spare, non-spare replaces
6611 * non-spare).
6612 */
6613 if (pvd->vdev_ops == &vdev_replacing_ops &&
6614 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6615 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6616 } else if (pvd->vdev_ops == &vdev_spare_ops &&
6617 newvd->vdev_isspare != oldvd->vdev_isspare) {
6618 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6619 }
6620
6621 if (newvd->vdev_isspare)
6622 pvops = &vdev_spare_ops;
6623 else
6624 pvops = &vdev_replacing_ops;
6625 }
6626
6627 /*
6628 * Make sure the new device is big enough.
6629 */
6630 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6631 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6632
6633 /*
6634 * The new device cannot have a higher alignment requirement
6635 * than the top-level vdev.
6636 */
6637 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6638 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
6639
6640 /*
6641 * If this is an in-place replacement, update oldvd's path and devid
6642 * to make it distinguishable from newvd, and unopenable from now on.
6643 */
6644 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6645 spa_strfree(oldvd->vdev_path);
6646 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6647 KM_SLEEP);
6648 (void) sprintf(oldvd->vdev_path, "%s/%s",
6649 newvd->vdev_path, "old");
6650 if (oldvd->vdev_devid != NULL) {
6651 spa_strfree(oldvd->vdev_devid);
6652 oldvd->vdev_devid = NULL;
6653 }
6654 }
6655
6656 /* mark the device being resilvered */
6657 newvd->vdev_resilver_txg = txg;
6658
6659 /*
6660 * If the parent is not a mirror, or if we're replacing, insert the new
6661 * mirror/replacing/spare vdev above oldvd.
6662 */
6663 if (pvd->vdev_ops != pvops)
6664 pvd = vdev_add_parent(oldvd, pvops);
6665
6666 ASSERT(pvd->vdev_top->vdev_parent == rvd);
6667 ASSERT(pvd->vdev_ops == pvops);
6668 ASSERT(oldvd->vdev_parent == pvd);
6669
6670 /*
6671 * Extract the new device from its root and add it to pvd.
6672 */
6673 vdev_remove_child(newrootvd, newvd);
6674 newvd->vdev_id = pvd->vdev_children;
6675 newvd->vdev_crtxg = oldvd->vdev_crtxg;
6676 vdev_add_child(pvd, newvd);
6677
6678 /*
6679 * Reevaluate the parent vdev state.
6680 */
6681 vdev_propagate_state(pvd);
6682
6683 tvd = newvd->vdev_top;
6684 ASSERT(pvd->vdev_top == tvd);
6685 ASSERT(tvd->vdev_parent == rvd);
6686
6687 vdev_config_dirty(tvd);
6688
6689 /*
6690 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6691 * for any dmu_sync-ed blocks. It will propagate upward when
6692 * spa_vdev_exit() calls vdev_dtl_reassess().
6693 */
6694 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6695
6696 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
6697 dtl_max_txg - TXG_INITIAL);
6698
6699 if (newvd->vdev_isspare) {
6700 spa_spare_activate(newvd);
6701 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6702 }
6703
6704 oldvdpath = spa_strdup(oldvd->vdev_path);
6705 newvdpath = spa_strdup(newvd->vdev_path);
6706 newvd_isspare = newvd->vdev_isspare;
6707
6708 /*
6709 * Mark newvd's DTL dirty in this txg.
6710 */
6711 vdev_dirty(tvd, VDD_DTL, newvd, txg);
6712
6713 /*
6714 * Schedule the resilver to restart in the future. We do this to
6715 * ensure that dmu_sync-ed blocks have been stitched into the
6716 * respective datasets. We do not do this if resilvers have been
6717 * deferred.
6718 */
6719 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6720 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
6721 vdev_defer_resilver(newvd);
6722 else
6723 dsl_scan_restart_resilver(spa->spa_dsl_pool, dtl_max_txg);
6724
6725 if (spa->spa_bootfs)
6726 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6727
6728 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6729
6730 /*
6731 * Commit the config
6732 */
6733 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6734
6735 spa_history_log_internal(spa, "vdev attach", NULL,
6736 "%s vdev=%s %s vdev=%s",
6737 replacing && newvd_isspare ? "spare in" :
6738 replacing ? "replace" : "attach", newvdpath,
6739 replacing ? "for" : "to", oldvdpath);
6740
6741 spa_strfree(oldvdpath);
6742 spa_strfree(newvdpath);
6743
6744 return (0);
6745 }
6746
6747 /*
6748 * Detach a device from a mirror or replacing vdev.
6749 *
6750 * If 'replace_done' is specified, only detach if the parent
6751 * is a replacing vdev.
6752 */
6753 int
6754 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6755 {
6756 uint64_t txg;
6757 int error;
6758 vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
6759 vdev_t *vd, *pvd, *cvd, *tvd;
6760 boolean_t unspare = B_FALSE;
6761 uint64_t unspare_guid = 0;
6762 char *vdpath;
6763
6764 ASSERT(spa_writeable(spa));
6765
6766 txg = spa_vdev_enter(spa);
6767
6768 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6769
6770 /*
6771 * Besides being called directly from the userland through the
6772 * ioctl interface, spa_vdev_detach() can be potentially called
6773 * at the end of spa_vdev_resilver_done().
6774 *
6775 * In the regular case, when we have a checkpoint this shouldn't
6776 * happen as we never empty the DTLs of a vdev during the scrub
6777 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6778 * should never get here when we have a checkpoint.
6779 *
6780 * That said, even in a case when we checkpoint the pool exactly
6781 * as spa_vdev_resilver_done() calls this function everything
6782 * should be fine as the resilver will return right away.
6783 */
6784 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6785 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6786 error = (spa_has_checkpoint(spa)) ?
6787 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6788 return (spa_vdev_exit(spa, NULL, txg, error));
6789 }
6790
6791 if (vd == NULL)
6792 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6793
6794 if (!vd->vdev_ops->vdev_op_leaf)
6795 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6796
6797 pvd = vd->vdev_parent;
6798
6799 /*
6800 * If the parent/child relationship is not as expected, don't do it.
6801 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6802 * vdev that's replacing B with C. The user's intent in replacing
6803 * is to go from M(A,B) to M(A,C). If the user decides to cancel
6804 * the replace by detaching C, the expected behavior is to end up
6805 * M(A,B). But suppose that right after deciding to detach C,
6806 * the replacement of B completes. We would have M(A,C), and then
6807 * ask to detach C, which would leave us with just A -- not what
6808 * the user wanted. To prevent this, we make sure that the
6809 * parent/child relationship hasn't changed -- in this example,
6810 * that C's parent is still the replacing vdev R.
6811 */
6812 if (pvd->vdev_guid != pguid && pguid != 0)
6813 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6814
6815 /*
6816 * Only 'replacing' or 'spare' vdevs can be replaced.
6817 */
6818 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
6819 pvd->vdev_ops != &vdev_spare_ops)
6820 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6821
6822 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
6823 spa_version(spa) >= SPA_VERSION_SPARES);
6824
6825 /*
6826 * Only mirror, replacing, and spare vdevs support detach.
6827 */
6828 if (pvd->vdev_ops != &vdev_replacing_ops &&
6829 pvd->vdev_ops != &vdev_mirror_ops &&
6830 pvd->vdev_ops != &vdev_spare_ops)
6831 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6832
6833 /*
6834 * If this device has the only valid copy of some data,
6835 * we cannot safely detach it.
6836 */
6837 if (vdev_dtl_required(vd))
6838 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6839
6840 ASSERT(pvd->vdev_children >= 2);
6841
6842 /*
6843 * If we are detaching the second disk from a replacing vdev, then
6844 * check to see if we changed the original vdev's path to have "/old"
6845 * at the end in spa_vdev_attach(). If so, undo that change now.
6846 */
6847 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
6848 vd->vdev_path != NULL) {
6849 size_t len = strlen(vd->vdev_path);
6850
6851 for (int c = 0; c < pvd->vdev_children; c++) {
6852 cvd = pvd->vdev_child[c];
6853
6854 if (cvd == vd || cvd->vdev_path == NULL)
6855 continue;
6856
6857 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
6858 strcmp(cvd->vdev_path + len, "/old") == 0) {
6859 spa_strfree(cvd->vdev_path);
6860 cvd->vdev_path = spa_strdup(vd->vdev_path);
6861 break;
6862 }
6863 }
6864 }
6865
6866 /*
6867 * If we are detaching the original disk from a spare, then it implies
6868 * that the spare should become a real disk, and be removed from the
6869 * active spare list for the pool.
6870 */
6871 if (pvd->vdev_ops == &vdev_spare_ops &&
6872 vd->vdev_id == 0 &&
6873 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
6874 unspare = B_TRUE;
6875
6876 /*
6877 * Erase the disk labels so the disk can be used for other things.
6878 * This must be done after all other error cases are handled,
6879 * but before we disembowel vd (so we can still do I/O to it).
6880 * But if we can't do it, don't treat the error as fatal --
6881 * it may be that the unwritability of the disk is the reason
6882 * it's being detached!
6883 */
6884 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
6885
6886 /*
6887 * Remove vd from its parent and compact the parent's children.
6888 */
6889 vdev_remove_child(pvd, vd);
6890 vdev_compact_children(pvd);
6891
6892 /*
6893 * Remember one of the remaining children so we can get tvd below.
6894 */
6895 cvd = pvd->vdev_child[pvd->vdev_children - 1];
6896
6897 /*
6898 * If we need to remove the remaining child from the list of hot spares,
6899 * do it now, marking the vdev as no longer a spare in the process.
6900 * We must do this before vdev_remove_parent(), because that can
6901 * change the GUID if it creates a new toplevel GUID. For a similar
6902 * reason, we must remove the spare now, in the same txg as the detach;
6903 * otherwise someone could attach a new sibling, change the GUID, and
6904 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
6905 */
6906 if (unspare) {
6907 ASSERT(cvd->vdev_isspare);
6908 spa_spare_remove(cvd);
6909 unspare_guid = cvd->vdev_guid;
6910 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6911 cvd->vdev_unspare = B_TRUE;
6912 }
6913
6914 /*
6915 * If the parent mirror/replacing vdev only has one child,
6916 * the parent is no longer needed. Remove it from the tree.
6917 */
6918 if (pvd->vdev_children == 1) {
6919 if (pvd->vdev_ops == &vdev_spare_ops)
6920 cvd->vdev_unspare = B_FALSE;
6921 vdev_remove_parent(cvd);
6922 }
6923
6924 /*
6925 * We don't set tvd until now because the parent we just removed
6926 * may have been the previous top-level vdev.
6927 */
6928 tvd = cvd->vdev_top;
6929 ASSERT(tvd->vdev_parent == rvd);
6930
6931 /*
6932 * Reevaluate the parent vdev state.
6933 */
6934 vdev_propagate_state(cvd);
6935
6936 /*
6937 * If the 'autoexpand' property is set on the pool then automatically
6938 * try to expand the size of the pool. For example if the device we
6939 * just detached was smaller than the others, it may be possible to
6940 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6941 * first so that we can obtain the updated sizes of the leaf vdevs.
6942 */
6943 if (spa->spa_autoexpand) {
6944 vdev_reopen(tvd);
6945 vdev_expand(tvd, txg);
6946 }
6947
6948 vdev_config_dirty(tvd);
6949
6950 /*
6951 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
6952 * vd->vdev_detached is set and free vd's DTL object in syncing context.
6953 * But first make sure we're not on any *other* txg's DTL list, to
6954 * prevent vd from being accessed after it's freed.
6955 */
6956 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
6957 for (int t = 0; t < TXG_SIZE; t++)
6958 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
6959 vd->vdev_detached = B_TRUE;
6960 vdev_dirty(tvd, VDD_DTL, vd, txg);
6961
6962 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
6963 spa_notify_waiters(spa);
6964
6965 /* hang on to the spa before we release the lock */
6966 spa_open_ref(spa, FTAG);
6967
6968 error = spa_vdev_exit(spa, vd, txg, 0);
6969
6970 spa_history_log_internal(spa, "detach", NULL,
6971 "vdev=%s", vdpath);
6972 spa_strfree(vdpath);
6973
6974 /*
6975 * If this was the removal of the original device in a hot spare vdev,
6976 * then we want to go through and remove the device from the hot spare
6977 * list of every other pool.
6978 */
6979 if (unspare) {
6980 spa_t *altspa = NULL;
6981
6982 mutex_enter(&spa_namespace_lock);
6983 while ((altspa = spa_next(altspa)) != NULL) {
6984 if (altspa->spa_state != POOL_STATE_ACTIVE ||
6985 altspa == spa)
6986 continue;
6987
6988 spa_open_ref(altspa, FTAG);
6989 mutex_exit(&spa_namespace_lock);
6990 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
6991 mutex_enter(&spa_namespace_lock);
6992 spa_close(altspa, FTAG);
6993 }
6994 mutex_exit(&spa_namespace_lock);
6995
6996 /* search the rest of the vdevs for spares to remove */
6997 spa_vdev_resilver_done(spa);
6998 }
6999
7000 /* all done with the spa; OK to release */
7001 mutex_enter(&spa_namespace_lock);
7002 spa_close(spa, FTAG);
7003 mutex_exit(&spa_namespace_lock);
7004
7005 return (error);
7006 }
7007
7008 static int
7009 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7010 list_t *vd_list)
7011 {
7012 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7013
7014 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7015
7016 /* Look up vdev and ensure it's a leaf. */
7017 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7018 if (vd == NULL || vd->vdev_detached) {
7019 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7020 return (SET_ERROR(ENODEV));
7021 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7022 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7023 return (SET_ERROR(EINVAL));
7024 } else if (!vdev_writeable(vd)) {
7025 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7026 return (SET_ERROR(EROFS));
7027 }
7028 mutex_enter(&vd->vdev_initialize_lock);
7029 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7030
7031 /*
7032 * When we activate an initialize action we check to see
7033 * if the vdev_initialize_thread is NULL. We do this instead
7034 * of using the vdev_initialize_state since there might be
7035 * a previous initialization process which has completed but
7036 * the thread is not exited.
7037 */
7038 if (cmd_type == POOL_INITIALIZE_START &&
7039 (vd->vdev_initialize_thread != NULL ||
7040 vd->vdev_top->vdev_removing)) {
7041 mutex_exit(&vd->vdev_initialize_lock);
7042 return (SET_ERROR(EBUSY));
7043 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7044 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7045 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7046 mutex_exit(&vd->vdev_initialize_lock);
7047 return (SET_ERROR(ESRCH));
7048 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7049 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7050 mutex_exit(&vd->vdev_initialize_lock);
7051 return (SET_ERROR(ESRCH));
7052 }
7053
7054 switch (cmd_type) {
7055 case POOL_INITIALIZE_START:
7056 vdev_initialize(vd);
7057 break;
7058 case POOL_INITIALIZE_CANCEL:
7059 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7060 break;
7061 case POOL_INITIALIZE_SUSPEND:
7062 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7063 break;
7064 default:
7065 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7066 }
7067 mutex_exit(&vd->vdev_initialize_lock);
7068
7069 return (0);
7070 }
7071
7072 int
7073 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7074 nvlist_t *vdev_errlist)
7075 {
7076 int total_errors = 0;
7077 list_t vd_list;
7078
7079 list_create(&vd_list, sizeof (vdev_t),
7080 offsetof(vdev_t, vdev_initialize_node));
7081
7082 /*
7083 * We hold the namespace lock through the whole function
7084 * to prevent any changes to the pool while we're starting or
7085 * stopping initialization. The config and state locks are held so that
7086 * we can properly assess the vdev state before we commit to
7087 * the initializing operation.
7088 */
7089 mutex_enter(&spa_namespace_lock);
7090
7091 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7092 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7093 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7094
7095 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7096 &vd_list);
7097 if (error != 0) {
7098 char guid_as_str[MAXNAMELEN];
7099
7100 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7101 "%llu", (unsigned long long)vdev_guid);
7102 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7103 total_errors++;
7104 }
7105 }
7106
7107 /* Wait for all initialize threads to stop. */
7108 vdev_initialize_stop_wait(spa, &vd_list);
7109
7110 /* Sync out the initializing state */
7111 txg_wait_synced(spa->spa_dsl_pool, 0);
7112 mutex_exit(&spa_namespace_lock);
7113
7114 list_destroy(&vd_list);
7115
7116 return (total_errors);
7117 }
7118
7119 static int
7120 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7121 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7122 {
7123 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7124
7125 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7126
7127 /* Look up vdev and ensure it's a leaf. */
7128 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7129 if (vd == NULL || vd->vdev_detached) {
7130 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7131 return (SET_ERROR(ENODEV));
7132 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7133 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7134 return (SET_ERROR(EINVAL));
7135 } else if (!vdev_writeable(vd)) {
7136 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7137 return (SET_ERROR(EROFS));
7138 } else if (!vd->vdev_has_trim) {
7139 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7140 return (SET_ERROR(EOPNOTSUPP));
7141 } else if (secure && !vd->vdev_has_securetrim) {
7142 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7143 return (SET_ERROR(EOPNOTSUPP));
7144 }
7145 mutex_enter(&vd->vdev_trim_lock);
7146 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7147
7148 /*
7149 * When we activate a TRIM action we check to see if the
7150 * vdev_trim_thread is NULL. We do this instead of using the
7151 * vdev_trim_state since there might be a previous TRIM process
7152 * which has completed but the thread is not exited.
7153 */
7154 if (cmd_type == POOL_TRIM_START &&
7155 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7156 mutex_exit(&vd->vdev_trim_lock);
7157 return (SET_ERROR(EBUSY));
7158 } else if (cmd_type == POOL_TRIM_CANCEL &&
7159 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7160 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7161 mutex_exit(&vd->vdev_trim_lock);
7162 return (SET_ERROR(ESRCH));
7163 } else if (cmd_type == POOL_TRIM_SUSPEND &&
7164 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7165 mutex_exit(&vd->vdev_trim_lock);
7166 return (SET_ERROR(ESRCH));
7167 }
7168
7169 switch (cmd_type) {
7170 case POOL_TRIM_START:
7171 vdev_trim(vd, rate, partial, secure);
7172 break;
7173 case POOL_TRIM_CANCEL:
7174 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7175 break;
7176 case POOL_TRIM_SUSPEND:
7177 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7178 break;
7179 default:
7180 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7181 }
7182 mutex_exit(&vd->vdev_trim_lock);
7183
7184 return (0);
7185 }
7186
7187 /*
7188 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7189 * TRIM threads for each child vdev. These threads pass over all of the free
7190 * space in the vdev's metaslabs and issues TRIM commands for that space.
7191 */
7192 int
7193 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7194 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7195 {
7196 int total_errors = 0;
7197 list_t vd_list;
7198
7199 list_create(&vd_list, sizeof (vdev_t),
7200 offsetof(vdev_t, vdev_trim_node));
7201
7202 /*
7203 * We hold the namespace lock through the whole function
7204 * to prevent any changes to the pool while we're starting or
7205 * stopping TRIM. The config and state locks are held so that
7206 * we can properly assess the vdev state before we commit to
7207 * the TRIM operation.
7208 */
7209 mutex_enter(&spa_namespace_lock);
7210
7211 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7212 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7213 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7214
7215 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7216 rate, partial, secure, &vd_list);
7217 if (error != 0) {
7218 char guid_as_str[MAXNAMELEN];
7219
7220 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7221 "%llu", (unsigned long long)vdev_guid);
7222 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7223 total_errors++;
7224 }
7225 }
7226
7227 /* Wait for all TRIM threads to stop. */
7228 vdev_trim_stop_wait(spa, &vd_list);
7229
7230 /* Sync out the TRIM state */
7231 txg_wait_synced(spa->spa_dsl_pool, 0);
7232 mutex_exit(&spa_namespace_lock);
7233
7234 list_destroy(&vd_list);
7235
7236 return (total_errors);
7237 }
7238
7239 /*
7240 * Split a set of devices from their mirrors, and create a new pool from them.
7241 */
7242 int
7243 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
7244 nvlist_t *props, boolean_t exp)
7245 {
7246 int error = 0;
7247 uint64_t txg, *glist;
7248 spa_t *newspa;
7249 uint_t c, children, lastlog;
7250 nvlist_t **child, *nvl, *tmp;
7251 dmu_tx_t *tx;
7252 char *altroot = NULL;
7253 vdev_t *rvd, **vml = NULL; /* vdev modify list */
7254 boolean_t activate_slog;
7255
7256 ASSERT(spa_writeable(spa));
7257
7258 txg = spa_vdev_enter(spa);
7259
7260 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7261 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7262 error = (spa_has_checkpoint(spa)) ?
7263 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7264 return (spa_vdev_exit(spa, NULL, txg, error));
7265 }
7266
7267 /* clear the log and flush everything up to now */
7268 activate_slog = spa_passivate_log(spa);
7269 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7270 error = spa_reset_logs(spa);
7271 txg = spa_vdev_config_enter(spa);
7272
7273 if (activate_slog)
7274 spa_activate_log(spa);
7275
7276 if (error != 0)
7277 return (spa_vdev_exit(spa, NULL, txg, error));
7278
7279 /* check new spa name before going any further */
7280 if (spa_lookup(newname) != NULL)
7281 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7282
7283 /*
7284 * scan through all the children to ensure they're all mirrors
7285 */
7286 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7287 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7288 &children) != 0)
7289 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7290
7291 /* first, check to ensure we've got the right child count */
7292 rvd = spa->spa_root_vdev;
7293 lastlog = 0;
7294 for (c = 0; c < rvd->vdev_children; c++) {
7295 vdev_t *vd = rvd->vdev_child[c];
7296
7297 /* don't count the holes & logs as children */
7298 if (vd->vdev_islog || !vdev_is_concrete(vd)) {
7299 if (lastlog == 0)
7300 lastlog = c;
7301 continue;
7302 }
7303
7304 lastlog = 0;
7305 }
7306 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7307 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7308
7309 /* next, ensure no spare or cache devices are part of the split */
7310 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7311 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7312 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7313
7314 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7315 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7316
7317 /* then, loop over each vdev and validate it */
7318 for (c = 0; c < children; c++) {
7319 uint64_t is_hole = 0;
7320
7321 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7322 &is_hole);
7323
7324 if (is_hole != 0) {
7325 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7326 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7327 continue;
7328 } else {
7329 error = SET_ERROR(EINVAL);
7330 break;
7331 }
7332 }
7333
7334 /* which disk is going to be split? */
7335 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7336 &glist[c]) != 0) {
7337 error = SET_ERROR(EINVAL);
7338 break;
7339 }
7340
7341 /* look it up in the spa */
7342 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7343 if (vml[c] == NULL) {
7344 error = SET_ERROR(ENODEV);
7345 break;
7346 }
7347
7348 /* make sure there's nothing stopping the split */
7349 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7350 vml[c]->vdev_islog ||
7351 !vdev_is_concrete(vml[c]) ||
7352 vml[c]->vdev_isspare ||
7353 vml[c]->vdev_isl2cache ||
7354 !vdev_writeable(vml[c]) ||
7355 vml[c]->vdev_children != 0 ||
7356 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7357 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7358 error = SET_ERROR(EINVAL);
7359 break;
7360 }
7361
7362 if (vdev_dtl_required(vml[c]) ||
7363 vdev_resilver_needed(vml[c], NULL, NULL)) {
7364 error = SET_ERROR(EBUSY);
7365 break;
7366 }
7367
7368 /* we need certain info from the top level */
7369 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7370 vml[c]->vdev_top->vdev_ms_array) == 0);
7371 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7372 vml[c]->vdev_top->vdev_ms_shift) == 0);
7373 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7374 vml[c]->vdev_top->vdev_asize) == 0);
7375 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7376 vml[c]->vdev_top->vdev_ashift) == 0);
7377
7378 /* transfer per-vdev ZAPs */
7379 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7380 VERIFY0(nvlist_add_uint64(child[c],
7381 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7382
7383 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7384 VERIFY0(nvlist_add_uint64(child[c],
7385 ZPOOL_CONFIG_VDEV_TOP_ZAP,
7386 vml[c]->vdev_parent->vdev_top_zap));
7387 }
7388
7389 if (error != 0) {
7390 kmem_free(vml, children * sizeof (vdev_t *));
7391 kmem_free(glist, children * sizeof (uint64_t));
7392 return (spa_vdev_exit(spa, NULL, txg, error));
7393 }
7394
7395 /* stop writers from using the disks */
7396 for (c = 0; c < children; c++) {
7397 if (vml[c] != NULL)
7398 vml[c]->vdev_offline = B_TRUE;
7399 }
7400 vdev_reopen(spa->spa_root_vdev);
7401
7402 /*
7403 * Temporarily record the splitting vdevs in the spa config. This
7404 * will disappear once the config is regenerated.
7405 */
7406 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7407 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
7408 glist, children) == 0);
7409 kmem_free(glist, children * sizeof (uint64_t));
7410
7411 mutex_enter(&spa->spa_props_lock);
7412 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
7413 nvl) == 0);
7414 mutex_exit(&spa->spa_props_lock);
7415 spa->spa_config_splitting = nvl;
7416 vdev_config_dirty(spa->spa_root_vdev);
7417
7418 /* configure and create the new pool */
7419 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
7420 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7421 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
7422 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7423 spa_version(spa)) == 0);
7424 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
7425 spa->spa_config_txg) == 0);
7426 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7427 spa_generate_guid(NULL)) == 0);
7428 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7429 (void) nvlist_lookup_string(props,
7430 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7431
7432 /* add the new pool to the namespace */
7433 newspa = spa_add(newname, config, altroot);
7434 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7435 newspa->spa_config_txg = spa->spa_config_txg;
7436 spa_set_log_state(newspa, SPA_LOG_CLEAR);
7437
7438 /* release the spa config lock, retaining the namespace lock */
7439 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7440
7441 if (zio_injection_enabled)
7442 zio_handle_panic_injection(spa, FTAG, 1);
7443
7444 spa_activate(newspa, spa_mode_global);
7445 spa_async_suspend(newspa);
7446
7447 /*
7448 * Temporarily stop the initializing and TRIM activity. We set the
7449 * state to ACTIVE so that we know to resume initializing or TRIM
7450 * once the split has completed.
7451 */
7452 list_t vd_initialize_list;
7453 list_create(&vd_initialize_list, sizeof (vdev_t),
7454 offsetof(vdev_t, vdev_initialize_node));
7455
7456 list_t vd_trim_list;
7457 list_create(&vd_trim_list, sizeof (vdev_t),
7458 offsetof(vdev_t, vdev_trim_node));
7459
7460 for (c = 0; c < children; c++) {
7461 if (vml[c] != NULL) {
7462 mutex_enter(&vml[c]->vdev_initialize_lock);
7463 vdev_initialize_stop(vml[c],
7464 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7465 mutex_exit(&vml[c]->vdev_initialize_lock);
7466
7467 mutex_enter(&vml[c]->vdev_trim_lock);
7468 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7469 mutex_exit(&vml[c]->vdev_trim_lock);
7470 }
7471 }
7472
7473 vdev_initialize_stop_wait(spa, &vd_initialize_list);
7474 vdev_trim_stop_wait(spa, &vd_trim_list);
7475
7476 list_destroy(&vd_initialize_list);
7477 list_destroy(&vd_trim_list);
7478
7479 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7480
7481 /* create the new pool from the disks of the original pool */
7482 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7483 if (error)
7484 goto out;
7485
7486 /* if that worked, generate a real config for the new pool */
7487 if (newspa->spa_root_vdev != NULL) {
7488 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
7489 NV_UNIQUE_NAME, KM_SLEEP) == 0);
7490 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
7491 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
7492 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7493 B_TRUE));
7494 }
7495
7496 /* set the props */
7497 if (props != NULL) {
7498 spa_configfile_set(newspa, props, B_FALSE);
7499 error = spa_prop_set(newspa, props);
7500 if (error)
7501 goto out;
7502 }
7503
7504 /* flush everything */
7505 txg = spa_vdev_config_enter(newspa);
7506 vdev_config_dirty(newspa->spa_root_vdev);
7507 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7508
7509 if (zio_injection_enabled)
7510 zio_handle_panic_injection(spa, FTAG, 2);
7511
7512 spa_async_resume(newspa);
7513
7514 /* finally, update the original pool's config */
7515 txg = spa_vdev_config_enter(spa);
7516 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7517 error = dmu_tx_assign(tx, TXG_WAIT);
7518 if (error != 0)
7519 dmu_tx_abort(tx);
7520 for (c = 0; c < children; c++) {
7521 if (vml[c] != NULL) {
7522 vdev_t *tvd = vml[c]->vdev_top;
7523
7524 /*
7525 * Need to be sure the detachable VDEV is not
7526 * on any *other* txg's DTL list to prevent it
7527 * from being accessed after it's freed.
7528 */
7529 for (int t = 0; t < TXG_SIZE; t++) {
7530 (void) txg_list_remove_this(
7531 &tvd->vdev_dtl_list, vml[c], t);
7532 }
7533
7534 vdev_split(vml[c]);
7535 if (error == 0)
7536 spa_history_log_internal(spa, "detach", tx,
7537 "vdev=%s", vml[c]->vdev_path);
7538
7539 vdev_free(vml[c]);
7540 }
7541 }
7542 spa->spa_avz_action = AVZ_ACTION_REBUILD;
7543 vdev_config_dirty(spa->spa_root_vdev);
7544 spa->spa_config_splitting = NULL;
7545 nvlist_free(nvl);
7546 if (error == 0)
7547 dmu_tx_commit(tx);
7548 (void) spa_vdev_exit(spa, NULL, txg, 0);
7549
7550 if (zio_injection_enabled)
7551 zio_handle_panic_injection(spa, FTAG, 3);
7552
7553 /* split is complete; log a history record */
7554 spa_history_log_internal(newspa, "split", NULL,
7555 "from pool %s", spa_name(spa));
7556
7557 kmem_free(vml, children * sizeof (vdev_t *));
7558
7559 /* if we're not going to mount the filesystems in userland, export */
7560 if (exp)
7561 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7562 B_FALSE, B_FALSE);
7563
7564 return (error);
7565
7566 out:
7567 spa_unload(newspa);
7568 spa_deactivate(newspa);
7569 spa_remove(newspa);
7570
7571 txg = spa_vdev_config_enter(spa);
7572
7573 /* re-online all offlined disks */
7574 for (c = 0; c < children; c++) {
7575 if (vml[c] != NULL)
7576 vml[c]->vdev_offline = B_FALSE;
7577 }
7578
7579 /* restart initializing or trimming disks as necessary */
7580 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7581 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7582 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7583
7584 vdev_reopen(spa->spa_root_vdev);
7585
7586 nvlist_free(spa->spa_config_splitting);
7587 spa->spa_config_splitting = NULL;
7588 (void) spa_vdev_exit(spa, NULL, txg, error);
7589
7590 kmem_free(vml, children * sizeof (vdev_t *));
7591 return (error);
7592 }
7593
7594 /*
7595 * Find any device that's done replacing, or a vdev marked 'unspare' that's
7596 * currently spared, so we can detach it.
7597 */
7598 static vdev_t *
7599 spa_vdev_resilver_done_hunt(vdev_t *vd)
7600 {
7601 vdev_t *newvd, *oldvd;
7602
7603 for (int c = 0; c < vd->vdev_children; c++) {
7604 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7605 if (oldvd != NULL)
7606 return (oldvd);
7607 }
7608
7609 /*
7610 * Check for a completed replacement. We always consider the first
7611 * vdev in the list to be the oldest vdev, and the last one to be
7612 * the newest (see spa_vdev_attach() for how that works). In
7613 * the case where the newest vdev is faulted, we will not automatically
7614 * remove it after a resilver completes. This is OK as it will require
7615 * user intervention to determine which disk the admin wishes to keep.
7616 */
7617 if (vd->vdev_ops == &vdev_replacing_ops) {
7618 ASSERT(vd->vdev_children > 1);
7619
7620 newvd = vd->vdev_child[vd->vdev_children - 1];
7621 oldvd = vd->vdev_child[0];
7622
7623 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7624 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7625 !vdev_dtl_required(oldvd))
7626 return (oldvd);
7627 }
7628
7629 /*
7630 * Check for a completed resilver with the 'unspare' flag set.
7631 * Also potentially update faulted state.
7632 */
7633 if (vd->vdev_ops == &vdev_spare_ops) {
7634 vdev_t *first = vd->vdev_child[0];
7635 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7636
7637 if (last->vdev_unspare) {
7638 oldvd = first;
7639 newvd = last;
7640 } else if (first->vdev_unspare) {
7641 oldvd = last;
7642 newvd = first;
7643 } else {
7644 oldvd = NULL;
7645 }
7646
7647 if (oldvd != NULL &&
7648 vdev_dtl_empty(newvd, DTL_MISSING) &&
7649 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7650 !vdev_dtl_required(oldvd))
7651 return (oldvd);
7652
7653 vdev_propagate_state(vd);
7654
7655 /*
7656 * If there are more than two spares attached to a disk,
7657 * and those spares are not required, then we want to
7658 * attempt to free them up now so that they can be used
7659 * by other pools. Once we're back down to a single
7660 * disk+spare, we stop removing them.
7661 */
7662 if (vd->vdev_children > 2) {
7663 newvd = vd->vdev_child[1];
7664
7665 if (newvd->vdev_isspare && last->vdev_isspare &&
7666 vdev_dtl_empty(last, DTL_MISSING) &&
7667 vdev_dtl_empty(last, DTL_OUTAGE) &&
7668 !vdev_dtl_required(newvd))
7669 return (newvd);
7670 }
7671 }
7672
7673 return (NULL);
7674 }
7675
7676 static void
7677 spa_vdev_resilver_done(spa_t *spa)
7678 {
7679 vdev_t *vd, *pvd, *ppvd;
7680 uint64_t guid, sguid, pguid, ppguid;
7681
7682 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7683
7684 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7685 pvd = vd->vdev_parent;
7686 ppvd = pvd->vdev_parent;
7687 guid = vd->vdev_guid;
7688 pguid = pvd->vdev_guid;
7689 ppguid = ppvd->vdev_guid;
7690 sguid = 0;
7691 /*
7692 * If we have just finished replacing a hot spared device, then
7693 * we need to detach the parent's first child (the original hot
7694 * spare) as well.
7695 */
7696 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7697 ppvd->vdev_children == 2) {
7698 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7699 sguid = ppvd->vdev_child[1]->vdev_guid;
7700 }
7701 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7702
7703 spa_config_exit(spa, SCL_ALL, FTAG);
7704 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7705 return;
7706 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7707 return;
7708 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7709 }
7710
7711 spa_config_exit(spa, SCL_ALL, FTAG);
7712 }
7713
7714 /*
7715 * Update the stored path or FRU for this vdev.
7716 */
7717 int
7718 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
7719 boolean_t ispath)
7720 {
7721 vdev_t *vd;
7722 boolean_t sync = B_FALSE;
7723
7724 ASSERT(spa_writeable(spa));
7725
7726 spa_vdev_state_enter(spa, SCL_ALL);
7727
7728 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
7729 return (spa_vdev_state_exit(spa, NULL, ENOENT));
7730
7731 if (!vd->vdev_ops->vdev_op_leaf)
7732 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
7733
7734 if (ispath) {
7735 if (strcmp(value, vd->vdev_path) != 0) {
7736 spa_strfree(vd->vdev_path);
7737 vd->vdev_path = spa_strdup(value);
7738 sync = B_TRUE;
7739 }
7740 } else {
7741 if (vd->vdev_fru == NULL) {
7742 vd->vdev_fru = spa_strdup(value);
7743 sync = B_TRUE;
7744 } else if (strcmp(value, vd->vdev_fru) != 0) {
7745 spa_strfree(vd->vdev_fru);
7746 vd->vdev_fru = spa_strdup(value);
7747 sync = B_TRUE;
7748 }
7749 }
7750
7751 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
7752 }
7753
7754 int
7755 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
7756 {
7757 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
7758 }
7759
7760 int
7761 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
7762 {
7763 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
7764 }
7765
7766 /*
7767 * ==========================================================================
7768 * SPA Scanning
7769 * ==========================================================================
7770 */
7771 int
7772 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
7773 {
7774 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7775
7776 if (dsl_scan_resilvering(spa->spa_dsl_pool))
7777 return (SET_ERROR(EBUSY));
7778
7779 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
7780 }
7781
7782 int
7783 spa_scan_stop(spa_t *spa)
7784 {
7785 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7786 if (dsl_scan_resilvering(spa->spa_dsl_pool))
7787 return (SET_ERROR(EBUSY));
7788 return (dsl_scan_cancel(spa->spa_dsl_pool));
7789 }
7790
7791 int
7792 spa_scan(spa_t *spa, pool_scan_func_t func)
7793 {
7794 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7795
7796 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
7797 return (SET_ERROR(ENOTSUP));
7798
7799 if (func == POOL_SCAN_RESILVER &&
7800 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
7801 return (SET_ERROR(ENOTSUP));
7802
7803 /*
7804 * If a resilver was requested, but there is no DTL on a
7805 * writeable leaf device, we have nothing to do.
7806 */
7807 if (func == POOL_SCAN_RESILVER &&
7808 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
7809 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
7810 return (0);
7811 }
7812
7813 return (dsl_scan(spa->spa_dsl_pool, func));
7814 }
7815
7816 /*
7817 * ==========================================================================
7818 * SPA async task processing
7819 * ==========================================================================
7820 */
7821
7822 static void
7823 spa_async_remove(spa_t *spa, vdev_t *vd)
7824 {
7825 if (vd->vdev_remove_wanted) {
7826 vd->vdev_remove_wanted = B_FALSE;
7827 vd->vdev_delayed_close = B_FALSE;
7828 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
7829
7830 /*
7831 * We want to clear the stats, but we don't want to do a full
7832 * vdev_clear() as that will cause us to throw away
7833 * degraded/faulted state as well as attempt to reopen the
7834 * device, all of which is a waste.
7835 */
7836 vd->vdev_stat.vs_read_errors = 0;
7837 vd->vdev_stat.vs_write_errors = 0;
7838 vd->vdev_stat.vs_checksum_errors = 0;
7839
7840 vdev_state_dirty(vd->vdev_top);
7841 }
7842
7843 for (int c = 0; c < vd->vdev_children; c++)
7844 spa_async_remove(spa, vd->vdev_child[c]);
7845 }
7846
7847 static void
7848 spa_async_probe(spa_t *spa, vdev_t *vd)
7849 {
7850 if (vd->vdev_probe_wanted) {
7851 vd->vdev_probe_wanted = B_FALSE;
7852 vdev_reopen(vd); /* vdev_open() does the actual probe */
7853 }
7854
7855 for (int c = 0; c < vd->vdev_children; c++)
7856 spa_async_probe(spa, vd->vdev_child[c]);
7857 }
7858
7859 static void
7860 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
7861 {
7862 if (!spa->spa_autoexpand)
7863 return;
7864
7865 for (int c = 0; c < vd->vdev_children; c++) {
7866 vdev_t *cvd = vd->vdev_child[c];
7867 spa_async_autoexpand(spa, cvd);
7868 }
7869
7870 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
7871 return;
7872
7873 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
7874 }
7875
7876 static void
7877 spa_async_thread(void *arg)
7878 {
7879 spa_t *spa = (spa_t *)arg;
7880 dsl_pool_t *dp = spa->spa_dsl_pool;
7881 int tasks;
7882
7883 ASSERT(spa->spa_sync_on);
7884
7885 mutex_enter(&spa->spa_async_lock);
7886 tasks = spa->spa_async_tasks;
7887 spa->spa_async_tasks = 0;
7888 mutex_exit(&spa->spa_async_lock);
7889
7890 /*
7891 * See if the config needs to be updated.
7892 */
7893 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
7894 uint64_t old_space, new_space;
7895
7896 mutex_enter(&spa_namespace_lock);
7897 old_space = metaslab_class_get_space(spa_normal_class(spa));
7898 old_space += metaslab_class_get_space(spa_special_class(spa));
7899 old_space += metaslab_class_get_space(spa_dedup_class(spa));
7900
7901 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7902
7903 new_space = metaslab_class_get_space(spa_normal_class(spa));
7904 new_space += metaslab_class_get_space(spa_special_class(spa));
7905 new_space += metaslab_class_get_space(spa_dedup_class(spa));
7906 mutex_exit(&spa_namespace_lock);
7907
7908 /*
7909 * If the pool grew as a result of the config update,
7910 * then log an internal history event.
7911 */
7912 if (new_space != old_space) {
7913 spa_history_log_internal(spa, "vdev online", NULL,
7914 "pool '%s' size: %llu(+%llu)",
7915 spa_name(spa), (u_longlong_t)new_space,
7916 (u_longlong_t)(new_space - old_space));
7917 }
7918 }
7919
7920 /*
7921 * See if any devices need to be marked REMOVED.
7922 */
7923 if (tasks & SPA_ASYNC_REMOVE) {
7924 spa_vdev_state_enter(spa, SCL_NONE);
7925 spa_async_remove(spa, spa->spa_root_vdev);
7926 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
7927 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
7928 for (int i = 0; i < spa->spa_spares.sav_count; i++)
7929 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
7930 (void) spa_vdev_state_exit(spa, NULL, 0);
7931 }
7932
7933 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
7934 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7935 spa_async_autoexpand(spa, spa->spa_root_vdev);
7936 spa_config_exit(spa, SCL_CONFIG, FTAG);
7937 }
7938
7939 /*
7940 * See if any devices need to be probed.
7941 */
7942 if (tasks & SPA_ASYNC_PROBE) {
7943 spa_vdev_state_enter(spa, SCL_NONE);
7944 spa_async_probe(spa, spa->spa_root_vdev);
7945 (void) spa_vdev_state_exit(spa, NULL, 0);
7946 }
7947
7948 /*
7949 * If any devices are done replacing, detach them.
7950 */
7951 if (tasks & SPA_ASYNC_RESILVER_DONE)
7952 spa_vdev_resilver_done(spa);
7953
7954 /*
7955 * Kick off a resilver.
7956 */
7957 if (tasks & SPA_ASYNC_RESILVER &&
7958 (!dsl_scan_resilvering(dp) ||
7959 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
7960 dsl_scan_restart_resilver(dp, 0);
7961
7962 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
7963 mutex_enter(&spa_namespace_lock);
7964 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7965 vdev_initialize_restart(spa->spa_root_vdev);
7966 spa_config_exit(spa, SCL_CONFIG, FTAG);
7967 mutex_exit(&spa_namespace_lock);
7968 }
7969
7970 if (tasks & SPA_ASYNC_TRIM_RESTART) {
7971 mutex_enter(&spa_namespace_lock);
7972 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7973 vdev_trim_restart(spa->spa_root_vdev);
7974 spa_config_exit(spa, SCL_CONFIG, FTAG);
7975 mutex_exit(&spa_namespace_lock);
7976 }
7977
7978 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
7979 mutex_enter(&spa_namespace_lock);
7980 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7981 vdev_autotrim_restart(spa);
7982 spa_config_exit(spa, SCL_CONFIG, FTAG);
7983 mutex_exit(&spa_namespace_lock);
7984 }
7985
7986 /*
7987 * Let the world know that we're done.
7988 */
7989 mutex_enter(&spa->spa_async_lock);
7990 spa->spa_async_thread = NULL;
7991 cv_broadcast(&spa->spa_async_cv);
7992 mutex_exit(&spa->spa_async_lock);
7993 thread_exit();
7994 }
7995
7996 void
7997 spa_async_suspend(spa_t *spa)
7998 {
7999 mutex_enter(&spa->spa_async_lock);
8000 spa->spa_async_suspended++;
8001 while (spa->spa_async_thread != NULL)
8002 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8003 mutex_exit(&spa->spa_async_lock);
8004
8005 spa_vdev_remove_suspend(spa);
8006
8007 zthr_t *condense_thread = spa->spa_condense_zthr;
8008 if (condense_thread != NULL)
8009 zthr_cancel(condense_thread);
8010
8011 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8012 if (discard_thread != NULL)
8013 zthr_cancel(discard_thread);
8014
8015 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8016 if (ll_delete_thread != NULL)
8017 zthr_cancel(ll_delete_thread);
8018
8019 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8020 if (ll_condense_thread != NULL)
8021 zthr_cancel(ll_condense_thread);
8022 }
8023
8024 void
8025 spa_async_resume(spa_t *spa)
8026 {
8027 mutex_enter(&spa->spa_async_lock);
8028 ASSERT(spa->spa_async_suspended != 0);
8029 spa->spa_async_suspended--;
8030 mutex_exit(&spa->spa_async_lock);
8031 spa_restart_removal(spa);
8032
8033 zthr_t *condense_thread = spa->spa_condense_zthr;
8034 if (condense_thread != NULL)
8035 zthr_resume(condense_thread);
8036
8037 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8038 if (discard_thread != NULL)
8039 zthr_resume(discard_thread);
8040
8041 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8042 if (ll_delete_thread != NULL)
8043 zthr_resume(ll_delete_thread);
8044
8045 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8046 if (ll_condense_thread != NULL)
8047 zthr_resume(ll_condense_thread);
8048 }
8049
8050 static boolean_t
8051 spa_async_tasks_pending(spa_t *spa)
8052 {
8053 uint_t non_config_tasks;
8054 uint_t config_task;
8055 boolean_t config_task_suspended;
8056
8057 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8058 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8059 if (spa->spa_ccw_fail_time == 0) {
8060 config_task_suspended = B_FALSE;
8061 } else {
8062 config_task_suspended =
8063 (gethrtime() - spa->spa_ccw_fail_time) <
8064 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8065 }
8066
8067 return (non_config_tasks || (config_task && !config_task_suspended));
8068 }
8069
8070 static void
8071 spa_async_dispatch(spa_t *spa)
8072 {
8073 mutex_enter(&spa->spa_async_lock);
8074 if (spa_async_tasks_pending(spa) &&
8075 !spa->spa_async_suspended &&
8076 spa->spa_async_thread == NULL)
8077 spa->spa_async_thread = thread_create(NULL, 0,
8078 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8079 mutex_exit(&spa->spa_async_lock);
8080 }
8081
8082 void
8083 spa_async_request(spa_t *spa, int task)
8084 {
8085 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8086 mutex_enter(&spa->spa_async_lock);
8087 spa->spa_async_tasks |= task;
8088 mutex_exit(&spa->spa_async_lock);
8089 }
8090
8091 int
8092 spa_async_tasks(spa_t *spa)
8093 {
8094 return (spa->spa_async_tasks);
8095 }
8096
8097 /*
8098 * ==========================================================================
8099 * SPA syncing routines
8100 * ==========================================================================
8101 */
8102
8103
8104 static int
8105 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8106 dmu_tx_t *tx)
8107 {
8108 bpobj_t *bpo = arg;
8109 bpobj_enqueue(bpo, bp, bp_freed, tx);
8110 return (0);
8111 }
8112
8113 int
8114 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8115 {
8116 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8117 }
8118
8119 int
8120 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8121 {
8122 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8123 }
8124
8125 static int
8126 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8127 {
8128 zio_t *zio = arg;
8129
8130 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
8131 zio->io_flags));
8132 return (0);
8133 }
8134
8135 static int
8136 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8137 dmu_tx_t *tx)
8138 {
8139 ASSERT(!bp_freed);
8140 return (spa_free_sync_cb(arg, bp, tx));
8141 }
8142
8143 /*
8144 * Note: this simple function is not inlined to make it easier to dtrace the
8145 * amount of time spent syncing frees.
8146 */
8147 static void
8148 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8149 {
8150 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8151 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8152 VERIFY(zio_wait(zio) == 0);
8153 }
8154
8155 /*
8156 * Note: this simple function is not inlined to make it easier to dtrace the
8157 * amount of time spent syncing deferred frees.
8158 */
8159 static void
8160 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8161 {
8162 if (spa_sync_pass(spa) != 1)
8163 return;
8164
8165 /*
8166 * Note:
8167 * If the log space map feature is active, we stop deferring
8168 * frees to the next TXG and therefore running this function
8169 * would be considered a no-op as spa_deferred_bpobj should
8170 * not have any entries.
8171 *
8172 * That said we run this function anyway (instead of returning
8173 * immediately) for the edge-case scenario where we just
8174 * activated the log space map feature in this TXG but we have
8175 * deferred frees from the previous TXG.
8176 */
8177 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8178 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8179 bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8180 VERIFY0(zio_wait(zio));
8181 }
8182
8183 static void
8184 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8185 {
8186 char *packed = NULL;
8187 size_t bufsize;
8188 size_t nvsize = 0;
8189 dmu_buf_t *db;
8190
8191 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8192
8193 /*
8194 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8195 * information. This avoids the dmu_buf_will_dirty() path and
8196 * saves us a pre-read to get data we don't actually care about.
8197 */
8198 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8199 packed = vmem_alloc(bufsize, KM_SLEEP);
8200
8201 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8202 KM_SLEEP) == 0);
8203 bzero(packed + nvsize, bufsize - nvsize);
8204
8205 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8206
8207 vmem_free(packed, bufsize);
8208
8209 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8210 dmu_buf_will_dirty(db, tx);
8211 *(uint64_t *)db->db_data = nvsize;
8212 dmu_buf_rele(db, FTAG);
8213 }
8214
8215 static void
8216 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8217 const char *config, const char *entry)
8218 {
8219 nvlist_t *nvroot;
8220 nvlist_t **list;
8221 int i;
8222
8223 if (!sav->sav_sync)
8224 return;
8225
8226 /*
8227 * Update the MOS nvlist describing the list of available devices.
8228 * spa_validate_aux() will have already made sure this nvlist is
8229 * valid and the vdevs are labeled appropriately.
8230 */
8231 if (sav->sav_object == 0) {
8232 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8233 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8234 sizeof (uint64_t), tx);
8235 VERIFY(zap_update(spa->spa_meta_objset,
8236 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8237 &sav->sav_object, tx) == 0);
8238 }
8239
8240 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
8241 if (sav->sav_count == 0) {
8242 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
8243 } else {
8244 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8245 for (i = 0; i < sav->sav_count; i++)
8246 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8247 B_FALSE, VDEV_CONFIG_L2CACHE);
8248 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
8249 sav->sav_count) == 0);
8250 for (i = 0; i < sav->sav_count; i++)
8251 nvlist_free(list[i]);
8252 kmem_free(list, sav->sav_count * sizeof (void *));
8253 }
8254
8255 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8256 nvlist_free(nvroot);
8257
8258 sav->sav_sync = B_FALSE;
8259 }
8260
8261 /*
8262 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8263 * The all-vdev ZAP must be empty.
8264 */
8265 static void
8266 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8267 {
8268 spa_t *spa = vd->vdev_spa;
8269
8270 if (vd->vdev_top_zap != 0) {
8271 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8272 vd->vdev_top_zap, tx));
8273 }
8274 if (vd->vdev_leaf_zap != 0) {
8275 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8276 vd->vdev_leaf_zap, tx));
8277 }
8278 for (uint64_t i = 0; i < vd->vdev_children; i++) {
8279 spa_avz_build(vd->vdev_child[i], avz, tx);
8280 }
8281 }
8282
8283 static void
8284 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8285 {
8286 nvlist_t *config;
8287
8288 /*
8289 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8290 * its config may not be dirty but we still need to build per-vdev ZAPs.
8291 * Similarly, if the pool is being assembled (e.g. after a split), we
8292 * need to rebuild the AVZ although the config may not be dirty.
8293 */
8294 if (list_is_empty(&spa->spa_config_dirty_list) &&
8295 spa->spa_avz_action == AVZ_ACTION_NONE)
8296 return;
8297
8298 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8299
8300 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8301 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8302 spa->spa_all_vdev_zaps != 0);
8303
8304 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8305 /* Make and build the new AVZ */
8306 uint64_t new_avz = zap_create(spa->spa_meta_objset,
8307 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8308 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8309
8310 /* Diff old AVZ with new one */
8311 zap_cursor_t zc;
8312 zap_attribute_t za;
8313
8314 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8315 spa->spa_all_vdev_zaps);
8316 zap_cursor_retrieve(&zc, &za) == 0;
8317 zap_cursor_advance(&zc)) {
8318 uint64_t vdzap = za.za_first_integer;
8319 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8320 vdzap) == ENOENT) {
8321 /*
8322 * ZAP is listed in old AVZ but not in new one;
8323 * destroy it
8324 */
8325 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8326 tx));
8327 }
8328 }
8329
8330 zap_cursor_fini(&zc);
8331
8332 /* Destroy the old AVZ */
8333 VERIFY0(zap_destroy(spa->spa_meta_objset,
8334 spa->spa_all_vdev_zaps, tx));
8335
8336 /* Replace the old AVZ in the dir obj with the new one */
8337 VERIFY0(zap_update(spa->spa_meta_objset,
8338 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8339 sizeof (new_avz), 1, &new_avz, tx));
8340
8341 spa->spa_all_vdev_zaps = new_avz;
8342 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8343 zap_cursor_t zc;
8344 zap_attribute_t za;
8345
8346 /* Walk through the AVZ and destroy all listed ZAPs */
8347 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8348 spa->spa_all_vdev_zaps);
8349 zap_cursor_retrieve(&zc, &za) == 0;
8350 zap_cursor_advance(&zc)) {
8351 uint64_t zap = za.za_first_integer;
8352 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8353 }
8354
8355 zap_cursor_fini(&zc);
8356
8357 /* Destroy and unlink the AVZ itself */
8358 VERIFY0(zap_destroy(spa->spa_meta_objset,
8359 spa->spa_all_vdev_zaps, tx));
8360 VERIFY0(zap_remove(spa->spa_meta_objset,
8361 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8362 spa->spa_all_vdev_zaps = 0;
8363 }
8364
8365 if (spa->spa_all_vdev_zaps == 0) {
8366 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8367 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8368 DMU_POOL_VDEV_ZAP_MAP, tx);
8369 }
8370 spa->spa_avz_action = AVZ_ACTION_NONE;
8371
8372 /* Create ZAPs for vdevs that don't have them. */
8373 vdev_construct_zaps(spa->spa_root_vdev, tx);
8374
8375 config = spa_config_generate(spa, spa->spa_root_vdev,
8376 dmu_tx_get_txg(tx), B_FALSE);
8377
8378 /*
8379 * If we're upgrading the spa version then make sure that
8380 * the config object gets updated with the correct version.
8381 */
8382 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8383 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8384 spa->spa_uberblock.ub_version);
8385
8386 spa_config_exit(spa, SCL_STATE, FTAG);
8387
8388 nvlist_free(spa->spa_config_syncing);
8389 spa->spa_config_syncing = config;
8390
8391 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8392 }
8393
8394 static void
8395 spa_sync_version(void *arg, dmu_tx_t *tx)
8396 {
8397 uint64_t *versionp = arg;
8398 uint64_t version = *versionp;
8399 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8400
8401 /*
8402 * Setting the version is special cased when first creating the pool.
8403 */
8404 ASSERT(tx->tx_txg != TXG_INITIAL);
8405
8406 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8407 ASSERT(version >= spa_version(spa));
8408
8409 spa->spa_uberblock.ub_version = version;
8410 vdev_config_dirty(spa->spa_root_vdev);
8411 spa_history_log_internal(spa, "set", tx, "version=%lld",
8412 (longlong_t)version);
8413 }
8414
8415 /*
8416 * Set zpool properties.
8417 */
8418 static void
8419 spa_sync_props(void *arg, dmu_tx_t *tx)
8420 {
8421 nvlist_t *nvp = arg;
8422 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8423 objset_t *mos = spa->spa_meta_objset;
8424 nvpair_t *elem = NULL;
8425
8426 mutex_enter(&spa->spa_props_lock);
8427
8428 while ((elem = nvlist_next_nvpair(nvp, elem))) {
8429 uint64_t intval;
8430 char *strval, *fname;
8431 zpool_prop_t prop;
8432 const char *propname;
8433 zprop_type_t proptype;
8434 spa_feature_t fid;
8435
8436 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8437 case ZPOOL_PROP_INVAL:
8438 /*
8439 * We checked this earlier in spa_prop_validate().
8440 */
8441 ASSERT(zpool_prop_feature(nvpair_name(elem)));
8442
8443 fname = strchr(nvpair_name(elem), '@') + 1;
8444 VERIFY0(zfeature_lookup_name(fname, &fid));
8445
8446 spa_feature_enable(spa, fid, tx);
8447 spa_history_log_internal(spa, "set", tx,
8448 "%s=enabled", nvpair_name(elem));
8449 break;
8450
8451 case ZPOOL_PROP_VERSION:
8452 intval = fnvpair_value_uint64(elem);
8453 /*
8454 * The version is synced separately before other
8455 * properties and should be correct by now.
8456 */
8457 ASSERT3U(spa_version(spa), >=, intval);
8458 break;
8459
8460 case ZPOOL_PROP_ALTROOT:
8461 /*
8462 * 'altroot' is a non-persistent property. It should
8463 * have been set temporarily at creation or import time.
8464 */
8465 ASSERT(spa->spa_root != NULL);
8466 break;
8467
8468 case ZPOOL_PROP_READONLY:
8469 case ZPOOL_PROP_CACHEFILE:
8470 /*
8471 * 'readonly' and 'cachefile' are also non-persistent
8472 * properties.
8473 */
8474 break;
8475 case ZPOOL_PROP_COMMENT:
8476 strval = fnvpair_value_string(elem);
8477 if (spa->spa_comment != NULL)
8478 spa_strfree(spa->spa_comment);
8479 spa->spa_comment = spa_strdup(strval);
8480 /*
8481 * We need to dirty the configuration on all the vdevs
8482 * so that their labels get updated. It's unnecessary
8483 * to do this for pool creation since the vdev's
8484 * configuration has already been dirtied.
8485 */
8486 if (tx->tx_txg != TXG_INITIAL)
8487 vdev_config_dirty(spa->spa_root_vdev);
8488 spa_history_log_internal(spa, "set", tx,
8489 "%s=%s", nvpair_name(elem), strval);
8490 break;
8491 default:
8492 /*
8493 * Set pool property values in the poolprops mos object.
8494 */
8495 if (spa->spa_pool_props_object == 0) {
8496 spa->spa_pool_props_object =
8497 zap_create_link(mos, DMU_OT_POOL_PROPS,
8498 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8499 tx);
8500 }
8501
8502 /* normalize the property name */
8503 propname = zpool_prop_to_name(prop);
8504 proptype = zpool_prop_get_type(prop);
8505
8506 if (nvpair_type(elem) == DATA_TYPE_STRING) {
8507 ASSERT(proptype == PROP_TYPE_STRING);
8508 strval = fnvpair_value_string(elem);
8509 VERIFY0(zap_update(mos,
8510 spa->spa_pool_props_object, propname,
8511 1, strlen(strval) + 1, strval, tx));
8512 spa_history_log_internal(spa, "set", tx,
8513 "%s=%s", nvpair_name(elem), strval);
8514 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8515 intval = fnvpair_value_uint64(elem);
8516
8517 if (proptype == PROP_TYPE_INDEX) {
8518 const char *unused;
8519 VERIFY0(zpool_prop_index_to_string(
8520 prop, intval, &unused));
8521 }
8522 VERIFY0(zap_update(mos,
8523 spa->spa_pool_props_object, propname,
8524 8, 1, &intval, tx));
8525 spa_history_log_internal(spa, "set", tx,
8526 "%s=%lld", nvpair_name(elem),
8527 (longlong_t)intval);
8528 } else {
8529 ASSERT(0); /* not allowed */
8530 }
8531
8532 switch (prop) {
8533 case ZPOOL_PROP_DELEGATION:
8534 spa->spa_delegation = intval;
8535 break;
8536 case ZPOOL_PROP_BOOTFS:
8537 spa->spa_bootfs = intval;
8538 break;
8539 case ZPOOL_PROP_FAILUREMODE:
8540 spa->spa_failmode = intval;
8541 break;
8542 case ZPOOL_PROP_AUTOTRIM:
8543 spa->spa_autotrim = intval;
8544 spa_async_request(spa,
8545 SPA_ASYNC_AUTOTRIM_RESTART);
8546 break;
8547 case ZPOOL_PROP_AUTOEXPAND:
8548 spa->spa_autoexpand = intval;
8549 if (tx->tx_txg != TXG_INITIAL)
8550 spa_async_request(spa,
8551 SPA_ASYNC_AUTOEXPAND);
8552 break;
8553 case ZPOOL_PROP_MULTIHOST:
8554 spa->spa_multihost = intval;
8555 break;
8556 default:
8557 break;
8558 }
8559 }
8560
8561 }
8562
8563 mutex_exit(&spa->spa_props_lock);
8564 }
8565
8566 /*
8567 * Perform one-time upgrade on-disk changes. spa_version() does not
8568 * reflect the new version this txg, so there must be no changes this
8569 * txg to anything that the upgrade code depends on after it executes.
8570 * Therefore this must be called after dsl_pool_sync() does the sync
8571 * tasks.
8572 */
8573 static void
8574 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8575 {
8576 if (spa_sync_pass(spa) != 1)
8577 return;
8578
8579 dsl_pool_t *dp = spa->spa_dsl_pool;
8580 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8581
8582 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8583 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8584 dsl_pool_create_origin(dp, tx);
8585
8586 /* Keeping the origin open increases spa_minref */
8587 spa->spa_minref += 3;
8588 }
8589
8590 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8591 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8592 dsl_pool_upgrade_clones(dp, tx);
8593 }
8594
8595 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8596 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8597 dsl_pool_upgrade_dir_clones(dp, tx);
8598
8599 /* Keeping the freedir open increases spa_minref */
8600 spa->spa_minref += 3;
8601 }
8602
8603 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8604 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8605 spa_feature_create_zap_objects(spa, tx);
8606 }
8607
8608 /*
8609 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8610 * when possibility to use lz4 compression for metadata was added
8611 * Old pools that have this feature enabled must be upgraded to have
8612 * this feature active
8613 */
8614 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8615 boolean_t lz4_en = spa_feature_is_enabled(spa,
8616 SPA_FEATURE_LZ4_COMPRESS);
8617 boolean_t lz4_ac = spa_feature_is_active(spa,
8618 SPA_FEATURE_LZ4_COMPRESS);
8619
8620 if (lz4_en && !lz4_ac)
8621 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8622 }
8623
8624 /*
8625 * If we haven't written the salt, do so now. Note that the
8626 * feature may not be activated yet, but that's fine since
8627 * the presence of this ZAP entry is backwards compatible.
8628 */
8629 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8630 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8631 VERIFY0(zap_add(spa->spa_meta_objset,
8632 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8633 sizeof (spa->spa_cksum_salt.zcs_bytes),
8634 spa->spa_cksum_salt.zcs_bytes, tx));
8635 }
8636
8637 rrw_exit(&dp->dp_config_rwlock, FTAG);
8638 }
8639
8640 static void
8641 vdev_indirect_state_sync_verify(vdev_t *vd)
8642 {
8643 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
8644 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
8645
8646 if (vd->vdev_ops == &vdev_indirect_ops) {
8647 ASSERT(vim != NULL);
8648 ASSERT(vib != NULL);
8649 }
8650
8651 uint64_t obsolete_sm_object = 0;
8652 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
8653 if (obsolete_sm_object != 0) {
8654 ASSERT(vd->vdev_obsolete_sm != NULL);
8655 ASSERT(vd->vdev_removing ||
8656 vd->vdev_ops == &vdev_indirect_ops);
8657 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
8658 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
8659 ASSERT3U(obsolete_sm_object, ==,
8660 space_map_object(vd->vdev_obsolete_sm));
8661 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
8662 space_map_allocated(vd->vdev_obsolete_sm));
8663 }
8664 ASSERT(vd->vdev_obsolete_segments != NULL);
8665
8666 /*
8667 * Since frees / remaps to an indirect vdev can only
8668 * happen in syncing context, the obsolete segments
8669 * tree must be empty when we start syncing.
8670 */
8671 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
8672 }
8673
8674 /*
8675 * Set the top-level vdev's max queue depth. Evaluate each top-level's
8676 * async write queue depth in case it changed. The max queue depth will
8677 * not change in the middle of syncing out this txg.
8678 */
8679 static void
8680 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
8681 {
8682 ASSERT(spa_writeable(spa));
8683
8684 vdev_t *rvd = spa->spa_root_vdev;
8685 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
8686 zfs_vdev_queue_depth_pct / 100;
8687 metaslab_class_t *normal = spa_normal_class(spa);
8688 metaslab_class_t *special = spa_special_class(spa);
8689 metaslab_class_t *dedup = spa_dedup_class(spa);
8690
8691 uint64_t slots_per_allocator = 0;
8692 for (int c = 0; c < rvd->vdev_children; c++) {
8693 vdev_t *tvd = rvd->vdev_child[c];
8694
8695 metaslab_group_t *mg = tvd->vdev_mg;
8696 if (mg == NULL || !metaslab_group_initialized(mg))
8697 continue;
8698
8699 metaslab_class_t *mc = mg->mg_class;
8700 if (mc != normal && mc != special && mc != dedup)
8701 continue;
8702
8703 /*
8704 * It is safe to do a lock-free check here because only async
8705 * allocations look at mg_max_alloc_queue_depth, and async
8706 * allocations all happen from spa_sync().
8707 */
8708 for (int i = 0; i < spa->spa_alloc_count; i++)
8709 ASSERT0(zfs_refcount_count(
8710 &(mg->mg_alloc_queue_depth[i])));
8711 mg->mg_max_alloc_queue_depth = max_queue_depth;
8712
8713 for (int i = 0; i < spa->spa_alloc_count; i++) {
8714 mg->mg_cur_max_alloc_queue_depth[i] =
8715 zfs_vdev_def_queue_depth;
8716 }
8717 slots_per_allocator += zfs_vdev_def_queue_depth;
8718 }
8719
8720 for (int i = 0; i < spa->spa_alloc_count; i++) {
8721 ASSERT0(zfs_refcount_count(&normal->mc_alloc_slots[i]));
8722 ASSERT0(zfs_refcount_count(&special->mc_alloc_slots[i]));
8723 ASSERT0(zfs_refcount_count(&dedup->mc_alloc_slots[i]));
8724 normal->mc_alloc_max_slots[i] = slots_per_allocator;
8725 special->mc_alloc_max_slots[i] = slots_per_allocator;
8726 dedup->mc_alloc_max_slots[i] = slots_per_allocator;
8727 }
8728 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8729 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8730 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8731 }
8732
8733 static void
8734 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
8735 {
8736 ASSERT(spa_writeable(spa));
8737
8738 vdev_t *rvd = spa->spa_root_vdev;
8739 for (int c = 0; c < rvd->vdev_children; c++) {
8740 vdev_t *vd = rvd->vdev_child[c];
8741 vdev_indirect_state_sync_verify(vd);
8742
8743 if (vdev_indirect_should_condense(vd)) {
8744 spa_condense_indirect_start_sync(vd, tx);
8745 break;
8746 }
8747 }
8748 }
8749
8750 static void
8751 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
8752 {
8753 objset_t *mos = spa->spa_meta_objset;
8754 dsl_pool_t *dp = spa->spa_dsl_pool;
8755 uint64_t txg = tx->tx_txg;
8756 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
8757
8758 do {
8759 int pass = ++spa->spa_sync_pass;
8760
8761 spa_sync_config_object(spa, tx);
8762 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
8763 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
8764 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
8765 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
8766 spa_errlog_sync(spa, txg);
8767 dsl_pool_sync(dp, txg);
8768
8769 if (pass < zfs_sync_pass_deferred_free ||
8770 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
8771 /*
8772 * If the log space map feature is active we don't
8773 * care about deferred frees and the deferred bpobj
8774 * as the log space map should effectively have the
8775 * same results (i.e. appending only to one object).
8776 */
8777 spa_sync_frees(spa, free_bpl, tx);
8778 } else {
8779 /*
8780 * We can not defer frees in pass 1, because
8781 * we sync the deferred frees later in pass 1.
8782 */
8783 ASSERT3U(pass, >, 1);
8784 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
8785 &spa->spa_deferred_bpobj, tx);
8786 }
8787
8788 ddt_sync(spa, txg);
8789 dsl_scan_sync(dp, tx);
8790 svr_sync(spa, tx);
8791 spa_sync_upgrades(spa, tx);
8792
8793 spa_flush_metaslabs(spa, tx);
8794
8795 vdev_t *vd = NULL;
8796 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
8797 != NULL)
8798 vdev_sync(vd, txg);
8799
8800 /*
8801 * Note: We need to check if the MOS is dirty because we could
8802 * have marked the MOS dirty without updating the uberblock
8803 * (e.g. if we have sync tasks but no dirty user data). We need
8804 * to check the uberblock's rootbp because it is updated if we
8805 * have synced out dirty data (though in this case the MOS will
8806 * most likely also be dirty due to second order effects, we
8807 * don't want to rely on that here).
8808 */
8809 if (pass == 1 &&
8810 spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
8811 !dmu_objset_is_dirty(mos, txg)) {
8812 /*
8813 * Nothing changed on the first pass, therefore this
8814 * TXG is a no-op. Avoid syncing deferred frees, so
8815 * that we can keep this TXG as a no-op.
8816 */
8817 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8818 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8819 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
8820 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
8821 break;
8822 }
8823
8824 spa_sync_deferred_frees(spa, tx);
8825 } while (dmu_objset_is_dirty(mos, txg));
8826 }
8827
8828 /*
8829 * Rewrite the vdev configuration (which includes the uberblock) to
8830 * commit the transaction group.
8831 *
8832 * If there are no dirty vdevs, we sync the uberblock to a few random
8833 * top-level vdevs that are known to be visible in the config cache
8834 * (see spa_vdev_add() for a complete description). If there *are* dirty
8835 * vdevs, sync the uberblock to all vdevs.
8836 */
8837 static void
8838 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
8839 {
8840 vdev_t *rvd = spa->spa_root_vdev;
8841 uint64_t txg = tx->tx_txg;
8842
8843 for (;;) {
8844 int error = 0;
8845
8846 /*
8847 * We hold SCL_STATE to prevent vdev open/close/etc.
8848 * while we're attempting to write the vdev labels.
8849 */
8850 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8851
8852 if (list_is_empty(&spa->spa_config_dirty_list)) {
8853 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
8854 int svdcount = 0;
8855 int children = rvd->vdev_children;
8856 int c0 = spa_get_random(children);
8857
8858 for (int c = 0; c < children; c++) {
8859 vdev_t *vd =
8860 rvd->vdev_child[(c0 + c) % children];
8861
8862 /* Stop when revisiting the first vdev */
8863 if (c > 0 && svd[0] == vd)
8864 break;
8865
8866 if (vd->vdev_ms_array == 0 ||
8867 vd->vdev_islog ||
8868 !vdev_is_concrete(vd))
8869 continue;
8870
8871 svd[svdcount++] = vd;
8872 if (svdcount == SPA_SYNC_MIN_VDEVS)
8873 break;
8874 }
8875 error = vdev_config_sync(svd, svdcount, txg);
8876 } else {
8877 error = vdev_config_sync(rvd->vdev_child,
8878 rvd->vdev_children, txg);
8879 }
8880
8881 if (error == 0)
8882 spa->spa_last_synced_guid = rvd->vdev_guid;
8883
8884 spa_config_exit(spa, SCL_STATE, FTAG);
8885
8886 if (error == 0)
8887 break;
8888 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
8889 zio_resume_wait(spa);
8890 }
8891 }
8892
8893 /*
8894 * Sync the specified transaction group. New blocks may be dirtied as
8895 * part of the process, so we iterate until it converges.
8896 */
8897 void
8898 spa_sync(spa_t *spa, uint64_t txg)
8899 {
8900 vdev_t *vd = NULL;
8901
8902 VERIFY(spa_writeable(spa));
8903
8904 /*
8905 * Wait for i/os issued in open context that need to complete
8906 * before this txg syncs.
8907 */
8908 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
8909 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
8910 ZIO_FLAG_CANFAIL);
8911
8912 /*
8913 * Lock out configuration changes.
8914 */
8915 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8916
8917 spa->spa_syncing_txg = txg;
8918 spa->spa_sync_pass = 0;
8919
8920 for (int i = 0; i < spa->spa_alloc_count; i++) {
8921 mutex_enter(&spa->spa_alloc_locks[i]);
8922 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8923 mutex_exit(&spa->spa_alloc_locks[i]);
8924 }
8925
8926 /*
8927 * If there are any pending vdev state changes, convert them
8928 * into config changes that go out with this transaction group.
8929 */
8930 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8931 while (list_head(&spa->spa_state_dirty_list) != NULL) {
8932 /*
8933 * We need the write lock here because, for aux vdevs,
8934 * calling vdev_config_dirty() modifies sav_config.
8935 * This is ugly and will become unnecessary when we
8936 * eliminate the aux vdev wart by integrating all vdevs
8937 * into the root vdev tree.
8938 */
8939 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8940 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
8941 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
8942 vdev_state_clean(vd);
8943 vdev_config_dirty(vd);
8944 }
8945 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8946 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8947 }
8948 spa_config_exit(spa, SCL_STATE, FTAG);
8949
8950 dsl_pool_t *dp = spa->spa_dsl_pool;
8951 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
8952
8953 spa->spa_sync_starttime = gethrtime();
8954 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
8955 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
8956 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
8957 NSEC_TO_TICK(spa->spa_deadman_synctime));
8958
8959 /*
8960 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
8961 * set spa_deflate if we have no raid-z vdevs.
8962 */
8963 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
8964 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
8965 vdev_t *rvd = spa->spa_root_vdev;
8966
8967 int i;
8968 for (i = 0; i < rvd->vdev_children; i++) {
8969 vd = rvd->vdev_child[i];
8970 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
8971 break;
8972 }
8973 if (i == rvd->vdev_children) {
8974 spa->spa_deflate = TRUE;
8975 VERIFY0(zap_add(spa->spa_meta_objset,
8976 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
8977 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
8978 }
8979 }
8980
8981 spa_sync_adjust_vdev_max_queue_depth(spa);
8982
8983 spa_sync_condense_indirect(spa, tx);
8984
8985 spa_sync_iterate_to_convergence(spa, tx);
8986
8987 #ifdef ZFS_DEBUG
8988 if (!list_is_empty(&spa->spa_config_dirty_list)) {
8989 /*
8990 * Make sure that the number of ZAPs for all the vdevs matches
8991 * the number of ZAPs in the per-vdev ZAP list. This only gets
8992 * called if the config is dirty; otherwise there may be
8993 * outstanding AVZ operations that weren't completed in
8994 * spa_sync_config_object.
8995 */
8996 uint64_t all_vdev_zap_entry_count;
8997 ASSERT0(zap_count(spa->spa_meta_objset,
8998 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
8999 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9000 all_vdev_zap_entry_count);
9001 }
9002 #endif
9003
9004 if (spa->spa_vdev_removal != NULL) {
9005 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9006 }
9007
9008 spa_sync_rewrite_vdev_config(spa, tx);
9009 dmu_tx_commit(tx);
9010
9011 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9012 spa->spa_deadman_tqid = 0;
9013
9014 /*
9015 * Clear the dirty config list.
9016 */
9017 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9018 vdev_config_clean(vd);
9019
9020 /*
9021 * Now that the new config has synced transactionally,
9022 * let it become visible to the config cache.
9023 */
9024 if (spa->spa_config_syncing != NULL) {
9025 spa_config_set(spa, spa->spa_config_syncing);
9026 spa->spa_config_txg = txg;
9027 spa->spa_config_syncing = NULL;
9028 }
9029
9030 dsl_pool_sync_done(dp, txg);
9031
9032 for (int i = 0; i < spa->spa_alloc_count; i++) {
9033 mutex_enter(&spa->spa_alloc_locks[i]);
9034 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
9035 mutex_exit(&spa->spa_alloc_locks[i]);
9036 }
9037
9038 /*
9039 * Update usable space statistics.
9040 */
9041 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9042 != NULL)
9043 vdev_sync_done(vd, txg);
9044
9045 metaslab_class_evict_old(spa->spa_normal_class, txg);
9046 metaslab_class_evict_old(spa->spa_log_class, txg);
9047
9048 spa_sync_close_syncing_log_sm(spa);
9049
9050 spa_update_dspace(spa);
9051
9052 /*
9053 * It had better be the case that we didn't dirty anything
9054 * since vdev_config_sync().
9055 */
9056 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9057 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9058 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9059
9060 while (zfs_pause_spa_sync)
9061 delay(1);
9062
9063 spa->spa_sync_pass = 0;
9064
9065 /*
9066 * Update the last synced uberblock here. We want to do this at
9067 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9068 * will be guaranteed that all the processing associated with
9069 * that txg has been completed.
9070 */
9071 spa->spa_ubsync = spa->spa_uberblock;
9072 spa_config_exit(spa, SCL_CONFIG, FTAG);
9073
9074 spa_handle_ignored_writes(spa);
9075
9076 /*
9077 * If any async tasks have been requested, kick them off.
9078 */
9079 spa_async_dispatch(spa);
9080 }
9081
9082 /*
9083 * Sync all pools. We don't want to hold the namespace lock across these
9084 * operations, so we take a reference on the spa_t and drop the lock during the
9085 * sync.
9086 */
9087 void
9088 spa_sync_allpools(void)
9089 {
9090 spa_t *spa = NULL;
9091 mutex_enter(&spa_namespace_lock);
9092 while ((spa = spa_next(spa)) != NULL) {
9093 if (spa_state(spa) != POOL_STATE_ACTIVE ||
9094 !spa_writeable(spa) || spa_suspended(spa))
9095 continue;
9096 spa_open_ref(spa, FTAG);
9097 mutex_exit(&spa_namespace_lock);
9098 txg_wait_synced(spa_get_dsl(spa), 0);
9099 mutex_enter(&spa_namespace_lock);
9100 spa_close(spa, FTAG);
9101 }
9102 mutex_exit(&spa_namespace_lock);
9103 }
9104
9105 /*
9106 * ==========================================================================
9107 * Miscellaneous routines
9108 * ==========================================================================
9109 */
9110
9111 /*
9112 * Remove all pools in the system.
9113 */
9114 void
9115 spa_evict_all(void)
9116 {
9117 spa_t *spa;
9118
9119 /*
9120 * Remove all cached state. All pools should be closed now,
9121 * so every spa in the AVL tree should be unreferenced.
9122 */
9123 mutex_enter(&spa_namespace_lock);
9124 while ((spa = spa_next(NULL)) != NULL) {
9125 /*
9126 * Stop async tasks. The async thread may need to detach
9127 * a device that's been replaced, which requires grabbing
9128 * spa_namespace_lock, so we must drop it here.
9129 */
9130 spa_open_ref(spa, FTAG);
9131 mutex_exit(&spa_namespace_lock);
9132 spa_async_suspend(spa);
9133 mutex_enter(&spa_namespace_lock);
9134 spa_close(spa, FTAG);
9135
9136 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9137 spa_unload(spa);
9138 spa_deactivate(spa);
9139 }
9140 spa_remove(spa);
9141 }
9142 mutex_exit(&spa_namespace_lock);
9143 }
9144
9145 vdev_t *
9146 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9147 {
9148 vdev_t *vd;
9149 int i;
9150
9151 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9152 return (vd);
9153
9154 if (aux) {
9155 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9156 vd = spa->spa_l2cache.sav_vdevs[i];
9157 if (vd->vdev_guid == guid)
9158 return (vd);
9159 }
9160
9161 for (i = 0; i < spa->spa_spares.sav_count; i++) {
9162 vd = spa->spa_spares.sav_vdevs[i];
9163 if (vd->vdev_guid == guid)
9164 return (vd);
9165 }
9166 }
9167
9168 return (NULL);
9169 }
9170
9171 void
9172 spa_upgrade(spa_t *spa, uint64_t version)
9173 {
9174 ASSERT(spa_writeable(spa));
9175
9176 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9177
9178 /*
9179 * This should only be called for a non-faulted pool, and since a
9180 * future version would result in an unopenable pool, this shouldn't be
9181 * possible.
9182 */
9183 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9184 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9185
9186 spa->spa_uberblock.ub_version = version;
9187 vdev_config_dirty(spa->spa_root_vdev);
9188
9189 spa_config_exit(spa, SCL_ALL, FTAG);
9190
9191 txg_wait_synced(spa_get_dsl(spa), 0);
9192 }
9193
9194 boolean_t
9195 spa_has_spare(spa_t *spa, uint64_t guid)
9196 {
9197 int i;
9198 uint64_t spareguid;
9199 spa_aux_vdev_t *sav = &spa->spa_spares;
9200
9201 for (i = 0; i < sav->sav_count; i++)
9202 if (sav->sav_vdevs[i]->vdev_guid == guid)
9203 return (B_TRUE);
9204
9205 for (i = 0; i < sav->sav_npending; i++) {
9206 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9207 &spareguid) == 0 && spareguid == guid)
9208 return (B_TRUE);
9209 }
9210
9211 return (B_FALSE);
9212 }
9213
9214 /*
9215 * Check if a pool has an active shared spare device.
9216 * Note: reference count of an active spare is 2, as a spare and as a replace
9217 */
9218 static boolean_t
9219 spa_has_active_shared_spare(spa_t *spa)
9220 {
9221 int i, refcnt;
9222 uint64_t pool;
9223 spa_aux_vdev_t *sav = &spa->spa_spares;
9224
9225 for (i = 0; i < sav->sav_count; i++) {
9226 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9227 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9228 refcnt > 2)
9229 return (B_TRUE);
9230 }
9231
9232 return (B_FALSE);
9233 }
9234
9235 uint64_t
9236 spa_total_metaslabs(spa_t *spa)
9237 {
9238 vdev_t *rvd = spa->spa_root_vdev;
9239
9240 uint64_t m = 0;
9241 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9242 vdev_t *vd = rvd->vdev_child[c];
9243 if (!vdev_is_concrete(vd))
9244 continue;
9245 m += vd->vdev_ms_count;
9246 }
9247 return (m);
9248 }
9249
9250 /*
9251 * Notify any waiting threads that some activity has switched from being in-
9252 * progress to not-in-progress so that the thread can wake up and determine
9253 * whether it is finished waiting.
9254 */
9255 void
9256 spa_notify_waiters(spa_t *spa)
9257 {
9258 /*
9259 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9260 * happening between the waiting thread's check and cv_wait.
9261 */
9262 mutex_enter(&spa->spa_activities_lock);
9263 cv_broadcast(&spa->spa_activities_cv);
9264 mutex_exit(&spa->spa_activities_lock);
9265 }
9266
9267 /*
9268 * Notify any waiting threads that the pool is exporting, and then block until
9269 * they are finished using the spa_t.
9270 */
9271 void
9272 spa_wake_waiters(spa_t *spa)
9273 {
9274 mutex_enter(&spa->spa_activities_lock);
9275 spa->spa_waiters_cancel = B_TRUE;
9276 cv_broadcast(&spa->spa_activities_cv);
9277 while (spa->spa_waiters != 0)
9278 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9279 spa->spa_waiters_cancel = B_FALSE;
9280 mutex_exit(&spa->spa_activities_lock);
9281 }
9282
9283 /* Whether the vdev or any of its descendants is initializing. */
9284 static boolean_t
9285 spa_vdev_initializing_impl(vdev_t *vd)
9286 {
9287 spa_t *spa = vd->vdev_spa;
9288 boolean_t initializing;
9289
9290 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9291 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9292
9293 mutex_exit(&spa->spa_activities_lock);
9294 mutex_enter(&vd->vdev_initialize_lock);
9295 mutex_enter(&spa->spa_activities_lock);
9296
9297 initializing = (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE);
9298 mutex_exit(&vd->vdev_initialize_lock);
9299
9300 if (initializing)
9301 return (B_TRUE);
9302
9303 for (int i = 0; i < vd->vdev_children; i++) {
9304 if (spa_vdev_initializing_impl(vd->vdev_child[i]))
9305 return (B_TRUE);
9306 }
9307
9308 return (B_FALSE);
9309 }
9310
9311 /*
9312 * If use_guid is true, this checks whether the vdev specified by guid is
9313 * being initialized. Otherwise, it checks whether any vdev in the pool is being
9314 * initialized. The caller must hold the config lock and spa_activities_lock.
9315 */
9316 static int
9317 spa_vdev_initializing(spa_t *spa, boolean_t use_guid, uint64_t guid,
9318 boolean_t *in_progress)
9319 {
9320 mutex_exit(&spa->spa_activities_lock);
9321 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9322 mutex_enter(&spa->spa_activities_lock);
9323
9324 vdev_t *vd;
9325 if (use_guid) {
9326 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9327 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9328 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9329 return (EINVAL);
9330 }
9331 } else {
9332 vd = spa->spa_root_vdev;
9333 }
9334
9335 *in_progress = spa_vdev_initializing_impl(vd);
9336
9337 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9338 return (0);
9339 }
9340
9341 /*
9342 * Locking for waiting threads
9343 * ---------------------------
9344 *
9345 * Waiting threads need a way to check whether a given activity is in progress,
9346 * and then, if it is, wait for it to complete. Each activity will have some
9347 * in-memory representation of the relevant on-disk state which can be used to
9348 * determine whether or not the activity is in progress. The in-memory state and
9349 * the locking used to protect it will be different for each activity, and may
9350 * not be suitable for use with a cvar (e.g., some state is protected by the
9351 * config lock). To allow waiting threads to wait without any races, another
9352 * lock, spa_activities_lock, is used.
9353 *
9354 * When the state is checked, both the activity-specific lock (if there is one)
9355 * and spa_activities_lock are held. In some cases, the activity-specific lock
9356 * is acquired explicitly (e.g. the config lock). In others, the locking is
9357 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9358 * thread releases the activity-specific lock and, if the activity is in
9359 * progress, then cv_waits using spa_activities_lock.
9360 *
9361 * The waiting thread is woken when another thread, one completing some
9362 * activity, updates the state of the activity and then calls
9363 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9364 * needs to hold its activity-specific lock when updating the state, and this
9365 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9366 *
9367 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9368 * and because it is held when the waiting thread checks the state of the
9369 * activity, it can never be the case that the completing thread both updates
9370 * the activity state and cv_broadcasts in between the waiting thread's check
9371 * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9372 *
9373 * In order to prevent deadlock, when the waiting thread does its check, in some
9374 * cases it will temporarily drop spa_activities_lock in order to acquire the
9375 * activity-specific lock. The order in which spa_activities_lock and the
9376 * activity specific lock are acquired in the waiting thread is determined by
9377 * the order in which they are acquired in the completing thread; if the
9378 * completing thread calls spa_notify_waiters with the activity-specific lock
9379 * held, then the waiting thread must also acquire the activity-specific lock
9380 * first.
9381 */
9382
9383 static int
9384 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9385 boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9386 {
9387 int error = 0;
9388
9389 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9390
9391 switch (activity) {
9392 case ZPOOL_WAIT_CKPT_DISCARD:
9393 *in_progress =
9394 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9395 zap_contains(spa_meta_objset(spa),
9396 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9397 ENOENT);
9398 break;
9399 case ZPOOL_WAIT_FREE:
9400 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9401 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9402 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9403 spa_livelist_delete_check(spa));
9404 break;
9405 case ZPOOL_WAIT_INITIALIZE:
9406 error = spa_vdev_initializing(spa, use_tag, tag, in_progress);
9407 break;
9408 case ZPOOL_WAIT_REPLACE:
9409 mutex_exit(&spa->spa_activities_lock);
9410 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9411 mutex_enter(&spa->spa_activities_lock);
9412
9413 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9414 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9415 break;
9416 case ZPOOL_WAIT_REMOVE:
9417 *in_progress = (spa->spa_removing_phys.sr_state ==
9418 DSS_SCANNING);
9419 break;
9420 case ZPOOL_WAIT_RESILVER:
9421 case ZPOOL_WAIT_SCRUB:
9422 {
9423 boolean_t scanning, paused, is_scrub;
9424 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
9425
9426 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9427 scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9428 paused = dsl_scan_is_paused_scrub(scn);
9429 *in_progress = (scanning && !paused &&
9430 is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9431 break;
9432 }
9433 default:
9434 panic("unrecognized value for activity %d", activity);
9435 }
9436
9437 return (error);
9438 }
9439
9440 static int
9441 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9442 boolean_t use_tag, uint64_t tag, boolean_t *waited)
9443 {
9444 /*
9445 * The tag is used to distinguish between instances of an activity.
9446 * 'initialize' is the only activity that we use this for. The other
9447 * activities can only have a single instance in progress in a pool at
9448 * one time, making the tag unnecessary.
9449 *
9450 * There can be multiple devices being replaced at once, but since they
9451 * all finish once resilvering finishes, we don't bother keeping track
9452 * of them individually, we just wait for them all to finish.
9453 */
9454 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE)
9455 return (EINVAL);
9456
9457 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
9458 return (EINVAL);
9459
9460 spa_t *spa;
9461 int error = spa_open(pool, &spa, FTAG);
9462 if (error != 0)
9463 return (error);
9464
9465 /*
9466 * Increment the spa's waiter count so that we can call spa_close and
9467 * still ensure that the spa_t doesn't get freed before this thread is
9468 * finished with it when the pool is exported. We want to call spa_close
9469 * before we start waiting because otherwise the additional ref would
9470 * prevent the pool from being exported or destroyed throughout the
9471 * potentially long wait.
9472 */
9473 mutex_enter(&spa->spa_activities_lock);
9474 spa->spa_waiters++;
9475 spa_close(spa, FTAG);
9476
9477 *waited = B_FALSE;
9478 for (;;) {
9479 boolean_t in_progress;
9480 error = spa_activity_in_progress(spa, activity, use_tag, tag,
9481 &in_progress);
9482
9483 if (error || !in_progress || spa->spa_waiters_cancel)
9484 break;
9485
9486 *waited = B_TRUE;
9487
9488 if (cv_wait_sig(&spa->spa_activities_cv,
9489 &spa->spa_activities_lock) == 0) {
9490 error = EINTR;
9491 break;
9492 }
9493 }
9494
9495 spa->spa_waiters--;
9496 cv_signal(&spa->spa_waiters_cv);
9497 mutex_exit(&spa->spa_activities_lock);
9498
9499 return (error);
9500 }
9501
9502 /*
9503 * Wait for a particular instance of the specified activity to complete, where
9504 * the instance is identified by 'tag'
9505 */
9506 int
9507 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
9508 boolean_t *waited)
9509 {
9510 return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
9511 }
9512
9513 /*
9514 * Wait for all instances of the specified activity complete
9515 */
9516 int
9517 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
9518 {
9519
9520 return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
9521 }
9522
9523 sysevent_t *
9524 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9525 {
9526 sysevent_t *ev = NULL;
9527 #ifdef _KERNEL
9528 nvlist_t *resource;
9529
9530 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
9531 if (resource) {
9532 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
9533 ev->resource = resource;
9534 }
9535 #endif
9536 return (ev);
9537 }
9538
9539 void
9540 spa_event_post(sysevent_t *ev)
9541 {
9542 #ifdef _KERNEL
9543 if (ev) {
9544 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
9545 kmem_free(ev, sizeof (*ev));
9546 }
9547 #endif
9548 }
9549
9550 /*
9551 * Post a zevent corresponding to the given sysevent. The 'name' must be one
9552 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
9553 * filled in from the spa and (optionally) the vdev. This doesn't do anything
9554 * in the userland libzpool, as we don't want consumers to misinterpret ztest
9555 * or zdb as real changes.
9556 */
9557 void
9558 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9559 {
9560 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
9561 }
9562
9563 /* state manipulation functions */
9564 EXPORT_SYMBOL(spa_open);
9565 EXPORT_SYMBOL(spa_open_rewind);
9566 EXPORT_SYMBOL(spa_get_stats);
9567 EXPORT_SYMBOL(spa_create);
9568 EXPORT_SYMBOL(spa_import);
9569 EXPORT_SYMBOL(spa_tryimport);
9570 EXPORT_SYMBOL(spa_destroy);
9571 EXPORT_SYMBOL(spa_export);
9572 EXPORT_SYMBOL(spa_reset);
9573 EXPORT_SYMBOL(spa_async_request);
9574 EXPORT_SYMBOL(spa_async_suspend);
9575 EXPORT_SYMBOL(spa_async_resume);
9576 EXPORT_SYMBOL(spa_inject_addref);
9577 EXPORT_SYMBOL(spa_inject_delref);
9578 EXPORT_SYMBOL(spa_scan_stat_init);
9579 EXPORT_SYMBOL(spa_scan_get_stats);
9580
9581 /* device manipulation */
9582 EXPORT_SYMBOL(spa_vdev_add);
9583 EXPORT_SYMBOL(spa_vdev_attach);
9584 EXPORT_SYMBOL(spa_vdev_detach);
9585 EXPORT_SYMBOL(spa_vdev_setpath);
9586 EXPORT_SYMBOL(spa_vdev_setfru);
9587 EXPORT_SYMBOL(spa_vdev_split_mirror);
9588
9589 /* spare statech is global across all pools) */
9590 EXPORT_SYMBOL(spa_spare_add);
9591 EXPORT_SYMBOL(spa_spare_remove);
9592 EXPORT_SYMBOL(spa_spare_exists);
9593 EXPORT_SYMBOL(spa_spare_activate);
9594
9595 /* L2ARC statech is global across all pools) */
9596 EXPORT_SYMBOL(spa_l2cache_add);
9597 EXPORT_SYMBOL(spa_l2cache_remove);
9598 EXPORT_SYMBOL(spa_l2cache_exists);
9599 EXPORT_SYMBOL(spa_l2cache_activate);
9600 EXPORT_SYMBOL(spa_l2cache_drop);
9601
9602 /* scanning */
9603 EXPORT_SYMBOL(spa_scan);
9604 EXPORT_SYMBOL(spa_scan_stop);
9605
9606 /* spa syncing */
9607 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
9608 EXPORT_SYMBOL(spa_sync_allpools);
9609
9610 /* properties */
9611 EXPORT_SYMBOL(spa_prop_set);
9612 EXPORT_SYMBOL(spa_prop_get);
9613 EXPORT_SYMBOL(spa_prop_clear_bootfs);
9614
9615 /* asynchronous event notification */
9616 EXPORT_SYMBOL(spa_event_notify);
9617
9618 /* BEGIN CSTYLED */
9619 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, INT, ZMOD_RW,
9620 "log2(fraction of arc that can be used by inflight I/Os when "
9621 "verifying pool during import");
9622
9623 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
9624 "Set to traverse metadata on pool import");
9625
9626 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
9627 "Set to traverse data on pool import");
9628
9629 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
9630 "Print vdev tree to zfs_dbgmsg during pool import");
9631
9632 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
9633 "Percentage of CPUs to run an IO worker thread");
9634
9635 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, ULONG, ZMOD_RW,
9636 "Allow importing pool with up to this number of missing top-level "
9637 "vdevs (in read-only mode)");
9638
9639 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, ZMOD_RW,
9640 "Set the livelist condense zthr to pause");
9641
9642 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, ZMOD_RW,
9643 "Set the livelist condense synctask to pause");
9644
9645 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, INT, ZMOD_RW,
9646 "Whether livelist condensing was canceled in the synctask");
9647
9648 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, INT, ZMOD_RW,
9649 "Whether livelist condensing was canceled in the zthr function");
9650
9651 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, ZMOD_RW,
9652 "Whether extra ALLOC blkptrs were added to a livelist entry while it "
9653 "was being condensed");
9654 /* END CSTYLED */