]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/spa_misc.c
Update to onnv_147
[mirror_zfs-debian.git] / module / zfs / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <sys/zfs_context.h>
26 #include <sys/spa_impl.h>
27 #include <sys/zio.h>
28 #include <sys/zio_checksum.h>
29 #include <sys/zio_compress.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/zap.h>
33 #include <sys/zil.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/txg.h>
38 #include <sys/avl.h>
39 #include <sys/unique.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/dsl_prop.h>
43 #include <sys/dsl_scan.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/arc.h>
47 #include <sys/ddt.h>
48 #include "zfs_prop.h"
49
50 /*
51 * SPA locking
52 *
53 * There are four basic locks for managing spa_t structures:
54 *
55 * spa_namespace_lock (global mutex)
56 *
57 * This lock must be acquired to do any of the following:
58 *
59 * - Lookup a spa_t by name
60 * - Add or remove a spa_t from the namespace
61 * - Increase spa_refcount from non-zero
62 * - Check if spa_refcount is zero
63 * - Rename a spa_t
64 * - add/remove/attach/detach devices
65 * - Held for the duration of create/destroy/import/export
66 *
67 * It does not need to handle recursion. A create or destroy may
68 * reference objects (files or zvols) in other pools, but by
69 * definition they must have an existing reference, and will never need
70 * to lookup a spa_t by name.
71 *
72 * spa_refcount (per-spa refcount_t protected by mutex)
73 *
74 * This reference count keep track of any active users of the spa_t. The
75 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
76 * the refcount is never really 'zero' - opening a pool implicitly keeps
77 * some references in the DMU. Internally we check against spa_minref, but
78 * present the image of a zero/non-zero value to consumers.
79 *
80 * spa_config_lock[] (per-spa array of rwlocks)
81 *
82 * This protects the spa_t from config changes, and must be held in
83 * the following circumstances:
84 *
85 * - RW_READER to perform I/O to the spa
86 * - RW_WRITER to change the vdev config
87 *
88 * The locking order is fairly straightforward:
89 *
90 * spa_namespace_lock -> spa_refcount
91 *
92 * The namespace lock must be acquired to increase the refcount from 0
93 * or to check if it is zero.
94 *
95 * spa_refcount -> spa_config_lock[]
96 *
97 * There must be at least one valid reference on the spa_t to acquire
98 * the config lock.
99 *
100 * spa_namespace_lock -> spa_config_lock[]
101 *
102 * The namespace lock must always be taken before the config lock.
103 *
104 *
105 * The spa_namespace_lock can be acquired directly and is globally visible.
106 *
107 * The namespace is manipulated using the following functions, all of which
108 * require the spa_namespace_lock to be held.
109 *
110 * spa_lookup() Lookup a spa_t by name.
111 *
112 * spa_add() Create a new spa_t in the namespace.
113 *
114 * spa_remove() Remove a spa_t from the namespace. This also
115 * frees up any memory associated with the spa_t.
116 *
117 * spa_next() Returns the next spa_t in the system, or the
118 * first if NULL is passed.
119 *
120 * spa_evict_all() Shutdown and remove all spa_t structures in
121 * the system.
122 *
123 * spa_guid_exists() Determine whether a pool/device guid exists.
124 *
125 * The spa_refcount is manipulated using the following functions:
126 *
127 * spa_open_ref() Adds a reference to the given spa_t. Must be
128 * called with spa_namespace_lock held if the
129 * refcount is currently zero.
130 *
131 * spa_close() Remove a reference from the spa_t. This will
132 * not free the spa_t or remove it from the
133 * namespace. No locking is required.
134 *
135 * spa_refcount_zero() Returns true if the refcount is currently
136 * zero. Must be called with spa_namespace_lock
137 * held.
138 *
139 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
140 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
141 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
142 *
143 * To read the configuration, it suffices to hold one of these locks as reader.
144 * To modify the configuration, you must hold all locks as writer. To modify
145 * vdev state without altering the vdev tree's topology (e.g. online/offline),
146 * you must hold SCL_STATE and SCL_ZIO as writer.
147 *
148 * We use these distinct config locks to avoid recursive lock entry.
149 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
150 * block allocations (SCL_ALLOC), which may require reading space maps
151 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
152 *
153 * The spa config locks cannot be normal rwlocks because we need the
154 * ability to hand off ownership. For example, SCL_ZIO is acquired
155 * by the issuing thread and later released by an interrupt thread.
156 * They do, however, obey the usual write-wanted semantics to prevent
157 * writer (i.e. system administrator) starvation.
158 *
159 * The lock acquisition rules are as follows:
160 *
161 * SCL_CONFIG
162 * Protects changes to the vdev tree topology, such as vdev
163 * add/remove/attach/detach. Protects the dirty config list
164 * (spa_config_dirty_list) and the set of spares and l2arc devices.
165 *
166 * SCL_STATE
167 * Protects changes to pool state and vdev state, such as vdev
168 * online/offline/fault/degrade/clear. Protects the dirty state list
169 * (spa_state_dirty_list) and global pool state (spa_state).
170 *
171 * SCL_ALLOC
172 * Protects changes to metaslab groups and classes.
173 * Held as reader by metaslab_alloc() and metaslab_claim().
174 *
175 * SCL_ZIO
176 * Held by bp-level zios (those which have no io_vd upon entry)
177 * to prevent changes to the vdev tree. The bp-level zio implicitly
178 * protects all of its vdev child zios, which do not hold SCL_ZIO.
179 *
180 * SCL_FREE
181 * Protects changes to metaslab groups and classes.
182 * Held as reader by metaslab_free(). SCL_FREE is distinct from
183 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
184 * blocks in zio_done() while another i/o that holds either
185 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
186 *
187 * SCL_VDEV
188 * Held as reader to prevent changes to the vdev tree during trivial
189 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
190 * other locks, and lower than all of them, to ensure that it's safe
191 * to acquire regardless of caller context.
192 *
193 * In addition, the following rules apply:
194 *
195 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
196 * The lock ordering is SCL_CONFIG > spa_props_lock.
197 *
198 * (b) I/O operations on leaf vdevs. For any zio operation that takes
199 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
200 * or zio_write_phys() -- the caller must ensure that the config cannot
201 * cannot change in the interim, and that the vdev cannot be reopened.
202 * SCL_STATE as reader suffices for both.
203 *
204 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
205 *
206 * spa_vdev_enter() Acquire the namespace lock and the config lock
207 * for writing.
208 *
209 * spa_vdev_exit() Release the config lock, wait for all I/O
210 * to complete, sync the updated configs to the
211 * cache, and release the namespace lock.
212 *
213 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
214 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
215 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
216 *
217 * spa_rename() is also implemented within this file since is requires
218 * manipulation of the namespace.
219 */
220
221 static avl_tree_t spa_namespace_avl;
222 kmutex_t spa_namespace_lock;
223 static kcondvar_t spa_namespace_cv;
224 static int spa_active_count;
225 int spa_max_replication_override = SPA_DVAS_PER_BP;
226
227 static kmutex_t spa_spare_lock;
228 static avl_tree_t spa_spare_avl;
229 static kmutex_t spa_l2cache_lock;
230 static avl_tree_t spa_l2cache_avl;
231
232 kmem_cache_t *spa_buffer_pool;
233 int spa_mode_global;
234
235 #ifdef ZFS_DEBUG
236 /* Everything except dprintf is on by default in debug builds */
237 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
238 #else
239 int zfs_flags = 0;
240 #endif
241
242 /*
243 * zfs_recover can be set to nonzero to attempt to recover from
244 * otherwise-fatal errors, typically caused by on-disk corruption. When
245 * set, calls to zfs_panic_recover() will turn into warning messages.
246 */
247 int zfs_recover = 0;
248
249
250 /*
251 * ==========================================================================
252 * SPA config locking
253 * ==========================================================================
254 */
255 static void
256 spa_config_lock_init(spa_t *spa)
257 {
258 for (int i = 0; i < SCL_LOCKS; i++) {
259 spa_config_lock_t *scl = &spa->spa_config_lock[i];
260 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
261 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
262 refcount_create(&scl->scl_count);
263 scl->scl_writer = NULL;
264 scl->scl_write_wanted = 0;
265 }
266 }
267
268 static void
269 spa_config_lock_destroy(spa_t *spa)
270 {
271 for (int i = 0; i < SCL_LOCKS; i++) {
272 spa_config_lock_t *scl = &spa->spa_config_lock[i];
273 mutex_destroy(&scl->scl_lock);
274 cv_destroy(&scl->scl_cv);
275 refcount_destroy(&scl->scl_count);
276 ASSERT(scl->scl_writer == NULL);
277 ASSERT(scl->scl_write_wanted == 0);
278 }
279 }
280
281 int
282 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
283 {
284 for (int i = 0; i < SCL_LOCKS; i++) {
285 spa_config_lock_t *scl = &spa->spa_config_lock[i];
286 if (!(locks & (1 << i)))
287 continue;
288 mutex_enter(&scl->scl_lock);
289 if (rw == RW_READER) {
290 if (scl->scl_writer || scl->scl_write_wanted) {
291 mutex_exit(&scl->scl_lock);
292 spa_config_exit(spa, locks ^ (1 << i), tag);
293 return (0);
294 }
295 } else {
296 ASSERT(scl->scl_writer != curthread);
297 if (!refcount_is_zero(&scl->scl_count)) {
298 mutex_exit(&scl->scl_lock);
299 spa_config_exit(spa, locks ^ (1 << i), tag);
300 return (0);
301 }
302 scl->scl_writer = curthread;
303 }
304 (void) refcount_add(&scl->scl_count, tag);
305 mutex_exit(&scl->scl_lock);
306 }
307 return (1);
308 }
309
310 void
311 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
312 {
313 int wlocks_held = 0;
314
315 for (int i = 0; i < SCL_LOCKS; i++) {
316 spa_config_lock_t *scl = &spa->spa_config_lock[i];
317 if (scl->scl_writer == curthread)
318 wlocks_held |= (1 << i);
319 if (!(locks & (1 << i)))
320 continue;
321 mutex_enter(&scl->scl_lock);
322 if (rw == RW_READER) {
323 while (scl->scl_writer || scl->scl_write_wanted) {
324 cv_wait(&scl->scl_cv, &scl->scl_lock);
325 }
326 } else {
327 ASSERT(scl->scl_writer != curthread);
328 while (!refcount_is_zero(&scl->scl_count)) {
329 scl->scl_write_wanted++;
330 cv_wait(&scl->scl_cv, &scl->scl_lock);
331 scl->scl_write_wanted--;
332 }
333 scl->scl_writer = curthread;
334 }
335 (void) refcount_add(&scl->scl_count, tag);
336 mutex_exit(&scl->scl_lock);
337 }
338 ASSERT(wlocks_held <= locks);
339 }
340
341 void
342 spa_config_exit(spa_t *spa, int locks, void *tag)
343 {
344 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
345 spa_config_lock_t *scl = &spa->spa_config_lock[i];
346 if (!(locks & (1 << i)))
347 continue;
348 mutex_enter(&scl->scl_lock);
349 ASSERT(!refcount_is_zero(&scl->scl_count));
350 if (refcount_remove(&scl->scl_count, tag) == 0) {
351 ASSERT(scl->scl_writer == NULL ||
352 scl->scl_writer == curthread);
353 scl->scl_writer = NULL; /* OK in either case */
354 cv_broadcast(&scl->scl_cv);
355 }
356 mutex_exit(&scl->scl_lock);
357 }
358 }
359
360 int
361 spa_config_held(spa_t *spa, int locks, krw_t rw)
362 {
363 int locks_held = 0;
364
365 for (int i = 0; i < SCL_LOCKS; i++) {
366 spa_config_lock_t *scl = &spa->spa_config_lock[i];
367 if (!(locks & (1 << i)))
368 continue;
369 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
370 (rw == RW_WRITER && scl->scl_writer == curthread))
371 locks_held |= 1 << i;
372 }
373
374 return (locks_held);
375 }
376
377 /*
378 * ==========================================================================
379 * SPA namespace functions
380 * ==========================================================================
381 */
382
383 /*
384 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
385 * Returns NULL if no matching spa_t is found.
386 */
387 spa_t *
388 spa_lookup(const char *name)
389 {
390 static spa_t search; /* spa_t is large; don't allocate on stack */
391 spa_t *spa;
392 avl_index_t where;
393 char c;
394 char *cp;
395
396 ASSERT(MUTEX_HELD(&spa_namespace_lock));
397
398 /*
399 * If it's a full dataset name, figure out the pool name and
400 * just use that.
401 */
402 cp = strpbrk(name, "/@");
403 if (cp) {
404 c = *cp;
405 *cp = '\0';
406 }
407
408 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
409 spa = avl_find(&spa_namespace_avl, &search, &where);
410
411 if (cp)
412 *cp = c;
413
414 return (spa);
415 }
416
417 /*
418 * Create an uninitialized spa_t with the given name. Requires
419 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
420 * exist by calling spa_lookup() first.
421 */
422 spa_t *
423 spa_add(const char *name, nvlist_t *config, const char *altroot)
424 {
425 spa_t *spa;
426 spa_config_dirent_t *dp;
427
428 ASSERT(MUTEX_HELD(&spa_namespace_lock));
429
430 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
431
432 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
433 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
434 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
435 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
436 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
437 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
438 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
439 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
440 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
441
442 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
443 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
444 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
445 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
446
447 for (int t = 0; t < TXG_SIZE; t++)
448 bplist_create(&spa->spa_free_bplist[t]);
449
450 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
451 spa->spa_state = POOL_STATE_UNINITIALIZED;
452 spa->spa_freeze_txg = UINT64_MAX;
453 spa->spa_final_txg = UINT64_MAX;
454 spa->spa_load_max_txg = UINT64_MAX;
455 spa->spa_proc = &p0;
456 spa->spa_proc_state = SPA_PROC_NONE;
457
458 refcount_create(&spa->spa_refcount);
459 spa_config_lock_init(spa);
460
461 avl_add(&spa_namespace_avl, spa);
462
463 /*
464 * Set the alternate root, if there is one.
465 */
466 if (altroot) {
467 spa->spa_root = spa_strdup(altroot);
468 spa_active_count++;
469 }
470
471 /*
472 * Every pool starts with the default cachefile
473 */
474 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
475 offsetof(spa_config_dirent_t, scd_link));
476
477 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
478 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
479 list_insert_head(&spa->spa_config_list, dp);
480
481 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
482 KM_SLEEP) == 0);
483
484 if (config != NULL)
485 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
486
487 return (spa);
488 }
489
490 /*
491 * Removes a spa_t from the namespace, freeing up any memory used. Requires
492 * spa_namespace_lock. This is called only after the spa_t has been closed and
493 * deactivated.
494 */
495 void
496 spa_remove(spa_t *spa)
497 {
498 spa_config_dirent_t *dp;
499
500 ASSERT(MUTEX_HELD(&spa_namespace_lock));
501 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
502
503 nvlist_free(spa->spa_config_splitting);
504
505 avl_remove(&spa_namespace_avl, spa);
506 cv_broadcast(&spa_namespace_cv);
507
508 if (spa->spa_root) {
509 spa_strfree(spa->spa_root);
510 spa_active_count--;
511 }
512
513 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
514 list_remove(&spa->spa_config_list, dp);
515 if (dp->scd_path != NULL)
516 spa_strfree(dp->scd_path);
517 kmem_free(dp, sizeof (spa_config_dirent_t));
518 }
519
520 list_destroy(&spa->spa_config_list);
521
522 nvlist_free(spa->spa_load_info);
523 spa_config_set(spa, NULL);
524
525 refcount_destroy(&spa->spa_refcount);
526
527 spa_config_lock_destroy(spa);
528
529 for (int t = 0; t < TXG_SIZE; t++)
530 bplist_destroy(&spa->spa_free_bplist[t]);
531
532 cv_destroy(&spa->spa_async_cv);
533 cv_destroy(&spa->spa_proc_cv);
534 cv_destroy(&spa->spa_scrub_io_cv);
535 cv_destroy(&spa->spa_suspend_cv);
536
537 mutex_destroy(&spa->spa_async_lock);
538 mutex_destroy(&spa->spa_errlist_lock);
539 mutex_destroy(&spa->spa_errlog_lock);
540 mutex_destroy(&spa->spa_history_lock);
541 mutex_destroy(&spa->spa_proc_lock);
542 mutex_destroy(&spa->spa_props_lock);
543 mutex_destroy(&spa->spa_scrub_lock);
544 mutex_destroy(&spa->spa_suspend_lock);
545 mutex_destroy(&spa->spa_vdev_top_lock);
546
547 kmem_free(spa, sizeof (spa_t));
548 }
549
550 /*
551 * Given a pool, return the next pool in the namespace, or NULL if there is
552 * none. If 'prev' is NULL, return the first pool.
553 */
554 spa_t *
555 spa_next(spa_t *prev)
556 {
557 ASSERT(MUTEX_HELD(&spa_namespace_lock));
558
559 if (prev)
560 return (AVL_NEXT(&spa_namespace_avl, prev));
561 else
562 return (avl_first(&spa_namespace_avl));
563 }
564
565 /*
566 * ==========================================================================
567 * SPA refcount functions
568 * ==========================================================================
569 */
570
571 /*
572 * Add a reference to the given spa_t. Must have at least one reference, or
573 * have the namespace lock held.
574 */
575 void
576 spa_open_ref(spa_t *spa, void *tag)
577 {
578 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
579 MUTEX_HELD(&spa_namespace_lock));
580 (void) refcount_add(&spa->spa_refcount, tag);
581 }
582
583 /*
584 * Remove a reference to the given spa_t. Must have at least one reference, or
585 * have the namespace lock held.
586 */
587 void
588 spa_close(spa_t *spa, void *tag)
589 {
590 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
591 MUTEX_HELD(&spa_namespace_lock));
592 (void) refcount_remove(&spa->spa_refcount, tag);
593 }
594
595 /*
596 * Check to see if the spa refcount is zero. Must be called with
597 * spa_namespace_lock held. We really compare against spa_minref, which is the
598 * number of references acquired when opening a pool
599 */
600 boolean_t
601 spa_refcount_zero(spa_t *spa)
602 {
603 ASSERT(MUTEX_HELD(&spa_namespace_lock));
604
605 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
606 }
607
608 /*
609 * ==========================================================================
610 * SPA spare and l2cache tracking
611 * ==========================================================================
612 */
613
614 /*
615 * Hot spares and cache devices are tracked using the same code below,
616 * for 'auxiliary' devices.
617 */
618
619 typedef struct spa_aux {
620 uint64_t aux_guid;
621 uint64_t aux_pool;
622 avl_node_t aux_avl;
623 int aux_count;
624 } spa_aux_t;
625
626 static int
627 spa_aux_compare(const void *a, const void *b)
628 {
629 const spa_aux_t *sa = a;
630 const spa_aux_t *sb = b;
631
632 if (sa->aux_guid < sb->aux_guid)
633 return (-1);
634 else if (sa->aux_guid > sb->aux_guid)
635 return (1);
636 else
637 return (0);
638 }
639
640 void
641 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
642 {
643 avl_index_t where;
644 spa_aux_t search;
645 spa_aux_t *aux;
646
647 search.aux_guid = vd->vdev_guid;
648 if ((aux = avl_find(avl, &search, &where)) != NULL) {
649 aux->aux_count++;
650 } else {
651 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
652 aux->aux_guid = vd->vdev_guid;
653 aux->aux_count = 1;
654 avl_insert(avl, aux, where);
655 }
656 }
657
658 void
659 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
660 {
661 spa_aux_t search;
662 spa_aux_t *aux;
663 avl_index_t where;
664
665 search.aux_guid = vd->vdev_guid;
666 aux = avl_find(avl, &search, &where);
667
668 ASSERT(aux != NULL);
669
670 if (--aux->aux_count == 0) {
671 avl_remove(avl, aux);
672 kmem_free(aux, sizeof (spa_aux_t));
673 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
674 aux->aux_pool = 0ULL;
675 }
676 }
677
678 boolean_t
679 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
680 {
681 spa_aux_t search, *found;
682
683 search.aux_guid = guid;
684 found = avl_find(avl, &search, NULL);
685
686 if (pool) {
687 if (found)
688 *pool = found->aux_pool;
689 else
690 *pool = 0ULL;
691 }
692
693 if (refcnt) {
694 if (found)
695 *refcnt = found->aux_count;
696 else
697 *refcnt = 0;
698 }
699
700 return (found != NULL);
701 }
702
703 void
704 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
705 {
706 spa_aux_t search, *found;
707 avl_index_t where;
708
709 search.aux_guid = vd->vdev_guid;
710 found = avl_find(avl, &search, &where);
711 ASSERT(found != NULL);
712 ASSERT(found->aux_pool == 0ULL);
713
714 found->aux_pool = spa_guid(vd->vdev_spa);
715 }
716
717 /*
718 * Spares are tracked globally due to the following constraints:
719 *
720 * - A spare may be part of multiple pools.
721 * - A spare may be added to a pool even if it's actively in use within
722 * another pool.
723 * - A spare in use in any pool can only be the source of a replacement if
724 * the target is a spare in the same pool.
725 *
726 * We keep track of all spares on the system through the use of a reference
727 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
728 * spare, then we bump the reference count in the AVL tree. In addition, we set
729 * the 'vdev_isspare' member to indicate that the device is a spare (active or
730 * inactive). When a spare is made active (used to replace a device in the
731 * pool), we also keep track of which pool its been made a part of.
732 *
733 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
734 * called under the spa_namespace lock as part of vdev reconfiguration. The
735 * separate spare lock exists for the status query path, which does not need to
736 * be completely consistent with respect to other vdev configuration changes.
737 */
738
739 static int
740 spa_spare_compare(const void *a, const void *b)
741 {
742 return (spa_aux_compare(a, b));
743 }
744
745 void
746 spa_spare_add(vdev_t *vd)
747 {
748 mutex_enter(&spa_spare_lock);
749 ASSERT(!vd->vdev_isspare);
750 spa_aux_add(vd, &spa_spare_avl);
751 vd->vdev_isspare = B_TRUE;
752 mutex_exit(&spa_spare_lock);
753 }
754
755 void
756 spa_spare_remove(vdev_t *vd)
757 {
758 mutex_enter(&spa_spare_lock);
759 ASSERT(vd->vdev_isspare);
760 spa_aux_remove(vd, &spa_spare_avl);
761 vd->vdev_isspare = B_FALSE;
762 mutex_exit(&spa_spare_lock);
763 }
764
765 boolean_t
766 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
767 {
768 boolean_t found;
769
770 mutex_enter(&spa_spare_lock);
771 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
772 mutex_exit(&spa_spare_lock);
773
774 return (found);
775 }
776
777 void
778 spa_spare_activate(vdev_t *vd)
779 {
780 mutex_enter(&spa_spare_lock);
781 ASSERT(vd->vdev_isspare);
782 spa_aux_activate(vd, &spa_spare_avl);
783 mutex_exit(&spa_spare_lock);
784 }
785
786 /*
787 * Level 2 ARC devices are tracked globally for the same reasons as spares.
788 * Cache devices currently only support one pool per cache device, and so
789 * for these devices the aux reference count is currently unused beyond 1.
790 */
791
792 static int
793 spa_l2cache_compare(const void *a, const void *b)
794 {
795 return (spa_aux_compare(a, b));
796 }
797
798 void
799 spa_l2cache_add(vdev_t *vd)
800 {
801 mutex_enter(&spa_l2cache_lock);
802 ASSERT(!vd->vdev_isl2cache);
803 spa_aux_add(vd, &spa_l2cache_avl);
804 vd->vdev_isl2cache = B_TRUE;
805 mutex_exit(&spa_l2cache_lock);
806 }
807
808 void
809 spa_l2cache_remove(vdev_t *vd)
810 {
811 mutex_enter(&spa_l2cache_lock);
812 ASSERT(vd->vdev_isl2cache);
813 spa_aux_remove(vd, &spa_l2cache_avl);
814 vd->vdev_isl2cache = B_FALSE;
815 mutex_exit(&spa_l2cache_lock);
816 }
817
818 boolean_t
819 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
820 {
821 boolean_t found;
822
823 mutex_enter(&spa_l2cache_lock);
824 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
825 mutex_exit(&spa_l2cache_lock);
826
827 return (found);
828 }
829
830 void
831 spa_l2cache_activate(vdev_t *vd)
832 {
833 mutex_enter(&spa_l2cache_lock);
834 ASSERT(vd->vdev_isl2cache);
835 spa_aux_activate(vd, &spa_l2cache_avl);
836 mutex_exit(&spa_l2cache_lock);
837 }
838
839 /*
840 * ==========================================================================
841 * SPA vdev locking
842 * ==========================================================================
843 */
844
845 /*
846 * Lock the given spa_t for the purpose of adding or removing a vdev.
847 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
848 * It returns the next transaction group for the spa_t.
849 */
850 uint64_t
851 spa_vdev_enter(spa_t *spa)
852 {
853 mutex_enter(&spa->spa_vdev_top_lock);
854 mutex_enter(&spa_namespace_lock);
855 return (spa_vdev_config_enter(spa));
856 }
857
858 /*
859 * Internal implementation for spa_vdev_enter(). Used when a vdev
860 * operation requires multiple syncs (i.e. removing a device) while
861 * keeping the spa_namespace_lock held.
862 */
863 uint64_t
864 spa_vdev_config_enter(spa_t *spa)
865 {
866 ASSERT(MUTEX_HELD(&spa_namespace_lock));
867
868 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
869
870 return (spa_last_synced_txg(spa) + 1);
871 }
872
873 /*
874 * Used in combination with spa_vdev_config_enter() to allow the syncing
875 * of multiple transactions without releasing the spa_namespace_lock.
876 */
877 void
878 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
879 {
880 ASSERT(MUTEX_HELD(&spa_namespace_lock));
881
882 int config_changed = B_FALSE;
883
884 ASSERT(txg > spa_last_synced_txg(spa));
885
886 spa->spa_pending_vdev = NULL;
887
888 /*
889 * Reassess the DTLs.
890 */
891 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
892
893 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
894 config_changed = B_TRUE;
895 spa->spa_config_generation++;
896 }
897
898 /*
899 * Verify the metaslab classes.
900 */
901 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
902 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
903
904 spa_config_exit(spa, SCL_ALL, spa);
905
906 /*
907 * Panic the system if the specified tag requires it. This
908 * is useful for ensuring that configurations are updated
909 * transactionally.
910 */
911 if (zio_injection_enabled)
912 zio_handle_panic_injection(spa, tag, 0);
913
914 /*
915 * Note: this txg_wait_synced() is important because it ensures
916 * that there won't be more than one config change per txg.
917 * This allows us to use the txg as the generation number.
918 */
919 if (error == 0)
920 txg_wait_synced(spa->spa_dsl_pool, txg);
921
922 if (vd != NULL) {
923 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
924 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
925 vdev_free(vd);
926 spa_config_exit(spa, SCL_ALL, spa);
927 }
928
929 /*
930 * If the config changed, update the config cache.
931 */
932 if (config_changed)
933 spa_config_sync(spa, B_FALSE, B_TRUE);
934 }
935
936 /*
937 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
938 * locking of spa_vdev_enter(), we also want make sure the transactions have
939 * synced to disk, and then update the global configuration cache with the new
940 * information.
941 */
942 int
943 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
944 {
945 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
946 mutex_exit(&spa_namespace_lock);
947 mutex_exit(&spa->spa_vdev_top_lock);
948
949 return (error);
950 }
951
952 /*
953 * Lock the given spa_t for the purpose of changing vdev state.
954 */
955 void
956 spa_vdev_state_enter(spa_t *spa, int oplocks)
957 {
958 int locks = SCL_STATE_ALL | oplocks;
959
960 /*
961 * Root pools may need to read of the underlying devfs filesystem
962 * when opening up a vdev. Unfortunately if we're holding the
963 * SCL_ZIO lock it will result in a deadlock when we try to issue
964 * the read from the root filesystem. Instead we "prefetch"
965 * the associated vnodes that we need prior to opening the
966 * underlying devices and cache them so that we can prevent
967 * any I/O when we are doing the actual open.
968 */
969 if (spa_is_root(spa)) {
970 int low = locks & ~(SCL_ZIO - 1);
971 int high = locks & ~low;
972
973 spa_config_enter(spa, high, spa, RW_WRITER);
974 vdev_hold(spa->spa_root_vdev);
975 spa_config_enter(spa, low, spa, RW_WRITER);
976 } else {
977 spa_config_enter(spa, locks, spa, RW_WRITER);
978 }
979 spa->spa_vdev_locks = locks;
980 }
981
982 int
983 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
984 {
985 boolean_t config_changed = B_FALSE;
986
987 if (vd != NULL || error == 0)
988 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
989 0, 0, B_FALSE);
990
991 if (vd != NULL) {
992 vdev_state_dirty(vd->vdev_top);
993 config_changed = B_TRUE;
994 spa->spa_config_generation++;
995 }
996
997 if (spa_is_root(spa))
998 vdev_rele(spa->spa_root_vdev);
999
1000 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1001 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1002
1003 /*
1004 * If anything changed, wait for it to sync. This ensures that,
1005 * from the system administrator's perspective, zpool(1M) commands
1006 * are synchronous. This is important for things like zpool offline:
1007 * when the command completes, you expect no further I/O from ZFS.
1008 */
1009 if (vd != NULL)
1010 txg_wait_synced(spa->spa_dsl_pool, 0);
1011
1012 /*
1013 * If the config changed, update the config cache.
1014 */
1015 if (config_changed) {
1016 mutex_enter(&spa_namespace_lock);
1017 spa_config_sync(spa, B_FALSE, B_TRUE);
1018 mutex_exit(&spa_namespace_lock);
1019 }
1020
1021 return (error);
1022 }
1023
1024 /*
1025 * ==========================================================================
1026 * Miscellaneous functions
1027 * ==========================================================================
1028 */
1029
1030 /*
1031 * Rename a spa_t.
1032 */
1033 int
1034 spa_rename(const char *name, const char *newname)
1035 {
1036 spa_t *spa;
1037 int err;
1038
1039 /*
1040 * Lookup the spa_t and grab the config lock for writing. We need to
1041 * actually open the pool so that we can sync out the necessary labels.
1042 * It's OK to call spa_open() with the namespace lock held because we
1043 * allow recursive calls for other reasons.
1044 */
1045 mutex_enter(&spa_namespace_lock);
1046 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1047 mutex_exit(&spa_namespace_lock);
1048 return (err);
1049 }
1050
1051 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1052
1053 avl_remove(&spa_namespace_avl, spa);
1054 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1055 avl_add(&spa_namespace_avl, spa);
1056
1057 /*
1058 * Sync all labels to disk with the new names by marking the root vdev
1059 * dirty and waiting for it to sync. It will pick up the new pool name
1060 * during the sync.
1061 */
1062 vdev_config_dirty(spa->spa_root_vdev);
1063
1064 spa_config_exit(spa, SCL_ALL, FTAG);
1065
1066 txg_wait_synced(spa->spa_dsl_pool, 0);
1067
1068 /*
1069 * Sync the updated config cache.
1070 */
1071 spa_config_sync(spa, B_FALSE, B_TRUE);
1072
1073 spa_close(spa, FTAG);
1074
1075 mutex_exit(&spa_namespace_lock);
1076
1077 return (0);
1078 }
1079
1080 /*
1081 * Return the spa_t associated with given pool_guid, if it exists. If
1082 * device_guid is non-zero, determine whether the pool exists *and* contains
1083 * a device with the specified device_guid.
1084 */
1085 spa_t *
1086 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1087 {
1088 spa_t *spa;
1089 avl_tree_t *t = &spa_namespace_avl;
1090
1091 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1092
1093 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1094 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1095 continue;
1096 if (spa->spa_root_vdev == NULL)
1097 continue;
1098 if (spa_guid(spa) == pool_guid) {
1099 if (device_guid == 0)
1100 break;
1101
1102 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1103 device_guid) != NULL)
1104 break;
1105
1106 /*
1107 * Check any devices we may be in the process of adding.
1108 */
1109 if (spa->spa_pending_vdev) {
1110 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1111 device_guid) != NULL)
1112 break;
1113 }
1114 }
1115 }
1116
1117 return (spa);
1118 }
1119
1120 /*
1121 * Determine whether a pool with the given pool_guid exists.
1122 */
1123 boolean_t
1124 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1125 {
1126 return (spa_by_guid(pool_guid, device_guid) != NULL);
1127 }
1128
1129 char *
1130 spa_strdup(const char *s)
1131 {
1132 size_t len;
1133 char *new;
1134
1135 len = strlen(s);
1136 new = kmem_alloc(len + 1, KM_SLEEP);
1137 bcopy(s, new, len);
1138 new[len] = '\0';
1139
1140 return (new);
1141 }
1142
1143 void
1144 spa_strfree(char *s)
1145 {
1146 kmem_free(s, strlen(s) + 1);
1147 }
1148
1149 uint64_t
1150 spa_get_random(uint64_t range)
1151 {
1152 uint64_t r;
1153
1154 ASSERT(range != 0);
1155
1156 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1157
1158 return (r % range);
1159 }
1160
1161 uint64_t
1162 spa_generate_guid(spa_t *spa)
1163 {
1164 uint64_t guid = spa_get_random(-1ULL);
1165
1166 if (spa != NULL) {
1167 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1168 guid = spa_get_random(-1ULL);
1169 } else {
1170 while (guid == 0 || spa_guid_exists(guid, 0))
1171 guid = spa_get_random(-1ULL);
1172 }
1173
1174 return (guid);
1175 }
1176
1177 void
1178 sprintf_blkptr(char *buf, const blkptr_t *bp)
1179 {
1180 char *type = NULL;
1181 char *checksum = NULL;
1182 char *compress = NULL;
1183
1184 if (bp != NULL) {
1185 type = dmu_ot[BP_GET_TYPE(bp)].ot_name;
1186 checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1187 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1188 }
1189
1190 SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1191 }
1192
1193 void
1194 spa_freeze(spa_t *spa)
1195 {
1196 uint64_t freeze_txg = 0;
1197
1198 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1199 if (spa->spa_freeze_txg == UINT64_MAX) {
1200 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1201 spa->spa_freeze_txg = freeze_txg;
1202 }
1203 spa_config_exit(spa, SCL_ALL, FTAG);
1204 if (freeze_txg != 0)
1205 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1206 }
1207
1208 void
1209 zfs_panic_recover(const char *fmt, ...)
1210 {
1211 va_list adx;
1212
1213 va_start(adx, fmt);
1214 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1215 va_end(adx);
1216 }
1217
1218 /*
1219 * This is a stripped-down version of strtoull, suitable only for converting
1220 * lowercase hexidecimal numbers that don't overflow.
1221 */
1222 uint64_t
1223 strtonum(const char *str, char **nptr)
1224 {
1225 uint64_t val = 0;
1226 char c;
1227 int digit;
1228
1229 while ((c = *str) != '\0') {
1230 if (c >= '0' && c <= '9')
1231 digit = c - '0';
1232 else if (c >= 'a' && c <= 'f')
1233 digit = 10 + c - 'a';
1234 else
1235 break;
1236
1237 val *= 16;
1238 val += digit;
1239
1240 str++;
1241 }
1242
1243 if (nptr)
1244 *nptr = (char *)str;
1245
1246 return (val);
1247 }
1248
1249 /*
1250 * ==========================================================================
1251 * Accessor functions
1252 * ==========================================================================
1253 */
1254
1255 boolean_t
1256 spa_shutting_down(spa_t *spa)
1257 {
1258 return (spa->spa_async_suspended);
1259 }
1260
1261 dsl_pool_t *
1262 spa_get_dsl(spa_t *spa)
1263 {
1264 return (spa->spa_dsl_pool);
1265 }
1266
1267 blkptr_t *
1268 spa_get_rootblkptr(spa_t *spa)
1269 {
1270 return (&spa->spa_ubsync.ub_rootbp);
1271 }
1272
1273 void
1274 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1275 {
1276 spa->spa_uberblock.ub_rootbp = *bp;
1277 }
1278
1279 void
1280 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1281 {
1282 if (spa->spa_root == NULL)
1283 buf[0] = '\0';
1284 else
1285 (void) strncpy(buf, spa->spa_root, buflen);
1286 }
1287
1288 int
1289 spa_sync_pass(spa_t *spa)
1290 {
1291 return (spa->spa_sync_pass);
1292 }
1293
1294 char *
1295 spa_name(spa_t *spa)
1296 {
1297 return (spa->spa_name);
1298 }
1299
1300 uint64_t
1301 spa_guid(spa_t *spa)
1302 {
1303 /*
1304 * If we fail to parse the config during spa_load(), we can go through
1305 * the error path (which posts an ereport) and end up here with no root
1306 * vdev. We stash the original pool guid in 'spa_load_guid' to handle
1307 * this case.
1308 */
1309 if (spa->spa_root_vdev != NULL)
1310 return (spa->spa_root_vdev->vdev_guid);
1311 else
1312 return (spa->spa_load_guid);
1313 }
1314
1315 uint64_t
1316 spa_last_synced_txg(spa_t *spa)
1317 {
1318 return (spa->spa_ubsync.ub_txg);
1319 }
1320
1321 uint64_t
1322 spa_first_txg(spa_t *spa)
1323 {
1324 return (spa->spa_first_txg);
1325 }
1326
1327 uint64_t
1328 spa_syncing_txg(spa_t *spa)
1329 {
1330 return (spa->spa_syncing_txg);
1331 }
1332
1333 pool_state_t
1334 spa_state(spa_t *spa)
1335 {
1336 return (spa->spa_state);
1337 }
1338
1339 spa_load_state_t
1340 spa_load_state(spa_t *spa)
1341 {
1342 return (spa->spa_load_state);
1343 }
1344
1345 uint64_t
1346 spa_freeze_txg(spa_t *spa)
1347 {
1348 return (spa->spa_freeze_txg);
1349 }
1350
1351 /* ARGSUSED */
1352 uint64_t
1353 spa_get_asize(spa_t *spa, uint64_t lsize)
1354 {
1355 /*
1356 * The worst case is single-sector max-parity RAID-Z blocks, in which
1357 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
1358 * times the size; so just assume that. Add to this the fact that
1359 * we can have up to 3 DVAs per bp, and one more factor of 2 because
1360 * the block may be dittoed with up to 3 DVAs by ddt_sync().
1361 */
1362 return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
1363 }
1364
1365 uint64_t
1366 spa_get_dspace(spa_t *spa)
1367 {
1368 return (spa->spa_dspace);
1369 }
1370
1371 void
1372 spa_update_dspace(spa_t *spa)
1373 {
1374 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1375 ddt_get_dedup_dspace(spa);
1376 }
1377
1378 /*
1379 * Return the failure mode that has been set to this pool. The default
1380 * behavior will be to block all I/Os when a complete failure occurs.
1381 */
1382 uint8_t
1383 spa_get_failmode(spa_t *spa)
1384 {
1385 return (spa->spa_failmode);
1386 }
1387
1388 boolean_t
1389 spa_suspended(spa_t *spa)
1390 {
1391 return (spa->spa_suspended);
1392 }
1393
1394 uint64_t
1395 spa_version(spa_t *spa)
1396 {
1397 return (spa->spa_ubsync.ub_version);
1398 }
1399
1400 boolean_t
1401 spa_deflate(spa_t *spa)
1402 {
1403 return (spa->spa_deflate);
1404 }
1405
1406 metaslab_class_t *
1407 spa_normal_class(spa_t *spa)
1408 {
1409 return (spa->spa_normal_class);
1410 }
1411
1412 metaslab_class_t *
1413 spa_log_class(spa_t *spa)
1414 {
1415 return (spa->spa_log_class);
1416 }
1417
1418 int
1419 spa_max_replication(spa_t *spa)
1420 {
1421 /*
1422 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1423 * handle BPs with more than one DVA allocated. Set our max
1424 * replication level accordingly.
1425 */
1426 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1427 return (1);
1428 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1429 }
1430
1431 int
1432 spa_prev_software_version(spa_t *spa)
1433 {
1434 return (spa->spa_prev_software_version);
1435 }
1436
1437 uint64_t
1438 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1439 {
1440 uint64_t asize = DVA_GET_ASIZE(dva);
1441 uint64_t dsize = asize;
1442
1443 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1444
1445 if (asize != 0 && spa->spa_deflate) {
1446 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1447 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1448 }
1449
1450 return (dsize);
1451 }
1452
1453 uint64_t
1454 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1455 {
1456 uint64_t dsize = 0;
1457
1458 for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1459 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1460
1461 return (dsize);
1462 }
1463
1464 uint64_t
1465 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1466 {
1467 uint64_t dsize = 0;
1468
1469 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1470
1471 for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1472 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1473
1474 spa_config_exit(spa, SCL_VDEV, FTAG);
1475
1476 return (dsize);
1477 }
1478
1479 /*
1480 * ==========================================================================
1481 * Initialization and Termination
1482 * ==========================================================================
1483 */
1484
1485 static int
1486 spa_name_compare(const void *a1, const void *a2)
1487 {
1488 const spa_t *s1 = a1;
1489 const spa_t *s2 = a2;
1490 int s;
1491
1492 s = strcmp(s1->spa_name, s2->spa_name);
1493 if (s > 0)
1494 return (1);
1495 if (s < 0)
1496 return (-1);
1497 return (0);
1498 }
1499
1500 int
1501 spa_busy(void)
1502 {
1503 return (spa_active_count);
1504 }
1505
1506 void
1507 spa_boot_init()
1508 {
1509 spa_config_load();
1510 }
1511
1512 void
1513 spa_init(int mode)
1514 {
1515 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1516 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1517 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1518 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1519
1520 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1521 offsetof(spa_t, spa_avl));
1522
1523 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1524 offsetof(spa_aux_t, aux_avl));
1525
1526 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1527 offsetof(spa_aux_t, aux_avl));
1528
1529 spa_mode_global = mode;
1530
1531 refcount_init();
1532 unique_init();
1533 zio_init();
1534 dmu_init();
1535 zil_init();
1536 vdev_cache_stat_init();
1537 zfs_prop_init();
1538 zpool_prop_init();
1539 spa_config_load();
1540 l2arc_start();
1541 }
1542
1543 void
1544 spa_fini(void)
1545 {
1546 l2arc_stop();
1547
1548 spa_evict_all();
1549
1550 vdev_cache_stat_fini();
1551 zil_fini();
1552 dmu_fini();
1553 zio_fini();
1554 unique_fini();
1555 refcount_fini();
1556
1557 avl_destroy(&spa_namespace_avl);
1558 avl_destroy(&spa_spare_avl);
1559 avl_destroy(&spa_l2cache_avl);
1560
1561 cv_destroy(&spa_namespace_cv);
1562 mutex_destroy(&spa_namespace_lock);
1563 mutex_destroy(&spa_spare_lock);
1564 mutex_destroy(&spa_l2cache_lock);
1565 }
1566
1567 /*
1568 * Return whether this pool has slogs. No locking needed.
1569 * It's not a problem if the wrong answer is returned as it's only for
1570 * performance and not correctness
1571 */
1572 boolean_t
1573 spa_has_slogs(spa_t *spa)
1574 {
1575 return (spa->spa_log_class->mc_rotor != NULL);
1576 }
1577
1578 spa_log_state_t
1579 spa_get_log_state(spa_t *spa)
1580 {
1581 return (spa->spa_log_state);
1582 }
1583
1584 void
1585 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1586 {
1587 spa->spa_log_state = state;
1588 }
1589
1590 boolean_t
1591 spa_is_root(spa_t *spa)
1592 {
1593 return (spa->spa_is_root);
1594 }
1595
1596 boolean_t
1597 spa_writeable(spa_t *spa)
1598 {
1599 return (!!(spa->spa_mode & FWRITE));
1600 }
1601
1602 int
1603 spa_mode(spa_t *spa)
1604 {
1605 return (spa->spa_mode);
1606 }
1607
1608 uint64_t
1609 spa_bootfs(spa_t *spa)
1610 {
1611 return (spa->spa_bootfs);
1612 }
1613
1614 uint64_t
1615 spa_delegation(spa_t *spa)
1616 {
1617 return (spa->spa_delegation);
1618 }
1619
1620 objset_t *
1621 spa_meta_objset(spa_t *spa)
1622 {
1623 return (spa->spa_meta_objset);
1624 }
1625
1626 enum zio_checksum
1627 spa_dedup_checksum(spa_t *spa)
1628 {
1629 return (spa->spa_dedup_checksum);
1630 }
1631
1632 /*
1633 * Reset pool scan stat per scan pass (or reboot).
1634 */
1635 void
1636 spa_scan_stat_init(spa_t *spa)
1637 {
1638 /* data not stored on disk */
1639 spa->spa_scan_pass_start = gethrestime_sec();
1640 spa->spa_scan_pass_exam = 0;
1641 vdev_scan_stat_init(spa->spa_root_vdev);
1642 }
1643
1644 /*
1645 * Get scan stats for zpool status reports
1646 */
1647 int
1648 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1649 {
1650 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1651
1652 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1653 return (ENOENT);
1654 bzero(ps, sizeof (pool_scan_stat_t));
1655
1656 /* data stored on disk */
1657 ps->pss_func = scn->scn_phys.scn_func;
1658 ps->pss_start_time = scn->scn_phys.scn_start_time;
1659 ps->pss_end_time = scn->scn_phys.scn_end_time;
1660 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1661 ps->pss_examined = scn->scn_phys.scn_examined;
1662 ps->pss_to_process = scn->scn_phys.scn_to_process;
1663 ps->pss_processed = scn->scn_phys.scn_processed;
1664 ps->pss_errors = scn->scn_phys.scn_errors;
1665 ps->pss_state = scn->scn_phys.scn_state;
1666
1667 /* data not stored on disk */
1668 ps->pss_pass_start = spa->spa_scan_pass_start;
1669 ps->pss_pass_exam = spa->spa_scan_pass_exam;
1670
1671 return (0);
1672 }