]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa_misc.c
OpenZFS 4185 - add new cryptographic checksums to ZFS: SHA-512, Skein, Edon-R
[mirror_zfs.git] / module / zfs / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
31 #include <sys/zio.h>
32 #include <sys/zio_checksum.h>
33 #include <sys/zio_compress.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/zap.h>
37 #include <sys/zil.h>
38 #include <sys/vdev_impl.h>
39 #include <sys/vdev_file.h>
40 #include <sys/vdev_raidz.h>
41 #include <sys/metaslab.h>
42 #include <sys/uberblock_impl.h>
43 #include <sys/txg.h>
44 #include <sys/avl.h>
45 #include <sys/unique.h>
46 #include <sys/dsl_pool.h>
47 #include <sys/dsl_dir.h>
48 #include <sys/dsl_prop.h>
49 #include <sys/fm/util.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/metaslab_impl.h>
53 #include <sys/arc.h>
54 #include <sys/ddt.h>
55 #include <sys/kstat.h>
56 #include "zfs_prop.h"
57 #include <sys/zfeature.h>
58
59 /*
60 * SPA locking
61 *
62 * There are four basic locks for managing spa_t structures:
63 *
64 * spa_namespace_lock (global mutex)
65 *
66 * This lock must be acquired to do any of the following:
67 *
68 * - Lookup a spa_t by name
69 * - Add or remove a spa_t from the namespace
70 * - Increase spa_refcount from non-zero
71 * - Check if spa_refcount is zero
72 * - Rename a spa_t
73 * - add/remove/attach/detach devices
74 * - Held for the duration of create/destroy/import/export
75 *
76 * It does not need to handle recursion. A create or destroy may
77 * reference objects (files or zvols) in other pools, but by
78 * definition they must have an existing reference, and will never need
79 * to lookup a spa_t by name.
80 *
81 * spa_refcount (per-spa refcount_t protected by mutex)
82 *
83 * This reference count keep track of any active users of the spa_t. The
84 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
85 * the refcount is never really 'zero' - opening a pool implicitly keeps
86 * some references in the DMU. Internally we check against spa_minref, but
87 * present the image of a zero/non-zero value to consumers.
88 *
89 * spa_config_lock[] (per-spa array of rwlocks)
90 *
91 * This protects the spa_t from config changes, and must be held in
92 * the following circumstances:
93 *
94 * - RW_READER to perform I/O to the spa
95 * - RW_WRITER to change the vdev config
96 *
97 * The locking order is fairly straightforward:
98 *
99 * spa_namespace_lock -> spa_refcount
100 *
101 * The namespace lock must be acquired to increase the refcount from 0
102 * or to check if it is zero.
103 *
104 * spa_refcount -> spa_config_lock[]
105 *
106 * There must be at least one valid reference on the spa_t to acquire
107 * the config lock.
108 *
109 * spa_namespace_lock -> spa_config_lock[]
110 *
111 * The namespace lock must always be taken before the config lock.
112 *
113 *
114 * The spa_namespace_lock can be acquired directly and is globally visible.
115 *
116 * The namespace is manipulated using the following functions, all of which
117 * require the spa_namespace_lock to be held.
118 *
119 * spa_lookup() Lookup a spa_t by name.
120 *
121 * spa_add() Create a new spa_t in the namespace.
122 *
123 * spa_remove() Remove a spa_t from the namespace. This also
124 * frees up any memory associated with the spa_t.
125 *
126 * spa_next() Returns the next spa_t in the system, or the
127 * first if NULL is passed.
128 *
129 * spa_evict_all() Shutdown and remove all spa_t structures in
130 * the system.
131 *
132 * spa_guid_exists() Determine whether a pool/device guid exists.
133 *
134 * The spa_refcount is manipulated using the following functions:
135 *
136 * spa_open_ref() Adds a reference to the given spa_t. Must be
137 * called with spa_namespace_lock held if the
138 * refcount is currently zero.
139 *
140 * spa_close() Remove a reference from the spa_t. This will
141 * not free the spa_t or remove it from the
142 * namespace. No locking is required.
143 *
144 * spa_refcount_zero() Returns true if the refcount is currently
145 * zero. Must be called with spa_namespace_lock
146 * held.
147 *
148 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
149 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
150 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
151 *
152 * To read the configuration, it suffices to hold one of these locks as reader.
153 * To modify the configuration, you must hold all locks as writer. To modify
154 * vdev state without altering the vdev tree's topology (e.g. online/offline),
155 * you must hold SCL_STATE and SCL_ZIO as writer.
156 *
157 * We use these distinct config locks to avoid recursive lock entry.
158 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
159 * block allocations (SCL_ALLOC), which may require reading space maps
160 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
161 *
162 * The spa config locks cannot be normal rwlocks because we need the
163 * ability to hand off ownership. For example, SCL_ZIO is acquired
164 * by the issuing thread and later released by an interrupt thread.
165 * They do, however, obey the usual write-wanted semantics to prevent
166 * writer (i.e. system administrator) starvation.
167 *
168 * The lock acquisition rules are as follows:
169 *
170 * SCL_CONFIG
171 * Protects changes to the vdev tree topology, such as vdev
172 * add/remove/attach/detach. Protects the dirty config list
173 * (spa_config_dirty_list) and the set of spares and l2arc devices.
174 *
175 * SCL_STATE
176 * Protects changes to pool state and vdev state, such as vdev
177 * online/offline/fault/degrade/clear. Protects the dirty state list
178 * (spa_state_dirty_list) and global pool state (spa_state).
179 *
180 * SCL_ALLOC
181 * Protects changes to metaslab groups and classes.
182 * Held as reader by metaslab_alloc() and metaslab_claim().
183 *
184 * SCL_ZIO
185 * Held by bp-level zios (those which have no io_vd upon entry)
186 * to prevent changes to the vdev tree. The bp-level zio implicitly
187 * protects all of its vdev child zios, which do not hold SCL_ZIO.
188 *
189 * SCL_FREE
190 * Protects changes to metaslab groups and classes.
191 * Held as reader by metaslab_free(). SCL_FREE is distinct from
192 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
193 * blocks in zio_done() while another i/o that holds either
194 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
195 *
196 * SCL_VDEV
197 * Held as reader to prevent changes to the vdev tree during trivial
198 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
199 * other locks, and lower than all of them, to ensure that it's safe
200 * to acquire regardless of caller context.
201 *
202 * In addition, the following rules apply:
203 *
204 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
205 * The lock ordering is SCL_CONFIG > spa_props_lock.
206 *
207 * (b) I/O operations on leaf vdevs. For any zio operation that takes
208 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
209 * or zio_write_phys() -- the caller must ensure that the config cannot
210 * cannot change in the interim, and that the vdev cannot be reopened.
211 * SCL_STATE as reader suffices for both.
212 *
213 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
214 *
215 * spa_vdev_enter() Acquire the namespace lock and the config lock
216 * for writing.
217 *
218 * spa_vdev_exit() Release the config lock, wait for all I/O
219 * to complete, sync the updated configs to the
220 * cache, and release the namespace lock.
221 *
222 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
223 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
224 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
225 *
226 * spa_rename() is also implemented within this file since it requires
227 * manipulation of the namespace.
228 */
229
230 static avl_tree_t spa_namespace_avl;
231 kmutex_t spa_namespace_lock;
232 static kcondvar_t spa_namespace_cv;
233 int spa_max_replication_override = SPA_DVAS_PER_BP;
234
235 static kmutex_t spa_spare_lock;
236 static avl_tree_t spa_spare_avl;
237 static kmutex_t spa_l2cache_lock;
238 static avl_tree_t spa_l2cache_avl;
239
240 kmem_cache_t *spa_buffer_pool;
241 int spa_mode_global;
242
243 #ifdef ZFS_DEBUG
244 /* Everything except dprintf and spa is on by default in debug builds */
245 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
246 #else
247 int zfs_flags = 0;
248 #endif
249
250 /*
251 * zfs_recover can be set to nonzero to attempt to recover from
252 * otherwise-fatal errors, typically caused by on-disk corruption. When
253 * set, calls to zfs_panic_recover() will turn into warning messages.
254 * This should only be used as a last resort, as it typically results
255 * in leaked space, or worse.
256 */
257 int zfs_recover = B_FALSE;
258
259 /*
260 * If destroy encounters an EIO while reading metadata (e.g. indirect
261 * blocks), space referenced by the missing metadata can not be freed.
262 * Normally this causes the background destroy to become "stalled", as
263 * it is unable to make forward progress. While in this stalled state,
264 * all remaining space to free from the error-encountering filesystem is
265 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
266 * permanently leak the space from indirect blocks that can not be read,
267 * and continue to free everything else that it can.
268 *
269 * The default, "stalling" behavior is useful if the storage partially
270 * fails (i.e. some but not all i/os fail), and then later recovers. In
271 * this case, we will be able to continue pool operations while it is
272 * partially failed, and when it recovers, we can continue to free the
273 * space, with no leaks. However, note that this case is actually
274 * fairly rare.
275 *
276 * Typically pools either (a) fail completely (but perhaps temporarily,
277 * e.g. a top-level vdev going offline), or (b) have localized,
278 * permanent errors (e.g. disk returns the wrong data due to bit flip or
279 * firmware bug). In case (a), this setting does not matter because the
280 * pool will be suspended and the sync thread will not be able to make
281 * forward progress regardless. In case (b), because the error is
282 * permanent, the best we can do is leak the minimum amount of space,
283 * which is what setting this flag will do. Therefore, it is reasonable
284 * for this flag to normally be set, but we chose the more conservative
285 * approach of not setting it, so that there is no possibility of
286 * leaking space in the "partial temporary" failure case.
287 */
288 int zfs_free_leak_on_eio = B_FALSE;
289
290 /*
291 * Expiration time in milliseconds. This value has two meanings. First it is
292 * used to determine when the spa_deadman() logic should fire. By default the
293 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
294 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
295 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
296 * in a system panic.
297 */
298 unsigned long zfs_deadman_synctime_ms = 1000000ULL;
299
300 /*
301 * By default the deadman is enabled.
302 */
303 int zfs_deadman_enabled = 1;
304
305 /*
306 * The worst case is single-sector max-parity RAID-Z blocks, in which
307 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
308 * times the size; so just assume that. Add to this the fact that
309 * we can have up to 3 DVAs per bp, and one more factor of 2 because
310 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
311 * the worst case is:
312 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
313 */
314 int spa_asize_inflation = 24;
315
316 /*
317 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
318 * the pool to be consumed. This ensures that we don't run the pool
319 * completely out of space, due to unaccounted changes (e.g. to the MOS).
320 * It also limits the worst-case time to allocate space. If we have
321 * less than this amount of free space, most ZPL operations (e.g. write,
322 * create) will return ENOSPC.
323 *
324 * Certain operations (e.g. file removal, most administrative actions) can
325 * use half the slop space. They will only return ENOSPC if less than half
326 * the slop space is free. Typically, once the pool has less than the slop
327 * space free, the user will use these operations to free up space in the pool.
328 * These are the operations that call dsl_pool_adjustedsize() with the netfree
329 * argument set to TRUE.
330 *
331 * A very restricted set of operations are always permitted, regardless of
332 * the amount of free space. These are the operations that call
333 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy". If these
334 * operations result in a net increase in the amount of space used,
335 * it is possible to run the pool completely out of space, causing it to
336 * be permanently read-only.
337 *
338 * See also the comments in zfs_space_check_t.
339 */
340 int spa_slop_shift = 5;
341
342 /*
343 * ==========================================================================
344 * SPA config locking
345 * ==========================================================================
346 */
347 static void
348 spa_config_lock_init(spa_t *spa)
349 {
350 int i;
351
352 for (i = 0; i < SCL_LOCKS; i++) {
353 spa_config_lock_t *scl = &spa->spa_config_lock[i];
354 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
355 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
356 refcount_create_untracked(&scl->scl_count);
357 scl->scl_writer = NULL;
358 scl->scl_write_wanted = 0;
359 }
360 }
361
362 static void
363 spa_config_lock_destroy(spa_t *spa)
364 {
365 int i;
366
367 for (i = 0; i < SCL_LOCKS; i++) {
368 spa_config_lock_t *scl = &spa->spa_config_lock[i];
369 mutex_destroy(&scl->scl_lock);
370 cv_destroy(&scl->scl_cv);
371 refcount_destroy(&scl->scl_count);
372 ASSERT(scl->scl_writer == NULL);
373 ASSERT(scl->scl_write_wanted == 0);
374 }
375 }
376
377 int
378 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
379 {
380 int i;
381
382 for (i = 0; i < SCL_LOCKS; i++) {
383 spa_config_lock_t *scl = &spa->spa_config_lock[i];
384 if (!(locks & (1 << i)))
385 continue;
386 mutex_enter(&scl->scl_lock);
387 if (rw == RW_READER) {
388 if (scl->scl_writer || scl->scl_write_wanted) {
389 mutex_exit(&scl->scl_lock);
390 spa_config_exit(spa, locks & ((1 << i) - 1),
391 tag);
392 return (0);
393 }
394 } else {
395 ASSERT(scl->scl_writer != curthread);
396 if (!refcount_is_zero(&scl->scl_count)) {
397 mutex_exit(&scl->scl_lock);
398 spa_config_exit(spa, locks & ((1 << i) - 1),
399 tag);
400 return (0);
401 }
402 scl->scl_writer = curthread;
403 }
404 (void) refcount_add(&scl->scl_count, tag);
405 mutex_exit(&scl->scl_lock);
406 }
407 return (1);
408 }
409
410 void
411 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
412 {
413 int wlocks_held = 0;
414 int i;
415
416 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
417
418 for (i = 0; i < SCL_LOCKS; i++) {
419 spa_config_lock_t *scl = &spa->spa_config_lock[i];
420 if (scl->scl_writer == curthread)
421 wlocks_held |= (1 << i);
422 if (!(locks & (1 << i)))
423 continue;
424 mutex_enter(&scl->scl_lock);
425 if (rw == RW_READER) {
426 while (scl->scl_writer || scl->scl_write_wanted) {
427 cv_wait(&scl->scl_cv, &scl->scl_lock);
428 }
429 } else {
430 ASSERT(scl->scl_writer != curthread);
431 while (!refcount_is_zero(&scl->scl_count)) {
432 scl->scl_write_wanted++;
433 cv_wait(&scl->scl_cv, &scl->scl_lock);
434 scl->scl_write_wanted--;
435 }
436 scl->scl_writer = curthread;
437 }
438 (void) refcount_add(&scl->scl_count, tag);
439 mutex_exit(&scl->scl_lock);
440 }
441 ASSERT(wlocks_held <= locks);
442 }
443
444 void
445 spa_config_exit(spa_t *spa, int locks, void *tag)
446 {
447 int i;
448
449 for (i = SCL_LOCKS - 1; i >= 0; i--) {
450 spa_config_lock_t *scl = &spa->spa_config_lock[i];
451 if (!(locks & (1 << i)))
452 continue;
453 mutex_enter(&scl->scl_lock);
454 ASSERT(!refcount_is_zero(&scl->scl_count));
455 if (refcount_remove(&scl->scl_count, tag) == 0) {
456 ASSERT(scl->scl_writer == NULL ||
457 scl->scl_writer == curthread);
458 scl->scl_writer = NULL; /* OK in either case */
459 cv_broadcast(&scl->scl_cv);
460 }
461 mutex_exit(&scl->scl_lock);
462 }
463 }
464
465 int
466 spa_config_held(spa_t *spa, int locks, krw_t rw)
467 {
468 int i, locks_held = 0;
469
470 for (i = 0; i < SCL_LOCKS; i++) {
471 spa_config_lock_t *scl = &spa->spa_config_lock[i];
472 if (!(locks & (1 << i)))
473 continue;
474 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
475 (rw == RW_WRITER && scl->scl_writer == curthread))
476 locks_held |= 1 << i;
477 }
478
479 return (locks_held);
480 }
481
482 /*
483 * ==========================================================================
484 * SPA namespace functions
485 * ==========================================================================
486 */
487
488 /*
489 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
490 * Returns NULL if no matching spa_t is found.
491 */
492 spa_t *
493 spa_lookup(const char *name)
494 {
495 static spa_t search; /* spa_t is large; don't allocate on stack */
496 spa_t *spa;
497 avl_index_t where;
498 char *cp;
499
500 ASSERT(MUTEX_HELD(&spa_namespace_lock));
501
502 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
503
504 /*
505 * If it's a full dataset name, figure out the pool name and
506 * just use that.
507 */
508 cp = strpbrk(search.spa_name, "/@#");
509 if (cp != NULL)
510 *cp = '\0';
511
512 spa = avl_find(&spa_namespace_avl, &search, &where);
513
514 return (spa);
515 }
516
517 /*
518 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
519 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
520 * looking for potentially hung I/Os.
521 */
522 void
523 spa_deadman(void *arg)
524 {
525 spa_t *spa = arg;
526
527 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
528 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
529 ++spa->spa_deadman_calls);
530 if (zfs_deadman_enabled)
531 vdev_deadman(spa->spa_root_vdev);
532
533 spa->spa_deadman_tqid = taskq_dispatch_delay(system_taskq,
534 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
535 NSEC_TO_TICK(spa->spa_deadman_synctime));
536 }
537
538 /*
539 * Create an uninitialized spa_t with the given name. Requires
540 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
541 * exist by calling spa_lookup() first.
542 */
543 spa_t *
544 spa_add(const char *name, nvlist_t *config, const char *altroot)
545 {
546 spa_t *spa;
547 spa_config_dirent_t *dp;
548 int t;
549 int i;
550
551 ASSERT(MUTEX_HELD(&spa_namespace_lock));
552
553 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
554
555 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
556 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
557 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
558 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
559 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
560 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
561 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
562 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
563 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
564 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
565 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
566 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
567
568 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
569 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
570 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
571 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
572 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
573
574 for (t = 0; t < TXG_SIZE; t++)
575 bplist_create(&spa->spa_free_bplist[t]);
576
577 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
578 spa->spa_state = POOL_STATE_UNINITIALIZED;
579 spa->spa_freeze_txg = UINT64_MAX;
580 spa->spa_final_txg = UINT64_MAX;
581 spa->spa_load_max_txg = UINT64_MAX;
582 spa->spa_proc = &p0;
583 spa->spa_proc_state = SPA_PROC_NONE;
584
585 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
586
587 refcount_create(&spa->spa_refcount);
588 spa_config_lock_init(spa);
589 spa_stats_init(spa);
590
591 avl_add(&spa_namespace_avl, spa);
592
593 /*
594 * Set the alternate root, if there is one.
595 */
596 if (altroot)
597 spa->spa_root = spa_strdup(altroot);
598
599 /*
600 * Every pool starts with the default cachefile
601 */
602 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
603 offsetof(spa_config_dirent_t, scd_link));
604
605 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
606 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
607 list_insert_head(&spa->spa_config_list, dp);
608
609 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
610 KM_SLEEP) == 0);
611
612 if (config != NULL) {
613 nvlist_t *features;
614
615 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
616 &features) == 0) {
617 VERIFY(nvlist_dup(features, &spa->spa_label_features,
618 0) == 0);
619 }
620
621 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
622 }
623
624 if (spa->spa_label_features == NULL) {
625 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
626 KM_SLEEP) == 0);
627 }
628
629 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
630
631 spa->spa_min_ashift = INT_MAX;
632 spa->spa_max_ashift = 0;
633
634 /*
635 * As a pool is being created, treat all features as disabled by
636 * setting SPA_FEATURE_DISABLED for all entries in the feature
637 * refcount cache.
638 */
639 for (i = 0; i < SPA_FEATURES; i++) {
640 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
641 }
642
643 return (spa);
644 }
645
646 /*
647 * Removes a spa_t from the namespace, freeing up any memory used. Requires
648 * spa_namespace_lock. This is called only after the spa_t has been closed and
649 * deactivated.
650 */
651 void
652 spa_remove(spa_t *spa)
653 {
654 spa_config_dirent_t *dp;
655 int t;
656
657 ASSERT(MUTEX_HELD(&spa_namespace_lock));
658 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
659 ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
660
661 nvlist_free(spa->spa_config_splitting);
662
663 avl_remove(&spa_namespace_avl, spa);
664 cv_broadcast(&spa_namespace_cv);
665
666 if (spa->spa_root)
667 spa_strfree(spa->spa_root);
668
669 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
670 list_remove(&spa->spa_config_list, dp);
671 if (dp->scd_path != NULL)
672 spa_strfree(dp->scd_path);
673 kmem_free(dp, sizeof (spa_config_dirent_t));
674 }
675
676 list_destroy(&spa->spa_config_list);
677
678 nvlist_free(spa->spa_label_features);
679 nvlist_free(spa->spa_load_info);
680 nvlist_free(spa->spa_feat_stats);
681 spa_config_set(spa, NULL);
682
683 refcount_destroy(&spa->spa_refcount);
684
685 spa_stats_destroy(spa);
686 spa_config_lock_destroy(spa);
687
688 for (t = 0; t < TXG_SIZE; t++)
689 bplist_destroy(&spa->spa_free_bplist[t]);
690
691 zio_checksum_templates_free(spa);
692
693 cv_destroy(&spa->spa_async_cv);
694 cv_destroy(&spa->spa_evicting_os_cv);
695 cv_destroy(&spa->spa_proc_cv);
696 cv_destroy(&spa->spa_scrub_io_cv);
697 cv_destroy(&spa->spa_suspend_cv);
698
699 mutex_destroy(&spa->spa_async_lock);
700 mutex_destroy(&spa->spa_errlist_lock);
701 mutex_destroy(&spa->spa_errlog_lock);
702 mutex_destroy(&spa->spa_evicting_os_lock);
703 mutex_destroy(&spa->spa_history_lock);
704 mutex_destroy(&spa->spa_proc_lock);
705 mutex_destroy(&spa->spa_props_lock);
706 mutex_destroy(&spa->spa_cksum_tmpls_lock);
707 mutex_destroy(&spa->spa_scrub_lock);
708 mutex_destroy(&spa->spa_suspend_lock);
709 mutex_destroy(&spa->spa_vdev_top_lock);
710 mutex_destroy(&spa->spa_feat_stats_lock);
711
712 kmem_free(spa, sizeof (spa_t));
713 }
714
715 /*
716 * Given a pool, return the next pool in the namespace, or NULL if there is
717 * none. If 'prev' is NULL, return the first pool.
718 */
719 spa_t *
720 spa_next(spa_t *prev)
721 {
722 ASSERT(MUTEX_HELD(&spa_namespace_lock));
723
724 if (prev)
725 return (AVL_NEXT(&spa_namespace_avl, prev));
726 else
727 return (avl_first(&spa_namespace_avl));
728 }
729
730 /*
731 * ==========================================================================
732 * SPA refcount functions
733 * ==========================================================================
734 */
735
736 /*
737 * Add a reference to the given spa_t. Must have at least one reference, or
738 * have the namespace lock held.
739 */
740 void
741 spa_open_ref(spa_t *spa, void *tag)
742 {
743 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
744 MUTEX_HELD(&spa_namespace_lock));
745 (void) refcount_add(&spa->spa_refcount, tag);
746 }
747
748 /*
749 * Remove a reference to the given spa_t. Must have at least one reference, or
750 * have the namespace lock held.
751 */
752 void
753 spa_close(spa_t *spa, void *tag)
754 {
755 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
756 MUTEX_HELD(&spa_namespace_lock));
757 (void) refcount_remove(&spa->spa_refcount, tag);
758 }
759
760 /*
761 * Remove a reference to the given spa_t held by a dsl dir that is
762 * being asynchronously released. Async releases occur from a taskq
763 * performing eviction of dsl datasets and dirs. The namespace lock
764 * isn't held and the hold by the object being evicted may contribute to
765 * spa_minref (e.g. dataset or directory released during pool export),
766 * so the asserts in spa_close() do not apply.
767 */
768 void
769 spa_async_close(spa_t *spa, void *tag)
770 {
771 (void) refcount_remove(&spa->spa_refcount, tag);
772 }
773
774 /*
775 * Check to see if the spa refcount is zero. Must be called with
776 * spa_namespace_lock held. We really compare against spa_minref, which is the
777 * number of references acquired when opening a pool
778 */
779 boolean_t
780 spa_refcount_zero(spa_t *spa)
781 {
782 ASSERT(MUTEX_HELD(&spa_namespace_lock));
783
784 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
785 }
786
787 /*
788 * ==========================================================================
789 * SPA spare and l2cache tracking
790 * ==========================================================================
791 */
792
793 /*
794 * Hot spares and cache devices are tracked using the same code below,
795 * for 'auxiliary' devices.
796 */
797
798 typedef struct spa_aux {
799 uint64_t aux_guid;
800 uint64_t aux_pool;
801 avl_node_t aux_avl;
802 int aux_count;
803 } spa_aux_t;
804
805 static inline int
806 spa_aux_compare(const void *a, const void *b)
807 {
808 const spa_aux_t *sa = (const spa_aux_t *)a;
809 const spa_aux_t *sb = (const spa_aux_t *)b;
810
811 return (AVL_CMP(sa->aux_guid, sb->aux_guid));
812 }
813
814 void
815 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
816 {
817 avl_index_t where;
818 spa_aux_t search;
819 spa_aux_t *aux;
820
821 search.aux_guid = vd->vdev_guid;
822 if ((aux = avl_find(avl, &search, &where)) != NULL) {
823 aux->aux_count++;
824 } else {
825 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
826 aux->aux_guid = vd->vdev_guid;
827 aux->aux_count = 1;
828 avl_insert(avl, aux, where);
829 }
830 }
831
832 void
833 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
834 {
835 spa_aux_t search;
836 spa_aux_t *aux;
837 avl_index_t where;
838
839 search.aux_guid = vd->vdev_guid;
840 aux = avl_find(avl, &search, &where);
841
842 ASSERT(aux != NULL);
843
844 if (--aux->aux_count == 0) {
845 avl_remove(avl, aux);
846 kmem_free(aux, sizeof (spa_aux_t));
847 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
848 aux->aux_pool = 0ULL;
849 }
850 }
851
852 boolean_t
853 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
854 {
855 spa_aux_t search, *found;
856
857 search.aux_guid = guid;
858 found = avl_find(avl, &search, NULL);
859
860 if (pool) {
861 if (found)
862 *pool = found->aux_pool;
863 else
864 *pool = 0ULL;
865 }
866
867 if (refcnt) {
868 if (found)
869 *refcnt = found->aux_count;
870 else
871 *refcnt = 0;
872 }
873
874 return (found != NULL);
875 }
876
877 void
878 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
879 {
880 spa_aux_t search, *found;
881 avl_index_t where;
882
883 search.aux_guid = vd->vdev_guid;
884 found = avl_find(avl, &search, &where);
885 ASSERT(found != NULL);
886 ASSERT(found->aux_pool == 0ULL);
887
888 found->aux_pool = spa_guid(vd->vdev_spa);
889 }
890
891 /*
892 * Spares are tracked globally due to the following constraints:
893 *
894 * - A spare may be part of multiple pools.
895 * - A spare may be added to a pool even if it's actively in use within
896 * another pool.
897 * - A spare in use in any pool can only be the source of a replacement if
898 * the target is a spare in the same pool.
899 *
900 * We keep track of all spares on the system through the use of a reference
901 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
902 * spare, then we bump the reference count in the AVL tree. In addition, we set
903 * the 'vdev_isspare' member to indicate that the device is a spare (active or
904 * inactive). When a spare is made active (used to replace a device in the
905 * pool), we also keep track of which pool its been made a part of.
906 *
907 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
908 * called under the spa_namespace lock as part of vdev reconfiguration. The
909 * separate spare lock exists for the status query path, which does not need to
910 * be completely consistent with respect to other vdev configuration changes.
911 */
912
913 static int
914 spa_spare_compare(const void *a, const void *b)
915 {
916 return (spa_aux_compare(a, b));
917 }
918
919 void
920 spa_spare_add(vdev_t *vd)
921 {
922 mutex_enter(&spa_spare_lock);
923 ASSERT(!vd->vdev_isspare);
924 spa_aux_add(vd, &spa_spare_avl);
925 vd->vdev_isspare = B_TRUE;
926 mutex_exit(&spa_spare_lock);
927 }
928
929 void
930 spa_spare_remove(vdev_t *vd)
931 {
932 mutex_enter(&spa_spare_lock);
933 ASSERT(vd->vdev_isspare);
934 spa_aux_remove(vd, &spa_spare_avl);
935 vd->vdev_isspare = B_FALSE;
936 mutex_exit(&spa_spare_lock);
937 }
938
939 boolean_t
940 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
941 {
942 boolean_t found;
943
944 mutex_enter(&spa_spare_lock);
945 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
946 mutex_exit(&spa_spare_lock);
947
948 return (found);
949 }
950
951 void
952 spa_spare_activate(vdev_t *vd)
953 {
954 mutex_enter(&spa_spare_lock);
955 ASSERT(vd->vdev_isspare);
956 spa_aux_activate(vd, &spa_spare_avl);
957 mutex_exit(&spa_spare_lock);
958 }
959
960 /*
961 * Level 2 ARC devices are tracked globally for the same reasons as spares.
962 * Cache devices currently only support one pool per cache device, and so
963 * for these devices the aux reference count is currently unused beyond 1.
964 */
965
966 static int
967 spa_l2cache_compare(const void *a, const void *b)
968 {
969 return (spa_aux_compare(a, b));
970 }
971
972 void
973 spa_l2cache_add(vdev_t *vd)
974 {
975 mutex_enter(&spa_l2cache_lock);
976 ASSERT(!vd->vdev_isl2cache);
977 spa_aux_add(vd, &spa_l2cache_avl);
978 vd->vdev_isl2cache = B_TRUE;
979 mutex_exit(&spa_l2cache_lock);
980 }
981
982 void
983 spa_l2cache_remove(vdev_t *vd)
984 {
985 mutex_enter(&spa_l2cache_lock);
986 ASSERT(vd->vdev_isl2cache);
987 spa_aux_remove(vd, &spa_l2cache_avl);
988 vd->vdev_isl2cache = B_FALSE;
989 mutex_exit(&spa_l2cache_lock);
990 }
991
992 boolean_t
993 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
994 {
995 boolean_t found;
996
997 mutex_enter(&spa_l2cache_lock);
998 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
999 mutex_exit(&spa_l2cache_lock);
1000
1001 return (found);
1002 }
1003
1004 void
1005 spa_l2cache_activate(vdev_t *vd)
1006 {
1007 mutex_enter(&spa_l2cache_lock);
1008 ASSERT(vd->vdev_isl2cache);
1009 spa_aux_activate(vd, &spa_l2cache_avl);
1010 mutex_exit(&spa_l2cache_lock);
1011 }
1012
1013 /*
1014 * ==========================================================================
1015 * SPA vdev locking
1016 * ==========================================================================
1017 */
1018
1019 /*
1020 * Lock the given spa_t for the purpose of adding or removing a vdev.
1021 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1022 * It returns the next transaction group for the spa_t.
1023 */
1024 uint64_t
1025 spa_vdev_enter(spa_t *spa)
1026 {
1027 mutex_enter(&spa->spa_vdev_top_lock);
1028 mutex_enter(&spa_namespace_lock);
1029 return (spa_vdev_config_enter(spa));
1030 }
1031
1032 /*
1033 * Internal implementation for spa_vdev_enter(). Used when a vdev
1034 * operation requires multiple syncs (i.e. removing a device) while
1035 * keeping the spa_namespace_lock held.
1036 */
1037 uint64_t
1038 spa_vdev_config_enter(spa_t *spa)
1039 {
1040 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1041
1042 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1043
1044 return (spa_last_synced_txg(spa) + 1);
1045 }
1046
1047 /*
1048 * Used in combination with spa_vdev_config_enter() to allow the syncing
1049 * of multiple transactions without releasing the spa_namespace_lock.
1050 */
1051 void
1052 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1053 {
1054 int config_changed = B_FALSE;
1055
1056 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1057 ASSERT(txg > spa_last_synced_txg(spa));
1058
1059 spa->spa_pending_vdev = NULL;
1060
1061 /*
1062 * Reassess the DTLs.
1063 */
1064 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1065
1066 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1067 config_changed = B_TRUE;
1068 spa->spa_config_generation++;
1069 }
1070
1071 /*
1072 * Verify the metaslab classes.
1073 */
1074 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1075 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1076
1077 spa_config_exit(spa, SCL_ALL, spa);
1078
1079 /*
1080 * Panic the system if the specified tag requires it. This
1081 * is useful for ensuring that configurations are updated
1082 * transactionally.
1083 */
1084 if (zio_injection_enabled)
1085 zio_handle_panic_injection(spa, tag, 0);
1086
1087 /*
1088 * Note: this txg_wait_synced() is important because it ensures
1089 * that there won't be more than one config change per txg.
1090 * This allows us to use the txg as the generation number.
1091 */
1092 if (error == 0)
1093 txg_wait_synced(spa->spa_dsl_pool, txg);
1094
1095 if (vd != NULL) {
1096 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1097 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1098 vdev_free(vd);
1099 spa_config_exit(spa, SCL_ALL, spa);
1100 }
1101
1102 /*
1103 * If the config changed, update the config cache.
1104 */
1105 if (config_changed)
1106 spa_config_sync(spa, B_FALSE, B_TRUE);
1107 }
1108
1109 /*
1110 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1111 * locking of spa_vdev_enter(), we also want make sure the transactions have
1112 * synced to disk, and then update the global configuration cache with the new
1113 * information.
1114 */
1115 int
1116 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1117 {
1118 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1119 mutex_exit(&spa_namespace_lock);
1120 mutex_exit(&spa->spa_vdev_top_lock);
1121
1122 return (error);
1123 }
1124
1125 /*
1126 * Lock the given spa_t for the purpose of changing vdev state.
1127 */
1128 void
1129 spa_vdev_state_enter(spa_t *spa, int oplocks)
1130 {
1131 int locks = SCL_STATE_ALL | oplocks;
1132
1133 /*
1134 * Root pools may need to read of the underlying devfs filesystem
1135 * when opening up a vdev. Unfortunately if we're holding the
1136 * SCL_ZIO lock it will result in a deadlock when we try to issue
1137 * the read from the root filesystem. Instead we "prefetch"
1138 * the associated vnodes that we need prior to opening the
1139 * underlying devices and cache them so that we can prevent
1140 * any I/O when we are doing the actual open.
1141 */
1142 if (spa_is_root(spa)) {
1143 int low = locks & ~(SCL_ZIO - 1);
1144 int high = locks & ~low;
1145
1146 spa_config_enter(spa, high, spa, RW_WRITER);
1147 vdev_hold(spa->spa_root_vdev);
1148 spa_config_enter(spa, low, spa, RW_WRITER);
1149 } else {
1150 spa_config_enter(spa, locks, spa, RW_WRITER);
1151 }
1152 spa->spa_vdev_locks = locks;
1153 }
1154
1155 int
1156 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1157 {
1158 boolean_t config_changed = B_FALSE;
1159
1160 if (vd != NULL || error == 0)
1161 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1162 0, 0, B_FALSE);
1163
1164 if (vd != NULL) {
1165 vdev_state_dirty(vd->vdev_top);
1166 config_changed = B_TRUE;
1167 spa->spa_config_generation++;
1168 }
1169
1170 if (spa_is_root(spa))
1171 vdev_rele(spa->spa_root_vdev);
1172
1173 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1174 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1175
1176 /*
1177 * If anything changed, wait for it to sync. This ensures that,
1178 * from the system administrator's perspective, zpool(1M) commands
1179 * are synchronous. This is important for things like zpool offline:
1180 * when the command completes, you expect no further I/O from ZFS.
1181 */
1182 if (vd != NULL)
1183 txg_wait_synced(spa->spa_dsl_pool, 0);
1184
1185 /*
1186 * If the config changed, update the config cache.
1187 */
1188 if (config_changed) {
1189 mutex_enter(&spa_namespace_lock);
1190 spa_config_sync(spa, B_FALSE, B_TRUE);
1191 mutex_exit(&spa_namespace_lock);
1192 }
1193
1194 return (error);
1195 }
1196
1197 /*
1198 * ==========================================================================
1199 * Miscellaneous functions
1200 * ==========================================================================
1201 */
1202
1203 void
1204 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1205 {
1206 if (!nvlist_exists(spa->spa_label_features, feature)) {
1207 fnvlist_add_boolean(spa->spa_label_features, feature);
1208 /*
1209 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1210 * dirty the vdev config because lock SCL_CONFIG is not held.
1211 * Thankfully, in this case we don't need to dirty the config
1212 * because it will be written out anyway when we finish
1213 * creating the pool.
1214 */
1215 if (tx->tx_txg != TXG_INITIAL)
1216 vdev_config_dirty(spa->spa_root_vdev);
1217 }
1218 }
1219
1220 void
1221 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1222 {
1223 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1224 vdev_config_dirty(spa->spa_root_vdev);
1225 }
1226
1227 /*
1228 * Rename a spa_t.
1229 */
1230 int
1231 spa_rename(const char *name, const char *newname)
1232 {
1233 spa_t *spa;
1234 int err;
1235
1236 /*
1237 * Lookup the spa_t and grab the config lock for writing. We need to
1238 * actually open the pool so that we can sync out the necessary labels.
1239 * It's OK to call spa_open() with the namespace lock held because we
1240 * allow recursive calls for other reasons.
1241 */
1242 mutex_enter(&spa_namespace_lock);
1243 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1244 mutex_exit(&spa_namespace_lock);
1245 return (err);
1246 }
1247
1248 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1249
1250 avl_remove(&spa_namespace_avl, spa);
1251 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1252 avl_add(&spa_namespace_avl, spa);
1253
1254 /*
1255 * Sync all labels to disk with the new names by marking the root vdev
1256 * dirty and waiting for it to sync. It will pick up the new pool name
1257 * during the sync.
1258 */
1259 vdev_config_dirty(spa->spa_root_vdev);
1260
1261 spa_config_exit(spa, SCL_ALL, FTAG);
1262
1263 txg_wait_synced(spa->spa_dsl_pool, 0);
1264
1265 /*
1266 * Sync the updated config cache.
1267 */
1268 spa_config_sync(spa, B_FALSE, B_TRUE);
1269
1270 spa_close(spa, FTAG);
1271
1272 mutex_exit(&spa_namespace_lock);
1273
1274 return (0);
1275 }
1276
1277 /*
1278 * Return the spa_t associated with given pool_guid, if it exists. If
1279 * device_guid is non-zero, determine whether the pool exists *and* contains
1280 * a device with the specified device_guid.
1281 */
1282 spa_t *
1283 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1284 {
1285 spa_t *spa;
1286 avl_tree_t *t = &spa_namespace_avl;
1287
1288 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1289
1290 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1291 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1292 continue;
1293 if (spa->spa_root_vdev == NULL)
1294 continue;
1295 if (spa_guid(spa) == pool_guid) {
1296 if (device_guid == 0)
1297 break;
1298
1299 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1300 device_guid) != NULL)
1301 break;
1302
1303 /*
1304 * Check any devices we may be in the process of adding.
1305 */
1306 if (spa->spa_pending_vdev) {
1307 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1308 device_guid) != NULL)
1309 break;
1310 }
1311 }
1312 }
1313
1314 return (spa);
1315 }
1316
1317 /*
1318 * Determine whether a pool with the given pool_guid exists.
1319 */
1320 boolean_t
1321 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1322 {
1323 return (spa_by_guid(pool_guid, device_guid) != NULL);
1324 }
1325
1326 char *
1327 spa_strdup(const char *s)
1328 {
1329 size_t len;
1330 char *new;
1331
1332 len = strlen(s);
1333 new = kmem_alloc(len + 1, KM_SLEEP);
1334 bcopy(s, new, len);
1335 new[len] = '\0';
1336
1337 return (new);
1338 }
1339
1340 void
1341 spa_strfree(char *s)
1342 {
1343 kmem_free(s, strlen(s) + 1);
1344 }
1345
1346 uint64_t
1347 spa_get_random(uint64_t range)
1348 {
1349 uint64_t r;
1350
1351 ASSERT(range != 0);
1352
1353 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1354
1355 return (r % range);
1356 }
1357
1358 uint64_t
1359 spa_generate_guid(spa_t *spa)
1360 {
1361 uint64_t guid = spa_get_random(-1ULL);
1362
1363 if (spa != NULL) {
1364 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1365 guid = spa_get_random(-1ULL);
1366 } else {
1367 while (guid == 0 || spa_guid_exists(guid, 0))
1368 guid = spa_get_random(-1ULL);
1369 }
1370
1371 return (guid);
1372 }
1373
1374 void
1375 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1376 {
1377 char type[256];
1378 char *checksum = NULL;
1379 char *compress = NULL;
1380
1381 if (bp != NULL) {
1382 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1383 dmu_object_byteswap_t bswap =
1384 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1385 (void) snprintf(type, sizeof (type), "bswap %s %s",
1386 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1387 "metadata" : "data",
1388 dmu_ot_byteswap[bswap].ob_name);
1389 } else {
1390 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1391 sizeof (type));
1392 }
1393 if (!BP_IS_EMBEDDED(bp)) {
1394 checksum =
1395 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1396 }
1397 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1398 }
1399
1400 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1401 compress);
1402 }
1403
1404 void
1405 spa_freeze(spa_t *spa)
1406 {
1407 uint64_t freeze_txg = 0;
1408
1409 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1410 if (spa->spa_freeze_txg == UINT64_MAX) {
1411 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1412 spa->spa_freeze_txg = freeze_txg;
1413 }
1414 spa_config_exit(spa, SCL_ALL, FTAG);
1415 if (freeze_txg != 0)
1416 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1417 }
1418
1419 void
1420 zfs_panic_recover(const char *fmt, ...)
1421 {
1422 va_list adx;
1423
1424 va_start(adx, fmt);
1425 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1426 va_end(adx);
1427 }
1428
1429 /*
1430 * This is a stripped-down version of strtoull, suitable only for converting
1431 * lowercase hexadecimal numbers that don't overflow.
1432 */
1433 uint64_t
1434 strtonum(const char *str, char **nptr)
1435 {
1436 uint64_t val = 0;
1437 char c;
1438 int digit;
1439
1440 while ((c = *str) != '\0') {
1441 if (c >= '0' && c <= '9')
1442 digit = c - '0';
1443 else if (c >= 'a' && c <= 'f')
1444 digit = 10 + c - 'a';
1445 else
1446 break;
1447
1448 val *= 16;
1449 val += digit;
1450
1451 str++;
1452 }
1453
1454 if (nptr)
1455 *nptr = (char *)str;
1456
1457 return (val);
1458 }
1459
1460 /*
1461 * ==========================================================================
1462 * Accessor functions
1463 * ==========================================================================
1464 */
1465
1466 boolean_t
1467 spa_shutting_down(spa_t *spa)
1468 {
1469 return (spa->spa_async_suspended);
1470 }
1471
1472 dsl_pool_t *
1473 spa_get_dsl(spa_t *spa)
1474 {
1475 return (spa->spa_dsl_pool);
1476 }
1477
1478 boolean_t
1479 spa_is_initializing(spa_t *spa)
1480 {
1481 return (spa->spa_is_initializing);
1482 }
1483
1484 blkptr_t *
1485 spa_get_rootblkptr(spa_t *spa)
1486 {
1487 return (&spa->spa_ubsync.ub_rootbp);
1488 }
1489
1490 void
1491 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1492 {
1493 spa->spa_uberblock.ub_rootbp = *bp;
1494 }
1495
1496 void
1497 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1498 {
1499 if (spa->spa_root == NULL)
1500 buf[0] = '\0';
1501 else
1502 (void) strncpy(buf, spa->spa_root, buflen);
1503 }
1504
1505 int
1506 spa_sync_pass(spa_t *spa)
1507 {
1508 return (spa->spa_sync_pass);
1509 }
1510
1511 char *
1512 spa_name(spa_t *spa)
1513 {
1514 return (spa->spa_name);
1515 }
1516
1517 uint64_t
1518 spa_guid(spa_t *spa)
1519 {
1520 dsl_pool_t *dp = spa_get_dsl(spa);
1521 uint64_t guid;
1522
1523 /*
1524 * If we fail to parse the config during spa_load(), we can go through
1525 * the error path (which posts an ereport) and end up here with no root
1526 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1527 * this case.
1528 */
1529 if (spa->spa_root_vdev == NULL)
1530 return (spa->spa_config_guid);
1531
1532 guid = spa->spa_last_synced_guid != 0 ?
1533 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1534
1535 /*
1536 * Return the most recently synced out guid unless we're
1537 * in syncing context.
1538 */
1539 if (dp && dsl_pool_sync_context(dp))
1540 return (spa->spa_root_vdev->vdev_guid);
1541 else
1542 return (guid);
1543 }
1544
1545 uint64_t
1546 spa_load_guid(spa_t *spa)
1547 {
1548 /*
1549 * This is a GUID that exists solely as a reference for the
1550 * purposes of the arc. It is generated at load time, and
1551 * is never written to persistent storage.
1552 */
1553 return (spa->spa_load_guid);
1554 }
1555
1556 uint64_t
1557 spa_last_synced_txg(spa_t *spa)
1558 {
1559 return (spa->spa_ubsync.ub_txg);
1560 }
1561
1562 uint64_t
1563 spa_first_txg(spa_t *spa)
1564 {
1565 return (spa->spa_first_txg);
1566 }
1567
1568 uint64_t
1569 spa_syncing_txg(spa_t *spa)
1570 {
1571 return (spa->spa_syncing_txg);
1572 }
1573
1574 pool_state_t
1575 spa_state(spa_t *spa)
1576 {
1577 return (spa->spa_state);
1578 }
1579
1580 spa_load_state_t
1581 spa_load_state(spa_t *spa)
1582 {
1583 return (spa->spa_load_state);
1584 }
1585
1586 uint64_t
1587 spa_freeze_txg(spa_t *spa)
1588 {
1589 return (spa->spa_freeze_txg);
1590 }
1591
1592 /* ARGSUSED */
1593 uint64_t
1594 spa_get_asize(spa_t *spa, uint64_t lsize)
1595 {
1596 return (lsize * spa_asize_inflation);
1597 }
1598
1599 /*
1600 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%),
1601 * or at least 32MB.
1602 *
1603 * See the comment above spa_slop_shift for details.
1604 */
1605 uint64_t
1606 spa_get_slop_space(spa_t *spa) {
1607 uint64_t space = spa_get_dspace(spa);
1608 return (MAX(space >> spa_slop_shift, SPA_MINDEVSIZE >> 1));
1609 }
1610
1611 uint64_t
1612 spa_get_dspace(spa_t *spa)
1613 {
1614 return (spa->spa_dspace);
1615 }
1616
1617 void
1618 spa_update_dspace(spa_t *spa)
1619 {
1620 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1621 ddt_get_dedup_dspace(spa);
1622 }
1623
1624 /*
1625 * Return the failure mode that has been set to this pool. The default
1626 * behavior will be to block all I/Os when a complete failure occurs.
1627 */
1628 uint8_t
1629 spa_get_failmode(spa_t *spa)
1630 {
1631 return (spa->spa_failmode);
1632 }
1633
1634 boolean_t
1635 spa_suspended(spa_t *spa)
1636 {
1637 return (spa->spa_suspended);
1638 }
1639
1640 uint64_t
1641 spa_version(spa_t *spa)
1642 {
1643 return (spa->spa_ubsync.ub_version);
1644 }
1645
1646 boolean_t
1647 spa_deflate(spa_t *spa)
1648 {
1649 return (spa->spa_deflate);
1650 }
1651
1652 metaslab_class_t *
1653 spa_normal_class(spa_t *spa)
1654 {
1655 return (spa->spa_normal_class);
1656 }
1657
1658 metaslab_class_t *
1659 spa_log_class(spa_t *spa)
1660 {
1661 return (spa->spa_log_class);
1662 }
1663
1664 void
1665 spa_evicting_os_register(spa_t *spa, objset_t *os)
1666 {
1667 mutex_enter(&spa->spa_evicting_os_lock);
1668 list_insert_head(&spa->spa_evicting_os_list, os);
1669 mutex_exit(&spa->spa_evicting_os_lock);
1670 }
1671
1672 void
1673 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1674 {
1675 mutex_enter(&spa->spa_evicting_os_lock);
1676 list_remove(&spa->spa_evicting_os_list, os);
1677 cv_broadcast(&spa->spa_evicting_os_cv);
1678 mutex_exit(&spa->spa_evicting_os_lock);
1679 }
1680
1681 void
1682 spa_evicting_os_wait(spa_t *spa)
1683 {
1684 mutex_enter(&spa->spa_evicting_os_lock);
1685 while (!list_is_empty(&spa->spa_evicting_os_list))
1686 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1687 mutex_exit(&spa->spa_evicting_os_lock);
1688
1689 dmu_buf_user_evict_wait();
1690 }
1691
1692 int
1693 spa_max_replication(spa_t *spa)
1694 {
1695 /*
1696 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1697 * handle BPs with more than one DVA allocated. Set our max
1698 * replication level accordingly.
1699 */
1700 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1701 return (1);
1702 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1703 }
1704
1705 int
1706 spa_prev_software_version(spa_t *spa)
1707 {
1708 return (spa->spa_prev_software_version);
1709 }
1710
1711 uint64_t
1712 spa_deadman_synctime(spa_t *spa)
1713 {
1714 return (spa->spa_deadman_synctime);
1715 }
1716
1717 uint64_t
1718 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1719 {
1720 uint64_t asize = DVA_GET_ASIZE(dva);
1721 uint64_t dsize = asize;
1722
1723 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1724
1725 if (asize != 0 && spa->spa_deflate) {
1726 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1727 if (vd != NULL)
1728 dsize = (asize >> SPA_MINBLOCKSHIFT) *
1729 vd->vdev_deflate_ratio;
1730 }
1731
1732 return (dsize);
1733 }
1734
1735 uint64_t
1736 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1737 {
1738 uint64_t dsize = 0;
1739 int d;
1740
1741 for (d = 0; d < BP_GET_NDVAS(bp); d++)
1742 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1743
1744 return (dsize);
1745 }
1746
1747 uint64_t
1748 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1749 {
1750 uint64_t dsize = 0;
1751 int d;
1752
1753 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1754
1755 for (d = 0; d < BP_GET_NDVAS(bp); d++)
1756 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1757
1758 spa_config_exit(spa, SCL_VDEV, FTAG);
1759
1760 return (dsize);
1761 }
1762
1763 /*
1764 * ==========================================================================
1765 * Initialization and Termination
1766 * ==========================================================================
1767 */
1768
1769 static int
1770 spa_name_compare(const void *a1, const void *a2)
1771 {
1772 const spa_t *s1 = a1;
1773 const spa_t *s2 = a2;
1774 int s;
1775
1776 s = strcmp(s1->spa_name, s2->spa_name);
1777
1778 return (AVL_ISIGN(s));
1779 }
1780
1781 void
1782 spa_boot_init(void)
1783 {
1784 spa_config_load();
1785 }
1786
1787 void
1788 spa_init(int mode)
1789 {
1790 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1791 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1792 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1793 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1794
1795 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1796 offsetof(spa_t, spa_avl));
1797
1798 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1799 offsetof(spa_aux_t, aux_avl));
1800
1801 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1802 offsetof(spa_aux_t, aux_avl));
1803
1804 spa_mode_global = mode;
1805
1806 #ifndef _KERNEL
1807 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1808 struct sigaction sa;
1809
1810 sa.sa_flags = SA_SIGINFO;
1811 sigemptyset(&sa.sa_mask);
1812 sa.sa_sigaction = arc_buf_sigsegv;
1813
1814 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
1815 perror("could not enable watchpoints: "
1816 "sigaction(SIGSEGV, ...) = ");
1817 } else {
1818 arc_watch = B_TRUE;
1819 }
1820 }
1821 #endif
1822
1823 fm_init();
1824 refcount_init();
1825 unique_init();
1826 range_tree_init();
1827 ddt_init();
1828 zio_init();
1829 dmu_init();
1830 zil_init();
1831 vdev_cache_stat_init();
1832 vdev_raidz_math_init();
1833 zfs_prop_init();
1834 zpool_prop_init();
1835 zpool_feature_init();
1836 spa_config_load();
1837 l2arc_start();
1838 }
1839
1840 void
1841 spa_fini(void)
1842 {
1843 l2arc_stop();
1844
1845 spa_evict_all();
1846
1847 vdev_cache_stat_fini();
1848 vdev_raidz_math_fini();
1849 zil_fini();
1850 dmu_fini();
1851 zio_fini();
1852 ddt_fini();
1853 range_tree_fini();
1854 unique_fini();
1855 refcount_fini();
1856 fm_fini();
1857
1858 avl_destroy(&spa_namespace_avl);
1859 avl_destroy(&spa_spare_avl);
1860 avl_destroy(&spa_l2cache_avl);
1861
1862 cv_destroy(&spa_namespace_cv);
1863 mutex_destroy(&spa_namespace_lock);
1864 mutex_destroy(&spa_spare_lock);
1865 mutex_destroy(&spa_l2cache_lock);
1866 }
1867
1868 /*
1869 * Return whether this pool has slogs. No locking needed.
1870 * It's not a problem if the wrong answer is returned as it's only for
1871 * performance and not correctness
1872 */
1873 boolean_t
1874 spa_has_slogs(spa_t *spa)
1875 {
1876 return (spa->spa_log_class->mc_rotor != NULL);
1877 }
1878
1879 spa_log_state_t
1880 spa_get_log_state(spa_t *spa)
1881 {
1882 return (spa->spa_log_state);
1883 }
1884
1885 void
1886 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1887 {
1888 spa->spa_log_state = state;
1889 }
1890
1891 boolean_t
1892 spa_is_root(spa_t *spa)
1893 {
1894 return (spa->spa_is_root);
1895 }
1896
1897 boolean_t
1898 spa_writeable(spa_t *spa)
1899 {
1900 return (!!(spa->spa_mode & FWRITE));
1901 }
1902
1903 /*
1904 * Returns true if there is a pending sync task in any of the current
1905 * syncing txg, the current quiescing txg, or the current open txg.
1906 */
1907 boolean_t
1908 spa_has_pending_synctask(spa_t *spa)
1909 {
1910 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
1911 }
1912
1913 int
1914 spa_mode(spa_t *spa)
1915 {
1916 return (spa->spa_mode);
1917 }
1918
1919 uint64_t
1920 spa_bootfs(spa_t *spa)
1921 {
1922 return (spa->spa_bootfs);
1923 }
1924
1925 uint64_t
1926 spa_delegation(spa_t *spa)
1927 {
1928 return (spa->spa_delegation);
1929 }
1930
1931 objset_t *
1932 spa_meta_objset(spa_t *spa)
1933 {
1934 return (spa->spa_meta_objset);
1935 }
1936
1937 enum zio_checksum
1938 spa_dedup_checksum(spa_t *spa)
1939 {
1940 return (spa->spa_dedup_checksum);
1941 }
1942
1943 /*
1944 * Reset pool scan stat per scan pass (or reboot).
1945 */
1946 void
1947 spa_scan_stat_init(spa_t *spa)
1948 {
1949 /* data not stored on disk */
1950 spa->spa_scan_pass_start = gethrestime_sec();
1951 spa->spa_scan_pass_exam = 0;
1952 vdev_scan_stat_init(spa->spa_root_vdev);
1953 }
1954
1955 /*
1956 * Get scan stats for zpool status reports
1957 */
1958 int
1959 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1960 {
1961 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1962
1963 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1964 return (SET_ERROR(ENOENT));
1965 bzero(ps, sizeof (pool_scan_stat_t));
1966
1967 /* data stored on disk */
1968 ps->pss_func = scn->scn_phys.scn_func;
1969 ps->pss_start_time = scn->scn_phys.scn_start_time;
1970 ps->pss_end_time = scn->scn_phys.scn_end_time;
1971 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1972 ps->pss_examined = scn->scn_phys.scn_examined;
1973 ps->pss_to_process = scn->scn_phys.scn_to_process;
1974 ps->pss_processed = scn->scn_phys.scn_processed;
1975 ps->pss_errors = scn->scn_phys.scn_errors;
1976 ps->pss_state = scn->scn_phys.scn_state;
1977
1978 /* data not stored on disk */
1979 ps->pss_pass_start = spa->spa_scan_pass_start;
1980 ps->pss_pass_exam = spa->spa_scan_pass_exam;
1981
1982 return (0);
1983 }
1984
1985 boolean_t
1986 spa_debug_enabled(spa_t *spa)
1987 {
1988 return (spa->spa_debug);
1989 }
1990
1991 int
1992 spa_maxblocksize(spa_t *spa)
1993 {
1994 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
1995 return (SPA_MAXBLOCKSIZE);
1996 else
1997 return (SPA_OLD_MAXBLOCKSIZE);
1998 }
1999
2000 int
2001 spa_maxdnodesize(spa_t *spa)
2002 {
2003 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2004 return (DNODE_MAX_SIZE);
2005 else
2006 return (DNODE_MIN_SIZE);
2007 }
2008
2009 #if defined(_KERNEL) && defined(HAVE_SPL)
2010 /* Namespace manipulation */
2011 EXPORT_SYMBOL(spa_lookup);
2012 EXPORT_SYMBOL(spa_add);
2013 EXPORT_SYMBOL(spa_remove);
2014 EXPORT_SYMBOL(spa_next);
2015
2016 /* Refcount functions */
2017 EXPORT_SYMBOL(spa_open_ref);
2018 EXPORT_SYMBOL(spa_close);
2019 EXPORT_SYMBOL(spa_refcount_zero);
2020
2021 /* Pool configuration lock */
2022 EXPORT_SYMBOL(spa_config_tryenter);
2023 EXPORT_SYMBOL(spa_config_enter);
2024 EXPORT_SYMBOL(spa_config_exit);
2025 EXPORT_SYMBOL(spa_config_held);
2026
2027 /* Pool vdev add/remove lock */
2028 EXPORT_SYMBOL(spa_vdev_enter);
2029 EXPORT_SYMBOL(spa_vdev_exit);
2030
2031 /* Pool vdev state change lock */
2032 EXPORT_SYMBOL(spa_vdev_state_enter);
2033 EXPORT_SYMBOL(spa_vdev_state_exit);
2034
2035 /* Accessor functions */
2036 EXPORT_SYMBOL(spa_shutting_down);
2037 EXPORT_SYMBOL(spa_get_dsl);
2038 EXPORT_SYMBOL(spa_get_rootblkptr);
2039 EXPORT_SYMBOL(spa_set_rootblkptr);
2040 EXPORT_SYMBOL(spa_altroot);
2041 EXPORT_SYMBOL(spa_sync_pass);
2042 EXPORT_SYMBOL(spa_name);
2043 EXPORT_SYMBOL(spa_guid);
2044 EXPORT_SYMBOL(spa_last_synced_txg);
2045 EXPORT_SYMBOL(spa_first_txg);
2046 EXPORT_SYMBOL(spa_syncing_txg);
2047 EXPORT_SYMBOL(spa_version);
2048 EXPORT_SYMBOL(spa_state);
2049 EXPORT_SYMBOL(spa_load_state);
2050 EXPORT_SYMBOL(spa_freeze_txg);
2051 EXPORT_SYMBOL(spa_get_asize);
2052 EXPORT_SYMBOL(spa_get_dspace);
2053 EXPORT_SYMBOL(spa_update_dspace);
2054 EXPORT_SYMBOL(spa_deflate);
2055 EXPORT_SYMBOL(spa_normal_class);
2056 EXPORT_SYMBOL(spa_log_class);
2057 EXPORT_SYMBOL(spa_max_replication);
2058 EXPORT_SYMBOL(spa_prev_software_version);
2059 EXPORT_SYMBOL(spa_get_failmode);
2060 EXPORT_SYMBOL(spa_suspended);
2061 EXPORT_SYMBOL(spa_bootfs);
2062 EXPORT_SYMBOL(spa_delegation);
2063 EXPORT_SYMBOL(spa_meta_objset);
2064 EXPORT_SYMBOL(spa_maxblocksize);
2065 EXPORT_SYMBOL(spa_maxdnodesize);
2066
2067 /* Miscellaneous support routines */
2068 EXPORT_SYMBOL(spa_rename);
2069 EXPORT_SYMBOL(spa_guid_exists);
2070 EXPORT_SYMBOL(spa_strdup);
2071 EXPORT_SYMBOL(spa_strfree);
2072 EXPORT_SYMBOL(spa_get_random);
2073 EXPORT_SYMBOL(spa_generate_guid);
2074 EXPORT_SYMBOL(snprintf_blkptr);
2075 EXPORT_SYMBOL(spa_freeze);
2076 EXPORT_SYMBOL(spa_upgrade);
2077 EXPORT_SYMBOL(spa_evict_all);
2078 EXPORT_SYMBOL(spa_lookup_by_guid);
2079 EXPORT_SYMBOL(spa_has_spare);
2080 EXPORT_SYMBOL(dva_get_dsize_sync);
2081 EXPORT_SYMBOL(bp_get_dsize_sync);
2082 EXPORT_SYMBOL(bp_get_dsize);
2083 EXPORT_SYMBOL(spa_has_slogs);
2084 EXPORT_SYMBOL(spa_is_root);
2085 EXPORT_SYMBOL(spa_writeable);
2086 EXPORT_SYMBOL(spa_mode);
2087
2088 EXPORT_SYMBOL(spa_namespace_lock);
2089
2090 module_param(zfs_flags, uint, 0644);
2091 MODULE_PARM_DESC(zfs_flags, "Set additional debugging flags");
2092
2093 module_param(zfs_recover, int, 0644);
2094 MODULE_PARM_DESC(zfs_recover, "Set to attempt to recover from fatal errors");
2095
2096 module_param(zfs_free_leak_on_eio, int, 0644);
2097 MODULE_PARM_DESC(zfs_free_leak_on_eio,
2098 "Set to ignore IO errors during free and permanently leak the space");
2099
2100 module_param(zfs_deadman_synctime_ms, ulong, 0644);
2101 MODULE_PARM_DESC(zfs_deadman_synctime_ms, "Expiration time in milliseconds");
2102
2103 module_param(zfs_deadman_enabled, int, 0644);
2104 MODULE_PARM_DESC(zfs_deadman_enabled, "Enable deadman timer");
2105
2106 module_param(spa_asize_inflation, int, 0644);
2107 MODULE_PARM_DESC(spa_asize_inflation,
2108 "SPA size estimate multiplication factor");
2109
2110 module_param(spa_slop_shift, int, 0644);
2111 MODULE_PARM_DESC(spa_slop_shift, "Reserved free space in pool");
2112 #endif