]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
spa_export_common: refactor common exit points
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31 * Copyright 2018 Joyent, Inc.
32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33 * Copyright 2017 Joyent, Inc.
34 * Copyright (c) 2017, Intel Corporation.
35 */
36
37 /*
38 * SPA: Storage Pool Allocator
39 *
40 * This file contains all the routines used when modifying on-disk SPA state.
41 * This includes opening, importing, destroying, exporting a pool, and syncing a
42 * pool.
43 */
44
45 #include <sys/zfs_context.h>
46 #include <sys/fm/fs/zfs.h>
47 #include <sys/spa_impl.h>
48 #include <sys/zio.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/dmu.h>
51 #include <sys/dmu_tx.h>
52 #include <sys/zap.h>
53 #include <sys/zil.h>
54 #include <sys/ddt.h>
55 #include <sys/vdev_impl.h>
56 #include <sys/vdev_removal.h>
57 #include <sys/vdev_indirect_mapping.h>
58 #include <sys/vdev_indirect_births.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_rebuild.h>
61 #include <sys/vdev_trim.h>
62 #include <sys/vdev_disk.h>
63 #include <sys/vdev_draid.h>
64 #include <sys/metaslab.h>
65 #include <sys/metaslab_impl.h>
66 #include <sys/mmp.h>
67 #include <sys/uberblock_impl.h>
68 #include <sys/txg.h>
69 #include <sys/avl.h>
70 #include <sys/bpobj.h>
71 #include <sys/dmu_traverse.h>
72 #include <sys/dmu_objset.h>
73 #include <sys/unique.h>
74 #include <sys/dsl_pool.h>
75 #include <sys/dsl_dataset.h>
76 #include <sys/dsl_dir.h>
77 #include <sys/dsl_prop.h>
78 #include <sys/dsl_synctask.h>
79 #include <sys/fs/zfs.h>
80 #include <sys/arc.h>
81 #include <sys/callb.h>
82 #include <sys/systeminfo.h>
83 #include <sys/spa_boot.h>
84 #include <sys/zfs_ioctl.h>
85 #include <sys/dsl_scan.h>
86 #include <sys/zfeature.h>
87 #include <sys/dsl_destroy.h>
88 #include <sys/zvol.h>
89
90 #ifdef _KERNEL
91 #include <sys/fm/protocol.h>
92 #include <sys/fm/util.h>
93 #include <sys/callb.h>
94 #include <sys/zone.h>
95 #include <sys/vmsystm.h>
96 #endif /* _KERNEL */
97
98 #include "zfs_prop.h"
99 #include "zfs_comutil.h"
100
101 /*
102 * The interval, in seconds, at which failed configuration cache file writes
103 * should be retried.
104 */
105 int zfs_ccw_retry_interval = 300;
106
107 typedef enum zti_modes {
108 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
109 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
110 ZTI_MODE_NULL, /* don't create a taskq */
111 ZTI_NMODES
112 } zti_modes_t;
113
114 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
115 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
116 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
117 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
118
119 #define ZTI_N(n) ZTI_P(n, 1)
120 #define ZTI_ONE ZTI_N(1)
121
122 typedef struct zio_taskq_info {
123 zti_modes_t zti_mode;
124 uint_t zti_value;
125 uint_t zti_count;
126 } zio_taskq_info_t;
127
128 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
129 "iss", "iss_h", "int", "int_h"
130 };
131
132 /*
133 * This table defines the taskq settings for each ZFS I/O type. When
134 * initializing a pool, we use this table to create an appropriately sized
135 * taskq. Some operations are low volume and therefore have a small, static
136 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
137 * macros. Other operations process a large amount of data; the ZTI_BATCH
138 * macro causes us to create a taskq oriented for throughput. Some operations
139 * are so high frequency and short-lived that the taskq itself can become a
140 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
141 * additional degree of parallelism specified by the number of threads per-
142 * taskq and the number of taskqs; when dispatching an event in this case, the
143 * particular taskq is chosen at random.
144 *
145 * The different taskq priorities are to handle the different contexts (issue
146 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
147 * need to be handled with minimum delay.
148 */
149 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
150 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
151 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
152 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
153 { ZTI_BATCH, ZTI_N(5), ZTI_P(12, 8), ZTI_N(5) }, /* WRITE */
154 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
155 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
156 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
157 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
158 };
159
160 static void spa_sync_version(void *arg, dmu_tx_t *tx);
161 static void spa_sync_props(void *arg, dmu_tx_t *tx);
162 static boolean_t spa_has_active_shared_spare(spa_t *spa);
163 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
164 static void spa_vdev_resilver_done(spa_t *spa);
165
166 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
167 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
168 uint_t zio_taskq_basedc = 80; /* base duty cycle */
169
170 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
171
172 /*
173 * Report any spa_load_verify errors found, but do not fail spa_load.
174 * This is used by zdb to analyze non-idle pools.
175 */
176 boolean_t spa_load_verify_dryrun = B_FALSE;
177
178 /*
179 * This (illegal) pool name is used when temporarily importing a spa_t in order
180 * to get the vdev stats associated with the imported devices.
181 */
182 #define TRYIMPORT_NAME "$import"
183
184 /*
185 * For debugging purposes: print out vdev tree during pool import.
186 */
187 int spa_load_print_vdev_tree = B_FALSE;
188
189 /*
190 * A non-zero value for zfs_max_missing_tvds means that we allow importing
191 * pools with missing top-level vdevs. This is strictly intended for advanced
192 * pool recovery cases since missing data is almost inevitable. Pools with
193 * missing devices can only be imported read-only for safety reasons, and their
194 * fail-mode will be automatically set to "continue".
195 *
196 * With 1 missing vdev we should be able to import the pool and mount all
197 * datasets. User data that was not modified after the missing device has been
198 * added should be recoverable. This means that snapshots created prior to the
199 * addition of that device should be completely intact.
200 *
201 * With 2 missing vdevs, some datasets may fail to mount since there are
202 * dataset statistics that are stored as regular metadata. Some data might be
203 * recoverable if those vdevs were added recently.
204 *
205 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
206 * may be missing entirely. Chances of data recovery are very low. Note that
207 * there are also risks of performing an inadvertent rewind as we might be
208 * missing all the vdevs with the latest uberblocks.
209 */
210 unsigned long zfs_max_missing_tvds = 0;
211
212 /*
213 * The parameters below are similar to zfs_max_missing_tvds but are only
214 * intended for a preliminary open of the pool with an untrusted config which
215 * might be incomplete or out-dated.
216 *
217 * We are more tolerant for pools opened from a cachefile since we could have
218 * an out-dated cachefile where a device removal was not registered.
219 * We could have set the limit arbitrarily high but in the case where devices
220 * are really missing we would want to return the proper error codes; we chose
221 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
222 * and we get a chance to retrieve the trusted config.
223 */
224 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
225
226 /*
227 * In the case where config was assembled by scanning device paths (/dev/dsks
228 * by default) we are less tolerant since all the existing devices should have
229 * been detected and we want spa_load to return the right error codes.
230 */
231 uint64_t zfs_max_missing_tvds_scan = 0;
232
233 /*
234 * Debugging aid that pauses spa_sync() towards the end.
235 */
236 boolean_t zfs_pause_spa_sync = B_FALSE;
237
238 /*
239 * Variables to indicate the livelist condense zthr func should wait at certain
240 * points for the livelist to be removed - used to test condense/destroy races
241 */
242 int zfs_livelist_condense_zthr_pause = 0;
243 int zfs_livelist_condense_sync_pause = 0;
244
245 /*
246 * Variables to track whether or not condense cancellation has been
247 * triggered in testing.
248 */
249 int zfs_livelist_condense_sync_cancel = 0;
250 int zfs_livelist_condense_zthr_cancel = 0;
251
252 /*
253 * Variable to track whether or not extra ALLOC blkptrs were added to a
254 * livelist entry while it was being condensed (caused by the way we track
255 * remapped blkptrs in dbuf_remap_impl)
256 */
257 int zfs_livelist_condense_new_alloc = 0;
258
259 /*
260 * ==========================================================================
261 * SPA properties routines
262 * ==========================================================================
263 */
264
265 /*
266 * Add a (source=src, propname=propval) list to an nvlist.
267 */
268 static void
269 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
270 uint64_t intval, zprop_source_t src)
271 {
272 const char *propname = zpool_prop_to_name(prop);
273 nvlist_t *propval;
274
275 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
276 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
277
278 if (strval != NULL)
279 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
280 else
281 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
282
283 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
284 nvlist_free(propval);
285 }
286
287 /*
288 * Get property values from the spa configuration.
289 */
290 static void
291 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
292 {
293 vdev_t *rvd = spa->spa_root_vdev;
294 dsl_pool_t *pool = spa->spa_dsl_pool;
295 uint64_t size, alloc, cap, version;
296 const zprop_source_t src = ZPROP_SRC_NONE;
297 spa_config_dirent_t *dp;
298 metaslab_class_t *mc = spa_normal_class(spa);
299
300 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
301
302 if (rvd != NULL) {
303 alloc = metaslab_class_get_alloc(mc);
304 alloc += metaslab_class_get_alloc(spa_special_class(spa));
305 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
306 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
307
308 size = metaslab_class_get_space(mc);
309 size += metaslab_class_get_space(spa_special_class(spa));
310 size += metaslab_class_get_space(spa_dedup_class(spa));
311 size += metaslab_class_get_space(spa_embedded_log_class(spa));
312
313 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
314 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
315 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
316 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
317 size - alloc, src);
318 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
319 spa->spa_checkpoint_info.sci_dspace, src);
320
321 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
322 metaslab_class_fragmentation(mc), src);
323 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
324 metaslab_class_expandable_space(mc), src);
325 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
326 (spa_mode(spa) == SPA_MODE_READ), src);
327
328 cap = (size == 0) ? 0 : (alloc * 100 / size);
329 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
330
331 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
332 ddt_get_pool_dedup_ratio(spa), src);
333
334 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
335 rvd->vdev_state, src);
336
337 version = spa_version(spa);
338 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
339 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
340 version, ZPROP_SRC_DEFAULT);
341 } else {
342 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
343 version, ZPROP_SRC_LOCAL);
344 }
345 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
346 NULL, spa_load_guid(spa), src);
347 }
348
349 if (pool != NULL) {
350 /*
351 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
352 * when opening pools before this version freedir will be NULL.
353 */
354 if (pool->dp_free_dir != NULL) {
355 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
356 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
357 src);
358 } else {
359 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
360 NULL, 0, src);
361 }
362
363 if (pool->dp_leak_dir != NULL) {
364 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
365 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
366 src);
367 } else {
368 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
369 NULL, 0, src);
370 }
371 }
372
373 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
374
375 if (spa->spa_comment != NULL) {
376 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
377 0, ZPROP_SRC_LOCAL);
378 }
379
380 if (spa->spa_root != NULL)
381 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
382 0, ZPROP_SRC_LOCAL);
383
384 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
385 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
386 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
387 } else {
388 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
389 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
390 }
391
392 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
393 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
394 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
395 } else {
396 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
397 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
398 }
399
400 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
401 if (dp->scd_path == NULL) {
402 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
403 "none", 0, ZPROP_SRC_LOCAL);
404 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
405 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
406 dp->scd_path, 0, ZPROP_SRC_LOCAL);
407 }
408 }
409 }
410
411 /*
412 * Get zpool property values.
413 */
414 int
415 spa_prop_get(spa_t *spa, nvlist_t **nvp)
416 {
417 objset_t *mos = spa->spa_meta_objset;
418 zap_cursor_t zc;
419 zap_attribute_t za;
420 dsl_pool_t *dp;
421 int err;
422
423 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
424 if (err)
425 return (err);
426
427 dp = spa_get_dsl(spa);
428 dsl_pool_config_enter(dp, FTAG);
429 mutex_enter(&spa->spa_props_lock);
430
431 /*
432 * Get properties from the spa config.
433 */
434 spa_prop_get_config(spa, nvp);
435
436 /* If no pool property object, no more prop to get. */
437 if (mos == NULL || spa->spa_pool_props_object == 0)
438 goto out;
439
440 /*
441 * Get properties from the MOS pool property object.
442 */
443 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
444 (err = zap_cursor_retrieve(&zc, &za)) == 0;
445 zap_cursor_advance(&zc)) {
446 uint64_t intval = 0;
447 char *strval = NULL;
448 zprop_source_t src = ZPROP_SRC_DEFAULT;
449 zpool_prop_t prop;
450
451 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
452 continue;
453
454 switch (za.za_integer_length) {
455 case 8:
456 /* integer property */
457 if (za.za_first_integer !=
458 zpool_prop_default_numeric(prop))
459 src = ZPROP_SRC_LOCAL;
460
461 if (prop == ZPOOL_PROP_BOOTFS) {
462 dsl_dataset_t *ds = NULL;
463
464 err = dsl_dataset_hold_obj(dp,
465 za.za_first_integer, FTAG, &ds);
466 if (err != 0)
467 break;
468
469 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
470 KM_SLEEP);
471 dsl_dataset_name(ds, strval);
472 dsl_dataset_rele(ds, FTAG);
473 } else {
474 strval = NULL;
475 intval = za.za_first_integer;
476 }
477
478 spa_prop_add_list(*nvp, prop, strval, intval, src);
479
480 if (strval != NULL)
481 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
482
483 break;
484
485 case 1:
486 /* string property */
487 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
488 err = zap_lookup(mos, spa->spa_pool_props_object,
489 za.za_name, 1, za.za_num_integers, strval);
490 if (err) {
491 kmem_free(strval, za.za_num_integers);
492 break;
493 }
494 spa_prop_add_list(*nvp, prop, strval, 0, src);
495 kmem_free(strval, za.za_num_integers);
496 break;
497
498 default:
499 break;
500 }
501 }
502 zap_cursor_fini(&zc);
503 out:
504 mutex_exit(&spa->spa_props_lock);
505 dsl_pool_config_exit(dp, FTAG);
506 if (err && err != ENOENT) {
507 nvlist_free(*nvp);
508 *nvp = NULL;
509 return (err);
510 }
511
512 return (0);
513 }
514
515 /*
516 * Validate the given pool properties nvlist and modify the list
517 * for the property values to be set.
518 */
519 static int
520 spa_prop_validate(spa_t *spa, nvlist_t *props)
521 {
522 nvpair_t *elem;
523 int error = 0, reset_bootfs = 0;
524 uint64_t objnum = 0;
525 boolean_t has_feature = B_FALSE;
526
527 elem = NULL;
528 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
529 uint64_t intval;
530 char *strval, *slash, *check, *fname;
531 const char *propname = nvpair_name(elem);
532 zpool_prop_t prop = zpool_name_to_prop(propname);
533
534 switch (prop) {
535 case ZPOOL_PROP_INVAL:
536 if (!zpool_prop_feature(propname)) {
537 error = SET_ERROR(EINVAL);
538 break;
539 }
540
541 /*
542 * Sanitize the input.
543 */
544 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
545 error = SET_ERROR(EINVAL);
546 break;
547 }
548
549 if (nvpair_value_uint64(elem, &intval) != 0) {
550 error = SET_ERROR(EINVAL);
551 break;
552 }
553
554 if (intval != 0) {
555 error = SET_ERROR(EINVAL);
556 break;
557 }
558
559 fname = strchr(propname, '@') + 1;
560 if (zfeature_lookup_name(fname, NULL) != 0) {
561 error = SET_ERROR(EINVAL);
562 break;
563 }
564
565 has_feature = B_TRUE;
566 break;
567
568 case ZPOOL_PROP_VERSION:
569 error = nvpair_value_uint64(elem, &intval);
570 if (!error &&
571 (intval < spa_version(spa) ||
572 intval > SPA_VERSION_BEFORE_FEATURES ||
573 has_feature))
574 error = SET_ERROR(EINVAL);
575 break;
576
577 case ZPOOL_PROP_DELEGATION:
578 case ZPOOL_PROP_AUTOREPLACE:
579 case ZPOOL_PROP_LISTSNAPS:
580 case ZPOOL_PROP_AUTOEXPAND:
581 case ZPOOL_PROP_AUTOTRIM:
582 error = nvpair_value_uint64(elem, &intval);
583 if (!error && intval > 1)
584 error = SET_ERROR(EINVAL);
585 break;
586
587 case ZPOOL_PROP_MULTIHOST:
588 error = nvpair_value_uint64(elem, &intval);
589 if (!error && intval > 1)
590 error = SET_ERROR(EINVAL);
591
592 if (!error) {
593 uint32_t hostid = zone_get_hostid(NULL);
594 if (hostid)
595 spa->spa_hostid = hostid;
596 else
597 error = SET_ERROR(ENOTSUP);
598 }
599
600 break;
601
602 case ZPOOL_PROP_BOOTFS:
603 /*
604 * If the pool version is less than SPA_VERSION_BOOTFS,
605 * or the pool is still being created (version == 0),
606 * the bootfs property cannot be set.
607 */
608 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
609 error = SET_ERROR(ENOTSUP);
610 break;
611 }
612
613 /*
614 * Make sure the vdev config is bootable
615 */
616 if (!vdev_is_bootable(spa->spa_root_vdev)) {
617 error = SET_ERROR(ENOTSUP);
618 break;
619 }
620
621 reset_bootfs = 1;
622
623 error = nvpair_value_string(elem, &strval);
624
625 if (!error) {
626 objset_t *os;
627
628 if (strval == NULL || strval[0] == '\0') {
629 objnum = zpool_prop_default_numeric(
630 ZPOOL_PROP_BOOTFS);
631 break;
632 }
633
634 error = dmu_objset_hold(strval, FTAG, &os);
635 if (error != 0)
636 break;
637
638 /* Must be ZPL. */
639 if (dmu_objset_type(os) != DMU_OST_ZFS) {
640 error = SET_ERROR(ENOTSUP);
641 } else {
642 objnum = dmu_objset_id(os);
643 }
644 dmu_objset_rele(os, FTAG);
645 }
646 break;
647
648 case ZPOOL_PROP_FAILUREMODE:
649 error = nvpair_value_uint64(elem, &intval);
650 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
651 error = SET_ERROR(EINVAL);
652
653 /*
654 * This is a special case which only occurs when
655 * the pool has completely failed. This allows
656 * the user to change the in-core failmode property
657 * without syncing it out to disk (I/Os might
658 * currently be blocked). We do this by returning
659 * EIO to the caller (spa_prop_set) to trick it
660 * into thinking we encountered a property validation
661 * error.
662 */
663 if (!error && spa_suspended(spa)) {
664 spa->spa_failmode = intval;
665 error = SET_ERROR(EIO);
666 }
667 break;
668
669 case ZPOOL_PROP_CACHEFILE:
670 if ((error = nvpair_value_string(elem, &strval)) != 0)
671 break;
672
673 if (strval[0] == '\0')
674 break;
675
676 if (strcmp(strval, "none") == 0)
677 break;
678
679 if (strval[0] != '/') {
680 error = SET_ERROR(EINVAL);
681 break;
682 }
683
684 slash = strrchr(strval, '/');
685 ASSERT(slash != NULL);
686
687 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
688 strcmp(slash, "/..") == 0)
689 error = SET_ERROR(EINVAL);
690 break;
691
692 case ZPOOL_PROP_COMMENT:
693 if ((error = nvpair_value_string(elem, &strval)) != 0)
694 break;
695 for (check = strval; *check != '\0'; check++) {
696 if (!isprint(*check)) {
697 error = SET_ERROR(EINVAL);
698 break;
699 }
700 }
701 if (strlen(strval) > ZPROP_MAX_COMMENT)
702 error = SET_ERROR(E2BIG);
703 break;
704
705 default:
706 break;
707 }
708
709 if (error)
710 break;
711 }
712
713 (void) nvlist_remove_all(props,
714 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
715
716 if (!error && reset_bootfs) {
717 error = nvlist_remove(props,
718 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
719
720 if (!error) {
721 error = nvlist_add_uint64(props,
722 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
723 }
724 }
725
726 return (error);
727 }
728
729 void
730 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
731 {
732 char *cachefile;
733 spa_config_dirent_t *dp;
734
735 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
736 &cachefile) != 0)
737 return;
738
739 dp = kmem_alloc(sizeof (spa_config_dirent_t),
740 KM_SLEEP);
741
742 if (cachefile[0] == '\0')
743 dp->scd_path = spa_strdup(spa_config_path);
744 else if (strcmp(cachefile, "none") == 0)
745 dp->scd_path = NULL;
746 else
747 dp->scd_path = spa_strdup(cachefile);
748
749 list_insert_head(&spa->spa_config_list, dp);
750 if (need_sync)
751 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
752 }
753
754 int
755 spa_prop_set(spa_t *spa, nvlist_t *nvp)
756 {
757 int error;
758 nvpair_t *elem = NULL;
759 boolean_t need_sync = B_FALSE;
760
761 if ((error = spa_prop_validate(spa, nvp)) != 0)
762 return (error);
763
764 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
765 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
766
767 if (prop == ZPOOL_PROP_CACHEFILE ||
768 prop == ZPOOL_PROP_ALTROOT ||
769 prop == ZPOOL_PROP_READONLY)
770 continue;
771
772 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
773 uint64_t ver;
774
775 if (prop == ZPOOL_PROP_VERSION) {
776 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
777 } else {
778 ASSERT(zpool_prop_feature(nvpair_name(elem)));
779 ver = SPA_VERSION_FEATURES;
780 need_sync = B_TRUE;
781 }
782
783 /* Save time if the version is already set. */
784 if (ver == spa_version(spa))
785 continue;
786
787 /*
788 * In addition to the pool directory object, we might
789 * create the pool properties object, the features for
790 * read object, the features for write object, or the
791 * feature descriptions object.
792 */
793 error = dsl_sync_task(spa->spa_name, NULL,
794 spa_sync_version, &ver,
795 6, ZFS_SPACE_CHECK_RESERVED);
796 if (error)
797 return (error);
798 continue;
799 }
800
801 need_sync = B_TRUE;
802 break;
803 }
804
805 if (need_sync) {
806 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
807 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
808 }
809
810 return (0);
811 }
812
813 /*
814 * If the bootfs property value is dsobj, clear it.
815 */
816 void
817 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
818 {
819 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
820 VERIFY(zap_remove(spa->spa_meta_objset,
821 spa->spa_pool_props_object,
822 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
823 spa->spa_bootfs = 0;
824 }
825 }
826
827 /*ARGSUSED*/
828 static int
829 spa_change_guid_check(void *arg, dmu_tx_t *tx)
830 {
831 uint64_t *newguid __maybe_unused = arg;
832 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
833 vdev_t *rvd = spa->spa_root_vdev;
834 uint64_t vdev_state;
835
836 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
837 int error = (spa_has_checkpoint(spa)) ?
838 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
839 return (SET_ERROR(error));
840 }
841
842 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
843 vdev_state = rvd->vdev_state;
844 spa_config_exit(spa, SCL_STATE, FTAG);
845
846 if (vdev_state != VDEV_STATE_HEALTHY)
847 return (SET_ERROR(ENXIO));
848
849 ASSERT3U(spa_guid(spa), !=, *newguid);
850
851 return (0);
852 }
853
854 static void
855 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
856 {
857 uint64_t *newguid = arg;
858 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
859 uint64_t oldguid;
860 vdev_t *rvd = spa->spa_root_vdev;
861
862 oldguid = spa_guid(spa);
863
864 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
865 rvd->vdev_guid = *newguid;
866 rvd->vdev_guid_sum += (*newguid - oldguid);
867 vdev_config_dirty(rvd);
868 spa_config_exit(spa, SCL_STATE, FTAG);
869
870 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
871 (u_longlong_t)oldguid, (u_longlong_t)*newguid);
872 }
873
874 /*
875 * Change the GUID for the pool. This is done so that we can later
876 * re-import a pool built from a clone of our own vdevs. We will modify
877 * the root vdev's guid, our own pool guid, and then mark all of our
878 * vdevs dirty. Note that we must make sure that all our vdevs are
879 * online when we do this, or else any vdevs that weren't present
880 * would be orphaned from our pool. We are also going to issue a
881 * sysevent to update any watchers.
882 */
883 int
884 spa_change_guid(spa_t *spa)
885 {
886 int error;
887 uint64_t guid;
888
889 mutex_enter(&spa->spa_vdev_top_lock);
890 mutex_enter(&spa_namespace_lock);
891 guid = spa_generate_guid(NULL);
892
893 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
894 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
895
896 if (error == 0) {
897 spa_write_cachefile(spa, B_FALSE, B_TRUE);
898 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
899 }
900
901 mutex_exit(&spa_namespace_lock);
902 mutex_exit(&spa->spa_vdev_top_lock);
903
904 return (error);
905 }
906
907 /*
908 * ==========================================================================
909 * SPA state manipulation (open/create/destroy/import/export)
910 * ==========================================================================
911 */
912
913 static int
914 spa_error_entry_compare(const void *a, const void *b)
915 {
916 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
917 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
918 int ret;
919
920 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
921 sizeof (zbookmark_phys_t));
922
923 return (TREE_ISIGN(ret));
924 }
925
926 /*
927 * Utility function which retrieves copies of the current logs and
928 * re-initializes them in the process.
929 */
930 void
931 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
932 {
933 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
934
935 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
936 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
937
938 avl_create(&spa->spa_errlist_scrub,
939 spa_error_entry_compare, sizeof (spa_error_entry_t),
940 offsetof(spa_error_entry_t, se_avl));
941 avl_create(&spa->spa_errlist_last,
942 spa_error_entry_compare, sizeof (spa_error_entry_t),
943 offsetof(spa_error_entry_t, se_avl));
944 }
945
946 static void
947 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
948 {
949 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
950 enum zti_modes mode = ztip->zti_mode;
951 uint_t value = ztip->zti_value;
952 uint_t count = ztip->zti_count;
953 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
954 uint_t flags = 0;
955 boolean_t batch = B_FALSE;
956
957 if (mode == ZTI_MODE_NULL) {
958 tqs->stqs_count = 0;
959 tqs->stqs_taskq = NULL;
960 return;
961 }
962
963 ASSERT3U(count, >, 0);
964
965 tqs->stqs_count = count;
966 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
967
968 switch (mode) {
969 case ZTI_MODE_FIXED:
970 ASSERT3U(value, >=, 1);
971 value = MAX(value, 1);
972 flags |= TASKQ_DYNAMIC;
973 break;
974
975 case ZTI_MODE_BATCH:
976 batch = B_TRUE;
977 flags |= TASKQ_THREADS_CPU_PCT;
978 value = MIN(zio_taskq_batch_pct, 100);
979 break;
980
981 default:
982 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
983 "spa_activate()",
984 zio_type_name[t], zio_taskq_types[q], mode, value);
985 break;
986 }
987
988 for (uint_t i = 0; i < count; i++) {
989 taskq_t *tq;
990 char name[32];
991
992 (void) snprintf(name, sizeof (name), "%s_%s",
993 zio_type_name[t], zio_taskq_types[q]);
994
995 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
996 if (batch)
997 flags |= TASKQ_DC_BATCH;
998
999 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1000 spa->spa_proc, zio_taskq_basedc, flags);
1001 } else {
1002 pri_t pri = maxclsyspri;
1003 /*
1004 * The write issue taskq can be extremely CPU
1005 * intensive. Run it at slightly less important
1006 * priority than the other taskqs.
1007 *
1008 * Under Linux and FreeBSD this means incrementing
1009 * the priority value as opposed to platforms like
1010 * illumos where it should be decremented.
1011 *
1012 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1013 * are equal then a difference between them is
1014 * insignificant.
1015 */
1016 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1017 #if defined(__linux__)
1018 pri++;
1019 #elif defined(__FreeBSD__)
1020 pri += 4;
1021 #else
1022 #error "unknown OS"
1023 #endif
1024 }
1025 tq = taskq_create_proc(name, value, pri, 50,
1026 INT_MAX, spa->spa_proc, flags);
1027 }
1028
1029 tqs->stqs_taskq[i] = tq;
1030 }
1031 }
1032
1033 static void
1034 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1035 {
1036 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1037
1038 if (tqs->stqs_taskq == NULL) {
1039 ASSERT3U(tqs->stqs_count, ==, 0);
1040 return;
1041 }
1042
1043 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1044 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1045 taskq_destroy(tqs->stqs_taskq[i]);
1046 }
1047
1048 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1049 tqs->stqs_taskq = NULL;
1050 }
1051
1052 /*
1053 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1054 * Note that a type may have multiple discrete taskqs to avoid lock contention
1055 * on the taskq itself. In that case we choose which taskq at random by using
1056 * the low bits of gethrtime().
1057 */
1058 void
1059 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1060 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1061 {
1062 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1063 taskq_t *tq;
1064
1065 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1066 ASSERT3U(tqs->stqs_count, !=, 0);
1067
1068 if (tqs->stqs_count == 1) {
1069 tq = tqs->stqs_taskq[0];
1070 } else {
1071 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1072 }
1073
1074 taskq_dispatch_ent(tq, func, arg, flags, ent);
1075 }
1076
1077 /*
1078 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1079 */
1080 void
1081 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1082 task_func_t *func, void *arg, uint_t flags)
1083 {
1084 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1085 taskq_t *tq;
1086 taskqid_t id;
1087
1088 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1089 ASSERT3U(tqs->stqs_count, !=, 0);
1090
1091 if (tqs->stqs_count == 1) {
1092 tq = tqs->stqs_taskq[0];
1093 } else {
1094 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1095 }
1096
1097 id = taskq_dispatch(tq, func, arg, flags);
1098 if (id)
1099 taskq_wait_id(tq, id);
1100 }
1101
1102 static void
1103 spa_create_zio_taskqs(spa_t *spa)
1104 {
1105 for (int t = 0; t < ZIO_TYPES; t++) {
1106 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1107 spa_taskqs_init(spa, t, q);
1108 }
1109 }
1110 }
1111
1112 /*
1113 * Disabled until spa_thread() can be adapted for Linux.
1114 */
1115 #undef HAVE_SPA_THREAD
1116
1117 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1118 static void
1119 spa_thread(void *arg)
1120 {
1121 psetid_t zio_taskq_psrset_bind = PS_NONE;
1122 callb_cpr_t cprinfo;
1123
1124 spa_t *spa = arg;
1125 user_t *pu = PTOU(curproc);
1126
1127 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1128 spa->spa_name);
1129
1130 ASSERT(curproc != &p0);
1131 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1132 "zpool-%s", spa->spa_name);
1133 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1134
1135 /* bind this thread to the requested psrset */
1136 if (zio_taskq_psrset_bind != PS_NONE) {
1137 pool_lock();
1138 mutex_enter(&cpu_lock);
1139 mutex_enter(&pidlock);
1140 mutex_enter(&curproc->p_lock);
1141
1142 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1143 0, NULL, NULL) == 0) {
1144 curthread->t_bind_pset = zio_taskq_psrset_bind;
1145 } else {
1146 cmn_err(CE_WARN,
1147 "Couldn't bind process for zfs pool \"%s\" to "
1148 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1149 }
1150
1151 mutex_exit(&curproc->p_lock);
1152 mutex_exit(&pidlock);
1153 mutex_exit(&cpu_lock);
1154 pool_unlock();
1155 }
1156
1157 if (zio_taskq_sysdc) {
1158 sysdc_thread_enter(curthread, 100, 0);
1159 }
1160
1161 spa->spa_proc = curproc;
1162 spa->spa_did = curthread->t_did;
1163
1164 spa_create_zio_taskqs(spa);
1165
1166 mutex_enter(&spa->spa_proc_lock);
1167 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1168
1169 spa->spa_proc_state = SPA_PROC_ACTIVE;
1170 cv_broadcast(&spa->spa_proc_cv);
1171
1172 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1173 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1174 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1175 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1176
1177 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1178 spa->spa_proc_state = SPA_PROC_GONE;
1179 spa->spa_proc = &p0;
1180 cv_broadcast(&spa->spa_proc_cv);
1181 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1182
1183 mutex_enter(&curproc->p_lock);
1184 lwp_exit();
1185 }
1186 #endif
1187
1188 /*
1189 * Activate an uninitialized pool.
1190 */
1191 static void
1192 spa_activate(spa_t *spa, spa_mode_t mode)
1193 {
1194 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1195
1196 spa->spa_state = POOL_STATE_ACTIVE;
1197 spa->spa_mode = mode;
1198
1199 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1200 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1201 spa->spa_embedded_log_class =
1202 metaslab_class_create(spa, zfs_metaslab_ops);
1203 spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1204 spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops);
1205
1206 /* Try to create a covering process */
1207 mutex_enter(&spa->spa_proc_lock);
1208 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1209 ASSERT(spa->spa_proc == &p0);
1210 spa->spa_did = 0;
1211
1212 #ifdef HAVE_SPA_THREAD
1213 /* Only create a process if we're going to be around a while. */
1214 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1215 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1216 NULL, 0) == 0) {
1217 spa->spa_proc_state = SPA_PROC_CREATED;
1218 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1219 cv_wait(&spa->spa_proc_cv,
1220 &spa->spa_proc_lock);
1221 }
1222 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1223 ASSERT(spa->spa_proc != &p0);
1224 ASSERT(spa->spa_did != 0);
1225 } else {
1226 #ifdef _KERNEL
1227 cmn_err(CE_WARN,
1228 "Couldn't create process for zfs pool \"%s\"\n",
1229 spa->spa_name);
1230 #endif
1231 }
1232 }
1233 #endif /* HAVE_SPA_THREAD */
1234 mutex_exit(&spa->spa_proc_lock);
1235
1236 /* If we didn't create a process, we need to create our taskqs. */
1237 if (spa->spa_proc == &p0) {
1238 spa_create_zio_taskqs(spa);
1239 }
1240
1241 for (size_t i = 0; i < TXG_SIZE; i++) {
1242 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1243 ZIO_FLAG_CANFAIL);
1244 }
1245
1246 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1247 offsetof(vdev_t, vdev_config_dirty_node));
1248 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1249 offsetof(objset_t, os_evicting_node));
1250 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1251 offsetof(vdev_t, vdev_state_dirty_node));
1252
1253 txg_list_create(&spa->spa_vdev_txg_list, spa,
1254 offsetof(struct vdev, vdev_txg_node));
1255
1256 avl_create(&spa->spa_errlist_scrub,
1257 spa_error_entry_compare, sizeof (spa_error_entry_t),
1258 offsetof(spa_error_entry_t, se_avl));
1259 avl_create(&spa->spa_errlist_last,
1260 spa_error_entry_compare, sizeof (spa_error_entry_t),
1261 offsetof(spa_error_entry_t, se_avl));
1262
1263 spa_keystore_init(&spa->spa_keystore);
1264
1265 /*
1266 * This taskq is used to perform zvol-minor-related tasks
1267 * asynchronously. This has several advantages, including easy
1268 * resolution of various deadlocks.
1269 *
1270 * The taskq must be single threaded to ensure tasks are always
1271 * processed in the order in which they were dispatched.
1272 *
1273 * A taskq per pool allows one to keep the pools independent.
1274 * This way if one pool is suspended, it will not impact another.
1275 *
1276 * The preferred location to dispatch a zvol minor task is a sync
1277 * task. In this context, there is easy access to the spa_t and minimal
1278 * error handling is required because the sync task must succeed.
1279 */
1280 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1281 1, INT_MAX, 0);
1282
1283 /*
1284 * Taskq dedicated to prefetcher threads: this is used to prevent the
1285 * pool traverse code from monopolizing the global (and limited)
1286 * system_taskq by inappropriately scheduling long running tasks on it.
1287 */
1288 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1289 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1290
1291 /*
1292 * The taskq to upgrade datasets in this pool. Currently used by
1293 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1294 */
1295 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1296 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1297 }
1298
1299 /*
1300 * Opposite of spa_activate().
1301 */
1302 static void
1303 spa_deactivate(spa_t *spa)
1304 {
1305 ASSERT(spa->spa_sync_on == B_FALSE);
1306 ASSERT(spa->spa_dsl_pool == NULL);
1307 ASSERT(spa->spa_root_vdev == NULL);
1308 ASSERT(spa->spa_async_zio_root == NULL);
1309 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1310
1311 spa_evicting_os_wait(spa);
1312
1313 if (spa->spa_zvol_taskq) {
1314 taskq_destroy(spa->spa_zvol_taskq);
1315 spa->spa_zvol_taskq = NULL;
1316 }
1317
1318 if (spa->spa_prefetch_taskq) {
1319 taskq_destroy(spa->spa_prefetch_taskq);
1320 spa->spa_prefetch_taskq = NULL;
1321 }
1322
1323 if (spa->spa_upgrade_taskq) {
1324 taskq_destroy(spa->spa_upgrade_taskq);
1325 spa->spa_upgrade_taskq = NULL;
1326 }
1327
1328 txg_list_destroy(&spa->spa_vdev_txg_list);
1329
1330 list_destroy(&spa->spa_config_dirty_list);
1331 list_destroy(&spa->spa_evicting_os_list);
1332 list_destroy(&spa->spa_state_dirty_list);
1333
1334 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1335
1336 for (int t = 0; t < ZIO_TYPES; t++) {
1337 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1338 spa_taskqs_fini(spa, t, q);
1339 }
1340 }
1341
1342 for (size_t i = 0; i < TXG_SIZE; i++) {
1343 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1344 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1345 spa->spa_txg_zio[i] = NULL;
1346 }
1347
1348 metaslab_class_destroy(spa->spa_normal_class);
1349 spa->spa_normal_class = NULL;
1350
1351 metaslab_class_destroy(spa->spa_log_class);
1352 spa->spa_log_class = NULL;
1353
1354 metaslab_class_destroy(spa->spa_embedded_log_class);
1355 spa->spa_embedded_log_class = NULL;
1356
1357 metaslab_class_destroy(spa->spa_special_class);
1358 spa->spa_special_class = NULL;
1359
1360 metaslab_class_destroy(spa->spa_dedup_class);
1361 spa->spa_dedup_class = NULL;
1362
1363 /*
1364 * If this was part of an import or the open otherwise failed, we may
1365 * still have errors left in the queues. Empty them just in case.
1366 */
1367 spa_errlog_drain(spa);
1368 avl_destroy(&spa->spa_errlist_scrub);
1369 avl_destroy(&spa->spa_errlist_last);
1370
1371 spa_keystore_fini(&spa->spa_keystore);
1372
1373 spa->spa_state = POOL_STATE_UNINITIALIZED;
1374
1375 mutex_enter(&spa->spa_proc_lock);
1376 if (spa->spa_proc_state != SPA_PROC_NONE) {
1377 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1378 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1379 cv_broadcast(&spa->spa_proc_cv);
1380 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1381 ASSERT(spa->spa_proc != &p0);
1382 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1383 }
1384 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1385 spa->spa_proc_state = SPA_PROC_NONE;
1386 }
1387 ASSERT(spa->spa_proc == &p0);
1388 mutex_exit(&spa->spa_proc_lock);
1389
1390 /*
1391 * We want to make sure spa_thread() has actually exited the ZFS
1392 * module, so that the module can't be unloaded out from underneath
1393 * it.
1394 */
1395 if (spa->spa_did != 0) {
1396 thread_join(spa->spa_did);
1397 spa->spa_did = 0;
1398 }
1399 }
1400
1401 /*
1402 * Verify a pool configuration, and construct the vdev tree appropriately. This
1403 * will create all the necessary vdevs in the appropriate layout, with each vdev
1404 * in the CLOSED state. This will prep the pool before open/creation/import.
1405 * All vdev validation is done by the vdev_alloc() routine.
1406 */
1407 int
1408 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1409 uint_t id, int atype)
1410 {
1411 nvlist_t **child;
1412 uint_t children;
1413 int error;
1414
1415 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1416 return (error);
1417
1418 if ((*vdp)->vdev_ops->vdev_op_leaf)
1419 return (0);
1420
1421 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1422 &child, &children);
1423
1424 if (error == ENOENT)
1425 return (0);
1426
1427 if (error) {
1428 vdev_free(*vdp);
1429 *vdp = NULL;
1430 return (SET_ERROR(EINVAL));
1431 }
1432
1433 for (int c = 0; c < children; c++) {
1434 vdev_t *vd;
1435 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1436 atype)) != 0) {
1437 vdev_free(*vdp);
1438 *vdp = NULL;
1439 return (error);
1440 }
1441 }
1442
1443 ASSERT(*vdp != NULL);
1444
1445 return (0);
1446 }
1447
1448 static boolean_t
1449 spa_should_flush_logs_on_unload(spa_t *spa)
1450 {
1451 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1452 return (B_FALSE);
1453
1454 if (!spa_writeable(spa))
1455 return (B_FALSE);
1456
1457 if (!spa->spa_sync_on)
1458 return (B_FALSE);
1459
1460 if (spa_state(spa) != POOL_STATE_EXPORTED)
1461 return (B_FALSE);
1462
1463 if (zfs_keep_log_spacemaps_at_export)
1464 return (B_FALSE);
1465
1466 return (B_TRUE);
1467 }
1468
1469 /*
1470 * Opens a transaction that will set the flag that will instruct
1471 * spa_sync to attempt to flush all the metaslabs for that txg.
1472 */
1473 static void
1474 spa_unload_log_sm_flush_all(spa_t *spa)
1475 {
1476 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1477 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1478
1479 ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1480 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1481
1482 dmu_tx_commit(tx);
1483 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1484 }
1485
1486 static void
1487 spa_unload_log_sm_metadata(spa_t *spa)
1488 {
1489 void *cookie = NULL;
1490 spa_log_sm_t *sls;
1491 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1492 &cookie)) != NULL) {
1493 VERIFY0(sls->sls_mscount);
1494 kmem_free(sls, sizeof (spa_log_sm_t));
1495 }
1496
1497 for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1498 e != NULL; e = list_head(&spa->spa_log_summary)) {
1499 VERIFY0(e->lse_mscount);
1500 list_remove(&spa->spa_log_summary, e);
1501 kmem_free(e, sizeof (log_summary_entry_t));
1502 }
1503
1504 spa->spa_unflushed_stats.sus_nblocks = 0;
1505 spa->spa_unflushed_stats.sus_memused = 0;
1506 spa->spa_unflushed_stats.sus_blocklimit = 0;
1507 }
1508
1509 static void
1510 spa_destroy_aux_threads(spa_t *spa)
1511 {
1512 if (spa->spa_condense_zthr != NULL) {
1513 zthr_destroy(spa->spa_condense_zthr);
1514 spa->spa_condense_zthr = NULL;
1515 }
1516 if (spa->spa_checkpoint_discard_zthr != NULL) {
1517 zthr_destroy(spa->spa_checkpoint_discard_zthr);
1518 spa->spa_checkpoint_discard_zthr = NULL;
1519 }
1520 if (spa->spa_livelist_delete_zthr != NULL) {
1521 zthr_destroy(spa->spa_livelist_delete_zthr);
1522 spa->spa_livelist_delete_zthr = NULL;
1523 }
1524 if (spa->spa_livelist_condense_zthr != NULL) {
1525 zthr_destroy(spa->spa_livelist_condense_zthr);
1526 spa->spa_livelist_condense_zthr = NULL;
1527 }
1528 }
1529
1530 /*
1531 * Opposite of spa_load().
1532 */
1533 static void
1534 spa_unload(spa_t *spa)
1535 {
1536 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1537 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1538
1539 spa_import_progress_remove(spa_guid(spa));
1540 spa_load_note(spa, "UNLOADING");
1541
1542 spa_wake_waiters(spa);
1543
1544 /*
1545 * If the log space map feature is enabled and the pool is getting
1546 * exported (but not destroyed), we want to spend some time flushing
1547 * as many metaslabs as we can in an attempt to destroy log space
1548 * maps and save import time.
1549 */
1550 if (spa_should_flush_logs_on_unload(spa))
1551 spa_unload_log_sm_flush_all(spa);
1552
1553 /*
1554 * Stop async tasks.
1555 */
1556 spa_async_suspend(spa);
1557
1558 if (spa->spa_root_vdev) {
1559 vdev_t *root_vdev = spa->spa_root_vdev;
1560 vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE);
1561 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1562 vdev_autotrim_stop_all(spa);
1563 vdev_rebuild_stop_all(spa);
1564 }
1565
1566 /*
1567 * Stop syncing.
1568 */
1569 if (spa->spa_sync_on) {
1570 txg_sync_stop(spa->spa_dsl_pool);
1571 spa->spa_sync_on = B_FALSE;
1572 }
1573
1574 /*
1575 * This ensures that there is no async metaslab prefetching
1576 * while we attempt to unload the spa.
1577 */
1578 if (spa->spa_root_vdev != NULL) {
1579 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1580 vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1581 if (vc->vdev_mg != NULL)
1582 taskq_wait(vc->vdev_mg->mg_taskq);
1583 }
1584 }
1585
1586 if (spa->spa_mmp.mmp_thread)
1587 mmp_thread_stop(spa);
1588
1589 /*
1590 * Wait for any outstanding async I/O to complete.
1591 */
1592 if (spa->spa_async_zio_root != NULL) {
1593 for (int i = 0; i < max_ncpus; i++)
1594 (void) zio_wait(spa->spa_async_zio_root[i]);
1595 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1596 spa->spa_async_zio_root = NULL;
1597 }
1598
1599 if (spa->spa_vdev_removal != NULL) {
1600 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1601 spa->spa_vdev_removal = NULL;
1602 }
1603
1604 spa_destroy_aux_threads(spa);
1605
1606 spa_condense_fini(spa);
1607
1608 bpobj_close(&spa->spa_deferred_bpobj);
1609
1610 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1611
1612 /*
1613 * Close all vdevs.
1614 */
1615 if (spa->spa_root_vdev)
1616 vdev_free(spa->spa_root_vdev);
1617 ASSERT(spa->spa_root_vdev == NULL);
1618
1619 /*
1620 * Close the dsl pool.
1621 */
1622 if (spa->spa_dsl_pool) {
1623 dsl_pool_close(spa->spa_dsl_pool);
1624 spa->spa_dsl_pool = NULL;
1625 spa->spa_meta_objset = NULL;
1626 }
1627
1628 ddt_unload(spa);
1629 spa_unload_log_sm_metadata(spa);
1630
1631 /*
1632 * Drop and purge level 2 cache
1633 */
1634 spa_l2cache_drop(spa);
1635
1636 for (int i = 0; i < spa->spa_spares.sav_count; i++)
1637 vdev_free(spa->spa_spares.sav_vdevs[i]);
1638 if (spa->spa_spares.sav_vdevs) {
1639 kmem_free(spa->spa_spares.sav_vdevs,
1640 spa->spa_spares.sav_count * sizeof (void *));
1641 spa->spa_spares.sav_vdevs = NULL;
1642 }
1643 if (spa->spa_spares.sav_config) {
1644 nvlist_free(spa->spa_spares.sav_config);
1645 spa->spa_spares.sav_config = NULL;
1646 }
1647 spa->spa_spares.sav_count = 0;
1648
1649 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1650 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1651 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1652 }
1653 if (spa->spa_l2cache.sav_vdevs) {
1654 kmem_free(spa->spa_l2cache.sav_vdevs,
1655 spa->spa_l2cache.sav_count * sizeof (void *));
1656 spa->spa_l2cache.sav_vdevs = NULL;
1657 }
1658 if (spa->spa_l2cache.sav_config) {
1659 nvlist_free(spa->spa_l2cache.sav_config);
1660 spa->spa_l2cache.sav_config = NULL;
1661 }
1662 spa->spa_l2cache.sav_count = 0;
1663
1664 spa->spa_async_suspended = 0;
1665
1666 spa->spa_indirect_vdevs_loaded = B_FALSE;
1667
1668 if (spa->spa_comment != NULL) {
1669 spa_strfree(spa->spa_comment);
1670 spa->spa_comment = NULL;
1671 }
1672
1673 spa_config_exit(spa, SCL_ALL, spa);
1674 }
1675
1676 /*
1677 * Load (or re-load) the current list of vdevs describing the active spares for
1678 * this pool. When this is called, we have some form of basic information in
1679 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1680 * then re-generate a more complete list including status information.
1681 */
1682 void
1683 spa_load_spares(spa_t *spa)
1684 {
1685 nvlist_t **spares;
1686 uint_t nspares;
1687 int i;
1688 vdev_t *vd, *tvd;
1689
1690 #ifndef _KERNEL
1691 /*
1692 * zdb opens both the current state of the pool and the
1693 * checkpointed state (if present), with a different spa_t.
1694 *
1695 * As spare vdevs are shared among open pools, we skip loading
1696 * them when we load the checkpointed state of the pool.
1697 */
1698 if (!spa_writeable(spa))
1699 return;
1700 #endif
1701
1702 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1703
1704 /*
1705 * First, close and free any existing spare vdevs.
1706 */
1707 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1708 vd = spa->spa_spares.sav_vdevs[i];
1709
1710 /* Undo the call to spa_activate() below */
1711 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1712 B_FALSE)) != NULL && tvd->vdev_isspare)
1713 spa_spare_remove(tvd);
1714 vdev_close(vd);
1715 vdev_free(vd);
1716 }
1717
1718 if (spa->spa_spares.sav_vdevs)
1719 kmem_free(spa->spa_spares.sav_vdevs,
1720 spa->spa_spares.sav_count * sizeof (void *));
1721
1722 if (spa->spa_spares.sav_config == NULL)
1723 nspares = 0;
1724 else
1725 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1726 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1727
1728 spa->spa_spares.sav_count = (int)nspares;
1729 spa->spa_spares.sav_vdevs = NULL;
1730
1731 if (nspares == 0)
1732 return;
1733
1734 /*
1735 * Construct the array of vdevs, opening them to get status in the
1736 * process. For each spare, there is potentially two different vdev_t
1737 * structures associated with it: one in the list of spares (used only
1738 * for basic validation purposes) and one in the active vdev
1739 * configuration (if it's spared in). During this phase we open and
1740 * validate each vdev on the spare list. If the vdev also exists in the
1741 * active configuration, then we also mark this vdev as an active spare.
1742 */
1743 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1744 KM_SLEEP);
1745 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1746 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1747 VDEV_ALLOC_SPARE) == 0);
1748 ASSERT(vd != NULL);
1749
1750 spa->spa_spares.sav_vdevs[i] = vd;
1751
1752 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1753 B_FALSE)) != NULL) {
1754 if (!tvd->vdev_isspare)
1755 spa_spare_add(tvd);
1756
1757 /*
1758 * We only mark the spare active if we were successfully
1759 * able to load the vdev. Otherwise, importing a pool
1760 * with a bad active spare would result in strange
1761 * behavior, because multiple pool would think the spare
1762 * is actively in use.
1763 *
1764 * There is a vulnerability here to an equally bizarre
1765 * circumstance, where a dead active spare is later
1766 * brought back to life (onlined or otherwise). Given
1767 * the rarity of this scenario, and the extra complexity
1768 * it adds, we ignore the possibility.
1769 */
1770 if (!vdev_is_dead(tvd))
1771 spa_spare_activate(tvd);
1772 }
1773
1774 vd->vdev_top = vd;
1775 vd->vdev_aux = &spa->spa_spares;
1776
1777 if (vdev_open(vd) != 0)
1778 continue;
1779
1780 if (vdev_validate_aux(vd) == 0)
1781 spa_spare_add(vd);
1782 }
1783
1784 /*
1785 * Recompute the stashed list of spares, with status information
1786 * this time.
1787 */
1788 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1789 DATA_TYPE_NVLIST_ARRAY) == 0);
1790
1791 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1792 KM_SLEEP);
1793 for (i = 0; i < spa->spa_spares.sav_count; i++)
1794 spares[i] = vdev_config_generate(spa,
1795 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1796 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1797 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1798 for (i = 0; i < spa->spa_spares.sav_count; i++)
1799 nvlist_free(spares[i]);
1800 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1801 }
1802
1803 /*
1804 * Load (or re-load) the current list of vdevs describing the active l2cache for
1805 * this pool. When this is called, we have some form of basic information in
1806 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1807 * then re-generate a more complete list including status information.
1808 * Devices which are already active have their details maintained, and are
1809 * not re-opened.
1810 */
1811 void
1812 spa_load_l2cache(spa_t *spa)
1813 {
1814 nvlist_t **l2cache = NULL;
1815 uint_t nl2cache;
1816 int i, j, oldnvdevs;
1817 uint64_t guid;
1818 vdev_t *vd, **oldvdevs, **newvdevs;
1819 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1820
1821 #ifndef _KERNEL
1822 /*
1823 * zdb opens both the current state of the pool and the
1824 * checkpointed state (if present), with a different spa_t.
1825 *
1826 * As L2 caches are part of the ARC which is shared among open
1827 * pools, we skip loading them when we load the checkpointed
1828 * state of the pool.
1829 */
1830 if (!spa_writeable(spa))
1831 return;
1832 #endif
1833
1834 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1835
1836 oldvdevs = sav->sav_vdevs;
1837 oldnvdevs = sav->sav_count;
1838 sav->sav_vdevs = NULL;
1839 sav->sav_count = 0;
1840
1841 if (sav->sav_config == NULL) {
1842 nl2cache = 0;
1843 newvdevs = NULL;
1844 goto out;
1845 }
1846
1847 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1848 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1849 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1850
1851 /*
1852 * Process new nvlist of vdevs.
1853 */
1854 for (i = 0; i < nl2cache; i++) {
1855 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1856 &guid) == 0);
1857
1858 newvdevs[i] = NULL;
1859 for (j = 0; j < oldnvdevs; j++) {
1860 vd = oldvdevs[j];
1861 if (vd != NULL && guid == vd->vdev_guid) {
1862 /*
1863 * Retain previous vdev for add/remove ops.
1864 */
1865 newvdevs[i] = vd;
1866 oldvdevs[j] = NULL;
1867 break;
1868 }
1869 }
1870
1871 if (newvdevs[i] == NULL) {
1872 /*
1873 * Create new vdev
1874 */
1875 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1876 VDEV_ALLOC_L2CACHE) == 0);
1877 ASSERT(vd != NULL);
1878 newvdevs[i] = vd;
1879
1880 /*
1881 * Commit this vdev as an l2cache device,
1882 * even if it fails to open.
1883 */
1884 spa_l2cache_add(vd);
1885
1886 vd->vdev_top = vd;
1887 vd->vdev_aux = sav;
1888
1889 spa_l2cache_activate(vd);
1890
1891 if (vdev_open(vd) != 0)
1892 continue;
1893
1894 (void) vdev_validate_aux(vd);
1895
1896 if (!vdev_is_dead(vd))
1897 l2arc_add_vdev(spa, vd);
1898
1899 /*
1900 * Upon cache device addition to a pool or pool
1901 * creation with a cache device or if the header
1902 * of the device is invalid we issue an async
1903 * TRIM command for the whole device which will
1904 * execute if l2arc_trim_ahead > 0.
1905 */
1906 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
1907 }
1908 }
1909
1910 sav->sav_vdevs = newvdevs;
1911 sav->sav_count = (int)nl2cache;
1912
1913 /*
1914 * Recompute the stashed list of l2cache devices, with status
1915 * information this time.
1916 */
1917 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1918 DATA_TYPE_NVLIST_ARRAY) == 0);
1919
1920 if (sav->sav_count > 0)
1921 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
1922 KM_SLEEP);
1923 for (i = 0; i < sav->sav_count; i++)
1924 l2cache[i] = vdev_config_generate(spa,
1925 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1926 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1927 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1928
1929 out:
1930 /*
1931 * Purge vdevs that were dropped
1932 */
1933 for (i = 0; i < oldnvdevs; i++) {
1934 uint64_t pool;
1935
1936 vd = oldvdevs[i];
1937 if (vd != NULL) {
1938 ASSERT(vd->vdev_isl2cache);
1939
1940 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1941 pool != 0ULL && l2arc_vdev_present(vd))
1942 l2arc_remove_vdev(vd);
1943 vdev_clear_stats(vd);
1944 vdev_free(vd);
1945 }
1946 }
1947
1948 if (oldvdevs)
1949 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1950
1951 for (i = 0; i < sav->sav_count; i++)
1952 nvlist_free(l2cache[i]);
1953 if (sav->sav_count)
1954 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1955 }
1956
1957 static int
1958 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1959 {
1960 dmu_buf_t *db;
1961 char *packed = NULL;
1962 size_t nvsize = 0;
1963 int error;
1964 *value = NULL;
1965
1966 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1967 if (error)
1968 return (error);
1969
1970 nvsize = *(uint64_t *)db->db_data;
1971 dmu_buf_rele(db, FTAG);
1972
1973 packed = vmem_alloc(nvsize, KM_SLEEP);
1974 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1975 DMU_READ_PREFETCH);
1976 if (error == 0)
1977 error = nvlist_unpack(packed, nvsize, value, 0);
1978 vmem_free(packed, nvsize);
1979
1980 return (error);
1981 }
1982
1983 /*
1984 * Concrete top-level vdevs that are not missing and are not logs. At every
1985 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1986 */
1987 static uint64_t
1988 spa_healthy_core_tvds(spa_t *spa)
1989 {
1990 vdev_t *rvd = spa->spa_root_vdev;
1991 uint64_t tvds = 0;
1992
1993 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1994 vdev_t *vd = rvd->vdev_child[i];
1995 if (vd->vdev_islog)
1996 continue;
1997 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1998 tvds++;
1999 }
2000
2001 return (tvds);
2002 }
2003
2004 /*
2005 * Checks to see if the given vdev could not be opened, in which case we post a
2006 * sysevent to notify the autoreplace code that the device has been removed.
2007 */
2008 static void
2009 spa_check_removed(vdev_t *vd)
2010 {
2011 for (uint64_t c = 0; c < vd->vdev_children; c++)
2012 spa_check_removed(vd->vdev_child[c]);
2013
2014 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2015 vdev_is_concrete(vd)) {
2016 zfs_post_autoreplace(vd->vdev_spa, vd);
2017 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2018 }
2019 }
2020
2021 static int
2022 spa_check_for_missing_logs(spa_t *spa)
2023 {
2024 vdev_t *rvd = spa->spa_root_vdev;
2025
2026 /*
2027 * If we're doing a normal import, then build up any additional
2028 * diagnostic information about missing log devices.
2029 * We'll pass this up to the user for further processing.
2030 */
2031 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2032 nvlist_t **child, *nv;
2033 uint64_t idx = 0;
2034
2035 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2036 KM_SLEEP);
2037 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2038
2039 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2040 vdev_t *tvd = rvd->vdev_child[c];
2041
2042 /*
2043 * We consider a device as missing only if it failed
2044 * to open (i.e. offline or faulted is not considered
2045 * as missing).
2046 */
2047 if (tvd->vdev_islog &&
2048 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2049 child[idx++] = vdev_config_generate(spa, tvd,
2050 B_FALSE, VDEV_CONFIG_MISSING);
2051 }
2052 }
2053
2054 if (idx > 0) {
2055 fnvlist_add_nvlist_array(nv,
2056 ZPOOL_CONFIG_CHILDREN, child, idx);
2057 fnvlist_add_nvlist(spa->spa_load_info,
2058 ZPOOL_CONFIG_MISSING_DEVICES, nv);
2059
2060 for (uint64_t i = 0; i < idx; i++)
2061 nvlist_free(child[i]);
2062 }
2063 nvlist_free(nv);
2064 kmem_free(child, rvd->vdev_children * sizeof (char **));
2065
2066 if (idx > 0) {
2067 spa_load_failed(spa, "some log devices are missing");
2068 vdev_dbgmsg_print_tree(rvd, 2);
2069 return (SET_ERROR(ENXIO));
2070 }
2071 } else {
2072 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2073 vdev_t *tvd = rvd->vdev_child[c];
2074
2075 if (tvd->vdev_islog &&
2076 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2077 spa_set_log_state(spa, SPA_LOG_CLEAR);
2078 spa_load_note(spa, "some log devices are "
2079 "missing, ZIL is dropped.");
2080 vdev_dbgmsg_print_tree(rvd, 2);
2081 break;
2082 }
2083 }
2084 }
2085
2086 return (0);
2087 }
2088
2089 /*
2090 * Check for missing log devices
2091 */
2092 static boolean_t
2093 spa_check_logs(spa_t *spa)
2094 {
2095 boolean_t rv = B_FALSE;
2096 dsl_pool_t *dp = spa_get_dsl(spa);
2097
2098 switch (spa->spa_log_state) {
2099 default:
2100 break;
2101 case SPA_LOG_MISSING:
2102 /* need to recheck in case slog has been restored */
2103 case SPA_LOG_UNKNOWN:
2104 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2105 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2106 if (rv)
2107 spa_set_log_state(spa, SPA_LOG_MISSING);
2108 break;
2109 }
2110 return (rv);
2111 }
2112
2113 /*
2114 * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2115 */
2116 static boolean_t
2117 spa_passivate_log(spa_t *spa)
2118 {
2119 vdev_t *rvd = spa->spa_root_vdev;
2120 boolean_t slog_found = B_FALSE;
2121
2122 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2123
2124 for (int c = 0; c < rvd->vdev_children; c++) {
2125 vdev_t *tvd = rvd->vdev_child[c];
2126
2127 if (tvd->vdev_islog) {
2128 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2129 metaslab_group_passivate(tvd->vdev_mg);
2130 slog_found = B_TRUE;
2131 }
2132 }
2133
2134 return (slog_found);
2135 }
2136
2137 /*
2138 * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2139 */
2140 static void
2141 spa_activate_log(spa_t *spa)
2142 {
2143 vdev_t *rvd = spa->spa_root_vdev;
2144
2145 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2146
2147 for (int c = 0; c < rvd->vdev_children; c++) {
2148 vdev_t *tvd = rvd->vdev_child[c];
2149
2150 if (tvd->vdev_islog) {
2151 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2152 metaslab_group_activate(tvd->vdev_mg);
2153 }
2154 }
2155 }
2156
2157 int
2158 spa_reset_logs(spa_t *spa)
2159 {
2160 int error;
2161
2162 error = dmu_objset_find(spa_name(spa), zil_reset,
2163 NULL, DS_FIND_CHILDREN);
2164 if (error == 0) {
2165 /*
2166 * We successfully offlined the log device, sync out the
2167 * current txg so that the "stubby" block can be removed
2168 * by zil_sync().
2169 */
2170 txg_wait_synced(spa->spa_dsl_pool, 0);
2171 }
2172 return (error);
2173 }
2174
2175 static void
2176 spa_aux_check_removed(spa_aux_vdev_t *sav)
2177 {
2178 for (int i = 0; i < sav->sav_count; i++)
2179 spa_check_removed(sav->sav_vdevs[i]);
2180 }
2181
2182 void
2183 spa_claim_notify(zio_t *zio)
2184 {
2185 spa_t *spa = zio->io_spa;
2186
2187 if (zio->io_error)
2188 return;
2189
2190 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2191 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2192 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2193 mutex_exit(&spa->spa_props_lock);
2194 }
2195
2196 typedef struct spa_load_error {
2197 uint64_t sle_meta_count;
2198 uint64_t sle_data_count;
2199 } spa_load_error_t;
2200
2201 static void
2202 spa_load_verify_done(zio_t *zio)
2203 {
2204 blkptr_t *bp = zio->io_bp;
2205 spa_load_error_t *sle = zio->io_private;
2206 dmu_object_type_t type = BP_GET_TYPE(bp);
2207 int error = zio->io_error;
2208 spa_t *spa = zio->io_spa;
2209
2210 abd_free(zio->io_abd);
2211 if (error) {
2212 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2213 type != DMU_OT_INTENT_LOG)
2214 atomic_inc_64(&sle->sle_meta_count);
2215 else
2216 atomic_inc_64(&sle->sle_data_count);
2217 }
2218
2219 mutex_enter(&spa->spa_scrub_lock);
2220 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2221 cv_broadcast(&spa->spa_scrub_io_cv);
2222 mutex_exit(&spa->spa_scrub_lock);
2223 }
2224
2225 /*
2226 * Maximum number of inflight bytes is the log2 fraction of the arc size.
2227 * By default, we set it to 1/16th of the arc.
2228 */
2229 int spa_load_verify_shift = 4;
2230 int spa_load_verify_metadata = B_TRUE;
2231 int spa_load_verify_data = B_TRUE;
2232
2233 /*ARGSUSED*/
2234 static int
2235 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2236 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2237 {
2238 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2239 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2240 return (0);
2241 /*
2242 * Note: normally this routine will not be called if
2243 * spa_load_verify_metadata is not set. However, it may be useful
2244 * to manually set the flag after the traversal has begun.
2245 */
2246 if (!spa_load_verify_metadata)
2247 return (0);
2248 if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2249 return (0);
2250
2251 uint64_t maxinflight_bytes =
2252 arc_target_bytes() >> spa_load_verify_shift;
2253 zio_t *rio = arg;
2254 size_t size = BP_GET_PSIZE(bp);
2255
2256 mutex_enter(&spa->spa_scrub_lock);
2257 while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2258 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2259 spa->spa_load_verify_bytes += size;
2260 mutex_exit(&spa->spa_scrub_lock);
2261
2262 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2263 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2264 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2265 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2266 return (0);
2267 }
2268
2269 /* ARGSUSED */
2270 static int
2271 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2272 {
2273 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2274 return (SET_ERROR(ENAMETOOLONG));
2275
2276 return (0);
2277 }
2278
2279 static int
2280 spa_load_verify(spa_t *spa)
2281 {
2282 zio_t *rio;
2283 spa_load_error_t sle = { 0 };
2284 zpool_load_policy_t policy;
2285 boolean_t verify_ok = B_FALSE;
2286 int error = 0;
2287
2288 zpool_get_load_policy(spa->spa_config, &policy);
2289
2290 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2291 return (0);
2292
2293 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2294 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2295 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2296 DS_FIND_CHILDREN);
2297 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2298 if (error != 0)
2299 return (error);
2300
2301 rio = zio_root(spa, NULL, &sle,
2302 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2303
2304 if (spa_load_verify_metadata) {
2305 if (spa->spa_extreme_rewind) {
2306 spa_load_note(spa, "performing a complete scan of the "
2307 "pool since extreme rewind is on. This may take "
2308 "a very long time.\n (spa_load_verify_data=%u, "
2309 "spa_load_verify_metadata=%u)",
2310 spa_load_verify_data, spa_load_verify_metadata);
2311 }
2312
2313 error = traverse_pool(spa, spa->spa_verify_min_txg,
2314 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2315 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2316 }
2317
2318 (void) zio_wait(rio);
2319 ASSERT0(spa->spa_load_verify_bytes);
2320
2321 spa->spa_load_meta_errors = sle.sle_meta_count;
2322 spa->spa_load_data_errors = sle.sle_data_count;
2323
2324 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2325 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2326 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2327 (u_longlong_t)sle.sle_data_count);
2328 }
2329
2330 if (spa_load_verify_dryrun ||
2331 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2332 sle.sle_data_count <= policy.zlp_maxdata)) {
2333 int64_t loss = 0;
2334
2335 verify_ok = B_TRUE;
2336 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2337 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2338
2339 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2340 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2341 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2342 VERIFY(nvlist_add_int64(spa->spa_load_info,
2343 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2344 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2345 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2346 } else {
2347 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2348 }
2349
2350 if (spa_load_verify_dryrun)
2351 return (0);
2352
2353 if (error) {
2354 if (error != ENXIO && error != EIO)
2355 error = SET_ERROR(EIO);
2356 return (error);
2357 }
2358
2359 return (verify_ok ? 0 : EIO);
2360 }
2361
2362 /*
2363 * Find a value in the pool props object.
2364 */
2365 static void
2366 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2367 {
2368 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2369 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2370 }
2371
2372 /*
2373 * Find a value in the pool directory object.
2374 */
2375 static int
2376 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2377 {
2378 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2379 name, sizeof (uint64_t), 1, val);
2380
2381 if (error != 0 && (error != ENOENT || log_enoent)) {
2382 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2383 "[error=%d]", name, error);
2384 }
2385
2386 return (error);
2387 }
2388
2389 static int
2390 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2391 {
2392 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2393 return (SET_ERROR(err));
2394 }
2395
2396 boolean_t
2397 spa_livelist_delete_check(spa_t *spa)
2398 {
2399 return (spa->spa_livelists_to_delete != 0);
2400 }
2401
2402 /* ARGSUSED */
2403 static boolean_t
2404 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2405 {
2406 spa_t *spa = arg;
2407 return (spa_livelist_delete_check(spa));
2408 }
2409
2410 static int
2411 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2412 {
2413 spa_t *spa = arg;
2414 zio_free(spa, tx->tx_txg, bp);
2415 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2416 -bp_get_dsize_sync(spa, bp),
2417 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2418 return (0);
2419 }
2420
2421 static int
2422 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2423 {
2424 int err;
2425 zap_cursor_t zc;
2426 zap_attribute_t za;
2427 zap_cursor_init(&zc, os, zap_obj);
2428 err = zap_cursor_retrieve(&zc, &za);
2429 zap_cursor_fini(&zc);
2430 if (err == 0)
2431 *llp = za.za_first_integer;
2432 return (err);
2433 }
2434
2435 /*
2436 * Components of livelist deletion that must be performed in syncing
2437 * context: freeing block pointers and updating the pool-wide data
2438 * structures to indicate how much work is left to do
2439 */
2440 typedef struct sublist_delete_arg {
2441 spa_t *spa;
2442 dsl_deadlist_t *ll;
2443 uint64_t key;
2444 bplist_t *to_free;
2445 } sublist_delete_arg_t;
2446
2447 static void
2448 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2449 {
2450 sublist_delete_arg_t *sda = arg;
2451 spa_t *spa = sda->spa;
2452 dsl_deadlist_t *ll = sda->ll;
2453 uint64_t key = sda->key;
2454 bplist_t *to_free = sda->to_free;
2455
2456 bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2457 dsl_deadlist_remove_entry(ll, key, tx);
2458 }
2459
2460 typedef struct livelist_delete_arg {
2461 spa_t *spa;
2462 uint64_t ll_obj;
2463 uint64_t zap_obj;
2464 } livelist_delete_arg_t;
2465
2466 static void
2467 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2468 {
2469 livelist_delete_arg_t *lda = arg;
2470 spa_t *spa = lda->spa;
2471 uint64_t ll_obj = lda->ll_obj;
2472 uint64_t zap_obj = lda->zap_obj;
2473 objset_t *mos = spa->spa_meta_objset;
2474 uint64_t count;
2475
2476 /* free the livelist and decrement the feature count */
2477 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2478 dsl_deadlist_free(mos, ll_obj, tx);
2479 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2480 VERIFY0(zap_count(mos, zap_obj, &count));
2481 if (count == 0) {
2482 /* no more livelists to delete */
2483 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2484 DMU_POOL_DELETED_CLONES, tx));
2485 VERIFY0(zap_destroy(mos, zap_obj, tx));
2486 spa->spa_livelists_to_delete = 0;
2487 spa_notify_waiters(spa);
2488 }
2489 }
2490
2491 /*
2492 * Load in the value for the livelist to be removed and open it. Then,
2493 * load its first sublist and determine which block pointers should actually
2494 * be freed. Then, call a synctask which performs the actual frees and updates
2495 * the pool-wide livelist data.
2496 */
2497 /* ARGSUSED */
2498 static void
2499 spa_livelist_delete_cb(void *arg, zthr_t *z)
2500 {
2501 spa_t *spa = arg;
2502 uint64_t ll_obj = 0, count;
2503 objset_t *mos = spa->spa_meta_objset;
2504 uint64_t zap_obj = spa->spa_livelists_to_delete;
2505 /*
2506 * Determine the next livelist to delete. This function should only
2507 * be called if there is at least one deleted clone.
2508 */
2509 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2510 VERIFY0(zap_count(mos, ll_obj, &count));
2511 if (count > 0) {
2512 dsl_deadlist_t *ll;
2513 dsl_deadlist_entry_t *dle;
2514 bplist_t to_free;
2515 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2516 dsl_deadlist_open(ll, mos, ll_obj);
2517 dle = dsl_deadlist_first(ll);
2518 ASSERT3P(dle, !=, NULL);
2519 bplist_create(&to_free);
2520 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2521 z, NULL);
2522 if (err == 0) {
2523 sublist_delete_arg_t sync_arg = {
2524 .spa = spa,
2525 .ll = ll,
2526 .key = dle->dle_mintxg,
2527 .to_free = &to_free
2528 };
2529 zfs_dbgmsg("deleting sublist (id %llu) from"
2530 " livelist %llu, %d remaining",
2531 dle->dle_bpobj.bpo_object, ll_obj, count - 1);
2532 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2533 sublist_delete_sync, &sync_arg, 0,
2534 ZFS_SPACE_CHECK_DESTROY));
2535 } else {
2536 VERIFY3U(err, ==, EINTR);
2537 }
2538 bplist_clear(&to_free);
2539 bplist_destroy(&to_free);
2540 dsl_deadlist_close(ll);
2541 kmem_free(ll, sizeof (dsl_deadlist_t));
2542 } else {
2543 livelist_delete_arg_t sync_arg = {
2544 .spa = spa,
2545 .ll_obj = ll_obj,
2546 .zap_obj = zap_obj
2547 };
2548 zfs_dbgmsg("deletion of livelist %llu completed", ll_obj);
2549 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2550 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2551 }
2552 }
2553
2554 static void
2555 spa_start_livelist_destroy_thread(spa_t *spa)
2556 {
2557 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2558 spa->spa_livelist_delete_zthr =
2559 zthr_create("z_livelist_destroy",
2560 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa);
2561 }
2562
2563 typedef struct livelist_new_arg {
2564 bplist_t *allocs;
2565 bplist_t *frees;
2566 } livelist_new_arg_t;
2567
2568 static int
2569 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2570 dmu_tx_t *tx)
2571 {
2572 ASSERT(tx == NULL);
2573 livelist_new_arg_t *lna = arg;
2574 if (bp_freed) {
2575 bplist_append(lna->frees, bp);
2576 } else {
2577 bplist_append(lna->allocs, bp);
2578 zfs_livelist_condense_new_alloc++;
2579 }
2580 return (0);
2581 }
2582
2583 typedef struct livelist_condense_arg {
2584 spa_t *spa;
2585 bplist_t to_keep;
2586 uint64_t first_size;
2587 uint64_t next_size;
2588 } livelist_condense_arg_t;
2589
2590 static void
2591 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2592 {
2593 livelist_condense_arg_t *lca = arg;
2594 spa_t *spa = lca->spa;
2595 bplist_t new_frees;
2596 dsl_dataset_t *ds = spa->spa_to_condense.ds;
2597
2598 /* Have we been cancelled? */
2599 if (spa->spa_to_condense.cancelled) {
2600 zfs_livelist_condense_sync_cancel++;
2601 goto out;
2602 }
2603
2604 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2605 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2606 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2607
2608 /*
2609 * It's possible that the livelist was changed while the zthr was
2610 * running. Therefore, we need to check for new blkptrs in the two
2611 * entries being condensed and continue to track them in the livelist.
2612 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2613 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2614 * we need to sort them into two different bplists.
2615 */
2616 uint64_t first_obj = first->dle_bpobj.bpo_object;
2617 uint64_t next_obj = next->dle_bpobj.bpo_object;
2618 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2619 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2620
2621 bplist_create(&new_frees);
2622 livelist_new_arg_t new_bps = {
2623 .allocs = &lca->to_keep,
2624 .frees = &new_frees,
2625 };
2626
2627 if (cur_first_size > lca->first_size) {
2628 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2629 livelist_track_new_cb, &new_bps, lca->first_size));
2630 }
2631 if (cur_next_size > lca->next_size) {
2632 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2633 livelist_track_new_cb, &new_bps, lca->next_size));
2634 }
2635
2636 dsl_deadlist_clear_entry(first, ll, tx);
2637 ASSERT(bpobj_is_empty(&first->dle_bpobj));
2638 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2639
2640 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2641 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2642 bplist_destroy(&new_frees);
2643
2644 char dsname[ZFS_MAX_DATASET_NAME_LEN];
2645 dsl_dataset_name(ds, dsname);
2646 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2647 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2648 "(%llu blkptrs)", tx->tx_txg, dsname, ds->ds_object, first_obj,
2649 cur_first_size, next_obj, cur_next_size,
2650 first->dle_bpobj.bpo_object,
2651 first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2652 out:
2653 dmu_buf_rele(ds->ds_dbuf, spa);
2654 spa->spa_to_condense.ds = NULL;
2655 bplist_clear(&lca->to_keep);
2656 bplist_destroy(&lca->to_keep);
2657 kmem_free(lca, sizeof (livelist_condense_arg_t));
2658 spa->spa_to_condense.syncing = B_FALSE;
2659 }
2660
2661 static void
2662 spa_livelist_condense_cb(void *arg, zthr_t *t)
2663 {
2664 while (zfs_livelist_condense_zthr_pause &&
2665 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2666 delay(1);
2667
2668 spa_t *spa = arg;
2669 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2670 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2671 uint64_t first_size, next_size;
2672
2673 livelist_condense_arg_t *lca =
2674 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2675 bplist_create(&lca->to_keep);
2676
2677 /*
2678 * Process the livelists (matching FREEs and ALLOCs) in open context
2679 * so we have minimal work in syncing context to condense.
2680 *
2681 * We save bpobj sizes (first_size and next_size) to use later in
2682 * syncing context to determine if entries were added to these sublists
2683 * while in open context. This is possible because the clone is still
2684 * active and open for normal writes and we want to make sure the new,
2685 * unprocessed blockpointers are inserted into the livelist normally.
2686 *
2687 * Note that dsl_process_sub_livelist() both stores the size number of
2688 * blockpointers and iterates over them while the bpobj's lock held, so
2689 * the sizes returned to us are consistent which what was actually
2690 * processed.
2691 */
2692 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2693 &first_size);
2694 if (err == 0)
2695 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2696 t, &next_size);
2697
2698 if (err == 0) {
2699 while (zfs_livelist_condense_sync_pause &&
2700 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2701 delay(1);
2702
2703 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2704 dmu_tx_mark_netfree(tx);
2705 dmu_tx_hold_space(tx, 1);
2706 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2707 if (err == 0) {
2708 /*
2709 * Prevent the condense zthr restarting before
2710 * the synctask completes.
2711 */
2712 spa->spa_to_condense.syncing = B_TRUE;
2713 lca->spa = spa;
2714 lca->first_size = first_size;
2715 lca->next_size = next_size;
2716 dsl_sync_task_nowait(spa_get_dsl(spa),
2717 spa_livelist_condense_sync, lca, tx);
2718 dmu_tx_commit(tx);
2719 return;
2720 }
2721 }
2722 /*
2723 * Condensing can not continue: either it was externally stopped or
2724 * we were unable to assign to a tx because the pool has run out of
2725 * space. In the second case, we'll just end up trying to condense
2726 * again in a later txg.
2727 */
2728 ASSERT(err != 0);
2729 bplist_clear(&lca->to_keep);
2730 bplist_destroy(&lca->to_keep);
2731 kmem_free(lca, sizeof (livelist_condense_arg_t));
2732 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2733 spa->spa_to_condense.ds = NULL;
2734 if (err == EINTR)
2735 zfs_livelist_condense_zthr_cancel++;
2736 }
2737
2738 /* ARGSUSED */
2739 /*
2740 * Check that there is something to condense but that a condense is not
2741 * already in progress and that condensing has not been cancelled.
2742 */
2743 static boolean_t
2744 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2745 {
2746 spa_t *spa = arg;
2747 if ((spa->spa_to_condense.ds != NULL) &&
2748 (spa->spa_to_condense.syncing == B_FALSE) &&
2749 (spa->spa_to_condense.cancelled == B_FALSE)) {
2750 return (B_TRUE);
2751 }
2752 return (B_FALSE);
2753 }
2754
2755 static void
2756 spa_start_livelist_condensing_thread(spa_t *spa)
2757 {
2758 spa->spa_to_condense.ds = NULL;
2759 spa->spa_to_condense.first = NULL;
2760 spa->spa_to_condense.next = NULL;
2761 spa->spa_to_condense.syncing = B_FALSE;
2762 spa->spa_to_condense.cancelled = B_FALSE;
2763
2764 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2765 spa->spa_livelist_condense_zthr =
2766 zthr_create("z_livelist_condense",
2767 spa_livelist_condense_cb_check,
2768 spa_livelist_condense_cb, spa);
2769 }
2770
2771 static void
2772 spa_spawn_aux_threads(spa_t *spa)
2773 {
2774 ASSERT(spa_writeable(spa));
2775
2776 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2777
2778 spa_start_indirect_condensing_thread(spa);
2779 spa_start_livelist_destroy_thread(spa);
2780 spa_start_livelist_condensing_thread(spa);
2781
2782 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2783 spa->spa_checkpoint_discard_zthr =
2784 zthr_create("z_checkpoint_discard",
2785 spa_checkpoint_discard_thread_check,
2786 spa_checkpoint_discard_thread, spa);
2787 }
2788
2789 /*
2790 * Fix up config after a partly-completed split. This is done with the
2791 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2792 * pool have that entry in their config, but only the splitting one contains
2793 * a list of all the guids of the vdevs that are being split off.
2794 *
2795 * This function determines what to do with that list: either rejoin
2796 * all the disks to the pool, or complete the splitting process. To attempt
2797 * the rejoin, each disk that is offlined is marked online again, and
2798 * we do a reopen() call. If the vdev label for every disk that was
2799 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2800 * then we call vdev_split() on each disk, and complete the split.
2801 *
2802 * Otherwise we leave the config alone, with all the vdevs in place in
2803 * the original pool.
2804 */
2805 static void
2806 spa_try_repair(spa_t *spa, nvlist_t *config)
2807 {
2808 uint_t extracted;
2809 uint64_t *glist;
2810 uint_t i, gcount;
2811 nvlist_t *nvl;
2812 vdev_t **vd;
2813 boolean_t attempt_reopen;
2814
2815 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2816 return;
2817
2818 /* check that the config is complete */
2819 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2820 &glist, &gcount) != 0)
2821 return;
2822
2823 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2824
2825 /* attempt to online all the vdevs & validate */
2826 attempt_reopen = B_TRUE;
2827 for (i = 0; i < gcount; i++) {
2828 if (glist[i] == 0) /* vdev is hole */
2829 continue;
2830
2831 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2832 if (vd[i] == NULL) {
2833 /*
2834 * Don't bother attempting to reopen the disks;
2835 * just do the split.
2836 */
2837 attempt_reopen = B_FALSE;
2838 } else {
2839 /* attempt to re-online it */
2840 vd[i]->vdev_offline = B_FALSE;
2841 }
2842 }
2843
2844 if (attempt_reopen) {
2845 vdev_reopen(spa->spa_root_vdev);
2846
2847 /* check each device to see what state it's in */
2848 for (extracted = 0, i = 0; i < gcount; i++) {
2849 if (vd[i] != NULL &&
2850 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2851 break;
2852 ++extracted;
2853 }
2854 }
2855
2856 /*
2857 * If every disk has been moved to the new pool, or if we never
2858 * even attempted to look at them, then we split them off for
2859 * good.
2860 */
2861 if (!attempt_reopen || gcount == extracted) {
2862 for (i = 0; i < gcount; i++)
2863 if (vd[i] != NULL)
2864 vdev_split(vd[i]);
2865 vdev_reopen(spa->spa_root_vdev);
2866 }
2867
2868 kmem_free(vd, gcount * sizeof (vdev_t *));
2869 }
2870
2871 static int
2872 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2873 {
2874 char *ereport = FM_EREPORT_ZFS_POOL;
2875 int error;
2876
2877 spa->spa_load_state = state;
2878 (void) spa_import_progress_set_state(spa_guid(spa),
2879 spa_load_state(spa));
2880
2881 gethrestime(&spa->spa_loaded_ts);
2882 error = spa_load_impl(spa, type, &ereport);
2883
2884 /*
2885 * Don't count references from objsets that are already closed
2886 * and are making their way through the eviction process.
2887 */
2888 spa_evicting_os_wait(spa);
2889 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2890 if (error) {
2891 if (error != EEXIST) {
2892 spa->spa_loaded_ts.tv_sec = 0;
2893 spa->spa_loaded_ts.tv_nsec = 0;
2894 }
2895 if (error != EBADF) {
2896 (void) zfs_ereport_post(ereport, spa,
2897 NULL, NULL, NULL, 0);
2898 }
2899 }
2900 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2901 spa->spa_ena = 0;
2902
2903 (void) spa_import_progress_set_state(spa_guid(spa),
2904 spa_load_state(spa));
2905
2906 return (error);
2907 }
2908
2909 #ifdef ZFS_DEBUG
2910 /*
2911 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2912 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2913 * spa's per-vdev ZAP list.
2914 */
2915 static uint64_t
2916 vdev_count_verify_zaps(vdev_t *vd)
2917 {
2918 spa_t *spa = vd->vdev_spa;
2919 uint64_t total = 0;
2920
2921 if (vd->vdev_top_zap != 0) {
2922 total++;
2923 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2924 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2925 }
2926 if (vd->vdev_leaf_zap != 0) {
2927 total++;
2928 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2929 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2930 }
2931
2932 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2933 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2934 }
2935
2936 return (total);
2937 }
2938 #endif
2939
2940 /*
2941 * Determine whether the activity check is required.
2942 */
2943 static boolean_t
2944 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2945 nvlist_t *config)
2946 {
2947 uint64_t state = 0;
2948 uint64_t hostid = 0;
2949 uint64_t tryconfig_txg = 0;
2950 uint64_t tryconfig_timestamp = 0;
2951 uint16_t tryconfig_mmp_seq = 0;
2952 nvlist_t *nvinfo;
2953
2954 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2955 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2956 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2957 &tryconfig_txg);
2958 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2959 &tryconfig_timestamp);
2960 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
2961 &tryconfig_mmp_seq);
2962 }
2963
2964 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2965
2966 /*
2967 * Disable the MMP activity check - This is used by zdb which
2968 * is intended to be used on potentially active pools.
2969 */
2970 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2971 return (B_FALSE);
2972
2973 /*
2974 * Skip the activity check when the MMP feature is disabled.
2975 */
2976 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2977 return (B_FALSE);
2978
2979 /*
2980 * If the tryconfig_ values are nonzero, they are the results of an
2981 * earlier tryimport. If they all match the uberblock we just found,
2982 * then the pool has not changed and we return false so we do not test
2983 * a second time.
2984 */
2985 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2986 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
2987 tryconfig_mmp_seq && tryconfig_mmp_seq ==
2988 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
2989 return (B_FALSE);
2990
2991 /*
2992 * Allow the activity check to be skipped when importing the pool
2993 * on the same host which last imported it. Since the hostid from
2994 * configuration may be stale use the one read from the label.
2995 */
2996 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
2997 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
2998
2999 if (hostid == spa_get_hostid(spa))
3000 return (B_FALSE);
3001
3002 /*
3003 * Skip the activity test when the pool was cleanly exported.
3004 */
3005 if (state != POOL_STATE_ACTIVE)
3006 return (B_FALSE);
3007
3008 return (B_TRUE);
3009 }
3010
3011 /*
3012 * Nanoseconds the activity check must watch for changes on-disk.
3013 */
3014 static uint64_t
3015 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3016 {
3017 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3018 uint64_t multihost_interval = MSEC2NSEC(
3019 MMP_INTERVAL_OK(zfs_multihost_interval));
3020 uint64_t import_delay = MAX(NANOSEC, import_intervals *
3021 multihost_interval);
3022
3023 /*
3024 * Local tunables determine a minimum duration except for the case
3025 * where we know when the remote host will suspend the pool if MMP
3026 * writes do not land.
3027 *
3028 * See Big Theory comment at the top of mmp.c for the reasoning behind
3029 * these cases and times.
3030 */
3031
3032 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3033
3034 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3035 MMP_FAIL_INT(ub) > 0) {
3036
3037 /* MMP on remote host will suspend pool after failed writes */
3038 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3039 MMP_IMPORT_SAFETY_FACTOR / 100;
3040
3041 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3042 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3043 "import_intervals=%u", import_delay, MMP_FAIL_INT(ub),
3044 MMP_INTERVAL(ub), import_intervals);
3045
3046 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3047 MMP_FAIL_INT(ub) == 0) {
3048
3049 /* MMP on remote host will never suspend pool */
3050 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3051 ub->ub_mmp_delay) * import_intervals);
3052
3053 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3054 "mmp_interval=%llu ub_mmp_delay=%llu "
3055 "import_intervals=%u", import_delay, MMP_INTERVAL(ub),
3056 ub->ub_mmp_delay, import_intervals);
3057
3058 } else if (MMP_VALID(ub)) {
3059 /*
3060 * zfs-0.7 compatibility case
3061 */
3062
3063 import_delay = MAX(import_delay, (multihost_interval +
3064 ub->ub_mmp_delay) * import_intervals);
3065
3066 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3067 "import_intervals=%u leaves=%u", import_delay,
3068 ub->ub_mmp_delay, import_intervals,
3069 vdev_count_leaves(spa));
3070 } else {
3071 /* Using local tunings is the only reasonable option */
3072 zfs_dbgmsg("pool last imported on non-MMP aware "
3073 "host using import_delay=%llu multihost_interval=%llu "
3074 "import_intervals=%u", import_delay, multihost_interval,
3075 import_intervals);
3076 }
3077
3078 return (import_delay);
3079 }
3080
3081 /*
3082 * Perform the import activity check. If the user canceled the import or
3083 * we detected activity then fail.
3084 */
3085 static int
3086 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3087 {
3088 uint64_t txg = ub->ub_txg;
3089 uint64_t timestamp = ub->ub_timestamp;
3090 uint64_t mmp_config = ub->ub_mmp_config;
3091 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3092 uint64_t import_delay;
3093 hrtime_t import_expire;
3094 nvlist_t *mmp_label = NULL;
3095 vdev_t *rvd = spa->spa_root_vdev;
3096 kcondvar_t cv;
3097 kmutex_t mtx;
3098 int error = 0;
3099
3100 cv_init(&cv, NULL, CV_DEFAULT, NULL);
3101 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3102 mutex_enter(&mtx);
3103
3104 /*
3105 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3106 * during the earlier tryimport. If the txg recorded there is 0 then
3107 * the pool is known to be active on another host.
3108 *
3109 * Otherwise, the pool might be in use on another host. Check for
3110 * changes in the uberblocks on disk if necessary.
3111 */
3112 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3113 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3114 ZPOOL_CONFIG_LOAD_INFO);
3115
3116 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3117 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3118 vdev_uberblock_load(rvd, ub, &mmp_label);
3119 error = SET_ERROR(EREMOTEIO);
3120 goto out;
3121 }
3122 }
3123
3124 import_delay = spa_activity_check_duration(spa, ub);
3125
3126 /* Add a small random factor in case of simultaneous imports (0-25%) */
3127 import_delay += import_delay * spa_get_random(250) / 1000;
3128
3129 import_expire = gethrtime() + import_delay;
3130
3131 while (gethrtime() < import_expire) {
3132 (void) spa_import_progress_set_mmp_check(spa_guid(spa),
3133 NSEC2SEC(import_expire - gethrtime()));
3134
3135 vdev_uberblock_load(rvd, ub, &mmp_label);
3136
3137 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3138 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3139 zfs_dbgmsg("multihost activity detected "
3140 "txg %llu ub_txg %llu "
3141 "timestamp %llu ub_timestamp %llu "
3142 "mmp_config %#llx ub_mmp_config %#llx",
3143 txg, ub->ub_txg, timestamp, ub->ub_timestamp,
3144 mmp_config, ub->ub_mmp_config);
3145
3146 error = SET_ERROR(EREMOTEIO);
3147 break;
3148 }
3149
3150 if (mmp_label) {
3151 nvlist_free(mmp_label);
3152 mmp_label = NULL;
3153 }
3154
3155 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3156 if (error != -1) {
3157 error = SET_ERROR(EINTR);
3158 break;
3159 }
3160 error = 0;
3161 }
3162
3163 out:
3164 mutex_exit(&mtx);
3165 mutex_destroy(&mtx);
3166 cv_destroy(&cv);
3167
3168 /*
3169 * If the pool is determined to be active store the status in the
3170 * spa->spa_load_info nvlist. If the remote hostname or hostid are
3171 * available from configuration read from disk store them as well.
3172 * This allows 'zpool import' to generate a more useful message.
3173 *
3174 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
3175 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3176 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
3177 */
3178 if (error == EREMOTEIO) {
3179 char *hostname = "<unknown>";
3180 uint64_t hostid = 0;
3181
3182 if (mmp_label) {
3183 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3184 hostname = fnvlist_lookup_string(mmp_label,
3185 ZPOOL_CONFIG_HOSTNAME);
3186 fnvlist_add_string(spa->spa_load_info,
3187 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3188 }
3189
3190 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3191 hostid = fnvlist_lookup_uint64(mmp_label,
3192 ZPOOL_CONFIG_HOSTID);
3193 fnvlist_add_uint64(spa->spa_load_info,
3194 ZPOOL_CONFIG_MMP_HOSTID, hostid);
3195 }
3196 }
3197
3198 fnvlist_add_uint64(spa->spa_load_info,
3199 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3200 fnvlist_add_uint64(spa->spa_load_info,
3201 ZPOOL_CONFIG_MMP_TXG, 0);
3202
3203 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3204 }
3205
3206 if (mmp_label)
3207 nvlist_free(mmp_label);
3208
3209 return (error);
3210 }
3211
3212 static int
3213 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3214 {
3215 uint64_t hostid;
3216 char *hostname;
3217 uint64_t myhostid = 0;
3218
3219 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3220 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3221 hostname = fnvlist_lookup_string(mos_config,
3222 ZPOOL_CONFIG_HOSTNAME);
3223
3224 myhostid = zone_get_hostid(NULL);
3225
3226 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3227 cmn_err(CE_WARN, "pool '%s' could not be "
3228 "loaded as it was last accessed by "
3229 "another system (host: %s hostid: 0x%llx). "
3230 "See: https://openzfs.github.io/openzfs-docs/msg/"
3231 "ZFS-8000-EY",
3232 spa_name(spa), hostname, (u_longlong_t)hostid);
3233 spa_load_failed(spa, "hostid verification failed: pool "
3234 "last accessed by host: %s (hostid: 0x%llx)",
3235 hostname, (u_longlong_t)hostid);
3236 return (SET_ERROR(EBADF));
3237 }
3238 }
3239
3240 return (0);
3241 }
3242
3243 static int
3244 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3245 {
3246 int error = 0;
3247 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3248 int parse;
3249 vdev_t *rvd;
3250 uint64_t pool_guid;
3251 char *comment;
3252
3253 /*
3254 * Versioning wasn't explicitly added to the label until later, so if
3255 * it's not present treat it as the initial version.
3256 */
3257 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3258 &spa->spa_ubsync.ub_version) != 0)
3259 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3260
3261 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3262 spa_load_failed(spa, "invalid config provided: '%s' missing",
3263 ZPOOL_CONFIG_POOL_GUID);
3264 return (SET_ERROR(EINVAL));
3265 }
3266
3267 /*
3268 * If we are doing an import, ensure that the pool is not already
3269 * imported by checking if its pool guid already exists in the
3270 * spa namespace.
3271 *
3272 * The only case that we allow an already imported pool to be
3273 * imported again, is when the pool is checkpointed and we want to
3274 * look at its checkpointed state from userland tools like zdb.
3275 */
3276 #ifdef _KERNEL
3277 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3278 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3279 spa_guid_exists(pool_guid, 0)) {
3280 #else
3281 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3282 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3283 spa_guid_exists(pool_guid, 0) &&
3284 !spa_importing_readonly_checkpoint(spa)) {
3285 #endif
3286 spa_load_failed(spa, "a pool with guid %llu is already open",
3287 (u_longlong_t)pool_guid);
3288 return (SET_ERROR(EEXIST));
3289 }
3290
3291 spa->spa_config_guid = pool_guid;
3292
3293 nvlist_free(spa->spa_load_info);
3294 spa->spa_load_info = fnvlist_alloc();
3295
3296 ASSERT(spa->spa_comment == NULL);
3297 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3298 spa->spa_comment = spa_strdup(comment);
3299
3300 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3301 &spa->spa_config_txg);
3302
3303 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3304 spa->spa_config_splitting = fnvlist_dup(nvl);
3305
3306 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3307 spa_load_failed(spa, "invalid config provided: '%s' missing",
3308 ZPOOL_CONFIG_VDEV_TREE);
3309 return (SET_ERROR(EINVAL));
3310 }
3311
3312 /*
3313 * Create "The Godfather" zio to hold all async IOs
3314 */
3315 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3316 KM_SLEEP);
3317 for (int i = 0; i < max_ncpus; i++) {
3318 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3319 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3320 ZIO_FLAG_GODFATHER);
3321 }
3322
3323 /*
3324 * Parse the configuration into a vdev tree. We explicitly set the
3325 * value that will be returned by spa_version() since parsing the
3326 * configuration requires knowing the version number.
3327 */
3328 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3329 parse = (type == SPA_IMPORT_EXISTING ?
3330 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3331 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3332 spa_config_exit(spa, SCL_ALL, FTAG);
3333
3334 if (error != 0) {
3335 spa_load_failed(spa, "unable to parse config [error=%d]",
3336 error);
3337 return (error);
3338 }
3339
3340 ASSERT(spa->spa_root_vdev == rvd);
3341 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3342 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3343
3344 if (type != SPA_IMPORT_ASSEMBLE) {
3345 ASSERT(spa_guid(spa) == pool_guid);
3346 }
3347
3348 return (0);
3349 }
3350
3351 /*
3352 * Recursively open all vdevs in the vdev tree. This function is called twice:
3353 * first with the untrusted config, then with the trusted config.
3354 */
3355 static int
3356 spa_ld_open_vdevs(spa_t *spa)
3357 {
3358 int error = 0;
3359
3360 /*
3361 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3362 * missing/unopenable for the root vdev to be still considered openable.
3363 */
3364 if (spa->spa_trust_config) {
3365 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3366 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3367 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3368 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3369 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3370 } else {
3371 spa->spa_missing_tvds_allowed = 0;
3372 }
3373
3374 spa->spa_missing_tvds_allowed =
3375 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3376
3377 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3378 error = vdev_open(spa->spa_root_vdev);
3379 spa_config_exit(spa, SCL_ALL, FTAG);
3380
3381 if (spa->spa_missing_tvds != 0) {
3382 spa_load_note(spa, "vdev tree has %lld missing top-level "
3383 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3384 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3385 /*
3386 * Although theoretically we could allow users to open
3387 * incomplete pools in RW mode, we'd need to add a lot
3388 * of extra logic (e.g. adjust pool space to account
3389 * for missing vdevs).
3390 * This limitation also prevents users from accidentally
3391 * opening the pool in RW mode during data recovery and
3392 * damaging it further.
3393 */
3394 spa_load_note(spa, "pools with missing top-level "
3395 "vdevs can only be opened in read-only mode.");
3396 error = SET_ERROR(ENXIO);
3397 } else {
3398 spa_load_note(spa, "current settings allow for maximum "
3399 "%lld missing top-level vdevs at this stage.",
3400 (u_longlong_t)spa->spa_missing_tvds_allowed);
3401 }
3402 }
3403 if (error != 0) {
3404 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3405 error);
3406 }
3407 if (spa->spa_missing_tvds != 0 || error != 0)
3408 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3409
3410 return (error);
3411 }
3412
3413 /*
3414 * We need to validate the vdev labels against the configuration that
3415 * we have in hand. This function is called twice: first with an untrusted
3416 * config, then with a trusted config. The validation is more strict when the
3417 * config is trusted.
3418 */
3419 static int
3420 spa_ld_validate_vdevs(spa_t *spa)
3421 {
3422 int error = 0;
3423 vdev_t *rvd = spa->spa_root_vdev;
3424
3425 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3426 error = vdev_validate(rvd);
3427 spa_config_exit(spa, SCL_ALL, FTAG);
3428
3429 if (error != 0) {
3430 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3431 return (error);
3432 }
3433
3434 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3435 spa_load_failed(spa, "cannot open vdev tree after invalidating "
3436 "some vdevs");
3437 vdev_dbgmsg_print_tree(rvd, 2);
3438 return (SET_ERROR(ENXIO));
3439 }
3440
3441 return (0);
3442 }
3443
3444 static void
3445 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3446 {
3447 spa->spa_state = POOL_STATE_ACTIVE;
3448 spa->spa_ubsync = spa->spa_uberblock;
3449 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3450 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3451 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3452 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3453 spa->spa_claim_max_txg = spa->spa_first_txg;
3454 spa->spa_prev_software_version = ub->ub_software_version;
3455 }
3456
3457 static int
3458 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3459 {
3460 vdev_t *rvd = spa->spa_root_vdev;
3461 nvlist_t *label;
3462 uberblock_t *ub = &spa->spa_uberblock;
3463 boolean_t activity_check = B_FALSE;
3464
3465 /*
3466 * If we are opening the checkpointed state of the pool by
3467 * rewinding to it, at this point we will have written the
3468 * checkpointed uberblock to the vdev labels, so searching
3469 * the labels will find the right uberblock. However, if
3470 * we are opening the checkpointed state read-only, we have
3471 * not modified the labels. Therefore, we must ignore the
3472 * labels and continue using the spa_uberblock that was set
3473 * by spa_ld_checkpoint_rewind.
3474 *
3475 * Note that it would be fine to ignore the labels when
3476 * rewinding (opening writeable) as well. However, if we
3477 * crash just after writing the labels, we will end up
3478 * searching the labels. Doing so in the common case means
3479 * that this code path gets exercised normally, rather than
3480 * just in the edge case.
3481 */
3482 if (ub->ub_checkpoint_txg != 0 &&
3483 spa_importing_readonly_checkpoint(spa)) {
3484 spa_ld_select_uberblock_done(spa, ub);
3485 return (0);
3486 }
3487
3488 /*
3489 * Find the best uberblock.
3490 */
3491 vdev_uberblock_load(rvd, ub, &label);
3492
3493 /*
3494 * If we weren't able to find a single valid uberblock, return failure.
3495 */
3496 if (ub->ub_txg == 0) {
3497 nvlist_free(label);
3498 spa_load_failed(spa, "no valid uberblock found");
3499 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3500 }
3501
3502 if (spa->spa_load_max_txg != UINT64_MAX) {
3503 (void) spa_import_progress_set_max_txg(spa_guid(spa),
3504 (u_longlong_t)spa->spa_load_max_txg);
3505 }
3506 spa_load_note(spa, "using uberblock with txg=%llu",
3507 (u_longlong_t)ub->ub_txg);
3508
3509
3510 /*
3511 * For pools which have the multihost property on determine if the
3512 * pool is truly inactive and can be safely imported. Prevent
3513 * hosts which don't have a hostid set from importing the pool.
3514 */
3515 activity_check = spa_activity_check_required(spa, ub, label,
3516 spa->spa_config);
3517 if (activity_check) {
3518 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3519 spa_get_hostid(spa) == 0) {
3520 nvlist_free(label);
3521 fnvlist_add_uint64(spa->spa_load_info,
3522 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3523 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3524 }
3525
3526 int error = spa_activity_check(spa, ub, spa->spa_config);
3527 if (error) {
3528 nvlist_free(label);
3529 return (error);
3530 }
3531
3532 fnvlist_add_uint64(spa->spa_load_info,
3533 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3534 fnvlist_add_uint64(spa->spa_load_info,
3535 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3536 fnvlist_add_uint16(spa->spa_load_info,
3537 ZPOOL_CONFIG_MMP_SEQ,
3538 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3539 }
3540
3541 /*
3542 * If the pool has an unsupported version we can't open it.
3543 */
3544 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3545 nvlist_free(label);
3546 spa_load_failed(spa, "version %llu is not supported",
3547 (u_longlong_t)ub->ub_version);
3548 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3549 }
3550
3551 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3552 nvlist_t *features;
3553
3554 /*
3555 * If we weren't able to find what's necessary for reading the
3556 * MOS in the label, return failure.
3557 */
3558 if (label == NULL) {
3559 spa_load_failed(spa, "label config unavailable");
3560 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3561 ENXIO));
3562 }
3563
3564 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3565 &features) != 0) {
3566 nvlist_free(label);
3567 spa_load_failed(spa, "invalid label: '%s' missing",
3568 ZPOOL_CONFIG_FEATURES_FOR_READ);
3569 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3570 ENXIO));
3571 }
3572
3573 /*
3574 * Update our in-core representation with the definitive values
3575 * from the label.
3576 */
3577 nvlist_free(spa->spa_label_features);
3578 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
3579 }
3580
3581 nvlist_free(label);
3582
3583 /*
3584 * Look through entries in the label nvlist's features_for_read. If
3585 * there is a feature listed there which we don't understand then we
3586 * cannot open a pool.
3587 */
3588 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3589 nvlist_t *unsup_feat;
3590
3591 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
3592 0);
3593
3594 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3595 NULL); nvp != NULL;
3596 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3597 if (!zfeature_is_supported(nvpair_name(nvp))) {
3598 VERIFY(nvlist_add_string(unsup_feat,
3599 nvpair_name(nvp), "") == 0);
3600 }
3601 }
3602
3603 if (!nvlist_empty(unsup_feat)) {
3604 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
3605 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
3606 nvlist_free(unsup_feat);
3607 spa_load_failed(spa, "some features are unsupported");
3608 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3609 ENOTSUP));
3610 }
3611
3612 nvlist_free(unsup_feat);
3613 }
3614
3615 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3616 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3617 spa_try_repair(spa, spa->spa_config);
3618 spa_config_exit(spa, SCL_ALL, FTAG);
3619 nvlist_free(spa->spa_config_splitting);
3620 spa->spa_config_splitting = NULL;
3621 }
3622
3623 /*
3624 * Initialize internal SPA structures.
3625 */
3626 spa_ld_select_uberblock_done(spa, ub);
3627
3628 return (0);
3629 }
3630
3631 static int
3632 spa_ld_open_rootbp(spa_t *spa)
3633 {
3634 int error = 0;
3635 vdev_t *rvd = spa->spa_root_vdev;
3636
3637 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3638 if (error != 0) {
3639 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3640 "[error=%d]", error);
3641 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3642 }
3643 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3644
3645 return (0);
3646 }
3647
3648 static int
3649 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3650 boolean_t reloading)
3651 {
3652 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3653 nvlist_t *nv, *mos_config, *policy;
3654 int error = 0, copy_error;
3655 uint64_t healthy_tvds, healthy_tvds_mos;
3656 uint64_t mos_config_txg;
3657
3658 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3659 != 0)
3660 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3661
3662 /*
3663 * If we're assembling a pool from a split, the config provided is
3664 * already trusted so there is nothing to do.
3665 */
3666 if (type == SPA_IMPORT_ASSEMBLE)
3667 return (0);
3668
3669 healthy_tvds = spa_healthy_core_tvds(spa);
3670
3671 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3672 != 0) {
3673 spa_load_failed(spa, "unable to retrieve MOS config");
3674 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3675 }
3676
3677 /*
3678 * If we are doing an open, pool owner wasn't verified yet, thus do
3679 * the verification here.
3680 */
3681 if (spa->spa_load_state == SPA_LOAD_OPEN) {
3682 error = spa_verify_host(spa, mos_config);
3683 if (error != 0) {
3684 nvlist_free(mos_config);
3685 return (error);
3686 }
3687 }
3688
3689 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3690
3691 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3692
3693 /*
3694 * Build a new vdev tree from the trusted config
3695 */
3696 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
3697 if (error != 0) {
3698 nvlist_free(mos_config);
3699 spa_config_exit(spa, SCL_ALL, FTAG);
3700 spa_load_failed(spa, "spa_config_parse failed [error=%d]",
3701 error);
3702 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3703 }
3704
3705 /*
3706 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3707 * obtained by scanning /dev/dsk, then it will have the right vdev
3708 * paths. We update the trusted MOS config with this information.
3709 * We first try to copy the paths with vdev_copy_path_strict, which
3710 * succeeds only when both configs have exactly the same vdev tree.
3711 * If that fails, we fall back to a more flexible method that has a
3712 * best effort policy.
3713 */
3714 copy_error = vdev_copy_path_strict(rvd, mrvd);
3715 if (copy_error != 0 || spa_load_print_vdev_tree) {
3716 spa_load_note(spa, "provided vdev tree:");
3717 vdev_dbgmsg_print_tree(rvd, 2);
3718 spa_load_note(spa, "MOS vdev tree:");
3719 vdev_dbgmsg_print_tree(mrvd, 2);
3720 }
3721 if (copy_error != 0) {
3722 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3723 "back to vdev_copy_path_relaxed");
3724 vdev_copy_path_relaxed(rvd, mrvd);
3725 }
3726
3727 vdev_close(rvd);
3728 vdev_free(rvd);
3729 spa->spa_root_vdev = mrvd;
3730 rvd = mrvd;
3731 spa_config_exit(spa, SCL_ALL, FTAG);
3732
3733 /*
3734 * We will use spa_config if we decide to reload the spa or if spa_load
3735 * fails and we rewind. We must thus regenerate the config using the
3736 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3737 * pass settings on how to load the pool and is not stored in the MOS.
3738 * We copy it over to our new, trusted config.
3739 */
3740 mos_config_txg = fnvlist_lookup_uint64(mos_config,
3741 ZPOOL_CONFIG_POOL_TXG);
3742 nvlist_free(mos_config);
3743 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3744 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3745 &policy) == 0)
3746 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3747 spa_config_set(spa, mos_config);
3748 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3749
3750 /*
3751 * Now that we got the config from the MOS, we should be more strict
3752 * in checking blkptrs and can make assumptions about the consistency
3753 * of the vdev tree. spa_trust_config must be set to true before opening
3754 * vdevs in order for them to be writeable.
3755 */
3756 spa->spa_trust_config = B_TRUE;
3757
3758 /*
3759 * Open and validate the new vdev tree
3760 */
3761 error = spa_ld_open_vdevs(spa);
3762 if (error != 0)
3763 return (error);
3764
3765 error = spa_ld_validate_vdevs(spa);
3766 if (error != 0)
3767 return (error);
3768
3769 if (copy_error != 0 || spa_load_print_vdev_tree) {
3770 spa_load_note(spa, "final vdev tree:");
3771 vdev_dbgmsg_print_tree(rvd, 2);
3772 }
3773
3774 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3775 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3776 /*
3777 * Sanity check to make sure that we are indeed loading the
3778 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3779 * in the config provided and they happened to be the only ones
3780 * to have the latest uberblock, we could involuntarily perform
3781 * an extreme rewind.
3782 */
3783 healthy_tvds_mos = spa_healthy_core_tvds(spa);
3784 if (healthy_tvds_mos - healthy_tvds >=
3785 SPA_SYNC_MIN_VDEVS) {
3786 spa_load_note(spa, "config provided misses too many "
3787 "top-level vdevs compared to MOS (%lld vs %lld). ",
3788 (u_longlong_t)healthy_tvds,
3789 (u_longlong_t)healthy_tvds_mos);
3790 spa_load_note(spa, "vdev tree:");
3791 vdev_dbgmsg_print_tree(rvd, 2);
3792 if (reloading) {
3793 spa_load_failed(spa, "config was already "
3794 "provided from MOS. Aborting.");
3795 return (spa_vdev_err(rvd,
3796 VDEV_AUX_CORRUPT_DATA, EIO));
3797 }
3798 spa_load_note(spa, "spa must be reloaded using MOS "
3799 "config");
3800 return (SET_ERROR(EAGAIN));
3801 }
3802 }
3803
3804 error = spa_check_for_missing_logs(spa);
3805 if (error != 0)
3806 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3807
3808 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3809 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3810 "guid sum (%llu != %llu)",
3811 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3812 (u_longlong_t)rvd->vdev_guid_sum);
3813 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3814 ENXIO));
3815 }
3816
3817 return (0);
3818 }
3819
3820 static int
3821 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3822 {
3823 int error = 0;
3824 vdev_t *rvd = spa->spa_root_vdev;
3825
3826 /*
3827 * Everything that we read before spa_remove_init() must be stored
3828 * on concreted vdevs. Therefore we do this as early as possible.
3829 */
3830 error = spa_remove_init(spa);
3831 if (error != 0) {
3832 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3833 error);
3834 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3835 }
3836
3837 /*
3838 * Retrieve information needed to condense indirect vdev mappings.
3839 */
3840 error = spa_condense_init(spa);
3841 if (error != 0) {
3842 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3843 error);
3844 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3845 }
3846
3847 return (0);
3848 }
3849
3850 static int
3851 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3852 {
3853 int error = 0;
3854 vdev_t *rvd = spa->spa_root_vdev;
3855
3856 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3857 boolean_t missing_feat_read = B_FALSE;
3858 nvlist_t *unsup_feat, *enabled_feat;
3859
3860 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3861 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3862 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3863 }
3864
3865 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3866 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3867 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3868 }
3869
3870 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3871 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3872 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3873 }
3874
3875 enabled_feat = fnvlist_alloc();
3876 unsup_feat = fnvlist_alloc();
3877
3878 if (!spa_features_check(spa, B_FALSE,
3879 unsup_feat, enabled_feat))
3880 missing_feat_read = B_TRUE;
3881
3882 if (spa_writeable(spa) ||
3883 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3884 if (!spa_features_check(spa, B_TRUE,
3885 unsup_feat, enabled_feat)) {
3886 *missing_feat_writep = B_TRUE;
3887 }
3888 }
3889
3890 fnvlist_add_nvlist(spa->spa_load_info,
3891 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3892
3893 if (!nvlist_empty(unsup_feat)) {
3894 fnvlist_add_nvlist(spa->spa_load_info,
3895 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3896 }
3897
3898 fnvlist_free(enabled_feat);
3899 fnvlist_free(unsup_feat);
3900
3901 if (!missing_feat_read) {
3902 fnvlist_add_boolean(spa->spa_load_info,
3903 ZPOOL_CONFIG_CAN_RDONLY);
3904 }
3905
3906 /*
3907 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3908 * twofold: to determine whether the pool is available for
3909 * import in read-write mode and (if it is not) whether the
3910 * pool is available for import in read-only mode. If the pool
3911 * is available for import in read-write mode, it is displayed
3912 * as available in userland; if it is not available for import
3913 * in read-only mode, it is displayed as unavailable in
3914 * userland. If the pool is available for import in read-only
3915 * mode but not read-write mode, it is displayed as unavailable
3916 * in userland with a special note that the pool is actually
3917 * available for open in read-only mode.
3918 *
3919 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3920 * missing a feature for write, we must first determine whether
3921 * the pool can be opened read-only before returning to
3922 * userland in order to know whether to display the
3923 * abovementioned note.
3924 */
3925 if (missing_feat_read || (*missing_feat_writep &&
3926 spa_writeable(spa))) {
3927 spa_load_failed(spa, "pool uses unsupported features");
3928 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3929 ENOTSUP));
3930 }
3931
3932 /*
3933 * Load refcounts for ZFS features from disk into an in-memory
3934 * cache during SPA initialization.
3935 */
3936 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3937 uint64_t refcount;
3938
3939 error = feature_get_refcount_from_disk(spa,
3940 &spa_feature_table[i], &refcount);
3941 if (error == 0) {
3942 spa->spa_feat_refcount_cache[i] = refcount;
3943 } else if (error == ENOTSUP) {
3944 spa->spa_feat_refcount_cache[i] =
3945 SPA_FEATURE_DISABLED;
3946 } else {
3947 spa_load_failed(spa, "error getting refcount "
3948 "for feature %s [error=%d]",
3949 spa_feature_table[i].fi_guid, error);
3950 return (spa_vdev_err(rvd,
3951 VDEV_AUX_CORRUPT_DATA, EIO));
3952 }
3953 }
3954 }
3955
3956 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3957 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3958 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3959 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3960 }
3961
3962 /*
3963 * Encryption was added before bookmark_v2, even though bookmark_v2
3964 * is now a dependency. If this pool has encryption enabled without
3965 * bookmark_v2, trigger an errata message.
3966 */
3967 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
3968 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
3969 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
3970 }
3971
3972 return (0);
3973 }
3974
3975 static int
3976 spa_ld_load_special_directories(spa_t *spa)
3977 {
3978 int error = 0;
3979 vdev_t *rvd = spa->spa_root_vdev;
3980
3981 spa->spa_is_initializing = B_TRUE;
3982 error = dsl_pool_open(spa->spa_dsl_pool);
3983 spa->spa_is_initializing = B_FALSE;
3984 if (error != 0) {
3985 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3986 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3987 }
3988
3989 return (0);
3990 }
3991
3992 static int
3993 spa_ld_get_props(spa_t *spa)
3994 {
3995 int error = 0;
3996 uint64_t obj;
3997 vdev_t *rvd = spa->spa_root_vdev;
3998
3999 /* Grab the checksum salt from the MOS. */
4000 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4001 DMU_POOL_CHECKSUM_SALT, 1,
4002 sizeof (spa->spa_cksum_salt.zcs_bytes),
4003 spa->spa_cksum_salt.zcs_bytes);
4004 if (error == ENOENT) {
4005 /* Generate a new salt for subsequent use */
4006 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4007 sizeof (spa->spa_cksum_salt.zcs_bytes));
4008 } else if (error != 0) {
4009 spa_load_failed(spa, "unable to retrieve checksum salt from "
4010 "MOS [error=%d]", error);
4011 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4012 }
4013
4014 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4015 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4016 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4017 if (error != 0) {
4018 spa_load_failed(spa, "error opening deferred-frees bpobj "
4019 "[error=%d]", error);
4020 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4021 }
4022
4023 /*
4024 * Load the bit that tells us to use the new accounting function
4025 * (raid-z deflation). If we have an older pool, this will not
4026 * be present.
4027 */
4028 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4029 if (error != 0 && error != ENOENT)
4030 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4031
4032 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4033 &spa->spa_creation_version, B_FALSE);
4034 if (error != 0 && error != ENOENT)
4035 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4036
4037 /*
4038 * Load the persistent error log. If we have an older pool, this will
4039 * not be present.
4040 */
4041 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4042 B_FALSE);
4043 if (error != 0 && error != ENOENT)
4044 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4045
4046 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4047 &spa->spa_errlog_scrub, B_FALSE);
4048 if (error != 0 && error != ENOENT)
4049 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4050
4051 /*
4052 * Load the livelist deletion field. If a livelist is queued for
4053 * deletion, indicate that in the spa
4054 */
4055 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4056 &spa->spa_livelists_to_delete, B_FALSE);
4057 if (error != 0 && error != ENOENT)
4058 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4059
4060 /*
4061 * Load the history object. If we have an older pool, this
4062 * will not be present.
4063 */
4064 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4065 if (error != 0 && error != ENOENT)
4066 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4067
4068 /*
4069 * Load the per-vdev ZAP map. If we have an older pool, this will not
4070 * be present; in this case, defer its creation to a later time to
4071 * avoid dirtying the MOS this early / out of sync context. See
4072 * spa_sync_config_object.
4073 */
4074
4075 /* The sentinel is only available in the MOS config. */
4076 nvlist_t *mos_config;
4077 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4078 spa_load_failed(spa, "unable to retrieve MOS config");
4079 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4080 }
4081
4082 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4083 &spa->spa_all_vdev_zaps, B_FALSE);
4084
4085 if (error == ENOENT) {
4086 VERIFY(!nvlist_exists(mos_config,
4087 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4088 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4089 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4090 } else if (error != 0) {
4091 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4092 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4093 /*
4094 * An older version of ZFS overwrote the sentinel value, so
4095 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4096 * destruction to later; see spa_sync_config_object.
4097 */
4098 spa->spa_avz_action = AVZ_ACTION_DESTROY;
4099 /*
4100 * We're assuming that no vdevs have had their ZAPs created
4101 * before this. Better be sure of it.
4102 */
4103 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4104 }
4105 nvlist_free(mos_config);
4106
4107 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4108
4109 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4110 B_FALSE);
4111 if (error && error != ENOENT)
4112 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4113
4114 if (error == 0) {
4115 uint64_t autoreplace;
4116
4117 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4118 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4119 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4120 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4121 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4122 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4123 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4124 spa->spa_autoreplace = (autoreplace != 0);
4125 }
4126
4127 /*
4128 * If we are importing a pool with missing top-level vdevs,
4129 * we enforce that the pool doesn't panic or get suspended on
4130 * error since the likelihood of missing data is extremely high.
4131 */
4132 if (spa->spa_missing_tvds > 0 &&
4133 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4134 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4135 spa_load_note(spa, "forcing failmode to 'continue' "
4136 "as some top level vdevs are missing");
4137 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4138 }
4139
4140 return (0);
4141 }
4142
4143 static int
4144 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4145 {
4146 int error = 0;
4147 vdev_t *rvd = spa->spa_root_vdev;
4148
4149 /*
4150 * If we're assembling the pool from the split-off vdevs of
4151 * an existing pool, we don't want to attach the spares & cache
4152 * devices.
4153 */
4154
4155 /*
4156 * Load any hot spares for this pool.
4157 */
4158 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4159 B_FALSE);
4160 if (error != 0 && error != ENOENT)
4161 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4162 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4163 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4164 if (load_nvlist(spa, spa->spa_spares.sav_object,
4165 &spa->spa_spares.sav_config) != 0) {
4166 spa_load_failed(spa, "error loading spares nvlist");
4167 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4168 }
4169
4170 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4171 spa_load_spares(spa);
4172 spa_config_exit(spa, SCL_ALL, FTAG);
4173 } else if (error == 0) {
4174 spa->spa_spares.sav_sync = B_TRUE;
4175 }
4176
4177 /*
4178 * Load any level 2 ARC devices for this pool.
4179 */
4180 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4181 &spa->spa_l2cache.sav_object, B_FALSE);
4182 if (error != 0 && error != ENOENT)
4183 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4184 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4185 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4186 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4187 &spa->spa_l2cache.sav_config) != 0) {
4188 spa_load_failed(spa, "error loading l2cache nvlist");
4189 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4190 }
4191
4192 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4193 spa_load_l2cache(spa);
4194 spa_config_exit(spa, SCL_ALL, FTAG);
4195 } else if (error == 0) {
4196 spa->spa_l2cache.sav_sync = B_TRUE;
4197 }
4198
4199 return (0);
4200 }
4201
4202 static int
4203 spa_ld_load_vdev_metadata(spa_t *spa)
4204 {
4205 int error = 0;
4206 vdev_t *rvd = spa->spa_root_vdev;
4207
4208 /*
4209 * If the 'multihost' property is set, then never allow a pool to
4210 * be imported when the system hostid is zero. The exception to
4211 * this rule is zdb which is always allowed to access pools.
4212 */
4213 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4214 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4215 fnvlist_add_uint64(spa->spa_load_info,
4216 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4217 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4218 }
4219
4220 /*
4221 * If the 'autoreplace' property is set, then post a resource notifying
4222 * the ZFS DE that it should not issue any faults for unopenable
4223 * devices. We also iterate over the vdevs, and post a sysevent for any
4224 * unopenable vdevs so that the normal autoreplace handler can take
4225 * over.
4226 */
4227 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4228 spa_check_removed(spa->spa_root_vdev);
4229 /*
4230 * For the import case, this is done in spa_import(), because
4231 * at this point we're using the spare definitions from
4232 * the MOS config, not necessarily from the userland config.
4233 */
4234 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4235 spa_aux_check_removed(&spa->spa_spares);
4236 spa_aux_check_removed(&spa->spa_l2cache);
4237 }
4238 }
4239
4240 /*
4241 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4242 */
4243 error = vdev_load(rvd);
4244 if (error != 0) {
4245 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4246 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4247 }
4248
4249 error = spa_ld_log_spacemaps(spa);
4250 if (error != 0) {
4251 spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]",
4252 error);
4253 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4254 }
4255
4256 /*
4257 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4258 */
4259 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4260 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4261 spa_config_exit(spa, SCL_ALL, FTAG);
4262
4263 return (0);
4264 }
4265
4266 static int
4267 spa_ld_load_dedup_tables(spa_t *spa)
4268 {
4269 int error = 0;
4270 vdev_t *rvd = spa->spa_root_vdev;
4271
4272 error = ddt_load(spa);
4273 if (error != 0) {
4274 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4275 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4276 }
4277
4278 return (0);
4279 }
4280
4281 static int
4282 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
4283 {
4284 vdev_t *rvd = spa->spa_root_vdev;
4285
4286 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4287 boolean_t missing = spa_check_logs(spa);
4288 if (missing) {
4289 if (spa->spa_missing_tvds != 0) {
4290 spa_load_note(spa, "spa_check_logs failed "
4291 "so dropping the logs");
4292 } else {
4293 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4294 spa_load_failed(spa, "spa_check_logs failed");
4295 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4296 ENXIO));
4297 }
4298 }
4299 }
4300
4301 return (0);
4302 }
4303
4304 static int
4305 spa_ld_verify_pool_data(spa_t *spa)
4306 {
4307 int error = 0;
4308 vdev_t *rvd = spa->spa_root_vdev;
4309
4310 /*
4311 * We've successfully opened the pool, verify that we're ready
4312 * to start pushing transactions.
4313 */
4314 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4315 error = spa_load_verify(spa);
4316 if (error != 0) {
4317 spa_load_failed(spa, "spa_load_verify failed "
4318 "[error=%d]", error);
4319 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4320 error));
4321 }
4322 }
4323
4324 return (0);
4325 }
4326
4327 static void
4328 spa_ld_claim_log_blocks(spa_t *spa)
4329 {
4330 dmu_tx_t *tx;
4331 dsl_pool_t *dp = spa_get_dsl(spa);
4332
4333 /*
4334 * Claim log blocks that haven't been committed yet.
4335 * This must all happen in a single txg.
4336 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4337 * invoked from zil_claim_log_block()'s i/o done callback.
4338 * Price of rollback is that we abandon the log.
4339 */
4340 spa->spa_claiming = B_TRUE;
4341
4342 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4343 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4344 zil_claim, tx, DS_FIND_CHILDREN);
4345 dmu_tx_commit(tx);
4346
4347 spa->spa_claiming = B_FALSE;
4348
4349 spa_set_log_state(spa, SPA_LOG_GOOD);
4350 }
4351
4352 static void
4353 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4354 boolean_t update_config_cache)
4355 {
4356 vdev_t *rvd = spa->spa_root_vdev;
4357 int need_update = B_FALSE;
4358
4359 /*
4360 * If the config cache is stale, or we have uninitialized
4361 * metaslabs (see spa_vdev_add()), then update the config.
4362 *
4363 * If this is a verbatim import, trust the current
4364 * in-core spa_config and update the disk labels.
4365 */
4366 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4367 spa->spa_load_state == SPA_LOAD_IMPORT ||
4368 spa->spa_load_state == SPA_LOAD_RECOVER ||
4369 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4370 need_update = B_TRUE;
4371
4372 for (int c = 0; c < rvd->vdev_children; c++)
4373 if (rvd->vdev_child[c]->vdev_ms_array == 0)
4374 need_update = B_TRUE;
4375
4376 /*
4377 * Update the config cache asynchronously in case we're the
4378 * root pool, in which case the config cache isn't writable yet.
4379 */
4380 if (need_update)
4381 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4382 }
4383
4384 static void
4385 spa_ld_prepare_for_reload(spa_t *spa)
4386 {
4387 spa_mode_t mode = spa->spa_mode;
4388 int async_suspended = spa->spa_async_suspended;
4389
4390 spa_unload(spa);
4391 spa_deactivate(spa);
4392 spa_activate(spa, mode);
4393
4394 /*
4395 * We save the value of spa_async_suspended as it gets reset to 0 by
4396 * spa_unload(). We want to restore it back to the original value before
4397 * returning as we might be calling spa_async_resume() later.
4398 */
4399 spa->spa_async_suspended = async_suspended;
4400 }
4401
4402 static int
4403 spa_ld_read_checkpoint_txg(spa_t *spa)
4404 {
4405 uberblock_t checkpoint;
4406 int error = 0;
4407
4408 ASSERT0(spa->spa_checkpoint_txg);
4409 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4410
4411 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4412 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4413 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4414
4415 if (error == ENOENT)
4416 return (0);
4417
4418 if (error != 0)
4419 return (error);
4420
4421 ASSERT3U(checkpoint.ub_txg, !=, 0);
4422 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4423 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4424 spa->spa_checkpoint_txg = checkpoint.ub_txg;
4425 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4426
4427 return (0);
4428 }
4429
4430 static int
4431 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4432 {
4433 int error = 0;
4434
4435 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4436 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4437
4438 /*
4439 * Never trust the config that is provided unless we are assembling
4440 * a pool following a split.
4441 * This means don't trust blkptrs and the vdev tree in general. This
4442 * also effectively puts the spa in read-only mode since
4443 * spa_writeable() checks for spa_trust_config to be true.
4444 * We will later load a trusted config from the MOS.
4445 */
4446 if (type != SPA_IMPORT_ASSEMBLE)
4447 spa->spa_trust_config = B_FALSE;
4448
4449 /*
4450 * Parse the config provided to create a vdev tree.
4451 */
4452 error = spa_ld_parse_config(spa, type);
4453 if (error != 0)
4454 return (error);
4455
4456 spa_import_progress_add(spa);
4457
4458 /*
4459 * Now that we have the vdev tree, try to open each vdev. This involves
4460 * opening the underlying physical device, retrieving its geometry and
4461 * probing the vdev with a dummy I/O. The state of each vdev will be set
4462 * based on the success of those operations. After this we'll be ready
4463 * to read from the vdevs.
4464 */
4465 error = spa_ld_open_vdevs(spa);
4466 if (error != 0)
4467 return (error);
4468
4469 /*
4470 * Read the label of each vdev and make sure that the GUIDs stored
4471 * there match the GUIDs in the config provided.
4472 * If we're assembling a new pool that's been split off from an
4473 * existing pool, the labels haven't yet been updated so we skip
4474 * validation for now.
4475 */
4476 if (type != SPA_IMPORT_ASSEMBLE) {
4477 error = spa_ld_validate_vdevs(spa);
4478 if (error != 0)
4479 return (error);
4480 }
4481
4482 /*
4483 * Read all vdev labels to find the best uberblock (i.e. latest,
4484 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4485 * get the list of features required to read blkptrs in the MOS from
4486 * the vdev label with the best uberblock and verify that our version
4487 * of zfs supports them all.
4488 */
4489 error = spa_ld_select_uberblock(spa, type);
4490 if (error != 0)
4491 return (error);
4492
4493 /*
4494 * Pass that uberblock to the dsl_pool layer which will open the root
4495 * blkptr. This blkptr points to the latest version of the MOS and will
4496 * allow us to read its contents.
4497 */
4498 error = spa_ld_open_rootbp(spa);
4499 if (error != 0)
4500 return (error);
4501
4502 return (0);
4503 }
4504
4505 static int
4506 spa_ld_checkpoint_rewind(spa_t *spa)
4507 {
4508 uberblock_t checkpoint;
4509 int error = 0;
4510
4511 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4512 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4513
4514 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4515 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4516 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4517
4518 if (error != 0) {
4519 spa_load_failed(spa, "unable to retrieve checkpointed "
4520 "uberblock from the MOS config [error=%d]", error);
4521
4522 if (error == ENOENT)
4523 error = ZFS_ERR_NO_CHECKPOINT;
4524
4525 return (error);
4526 }
4527
4528 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4529 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4530
4531 /*
4532 * We need to update the txg and timestamp of the checkpointed
4533 * uberblock to be higher than the latest one. This ensures that
4534 * the checkpointed uberblock is selected if we were to close and
4535 * reopen the pool right after we've written it in the vdev labels.
4536 * (also see block comment in vdev_uberblock_compare)
4537 */
4538 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4539 checkpoint.ub_timestamp = gethrestime_sec();
4540
4541 /*
4542 * Set current uberblock to be the checkpointed uberblock.
4543 */
4544 spa->spa_uberblock = checkpoint;
4545
4546 /*
4547 * If we are doing a normal rewind, then the pool is open for
4548 * writing and we sync the "updated" checkpointed uberblock to
4549 * disk. Once this is done, we've basically rewound the whole
4550 * pool and there is no way back.
4551 *
4552 * There are cases when we don't want to attempt and sync the
4553 * checkpointed uberblock to disk because we are opening a
4554 * pool as read-only. Specifically, verifying the checkpointed
4555 * state with zdb, and importing the checkpointed state to get
4556 * a "preview" of its content.
4557 */
4558 if (spa_writeable(spa)) {
4559 vdev_t *rvd = spa->spa_root_vdev;
4560
4561 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4562 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4563 int svdcount = 0;
4564 int children = rvd->vdev_children;
4565 int c0 = spa_get_random(children);
4566
4567 for (int c = 0; c < children; c++) {
4568 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4569
4570 /* Stop when revisiting the first vdev */
4571 if (c > 0 && svd[0] == vd)
4572 break;
4573
4574 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4575 !vdev_is_concrete(vd))
4576 continue;
4577
4578 svd[svdcount++] = vd;
4579 if (svdcount == SPA_SYNC_MIN_VDEVS)
4580 break;
4581 }
4582 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4583 if (error == 0)
4584 spa->spa_last_synced_guid = rvd->vdev_guid;
4585 spa_config_exit(spa, SCL_ALL, FTAG);
4586
4587 if (error != 0) {
4588 spa_load_failed(spa, "failed to write checkpointed "
4589 "uberblock to the vdev labels [error=%d]", error);
4590 return (error);
4591 }
4592 }
4593
4594 return (0);
4595 }
4596
4597 static int
4598 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4599 boolean_t *update_config_cache)
4600 {
4601 int error;
4602
4603 /*
4604 * Parse the config for pool, open and validate vdevs,
4605 * select an uberblock, and use that uberblock to open
4606 * the MOS.
4607 */
4608 error = spa_ld_mos_init(spa, type);
4609 if (error != 0)
4610 return (error);
4611
4612 /*
4613 * Retrieve the trusted config stored in the MOS and use it to create
4614 * a new, exact version of the vdev tree, then reopen all vdevs.
4615 */
4616 error = spa_ld_trusted_config(spa, type, B_FALSE);
4617 if (error == EAGAIN) {
4618 if (update_config_cache != NULL)
4619 *update_config_cache = B_TRUE;
4620
4621 /*
4622 * Redo the loading process with the trusted config if it is
4623 * too different from the untrusted config.
4624 */
4625 spa_ld_prepare_for_reload(spa);
4626 spa_load_note(spa, "RELOADING");
4627 error = spa_ld_mos_init(spa, type);
4628 if (error != 0)
4629 return (error);
4630
4631 error = spa_ld_trusted_config(spa, type, B_TRUE);
4632 if (error != 0)
4633 return (error);
4634
4635 } else if (error != 0) {
4636 return (error);
4637 }
4638
4639 return (0);
4640 }
4641
4642 /*
4643 * Load an existing storage pool, using the config provided. This config
4644 * describes which vdevs are part of the pool and is later validated against
4645 * partial configs present in each vdev's label and an entire copy of the
4646 * config stored in the MOS.
4647 */
4648 static int
4649 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
4650 {
4651 int error = 0;
4652 boolean_t missing_feat_write = B_FALSE;
4653 boolean_t checkpoint_rewind =
4654 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4655 boolean_t update_config_cache = B_FALSE;
4656
4657 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4658 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4659
4660 spa_load_note(spa, "LOADING");
4661
4662 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4663 if (error != 0)
4664 return (error);
4665
4666 /*
4667 * If we are rewinding to the checkpoint then we need to repeat
4668 * everything we've done so far in this function but this time
4669 * selecting the checkpointed uberblock and using that to open
4670 * the MOS.
4671 */
4672 if (checkpoint_rewind) {
4673 /*
4674 * If we are rewinding to the checkpoint update config cache
4675 * anyway.
4676 */
4677 update_config_cache = B_TRUE;
4678
4679 /*
4680 * Extract the checkpointed uberblock from the current MOS
4681 * and use this as the pool's uberblock from now on. If the
4682 * pool is imported as writeable we also write the checkpoint
4683 * uberblock to the labels, making the rewind permanent.
4684 */
4685 error = spa_ld_checkpoint_rewind(spa);
4686 if (error != 0)
4687 return (error);
4688
4689 /*
4690 * Redo the loading process again with the
4691 * checkpointed uberblock.
4692 */
4693 spa_ld_prepare_for_reload(spa);
4694 spa_load_note(spa, "LOADING checkpointed uberblock");
4695 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4696 if (error != 0)
4697 return (error);
4698 }
4699
4700 /*
4701 * Retrieve the checkpoint txg if the pool has a checkpoint.
4702 */
4703 error = spa_ld_read_checkpoint_txg(spa);
4704 if (error != 0)
4705 return (error);
4706
4707 /*
4708 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4709 * from the pool and their contents were re-mapped to other vdevs. Note
4710 * that everything that we read before this step must have been
4711 * rewritten on concrete vdevs after the last device removal was
4712 * initiated. Otherwise we could be reading from indirect vdevs before
4713 * we have loaded their mappings.
4714 */
4715 error = spa_ld_open_indirect_vdev_metadata(spa);
4716 if (error != 0)
4717 return (error);
4718
4719 /*
4720 * Retrieve the full list of active features from the MOS and check if
4721 * they are all supported.
4722 */
4723 error = spa_ld_check_features(spa, &missing_feat_write);
4724 if (error != 0)
4725 return (error);
4726
4727 /*
4728 * Load several special directories from the MOS needed by the dsl_pool
4729 * layer.
4730 */
4731 error = spa_ld_load_special_directories(spa);
4732 if (error != 0)
4733 return (error);
4734
4735 /*
4736 * Retrieve pool properties from the MOS.
4737 */
4738 error = spa_ld_get_props(spa);
4739 if (error != 0)
4740 return (error);
4741
4742 /*
4743 * Retrieve the list of auxiliary devices - cache devices and spares -
4744 * and open them.
4745 */
4746 error = spa_ld_open_aux_vdevs(spa, type);
4747 if (error != 0)
4748 return (error);
4749
4750 /*
4751 * Load the metadata for all vdevs. Also check if unopenable devices
4752 * should be autoreplaced.
4753 */
4754 error = spa_ld_load_vdev_metadata(spa);
4755 if (error != 0)
4756 return (error);
4757
4758 error = spa_ld_load_dedup_tables(spa);
4759 if (error != 0)
4760 return (error);
4761
4762 /*
4763 * Verify the logs now to make sure we don't have any unexpected errors
4764 * when we claim log blocks later.
4765 */
4766 error = spa_ld_verify_logs(spa, type, ereport);
4767 if (error != 0)
4768 return (error);
4769
4770 if (missing_feat_write) {
4771 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4772
4773 /*
4774 * At this point, we know that we can open the pool in
4775 * read-only mode but not read-write mode. We now have enough
4776 * information and can return to userland.
4777 */
4778 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4779 ENOTSUP));
4780 }
4781
4782 /*
4783 * Traverse the last txgs to make sure the pool was left off in a safe
4784 * state. When performing an extreme rewind, we verify the whole pool,
4785 * which can take a very long time.
4786 */
4787 error = spa_ld_verify_pool_data(spa);
4788 if (error != 0)
4789 return (error);
4790
4791 /*
4792 * Calculate the deflated space for the pool. This must be done before
4793 * we write anything to the pool because we'd need to update the space
4794 * accounting using the deflated sizes.
4795 */
4796 spa_update_dspace(spa);
4797
4798 /*
4799 * We have now retrieved all the information we needed to open the
4800 * pool. If we are importing the pool in read-write mode, a few
4801 * additional steps must be performed to finish the import.
4802 */
4803 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4804 spa->spa_load_max_txg == UINT64_MAX)) {
4805 uint64_t config_cache_txg = spa->spa_config_txg;
4806
4807 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4808
4809 /*
4810 * In case of a checkpoint rewind, log the original txg
4811 * of the checkpointed uberblock.
4812 */
4813 if (checkpoint_rewind) {
4814 spa_history_log_internal(spa, "checkpoint rewind",
4815 NULL, "rewound state to txg=%llu",
4816 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4817 }
4818
4819 /*
4820 * Traverse the ZIL and claim all blocks.
4821 */
4822 spa_ld_claim_log_blocks(spa);
4823
4824 /*
4825 * Kick-off the syncing thread.
4826 */
4827 spa->spa_sync_on = B_TRUE;
4828 txg_sync_start(spa->spa_dsl_pool);
4829 mmp_thread_start(spa);
4830
4831 /*
4832 * Wait for all claims to sync. We sync up to the highest
4833 * claimed log block birth time so that claimed log blocks
4834 * don't appear to be from the future. spa_claim_max_txg
4835 * will have been set for us by ZIL traversal operations
4836 * performed above.
4837 */
4838 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4839
4840 /*
4841 * Check if we need to request an update of the config. On the
4842 * next sync, we would update the config stored in vdev labels
4843 * and the cachefile (by default /etc/zfs/zpool.cache).
4844 */
4845 spa_ld_check_for_config_update(spa, config_cache_txg,
4846 update_config_cache);
4847
4848 /*
4849 * Check if a rebuild was in progress and if so resume it.
4850 * Then check all DTLs to see if anything needs resilvering.
4851 * The resilver will be deferred if a rebuild was started.
4852 */
4853 if (vdev_rebuild_active(spa->spa_root_vdev)) {
4854 vdev_rebuild_restart(spa);
4855 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4856 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4857 spa_async_request(spa, SPA_ASYNC_RESILVER);
4858 }
4859
4860 /*
4861 * Log the fact that we booted up (so that we can detect if
4862 * we rebooted in the middle of an operation).
4863 */
4864 spa_history_log_version(spa, "open", NULL);
4865
4866 spa_restart_removal(spa);
4867 spa_spawn_aux_threads(spa);
4868
4869 /*
4870 * Delete any inconsistent datasets.
4871 *
4872 * Note:
4873 * Since we may be issuing deletes for clones here,
4874 * we make sure to do so after we've spawned all the
4875 * auxiliary threads above (from which the livelist
4876 * deletion zthr is part of).
4877 */
4878 (void) dmu_objset_find(spa_name(spa),
4879 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4880
4881 /*
4882 * Clean up any stale temporary dataset userrefs.
4883 */
4884 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4885
4886 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4887 vdev_initialize_restart(spa->spa_root_vdev);
4888 vdev_trim_restart(spa->spa_root_vdev);
4889 vdev_autotrim_restart(spa);
4890 spa_config_exit(spa, SCL_CONFIG, FTAG);
4891 }
4892
4893 spa_import_progress_remove(spa_guid(spa));
4894 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
4895
4896 spa_load_note(spa, "LOADED");
4897
4898 return (0);
4899 }
4900
4901 static int
4902 spa_load_retry(spa_t *spa, spa_load_state_t state)
4903 {
4904 spa_mode_t mode = spa->spa_mode;
4905
4906 spa_unload(spa);
4907 spa_deactivate(spa);
4908
4909 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4910
4911 spa_activate(spa, mode);
4912 spa_async_suspend(spa);
4913
4914 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4915 (u_longlong_t)spa->spa_load_max_txg);
4916
4917 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4918 }
4919
4920 /*
4921 * If spa_load() fails this function will try loading prior txg's. If
4922 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4923 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
4924 * function will not rewind the pool and will return the same error as
4925 * spa_load().
4926 */
4927 static int
4928 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
4929 int rewind_flags)
4930 {
4931 nvlist_t *loadinfo = NULL;
4932 nvlist_t *config = NULL;
4933 int load_error, rewind_error;
4934 uint64_t safe_rewind_txg;
4935 uint64_t min_txg;
4936
4937 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
4938 spa->spa_load_max_txg = spa->spa_load_txg;
4939 spa_set_log_state(spa, SPA_LOG_CLEAR);
4940 } else {
4941 spa->spa_load_max_txg = max_request;
4942 if (max_request != UINT64_MAX)
4943 spa->spa_extreme_rewind = B_TRUE;
4944 }
4945
4946 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
4947 if (load_error == 0)
4948 return (0);
4949 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
4950 /*
4951 * When attempting checkpoint-rewind on a pool with no
4952 * checkpoint, we should not attempt to load uberblocks
4953 * from previous txgs when spa_load fails.
4954 */
4955 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4956 spa_import_progress_remove(spa_guid(spa));
4957 return (load_error);
4958 }
4959
4960 if (spa->spa_root_vdev != NULL)
4961 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4962
4963 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
4964 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
4965
4966 if (rewind_flags & ZPOOL_NEVER_REWIND) {
4967 nvlist_free(config);
4968 spa_import_progress_remove(spa_guid(spa));
4969 return (load_error);
4970 }
4971
4972 if (state == SPA_LOAD_RECOVER) {
4973 /* Price of rolling back is discarding txgs, including log */
4974 spa_set_log_state(spa, SPA_LOG_CLEAR);
4975 } else {
4976 /*
4977 * If we aren't rolling back save the load info from our first
4978 * import attempt so that we can restore it after attempting
4979 * to rewind.
4980 */
4981 loadinfo = spa->spa_load_info;
4982 spa->spa_load_info = fnvlist_alloc();
4983 }
4984
4985 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
4986 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
4987 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
4988 TXG_INITIAL : safe_rewind_txg;
4989
4990 /*
4991 * Continue as long as we're finding errors, we're still within
4992 * the acceptable rewind range, and we're still finding uberblocks
4993 */
4994 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
4995 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
4996 if (spa->spa_load_max_txg < safe_rewind_txg)
4997 spa->spa_extreme_rewind = B_TRUE;
4998 rewind_error = spa_load_retry(spa, state);
4999 }
5000
5001 spa->spa_extreme_rewind = B_FALSE;
5002 spa->spa_load_max_txg = UINT64_MAX;
5003
5004 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5005 spa_config_set(spa, config);
5006 else
5007 nvlist_free(config);
5008
5009 if (state == SPA_LOAD_RECOVER) {
5010 ASSERT3P(loadinfo, ==, NULL);
5011 spa_import_progress_remove(spa_guid(spa));
5012 return (rewind_error);
5013 } else {
5014 /* Store the rewind info as part of the initial load info */
5015 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5016 spa->spa_load_info);
5017
5018 /* Restore the initial load info */
5019 fnvlist_free(spa->spa_load_info);
5020 spa->spa_load_info = loadinfo;
5021
5022 spa_import_progress_remove(spa_guid(spa));
5023 return (load_error);
5024 }
5025 }
5026
5027 /*
5028 * Pool Open/Import
5029 *
5030 * The import case is identical to an open except that the configuration is sent
5031 * down from userland, instead of grabbed from the configuration cache. For the
5032 * case of an open, the pool configuration will exist in the
5033 * POOL_STATE_UNINITIALIZED state.
5034 *
5035 * The stats information (gen/count/ustats) is used to gather vdev statistics at
5036 * the same time open the pool, without having to keep around the spa_t in some
5037 * ambiguous state.
5038 */
5039 static int
5040 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
5041 nvlist_t **config)
5042 {
5043 spa_t *spa;
5044 spa_load_state_t state = SPA_LOAD_OPEN;
5045 int error;
5046 int locked = B_FALSE;
5047 int firstopen = B_FALSE;
5048
5049 *spapp = NULL;
5050
5051 /*
5052 * As disgusting as this is, we need to support recursive calls to this
5053 * function because dsl_dir_open() is called during spa_load(), and ends
5054 * up calling spa_open() again. The real fix is to figure out how to
5055 * avoid dsl_dir_open() calling this in the first place.
5056 */
5057 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5058 mutex_enter(&spa_namespace_lock);
5059 locked = B_TRUE;
5060 }
5061
5062 if ((spa = spa_lookup(pool)) == NULL) {
5063 if (locked)
5064 mutex_exit(&spa_namespace_lock);
5065 return (SET_ERROR(ENOENT));
5066 }
5067
5068 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5069 zpool_load_policy_t policy;
5070
5071 firstopen = B_TRUE;
5072
5073 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5074 &policy);
5075 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5076 state = SPA_LOAD_RECOVER;
5077
5078 spa_activate(spa, spa_mode_global);
5079
5080 if (state != SPA_LOAD_RECOVER)
5081 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5082 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5083
5084 zfs_dbgmsg("spa_open_common: opening %s", pool);
5085 error = spa_load_best(spa, state, policy.zlp_txg,
5086 policy.zlp_rewind);
5087
5088 if (error == EBADF) {
5089 /*
5090 * If vdev_validate() returns failure (indicated by
5091 * EBADF), it indicates that one of the vdevs indicates
5092 * that the pool has been exported or destroyed. If
5093 * this is the case, the config cache is out of sync and
5094 * we should remove the pool from the namespace.
5095 */
5096 spa_unload(spa);
5097 spa_deactivate(spa);
5098 spa_write_cachefile(spa, B_TRUE, B_TRUE);
5099 spa_remove(spa);
5100 if (locked)
5101 mutex_exit(&spa_namespace_lock);
5102 return (SET_ERROR(ENOENT));
5103 }
5104
5105 if (error) {
5106 /*
5107 * We can't open the pool, but we still have useful
5108 * information: the state of each vdev after the
5109 * attempted vdev_open(). Return this to the user.
5110 */
5111 if (config != NULL && spa->spa_config) {
5112 VERIFY(nvlist_dup(spa->spa_config, config,
5113 KM_SLEEP) == 0);
5114 VERIFY(nvlist_add_nvlist(*config,
5115 ZPOOL_CONFIG_LOAD_INFO,
5116 spa->spa_load_info) == 0);
5117 }
5118 spa_unload(spa);
5119 spa_deactivate(spa);
5120 spa->spa_last_open_failed = error;
5121 if (locked)
5122 mutex_exit(&spa_namespace_lock);
5123 *spapp = NULL;
5124 return (error);
5125 }
5126 }
5127
5128 spa_open_ref(spa, tag);
5129
5130 if (config != NULL)
5131 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5132
5133 /*
5134 * If we've recovered the pool, pass back any information we
5135 * gathered while doing the load.
5136 */
5137 if (state == SPA_LOAD_RECOVER) {
5138 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5139 spa->spa_load_info) == 0);
5140 }
5141
5142 if (locked) {
5143 spa->spa_last_open_failed = 0;
5144 spa->spa_last_ubsync_txg = 0;
5145 spa->spa_load_txg = 0;
5146 mutex_exit(&spa_namespace_lock);
5147 }
5148
5149 if (firstopen)
5150 zvol_create_minors_recursive(spa_name(spa));
5151
5152 *spapp = spa;
5153
5154 return (0);
5155 }
5156
5157 int
5158 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
5159 nvlist_t **config)
5160 {
5161 return (spa_open_common(name, spapp, tag, policy, config));
5162 }
5163
5164 int
5165 spa_open(const char *name, spa_t **spapp, void *tag)
5166 {
5167 return (spa_open_common(name, spapp, tag, NULL, NULL));
5168 }
5169
5170 /*
5171 * Lookup the given spa_t, incrementing the inject count in the process,
5172 * preventing it from being exported or destroyed.
5173 */
5174 spa_t *
5175 spa_inject_addref(char *name)
5176 {
5177 spa_t *spa;
5178
5179 mutex_enter(&spa_namespace_lock);
5180 if ((spa = spa_lookup(name)) == NULL) {
5181 mutex_exit(&spa_namespace_lock);
5182 return (NULL);
5183 }
5184 spa->spa_inject_ref++;
5185 mutex_exit(&spa_namespace_lock);
5186
5187 return (spa);
5188 }
5189
5190 void
5191 spa_inject_delref(spa_t *spa)
5192 {
5193 mutex_enter(&spa_namespace_lock);
5194 spa->spa_inject_ref--;
5195 mutex_exit(&spa_namespace_lock);
5196 }
5197
5198 /*
5199 * Add spares device information to the nvlist.
5200 */
5201 static void
5202 spa_add_spares(spa_t *spa, nvlist_t *config)
5203 {
5204 nvlist_t **spares;
5205 uint_t i, nspares;
5206 nvlist_t *nvroot;
5207 uint64_t guid;
5208 vdev_stat_t *vs;
5209 uint_t vsc;
5210 uint64_t pool;
5211
5212 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5213
5214 if (spa->spa_spares.sav_count == 0)
5215 return;
5216
5217 VERIFY(nvlist_lookup_nvlist(config,
5218 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
5219 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5220 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
5221 if (nspares != 0) {
5222 VERIFY(nvlist_add_nvlist_array(nvroot,
5223 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5224 VERIFY(nvlist_lookup_nvlist_array(nvroot,
5225 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
5226
5227 /*
5228 * Go through and find any spares which have since been
5229 * repurposed as an active spare. If this is the case, update
5230 * their status appropriately.
5231 */
5232 for (i = 0; i < nspares; i++) {
5233 VERIFY(nvlist_lookup_uint64(spares[i],
5234 ZPOOL_CONFIG_GUID, &guid) == 0);
5235 if (spa_spare_exists(guid, &pool, NULL) &&
5236 pool != 0ULL) {
5237 VERIFY(nvlist_lookup_uint64_array(
5238 spares[i], ZPOOL_CONFIG_VDEV_STATS,
5239 (uint64_t **)&vs, &vsc) == 0);
5240 vs->vs_state = VDEV_STATE_CANT_OPEN;
5241 vs->vs_aux = VDEV_AUX_SPARED;
5242 }
5243 }
5244 }
5245 }
5246
5247 /*
5248 * Add l2cache device information to the nvlist, including vdev stats.
5249 */
5250 static void
5251 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5252 {
5253 nvlist_t **l2cache;
5254 uint_t i, j, nl2cache;
5255 nvlist_t *nvroot;
5256 uint64_t guid;
5257 vdev_t *vd;
5258 vdev_stat_t *vs;
5259 uint_t vsc;
5260
5261 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5262
5263 if (spa->spa_l2cache.sav_count == 0)
5264 return;
5265
5266 VERIFY(nvlist_lookup_nvlist(config,
5267 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
5268 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5269 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
5270 if (nl2cache != 0) {
5271 VERIFY(nvlist_add_nvlist_array(nvroot,
5272 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5273 VERIFY(nvlist_lookup_nvlist_array(nvroot,
5274 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
5275
5276 /*
5277 * Update level 2 cache device stats.
5278 */
5279
5280 for (i = 0; i < nl2cache; i++) {
5281 VERIFY(nvlist_lookup_uint64(l2cache[i],
5282 ZPOOL_CONFIG_GUID, &guid) == 0);
5283
5284 vd = NULL;
5285 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5286 if (guid ==
5287 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5288 vd = spa->spa_l2cache.sav_vdevs[j];
5289 break;
5290 }
5291 }
5292 ASSERT(vd != NULL);
5293
5294 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
5295 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
5296 == 0);
5297 vdev_get_stats(vd, vs);
5298 vdev_config_generate_stats(vd, l2cache[i]);
5299
5300 }
5301 }
5302 }
5303
5304 static void
5305 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5306 {
5307 zap_cursor_t zc;
5308 zap_attribute_t za;
5309
5310 if (spa->spa_feat_for_read_obj != 0) {
5311 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5312 spa->spa_feat_for_read_obj);
5313 zap_cursor_retrieve(&zc, &za) == 0;
5314 zap_cursor_advance(&zc)) {
5315 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5316 za.za_num_integers == 1);
5317 VERIFY0(nvlist_add_uint64(features, za.za_name,
5318 za.za_first_integer));
5319 }
5320 zap_cursor_fini(&zc);
5321 }
5322
5323 if (spa->spa_feat_for_write_obj != 0) {
5324 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5325 spa->spa_feat_for_write_obj);
5326 zap_cursor_retrieve(&zc, &za) == 0;
5327 zap_cursor_advance(&zc)) {
5328 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5329 za.za_num_integers == 1);
5330 VERIFY0(nvlist_add_uint64(features, za.za_name,
5331 za.za_first_integer));
5332 }
5333 zap_cursor_fini(&zc);
5334 }
5335 }
5336
5337 static void
5338 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5339 {
5340 int i;
5341
5342 for (i = 0; i < SPA_FEATURES; i++) {
5343 zfeature_info_t feature = spa_feature_table[i];
5344 uint64_t refcount;
5345
5346 if (feature_get_refcount(spa, &feature, &refcount) != 0)
5347 continue;
5348
5349 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5350 }
5351 }
5352
5353 /*
5354 * Store a list of pool features and their reference counts in the
5355 * config.
5356 *
5357 * The first time this is called on a spa, allocate a new nvlist, fetch
5358 * the pool features and reference counts from disk, then save the list
5359 * in the spa. In subsequent calls on the same spa use the saved nvlist
5360 * and refresh its values from the cached reference counts. This
5361 * ensures we don't block here on I/O on a suspended pool so 'zpool
5362 * clear' can resume the pool.
5363 */
5364 static void
5365 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5366 {
5367 nvlist_t *features;
5368
5369 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5370
5371 mutex_enter(&spa->spa_feat_stats_lock);
5372 features = spa->spa_feat_stats;
5373
5374 if (features != NULL) {
5375 spa_feature_stats_from_cache(spa, features);
5376 } else {
5377 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5378 spa->spa_feat_stats = features;
5379 spa_feature_stats_from_disk(spa, features);
5380 }
5381
5382 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5383 features));
5384
5385 mutex_exit(&spa->spa_feat_stats_lock);
5386 }
5387
5388 int
5389 spa_get_stats(const char *name, nvlist_t **config,
5390 char *altroot, size_t buflen)
5391 {
5392 int error;
5393 spa_t *spa;
5394
5395 *config = NULL;
5396 error = spa_open_common(name, &spa, FTAG, NULL, config);
5397
5398 if (spa != NULL) {
5399 /*
5400 * This still leaves a window of inconsistency where the spares
5401 * or l2cache devices could change and the config would be
5402 * self-inconsistent.
5403 */
5404 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5405
5406 if (*config != NULL) {
5407 uint64_t loadtimes[2];
5408
5409 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5410 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5411 VERIFY(nvlist_add_uint64_array(*config,
5412 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
5413
5414 VERIFY(nvlist_add_uint64(*config,
5415 ZPOOL_CONFIG_ERRCOUNT,
5416 spa_get_errlog_size(spa)) == 0);
5417
5418 if (spa_suspended(spa)) {
5419 VERIFY(nvlist_add_uint64(*config,
5420 ZPOOL_CONFIG_SUSPENDED,
5421 spa->spa_failmode) == 0);
5422 VERIFY(nvlist_add_uint64(*config,
5423 ZPOOL_CONFIG_SUSPENDED_REASON,
5424 spa->spa_suspended) == 0);
5425 }
5426
5427 spa_add_spares(spa, *config);
5428 spa_add_l2cache(spa, *config);
5429 spa_add_feature_stats(spa, *config);
5430 }
5431 }
5432
5433 /*
5434 * We want to get the alternate root even for faulted pools, so we cheat
5435 * and call spa_lookup() directly.
5436 */
5437 if (altroot) {
5438 if (spa == NULL) {
5439 mutex_enter(&spa_namespace_lock);
5440 spa = spa_lookup(name);
5441 if (spa)
5442 spa_altroot(spa, altroot, buflen);
5443 else
5444 altroot[0] = '\0';
5445 spa = NULL;
5446 mutex_exit(&spa_namespace_lock);
5447 } else {
5448 spa_altroot(spa, altroot, buflen);
5449 }
5450 }
5451
5452 if (spa != NULL) {
5453 spa_config_exit(spa, SCL_CONFIG, FTAG);
5454 spa_close(spa, FTAG);
5455 }
5456
5457 return (error);
5458 }
5459
5460 /*
5461 * Validate that the auxiliary device array is well formed. We must have an
5462 * array of nvlists, each which describes a valid leaf vdev. If this is an
5463 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5464 * specified, as long as they are well-formed.
5465 */
5466 static int
5467 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5468 spa_aux_vdev_t *sav, const char *config, uint64_t version,
5469 vdev_labeltype_t label)
5470 {
5471 nvlist_t **dev;
5472 uint_t i, ndev;
5473 vdev_t *vd;
5474 int error;
5475
5476 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5477
5478 /*
5479 * It's acceptable to have no devs specified.
5480 */
5481 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5482 return (0);
5483
5484 if (ndev == 0)
5485 return (SET_ERROR(EINVAL));
5486
5487 /*
5488 * Make sure the pool is formatted with a version that supports this
5489 * device type.
5490 */
5491 if (spa_version(spa) < version)
5492 return (SET_ERROR(ENOTSUP));
5493
5494 /*
5495 * Set the pending device list so we correctly handle device in-use
5496 * checking.
5497 */
5498 sav->sav_pending = dev;
5499 sav->sav_npending = ndev;
5500
5501 for (i = 0; i < ndev; i++) {
5502 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5503 mode)) != 0)
5504 goto out;
5505
5506 if (!vd->vdev_ops->vdev_op_leaf) {
5507 vdev_free(vd);
5508 error = SET_ERROR(EINVAL);
5509 goto out;
5510 }
5511
5512 vd->vdev_top = vd;
5513
5514 if ((error = vdev_open(vd)) == 0 &&
5515 (error = vdev_label_init(vd, crtxg, label)) == 0) {
5516 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5517 vd->vdev_guid) == 0);
5518 }
5519
5520 vdev_free(vd);
5521
5522 if (error &&
5523 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5524 goto out;
5525 else
5526 error = 0;
5527 }
5528
5529 out:
5530 sav->sav_pending = NULL;
5531 sav->sav_npending = 0;
5532 return (error);
5533 }
5534
5535 static int
5536 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5537 {
5538 int error;
5539
5540 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5541
5542 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5543 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5544 VDEV_LABEL_SPARE)) != 0) {
5545 return (error);
5546 }
5547
5548 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5549 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5550 VDEV_LABEL_L2CACHE));
5551 }
5552
5553 static void
5554 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5555 const char *config)
5556 {
5557 int i;
5558
5559 if (sav->sav_config != NULL) {
5560 nvlist_t **olddevs;
5561 uint_t oldndevs;
5562 nvlist_t **newdevs;
5563
5564 /*
5565 * Generate new dev list by concatenating with the
5566 * current dev list.
5567 */
5568 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
5569 &olddevs, &oldndevs) == 0);
5570
5571 newdevs = kmem_alloc(sizeof (void *) *
5572 (ndevs + oldndevs), KM_SLEEP);
5573 for (i = 0; i < oldndevs; i++)
5574 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
5575 KM_SLEEP) == 0);
5576 for (i = 0; i < ndevs; i++)
5577 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
5578 KM_SLEEP) == 0);
5579
5580 VERIFY(nvlist_remove(sav->sav_config, config,
5581 DATA_TYPE_NVLIST_ARRAY) == 0);
5582
5583 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
5584 config, newdevs, ndevs + oldndevs) == 0);
5585 for (i = 0; i < oldndevs + ndevs; i++)
5586 nvlist_free(newdevs[i]);
5587 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5588 } else {
5589 /*
5590 * Generate a new dev list.
5591 */
5592 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
5593 KM_SLEEP) == 0);
5594 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
5595 devs, ndevs) == 0);
5596 }
5597 }
5598
5599 /*
5600 * Stop and drop level 2 ARC devices
5601 */
5602 void
5603 spa_l2cache_drop(spa_t *spa)
5604 {
5605 vdev_t *vd;
5606 int i;
5607 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5608
5609 for (i = 0; i < sav->sav_count; i++) {
5610 uint64_t pool;
5611
5612 vd = sav->sav_vdevs[i];
5613 ASSERT(vd != NULL);
5614
5615 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5616 pool != 0ULL && l2arc_vdev_present(vd))
5617 l2arc_remove_vdev(vd);
5618 }
5619 }
5620
5621 /*
5622 * Verify encryption parameters for spa creation. If we are encrypting, we must
5623 * have the encryption feature flag enabled.
5624 */
5625 static int
5626 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5627 boolean_t has_encryption)
5628 {
5629 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5630 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5631 !has_encryption)
5632 return (SET_ERROR(ENOTSUP));
5633
5634 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5635 }
5636
5637 /*
5638 * Pool Creation
5639 */
5640 int
5641 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5642 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5643 {
5644 spa_t *spa;
5645 char *altroot = NULL;
5646 vdev_t *rvd;
5647 dsl_pool_t *dp;
5648 dmu_tx_t *tx;
5649 int error = 0;
5650 uint64_t txg = TXG_INITIAL;
5651 nvlist_t **spares, **l2cache;
5652 uint_t nspares, nl2cache;
5653 uint64_t version, obj, ndraid = 0;
5654 boolean_t has_features;
5655 boolean_t has_encryption;
5656 boolean_t has_allocclass;
5657 spa_feature_t feat;
5658 char *feat_name;
5659 char *poolname;
5660 nvlist_t *nvl;
5661
5662 if (props == NULL ||
5663 nvlist_lookup_string(props, "tname", &poolname) != 0)
5664 poolname = (char *)pool;
5665
5666 /*
5667 * If this pool already exists, return failure.
5668 */
5669 mutex_enter(&spa_namespace_lock);
5670 if (spa_lookup(poolname) != NULL) {
5671 mutex_exit(&spa_namespace_lock);
5672 return (SET_ERROR(EEXIST));
5673 }
5674
5675 /*
5676 * Allocate a new spa_t structure.
5677 */
5678 nvl = fnvlist_alloc();
5679 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5680 (void) nvlist_lookup_string(props,
5681 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5682 spa = spa_add(poolname, nvl, altroot);
5683 fnvlist_free(nvl);
5684 spa_activate(spa, spa_mode_global);
5685
5686 if (props && (error = spa_prop_validate(spa, props))) {
5687 spa_deactivate(spa);
5688 spa_remove(spa);
5689 mutex_exit(&spa_namespace_lock);
5690 return (error);
5691 }
5692
5693 /*
5694 * Temporary pool names should never be written to disk.
5695 */
5696 if (poolname != pool)
5697 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5698
5699 has_features = B_FALSE;
5700 has_encryption = B_FALSE;
5701 has_allocclass = B_FALSE;
5702 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5703 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5704 if (zpool_prop_feature(nvpair_name(elem))) {
5705 has_features = B_TRUE;
5706
5707 feat_name = strchr(nvpair_name(elem), '@') + 1;
5708 VERIFY0(zfeature_lookup_name(feat_name, &feat));
5709 if (feat == SPA_FEATURE_ENCRYPTION)
5710 has_encryption = B_TRUE;
5711 if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5712 has_allocclass = B_TRUE;
5713 }
5714 }
5715
5716 /* verify encryption params, if they were provided */
5717 if (dcp != NULL) {
5718 error = spa_create_check_encryption_params(dcp, has_encryption);
5719 if (error != 0) {
5720 spa_deactivate(spa);
5721 spa_remove(spa);
5722 mutex_exit(&spa_namespace_lock);
5723 return (error);
5724 }
5725 }
5726 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5727 spa_deactivate(spa);
5728 spa_remove(spa);
5729 mutex_exit(&spa_namespace_lock);
5730 return (ENOTSUP);
5731 }
5732
5733 if (has_features || nvlist_lookup_uint64(props,
5734 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5735 version = SPA_VERSION;
5736 }
5737 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5738
5739 spa->spa_first_txg = txg;
5740 spa->spa_uberblock.ub_txg = txg - 1;
5741 spa->spa_uberblock.ub_version = version;
5742 spa->spa_ubsync = spa->spa_uberblock;
5743 spa->spa_load_state = SPA_LOAD_CREATE;
5744 spa->spa_removing_phys.sr_state = DSS_NONE;
5745 spa->spa_removing_phys.sr_removing_vdev = -1;
5746 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5747 spa->spa_indirect_vdevs_loaded = B_TRUE;
5748
5749 /*
5750 * Create "The Godfather" zio to hold all async IOs
5751 */
5752 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5753 KM_SLEEP);
5754 for (int i = 0; i < max_ncpus; i++) {
5755 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5756 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5757 ZIO_FLAG_GODFATHER);
5758 }
5759
5760 /*
5761 * Create the root vdev.
5762 */
5763 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5764
5765 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5766
5767 ASSERT(error != 0 || rvd != NULL);
5768 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5769
5770 if (error == 0 && !zfs_allocatable_devs(nvroot))
5771 error = SET_ERROR(EINVAL);
5772
5773 if (error == 0 &&
5774 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5775 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
5776 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
5777 /*
5778 * instantiate the metaslab groups (this will dirty the vdevs)
5779 * we can no longer error exit past this point
5780 */
5781 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5782 vdev_t *vd = rvd->vdev_child[c];
5783
5784 vdev_metaslab_set_size(vd);
5785 vdev_expand(vd, txg);
5786 }
5787 }
5788
5789 spa_config_exit(spa, SCL_ALL, FTAG);
5790
5791 if (error != 0) {
5792 spa_unload(spa);
5793 spa_deactivate(spa);
5794 spa_remove(spa);
5795 mutex_exit(&spa_namespace_lock);
5796 return (error);
5797 }
5798
5799 /*
5800 * Get the list of spares, if specified.
5801 */
5802 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5803 &spares, &nspares) == 0) {
5804 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
5805 KM_SLEEP) == 0);
5806 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5807 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5808 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5809 spa_load_spares(spa);
5810 spa_config_exit(spa, SCL_ALL, FTAG);
5811 spa->spa_spares.sav_sync = B_TRUE;
5812 }
5813
5814 /*
5815 * Get the list of level 2 cache devices, if specified.
5816 */
5817 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5818 &l2cache, &nl2cache) == 0) {
5819 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5820 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5821 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5822 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5823 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5824 spa_load_l2cache(spa);
5825 spa_config_exit(spa, SCL_ALL, FTAG);
5826 spa->spa_l2cache.sav_sync = B_TRUE;
5827 }
5828
5829 spa->spa_is_initializing = B_TRUE;
5830 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5831 spa->spa_is_initializing = B_FALSE;
5832
5833 /*
5834 * Create DDTs (dedup tables).
5835 */
5836 ddt_create(spa);
5837
5838 spa_update_dspace(spa);
5839
5840 tx = dmu_tx_create_assigned(dp, txg);
5841
5842 /*
5843 * Create the pool's history object.
5844 */
5845 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
5846 spa_history_create_obj(spa, tx);
5847
5848 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5849 spa_history_log_version(spa, "create", tx);
5850
5851 /*
5852 * Create the pool config object.
5853 */
5854 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5855 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5856 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5857
5858 if (zap_add(spa->spa_meta_objset,
5859 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5860 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5861 cmn_err(CE_PANIC, "failed to add pool config");
5862 }
5863
5864 if (zap_add(spa->spa_meta_objset,
5865 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5866 sizeof (uint64_t), 1, &version, tx) != 0) {
5867 cmn_err(CE_PANIC, "failed to add pool version");
5868 }
5869
5870 /* Newly created pools with the right version are always deflated. */
5871 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5872 spa->spa_deflate = TRUE;
5873 if (zap_add(spa->spa_meta_objset,
5874 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5875 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5876 cmn_err(CE_PANIC, "failed to add deflate");
5877 }
5878 }
5879
5880 /*
5881 * Create the deferred-free bpobj. Turn off compression
5882 * because sync-to-convergence takes longer if the blocksize
5883 * keeps changing.
5884 */
5885 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5886 dmu_object_set_compress(spa->spa_meta_objset, obj,
5887 ZIO_COMPRESS_OFF, tx);
5888 if (zap_add(spa->spa_meta_objset,
5889 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5890 sizeof (uint64_t), 1, &obj, tx) != 0) {
5891 cmn_err(CE_PANIC, "failed to add bpobj");
5892 }
5893 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5894 spa->spa_meta_objset, obj));
5895
5896 /*
5897 * Generate some random noise for salted checksums to operate on.
5898 */
5899 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5900 sizeof (spa->spa_cksum_salt.zcs_bytes));
5901
5902 /*
5903 * Set pool properties.
5904 */
5905 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5906 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5907 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5908 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5909 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5910 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
5911
5912 if (props != NULL) {
5913 spa_configfile_set(spa, props, B_FALSE);
5914 spa_sync_props(props, tx);
5915 }
5916
5917 for (int i = 0; i < ndraid; i++)
5918 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
5919
5920 dmu_tx_commit(tx);
5921
5922 spa->spa_sync_on = B_TRUE;
5923 txg_sync_start(dp);
5924 mmp_thread_start(spa);
5925 txg_wait_synced(dp, txg);
5926
5927 spa_spawn_aux_threads(spa);
5928
5929 spa_write_cachefile(spa, B_FALSE, B_TRUE);
5930
5931 /*
5932 * Don't count references from objsets that are already closed
5933 * and are making their way through the eviction process.
5934 */
5935 spa_evicting_os_wait(spa);
5936 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
5937 spa->spa_load_state = SPA_LOAD_NONE;
5938
5939 mutex_exit(&spa_namespace_lock);
5940
5941 return (0);
5942 }
5943
5944 /*
5945 * Import a non-root pool into the system.
5946 */
5947 int
5948 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5949 {
5950 spa_t *spa;
5951 char *altroot = NULL;
5952 spa_load_state_t state = SPA_LOAD_IMPORT;
5953 zpool_load_policy_t policy;
5954 spa_mode_t mode = spa_mode_global;
5955 uint64_t readonly = B_FALSE;
5956 int error;
5957 nvlist_t *nvroot;
5958 nvlist_t **spares, **l2cache;
5959 uint_t nspares, nl2cache;
5960
5961 /*
5962 * If a pool with this name exists, return failure.
5963 */
5964 mutex_enter(&spa_namespace_lock);
5965 if (spa_lookup(pool) != NULL) {
5966 mutex_exit(&spa_namespace_lock);
5967 return (SET_ERROR(EEXIST));
5968 }
5969
5970 /*
5971 * Create and initialize the spa structure.
5972 */
5973 (void) nvlist_lookup_string(props,
5974 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5975 (void) nvlist_lookup_uint64(props,
5976 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5977 if (readonly)
5978 mode = SPA_MODE_READ;
5979 spa = spa_add(pool, config, altroot);
5980 spa->spa_import_flags = flags;
5981
5982 /*
5983 * Verbatim import - Take a pool and insert it into the namespace
5984 * as if it had been loaded at boot.
5985 */
5986 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5987 if (props != NULL)
5988 spa_configfile_set(spa, props, B_FALSE);
5989
5990 spa_write_cachefile(spa, B_FALSE, B_TRUE);
5991 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5992 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5993 mutex_exit(&spa_namespace_lock);
5994 return (0);
5995 }
5996
5997 spa_activate(spa, mode);
5998
5999 /*
6000 * Don't start async tasks until we know everything is healthy.
6001 */
6002 spa_async_suspend(spa);
6003
6004 zpool_get_load_policy(config, &policy);
6005 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6006 state = SPA_LOAD_RECOVER;
6007
6008 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6009
6010 if (state != SPA_LOAD_RECOVER) {
6011 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6012 zfs_dbgmsg("spa_import: importing %s", pool);
6013 } else {
6014 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6015 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6016 }
6017 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6018
6019 /*
6020 * Propagate anything learned while loading the pool and pass it
6021 * back to caller (i.e. rewind info, missing devices, etc).
6022 */
6023 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6024 spa->spa_load_info) == 0);
6025
6026 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6027 /*
6028 * Toss any existing sparelist, as it doesn't have any validity
6029 * anymore, and conflicts with spa_has_spare().
6030 */
6031 if (spa->spa_spares.sav_config) {
6032 nvlist_free(spa->spa_spares.sav_config);
6033 spa->spa_spares.sav_config = NULL;
6034 spa_load_spares(spa);
6035 }
6036 if (spa->spa_l2cache.sav_config) {
6037 nvlist_free(spa->spa_l2cache.sav_config);
6038 spa->spa_l2cache.sav_config = NULL;
6039 spa_load_l2cache(spa);
6040 }
6041
6042 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
6043 &nvroot) == 0);
6044 spa_config_exit(spa, SCL_ALL, FTAG);
6045
6046 if (props != NULL)
6047 spa_configfile_set(spa, props, B_FALSE);
6048
6049 if (error != 0 || (props && spa_writeable(spa) &&
6050 (error = spa_prop_set(spa, props)))) {
6051 spa_unload(spa);
6052 spa_deactivate(spa);
6053 spa_remove(spa);
6054 mutex_exit(&spa_namespace_lock);
6055 return (error);
6056 }
6057
6058 spa_async_resume(spa);
6059
6060 /*
6061 * Override any spares and level 2 cache devices as specified by
6062 * the user, as these may have correct device names/devids, etc.
6063 */
6064 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6065 &spares, &nspares) == 0) {
6066 if (spa->spa_spares.sav_config)
6067 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
6068 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
6069 else
6070 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
6071 NV_UNIQUE_NAME, KM_SLEEP) == 0);
6072 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
6073 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
6074 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6075 spa_load_spares(spa);
6076 spa_config_exit(spa, SCL_ALL, FTAG);
6077 spa->spa_spares.sav_sync = B_TRUE;
6078 }
6079 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6080 &l2cache, &nl2cache) == 0) {
6081 if (spa->spa_l2cache.sav_config)
6082 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
6083 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
6084 else
6085 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
6086 NV_UNIQUE_NAME, KM_SLEEP) == 0);
6087 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6088 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
6089 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6090 spa_load_l2cache(spa);
6091 spa_config_exit(spa, SCL_ALL, FTAG);
6092 spa->spa_l2cache.sav_sync = B_TRUE;
6093 }
6094
6095 /*
6096 * Check for any removed devices.
6097 */
6098 if (spa->spa_autoreplace) {
6099 spa_aux_check_removed(&spa->spa_spares);
6100 spa_aux_check_removed(&spa->spa_l2cache);
6101 }
6102
6103 if (spa_writeable(spa)) {
6104 /*
6105 * Update the config cache to include the newly-imported pool.
6106 */
6107 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6108 }
6109
6110 /*
6111 * It's possible that the pool was expanded while it was exported.
6112 * We kick off an async task to handle this for us.
6113 */
6114 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6115
6116 spa_history_log_version(spa, "import", NULL);
6117
6118 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6119
6120 mutex_exit(&spa_namespace_lock);
6121
6122 zvol_create_minors_recursive(pool);
6123
6124 return (0);
6125 }
6126
6127 nvlist_t *
6128 spa_tryimport(nvlist_t *tryconfig)
6129 {
6130 nvlist_t *config = NULL;
6131 char *poolname, *cachefile;
6132 spa_t *spa;
6133 uint64_t state;
6134 int error;
6135 zpool_load_policy_t policy;
6136
6137 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6138 return (NULL);
6139
6140 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6141 return (NULL);
6142
6143 /*
6144 * Create and initialize the spa structure.
6145 */
6146 mutex_enter(&spa_namespace_lock);
6147 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6148 spa_activate(spa, SPA_MODE_READ);
6149
6150 /*
6151 * Rewind pool if a max txg was provided.
6152 */
6153 zpool_get_load_policy(spa->spa_config, &policy);
6154 if (policy.zlp_txg != UINT64_MAX) {
6155 spa->spa_load_max_txg = policy.zlp_txg;
6156 spa->spa_extreme_rewind = B_TRUE;
6157 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6158 poolname, (longlong_t)policy.zlp_txg);
6159 } else {
6160 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6161 }
6162
6163 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6164 == 0) {
6165 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6166 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6167 } else {
6168 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6169 }
6170
6171 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6172
6173 /*
6174 * If 'tryconfig' was at least parsable, return the current config.
6175 */
6176 if (spa->spa_root_vdev != NULL) {
6177 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6178 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
6179 poolname) == 0);
6180 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
6181 state) == 0);
6182 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6183 spa->spa_uberblock.ub_timestamp) == 0);
6184 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6185 spa->spa_load_info) == 0);
6186 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6187 spa->spa_errata) == 0);
6188
6189 /*
6190 * If the bootfs property exists on this pool then we
6191 * copy it out so that external consumers can tell which
6192 * pools are bootable.
6193 */
6194 if ((!error || error == EEXIST) && spa->spa_bootfs) {
6195 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6196
6197 /*
6198 * We have to play games with the name since the
6199 * pool was opened as TRYIMPORT_NAME.
6200 */
6201 if (dsl_dsobj_to_dsname(spa_name(spa),
6202 spa->spa_bootfs, tmpname) == 0) {
6203 char *cp;
6204 char *dsname;
6205
6206 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6207
6208 cp = strchr(tmpname, '/');
6209 if (cp == NULL) {
6210 (void) strlcpy(dsname, tmpname,
6211 MAXPATHLEN);
6212 } else {
6213 (void) snprintf(dsname, MAXPATHLEN,
6214 "%s/%s", poolname, ++cp);
6215 }
6216 VERIFY(nvlist_add_string(config,
6217 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
6218 kmem_free(dsname, MAXPATHLEN);
6219 }
6220 kmem_free(tmpname, MAXPATHLEN);
6221 }
6222
6223 /*
6224 * Add the list of hot spares and level 2 cache devices.
6225 */
6226 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6227 spa_add_spares(spa, config);
6228 spa_add_l2cache(spa, config);
6229 spa_config_exit(spa, SCL_CONFIG, FTAG);
6230 }
6231
6232 spa_unload(spa);
6233 spa_deactivate(spa);
6234 spa_remove(spa);
6235 mutex_exit(&spa_namespace_lock);
6236
6237 return (config);
6238 }
6239
6240 /*
6241 * Pool export/destroy
6242 *
6243 * The act of destroying or exporting a pool is very simple. We make sure there
6244 * is no more pending I/O and any references to the pool are gone. Then, we
6245 * update the pool state and sync all the labels to disk, removing the
6246 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6247 * we don't sync the labels or remove the configuration cache.
6248 */
6249 static int
6250 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6251 boolean_t force, boolean_t hardforce)
6252 {
6253 int error;
6254 spa_t *spa;
6255
6256 if (oldconfig)
6257 *oldconfig = NULL;
6258
6259 if (!(spa_mode_global & SPA_MODE_WRITE))
6260 return (SET_ERROR(EROFS));
6261
6262 mutex_enter(&spa_namespace_lock);
6263 if ((spa = spa_lookup(pool)) == NULL) {
6264 mutex_exit(&spa_namespace_lock);
6265 return (SET_ERROR(ENOENT));
6266 }
6267
6268 if (spa->spa_is_exporting) {
6269 /* the pool is being exported by another thread */
6270 mutex_exit(&spa_namespace_lock);
6271 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6272 }
6273 spa->spa_is_exporting = B_TRUE;
6274
6275 /*
6276 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6277 * reacquire the namespace lock, and see if we can export.
6278 */
6279 spa_open_ref(spa, FTAG);
6280 mutex_exit(&spa_namespace_lock);
6281 spa_async_suspend(spa);
6282 if (spa->spa_zvol_taskq) {
6283 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6284 taskq_wait(spa->spa_zvol_taskq);
6285 }
6286 mutex_enter(&spa_namespace_lock);
6287 spa_close(spa, FTAG);
6288
6289 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6290 goto export_spa;
6291 /*
6292 * The pool will be in core if it's openable, in which case we can
6293 * modify its state. Objsets may be open only because they're dirty,
6294 * so we have to force it to sync before checking spa_refcnt.
6295 */
6296 if (spa->spa_sync_on) {
6297 txg_wait_synced(spa->spa_dsl_pool, 0);
6298 spa_evicting_os_wait(spa);
6299 }
6300
6301 /*
6302 * A pool cannot be exported or destroyed if there are active
6303 * references. If we are resetting a pool, allow references by
6304 * fault injection handlers.
6305 */
6306 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6307 error = SET_ERROR(EBUSY);
6308 goto fail;
6309 }
6310
6311 if (spa->spa_sync_on) {
6312 /*
6313 * A pool cannot be exported if it has an active shared spare.
6314 * This is to prevent other pools stealing the active spare
6315 * from an exported pool. At user's own will, such pool can
6316 * be forcedly exported.
6317 */
6318 if (!force && new_state == POOL_STATE_EXPORTED &&
6319 spa_has_active_shared_spare(spa)) {
6320 error = SET_ERROR(EXDEV);
6321 goto fail;
6322 }
6323
6324 /*
6325 * We're about to export or destroy this pool. Make sure
6326 * we stop all initialization and trim activity here before
6327 * we set the spa_final_txg. This will ensure that all
6328 * dirty data resulting from the initialization is
6329 * committed to disk before we unload the pool.
6330 */
6331 if (spa->spa_root_vdev != NULL) {
6332 vdev_t *rvd = spa->spa_root_vdev;
6333 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6334 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6335 vdev_autotrim_stop_all(spa);
6336 vdev_rebuild_stop_all(spa);
6337 }
6338
6339 /*
6340 * We want this to be reflected on every label,
6341 * so mark them all dirty. spa_unload() will do the
6342 * final sync that pushes these changes out.
6343 */
6344 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6345 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6346 spa->spa_state = new_state;
6347 spa->spa_final_txg = spa_last_synced_txg(spa) +
6348 TXG_DEFER_SIZE + 1;
6349 vdev_config_dirty(spa->spa_root_vdev);
6350 spa_config_exit(spa, SCL_ALL, FTAG);
6351 }
6352 }
6353
6354 export_spa:
6355 if (new_state == POOL_STATE_DESTROYED)
6356 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6357 else if (new_state == POOL_STATE_EXPORTED)
6358 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6359
6360 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6361 spa_unload(spa);
6362 spa_deactivate(spa);
6363 }
6364
6365 if (oldconfig && spa->spa_config)
6366 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
6367
6368 if (new_state != POOL_STATE_UNINITIALIZED) {
6369 if (!hardforce)
6370 spa_write_cachefile(spa, B_TRUE, B_TRUE);
6371 spa_remove(spa);
6372 } else {
6373 /*
6374 * If spa_remove() is not called for this spa_t and
6375 * there is any possibility that it can be reused,
6376 * we make sure to reset the exporting flag.
6377 */
6378 spa->spa_is_exporting = B_FALSE;
6379 }
6380
6381 mutex_exit(&spa_namespace_lock);
6382 return (0);
6383
6384 fail:
6385 spa->spa_is_exporting = B_FALSE;
6386 spa_async_resume(spa);
6387 mutex_exit(&spa_namespace_lock);
6388 return (error);
6389 }
6390
6391 /*
6392 * Destroy a storage pool.
6393 */
6394 int
6395 spa_destroy(const char *pool)
6396 {
6397 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6398 B_FALSE, B_FALSE));
6399 }
6400
6401 /*
6402 * Export a storage pool.
6403 */
6404 int
6405 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6406 boolean_t hardforce)
6407 {
6408 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6409 force, hardforce));
6410 }
6411
6412 /*
6413 * Similar to spa_export(), this unloads the spa_t without actually removing it
6414 * from the namespace in any way.
6415 */
6416 int
6417 spa_reset(const char *pool)
6418 {
6419 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6420 B_FALSE, B_FALSE));
6421 }
6422
6423 /*
6424 * ==========================================================================
6425 * Device manipulation
6426 * ==========================================================================
6427 */
6428
6429 /*
6430 * This is called as a synctask to increment the draid feature flag
6431 */
6432 static void
6433 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
6434 {
6435 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6436 int draid = (int)(uintptr_t)arg;
6437
6438 for (int c = 0; c < draid; c++)
6439 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6440 }
6441
6442 /*
6443 * Add a device to a storage pool.
6444 */
6445 int
6446 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6447 {
6448 uint64_t txg, ndraid = 0;
6449 int error;
6450 vdev_t *rvd = spa->spa_root_vdev;
6451 vdev_t *vd, *tvd;
6452 nvlist_t **spares, **l2cache;
6453 uint_t nspares, nl2cache;
6454
6455 ASSERT(spa_writeable(spa));
6456
6457 txg = spa_vdev_enter(spa);
6458
6459 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6460 VDEV_ALLOC_ADD)) != 0)
6461 return (spa_vdev_exit(spa, NULL, txg, error));
6462
6463 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
6464
6465 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6466 &nspares) != 0)
6467 nspares = 0;
6468
6469 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6470 &nl2cache) != 0)
6471 nl2cache = 0;
6472
6473 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6474 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6475
6476 if (vd->vdev_children != 0 &&
6477 (error = vdev_create(vd, txg, B_FALSE)) != 0) {
6478 return (spa_vdev_exit(spa, vd, txg, error));
6479 }
6480
6481 /*
6482 * The virtual dRAID spares must be added after vdev tree is created
6483 * and the vdev guids are generated. The guid of their assoicated
6484 * dRAID is stored in the config and used when opening the spare.
6485 */
6486 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
6487 rvd->vdev_children)) == 0) {
6488 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
6489 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
6490 nspares = 0;
6491 } else {
6492 return (spa_vdev_exit(spa, vd, txg, error));
6493 }
6494
6495 /*
6496 * We must validate the spares and l2cache devices after checking the
6497 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
6498 */
6499 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6500 return (spa_vdev_exit(spa, vd, txg, error));
6501
6502 /*
6503 * If we are in the middle of a device removal, we can only add
6504 * devices which match the existing devices in the pool.
6505 * If we are in the middle of a removal, or have some indirect
6506 * vdevs, we can not add raidz or dRAID top levels.
6507 */
6508 if (spa->spa_vdev_removal != NULL ||
6509 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6510 for (int c = 0; c < vd->vdev_children; c++) {
6511 tvd = vd->vdev_child[c];
6512 if (spa->spa_vdev_removal != NULL &&
6513 tvd->vdev_ashift != spa->spa_max_ashift) {
6514 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6515 }
6516 /* Fail if top level vdev is raidz or a dRAID */
6517 if (vdev_get_nparity(tvd) != 0)
6518 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6519
6520 /*
6521 * Need the top level mirror to be
6522 * a mirror of leaf vdevs only
6523 */
6524 if (tvd->vdev_ops == &vdev_mirror_ops) {
6525 for (uint64_t cid = 0;
6526 cid < tvd->vdev_children; cid++) {
6527 vdev_t *cvd = tvd->vdev_child[cid];
6528 if (!cvd->vdev_ops->vdev_op_leaf) {
6529 return (spa_vdev_exit(spa, vd,
6530 txg, EINVAL));
6531 }
6532 }
6533 }
6534 }
6535 }
6536
6537 for (int c = 0; c < vd->vdev_children; c++) {
6538 tvd = vd->vdev_child[c];
6539 vdev_remove_child(vd, tvd);
6540 tvd->vdev_id = rvd->vdev_children;
6541 vdev_add_child(rvd, tvd);
6542 vdev_config_dirty(tvd);
6543 }
6544
6545 if (nspares != 0) {
6546 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6547 ZPOOL_CONFIG_SPARES);
6548 spa_load_spares(spa);
6549 spa->spa_spares.sav_sync = B_TRUE;
6550 }
6551
6552 if (nl2cache != 0) {
6553 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6554 ZPOOL_CONFIG_L2CACHE);
6555 spa_load_l2cache(spa);
6556 spa->spa_l2cache.sav_sync = B_TRUE;
6557 }
6558
6559 /*
6560 * We can't increment a feature while holding spa_vdev so we
6561 * have to do it in a synctask.
6562 */
6563 if (ndraid != 0) {
6564 dmu_tx_t *tx;
6565
6566 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
6567 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
6568 (void *)(uintptr_t)ndraid, tx);
6569 dmu_tx_commit(tx);
6570 }
6571
6572 /*
6573 * We have to be careful when adding new vdevs to an existing pool.
6574 * If other threads start allocating from these vdevs before we
6575 * sync the config cache, and we lose power, then upon reboot we may
6576 * fail to open the pool because there are DVAs that the config cache
6577 * can't translate. Therefore, we first add the vdevs without
6578 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6579 * and then let spa_config_update() initialize the new metaslabs.
6580 *
6581 * spa_load() checks for added-but-not-initialized vdevs, so that
6582 * if we lose power at any point in this sequence, the remaining
6583 * steps will be completed the next time we load the pool.
6584 */
6585 (void) spa_vdev_exit(spa, vd, txg, 0);
6586
6587 mutex_enter(&spa_namespace_lock);
6588 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6589 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6590 mutex_exit(&spa_namespace_lock);
6591
6592 return (0);
6593 }
6594
6595 /*
6596 * Attach a device to a mirror. The arguments are the path to any device
6597 * in the mirror, and the nvroot for the new device. If the path specifies
6598 * a device that is not mirrored, we automatically insert the mirror vdev.
6599 *
6600 * If 'replacing' is specified, the new device is intended to replace the
6601 * existing device; in this case the two devices are made into their own
6602 * mirror using the 'replacing' vdev, which is functionally identical to
6603 * the mirror vdev (it actually reuses all the same ops) but has a few
6604 * extra rules: you can't attach to it after it's been created, and upon
6605 * completion of resilvering, the first disk (the one being replaced)
6606 * is automatically detached.
6607 *
6608 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6609 * should be performed instead of traditional healing reconstruction. From
6610 * an administrators perspective these are both resilver operations.
6611 */
6612 int
6613 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6614 int rebuild)
6615 {
6616 uint64_t txg, dtl_max_txg;
6617 vdev_t *rvd = spa->spa_root_vdev;
6618 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6619 vdev_ops_t *pvops;
6620 char *oldvdpath, *newvdpath;
6621 int newvd_isspare;
6622 int error;
6623
6624 ASSERT(spa_writeable(spa));
6625
6626 txg = spa_vdev_enter(spa);
6627
6628 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6629
6630 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6631 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6632 error = (spa_has_checkpoint(spa)) ?
6633 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6634 return (spa_vdev_exit(spa, NULL, txg, error));
6635 }
6636
6637 if (rebuild) {
6638 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6639 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6640
6641 if (dsl_scan_resilvering(spa_get_dsl(spa)))
6642 return (spa_vdev_exit(spa, NULL, txg,
6643 ZFS_ERR_RESILVER_IN_PROGRESS));
6644 } else {
6645 if (vdev_rebuild_active(rvd))
6646 return (spa_vdev_exit(spa, NULL, txg,
6647 ZFS_ERR_REBUILD_IN_PROGRESS));
6648 }
6649
6650 if (spa->spa_vdev_removal != NULL)
6651 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6652
6653 if (oldvd == NULL)
6654 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6655
6656 if (!oldvd->vdev_ops->vdev_op_leaf)
6657 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6658
6659 pvd = oldvd->vdev_parent;
6660
6661 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6662 VDEV_ALLOC_ATTACH)) != 0)
6663 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6664
6665 if (newrootvd->vdev_children != 1)
6666 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6667
6668 newvd = newrootvd->vdev_child[0];
6669
6670 if (!newvd->vdev_ops->vdev_op_leaf)
6671 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6672
6673 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6674 return (spa_vdev_exit(spa, newrootvd, txg, error));
6675
6676 /*
6677 * Spares can't replace logs
6678 */
6679 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6680 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6681
6682 /*
6683 * A dRAID spare can only replace a child of its parent dRAID vdev.
6684 */
6685 if (newvd->vdev_ops == &vdev_draid_spare_ops &&
6686 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
6687 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6688 }
6689
6690 if (rebuild) {
6691 /*
6692 * For rebuilds, the top vdev must support reconstruction
6693 * using only space maps. This means the only allowable
6694 * vdevs types are the root vdev, a mirror, or dRAID.
6695 */
6696 tvd = pvd;
6697 if (pvd->vdev_top != NULL)
6698 tvd = pvd->vdev_top;
6699
6700 if (tvd->vdev_ops != &vdev_mirror_ops &&
6701 tvd->vdev_ops != &vdev_root_ops &&
6702 tvd->vdev_ops != &vdev_draid_ops) {
6703 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6704 }
6705 }
6706
6707 if (!replacing) {
6708 /*
6709 * For attach, the only allowable parent is a mirror or the root
6710 * vdev.
6711 */
6712 if (pvd->vdev_ops != &vdev_mirror_ops &&
6713 pvd->vdev_ops != &vdev_root_ops)
6714 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6715
6716 pvops = &vdev_mirror_ops;
6717 } else {
6718 /*
6719 * Active hot spares can only be replaced by inactive hot
6720 * spares.
6721 */
6722 if (pvd->vdev_ops == &vdev_spare_ops &&
6723 oldvd->vdev_isspare &&
6724 !spa_has_spare(spa, newvd->vdev_guid))
6725 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6726
6727 /*
6728 * If the source is a hot spare, and the parent isn't already a
6729 * spare, then we want to create a new hot spare. Otherwise, we
6730 * want to create a replacing vdev. The user is not allowed to
6731 * attach to a spared vdev child unless the 'isspare' state is
6732 * the same (spare replaces spare, non-spare replaces
6733 * non-spare).
6734 */
6735 if (pvd->vdev_ops == &vdev_replacing_ops &&
6736 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6737 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6738 } else if (pvd->vdev_ops == &vdev_spare_ops &&
6739 newvd->vdev_isspare != oldvd->vdev_isspare) {
6740 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6741 }
6742
6743 if (newvd->vdev_isspare)
6744 pvops = &vdev_spare_ops;
6745 else
6746 pvops = &vdev_replacing_ops;
6747 }
6748
6749 /*
6750 * Make sure the new device is big enough.
6751 */
6752 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6753 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6754
6755 /*
6756 * The new device cannot have a higher alignment requirement
6757 * than the top-level vdev.
6758 */
6759 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6760 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6761
6762 /*
6763 * If this is an in-place replacement, update oldvd's path and devid
6764 * to make it distinguishable from newvd, and unopenable from now on.
6765 */
6766 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6767 spa_strfree(oldvd->vdev_path);
6768 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6769 KM_SLEEP);
6770 (void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
6771 "%s/%s", newvd->vdev_path, "old");
6772 if (oldvd->vdev_devid != NULL) {
6773 spa_strfree(oldvd->vdev_devid);
6774 oldvd->vdev_devid = NULL;
6775 }
6776 }
6777
6778 /*
6779 * If the parent is not a mirror, or if we're replacing, insert the new
6780 * mirror/replacing/spare vdev above oldvd.
6781 */
6782 if (pvd->vdev_ops != pvops)
6783 pvd = vdev_add_parent(oldvd, pvops);
6784
6785 ASSERT(pvd->vdev_top->vdev_parent == rvd);
6786 ASSERT(pvd->vdev_ops == pvops);
6787 ASSERT(oldvd->vdev_parent == pvd);
6788
6789 /*
6790 * Extract the new device from its root and add it to pvd.
6791 */
6792 vdev_remove_child(newrootvd, newvd);
6793 newvd->vdev_id = pvd->vdev_children;
6794 newvd->vdev_crtxg = oldvd->vdev_crtxg;
6795 vdev_add_child(pvd, newvd);
6796
6797 /*
6798 * Reevaluate the parent vdev state.
6799 */
6800 vdev_propagate_state(pvd);
6801
6802 tvd = newvd->vdev_top;
6803 ASSERT(pvd->vdev_top == tvd);
6804 ASSERT(tvd->vdev_parent == rvd);
6805
6806 vdev_config_dirty(tvd);
6807
6808 /*
6809 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6810 * for any dmu_sync-ed blocks. It will propagate upward when
6811 * spa_vdev_exit() calls vdev_dtl_reassess().
6812 */
6813 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6814
6815 vdev_dtl_dirty(newvd, DTL_MISSING,
6816 TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
6817
6818 if (newvd->vdev_isspare) {
6819 spa_spare_activate(newvd);
6820 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6821 }
6822
6823 oldvdpath = spa_strdup(oldvd->vdev_path);
6824 newvdpath = spa_strdup(newvd->vdev_path);
6825 newvd_isspare = newvd->vdev_isspare;
6826
6827 /*
6828 * Mark newvd's DTL dirty in this txg.
6829 */
6830 vdev_dirty(tvd, VDD_DTL, newvd, txg);
6831
6832 /*
6833 * Schedule the resilver or rebuild to restart in the future. We do
6834 * this to ensure that dmu_sync-ed blocks have been stitched into the
6835 * respective datasets.
6836 */
6837 if (rebuild) {
6838 newvd->vdev_rebuild_txg = txg;
6839
6840 vdev_rebuild(tvd);
6841 } else {
6842 newvd->vdev_resilver_txg = txg;
6843
6844 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6845 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
6846 vdev_defer_resilver(newvd);
6847 } else {
6848 dsl_scan_restart_resilver(spa->spa_dsl_pool,
6849 dtl_max_txg);
6850 }
6851 }
6852
6853 if (spa->spa_bootfs)
6854 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6855
6856 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6857
6858 /*
6859 * Commit the config
6860 */
6861 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6862
6863 spa_history_log_internal(spa, "vdev attach", NULL,
6864 "%s vdev=%s %s vdev=%s",
6865 replacing && newvd_isspare ? "spare in" :
6866 replacing ? "replace" : "attach", newvdpath,
6867 replacing ? "for" : "to", oldvdpath);
6868
6869 spa_strfree(oldvdpath);
6870 spa_strfree(newvdpath);
6871
6872 return (0);
6873 }
6874
6875 /*
6876 * Detach a device from a mirror or replacing vdev.
6877 *
6878 * If 'replace_done' is specified, only detach if the parent
6879 * is a replacing vdev.
6880 */
6881 int
6882 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6883 {
6884 uint64_t txg;
6885 int error;
6886 vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
6887 vdev_t *vd, *pvd, *cvd, *tvd;
6888 boolean_t unspare = B_FALSE;
6889 uint64_t unspare_guid = 0;
6890 char *vdpath;
6891
6892 ASSERT(spa_writeable(spa));
6893
6894 txg = spa_vdev_detach_enter(spa, guid);
6895
6896 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6897
6898 /*
6899 * Besides being called directly from the userland through the
6900 * ioctl interface, spa_vdev_detach() can be potentially called
6901 * at the end of spa_vdev_resilver_done().
6902 *
6903 * In the regular case, when we have a checkpoint this shouldn't
6904 * happen as we never empty the DTLs of a vdev during the scrub
6905 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6906 * should never get here when we have a checkpoint.
6907 *
6908 * That said, even in a case when we checkpoint the pool exactly
6909 * as spa_vdev_resilver_done() calls this function everything
6910 * should be fine as the resilver will return right away.
6911 */
6912 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6913 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6914 error = (spa_has_checkpoint(spa)) ?
6915 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6916 return (spa_vdev_exit(spa, NULL, txg, error));
6917 }
6918
6919 if (vd == NULL)
6920 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6921
6922 if (!vd->vdev_ops->vdev_op_leaf)
6923 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6924
6925 pvd = vd->vdev_parent;
6926
6927 /*
6928 * If the parent/child relationship is not as expected, don't do it.
6929 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6930 * vdev that's replacing B with C. The user's intent in replacing
6931 * is to go from M(A,B) to M(A,C). If the user decides to cancel
6932 * the replace by detaching C, the expected behavior is to end up
6933 * M(A,B). But suppose that right after deciding to detach C,
6934 * the replacement of B completes. We would have M(A,C), and then
6935 * ask to detach C, which would leave us with just A -- not what
6936 * the user wanted. To prevent this, we make sure that the
6937 * parent/child relationship hasn't changed -- in this example,
6938 * that C's parent is still the replacing vdev R.
6939 */
6940 if (pvd->vdev_guid != pguid && pguid != 0)
6941 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6942
6943 /*
6944 * Only 'replacing' or 'spare' vdevs can be replaced.
6945 */
6946 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
6947 pvd->vdev_ops != &vdev_spare_ops)
6948 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6949
6950 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
6951 spa_version(spa) >= SPA_VERSION_SPARES);
6952
6953 /*
6954 * Only mirror, replacing, and spare vdevs support detach.
6955 */
6956 if (pvd->vdev_ops != &vdev_replacing_ops &&
6957 pvd->vdev_ops != &vdev_mirror_ops &&
6958 pvd->vdev_ops != &vdev_spare_ops)
6959 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6960
6961 /*
6962 * If this device has the only valid copy of some data,
6963 * we cannot safely detach it.
6964 */
6965 if (vdev_dtl_required(vd))
6966 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6967
6968 ASSERT(pvd->vdev_children >= 2);
6969
6970 /*
6971 * If we are detaching the second disk from a replacing vdev, then
6972 * check to see if we changed the original vdev's path to have "/old"
6973 * at the end in spa_vdev_attach(). If so, undo that change now.
6974 */
6975 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
6976 vd->vdev_path != NULL) {
6977 size_t len = strlen(vd->vdev_path);
6978
6979 for (int c = 0; c < pvd->vdev_children; c++) {
6980 cvd = pvd->vdev_child[c];
6981
6982 if (cvd == vd || cvd->vdev_path == NULL)
6983 continue;
6984
6985 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
6986 strcmp(cvd->vdev_path + len, "/old") == 0) {
6987 spa_strfree(cvd->vdev_path);
6988 cvd->vdev_path = spa_strdup(vd->vdev_path);
6989 break;
6990 }
6991 }
6992 }
6993
6994 /*
6995 * If we are detaching the original disk from a normal spare, then it
6996 * implies that the spare should become a real disk, and be removed
6997 * from the active spare list for the pool. dRAID spares on the
6998 * other hand are coupled to the pool and thus should never be removed
6999 * from the spares list.
7000 */
7001 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7002 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7003
7004 if (last_cvd->vdev_isspare &&
7005 last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7006 unspare = B_TRUE;
7007 }
7008 }
7009
7010 /*
7011 * Erase the disk labels so the disk can be used for other things.
7012 * This must be done after all other error cases are handled,
7013 * but before we disembowel vd (so we can still do I/O to it).
7014 * But if we can't do it, don't treat the error as fatal --
7015 * it may be that the unwritability of the disk is the reason
7016 * it's being detached!
7017 */
7018 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7019
7020 /*
7021 * Remove vd from its parent and compact the parent's children.
7022 */
7023 vdev_remove_child(pvd, vd);
7024 vdev_compact_children(pvd);
7025
7026 /*
7027 * Remember one of the remaining children so we can get tvd below.
7028 */
7029 cvd = pvd->vdev_child[pvd->vdev_children - 1];
7030
7031 /*
7032 * If we need to remove the remaining child from the list of hot spares,
7033 * do it now, marking the vdev as no longer a spare in the process.
7034 * We must do this before vdev_remove_parent(), because that can
7035 * change the GUID if it creates a new toplevel GUID. For a similar
7036 * reason, we must remove the spare now, in the same txg as the detach;
7037 * otherwise someone could attach a new sibling, change the GUID, and
7038 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7039 */
7040 if (unspare) {
7041 ASSERT(cvd->vdev_isspare);
7042 spa_spare_remove(cvd);
7043 unspare_guid = cvd->vdev_guid;
7044 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7045 cvd->vdev_unspare = B_TRUE;
7046 }
7047
7048 /*
7049 * If the parent mirror/replacing vdev only has one child,
7050 * the parent is no longer needed. Remove it from the tree.
7051 */
7052 if (pvd->vdev_children == 1) {
7053 if (pvd->vdev_ops == &vdev_spare_ops)
7054 cvd->vdev_unspare = B_FALSE;
7055 vdev_remove_parent(cvd);
7056 }
7057
7058 /*
7059 * We don't set tvd until now because the parent we just removed
7060 * may have been the previous top-level vdev.
7061 */
7062 tvd = cvd->vdev_top;
7063 ASSERT(tvd->vdev_parent == rvd);
7064
7065 /*
7066 * Reevaluate the parent vdev state.
7067 */
7068 vdev_propagate_state(cvd);
7069
7070 /*
7071 * If the 'autoexpand' property is set on the pool then automatically
7072 * try to expand the size of the pool. For example if the device we
7073 * just detached was smaller than the others, it may be possible to
7074 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7075 * first so that we can obtain the updated sizes of the leaf vdevs.
7076 */
7077 if (spa->spa_autoexpand) {
7078 vdev_reopen(tvd);
7079 vdev_expand(tvd, txg);
7080 }
7081
7082 vdev_config_dirty(tvd);
7083
7084 /*
7085 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
7086 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7087 * But first make sure we're not on any *other* txg's DTL list, to
7088 * prevent vd from being accessed after it's freed.
7089 */
7090 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7091 for (int t = 0; t < TXG_SIZE; t++)
7092 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7093 vd->vdev_detached = B_TRUE;
7094 vdev_dirty(tvd, VDD_DTL, vd, txg);
7095
7096 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7097 spa_notify_waiters(spa);
7098
7099 /* hang on to the spa before we release the lock */
7100 spa_open_ref(spa, FTAG);
7101
7102 error = spa_vdev_exit(spa, vd, txg, 0);
7103
7104 spa_history_log_internal(spa, "detach", NULL,
7105 "vdev=%s", vdpath);
7106 spa_strfree(vdpath);
7107
7108 /*
7109 * If this was the removal of the original device in a hot spare vdev,
7110 * then we want to go through and remove the device from the hot spare
7111 * list of every other pool.
7112 */
7113 if (unspare) {
7114 spa_t *altspa = NULL;
7115
7116 mutex_enter(&spa_namespace_lock);
7117 while ((altspa = spa_next(altspa)) != NULL) {
7118 if (altspa->spa_state != POOL_STATE_ACTIVE ||
7119 altspa == spa)
7120 continue;
7121
7122 spa_open_ref(altspa, FTAG);
7123 mutex_exit(&spa_namespace_lock);
7124 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7125 mutex_enter(&spa_namespace_lock);
7126 spa_close(altspa, FTAG);
7127 }
7128 mutex_exit(&spa_namespace_lock);
7129
7130 /* search the rest of the vdevs for spares to remove */
7131 spa_vdev_resilver_done(spa);
7132 }
7133
7134 /* all done with the spa; OK to release */
7135 mutex_enter(&spa_namespace_lock);
7136 spa_close(spa, FTAG);
7137 mutex_exit(&spa_namespace_lock);
7138
7139 return (error);
7140 }
7141
7142 static int
7143 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7144 list_t *vd_list)
7145 {
7146 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7147
7148 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7149
7150 /* Look up vdev and ensure it's a leaf. */
7151 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7152 if (vd == NULL || vd->vdev_detached) {
7153 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7154 return (SET_ERROR(ENODEV));
7155 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7156 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7157 return (SET_ERROR(EINVAL));
7158 } else if (!vdev_writeable(vd)) {
7159 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7160 return (SET_ERROR(EROFS));
7161 }
7162 mutex_enter(&vd->vdev_initialize_lock);
7163 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7164
7165 /*
7166 * When we activate an initialize action we check to see
7167 * if the vdev_initialize_thread is NULL. We do this instead
7168 * of using the vdev_initialize_state since there might be
7169 * a previous initialization process which has completed but
7170 * the thread is not exited.
7171 */
7172 if (cmd_type == POOL_INITIALIZE_START &&
7173 (vd->vdev_initialize_thread != NULL ||
7174 vd->vdev_top->vdev_removing)) {
7175 mutex_exit(&vd->vdev_initialize_lock);
7176 return (SET_ERROR(EBUSY));
7177 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7178 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7179 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7180 mutex_exit(&vd->vdev_initialize_lock);
7181 return (SET_ERROR(ESRCH));
7182 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7183 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7184 mutex_exit(&vd->vdev_initialize_lock);
7185 return (SET_ERROR(ESRCH));
7186 }
7187
7188 switch (cmd_type) {
7189 case POOL_INITIALIZE_START:
7190 vdev_initialize(vd);
7191 break;
7192 case POOL_INITIALIZE_CANCEL:
7193 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7194 break;
7195 case POOL_INITIALIZE_SUSPEND:
7196 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7197 break;
7198 default:
7199 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7200 }
7201 mutex_exit(&vd->vdev_initialize_lock);
7202
7203 return (0);
7204 }
7205
7206 int
7207 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7208 nvlist_t *vdev_errlist)
7209 {
7210 int total_errors = 0;
7211 list_t vd_list;
7212
7213 list_create(&vd_list, sizeof (vdev_t),
7214 offsetof(vdev_t, vdev_initialize_node));
7215
7216 /*
7217 * We hold the namespace lock through the whole function
7218 * to prevent any changes to the pool while we're starting or
7219 * stopping initialization. The config and state locks are held so that
7220 * we can properly assess the vdev state before we commit to
7221 * the initializing operation.
7222 */
7223 mutex_enter(&spa_namespace_lock);
7224
7225 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7226 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7227 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7228
7229 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7230 &vd_list);
7231 if (error != 0) {
7232 char guid_as_str[MAXNAMELEN];
7233
7234 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7235 "%llu", (unsigned long long)vdev_guid);
7236 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7237 total_errors++;
7238 }
7239 }
7240
7241 /* Wait for all initialize threads to stop. */
7242 vdev_initialize_stop_wait(spa, &vd_list);
7243
7244 /* Sync out the initializing state */
7245 txg_wait_synced(spa->spa_dsl_pool, 0);
7246 mutex_exit(&spa_namespace_lock);
7247
7248 list_destroy(&vd_list);
7249
7250 return (total_errors);
7251 }
7252
7253 static int
7254 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7255 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7256 {
7257 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7258
7259 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7260
7261 /* Look up vdev and ensure it's a leaf. */
7262 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7263 if (vd == NULL || vd->vdev_detached) {
7264 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7265 return (SET_ERROR(ENODEV));
7266 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7267 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7268 return (SET_ERROR(EINVAL));
7269 } else if (!vdev_writeable(vd)) {
7270 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7271 return (SET_ERROR(EROFS));
7272 } else if (!vd->vdev_has_trim) {
7273 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7274 return (SET_ERROR(EOPNOTSUPP));
7275 } else if (secure && !vd->vdev_has_securetrim) {
7276 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7277 return (SET_ERROR(EOPNOTSUPP));
7278 }
7279 mutex_enter(&vd->vdev_trim_lock);
7280 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7281
7282 /*
7283 * When we activate a TRIM action we check to see if the
7284 * vdev_trim_thread is NULL. We do this instead of using the
7285 * vdev_trim_state since there might be a previous TRIM process
7286 * which has completed but the thread is not exited.
7287 */
7288 if (cmd_type == POOL_TRIM_START &&
7289 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7290 mutex_exit(&vd->vdev_trim_lock);
7291 return (SET_ERROR(EBUSY));
7292 } else if (cmd_type == POOL_TRIM_CANCEL &&
7293 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7294 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7295 mutex_exit(&vd->vdev_trim_lock);
7296 return (SET_ERROR(ESRCH));
7297 } else if (cmd_type == POOL_TRIM_SUSPEND &&
7298 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7299 mutex_exit(&vd->vdev_trim_lock);
7300 return (SET_ERROR(ESRCH));
7301 }
7302
7303 switch (cmd_type) {
7304 case POOL_TRIM_START:
7305 vdev_trim(vd, rate, partial, secure);
7306 break;
7307 case POOL_TRIM_CANCEL:
7308 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7309 break;
7310 case POOL_TRIM_SUSPEND:
7311 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7312 break;
7313 default:
7314 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7315 }
7316 mutex_exit(&vd->vdev_trim_lock);
7317
7318 return (0);
7319 }
7320
7321 /*
7322 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7323 * TRIM threads for each child vdev. These threads pass over all of the free
7324 * space in the vdev's metaslabs and issues TRIM commands for that space.
7325 */
7326 int
7327 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7328 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7329 {
7330 int total_errors = 0;
7331 list_t vd_list;
7332
7333 list_create(&vd_list, sizeof (vdev_t),
7334 offsetof(vdev_t, vdev_trim_node));
7335
7336 /*
7337 * We hold the namespace lock through the whole function
7338 * to prevent any changes to the pool while we're starting or
7339 * stopping TRIM. The config and state locks are held so that
7340 * we can properly assess the vdev state before we commit to
7341 * the TRIM operation.
7342 */
7343 mutex_enter(&spa_namespace_lock);
7344
7345 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7346 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7347 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7348
7349 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7350 rate, partial, secure, &vd_list);
7351 if (error != 0) {
7352 char guid_as_str[MAXNAMELEN];
7353
7354 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7355 "%llu", (unsigned long long)vdev_guid);
7356 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7357 total_errors++;
7358 }
7359 }
7360
7361 /* Wait for all TRIM threads to stop. */
7362 vdev_trim_stop_wait(spa, &vd_list);
7363
7364 /* Sync out the TRIM state */
7365 txg_wait_synced(spa->spa_dsl_pool, 0);
7366 mutex_exit(&spa_namespace_lock);
7367
7368 list_destroy(&vd_list);
7369
7370 return (total_errors);
7371 }
7372
7373 /*
7374 * Split a set of devices from their mirrors, and create a new pool from them.
7375 */
7376 int
7377 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
7378 nvlist_t *props, boolean_t exp)
7379 {
7380 int error = 0;
7381 uint64_t txg, *glist;
7382 spa_t *newspa;
7383 uint_t c, children, lastlog;
7384 nvlist_t **child, *nvl, *tmp;
7385 dmu_tx_t *tx;
7386 char *altroot = NULL;
7387 vdev_t *rvd, **vml = NULL; /* vdev modify list */
7388 boolean_t activate_slog;
7389
7390 ASSERT(spa_writeable(spa));
7391
7392 txg = spa_vdev_enter(spa);
7393
7394 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7395 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7396 error = (spa_has_checkpoint(spa)) ?
7397 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7398 return (spa_vdev_exit(spa, NULL, txg, error));
7399 }
7400
7401 /* clear the log and flush everything up to now */
7402 activate_slog = spa_passivate_log(spa);
7403 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7404 error = spa_reset_logs(spa);
7405 txg = spa_vdev_config_enter(spa);
7406
7407 if (activate_slog)
7408 spa_activate_log(spa);
7409
7410 if (error != 0)
7411 return (spa_vdev_exit(spa, NULL, txg, error));
7412
7413 /* check new spa name before going any further */
7414 if (spa_lookup(newname) != NULL)
7415 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7416
7417 /*
7418 * scan through all the children to ensure they're all mirrors
7419 */
7420 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7421 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7422 &children) != 0)
7423 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7424
7425 /* first, check to ensure we've got the right child count */
7426 rvd = spa->spa_root_vdev;
7427 lastlog = 0;
7428 for (c = 0; c < rvd->vdev_children; c++) {
7429 vdev_t *vd = rvd->vdev_child[c];
7430
7431 /* don't count the holes & logs as children */
7432 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7433 !vdev_is_concrete(vd))) {
7434 if (lastlog == 0)
7435 lastlog = c;
7436 continue;
7437 }
7438
7439 lastlog = 0;
7440 }
7441 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7442 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7443
7444 /* next, ensure no spare or cache devices are part of the split */
7445 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7446 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7447 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7448
7449 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7450 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7451
7452 /* then, loop over each vdev and validate it */
7453 for (c = 0; c < children; c++) {
7454 uint64_t is_hole = 0;
7455
7456 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7457 &is_hole);
7458
7459 if (is_hole != 0) {
7460 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7461 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7462 continue;
7463 } else {
7464 error = SET_ERROR(EINVAL);
7465 break;
7466 }
7467 }
7468
7469 /* deal with indirect vdevs */
7470 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7471 &vdev_indirect_ops)
7472 continue;
7473
7474 /* which disk is going to be split? */
7475 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7476 &glist[c]) != 0) {
7477 error = SET_ERROR(EINVAL);
7478 break;
7479 }
7480
7481 /* look it up in the spa */
7482 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7483 if (vml[c] == NULL) {
7484 error = SET_ERROR(ENODEV);
7485 break;
7486 }
7487
7488 /* make sure there's nothing stopping the split */
7489 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7490 vml[c]->vdev_islog ||
7491 !vdev_is_concrete(vml[c]) ||
7492 vml[c]->vdev_isspare ||
7493 vml[c]->vdev_isl2cache ||
7494 !vdev_writeable(vml[c]) ||
7495 vml[c]->vdev_children != 0 ||
7496 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7497 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7498 error = SET_ERROR(EINVAL);
7499 break;
7500 }
7501
7502 if (vdev_dtl_required(vml[c]) ||
7503 vdev_resilver_needed(vml[c], NULL, NULL)) {
7504 error = SET_ERROR(EBUSY);
7505 break;
7506 }
7507
7508 /* we need certain info from the top level */
7509 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7510 vml[c]->vdev_top->vdev_ms_array) == 0);
7511 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7512 vml[c]->vdev_top->vdev_ms_shift) == 0);
7513 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7514 vml[c]->vdev_top->vdev_asize) == 0);
7515 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7516 vml[c]->vdev_top->vdev_ashift) == 0);
7517
7518 /* transfer per-vdev ZAPs */
7519 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7520 VERIFY0(nvlist_add_uint64(child[c],
7521 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7522
7523 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7524 VERIFY0(nvlist_add_uint64(child[c],
7525 ZPOOL_CONFIG_VDEV_TOP_ZAP,
7526 vml[c]->vdev_parent->vdev_top_zap));
7527 }
7528
7529 if (error != 0) {
7530 kmem_free(vml, children * sizeof (vdev_t *));
7531 kmem_free(glist, children * sizeof (uint64_t));
7532 return (spa_vdev_exit(spa, NULL, txg, error));
7533 }
7534
7535 /* stop writers from using the disks */
7536 for (c = 0; c < children; c++) {
7537 if (vml[c] != NULL)
7538 vml[c]->vdev_offline = B_TRUE;
7539 }
7540 vdev_reopen(spa->spa_root_vdev);
7541
7542 /*
7543 * Temporarily record the splitting vdevs in the spa config. This
7544 * will disappear once the config is regenerated.
7545 */
7546 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7547 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
7548 glist, children) == 0);
7549 kmem_free(glist, children * sizeof (uint64_t));
7550
7551 mutex_enter(&spa->spa_props_lock);
7552 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
7553 nvl) == 0);
7554 mutex_exit(&spa->spa_props_lock);
7555 spa->spa_config_splitting = nvl;
7556 vdev_config_dirty(spa->spa_root_vdev);
7557
7558 /* configure and create the new pool */
7559 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
7560 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7561 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
7562 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7563 spa_version(spa)) == 0);
7564 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
7565 spa->spa_config_txg) == 0);
7566 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7567 spa_generate_guid(NULL)) == 0);
7568 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7569 (void) nvlist_lookup_string(props,
7570 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7571
7572 /* add the new pool to the namespace */
7573 newspa = spa_add(newname, config, altroot);
7574 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7575 newspa->spa_config_txg = spa->spa_config_txg;
7576 spa_set_log_state(newspa, SPA_LOG_CLEAR);
7577
7578 /* release the spa config lock, retaining the namespace lock */
7579 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7580
7581 if (zio_injection_enabled)
7582 zio_handle_panic_injection(spa, FTAG, 1);
7583
7584 spa_activate(newspa, spa_mode_global);
7585 spa_async_suspend(newspa);
7586
7587 /*
7588 * Temporarily stop the initializing and TRIM activity. We set the
7589 * state to ACTIVE so that we know to resume initializing or TRIM
7590 * once the split has completed.
7591 */
7592 list_t vd_initialize_list;
7593 list_create(&vd_initialize_list, sizeof (vdev_t),
7594 offsetof(vdev_t, vdev_initialize_node));
7595
7596 list_t vd_trim_list;
7597 list_create(&vd_trim_list, sizeof (vdev_t),
7598 offsetof(vdev_t, vdev_trim_node));
7599
7600 for (c = 0; c < children; c++) {
7601 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7602 mutex_enter(&vml[c]->vdev_initialize_lock);
7603 vdev_initialize_stop(vml[c],
7604 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7605 mutex_exit(&vml[c]->vdev_initialize_lock);
7606
7607 mutex_enter(&vml[c]->vdev_trim_lock);
7608 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7609 mutex_exit(&vml[c]->vdev_trim_lock);
7610 }
7611 }
7612
7613 vdev_initialize_stop_wait(spa, &vd_initialize_list);
7614 vdev_trim_stop_wait(spa, &vd_trim_list);
7615
7616 list_destroy(&vd_initialize_list);
7617 list_destroy(&vd_trim_list);
7618
7619 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7620 newspa->spa_is_splitting = B_TRUE;
7621
7622 /* create the new pool from the disks of the original pool */
7623 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7624 if (error)
7625 goto out;
7626
7627 /* if that worked, generate a real config for the new pool */
7628 if (newspa->spa_root_vdev != NULL) {
7629 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
7630 NV_UNIQUE_NAME, KM_SLEEP) == 0);
7631 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
7632 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
7633 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7634 B_TRUE));
7635 }
7636
7637 /* set the props */
7638 if (props != NULL) {
7639 spa_configfile_set(newspa, props, B_FALSE);
7640 error = spa_prop_set(newspa, props);
7641 if (error)
7642 goto out;
7643 }
7644
7645 /* flush everything */
7646 txg = spa_vdev_config_enter(newspa);
7647 vdev_config_dirty(newspa->spa_root_vdev);
7648 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7649
7650 if (zio_injection_enabled)
7651 zio_handle_panic_injection(spa, FTAG, 2);
7652
7653 spa_async_resume(newspa);
7654
7655 /* finally, update the original pool's config */
7656 txg = spa_vdev_config_enter(spa);
7657 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7658 error = dmu_tx_assign(tx, TXG_WAIT);
7659 if (error != 0)
7660 dmu_tx_abort(tx);
7661 for (c = 0; c < children; c++) {
7662 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7663 vdev_t *tvd = vml[c]->vdev_top;
7664
7665 /*
7666 * Need to be sure the detachable VDEV is not
7667 * on any *other* txg's DTL list to prevent it
7668 * from being accessed after it's freed.
7669 */
7670 for (int t = 0; t < TXG_SIZE; t++) {
7671 (void) txg_list_remove_this(
7672 &tvd->vdev_dtl_list, vml[c], t);
7673 }
7674
7675 vdev_split(vml[c]);
7676 if (error == 0)
7677 spa_history_log_internal(spa, "detach", tx,
7678 "vdev=%s", vml[c]->vdev_path);
7679
7680 vdev_free(vml[c]);
7681 }
7682 }
7683 spa->spa_avz_action = AVZ_ACTION_REBUILD;
7684 vdev_config_dirty(spa->spa_root_vdev);
7685 spa->spa_config_splitting = NULL;
7686 nvlist_free(nvl);
7687 if (error == 0)
7688 dmu_tx_commit(tx);
7689 (void) spa_vdev_exit(spa, NULL, txg, 0);
7690
7691 if (zio_injection_enabled)
7692 zio_handle_panic_injection(spa, FTAG, 3);
7693
7694 /* split is complete; log a history record */
7695 spa_history_log_internal(newspa, "split", NULL,
7696 "from pool %s", spa_name(spa));
7697
7698 newspa->spa_is_splitting = B_FALSE;
7699 kmem_free(vml, children * sizeof (vdev_t *));
7700
7701 /* if we're not going to mount the filesystems in userland, export */
7702 if (exp)
7703 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7704 B_FALSE, B_FALSE);
7705
7706 return (error);
7707
7708 out:
7709 spa_unload(newspa);
7710 spa_deactivate(newspa);
7711 spa_remove(newspa);
7712
7713 txg = spa_vdev_config_enter(spa);
7714
7715 /* re-online all offlined disks */
7716 for (c = 0; c < children; c++) {
7717 if (vml[c] != NULL)
7718 vml[c]->vdev_offline = B_FALSE;
7719 }
7720
7721 /* restart initializing or trimming disks as necessary */
7722 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7723 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7724 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7725
7726 vdev_reopen(spa->spa_root_vdev);
7727
7728 nvlist_free(spa->spa_config_splitting);
7729 spa->spa_config_splitting = NULL;
7730 (void) spa_vdev_exit(spa, NULL, txg, error);
7731
7732 kmem_free(vml, children * sizeof (vdev_t *));
7733 return (error);
7734 }
7735
7736 /*
7737 * Find any device that's done replacing, or a vdev marked 'unspare' that's
7738 * currently spared, so we can detach it.
7739 */
7740 static vdev_t *
7741 spa_vdev_resilver_done_hunt(vdev_t *vd)
7742 {
7743 vdev_t *newvd, *oldvd;
7744
7745 for (int c = 0; c < vd->vdev_children; c++) {
7746 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7747 if (oldvd != NULL)
7748 return (oldvd);
7749 }
7750
7751 /*
7752 * Check for a completed replacement. We always consider the first
7753 * vdev in the list to be the oldest vdev, and the last one to be
7754 * the newest (see spa_vdev_attach() for how that works). In
7755 * the case where the newest vdev is faulted, we will not automatically
7756 * remove it after a resilver completes. This is OK as it will require
7757 * user intervention to determine which disk the admin wishes to keep.
7758 */
7759 if (vd->vdev_ops == &vdev_replacing_ops) {
7760 ASSERT(vd->vdev_children > 1);
7761
7762 newvd = vd->vdev_child[vd->vdev_children - 1];
7763 oldvd = vd->vdev_child[0];
7764
7765 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7766 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7767 !vdev_dtl_required(oldvd))
7768 return (oldvd);
7769 }
7770
7771 /*
7772 * Check for a completed resilver with the 'unspare' flag set.
7773 * Also potentially update faulted state.
7774 */
7775 if (vd->vdev_ops == &vdev_spare_ops) {
7776 vdev_t *first = vd->vdev_child[0];
7777 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7778
7779 if (last->vdev_unspare) {
7780 oldvd = first;
7781 newvd = last;
7782 } else if (first->vdev_unspare) {
7783 oldvd = last;
7784 newvd = first;
7785 } else {
7786 oldvd = NULL;
7787 }
7788
7789 if (oldvd != NULL &&
7790 vdev_dtl_empty(newvd, DTL_MISSING) &&
7791 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7792 !vdev_dtl_required(oldvd))
7793 return (oldvd);
7794
7795 vdev_propagate_state(vd);
7796
7797 /*
7798 * If there are more than two spares attached to a disk,
7799 * and those spares are not required, then we want to
7800 * attempt to free them up now so that they can be used
7801 * by other pools. Once we're back down to a single
7802 * disk+spare, we stop removing them.
7803 */
7804 if (vd->vdev_children > 2) {
7805 newvd = vd->vdev_child[1];
7806
7807 if (newvd->vdev_isspare && last->vdev_isspare &&
7808 vdev_dtl_empty(last, DTL_MISSING) &&
7809 vdev_dtl_empty(last, DTL_OUTAGE) &&
7810 !vdev_dtl_required(newvd))
7811 return (newvd);
7812 }
7813 }
7814
7815 return (NULL);
7816 }
7817
7818 static void
7819 spa_vdev_resilver_done(spa_t *spa)
7820 {
7821 vdev_t *vd, *pvd, *ppvd;
7822 uint64_t guid, sguid, pguid, ppguid;
7823
7824 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7825
7826 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7827 pvd = vd->vdev_parent;
7828 ppvd = pvd->vdev_parent;
7829 guid = vd->vdev_guid;
7830 pguid = pvd->vdev_guid;
7831 ppguid = ppvd->vdev_guid;
7832 sguid = 0;
7833 /*
7834 * If we have just finished replacing a hot spared device, then
7835 * we need to detach the parent's first child (the original hot
7836 * spare) as well.
7837 */
7838 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7839 ppvd->vdev_children == 2) {
7840 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7841 sguid = ppvd->vdev_child[1]->vdev_guid;
7842 }
7843 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7844
7845 spa_config_exit(spa, SCL_ALL, FTAG);
7846 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7847 return;
7848 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7849 return;
7850 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7851 }
7852
7853 spa_config_exit(spa, SCL_ALL, FTAG);
7854
7855 /*
7856 * If a detach was not performed above replace waiters will not have
7857 * been notified. In which case we must do so now.
7858 */
7859 spa_notify_waiters(spa);
7860 }
7861
7862 /*
7863 * Update the stored path or FRU for this vdev.
7864 */
7865 static int
7866 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
7867 boolean_t ispath)
7868 {
7869 vdev_t *vd;
7870 boolean_t sync = B_FALSE;
7871
7872 ASSERT(spa_writeable(spa));
7873
7874 spa_vdev_state_enter(spa, SCL_ALL);
7875
7876 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
7877 return (spa_vdev_state_exit(spa, NULL, ENOENT));
7878
7879 if (!vd->vdev_ops->vdev_op_leaf)
7880 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
7881
7882 if (ispath) {
7883 if (strcmp(value, vd->vdev_path) != 0) {
7884 spa_strfree(vd->vdev_path);
7885 vd->vdev_path = spa_strdup(value);
7886 sync = B_TRUE;
7887 }
7888 } else {
7889 if (vd->vdev_fru == NULL) {
7890 vd->vdev_fru = spa_strdup(value);
7891 sync = B_TRUE;
7892 } else if (strcmp(value, vd->vdev_fru) != 0) {
7893 spa_strfree(vd->vdev_fru);
7894 vd->vdev_fru = spa_strdup(value);
7895 sync = B_TRUE;
7896 }
7897 }
7898
7899 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
7900 }
7901
7902 int
7903 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
7904 {
7905 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
7906 }
7907
7908 int
7909 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
7910 {
7911 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
7912 }
7913
7914 /*
7915 * ==========================================================================
7916 * SPA Scanning
7917 * ==========================================================================
7918 */
7919 int
7920 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
7921 {
7922 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7923
7924 if (dsl_scan_resilvering(spa->spa_dsl_pool))
7925 return (SET_ERROR(EBUSY));
7926
7927 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
7928 }
7929
7930 int
7931 spa_scan_stop(spa_t *spa)
7932 {
7933 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7934 if (dsl_scan_resilvering(spa->spa_dsl_pool))
7935 return (SET_ERROR(EBUSY));
7936 return (dsl_scan_cancel(spa->spa_dsl_pool));
7937 }
7938
7939 int
7940 spa_scan(spa_t *spa, pool_scan_func_t func)
7941 {
7942 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7943
7944 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
7945 return (SET_ERROR(ENOTSUP));
7946
7947 if (func == POOL_SCAN_RESILVER &&
7948 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
7949 return (SET_ERROR(ENOTSUP));
7950
7951 /*
7952 * If a resilver was requested, but there is no DTL on a
7953 * writeable leaf device, we have nothing to do.
7954 */
7955 if (func == POOL_SCAN_RESILVER &&
7956 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
7957 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
7958 return (0);
7959 }
7960
7961 return (dsl_scan(spa->spa_dsl_pool, func));
7962 }
7963
7964 /*
7965 * ==========================================================================
7966 * SPA async task processing
7967 * ==========================================================================
7968 */
7969
7970 static void
7971 spa_async_remove(spa_t *spa, vdev_t *vd)
7972 {
7973 if (vd->vdev_remove_wanted) {
7974 vd->vdev_remove_wanted = B_FALSE;
7975 vd->vdev_delayed_close = B_FALSE;
7976 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
7977
7978 /*
7979 * We want to clear the stats, but we don't want to do a full
7980 * vdev_clear() as that will cause us to throw away
7981 * degraded/faulted state as well as attempt to reopen the
7982 * device, all of which is a waste.
7983 */
7984 vd->vdev_stat.vs_read_errors = 0;
7985 vd->vdev_stat.vs_write_errors = 0;
7986 vd->vdev_stat.vs_checksum_errors = 0;
7987
7988 vdev_state_dirty(vd->vdev_top);
7989
7990 /* Tell userspace that the vdev is gone. */
7991 zfs_post_remove(spa, vd);
7992 }
7993
7994 for (int c = 0; c < vd->vdev_children; c++)
7995 spa_async_remove(spa, vd->vdev_child[c]);
7996 }
7997
7998 static void
7999 spa_async_probe(spa_t *spa, vdev_t *vd)
8000 {
8001 if (vd->vdev_probe_wanted) {
8002 vd->vdev_probe_wanted = B_FALSE;
8003 vdev_reopen(vd); /* vdev_open() does the actual probe */
8004 }
8005
8006 for (int c = 0; c < vd->vdev_children; c++)
8007 spa_async_probe(spa, vd->vdev_child[c]);
8008 }
8009
8010 static void
8011 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8012 {
8013 if (!spa->spa_autoexpand)
8014 return;
8015
8016 for (int c = 0; c < vd->vdev_children; c++) {
8017 vdev_t *cvd = vd->vdev_child[c];
8018 spa_async_autoexpand(spa, cvd);
8019 }
8020
8021 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8022 return;
8023
8024 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8025 }
8026
8027 static void
8028 spa_async_thread(void *arg)
8029 {
8030 spa_t *spa = (spa_t *)arg;
8031 dsl_pool_t *dp = spa->spa_dsl_pool;
8032 int tasks;
8033
8034 ASSERT(spa->spa_sync_on);
8035
8036 mutex_enter(&spa->spa_async_lock);
8037 tasks = spa->spa_async_tasks;
8038 spa->spa_async_tasks = 0;
8039 mutex_exit(&spa->spa_async_lock);
8040
8041 /*
8042 * See if the config needs to be updated.
8043 */
8044 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8045 uint64_t old_space, new_space;
8046
8047 mutex_enter(&spa_namespace_lock);
8048 old_space = metaslab_class_get_space(spa_normal_class(spa));
8049 old_space += metaslab_class_get_space(spa_special_class(spa));
8050 old_space += metaslab_class_get_space(spa_dedup_class(spa));
8051 old_space += metaslab_class_get_space(
8052 spa_embedded_log_class(spa));
8053
8054 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8055
8056 new_space = metaslab_class_get_space(spa_normal_class(spa));
8057 new_space += metaslab_class_get_space(spa_special_class(spa));
8058 new_space += metaslab_class_get_space(spa_dedup_class(spa));
8059 new_space += metaslab_class_get_space(
8060 spa_embedded_log_class(spa));
8061 mutex_exit(&spa_namespace_lock);
8062
8063 /*
8064 * If the pool grew as a result of the config update,
8065 * then log an internal history event.
8066 */
8067 if (new_space != old_space) {
8068 spa_history_log_internal(spa, "vdev online", NULL,
8069 "pool '%s' size: %llu(+%llu)",
8070 spa_name(spa), (u_longlong_t)new_space,
8071 (u_longlong_t)(new_space - old_space));
8072 }
8073 }
8074
8075 /*
8076 * See if any devices need to be marked REMOVED.
8077 */
8078 if (tasks & SPA_ASYNC_REMOVE) {
8079 spa_vdev_state_enter(spa, SCL_NONE);
8080 spa_async_remove(spa, spa->spa_root_vdev);
8081 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8082 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8083 for (int i = 0; i < spa->spa_spares.sav_count; i++)
8084 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8085 (void) spa_vdev_state_exit(spa, NULL, 0);
8086 }
8087
8088 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8089 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8090 spa_async_autoexpand(spa, spa->spa_root_vdev);
8091 spa_config_exit(spa, SCL_CONFIG, FTAG);
8092 }
8093
8094 /*
8095 * See if any devices need to be probed.
8096 */
8097 if (tasks & SPA_ASYNC_PROBE) {
8098 spa_vdev_state_enter(spa, SCL_NONE);
8099 spa_async_probe(spa, spa->spa_root_vdev);
8100 (void) spa_vdev_state_exit(spa, NULL, 0);
8101 }
8102
8103 /*
8104 * If any devices are done replacing, detach them.
8105 */
8106 if (tasks & SPA_ASYNC_RESILVER_DONE ||
8107 tasks & SPA_ASYNC_REBUILD_DONE) {
8108 spa_vdev_resilver_done(spa);
8109 }
8110
8111 /*
8112 * Kick off a resilver.
8113 */
8114 if (tasks & SPA_ASYNC_RESILVER &&
8115 !vdev_rebuild_active(spa->spa_root_vdev) &&
8116 (!dsl_scan_resilvering(dp) ||
8117 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8118 dsl_scan_restart_resilver(dp, 0);
8119
8120 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8121 mutex_enter(&spa_namespace_lock);
8122 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8123 vdev_initialize_restart(spa->spa_root_vdev);
8124 spa_config_exit(spa, SCL_CONFIG, FTAG);
8125 mutex_exit(&spa_namespace_lock);
8126 }
8127
8128 if (tasks & SPA_ASYNC_TRIM_RESTART) {
8129 mutex_enter(&spa_namespace_lock);
8130 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8131 vdev_trim_restart(spa->spa_root_vdev);
8132 spa_config_exit(spa, SCL_CONFIG, FTAG);
8133 mutex_exit(&spa_namespace_lock);
8134 }
8135
8136 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8137 mutex_enter(&spa_namespace_lock);
8138 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8139 vdev_autotrim_restart(spa);
8140 spa_config_exit(spa, SCL_CONFIG, FTAG);
8141 mutex_exit(&spa_namespace_lock);
8142 }
8143
8144 /*
8145 * Kick off L2 cache whole device TRIM.
8146 */
8147 if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8148 mutex_enter(&spa_namespace_lock);
8149 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8150 vdev_trim_l2arc(spa);
8151 spa_config_exit(spa, SCL_CONFIG, FTAG);
8152 mutex_exit(&spa_namespace_lock);
8153 }
8154
8155 /*
8156 * Kick off L2 cache rebuilding.
8157 */
8158 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8159 mutex_enter(&spa_namespace_lock);
8160 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8161 l2arc_spa_rebuild_start(spa);
8162 spa_config_exit(spa, SCL_L2ARC, FTAG);
8163 mutex_exit(&spa_namespace_lock);
8164 }
8165
8166 /*
8167 * Let the world know that we're done.
8168 */
8169 mutex_enter(&spa->spa_async_lock);
8170 spa->spa_async_thread = NULL;
8171 cv_broadcast(&spa->spa_async_cv);
8172 mutex_exit(&spa->spa_async_lock);
8173 thread_exit();
8174 }
8175
8176 void
8177 spa_async_suspend(spa_t *spa)
8178 {
8179 mutex_enter(&spa->spa_async_lock);
8180 spa->spa_async_suspended++;
8181 while (spa->spa_async_thread != NULL)
8182 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8183 mutex_exit(&spa->spa_async_lock);
8184
8185 spa_vdev_remove_suspend(spa);
8186
8187 zthr_t *condense_thread = spa->spa_condense_zthr;
8188 if (condense_thread != NULL)
8189 zthr_cancel(condense_thread);
8190
8191 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8192 if (discard_thread != NULL)
8193 zthr_cancel(discard_thread);
8194
8195 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8196 if (ll_delete_thread != NULL)
8197 zthr_cancel(ll_delete_thread);
8198
8199 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8200 if (ll_condense_thread != NULL)
8201 zthr_cancel(ll_condense_thread);
8202 }
8203
8204 void
8205 spa_async_resume(spa_t *spa)
8206 {
8207 mutex_enter(&spa->spa_async_lock);
8208 ASSERT(spa->spa_async_suspended != 0);
8209 spa->spa_async_suspended--;
8210 mutex_exit(&spa->spa_async_lock);
8211 spa_restart_removal(spa);
8212
8213 zthr_t *condense_thread = spa->spa_condense_zthr;
8214 if (condense_thread != NULL)
8215 zthr_resume(condense_thread);
8216
8217 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8218 if (discard_thread != NULL)
8219 zthr_resume(discard_thread);
8220
8221 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8222 if (ll_delete_thread != NULL)
8223 zthr_resume(ll_delete_thread);
8224
8225 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8226 if (ll_condense_thread != NULL)
8227 zthr_resume(ll_condense_thread);
8228 }
8229
8230 static boolean_t
8231 spa_async_tasks_pending(spa_t *spa)
8232 {
8233 uint_t non_config_tasks;
8234 uint_t config_task;
8235 boolean_t config_task_suspended;
8236
8237 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8238 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8239 if (spa->spa_ccw_fail_time == 0) {
8240 config_task_suspended = B_FALSE;
8241 } else {
8242 config_task_suspended =
8243 (gethrtime() - spa->spa_ccw_fail_time) <
8244 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8245 }
8246
8247 return (non_config_tasks || (config_task && !config_task_suspended));
8248 }
8249
8250 static void
8251 spa_async_dispatch(spa_t *spa)
8252 {
8253 mutex_enter(&spa->spa_async_lock);
8254 if (spa_async_tasks_pending(spa) &&
8255 !spa->spa_async_suspended &&
8256 spa->spa_async_thread == NULL)
8257 spa->spa_async_thread = thread_create(NULL, 0,
8258 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8259 mutex_exit(&spa->spa_async_lock);
8260 }
8261
8262 void
8263 spa_async_request(spa_t *spa, int task)
8264 {
8265 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8266 mutex_enter(&spa->spa_async_lock);
8267 spa->spa_async_tasks |= task;
8268 mutex_exit(&spa->spa_async_lock);
8269 }
8270
8271 int
8272 spa_async_tasks(spa_t *spa)
8273 {
8274 return (spa->spa_async_tasks);
8275 }
8276
8277 /*
8278 * ==========================================================================
8279 * SPA syncing routines
8280 * ==========================================================================
8281 */
8282
8283
8284 static int
8285 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8286 dmu_tx_t *tx)
8287 {
8288 bpobj_t *bpo = arg;
8289 bpobj_enqueue(bpo, bp, bp_freed, tx);
8290 return (0);
8291 }
8292
8293 int
8294 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8295 {
8296 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8297 }
8298
8299 int
8300 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8301 {
8302 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8303 }
8304
8305 static int
8306 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8307 {
8308 zio_t *pio = arg;
8309
8310 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8311 pio->io_flags));
8312 return (0);
8313 }
8314
8315 static int
8316 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8317 dmu_tx_t *tx)
8318 {
8319 ASSERT(!bp_freed);
8320 return (spa_free_sync_cb(arg, bp, tx));
8321 }
8322
8323 /*
8324 * Note: this simple function is not inlined to make it easier to dtrace the
8325 * amount of time spent syncing frees.
8326 */
8327 static void
8328 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8329 {
8330 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8331 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8332 VERIFY(zio_wait(zio) == 0);
8333 }
8334
8335 /*
8336 * Note: this simple function is not inlined to make it easier to dtrace the
8337 * amount of time spent syncing deferred frees.
8338 */
8339 static void
8340 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8341 {
8342 if (spa_sync_pass(spa) != 1)
8343 return;
8344
8345 /*
8346 * Note:
8347 * If the log space map feature is active, we stop deferring
8348 * frees to the next TXG and therefore running this function
8349 * would be considered a no-op as spa_deferred_bpobj should
8350 * not have any entries.
8351 *
8352 * That said we run this function anyway (instead of returning
8353 * immediately) for the edge-case scenario where we just
8354 * activated the log space map feature in this TXG but we have
8355 * deferred frees from the previous TXG.
8356 */
8357 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8358 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8359 bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8360 VERIFY0(zio_wait(zio));
8361 }
8362
8363 static void
8364 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8365 {
8366 char *packed = NULL;
8367 size_t bufsize;
8368 size_t nvsize = 0;
8369 dmu_buf_t *db;
8370
8371 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8372
8373 /*
8374 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8375 * information. This avoids the dmu_buf_will_dirty() path and
8376 * saves us a pre-read to get data we don't actually care about.
8377 */
8378 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8379 packed = vmem_alloc(bufsize, KM_SLEEP);
8380
8381 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8382 KM_SLEEP) == 0);
8383 bzero(packed + nvsize, bufsize - nvsize);
8384
8385 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8386
8387 vmem_free(packed, bufsize);
8388
8389 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8390 dmu_buf_will_dirty(db, tx);
8391 *(uint64_t *)db->db_data = nvsize;
8392 dmu_buf_rele(db, FTAG);
8393 }
8394
8395 static void
8396 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8397 const char *config, const char *entry)
8398 {
8399 nvlist_t *nvroot;
8400 nvlist_t **list;
8401 int i;
8402
8403 if (!sav->sav_sync)
8404 return;
8405
8406 /*
8407 * Update the MOS nvlist describing the list of available devices.
8408 * spa_validate_aux() will have already made sure this nvlist is
8409 * valid and the vdevs are labeled appropriately.
8410 */
8411 if (sav->sav_object == 0) {
8412 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8413 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8414 sizeof (uint64_t), tx);
8415 VERIFY(zap_update(spa->spa_meta_objset,
8416 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8417 &sav->sav_object, tx) == 0);
8418 }
8419
8420 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
8421 if (sav->sav_count == 0) {
8422 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
8423 } else {
8424 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8425 for (i = 0; i < sav->sav_count; i++)
8426 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8427 B_FALSE, VDEV_CONFIG_L2CACHE);
8428 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
8429 sav->sav_count) == 0);
8430 for (i = 0; i < sav->sav_count; i++)
8431 nvlist_free(list[i]);
8432 kmem_free(list, sav->sav_count * sizeof (void *));
8433 }
8434
8435 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8436 nvlist_free(nvroot);
8437
8438 sav->sav_sync = B_FALSE;
8439 }
8440
8441 /*
8442 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8443 * The all-vdev ZAP must be empty.
8444 */
8445 static void
8446 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8447 {
8448 spa_t *spa = vd->vdev_spa;
8449
8450 if (vd->vdev_top_zap != 0) {
8451 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8452 vd->vdev_top_zap, tx));
8453 }
8454 if (vd->vdev_leaf_zap != 0) {
8455 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8456 vd->vdev_leaf_zap, tx));
8457 }
8458 for (uint64_t i = 0; i < vd->vdev_children; i++) {
8459 spa_avz_build(vd->vdev_child[i], avz, tx);
8460 }
8461 }
8462
8463 static void
8464 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8465 {
8466 nvlist_t *config;
8467
8468 /*
8469 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8470 * its config may not be dirty but we still need to build per-vdev ZAPs.
8471 * Similarly, if the pool is being assembled (e.g. after a split), we
8472 * need to rebuild the AVZ although the config may not be dirty.
8473 */
8474 if (list_is_empty(&spa->spa_config_dirty_list) &&
8475 spa->spa_avz_action == AVZ_ACTION_NONE)
8476 return;
8477
8478 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8479
8480 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8481 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8482 spa->spa_all_vdev_zaps != 0);
8483
8484 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8485 /* Make and build the new AVZ */
8486 uint64_t new_avz = zap_create(spa->spa_meta_objset,
8487 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8488 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8489
8490 /* Diff old AVZ with new one */
8491 zap_cursor_t zc;
8492 zap_attribute_t za;
8493
8494 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8495 spa->spa_all_vdev_zaps);
8496 zap_cursor_retrieve(&zc, &za) == 0;
8497 zap_cursor_advance(&zc)) {
8498 uint64_t vdzap = za.za_first_integer;
8499 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8500 vdzap) == ENOENT) {
8501 /*
8502 * ZAP is listed in old AVZ but not in new one;
8503 * destroy it
8504 */
8505 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8506 tx));
8507 }
8508 }
8509
8510 zap_cursor_fini(&zc);
8511
8512 /* Destroy the old AVZ */
8513 VERIFY0(zap_destroy(spa->spa_meta_objset,
8514 spa->spa_all_vdev_zaps, tx));
8515
8516 /* Replace the old AVZ in the dir obj with the new one */
8517 VERIFY0(zap_update(spa->spa_meta_objset,
8518 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8519 sizeof (new_avz), 1, &new_avz, tx));
8520
8521 spa->spa_all_vdev_zaps = new_avz;
8522 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8523 zap_cursor_t zc;
8524 zap_attribute_t za;
8525
8526 /* Walk through the AVZ and destroy all listed ZAPs */
8527 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8528 spa->spa_all_vdev_zaps);
8529 zap_cursor_retrieve(&zc, &za) == 0;
8530 zap_cursor_advance(&zc)) {
8531 uint64_t zap = za.za_first_integer;
8532 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8533 }
8534
8535 zap_cursor_fini(&zc);
8536
8537 /* Destroy and unlink the AVZ itself */
8538 VERIFY0(zap_destroy(spa->spa_meta_objset,
8539 spa->spa_all_vdev_zaps, tx));
8540 VERIFY0(zap_remove(spa->spa_meta_objset,
8541 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8542 spa->spa_all_vdev_zaps = 0;
8543 }
8544
8545 if (spa->spa_all_vdev_zaps == 0) {
8546 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8547 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8548 DMU_POOL_VDEV_ZAP_MAP, tx);
8549 }
8550 spa->spa_avz_action = AVZ_ACTION_NONE;
8551
8552 /* Create ZAPs for vdevs that don't have them. */
8553 vdev_construct_zaps(spa->spa_root_vdev, tx);
8554
8555 config = spa_config_generate(spa, spa->spa_root_vdev,
8556 dmu_tx_get_txg(tx), B_FALSE);
8557
8558 /*
8559 * If we're upgrading the spa version then make sure that
8560 * the config object gets updated with the correct version.
8561 */
8562 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8563 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8564 spa->spa_uberblock.ub_version);
8565
8566 spa_config_exit(spa, SCL_STATE, FTAG);
8567
8568 nvlist_free(spa->spa_config_syncing);
8569 spa->spa_config_syncing = config;
8570
8571 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8572 }
8573
8574 static void
8575 spa_sync_version(void *arg, dmu_tx_t *tx)
8576 {
8577 uint64_t *versionp = arg;
8578 uint64_t version = *versionp;
8579 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8580
8581 /*
8582 * Setting the version is special cased when first creating the pool.
8583 */
8584 ASSERT(tx->tx_txg != TXG_INITIAL);
8585
8586 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8587 ASSERT(version >= spa_version(spa));
8588
8589 spa->spa_uberblock.ub_version = version;
8590 vdev_config_dirty(spa->spa_root_vdev);
8591 spa_history_log_internal(spa, "set", tx, "version=%lld",
8592 (longlong_t)version);
8593 }
8594
8595 /*
8596 * Set zpool properties.
8597 */
8598 static void
8599 spa_sync_props(void *arg, dmu_tx_t *tx)
8600 {
8601 nvlist_t *nvp = arg;
8602 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8603 objset_t *mos = spa->spa_meta_objset;
8604 nvpair_t *elem = NULL;
8605
8606 mutex_enter(&spa->spa_props_lock);
8607
8608 while ((elem = nvlist_next_nvpair(nvp, elem))) {
8609 uint64_t intval;
8610 char *strval, *fname;
8611 zpool_prop_t prop;
8612 const char *propname;
8613 zprop_type_t proptype;
8614 spa_feature_t fid;
8615
8616 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8617 case ZPOOL_PROP_INVAL:
8618 /*
8619 * We checked this earlier in spa_prop_validate().
8620 */
8621 ASSERT(zpool_prop_feature(nvpair_name(elem)));
8622
8623 fname = strchr(nvpair_name(elem), '@') + 1;
8624 VERIFY0(zfeature_lookup_name(fname, &fid));
8625
8626 spa_feature_enable(spa, fid, tx);
8627 spa_history_log_internal(spa, "set", tx,
8628 "%s=enabled", nvpair_name(elem));
8629 break;
8630
8631 case ZPOOL_PROP_VERSION:
8632 intval = fnvpair_value_uint64(elem);
8633 /*
8634 * The version is synced separately before other
8635 * properties and should be correct by now.
8636 */
8637 ASSERT3U(spa_version(spa), >=, intval);
8638 break;
8639
8640 case ZPOOL_PROP_ALTROOT:
8641 /*
8642 * 'altroot' is a non-persistent property. It should
8643 * have been set temporarily at creation or import time.
8644 */
8645 ASSERT(spa->spa_root != NULL);
8646 break;
8647
8648 case ZPOOL_PROP_READONLY:
8649 case ZPOOL_PROP_CACHEFILE:
8650 /*
8651 * 'readonly' and 'cachefile' are also non-persistent
8652 * properties.
8653 */
8654 break;
8655 case ZPOOL_PROP_COMMENT:
8656 strval = fnvpair_value_string(elem);
8657 if (spa->spa_comment != NULL)
8658 spa_strfree(spa->spa_comment);
8659 spa->spa_comment = spa_strdup(strval);
8660 /*
8661 * We need to dirty the configuration on all the vdevs
8662 * so that their labels get updated. It's unnecessary
8663 * to do this for pool creation since the vdev's
8664 * configuration has already been dirtied.
8665 */
8666 if (tx->tx_txg != TXG_INITIAL)
8667 vdev_config_dirty(spa->spa_root_vdev);
8668 spa_history_log_internal(spa, "set", tx,
8669 "%s=%s", nvpair_name(elem), strval);
8670 break;
8671 default:
8672 /*
8673 * Set pool property values in the poolprops mos object.
8674 */
8675 if (spa->spa_pool_props_object == 0) {
8676 spa->spa_pool_props_object =
8677 zap_create_link(mos, DMU_OT_POOL_PROPS,
8678 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8679 tx);
8680 }
8681
8682 /* normalize the property name */
8683 propname = zpool_prop_to_name(prop);
8684 proptype = zpool_prop_get_type(prop);
8685
8686 if (nvpair_type(elem) == DATA_TYPE_STRING) {
8687 ASSERT(proptype == PROP_TYPE_STRING);
8688 strval = fnvpair_value_string(elem);
8689 VERIFY0(zap_update(mos,
8690 spa->spa_pool_props_object, propname,
8691 1, strlen(strval) + 1, strval, tx));
8692 spa_history_log_internal(spa, "set", tx,
8693 "%s=%s", nvpair_name(elem), strval);
8694 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8695 intval = fnvpair_value_uint64(elem);
8696
8697 if (proptype == PROP_TYPE_INDEX) {
8698 const char *unused;
8699 VERIFY0(zpool_prop_index_to_string(
8700 prop, intval, &unused));
8701 }
8702 VERIFY0(zap_update(mos,
8703 spa->spa_pool_props_object, propname,
8704 8, 1, &intval, tx));
8705 spa_history_log_internal(spa, "set", tx,
8706 "%s=%lld", nvpair_name(elem),
8707 (longlong_t)intval);
8708 } else {
8709 ASSERT(0); /* not allowed */
8710 }
8711
8712 switch (prop) {
8713 case ZPOOL_PROP_DELEGATION:
8714 spa->spa_delegation = intval;
8715 break;
8716 case ZPOOL_PROP_BOOTFS:
8717 spa->spa_bootfs = intval;
8718 break;
8719 case ZPOOL_PROP_FAILUREMODE:
8720 spa->spa_failmode = intval;
8721 break;
8722 case ZPOOL_PROP_AUTOTRIM:
8723 spa->spa_autotrim = intval;
8724 spa_async_request(spa,
8725 SPA_ASYNC_AUTOTRIM_RESTART);
8726 break;
8727 case ZPOOL_PROP_AUTOEXPAND:
8728 spa->spa_autoexpand = intval;
8729 if (tx->tx_txg != TXG_INITIAL)
8730 spa_async_request(spa,
8731 SPA_ASYNC_AUTOEXPAND);
8732 break;
8733 case ZPOOL_PROP_MULTIHOST:
8734 spa->spa_multihost = intval;
8735 break;
8736 default:
8737 break;
8738 }
8739 }
8740
8741 }
8742
8743 mutex_exit(&spa->spa_props_lock);
8744 }
8745
8746 /*
8747 * Perform one-time upgrade on-disk changes. spa_version() does not
8748 * reflect the new version this txg, so there must be no changes this
8749 * txg to anything that the upgrade code depends on after it executes.
8750 * Therefore this must be called after dsl_pool_sync() does the sync
8751 * tasks.
8752 */
8753 static void
8754 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8755 {
8756 if (spa_sync_pass(spa) != 1)
8757 return;
8758
8759 dsl_pool_t *dp = spa->spa_dsl_pool;
8760 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8761
8762 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8763 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8764 dsl_pool_create_origin(dp, tx);
8765
8766 /* Keeping the origin open increases spa_minref */
8767 spa->spa_minref += 3;
8768 }
8769
8770 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8771 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8772 dsl_pool_upgrade_clones(dp, tx);
8773 }
8774
8775 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8776 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8777 dsl_pool_upgrade_dir_clones(dp, tx);
8778
8779 /* Keeping the freedir open increases spa_minref */
8780 spa->spa_minref += 3;
8781 }
8782
8783 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8784 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8785 spa_feature_create_zap_objects(spa, tx);
8786 }
8787
8788 /*
8789 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8790 * when possibility to use lz4 compression for metadata was added
8791 * Old pools that have this feature enabled must be upgraded to have
8792 * this feature active
8793 */
8794 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8795 boolean_t lz4_en = spa_feature_is_enabled(spa,
8796 SPA_FEATURE_LZ4_COMPRESS);
8797 boolean_t lz4_ac = spa_feature_is_active(spa,
8798 SPA_FEATURE_LZ4_COMPRESS);
8799
8800 if (lz4_en && !lz4_ac)
8801 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8802 }
8803
8804 /*
8805 * If we haven't written the salt, do so now. Note that the
8806 * feature may not be activated yet, but that's fine since
8807 * the presence of this ZAP entry is backwards compatible.
8808 */
8809 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8810 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8811 VERIFY0(zap_add(spa->spa_meta_objset,
8812 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8813 sizeof (spa->spa_cksum_salt.zcs_bytes),
8814 spa->spa_cksum_salt.zcs_bytes, tx));
8815 }
8816
8817 rrw_exit(&dp->dp_config_rwlock, FTAG);
8818 }
8819
8820 static void
8821 vdev_indirect_state_sync_verify(vdev_t *vd)
8822 {
8823 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
8824 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
8825
8826 if (vd->vdev_ops == &vdev_indirect_ops) {
8827 ASSERT(vim != NULL);
8828 ASSERT(vib != NULL);
8829 }
8830
8831 uint64_t obsolete_sm_object = 0;
8832 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
8833 if (obsolete_sm_object != 0) {
8834 ASSERT(vd->vdev_obsolete_sm != NULL);
8835 ASSERT(vd->vdev_removing ||
8836 vd->vdev_ops == &vdev_indirect_ops);
8837 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
8838 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
8839 ASSERT3U(obsolete_sm_object, ==,
8840 space_map_object(vd->vdev_obsolete_sm));
8841 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
8842 space_map_allocated(vd->vdev_obsolete_sm));
8843 }
8844 ASSERT(vd->vdev_obsolete_segments != NULL);
8845
8846 /*
8847 * Since frees / remaps to an indirect vdev can only
8848 * happen in syncing context, the obsolete segments
8849 * tree must be empty when we start syncing.
8850 */
8851 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
8852 }
8853
8854 /*
8855 * Set the top-level vdev's max queue depth. Evaluate each top-level's
8856 * async write queue depth in case it changed. The max queue depth will
8857 * not change in the middle of syncing out this txg.
8858 */
8859 static void
8860 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
8861 {
8862 ASSERT(spa_writeable(spa));
8863
8864 vdev_t *rvd = spa->spa_root_vdev;
8865 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
8866 zfs_vdev_queue_depth_pct / 100;
8867 metaslab_class_t *normal = spa_normal_class(spa);
8868 metaslab_class_t *special = spa_special_class(spa);
8869 metaslab_class_t *dedup = spa_dedup_class(spa);
8870
8871 uint64_t slots_per_allocator = 0;
8872 for (int c = 0; c < rvd->vdev_children; c++) {
8873 vdev_t *tvd = rvd->vdev_child[c];
8874
8875 metaslab_group_t *mg = tvd->vdev_mg;
8876 if (mg == NULL || !metaslab_group_initialized(mg))
8877 continue;
8878
8879 metaslab_class_t *mc = mg->mg_class;
8880 if (mc != normal && mc != special && mc != dedup)
8881 continue;
8882
8883 /*
8884 * It is safe to do a lock-free check here because only async
8885 * allocations look at mg_max_alloc_queue_depth, and async
8886 * allocations all happen from spa_sync().
8887 */
8888 for (int i = 0; i < mg->mg_allocators; i++) {
8889 ASSERT0(zfs_refcount_count(
8890 &(mg->mg_allocator[i].mga_alloc_queue_depth)));
8891 }
8892 mg->mg_max_alloc_queue_depth = max_queue_depth;
8893
8894 for (int i = 0; i < mg->mg_allocators; i++) {
8895 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
8896 zfs_vdev_def_queue_depth;
8897 }
8898 slots_per_allocator += zfs_vdev_def_queue_depth;
8899 }
8900
8901 for (int i = 0; i < spa->spa_alloc_count; i++) {
8902 ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
8903 mca_alloc_slots));
8904 ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
8905 mca_alloc_slots));
8906 ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
8907 mca_alloc_slots));
8908 normal->mc_allocator[i].mca_alloc_max_slots =
8909 slots_per_allocator;
8910 special->mc_allocator[i].mca_alloc_max_slots =
8911 slots_per_allocator;
8912 dedup->mc_allocator[i].mca_alloc_max_slots =
8913 slots_per_allocator;
8914 }
8915 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8916 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8917 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8918 }
8919
8920 static void
8921 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
8922 {
8923 ASSERT(spa_writeable(spa));
8924
8925 vdev_t *rvd = spa->spa_root_vdev;
8926 for (int c = 0; c < rvd->vdev_children; c++) {
8927 vdev_t *vd = rvd->vdev_child[c];
8928 vdev_indirect_state_sync_verify(vd);
8929
8930 if (vdev_indirect_should_condense(vd)) {
8931 spa_condense_indirect_start_sync(vd, tx);
8932 break;
8933 }
8934 }
8935 }
8936
8937 static void
8938 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
8939 {
8940 objset_t *mos = spa->spa_meta_objset;
8941 dsl_pool_t *dp = spa->spa_dsl_pool;
8942 uint64_t txg = tx->tx_txg;
8943 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
8944
8945 do {
8946 int pass = ++spa->spa_sync_pass;
8947
8948 spa_sync_config_object(spa, tx);
8949 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
8950 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
8951 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
8952 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
8953 spa_errlog_sync(spa, txg);
8954 dsl_pool_sync(dp, txg);
8955
8956 if (pass < zfs_sync_pass_deferred_free ||
8957 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
8958 /*
8959 * If the log space map feature is active we don't
8960 * care about deferred frees and the deferred bpobj
8961 * as the log space map should effectively have the
8962 * same results (i.e. appending only to one object).
8963 */
8964 spa_sync_frees(spa, free_bpl, tx);
8965 } else {
8966 /*
8967 * We can not defer frees in pass 1, because
8968 * we sync the deferred frees later in pass 1.
8969 */
8970 ASSERT3U(pass, >, 1);
8971 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
8972 &spa->spa_deferred_bpobj, tx);
8973 }
8974
8975 ddt_sync(spa, txg);
8976 dsl_scan_sync(dp, tx);
8977 svr_sync(spa, tx);
8978 spa_sync_upgrades(spa, tx);
8979
8980 spa_flush_metaslabs(spa, tx);
8981
8982 vdev_t *vd = NULL;
8983 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
8984 != NULL)
8985 vdev_sync(vd, txg);
8986
8987 /*
8988 * Note: We need to check if the MOS is dirty because we could
8989 * have marked the MOS dirty without updating the uberblock
8990 * (e.g. if we have sync tasks but no dirty user data). We need
8991 * to check the uberblock's rootbp because it is updated if we
8992 * have synced out dirty data (though in this case the MOS will
8993 * most likely also be dirty due to second order effects, we
8994 * don't want to rely on that here).
8995 */
8996 if (pass == 1 &&
8997 spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
8998 !dmu_objset_is_dirty(mos, txg)) {
8999 /*
9000 * Nothing changed on the first pass, therefore this
9001 * TXG is a no-op. Avoid syncing deferred frees, so
9002 * that we can keep this TXG as a no-op.
9003 */
9004 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9005 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9006 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9007 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9008 break;
9009 }
9010
9011 spa_sync_deferred_frees(spa, tx);
9012 } while (dmu_objset_is_dirty(mos, txg));
9013 }
9014
9015 /*
9016 * Rewrite the vdev configuration (which includes the uberblock) to
9017 * commit the transaction group.
9018 *
9019 * If there are no dirty vdevs, we sync the uberblock to a few random
9020 * top-level vdevs that are known to be visible in the config cache
9021 * (see spa_vdev_add() for a complete description). If there *are* dirty
9022 * vdevs, sync the uberblock to all vdevs.
9023 */
9024 static void
9025 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9026 {
9027 vdev_t *rvd = spa->spa_root_vdev;
9028 uint64_t txg = tx->tx_txg;
9029
9030 for (;;) {
9031 int error = 0;
9032
9033 /*
9034 * We hold SCL_STATE to prevent vdev open/close/etc.
9035 * while we're attempting to write the vdev labels.
9036 */
9037 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9038
9039 if (list_is_empty(&spa->spa_config_dirty_list)) {
9040 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9041 int svdcount = 0;
9042 int children = rvd->vdev_children;
9043 int c0 = spa_get_random(children);
9044
9045 for (int c = 0; c < children; c++) {
9046 vdev_t *vd =
9047 rvd->vdev_child[(c0 + c) % children];
9048
9049 /* Stop when revisiting the first vdev */
9050 if (c > 0 && svd[0] == vd)
9051 break;
9052
9053 if (vd->vdev_ms_array == 0 ||
9054 vd->vdev_islog ||
9055 !vdev_is_concrete(vd))
9056 continue;
9057
9058 svd[svdcount++] = vd;
9059 if (svdcount == SPA_SYNC_MIN_VDEVS)
9060 break;
9061 }
9062 error = vdev_config_sync(svd, svdcount, txg);
9063 } else {
9064 error = vdev_config_sync(rvd->vdev_child,
9065 rvd->vdev_children, txg);
9066 }
9067
9068 if (error == 0)
9069 spa->spa_last_synced_guid = rvd->vdev_guid;
9070
9071 spa_config_exit(spa, SCL_STATE, FTAG);
9072
9073 if (error == 0)
9074 break;
9075 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9076 zio_resume_wait(spa);
9077 }
9078 }
9079
9080 /*
9081 * Sync the specified transaction group. New blocks may be dirtied as
9082 * part of the process, so we iterate until it converges.
9083 */
9084 void
9085 spa_sync(spa_t *spa, uint64_t txg)
9086 {
9087 vdev_t *vd = NULL;
9088
9089 VERIFY(spa_writeable(spa));
9090
9091 /*
9092 * Wait for i/os issued in open context that need to complete
9093 * before this txg syncs.
9094 */
9095 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9096 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9097 ZIO_FLAG_CANFAIL);
9098
9099 /*
9100 * Lock out configuration changes.
9101 */
9102 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9103
9104 spa->spa_syncing_txg = txg;
9105 spa->spa_sync_pass = 0;
9106
9107 for (int i = 0; i < spa->spa_alloc_count; i++) {
9108 mutex_enter(&spa->spa_alloc_locks[i]);
9109 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
9110 mutex_exit(&spa->spa_alloc_locks[i]);
9111 }
9112
9113 /*
9114 * If there are any pending vdev state changes, convert them
9115 * into config changes that go out with this transaction group.
9116 */
9117 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9118 while (list_head(&spa->spa_state_dirty_list) != NULL) {
9119 /*
9120 * We need the write lock here because, for aux vdevs,
9121 * calling vdev_config_dirty() modifies sav_config.
9122 * This is ugly and will become unnecessary when we
9123 * eliminate the aux vdev wart by integrating all vdevs
9124 * into the root vdev tree.
9125 */
9126 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9127 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9128 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9129 vdev_state_clean(vd);
9130 vdev_config_dirty(vd);
9131 }
9132 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9133 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9134 }
9135 spa_config_exit(spa, SCL_STATE, FTAG);
9136
9137 dsl_pool_t *dp = spa->spa_dsl_pool;
9138 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9139
9140 spa->spa_sync_starttime = gethrtime();
9141 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9142 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9143 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9144 NSEC_TO_TICK(spa->spa_deadman_synctime));
9145
9146 /*
9147 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9148 * set spa_deflate if we have no raid-z vdevs.
9149 */
9150 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9151 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9152 vdev_t *rvd = spa->spa_root_vdev;
9153
9154 int i;
9155 for (i = 0; i < rvd->vdev_children; i++) {
9156 vd = rvd->vdev_child[i];
9157 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9158 break;
9159 }
9160 if (i == rvd->vdev_children) {
9161 spa->spa_deflate = TRUE;
9162 VERIFY0(zap_add(spa->spa_meta_objset,
9163 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9164 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9165 }
9166 }
9167
9168 spa_sync_adjust_vdev_max_queue_depth(spa);
9169
9170 spa_sync_condense_indirect(spa, tx);
9171
9172 spa_sync_iterate_to_convergence(spa, tx);
9173
9174 #ifdef ZFS_DEBUG
9175 if (!list_is_empty(&spa->spa_config_dirty_list)) {
9176 /*
9177 * Make sure that the number of ZAPs for all the vdevs matches
9178 * the number of ZAPs in the per-vdev ZAP list. This only gets
9179 * called if the config is dirty; otherwise there may be
9180 * outstanding AVZ operations that weren't completed in
9181 * spa_sync_config_object.
9182 */
9183 uint64_t all_vdev_zap_entry_count;
9184 ASSERT0(zap_count(spa->spa_meta_objset,
9185 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9186 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9187 all_vdev_zap_entry_count);
9188 }
9189 #endif
9190
9191 if (spa->spa_vdev_removal != NULL) {
9192 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9193 }
9194
9195 spa_sync_rewrite_vdev_config(spa, tx);
9196 dmu_tx_commit(tx);
9197
9198 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9199 spa->spa_deadman_tqid = 0;
9200
9201 /*
9202 * Clear the dirty config list.
9203 */
9204 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9205 vdev_config_clean(vd);
9206
9207 /*
9208 * Now that the new config has synced transactionally,
9209 * let it become visible to the config cache.
9210 */
9211 if (spa->spa_config_syncing != NULL) {
9212 spa_config_set(spa, spa->spa_config_syncing);
9213 spa->spa_config_txg = txg;
9214 spa->spa_config_syncing = NULL;
9215 }
9216
9217 dsl_pool_sync_done(dp, txg);
9218
9219 for (int i = 0; i < spa->spa_alloc_count; i++) {
9220 mutex_enter(&spa->spa_alloc_locks[i]);
9221 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
9222 mutex_exit(&spa->spa_alloc_locks[i]);
9223 }
9224
9225 /*
9226 * Update usable space statistics.
9227 */
9228 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9229 != NULL)
9230 vdev_sync_done(vd, txg);
9231
9232 metaslab_class_evict_old(spa->spa_normal_class, txg);
9233 metaslab_class_evict_old(spa->spa_log_class, txg);
9234
9235 spa_sync_close_syncing_log_sm(spa);
9236
9237 spa_update_dspace(spa);
9238
9239 /*
9240 * It had better be the case that we didn't dirty anything
9241 * since vdev_config_sync().
9242 */
9243 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9244 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9245 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9246
9247 while (zfs_pause_spa_sync)
9248 delay(1);
9249
9250 spa->spa_sync_pass = 0;
9251
9252 /*
9253 * Update the last synced uberblock here. We want to do this at
9254 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9255 * will be guaranteed that all the processing associated with
9256 * that txg has been completed.
9257 */
9258 spa->spa_ubsync = spa->spa_uberblock;
9259 spa_config_exit(spa, SCL_CONFIG, FTAG);
9260
9261 spa_handle_ignored_writes(spa);
9262
9263 /*
9264 * If any async tasks have been requested, kick them off.
9265 */
9266 spa_async_dispatch(spa);
9267 }
9268
9269 /*
9270 * Sync all pools. We don't want to hold the namespace lock across these
9271 * operations, so we take a reference on the spa_t and drop the lock during the
9272 * sync.
9273 */
9274 void
9275 spa_sync_allpools(void)
9276 {
9277 spa_t *spa = NULL;
9278 mutex_enter(&spa_namespace_lock);
9279 while ((spa = spa_next(spa)) != NULL) {
9280 if (spa_state(spa) != POOL_STATE_ACTIVE ||
9281 !spa_writeable(spa) || spa_suspended(spa))
9282 continue;
9283 spa_open_ref(spa, FTAG);
9284 mutex_exit(&spa_namespace_lock);
9285 txg_wait_synced(spa_get_dsl(spa), 0);
9286 mutex_enter(&spa_namespace_lock);
9287 spa_close(spa, FTAG);
9288 }
9289 mutex_exit(&spa_namespace_lock);
9290 }
9291
9292 /*
9293 * ==========================================================================
9294 * Miscellaneous routines
9295 * ==========================================================================
9296 */
9297
9298 /*
9299 * Remove all pools in the system.
9300 */
9301 void
9302 spa_evict_all(void)
9303 {
9304 spa_t *spa;
9305
9306 /*
9307 * Remove all cached state. All pools should be closed now,
9308 * so every spa in the AVL tree should be unreferenced.
9309 */
9310 mutex_enter(&spa_namespace_lock);
9311 while ((spa = spa_next(NULL)) != NULL) {
9312 /*
9313 * Stop async tasks. The async thread may need to detach
9314 * a device that's been replaced, which requires grabbing
9315 * spa_namespace_lock, so we must drop it here.
9316 */
9317 spa_open_ref(spa, FTAG);
9318 mutex_exit(&spa_namespace_lock);
9319 spa_async_suspend(spa);
9320 mutex_enter(&spa_namespace_lock);
9321 spa_close(spa, FTAG);
9322
9323 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9324 spa_unload(spa);
9325 spa_deactivate(spa);
9326 }
9327 spa_remove(spa);
9328 }
9329 mutex_exit(&spa_namespace_lock);
9330 }
9331
9332 vdev_t *
9333 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9334 {
9335 vdev_t *vd;
9336 int i;
9337
9338 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9339 return (vd);
9340
9341 if (aux) {
9342 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9343 vd = spa->spa_l2cache.sav_vdevs[i];
9344 if (vd->vdev_guid == guid)
9345 return (vd);
9346 }
9347
9348 for (i = 0; i < spa->spa_spares.sav_count; i++) {
9349 vd = spa->spa_spares.sav_vdevs[i];
9350 if (vd->vdev_guid == guid)
9351 return (vd);
9352 }
9353 }
9354
9355 return (NULL);
9356 }
9357
9358 void
9359 spa_upgrade(spa_t *spa, uint64_t version)
9360 {
9361 ASSERT(spa_writeable(spa));
9362
9363 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9364
9365 /*
9366 * This should only be called for a non-faulted pool, and since a
9367 * future version would result in an unopenable pool, this shouldn't be
9368 * possible.
9369 */
9370 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9371 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9372
9373 spa->spa_uberblock.ub_version = version;
9374 vdev_config_dirty(spa->spa_root_vdev);
9375
9376 spa_config_exit(spa, SCL_ALL, FTAG);
9377
9378 txg_wait_synced(spa_get_dsl(spa), 0);
9379 }
9380
9381 boolean_t
9382 spa_has_spare(spa_t *spa, uint64_t guid)
9383 {
9384 int i;
9385 uint64_t spareguid;
9386 spa_aux_vdev_t *sav = &spa->spa_spares;
9387
9388 for (i = 0; i < sav->sav_count; i++)
9389 if (sav->sav_vdevs[i]->vdev_guid == guid)
9390 return (B_TRUE);
9391
9392 for (i = 0; i < sav->sav_npending; i++) {
9393 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9394 &spareguid) == 0 && spareguid == guid)
9395 return (B_TRUE);
9396 }
9397
9398 return (B_FALSE);
9399 }
9400
9401 /*
9402 * Check if a pool has an active shared spare device.
9403 * Note: reference count of an active spare is 2, as a spare and as a replace
9404 */
9405 static boolean_t
9406 spa_has_active_shared_spare(spa_t *spa)
9407 {
9408 int i, refcnt;
9409 uint64_t pool;
9410 spa_aux_vdev_t *sav = &spa->spa_spares;
9411
9412 for (i = 0; i < sav->sav_count; i++) {
9413 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9414 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9415 refcnt > 2)
9416 return (B_TRUE);
9417 }
9418
9419 return (B_FALSE);
9420 }
9421
9422 uint64_t
9423 spa_total_metaslabs(spa_t *spa)
9424 {
9425 vdev_t *rvd = spa->spa_root_vdev;
9426
9427 uint64_t m = 0;
9428 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9429 vdev_t *vd = rvd->vdev_child[c];
9430 if (!vdev_is_concrete(vd))
9431 continue;
9432 m += vd->vdev_ms_count;
9433 }
9434 return (m);
9435 }
9436
9437 /*
9438 * Notify any waiting threads that some activity has switched from being in-
9439 * progress to not-in-progress so that the thread can wake up and determine
9440 * whether it is finished waiting.
9441 */
9442 void
9443 spa_notify_waiters(spa_t *spa)
9444 {
9445 /*
9446 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9447 * happening between the waiting thread's check and cv_wait.
9448 */
9449 mutex_enter(&spa->spa_activities_lock);
9450 cv_broadcast(&spa->spa_activities_cv);
9451 mutex_exit(&spa->spa_activities_lock);
9452 }
9453
9454 /*
9455 * Notify any waiting threads that the pool is exporting, and then block until
9456 * they are finished using the spa_t.
9457 */
9458 void
9459 spa_wake_waiters(spa_t *spa)
9460 {
9461 mutex_enter(&spa->spa_activities_lock);
9462 spa->spa_waiters_cancel = B_TRUE;
9463 cv_broadcast(&spa->spa_activities_cv);
9464 while (spa->spa_waiters != 0)
9465 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9466 spa->spa_waiters_cancel = B_FALSE;
9467 mutex_exit(&spa->spa_activities_lock);
9468 }
9469
9470 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
9471 static boolean_t
9472 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9473 {
9474 spa_t *spa = vd->vdev_spa;
9475
9476 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9477 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9478 ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9479 activity == ZPOOL_WAIT_TRIM);
9480
9481 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9482 &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9483
9484 mutex_exit(&spa->spa_activities_lock);
9485 mutex_enter(lock);
9486 mutex_enter(&spa->spa_activities_lock);
9487
9488 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9489 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9490 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9491 mutex_exit(lock);
9492
9493 if (in_progress)
9494 return (B_TRUE);
9495
9496 for (int i = 0; i < vd->vdev_children; i++) {
9497 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9498 activity))
9499 return (B_TRUE);
9500 }
9501
9502 return (B_FALSE);
9503 }
9504
9505 /*
9506 * If use_guid is true, this checks whether the vdev specified by guid is
9507 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9508 * is being initialized/trimmed. The caller must hold the config lock and
9509 * spa_activities_lock.
9510 */
9511 static int
9512 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9513 zpool_wait_activity_t activity, boolean_t *in_progress)
9514 {
9515 mutex_exit(&spa->spa_activities_lock);
9516 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9517 mutex_enter(&spa->spa_activities_lock);
9518
9519 vdev_t *vd;
9520 if (use_guid) {
9521 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9522 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9523 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9524 return (EINVAL);
9525 }
9526 } else {
9527 vd = spa->spa_root_vdev;
9528 }
9529
9530 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9531
9532 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9533 return (0);
9534 }
9535
9536 /*
9537 * Locking for waiting threads
9538 * ---------------------------
9539 *
9540 * Waiting threads need a way to check whether a given activity is in progress,
9541 * and then, if it is, wait for it to complete. Each activity will have some
9542 * in-memory representation of the relevant on-disk state which can be used to
9543 * determine whether or not the activity is in progress. The in-memory state and
9544 * the locking used to protect it will be different for each activity, and may
9545 * not be suitable for use with a cvar (e.g., some state is protected by the
9546 * config lock). To allow waiting threads to wait without any races, another
9547 * lock, spa_activities_lock, is used.
9548 *
9549 * When the state is checked, both the activity-specific lock (if there is one)
9550 * and spa_activities_lock are held. In some cases, the activity-specific lock
9551 * is acquired explicitly (e.g. the config lock). In others, the locking is
9552 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9553 * thread releases the activity-specific lock and, if the activity is in
9554 * progress, then cv_waits using spa_activities_lock.
9555 *
9556 * The waiting thread is woken when another thread, one completing some
9557 * activity, updates the state of the activity and then calls
9558 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9559 * needs to hold its activity-specific lock when updating the state, and this
9560 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9561 *
9562 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9563 * and because it is held when the waiting thread checks the state of the
9564 * activity, it can never be the case that the completing thread both updates
9565 * the activity state and cv_broadcasts in between the waiting thread's check
9566 * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9567 *
9568 * In order to prevent deadlock, when the waiting thread does its check, in some
9569 * cases it will temporarily drop spa_activities_lock in order to acquire the
9570 * activity-specific lock. The order in which spa_activities_lock and the
9571 * activity specific lock are acquired in the waiting thread is determined by
9572 * the order in which they are acquired in the completing thread; if the
9573 * completing thread calls spa_notify_waiters with the activity-specific lock
9574 * held, then the waiting thread must also acquire the activity-specific lock
9575 * first.
9576 */
9577
9578 static int
9579 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9580 boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9581 {
9582 int error = 0;
9583
9584 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9585
9586 switch (activity) {
9587 case ZPOOL_WAIT_CKPT_DISCARD:
9588 *in_progress =
9589 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9590 zap_contains(spa_meta_objset(spa),
9591 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9592 ENOENT);
9593 break;
9594 case ZPOOL_WAIT_FREE:
9595 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9596 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9597 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9598 spa_livelist_delete_check(spa));
9599 break;
9600 case ZPOOL_WAIT_INITIALIZE:
9601 case ZPOOL_WAIT_TRIM:
9602 error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9603 activity, in_progress);
9604 break;
9605 case ZPOOL_WAIT_REPLACE:
9606 mutex_exit(&spa->spa_activities_lock);
9607 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9608 mutex_enter(&spa->spa_activities_lock);
9609
9610 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9611 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9612 break;
9613 case ZPOOL_WAIT_REMOVE:
9614 *in_progress = (spa->spa_removing_phys.sr_state ==
9615 DSS_SCANNING);
9616 break;
9617 case ZPOOL_WAIT_RESILVER:
9618 if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9619 break;
9620 /* fall through */
9621 case ZPOOL_WAIT_SCRUB:
9622 {
9623 boolean_t scanning, paused, is_scrub;
9624 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
9625
9626 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9627 scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9628 paused = dsl_scan_is_paused_scrub(scn);
9629 *in_progress = (scanning && !paused &&
9630 is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9631 break;
9632 }
9633 default:
9634 panic("unrecognized value for activity %d", activity);
9635 }
9636
9637 return (error);
9638 }
9639
9640 static int
9641 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9642 boolean_t use_tag, uint64_t tag, boolean_t *waited)
9643 {
9644 /*
9645 * The tag is used to distinguish between instances of an activity.
9646 * 'initialize' and 'trim' are the only activities that we use this for.
9647 * The other activities can only have a single instance in progress in a
9648 * pool at one time, making the tag unnecessary.
9649 *
9650 * There can be multiple devices being replaced at once, but since they
9651 * all finish once resilvering finishes, we don't bother keeping track
9652 * of them individually, we just wait for them all to finish.
9653 */
9654 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9655 activity != ZPOOL_WAIT_TRIM)
9656 return (EINVAL);
9657
9658 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
9659 return (EINVAL);
9660
9661 spa_t *spa;
9662 int error = spa_open(pool, &spa, FTAG);
9663 if (error != 0)
9664 return (error);
9665
9666 /*
9667 * Increment the spa's waiter count so that we can call spa_close and
9668 * still ensure that the spa_t doesn't get freed before this thread is
9669 * finished with it when the pool is exported. We want to call spa_close
9670 * before we start waiting because otherwise the additional ref would
9671 * prevent the pool from being exported or destroyed throughout the
9672 * potentially long wait.
9673 */
9674 mutex_enter(&spa->spa_activities_lock);
9675 spa->spa_waiters++;
9676 spa_close(spa, FTAG);
9677
9678 *waited = B_FALSE;
9679 for (;;) {
9680 boolean_t in_progress;
9681 error = spa_activity_in_progress(spa, activity, use_tag, tag,
9682 &in_progress);
9683
9684 if (error || !in_progress || spa->spa_waiters_cancel)
9685 break;
9686
9687 *waited = B_TRUE;
9688
9689 if (cv_wait_sig(&spa->spa_activities_cv,
9690 &spa->spa_activities_lock) == 0) {
9691 error = EINTR;
9692 break;
9693 }
9694 }
9695
9696 spa->spa_waiters--;
9697 cv_signal(&spa->spa_waiters_cv);
9698 mutex_exit(&spa->spa_activities_lock);
9699
9700 return (error);
9701 }
9702
9703 /*
9704 * Wait for a particular instance of the specified activity to complete, where
9705 * the instance is identified by 'tag'
9706 */
9707 int
9708 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
9709 boolean_t *waited)
9710 {
9711 return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
9712 }
9713
9714 /*
9715 * Wait for all instances of the specified activity complete
9716 */
9717 int
9718 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
9719 {
9720
9721 return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
9722 }
9723
9724 sysevent_t *
9725 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9726 {
9727 sysevent_t *ev = NULL;
9728 #ifdef _KERNEL
9729 nvlist_t *resource;
9730
9731 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
9732 if (resource) {
9733 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
9734 ev->resource = resource;
9735 }
9736 #endif
9737 return (ev);
9738 }
9739
9740 void
9741 spa_event_post(sysevent_t *ev)
9742 {
9743 #ifdef _KERNEL
9744 if (ev) {
9745 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
9746 kmem_free(ev, sizeof (*ev));
9747 }
9748 #endif
9749 }
9750
9751 /*
9752 * Post a zevent corresponding to the given sysevent. The 'name' must be one
9753 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
9754 * filled in from the spa and (optionally) the vdev. This doesn't do anything
9755 * in the userland libzpool, as we don't want consumers to misinterpret ztest
9756 * or zdb as real changes.
9757 */
9758 void
9759 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9760 {
9761 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
9762 }
9763
9764 /* state manipulation functions */
9765 EXPORT_SYMBOL(spa_open);
9766 EXPORT_SYMBOL(spa_open_rewind);
9767 EXPORT_SYMBOL(spa_get_stats);
9768 EXPORT_SYMBOL(spa_create);
9769 EXPORT_SYMBOL(spa_import);
9770 EXPORT_SYMBOL(spa_tryimport);
9771 EXPORT_SYMBOL(spa_destroy);
9772 EXPORT_SYMBOL(spa_export);
9773 EXPORT_SYMBOL(spa_reset);
9774 EXPORT_SYMBOL(spa_async_request);
9775 EXPORT_SYMBOL(spa_async_suspend);
9776 EXPORT_SYMBOL(spa_async_resume);
9777 EXPORT_SYMBOL(spa_inject_addref);
9778 EXPORT_SYMBOL(spa_inject_delref);
9779 EXPORT_SYMBOL(spa_scan_stat_init);
9780 EXPORT_SYMBOL(spa_scan_get_stats);
9781
9782 /* device manipulation */
9783 EXPORT_SYMBOL(spa_vdev_add);
9784 EXPORT_SYMBOL(spa_vdev_attach);
9785 EXPORT_SYMBOL(spa_vdev_detach);
9786 EXPORT_SYMBOL(spa_vdev_setpath);
9787 EXPORT_SYMBOL(spa_vdev_setfru);
9788 EXPORT_SYMBOL(spa_vdev_split_mirror);
9789
9790 /* spare statech is global across all pools) */
9791 EXPORT_SYMBOL(spa_spare_add);
9792 EXPORT_SYMBOL(spa_spare_remove);
9793 EXPORT_SYMBOL(spa_spare_exists);
9794 EXPORT_SYMBOL(spa_spare_activate);
9795
9796 /* L2ARC statech is global across all pools) */
9797 EXPORT_SYMBOL(spa_l2cache_add);
9798 EXPORT_SYMBOL(spa_l2cache_remove);
9799 EXPORT_SYMBOL(spa_l2cache_exists);
9800 EXPORT_SYMBOL(spa_l2cache_activate);
9801 EXPORT_SYMBOL(spa_l2cache_drop);
9802
9803 /* scanning */
9804 EXPORT_SYMBOL(spa_scan);
9805 EXPORT_SYMBOL(spa_scan_stop);
9806
9807 /* spa syncing */
9808 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
9809 EXPORT_SYMBOL(spa_sync_allpools);
9810
9811 /* properties */
9812 EXPORT_SYMBOL(spa_prop_set);
9813 EXPORT_SYMBOL(spa_prop_get);
9814 EXPORT_SYMBOL(spa_prop_clear_bootfs);
9815
9816 /* asynchronous event notification */
9817 EXPORT_SYMBOL(spa_event_notify);
9818
9819 /* BEGIN CSTYLED */
9820 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, INT, ZMOD_RW,
9821 "log2(fraction of arc that can be used by inflight I/Os when "
9822 "verifying pool during import");
9823
9824 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
9825 "Set to traverse metadata on pool import");
9826
9827 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
9828 "Set to traverse data on pool import");
9829
9830 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
9831 "Print vdev tree to zfs_dbgmsg during pool import");
9832
9833 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
9834 "Percentage of CPUs to run an IO worker thread");
9835
9836 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, ULONG, ZMOD_RW,
9837 "Allow importing pool with up to this number of missing top-level "
9838 "vdevs (in read-only mode)");
9839
9840 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, ZMOD_RW,
9841 "Set the livelist condense zthr to pause");
9842
9843 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, ZMOD_RW,
9844 "Set the livelist condense synctask to pause");
9845
9846 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, INT, ZMOD_RW,
9847 "Whether livelist condensing was canceled in the synctask");
9848
9849 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, INT, ZMOD_RW,
9850 "Whether livelist condensing was canceled in the zthr function");
9851
9852 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, ZMOD_RW,
9853 "Whether extra ALLOC blkptrs were added to a livelist entry while it "
9854 "was being condensed");
9855 /* END CSTYLED */