]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa_misc.c
Rebase master to b105
[mirror_zfs.git] / module / zfs / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #include <sys/zfs_context.h>
27 #include <sys/spa_impl.h>
28 #include <sys/zio.h>
29 #include <sys/zio_checksum.h>
30 #include <sys/zio_compress.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/zap.h>
34 #include <sys/zil.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/txg.h>
39 #include <sys/avl.h>
40 #include <sys/unique.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/sunddi.h>
47 #include <sys/arc.h>
48 #include "zfs_prop.h"
49
50 /*
51 * SPA locking
52 *
53 * There are four basic locks for managing spa_t structures:
54 *
55 * spa_namespace_lock (global mutex)
56 *
57 * This lock must be acquired to do any of the following:
58 *
59 * - Lookup a spa_t by name
60 * - Add or remove a spa_t from the namespace
61 * - Increase spa_refcount from non-zero
62 * - Check if spa_refcount is zero
63 * - Rename a spa_t
64 * - add/remove/attach/detach devices
65 * - Held for the duration of create/destroy/import/export
66 *
67 * It does not need to handle recursion. A create or destroy may
68 * reference objects (files or zvols) in other pools, but by
69 * definition they must have an existing reference, and will never need
70 * to lookup a spa_t by name.
71 *
72 * spa_refcount (per-spa refcount_t protected by mutex)
73 *
74 * This reference count keep track of any active users of the spa_t. The
75 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
76 * the refcount is never really 'zero' - opening a pool implicitly keeps
77 * some references in the DMU. Internally we check against spa_minref, but
78 * present the image of a zero/non-zero value to consumers.
79 *
80 * spa_config_lock[] (per-spa array of rwlocks)
81 *
82 * This protects the spa_t from config changes, and must be held in
83 * the following circumstances:
84 *
85 * - RW_READER to perform I/O to the spa
86 * - RW_WRITER to change the vdev config
87 *
88 * The locking order is fairly straightforward:
89 *
90 * spa_namespace_lock -> spa_refcount
91 *
92 * The namespace lock must be acquired to increase the refcount from 0
93 * or to check if it is zero.
94 *
95 * spa_refcount -> spa_config_lock[]
96 *
97 * There must be at least one valid reference on the spa_t to acquire
98 * the config lock.
99 *
100 * spa_namespace_lock -> spa_config_lock[]
101 *
102 * The namespace lock must always be taken before the config lock.
103 *
104 *
105 * The spa_namespace_lock can be acquired directly and is globally visible.
106 *
107 * The namespace is manipulated using the following functions, all of which
108 * require the spa_namespace_lock to be held.
109 *
110 * spa_lookup() Lookup a spa_t by name.
111 *
112 * spa_add() Create a new spa_t in the namespace.
113 *
114 * spa_remove() Remove a spa_t from the namespace. This also
115 * frees up any memory associated with the spa_t.
116 *
117 * spa_next() Returns the next spa_t in the system, or the
118 * first if NULL is passed.
119 *
120 * spa_evict_all() Shutdown and remove all spa_t structures in
121 * the system.
122 *
123 * spa_guid_exists() Determine whether a pool/device guid exists.
124 *
125 * The spa_refcount is manipulated using the following functions:
126 *
127 * spa_open_ref() Adds a reference to the given spa_t. Must be
128 * called with spa_namespace_lock held if the
129 * refcount is currently zero.
130 *
131 * spa_close() Remove a reference from the spa_t. This will
132 * not free the spa_t or remove it from the
133 * namespace. No locking is required.
134 *
135 * spa_refcount_zero() Returns true if the refcount is currently
136 * zero. Must be called with spa_namespace_lock
137 * held.
138 *
139 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
140 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
141 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
142 *
143 * To read the configuration, it suffices to hold one of these locks as reader.
144 * To modify the configuration, you must hold all locks as writer. To modify
145 * vdev state without altering the vdev tree's topology (e.g. online/offline),
146 * you must hold SCL_STATE and SCL_ZIO as writer.
147 *
148 * We use these distinct config locks to avoid recursive lock entry.
149 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
150 * block allocations (SCL_ALLOC), which may require reading space maps
151 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
152 *
153 * The spa config locks cannot be normal rwlocks because we need the
154 * ability to hand off ownership. For example, SCL_ZIO is acquired
155 * by the issuing thread and later released by an interrupt thread.
156 * They do, however, obey the usual write-wanted semantics to prevent
157 * writer (i.e. system administrator) starvation.
158 *
159 * The lock acquisition rules are as follows:
160 *
161 * SCL_CONFIG
162 * Protects changes to the vdev tree topology, such as vdev
163 * add/remove/attach/detach. Protects the dirty config list
164 * (spa_config_dirty_list) and the set of spares and l2arc devices.
165 *
166 * SCL_STATE
167 * Protects changes to pool state and vdev state, such as vdev
168 * online/offline/fault/degrade/clear. Protects the dirty state list
169 * (spa_state_dirty_list) and global pool state (spa_state).
170 *
171 * SCL_ALLOC
172 * Protects changes to metaslab groups and classes.
173 * Held as reader by metaslab_alloc() and metaslab_claim().
174 *
175 * SCL_ZIO
176 * Held by bp-level zios (those which have no io_vd upon entry)
177 * to prevent changes to the vdev tree. The bp-level zio implicitly
178 * protects all of its vdev child zios, which do not hold SCL_ZIO.
179 *
180 * SCL_FREE
181 * Protects changes to metaslab groups and classes.
182 * Held as reader by metaslab_free(). SCL_FREE is distinct from
183 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
184 * blocks in zio_done() while another i/o that holds either
185 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
186 *
187 * SCL_VDEV
188 * Held as reader to prevent changes to the vdev tree during trivial
189 * inquiries such as bp_get_dasize(). SCL_VDEV is distinct from the
190 * other locks, and lower than all of them, to ensure that it's safe
191 * to acquire regardless of caller context.
192 *
193 * In addition, the following rules apply:
194 *
195 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
196 * The lock ordering is SCL_CONFIG > spa_props_lock.
197 *
198 * (b) I/O operations on leaf vdevs. For any zio operation that takes
199 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
200 * or zio_write_phys() -- the caller must ensure that the config cannot
201 * cannot change in the interim, and that the vdev cannot be reopened.
202 * SCL_STATE as reader suffices for both.
203 *
204 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
205 *
206 * spa_vdev_enter() Acquire the namespace lock and the config lock
207 * for writing.
208 *
209 * spa_vdev_exit() Release the config lock, wait for all I/O
210 * to complete, sync the updated configs to the
211 * cache, and release the namespace lock.
212 *
213 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
214 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
215 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
216 *
217 * spa_rename() is also implemented within this file since is requires
218 * manipulation of the namespace.
219 */
220
221 static avl_tree_t spa_namespace_avl;
222 kmutex_t spa_namespace_lock;
223 static kcondvar_t spa_namespace_cv;
224 static int spa_active_count;
225 int spa_max_replication_override = SPA_DVAS_PER_BP;
226
227 static kmutex_t spa_spare_lock;
228 static avl_tree_t spa_spare_avl;
229 static kmutex_t spa_l2cache_lock;
230 static avl_tree_t spa_l2cache_avl;
231
232 kmem_cache_t *spa_buffer_pool;
233 int spa_mode_global;
234
235 #ifdef ZFS_DEBUG
236 /* Everything except dprintf is on by default in debug builds */
237 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
238 #else
239 int zfs_flags = 0;
240 #endif
241
242 /*
243 * zfs_recover can be set to nonzero to attempt to recover from
244 * otherwise-fatal errors, typically caused by on-disk corruption. When
245 * set, calls to zfs_panic_recover() will turn into warning messages.
246 */
247 int zfs_recover = 0;
248
249
250 /*
251 * ==========================================================================
252 * SPA config locking
253 * ==========================================================================
254 */
255 static void
256 spa_config_lock_init(spa_t *spa)
257 {
258 for (int i = 0; i < SCL_LOCKS; i++) {
259 spa_config_lock_t *scl = &spa->spa_config_lock[i];
260 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
261 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
262 refcount_create(&scl->scl_count);
263 scl->scl_writer = NULL;
264 scl->scl_write_wanted = 0;
265 }
266 }
267
268 static void
269 spa_config_lock_destroy(spa_t *spa)
270 {
271 for (int i = 0; i < SCL_LOCKS; i++) {
272 spa_config_lock_t *scl = &spa->spa_config_lock[i];
273 mutex_destroy(&scl->scl_lock);
274 cv_destroy(&scl->scl_cv);
275 refcount_destroy(&scl->scl_count);
276 ASSERT(scl->scl_writer == NULL);
277 ASSERT(scl->scl_write_wanted == 0);
278 }
279 }
280
281 int
282 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
283 {
284 for (int i = 0; i < SCL_LOCKS; i++) {
285 spa_config_lock_t *scl = &spa->spa_config_lock[i];
286 if (!(locks & (1 << i)))
287 continue;
288 mutex_enter(&scl->scl_lock);
289 if (rw == RW_READER) {
290 if (scl->scl_writer || scl->scl_write_wanted) {
291 mutex_exit(&scl->scl_lock);
292 spa_config_exit(spa, locks ^ (1 << i), tag);
293 return (0);
294 }
295 } else {
296 ASSERT(scl->scl_writer != curthread);
297 if (!refcount_is_zero(&scl->scl_count)) {
298 mutex_exit(&scl->scl_lock);
299 spa_config_exit(spa, locks ^ (1 << i), tag);
300 return (0);
301 }
302 scl->scl_writer = curthread;
303 }
304 (void) refcount_add(&scl->scl_count, tag);
305 mutex_exit(&scl->scl_lock);
306 }
307 return (1);
308 }
309
310 void
311 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
312 {
313 for (int i = 0; i < SCL_LOCKS; i++) {
314 spa_config_lock_t *scl = &spa->spa_config_lock[i];
315 if (!(locks & (1 << i)))
316 continue;
317 mutex_enter(&scl->scl_lock);
318 if (rw == RW_READER) {
319 while (scl->scl_writer || scl->scl_write_wanted) {
320 cv_wait(&scl->scl_cv, &scl->scl_lock);
321 }
322 } else {
323 ASSERT(scl->scl_writer != curthread);
324 while (!refcount_is_zero(&scl->scl_count)) {
325 scl->scl_write_wanted++;
326 cv_wait(&scl->scl_cv, &scl->scl_lock);
327 scl->scl_write_wanted--;
328 }
329 scl->scl_writer = curthread;
330 }
331 (void) refcount_add(&scl->scl_count, tag);
332 mutex_exit(&scl->scl_lock);
333 }
334 }
335
336 void
337 spa_config_exit(spa_t *spa, int locks, void *tag)
338 {
339 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
340 spa_config_lock_t *scl = &spa->spa_config_lock[i];
341 if (!(locks & (1 << i)))
342 continue;
343 mutex_enter(&scl->scl_lock);
344 ASSERT(!refcount_is_zero(&scl->scl_count));
345 if (refcount_remove(&scl->scl_count, tag) == 0) {
346 ASSERT(scl->scl_writer == NULL ||
347 scl->scl_writer == curthread);
348 scl->scl_writer = NULL; /* OK in either case */
349 cv_broadcast(&scl->scl_cv);
350 }
351 mutex_exit(&scl->scl_lock);
352 }
353 }
354
355 int
356 spa_config_held(spa_t *spa, int locks, krw_t rw)
357 {
358 int locks_held = 0;
359
360 for (int i = 0; i < SCL_LOCKS; i++) {
361 spa_config_lock_t *scl = &spa->spa_config_lock[i];
362 if (!(locks & (1 << i)))
363 continue;
364 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
365 (rw == RW_WRITER && scl->scl_writer == curthread))
366 locks_held |= 1 << i;
367 }
368
369 return (locks_held);
370 }
371
372 /*
373 * ==========================================================================
374 * SPA namespace functions
375 * ==========================================================================
376 */
377
378 /*
379 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
380 * Returns NULL if no matching spa_t is found.
381 */
382 spa_t *
383 spa_lookup(const char *name)
384 {
385 static spa_t search; /* spa_t is large; don't allocate on stack */
386 spa_t *spa;
387 avl_index_t where;
388 char c;
389 char *cp;
390
391 ASSERT(MUTEX_HELD(&spa_namespace_lock));
392
393 /*
394 * If it's a full dataset name, figure out the pool name and
395 * just use that.
396 */
397 cp = strpbrk(name, "/@");
398 if (cp) {
399 c = *cp;
400 *cp = '\0';
401 }
402
403 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
404 spa = avl_find(&spa_namespace_avl, &search, &where);
405
406 if (cp)
407 *cp = c;
408
409 return (spa);
410 }
411
412 /*
413 * Create an uninitialized spa_t with the given name. Requires
414 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
415 * exist by calling spa_lookup() first.
416 */
417 spa_t *
418 spa_add(const char *name, const char *altroot)
419 {
420 spa_t *spa;
421 spa_config_dirent_t *dp;
422
423 ASSERT(MUTEX_HELD(&spa_namespace_lock));
424
425 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
426
427 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
428 mutex_init(&spa->spa_async_root_lock, NULL, MUTEX_DEFAULT, NULL);
429 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
430 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
431 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
432 mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
433 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
434 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
435
436 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
437 cv_init(&spa->spa_async_root_cv, NULL, CV_DEFAULT, NULL);
438 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
439 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
440
441 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
442 spa->spa_state = POOL_STATE_UNINITIALIZED;
443 spa->spa_freeze_txg = UINT64_MAX;
444 spa->spa_final_txg = UINT64_MAX;
445
446 refcount_create(&spa->spa_refcount);
447 spa_config_lock_init(spa);
448
449 avl_add(&spa_namespace_avl, spa);
450
451 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
452
453 /*
454 * Set the alternate root, if there is one.
455 */
456 if (altroot) {
457 spa->spa_root = spa_strdup(altroot);
458 spa_active_count++;
459 }
460
461 /*
462 * Every pool starts with the default cachefile
463 */
464 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
465 offsetof(spa_config_dirent_t, scd_link));
466
467 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
468 dp->scd_path = spa_strdup(spa_config_path);
469 list_insert_head(&spa->spa_config_list, dp);
470
471 return (spa);
472 }
473
474 /*
475 * Removes a spa_t from the namespace, freeing up any memory used. Requires
476 * spa_namespace_lock. This is called only after the spa_t has been closed and
477 * deactivated.
478 */
479 void
480 spa_remove(spa_t *spa)
481 {
482 spa_config_dirent_t *dp;
483
484 ASSERT(MUTEX_HELD(&spa_namespace_lock));
485 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
486
487 avl_remove(&spa_namespace_avl, spa);
488 cv_broadcast(&spa_namespace_cv);
489
490 if (spa->spa_root) {
491 spa_strfree(spa->spa_root);
492 spa_active_count--;
493 }
494
495 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
496 list_remove(&spa->spa_config_list, dp);
497 if (dp->scd_path != NULL)
498 spa_strfree(dp->scd_path);
499 kmem_free(dp, sizeof (spa_config_dirent_t));
500 }
501
502 list_destroy(&spa->spa_config_list);
503
504 spa_config_set(spa, NULL);
505
506 refcount_destroy(&spa->spa_refcount);
507
508 spa_config_lock_destroy(spa);
509
510 cv_destroy(&spa->spa_async_cv);
511 cv_destroy(&spa->spa_async_root_cv);
512 cv_destroy(&spa->spa_scrub_io_cv);
513 cv_destroy(&spa->spa_suspend_cv);
514
515 mutex_destroy(&spa->spa_async_lock);
516 mutex_destroy(&spa->spa_async_root_lock);
517 mutex_destroy(&spa->spa_scrub_lock);
518 mutex_destroy(&spa->spa_errlog_lock);
519 mutex_destroy(&spa->spa_errlist_lock);
520 mutex_destroy(&spa->spa_sync_bplist.bpl_lock);
521 mutex_destroy(&spa->spa_history_lock);
522 mutex_destroy(&spa->spa_props_lock);
523 mutex_destroy(&spa->spa_suspend_lock);
524
525 kmem_free(spa, sizeof (spa_t));
526 }
527
528 /*
529 * Given a pool, return the next pool in the namespace, or NULL if there is
530 * none. If 'prev' is NULL, return the first pool.
531 */
532 spa_t *
533 spa_next(spa_t *prev)
534 {
535 ASSERT(MUTEX_HELD(&spa_namespace_lock));
536
537 if (prev)
538 return (AVL_NEXT(&spa_namespace_avl, prev));
539 else
540 return (avl_first(&spa_namespace_avl));
541 }
542
543 /*
544 * ==========================================================================
545 * SPA refcount functions
546 * ==========================================================================
547 */
548
549 /*
550 * Add a reference to the given spa_t. Must have at least one reference, or
551 * have the namespace lock held.
552 */
553 void
554 spa_open_ref(spa_t *spa, void *tag)
555 {
556 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
557 MUTEX_HELD(&spa_namespace_lock));
558 (void) refcount_add(&spa->spa_refcount, tag);
559 }
560
561 /*
562 * Remove a reference to the given spa_t. Must have at least one reference, or
563 * have the namespace lock held.
564 */
565 void
566 spa_close(spa_t *spa, void *tag)
567 {
568 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
569 MUTEX_HELD(&spa_namespace_lock));
570 (void) refcount_remove(&spa->spa_refcount, tag);
571 }
572
573 /*
574 * Check to see if the spa refcount is zero. Must be called with
575 * spa_namespace_lock held. We really compare against spa_minref, which is the
576 * number of references acquired when opening a pool
577 */
578 boolean_t
579 spa_refcount_zero(spa_t *spa)
580 {
581 ASSERT(MUTEX_HELD(&spa_namespace_lock));
582
583 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
584 }
585
586 /*
587 * ==========================================================================
588 * SPA spare and l2cache tracking
589 * ==========================================================================
590 */
591
592 /*
593 * Hot spares and cache devices are tracked using the same code below,
594 * for 'auxiliary' devices.
595 */
596
597 typedef struct spa_aux {
598 uint64_t aux_guid;
599 uint64_t aux_pool;
600 avl_node_t aux_avl;
601 int aux_count;
602 } spa_aux_t;
603
604 static int
605 spa_aux_compare(const void *a, const void *b)
606 {
607 const spa_aux_t *sa = a;
608 const spa_aux_t *sb = b;
609
610 if (sa->aux_guid < sb->aux_guid)
611 return (-1);
612 else if (sa->aux_guid > sb->aux_guid)
613 return (1);
614 else
615 return (0);
616 }
617
618 void
619 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
620 {
621 avl_index_t where;
622 spa_aux_t search;
623 spa_aux_t *aux;
624
625 search.aux_guid = vd->vdev_guid;
626 if ((aux = avl_find(avl, &search, &where)) != NULL) {
627 aux->aux_count++;
628 } else {
629 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
630 aux->aux_guid = vd->vdev_guid;
631 aux->aux_count = 1;
632 avl_insert(avl, aux, where);
633 }
634 }
635
636 void
637 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
638 {
639 spa_aux_t search;
640 spa_aux_t *aux;
641 avl_index_t where;
642
643 search.aux_guid = vd->vdev_guid;
644 aux = avl_find(avl, &search, &where);
645
646 ASSERT(aux != NULL);
647
648 if (--aux->aux_count == 0) {
649 avl_remove(avl, aux);
650 kmem_free(aux, sizeof (spa_aux_t));
651 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
652 aux->aux_pool = 0ULL;
653 }
654 }
655
656 boolean_t
657 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
658 {
659 spa_aux_t search, *found;
660
661 search.aux_guid = guid;
662 found = avl_find(avl, &search, NULL);
663
664 if (pool) {
665 if (found)
666 *pool = found->aux_pool;
667 else
668 *pool = 0ULL;
669 }
670
671 if (refcnt) {
672 if (found)
673 *refcnt = found->aux_count;
674 else
675 *refcnt = 0;
676 }
677
678 return (found != NULL);
679 }
680
681 void
682 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
683 {
684 spa_aux_t search, *found;
685 avl_index_t where;
686
687 search.aux_guid = vd->vdev_guid;
688 found = avl_find(avl, &search, &where);
689 ASSERT(found != NULL);
690 ASSERT(found->aux_pool == 0ULL);
691
692 found->aux_pool = spa_guid(vd->vdev_spa);
693 }
694
695 /*
696 * Spares are tracked globally due to the following constraints:
697 *
698 * - A spare may be part of multiple pools.
699 * - A spare may be added to a pool even if it's actively in use within
700 * another pool.
701 * - A spare in use in any pool can only be the source of a replacement if
702 * the target is a spare in the same pool.
703 *
704 * We keep track of all spares on the system through the use of a reference
705 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
706 * spare, then we bump the reference count in the AVL tree. In addition, we set
707 * the 'vdev_isspare' member to indicate that the device is a spare (active or
708 * inactive). When a spare is made active (used to replace a device in the
709 * pool), we also keep track of which pool its been made a part of.
710 *
711 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
712 * called under the spa_namespace lock as part of vdev reconfiguration. The
713 * separate spare lock exists for the status query path, which does not need to
714 * be completely consistent with respect to other vdev configuration changes.
715 */
716
717 static int
718 spa_spare_compare(const void *a, const void *b)
719 {
720 return (spa_aux_compare(a, b));
721 }
722
723 void
724 spa_spare_add(vdev_t *vd)
725 {
726 mutex_enter(&spa_spare_lock);
727 ASSERT(!vd->vdev_isspare);
728 spa_aux_add(vd, &spa_spare_avl);
729 vd->vdev_isspare = B_TRUE;
730 mutex_exit(&spa_spare_lock);
731 }
732
733 void
734 spa_spare_remove(vdev_t *vd)
735 {
736 mutex_enter(&spa_spare_lock);
737 ASSERT(vd->vdev_isspare);
738 spa_aux_remove(vd, &spa_spare_avl);
739 vd->vdev_isspare = B_FALSE;
740 mutex_exit(&spa_spare_lock);
741 }
742
743 boolean_t
744 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
745 {
746 boolean_t found;
747
748 mutex_enter(&spa_spare_lock);
749 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
750 mutex_exit(&spa_spare_lock);
751
752 return (found);
753 }
754
755 void
756 spa_spare_activate(vdev_t *vd)
757 {
758 mutex_enter(&spa_spare_lock);
759 ASSERT(vd->vdev_isspare);
760 spa_aux_activate(vd, &spa_spare_avl);
761 mutex_exit(&spa_spare_lock);
762 }
763
764 /*
765 * Level 2 ARC devices are tracked globally for the same reasons as spares.
766 * Cache devices currently only support one pool per cache device, and so
767 * for these devices the aux reference count is currently unused beyond 1.
768 */
769
770 static int
771 spa_l2cache_compare(const void *a, const void *b)
772 {
773 return (spa_aux_compare(a, b));
774 }
775
776 void
777 spa_l2cache_add(vdev_t *vd)
778 {
779 mutex_enter(&spa_l2cache_lock);
780 ASSERT(!vd->vdev_isl2cache);
781 spa_aux_add(vd, &spa_l2cache_avl);
782 vd->vdev_isl2cache = B_TRUE;
783 mutex_exit(&spa_l2cache_lock);
784 }
785
786 void
787 spa_l2cache_remove(vdev_t *vd)
788 {
789 mutex_enter(&spa_l2cache_lock);
790 ASSERT(vd->vdev_isl2cache);
791 spa_aux_remove(vd, &spa_l2cache_avl);
792 vd->vdev_isl2cache = B_FALSE;
793 mutex_exit(&spa_l2cache_lock);
794 }
795
796 boolean_t
797 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
798 {
799 boolean_t found;
800
801 mutex_enter(&spa_l2cache_lock);
802 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
803 mutex_exit(&spa_l2cache_lock);
804
805 return (found);
806 }
807
808 void
809 spa_l2cache_activate(vdev_t *vd)
810 {
811 mutex_enter(&spa_l2cache_lock);
812 ASSERT(vd->vdev_isl2cache);
813 spa_aux_activate(vd, &spa_l2cache_avl);
814 mutex_exit(&spa_l2cache_lock);
815 }
816
817 void
818 spa_l2cache_space_update(vdev_t *vd, int64_t space, int64_t alloc)
819 {
820 vdev_space_update(vd, space, alloc, B_FALSE);
821 }
822
823 /*
824 * ==========================================================================
825 * SPA vdev locking
826 * ==========================================================================
827 */
828
829 /*
830 * Lock the given spa_t for the purpose of adding or removing a vdev.
831 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
832 * It returns the next transaction group for the spa_t.
833 */
834 uint64_t
835 spa_vdev_enter(spa_t *spa)
836 {
837 mutex_enter(&spa_namespace_lock);
838
839 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
840
841 return (spa_last_synced_txg(spa) + 1);
842 }
843
844 /*
845 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
846 * locking of spa_vdev_enter(), we also want make sure the transactions have
847 * synced to disk, and then update the global configuration cache with the new
848 * information.
849 */
850 int
851 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
852 {
853 int config_changed = B_FALSE;
854
855 ASSERT(txg > spa_last_synced_txg(spa));
856
857 spa->spa_pending_vdev = NULL;
858
859 /*
860 * Reassess the DTLs.
861 */
862 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
863
864 /*
865 * If the config changed, notify the scrub thread that it must restart.
866 */
867 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
868 dsl_pool_scrub_restart(spa->spa_dsl_pool);
869 config_changed = B_TRUE;
870 }
871
872 spa_config_exit(spa, SCL_ALL, spa);
873
874 /*
875 * Note: this txg_wait_synced() is important because it ensures
876 * that there won't be more than one config change per txg.
877 * This allows us to use the txg as the generation number.
878 */
879 if (error == 0)
880 txg_wait_synced(spa->spa_dsl_pool, txg);
881
882 if (vd != NULL) {
883 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
884 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
885 vdev_free(vd);
886 spa_config_exit(spa, SCL_ALL, spa);
887 }
888
889 /*
890 * If the config changed, update the config cache.
891 */
892 if (config_changed)
893 spa_config_sync(spa, B_FALSE, B_TRUE);
894
895 mutex_exit(&spa_namespace_lock);
896
897 return (error);
898 }
899
900 /*
901 * Lock the given spa_t for the purpose of changing vdev state.
902 */
903 void
904 spa_vdev_state_enter(spa_t *spa)
905 {
906 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
907 }
908
909 int
910 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
911 {
912 if (vd != NULL)
913 vdev_state_dirty(vd->vdev_top);
914
915 spa_config_exit(spa, SCL_STATE_ALL, spa);
916
917 /*
918 * If anything changed, wait for it to sync. This ensures that,
919 * from the system administrator's perspective, zpool(1M) commands
920 * are synchronous. This is important for things like zpool offline:
921 * when the command completes, you expect no further I/O from ZFS.
922 */
923 if (vd != NULL)
924 txg_wait_synced(spa->spa_dsl_pool, 0);
925
926 return (error);
927 }
928
929 /*
930 * ==========================================================================
931 * Miscellaneous functions
932 * ==========================================================================
933 */
934
935 /*
936 * Rename a spa_t.
937 */
938 int
939 spa_rename(const char *name, const char *newname)
940 {
941 spa_t *spa;
942 int err;
943
944 /*
945 * Lookup the spa_t and grab the config lock for writing. We need to
946 * actually open the pool so that we can sync out the necessary labels.
947 * It's OK to call spa_open() with the namespace lock held because we
948 * allow recursive calls for other reasons.
949 */
950 mutex_enter(&spa_namespace_lock);
951 if ((err = spa_open(name, &spa, FTAG)) != 0) {
952 mutex_exit(&spa_namespace_lock);
953 return (err);
954 }
955
956 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
957
958 avl_remove(&spa_namespace_avl, spa);
959 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
960 avl_add(&spa_namespace_avl, spa);
961
962 /*
963 * Sync all labels to disk with the new names by marking the root vdev
964 * dirty and waiting for it to sync. It will pick up the new pool name
965 * during the sync.
966 */
967 vdev_config_dirty(spa->spa_root_vdev);
968
969 spa_config_exit(spa, SCL_ALL, FTAG);
970
971 txg_wait_synced(spa->spa_dsl_pool, 0);
972
973 /*
974 * Sync the updated config cache.
975 */
976 spa_config_sync(spa, B_FALSE, B_TRUE);
977
978 spa_close(spa, FTAG);
979
980 mutex_exit(&spa_namespace_lock);
981
982 return (0);
983 }
984
985
986 /*
987 * Determine whether a pool with given pool_guid exists. If device_guid is
988 * non-zero, determine whether the pool exists *and* contains a device with the
989 * specified device_guid.
990 */
991 boolean_t
992 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
993 {
994 spa_t *spa;
995 avl_tree_t *t = &spa_namespace_avl;
996
997 ASSERT(MUTEX_HELD(&spa_namespace_lock));
998
999 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1000 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1001 continue;
1002 if (spa->spa_root_vdev == NULL)
1003 continue;
1004 if (spa_guid(spa) == pool_guid) {
1005 if (device_guid == 0)
1006 break;
1007
1008 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1009 device_guid) != NULL)
1010 break;
1011
1012 /*
1013 * Check any devices we may be in the process of adding.
1014 */
1015 if (spa->spa_pending_vdev) {
1016 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1017 device_guid) != NULL)
1018 break;
1019 }
1020 }
1021 }
1022
1023 return (spa != NULL);
1024 }
1025
1026 char *
1027 spa_strdup(const char *s)
1028 {
1029 size_t len;
1030 char *new;
1031
1032 len = strlen(s);
1033 new = kmem_alloc(len + 1, KM_SLEEP);
1034 bcopy(s, new, len);
1035 new[len] = '\0';
1036
1037 return (new);
1038 }
1039
1040 void
1041 spa_strfree(char *s)
1042 {
1043 kmem_free(s, strlen(s) + 1);
1044 }
1045
1046 uint64_t
1047 spa_get_random(uint64_t range)
1048 {
1049 uint64_t r;
1050
1051 ASSERT(range != 0);
1052
1053 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1054
1055 return (r % range);
1056 }
1057
1058 void
1059 sprintf_blkptr(char *buf, int len, const blkptr_t *bp)
1060 {
1061 int d;
1062
1063 if (bp == NULL) {
1064 (void) snprintf(buf, len, "<NULL>");
1065 return;
1066 }
1067
1068 if (BP_IS_HOLE(bp)) {
1069 (void) snprintf(buf, len, "<hole>");
1070 return;
1071 }
1072
1073 (void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ",
1074 (u_longlong_t)BP_GET_LEVEL(bp),
1075 dmu_ot[BP_GET_TYPE(bp)].ot_name,
1076 (u_longlong_t)BP_GET_LSIZE(bp),
1077 (u_longlong_t)BP_GET_PSIZE(bp));
1078
1079 for (d = 0; d < BP_GET_NDVAS(bp); d++) {
1080 const dva_t *dva = &bp->blk_dva[d];
1081 (void) snprintf(buf + strlen(buf), len - strlen(buf),
1082 "DVA[%d]=<%llu:%llx:%llx> ", d,
1083 (u_longlong_t)DVA_GET_VDEV(dva),
1084 (u_longlong_t)DVA_GET_OFFSET(dva),
1085 (u_longlong_t)DVA_GET_ASIZE(dva));
1086 }
1087
1088 (void) snprintf(buf + strlen(buf), len - strlen(buf),
1089 "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx",
1090 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name,
1091 zio_compress_table[BP_GET_COMPRESS(bp)].ci_name,
1092 BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",
1093 BP_IS_GANG(bp) ? "gang" : "contiguous",
1094 (u_longlong_t)bp->blk_birth,
1095 (u_longlong_t)bp->blk_fill,
1096 (u_longlong_t)bp->blk_cksum.zc_word[0],
1097 (u_longlong_t)bp->blk_cksum.zc_word[1],
1098 (u_longlong_t)bp->blk_cksum.zc_word[2],
1099 (u_longlong_t)bp->blk_cksum.zc_word[3]);
1100 }
1101
1102 void
1103 spa_freeze(spa_t *spa)
1104 {
1105 uint64_t freeze_txg = 0;
1106
1107 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1108 if (spa->spa_freeze_txg == UINT64_MAX) {
1109 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1110 spa->spa_freeze_txg = freeze_txg;
1111 }
1112 spa_config_exit(spa, SCL_ALL, FTAG);
1113 if (freeze_txg != 0)
1114 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1115 }
1116
1117 void
1118 zfs_panic_recover(const char *fmt, ...)
1119 {
1120 va_list adx;
1121
1122 va_start(adx, fmt);
1123 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1124 va_end(adx);
1125 }
1126
1127 /*
1128 * ==========================================================================
1129 * Accessor functions
1130 * ==========================================================================
1131 */
1132
1133 boolean_t
1134 spa_shutting_down(spa_t *spa)
1135 {
1136 return (spa->spa_async_suspended);
1137 }
1138
1139 dsl_pool_t *
1140 spa_get_dsl(spa_t *spa)
1141 {
1142 return (spa->spa_dsl_pool);
1143 }
1144
1145 blkptr_t *
1146 spa_get_rootblkptr(spa_t *spa)
1147 {
1148 return (&spa->spa_ubsync.ub_rootbp);
1149 }
1150
1151 void
1152 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1153 {
1154 spa->spa_uberblock.ub_rootbp = *bp;
1155 }
1156
1157 void
1158 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1159 {
1160 if (spa->spa_root == NULL)
1161 buf[0] = '\0';
1162 else
1163 (void) strncpy(buf, spa->spa_root, buflen);
1164 }
1165
1166 int
1167 spa_sync_pass(spa_t *spa)
1168 {
1169 return (spa->spa_sync_pass);
1170 }
1171
1172 char *
1173 spa_name(spa_t *spa)
1174 {
1175 return (spa->spa_name);
1176 }
1177
1178 uint64_t
1179 spa_guid(spa_t *spa)
1180 {
1181 /*
1182 * If we fail to parse the config during spa_load(), we can go through
1183 * the error path (which posts an ereport) and end up here with no root
1184 * vdev. We stash the original pool guid in 'spa_load_guid' to handle
1185 * this case.
1186 */
1187 if (spa->spa_root_vdev != NULL)
1188 return (spa->spa_root_vdev->vdev_guid);
1189 else
1190 return (spa->spa_load_guid);
1191 }
1192
1193 uint64_t
1194 spa_last_synced_txg(spa_t *spa)
1195 {
1196 return (spa->spa_ubsync.ub_txg);
1197 }
1198
1199 uint64_t
1200 spa_first_txg(spa_t *spa)
1201 {
1202 return (spa->spa_first_txg);
1203 }
1204
1205 pool_state_t
1206 spa_state(spa_t *spa)
1207 {
1208 return (spa->spa_state);
1209 }
1210
1211 uint64_t
1212 spa_freeze_txg(spa_t *spa)
1213 {
1214 return (spa->spa_freeze_txg);
1215 }
1216
1217 /*
1218 * Return how much space is allocated in the pool (ie. sum of all asize)
1219 */
1220 uint64_t
1221 spa_get_alloc(spa_t *spa)
1222 {
1223 return (spa->spa_root_vdev->vdev_stat.vs_alloc);
1224 }
1225
1226 /*
1227 * Return how much (raid-z inflated) space there is in the pool.
1228 */
1229 uint64_t
1230 spa_get_space(spa_t *spa)
1231 {
1232 return (spa->spa_root_vdev->vdev_stat.vs_space);
1233 }
1234
1235 /*
1236 * Return the amount of raid-z-deflated space in the pool.
1237 */
1238 uint64_t
1239 spa_get_dspace(spa_t *spa)
1240 {
1241 if (spa->spa_deflate)
1242 return (spa->spa_root_vdev->vdev_stat.vs_dspace);
1243 else
1244 return (spa->spa_root_vdev->vdev_stat.vs_space);
1245 }
1246
1247 /* ARGSUSED */
1248 uint64_t
1249 spa_get_asize(spa_t *spa, uint64_t lsize)
1250 {
1251 /*
1252 * For now, the worst case is 512-byte RAID-Z blocks, in which
1253 * case the space requirement is exactly 2x; so just assume that.
1254 * Add to this the fact that we can have up to 3 DVAs per bp, and
1255 * we have to multiply by a total of 6x.
1256 */
1257 return (lsize * 6);
1258 }
1259
1260 /*
1261 * Return the failure mode that has been set to this pool. The default
1262 * behavior will be to block all I/Os when a complete failure occurs.
1263 */
1264 uint8_t
1265 spa_get_failmode(spa_t *spa)
1266 {
1267 return (spa->spa_failmode);
1268 }
1269
1270 boolean_t
1271 spa_suspended(spa_t *spa)
1272 {
1273 return (spa->spa_suspended);
1274 }
1275
1276 uint64_t
1277 spa_version(spa_t *spa)
1278 {
1279 return (spa->spa_ubsync.ub_version);
1280 }
1281
1282 int
1283 spa_max_replication(spa_t *spa)
1284 {
1285 /*
1286 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1287 * handle BPs with more than one DVA allocated. Set our max
1288 * replication level accordingly.
1289 */
1290 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1291 return (1);
1292 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1293 }
1294
1295 uint64_t
1296 bp_get_dasize(spa_t *spa, const blkptr_t *bp)
1297 {
1298 int sz = 0, i;
1299
1300 if (!spa->spa_deflate)
1301 return (BP_GET_ASIZE(bp));
1302
1303 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1304 for (i = 0; i < SPA_DVAS_PER_BP; i++) {
1305 vdev_t *vd =
1306 vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i]));
1307 if (vd)
1308 sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >>
1309 SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1310 }
1311 spa_config_exit(spa, SCL_VDEV, FTAG);
1312 return (sz);
1313 }
1314
1315 /*
1316 * ==========================================================================
1317 * Initialization and Termination
1318 * ==========================================================================
1319 */
1320
1321 static int
1322 spa_name_compare(const void *a1, const void *a2)
1323 {
1324 const spa_t *s1 = a1;
1325 const spa_t *s2 = a2;
1326 int s;
1327
1328 s = strcmp(s1->spa_name, s2->spa_name);
1329 if (s > 0)
1330 return (1);
1331 if (s < 0)
1332 return (-1);
1333 return (0);
1334 }
1335
1336 int
1337 spa_busy(void)
1338 {
1339 return (spa_active_count);
1340 }
1341
1342 void
1343 spa_boot_init()
1344 {
1345 spa_config_load();
1346 }
1347
1348 void
1349 spa_init(int mode)
1350 {
1351 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1352 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1353 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1354 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1355
1356 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1357 offsetof(spa_t, spa_avl));
1358
1359 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1360 offsetof(spa_aux_t, aux_avl));
1361
1362 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1363 offsetof(spa_aux_t, aux_avl));
1364
1365 spa_mode_global = mode;
1366
1367 refcount_init();
1368 unique_init();
1369 zio_init();
1370 dmu_init();
1371 zil_init();
1372 vdev_cache_stat_init();
1373 zfs_prop_init();
1374 zpool_prop_init();
1375 spa_config_load();
1376 l2arc_start();
1377 }
1378
1379 void
1380 spa_fini(void)
1381 {
1382 l2arc_stop();
1383
1384 spa_evict_all();
1385
1386 vdev_cache_stat_fini();
1387 zil_fini();
1388 dmu_fini();
1389 zio_fini();
1390 unique_fini();
1391 refcount_fini();
1392
1393 avl_destroy(&spa_namespace_avl);
1394 avl_destroy(&spa_spare_avl);
1395 avl_destroy(&spa_l2cache_avl);
1396
1397 cv_destroy(&spa_namespace_cv);
1398 mutex_destroy(&spa_namespace_lock);
1399 mutex_destroy(&spa_spare_lock);
1400 mutex_destroy(&spa_l2cache_lock);
1401 }
1402
1403 /*
1404 * Return whether this pool has slogs. No locking needed.
1405 * It's not a problem if the wrong answer is returned as it's only for
1406 * performance and not correctness
1407 */
1408 boolean_t
1409 spa_has_slogs(spa_t *spa)
1410 {
1411 return (spa->spa_log_class->mc_rotor != NULL);
1412 }
1413
1414 /*
1415 * Return whether this pool is the root pool.
1416 */
1417 boolean_t
1418 spa_is_root(spa_t *spa)
1419 {
1420 return (spa->spa_is_root);
1421 }
1422
1423 boolean_t
1424 spa_writeable(spa_t *spa)
1425 {
1426 return (!!(spa->spa_mode & FWRITE));
1427 }
1428
1429 int
1430 spa_mode(spa_t *spa)
1431 {
1432 return (spa->spa_mode);
1433 }