]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa_misc.c
OpenZFS 9236 - nuke spa_dbgmsg
[mirror_zfs.git] / module / zfs / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2017 Datto Inc.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/spa_impl.h>
32 #include <sys/zio.h>
33 #include <sys/zio_checksum.h>
34 #include <sys/zio_compress.h>
35 #include <sys/dmu.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/zap.h>
38 #include <sys/zil.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/vdev_file.h>
41 #include <sys/vdev_raidz.h>
42 #include <sys/metaslab.h>
43 #include <sys/uberblock_impl.h>
44 #include <sys/txg.h>
45 #include <sys/avl.h>
46 #include <sys/unique.h>
47 #include <sys/dsl_pool.h>
48 #include <sys/dsl_dir.h>
49 #include <sys/dsl_prop.h>
50 #include <sys/fm/util.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/fs/zfs.h>
53 #include <sys/metaslab_impl.h>
54 #include <sys/arc.h>
55 #include <sys/ddt.h>
56 #include <sys/kstat.h>
57 #include "zfs_prop.h"
58 #include <sys/zfeature.h>
59 #include "qat.h"
60
61 /*
62 * SPA locking
63 *
64 * There are four basic locks for managing spa_t structures:
65 *
66 * spa_namespace_lock (global mutex)
67 *
68 * This lock must be acquired to do any of the following:
69 *
70 * - Lookup a spa_t by name
71 * - Add or remove a spa_t from the namespace
72 * - Increase spa_refcount from non-zero
73 * - Check if spa_refcount is zero
74 * - Rename a spa_t
75 * - add/remove/attach/detach devices
76 * - Held for the duration of create/destroy/import/export
77 *
78 * It does not need to handle recursion. A create or destroy may
79 * reference objects (files or zvols) in other pools, but by
80 * definition they must have an existing reference, and will never need
81 * to lookup a spa_t by name.
82 *
83 * spa_refcount (per-spa refcount_t protected by mutex)
84 *
85 * This reference count keep track of any active users of the spa_t. The
86 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
87 * the refcount is never really 'zero' - opening a pool implicitly keeps
88 * some references in the DMU. Internally we check against spa_minref, but
89 * present the image of a zero/non-zero value to consumers.
90 *
91 * spa_config_lock[] (per-spa array of rwlocks)
92 *
93 * This protects the spa_t from config changes, and must be held in
94 * the following circumstances:
95 *
96 * - RW_READER to perform I/O to the spa
97 * - RW_WRITER to change the vdev config
98 *
99 * The locking order is fairly straightforward:
100 *
101 * spa_namespace_lock -> spa_refcount
102 *
103 * The namespace lock must be acquired to increase the refcount from 0
104 * or to check if it is zero.
105 *
106 * spa_refcount -> spa_config_lock[]
107 *
108 * There must be at least one valid reference on the spa_t to acquire
109 * the config lock.
110 *
111 * spa_namespace_lock -> spa_config_lock[]
112 *
113 * The namespace lock must always be taken before the config lock.
114 *
115 *
116 * The spa_namespace_lock can be acquired directly and is globally visible.
117 *
118 * The namespace is manipulated using the following functions, all of which
119 * require the spa_namespace_lock to be held.
120 *
121 * spa_lookup() Lookup a spa_t by name.
122 *
123 * spa_add() Create a new spa_t in the namespace.
124 *
125 * spa_remove() Remove a spa_t from the namespace. This also
126 * frees up any memory associated with the spa_t.
127 *
128 * spa_next() Returns the next spa_t in the system, or the
129 * first if NULL is passed.
130 *
131 * spa_evict_all() Shutdown and remove all spa_t structures in
132 * the system.
133 *
134 * spa_guid_exists() Determine whether a pool/device guid exists.
135 *
136 * The spa_refcount is manipulated using the following functions:
137 *
138 * spa_open_ref() Adds a reference to the given spa_t. Must be
139 * called with spa_namespace_lock held if the
140 * refcount is currently zero.
141 *
142 * spa_close() Remove a reference from the spa_t. This will
143 * not free the spa_t or remove it from the
144 * namespace. No locking is required.
145 *
146 * spa_refcount_zero() Returns true if the refcount is currently
147 * zero. Must be called with spa_namespace_lock
148 * held.
149 *
150 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
151 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
152 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
153 *
154 * To read the configuration, it suffices to hold one of these locks as reader.
155 * To modify the configuration, you must hold all locks as writer. To modify
156 * vdev state without altering the vdev tree's topology (e.g. online/offline),
157 * you must hold SCL_STATE and SCL_ZIO as writer.
158 *
159 * We use these distinct config locks to avoid recursive lock entry.
160 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
161 * block allocations (SCL_ALLOC), which may require reading space maps
162 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
163 *
164 * The spa config locks cannot be normal rwlocks because we need the
165 * ability to hand off ownership. For example, SCL_ZIO is acquired
166 * by the issuing thread and later released by an interrupt thread.
167 * They do, however, obey the usual write-wanted semantics to prevent
168 * writer (i.e. system administrator) starvation.
169 *
170 * The lock acquisition rules are as follows:
171 *
172 * SCL_CONFIG
173 * Protects changes to the vdev tree topology, such as vdev
174 * add/remove/attach/detach. Protects the dirty config list
175 * (spa_config_dirty_list) and the set of spares and l2arc devices.
176 *
177 * SCL_STATE
178 * Protects changes to pool state and vdev state, such as vdev
179 * online/offline/fault/degrade/clear. Protects the dirty state list
180 * (spa_state_dirty_list) and global pool state (spa_state).
181 *
182 * SCL_ALLOC
183 * Protects changes to metaslab groups and classes.
184 * Held as reader by metaslab_alloc() and metaslab_claim().
185 *
186 * SCL_ZIO
187 * Held by bp-level zios (those which have no io_vd upon entry)
188 * to prevent changes to the vdev tree. The bp-level zio implicitly
189 * protects all of its vdev child zios, which do not hold SCL_ZIO.
190 *
191 * SCL_FREE
192 * Protects changes to metaslab groups and classes.
193 * Held as reader by metaslab_free(). SCL_FREE is distinct from
194 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
195 * blocks in zio_done() while another i/o that holds either
196 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
197 *
198 * SCL_VDEV
199 * Held as reader to prevent changes to the vdev tree during trivial
200 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
201 * other locks, and lower than all of them, to ensure that it's safe
202 * to acquire regardless of caller context.
203 *
204 * In addition, the following rules apply:
205 *
206 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
207 * The lock ordering is SCL_CONFIG > spa_props_lock.
208 *
209 * (b) I/O operations on leaf vdevs. For any zio operation that takes
210 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
211 * or zio_write_phys() -- the caller must ensure that the config cannot
212 * cannot change in the interim, and that the vdev cannot be reopened.
213 * SCL_STATE as reader suffices for both.
214 *
215 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
216 *
217 * spa_vdev_enter() Acquire the namespace lock and the config lock
218 * for writing.
219 *
220 * spa_vdev_exit() Release the config lock, wait for all I/O
221 * to complete, sync the updated configs to the
222 * cache, and release the namespace lock.
223 *
224 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
225 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
226 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
227 *
228 * spa_rename() is also implemented within this file since it requires
229 * manipulation of the namespace.
230 */
231
232 static avl_tree_t spa_namespace_avl;
233 kmutex_t spa_namespace_lock;
234 static kcondvar_t spa_namespace_cv;
235 int spa_max_replication_override = SPA_DVAS_PER_BP;
236
237 static kmutex_t spa_spare_lock;
238 static avl_tree_t spa_spare_avl;
239 static kmutex_t spa_l2cache_lock;
240 static avl_tree_t spa_l2cache_avl;
241
242 kmem_cache_t *spa_buffer_pool;
243 int spa_mode_global;
244
245 #ifdef ZFS_DEBUG
246 /*
247 * Everything except dprintf, set_error, spa, and indirect_remap is on
248 * by default in debug builds.
249 */
250 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
251 ZFS_DEBUG_INDIRECT_REMAP);
252 #else
253 int zfs_flags = 0;
254 #endif
255
256 /*
257 * zfs_recover can be set to nonzero to attempt to recover from
258 * otherwise-fatal errors, typically caused by on-disk corruption. When
259 * set, calls to zfs_panic_recover() will turn into warning messages.
260 * This should only be used as a last resort, as it typically results
261 * in leaked space, or worse.
262 */
263 int zfs_recover = B_FALSE;
264
265 /*
266 * If destroy encounters an EIO while reading metadata (e.g. indirect
267 * blocks), space referenced by the missing metadata can not be freed.
268 * Normally this causes the background destroy to become "stalled", as
269 * it is unable to make forward progress. While in this stalled state,
270 * all remaining space to free from the error-encountering filesystem is
271 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
272 * permanently leak the space from indirect blocks that can not be read,
273 * and continue to free everything else that it can.
274 *
275 * The default, "stalling" behavior is useful if the storage partially
276 * fails (i.e. some but not all i/os fail), and then later recovers. In
277 * this case, we will be able to continue pool operations while it is
278 * partially failed, and when it recovers, we can continue to free the
279 * space, with no leaks. However, note that this case is actually
280 * fairly rare.
281 *
282 * Typically pools either (a) fail completely (but perhaps temporarily,
283 * e.g. a top-level vdev going offline), or (b) have localized,
284 * permanent errors (e.g. disk returns the wrong data due to bit flip or
285 * firmware bug). In case (a), this setting does not matter because the
286 * pool will be suspended and the sync thread will not be able to make
287 * forward progress regardless. In case (b), because the error is
288 * permanent, the best we can do is leak the minimum amount of space,
289 * which is what setting this flag will do. Therefore, it is reasonable
290 * for this flag to normally be set, but we chose the more conservative
291 * approach of not setting it, so that there is no possibility of
292 * leaking space in the "partial temporary" failure case.
293 */
294 int zfs_free_leak_on_eio = B_FALSE;
295
296 /*
297 * Expiration time in milliseconds. This value has two meanings. First it is
298 * used to determine when the spa_deadman() logic should fire. By default the
299 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
300 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
301 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
302 * in one of three behaviors controlled by zfs_deadman_failmode.
303 */
304 unsigned long zfs_deadman_synctime_ms = 600000ULL;
305
306 /*
307 * This value controls the maximum amount of time zio_wait() will block for an
308 * outstanding IO. By default this is 300 seconds at which point the "hung"
309 * behavior will be applied as described for zfs_deadman_synctime_ms.
310 */
311 unsigned long zfs_deadman_ziotime_ms = 300000ULL;
312
313 /*
314 * Check time in milliseconds. This defines the frequency at which we check
315 * for hung I/O.
316 */
317 unsigned long zfs_deadman_checktime_ms = 60000ULL;
318
319 /*
320 * By default the deadman is enabled.
321 */
322 int zfs_deadman_enabled = 1;
323
324 /*
325 * Controls the behavior of the deadman when it detects a "hung" I/O.
326 * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
327 *
328 * wait - Wait for the "hung" I/O (default)
329 * continue - Attempt to recover from a "hung" I/O
330 * panic - Panic the system
331 */
332 char *zfs_deadman_failmode = "wait";
333
334 /*
335 * The worst case is single-sector max-parity RAID-Z blocks, in which
336 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
337 * times the size; so just assume that. Add to this the fact that
338 * we can have up to 3 DVAs per bp, and one more factor of 2 because
339 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
340 * the worst case is:
341 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
342 */
343 int spa_asize_inflation = 24;
344
345 /*
346 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
347 * the pool to be consumed. This ensures that we don't run the pool
348 * completely out of space, due to unaccounted changes (e.g. to the MOS).
349 * It also limits the worst-case time to allocate space. If we have
350 * less than this amount of free space, most ZPL operations (e.g. write,
351 * create) will return ENOSPC.
352 *
353 * Certain operations (e.g. file removal, most administrative actions) can
354 * use half the slop space. They will only return ENOSPC if less than half
355 * the slop space is free. Typically, once the pool has less than the slop
356 * space free, the user will use these operations to free up space in the pool.
357 * These are the operations that call dsl_pool_adjustedsize() with the netfree
358 * argument set to TRUE.
359 *
360 * A very restricted set of operations are always permitted, regardless of
361 * the amount of free space. These are the operations that call
362 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy". If these
363 * operations result in a net increase in the amount of space used,
364 * it is possible to run the pool completely out of space, causing it to
365 * be permanently read-only.
366 *
367 * Note that on very small pools, the slop space will be larger than
368 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
369 * but we never allow it to be more than half the pool size.
370 *
371 * See also the comments in zfs_space_check_t.
372 */
373 int spa_slop_shift = 5;
374 uint64_t spa_min_slop = 128 * 1024 * 1024;
375
376 /*
377 * ==========================================================================
378 * SPA config locking
379 * ==========================================================================
380 */
381 static void
382 spa_config_lock_init(spa_t *spa)
383 {
384 for (int i = 0; i < SCL_LOCKS; i++) {
385 spa_config_lock_t *scl = &spa->spa_config_lock[i];
386 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
387 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
388 refcount_create_untracked(&scl->scl_count);
389 scl->scl_writer = NULL;
390 scl->scl_write_wanted = 0;
391 }
392 }
393
394 static void
395 spa_config_lock_destroy(spa_t *spa)
396 {
397 for (int i = 0; i < SCL_LOCKS; i++) {
398 spa_config_lock_t *scl = &spa->spa_config_lock[i];
399 mutex_destroy(&scl->scl_lock);
400 cv_destroy(&scl->scl_cv);
401 refcount_destroy(&scl->scl_count);
402 ASSERT(scl->scl_writer == NULL);
403 ASSERT(scl->scl_write_wanted == 0);
404 }
405 }
406
407 int
408 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
409 {
410 for (int i = 0; i < SCL_LOCKS; i++) {
411 spa_config_lock_t *scl = &spa->spa_config_lock[i];
412 if (!(locks & (1 << i)))
413 continue;
414 mutex_enter(&scl->scl_lock);
415 if (rw == RW_READER) {
416 if (scl->scl_writer || scl->scl_write_wanted) {
417 mutex_exit(&scl->scl_lock);
418 spa_config_exit(spa, locks & ((1 << i) - 1),
419 tag);
420 return (0);
421 }
422 } else {
423 ASSERT(scl->scl_writer != curthread);
424 if (!refcount_is_zero(&scl->scl_count)) {
425 mutex_exit(&scl->scl_lock);
426 spa_config_exit(spa, locks & ((1 << i) - 1),
427 tag);
428 return (0);
429 }
430 scl->scl_writer = curthread;
431 }
432 (void) refcount_add(&scl->scl_count, tag);
433 mutex_exit(&scl->scl_lock);
434 }
435 return (1);
436 }
437
438 void
439 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
440 {
441 int wlocks_held = 0;
442
443 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
444
445 for (int i = 0; i < SCL_LOCKS; i++) {
446 spa_config_lock_t *scl = &spa->spa_config_lock[i];
447 if (scl->scl_writer == curthread)
448 wlocks_held |= (1 << i);
449 if (!(locks & (1 << i)))
450 continue;
451 mutex_enter(&scl->scl_lock);
452 if (rw == RW_READER) {
453 while (scl->scl_writer || scl->scl_write_wanted) {
454 cv_wait(&scl->scl_cv, &scl->scl_lock);
455 }
456 } else {
457 ASSERT(scl->scl_writer != curthread);
458 while (!refcount_is_zero(&scl->scl_count)) {
459 scl->scl_write_wanted++;
460 cv_wait(&scl->scl_cv, &scl->scl_lock);
461 scl->scl_write_wanted--;
462 }
463 scl->scl_writer = curthread;
464 }
465 (void) refcount_add(&scl->scl_count, tag);
466 mutex_exit(&scl->scl_lock);
467 }
468 ASSERT3U(wlocks_held, <=, locks);
469 }
470
471 void
472 spa_config_exit(spa_t *spa, int locks, void *tag)
473 {
474 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
475 spa_config_lock_t *scl = &spa->spa_config_lock[i];
476 if (!(locks & (1 << i)))
477 continue;
478 mutex_enter(&scl->scl_lock);
479 ASSERT(!refcount_is_zero(&scl->scl_count));
480 if (refcount_remove(&scl->scl_count, tag) == 0) {
481 ASSERT(scl->scl_writer == NULL ||
482 scl->scl_writer == curthread);
483 scl->scl_writer = NULL; /* OK in either case */
484 cv_broadcast(&scl->scl_cv);
485 }
486 mutex_exit(&scl->scl_lock);
487 }
488 }
489
490 int
491 spa_config_held(spa_t *spa, int locks, krw_t rw)
492 {
493 int locks_held = 0;
494
495 for (int i = 0; i < SCL_LOCKS; i++) {
496 spa_config_lock_t *scl = &spa->spa_config_lock[i];
497 if (!(locks & (1 << i)))
498 continue;
499 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
500 (rw == RW_WRITER && scl->scl_writer == curthread))
501 locks_held |= 1 << i;
502 }
503
504 return (locks_held);
505 }
506
507 /*
508 * ==========================================================================
509 * SPA namespace functions
510 * ==========================================================================
511 */
512
513 /*
514 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
515 * Returns NULL if no matching spa_t is found.
516 */
517 spa_t *
518 spa_lookup(const char *name)
519 {
520 static spa_t search; /* spa_t is large; don't allocate on stack */
521 spa_t *spa;
522 avl_index_t where;
523 char *cp;
524
525 ASSERT(MUTEX_HELD(&spa_namespace_lock));
526
527 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
528
529 /*
530 * If it's a full dataset name, figure out the pool name and
531 * just use that.
532 */
533 cp = strpbrk(search.spa_name, "/@#");
534 if (cp != NULL)
535 *cp = '\0';
536
537 spa = avl_find(&spa_namespace_avl, &search, &where);
538
539 return (spa);
540 }
541
542 /*
543 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
544 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
545 * looking for potentially hung I/Os.
546 */
547 void
548 spa_deadman(void *arg)
549 {
550 spa_t *spa = arg;
551
552 /* Disable the deadman if the pool is suspended. */
553 if (spa_suspended(spa))
554 return;
555
556 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
557 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
558 ++spa->spa_deadman_calls);
559 if (zfs_deadman_enabled)
560 vdev_deadman(spa->spa_root_vdev, FTAG);
561
562 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
563 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
564 MSEC_TO_TICK(zfs_deadman_checktime_ms));
565 }
566
567 /*
568 * Create an uninitialized spa_t with the given name. Requires
569 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
570 * exist by calling spa_lookup() first.
571 */
572 spa_t *
573 spa_add(const char *name, nvlist_t *config, const char *altroot)
574 {
575 spa_t *spa;
576 spa_config_dirent_t *dp;
577
578 ASSERT(MUTEX_HELD(&spa_namespace_lock));
579
580 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
581
582 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
583 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
584 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
585 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
586 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
587 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
588 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
589 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
590 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
591 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
592 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
593 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
594 mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL);
595
596 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
597 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
598 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
599 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
600 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
601
602 for (int t = 0; t < TXG_SIZE; t++)
603 bplist_create(&spa->spa_free_bplist[t]);
604
605 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
606 spa->spa_state = POOL_STATE_UNINITIALIZED;
607 spa->spa_freeze_txg = UINT64_MAX;
608 spa->spa_final_txg = UINT64_MAX;
609 spa->spa_load_max_txg = UINT64_MAX;
610 spa->spa_proc = &p0;
611 spa->spa_proc_state = SPA_PROC_NONE;
612
613 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
614 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
615 spa_set_deadman_failmode(spa, zfs_deadman_failmode);
616
617 refcount_create(&spa->spa_refcount);
618 spa_config_lock_init(spa);
619 spa_stats_init(spa);
620
621 avl_add(&spa_namespace_avl, spa);
622
623 /*
624 * Set the alternate root, if there is one.
625 */
626 if (altroot)
627 spa->spa_root = spa_strdup(altroot);
628
629 avl_create(&spa->spa_alloc_tree, zio_bookmark_compare,
630 sizeof (zio_t), offsetof(zio_t, io_alloc_node));
631
632 /*
633 * Every pool starts with the default cachefile
634 */
635 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
636 offsetof(spa_config_dirent_t, scd_link));
637
638 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
639 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
640 list_insert_head(&spa->spa_config_list, dp);
641
642 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
643 KM_SLEEP) == 0);
644
645 if (config != NULL) {
646 nvlist_t *features;
647
648 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
649 &features) == 0) {
650 VERIFY(nvlist_dup(features, &spa->spa_label_features,
651 0) == 0);
652 }
653
654 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
655 }
656
657 if (spa->spa_label_features == NULL) {
658 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
659 KM_SLEEP) == 0);
660 }
661
662 spa->spa_min_ashift = INT_MAX;
663 spa->spa_max_ashift = 0;
664
665 /* Reset cached value */
666 spa->spa_dedup_dspace = ~0ULL;
667
668 /*
669 * As a pool is being created, treat all features as disabled by
670 * setting SPA_FEATURE_DISABLED for all entries in the feature
671 * refcount cache.
672 */
673 for (int i = 0; i < SPA_FEATURES; i++) {
674 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
675 }
676
677 return (spa);
678 }
679
680 /*
681 * Removes a spa_t from the namespace, freeing up any memory used. Requires
682 * spa_namespace_lock. This is called only after the spa_t has been closed and
683 * deactivated.
684 */
685 void
686 spa_remove(spa_t *spa)
687 {
688 spa_config_dirent_t *dp;
689
690 ASSERT(MUTEX_HELD(&spa_namespace_lock));
691 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
692 ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
693
694 nvlist_free(spa->spa_config_splitting);
695
696 avl_remove(&spa_namespace_avl, spa);
697 cv_broadcast(&spa_namespace_cv);
698
699 if (spa->spa_root)
700 spa_strfree(spa->spa_root);
701
702 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
703 list_remove(&spa->spa_config_list, dp);
704 if (dp->scd_path != NULL)
705 spa_strfree(dp->scd_path);
706 kmem_free(dp, sizeof (spa_config_dirent_t));
707 }
708
709 avl_destroy(&spa->spa_alloc_tree);
710 list_destroy(&spa->spa_config_list);
711
712 nvlist_free(spa->spa_label_features);
713 nvlist_free(spa->spa_load_info);
714 nvlist_free(spa->spa_feat_stats);
715 spa_config_set(spa, NULL);
716
717 refcount_destroy(&spa->spa_refcount);
718
719 spa_stats_destroy(spa);
720 spa_config_lock_destroy(spa);
721
722 for (int t = 0; t < TXG_SIZE; t++)
723 bplist_destroy(&spa->spa_free_bplist[t]);
724
725 zio_checksum_templates_free(spa);
726
727 cv_destroy(&spa->spa_async_cv);
728 cv_destroy(&spa->spa_evicting_os_cv);
729 cv_destroy(&spa->spa_proc_cv);
730 cv_destroy(&spa->spa_scrub_io_cv);
731 cv_destroy(&spa->spa_suspend_cv);
732
733 mutex_destroy(&spa->spa_alloc_lock);
734 mutex_destroy(&spa->spa_async_lock);
735 mutex_destroy(&spa->spa_errlist_lock);
736 mutex_destroy(&spa->spa_errlog_lock);
737 mutex_destroy(&spa->spa_evicting_os_lock);
738 mutex_destroy(&spa->spa_history_lock);
739 mutex_destroy(&spa->spa_proc_lock);
740 mutex_destroy(&spa->spa_props_lock);
741 mutex_destroy(&spa->spa_cksum_tmpls_lock);
742 mutex_destroy(&spa->spa_scrub_lock);
743 mutex_destroy(&spa->spa_suspend_lock);
744 mutex_destroy(&spa->spa_vdev_top_lock);
745 mutex_destroy(&spa->spa_feat_stats_lock);
746
747 kmem_free(spa, sizeof (spa_t));
748 }
749
750 /*
751 * Given a pool, return the next pool in the namespace, or NULL if there is
752 * none. If 'prev' is NULL, return the first pool.
753 */
754 spa_t *
755 spa_next(spa_t *prev)
756 {
757 ASSERT(MUTEX_HELD(&spa_namespace_lock));
758
759 if (prev)
760 return (AVL_NEXT(&spa_namespace_avl, prev));
761 else
762 return (avl_first(&spa_namespace_avl));
763 }
764
765 /*
766 * ==========================================================================
767 * SPA refcount functions
768 * ==========================================================================
769 */
770
771 /*
772 * Add a reference to the given spa_t. Must have at least one reference, or
773 * have the namespace lock held.
774 */
775 void
776 spa_open_ref(spa_t *spa, void *tag)
777 {
778 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
779 MUTEX_HELD(&spa_namespace_lock));
780 (void) refcount_add(&spa->spa_refcount, tag);
781 }
782
783 /*
784 * Remove a reference to the given spa_t. Must have at least one reference, or
785 * have the namespace lock held.
786 */
787 void
788 spa_close(spa_t *spa, void *tag)
789 {
790 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
791 MUTEX_HELD(&spa_namespace_lock));
792 (void) refcount_remove(&spa->spa_refcount, tag);
793 }
794
795 /*
796 * Remove a reference to the given spa_t held by a dsl dir that is
797 * being asynchronously released. Async releases occur from a taskq
798 * performing eviction of dsl datasets and dirs. The namespace lock
799 * isn't held and the hold by the object being evicted may contribute to
800 * spa_minref (e.g. dataset or directory released during pool export),
801 * so the asserts in spa_close() do not apply.
802 */
803 void
804 spa_async_close(spa_t *spa, void *tag)
805 {
806 (void) refcount_remove(&spa->spa_refcount, tag);
807 }
808
809 /*
810 * Check to see if the spa refcount is zero. Must be called with
811 * spa_namespace_lock held. We really compare against spa_minref, which is the
812 * number of references acquired when opening a pool
813 */
814 boolean_t
815 spa_refcount_zero(spa_t *spa)
816 {
817 ASSERT(MUTEX_HELD(&spa_namespace_lock));
818
819 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
820 }
821
822 /*
823 * ==========================================================================
824 * SPA spare and l2cache tracking
825 * ==========================================================================
826 */
827
828 /*
829 * Hot spares and cache devices are tracked using the same code below,
830 * for 'auxiliary' devices.
831 */
832
833 typedef struct spa_aux {
834 uint64_t aux_guid;
835 uint64_t aux_pool;
836 avl_node_t aux_avl;
837 int aux_count;
838 } spa_aux_t;
839
840 static inline int
841 spa_aux_compare(const void *a, const void *b)
842 {
843 const spa_aux_t *sa = (const spa_aux_t *)a;
844 const spa_aux_t *sb = (const spa_aux_t *)b;
845
846 return (AVL_CMP(sa->aux_guid, sb->aux_guid));
847 }
848
849 void
850 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
851 {
852 avl_index_t where;
853 spa_aux_t search;
854 spa_aux_t *aux;
855
856 search.aux_guid = vd->vdev_guid;
857 if ((aux = avl_find(avl, &search, &where)) != NULL) {
858 aux->aux_count++;
859 } else {
860 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
861 aux->aux_guid = vd->vdev_guid;
862 aux->aux_count = 1;
863 avl_insert(avl, aux, where);
864 }
865 }
866
867 void
868 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
869 {
870 spa_aux_t search;
871 spa_aux_t *aux;
872 avl_index_t where;
873
874 search.aux_guid = vd->vdev_guid;
875 aux = avl_find(avl, &search, &where);
876
877 ASSERT(aux != NULL);
878
879 if (--aux->aux_count == 0) {
880 avl_remove(avl, aux);
881 kmem_free(aux, sizeof (spa_aux_t));
882 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
883 aux->aux_pool = 0ULL;
884 }
885 }
886
887 boolean_t
888 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
889 {
890 spa_aux_t search, *found;
891
892 search.aux_guid = guid;
893 found = avl_find(avl, &search, NULL);
894
895 if (pool) {
896 if (found)
897 *pool = found->aux_pool;
898 else
899 *pool = 0ULL;
900 }
901
902 if (refcnt) {
903 if (found)
904 *refcnt = found->aux_count;
905 else
906 *refcnt = 0;
907 }
908
909 return (found != NULL);
910 }
911
912 void
913 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
914 {
915 spa_aux_t search, *found;
916 avl_index_t where;
917
918 search.aux_guid = vd->vdev_guid;
919 found = avl_find(avl, &search, &where);
920 ASSERT(found != NULL);
921 ASSERT(found->aux_pool == 0ULL);
922
923 found->aux_pool = spa_guid(vd->vdev_spa);
924 }
925
926 /*
927 * Spares are tracked globally due to the following constraints:
928 *
929 * - A spare may be part of multiple pools.
930 * - A spare may be added to a pool even if it's actively in use within
931 * another pool.
932 * - A spare in use in any pool can only be the source of a replacement if
933 * the target is a spare in the same pool.
934 *
935 * We keep track of all spares on the system through the use of a reference
936 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
937 * spare, then we bump the reference count in the AVL tree. In addition, we set
938 * the 'vdev_isspare' member to indicate that the device is a spare (active or
939 * inactive). When a spare is made active (used to replace a device in the
940 * pool), we also keep track of which pool its been made a part of.
941 *
942 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
943 * called under the spa_namespace lock as part of vdev reconfiguration. The
944 * separate spare lock exists for the status query path, which does not need to
945 * be completely consistent with respect to other vdev configuration changes.
946 */
947
948 static int
949 spa_spare_compare(const void *a, const void *b)
950 {
951 return (spa_aux_compare(a, b));
952 }
953
954 void
955 spa_spare_add(vdev_t *vd)
956 {
957 mutex_enter(&spa_spare_lock);
958 ASSERT(!vd->vdev_isspare);
959 spa_aux_add(vd, &spa_spare_avl);
960 vd->vdev_isspare = B_TRUE;
961 mutex_exit(&spa_spare_lock);
962 }
963
964 void
965 spa_spare_remove(vdev_t *vd)
966 {
967 mutex_enter(&spa_spare_lock);
968 ASSERT(vd->vdev_isspare);
969 spa_aux_remove(vd, &spa_spare_avl);
970 vd->vdev_isspare = B_FALSE;
971 mutex_exit(&spa_spare_lock);
972 }
973
974 boolean_t
975 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
976 {
977 boolean_t found;
978
979 mutex_enter(&spa_spare_lock);
980 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
981 mutex_exit(&spa_spare_lock);
982
983 return (found);
984 }
985
986 void
987 spa_spare_activate(vdev_t *vd)
988 {
989 mutex_enter(&spa_spare_lock);
990 ASSERT(vd->vdev_isspare);
991 spa_aux_activate(vd, &spa_spare_avl);
992 mutex_exit(&spa_spare_lock);
993 }
994
995 /*
996 * Level 2 ARC devices are tracked globally for the same reasons as spares.
997 * Cache devices currently only support one pool per cache device, and so
998 * for these devices the aux reference count is currently unused beyond 1.
999 */
1000
1001 static int
1002 spa_l2cache_compare(const void *a, const void *b)
1003 {
1004 return (spa_aux_compare(a, b));
1005 }
1006
1007 void
1008 spa_l2cache_add(vdev_t *vd)
1009 {
1010 mutex_enter(&spa_l2cache_lock);
1011 ASSERT(!vd->vdev_isl2cache);
1012 spa_aux_add(vd, &spa_l2cache_avl);
1013 vd->vdev_isl2cache = B_TRUE;
1014 mutex_exit(&spa_l2cache_lock);
1015 }
1016
1017 void
1018 spa_l2cache_remove(vdev_t *vd)
1019 {
1020 mutex_enter(&spa_l2cache_lock);
1021 ASSERT(vd->vdev_isl2cache);
1022 spa_aux_remove(vd, &spa_l2cache_avl);
1023 vd->vdev_isl2cache = B_FALSE;
1024 mutex_exit(&spa_l2cache_lock);
1025 }
1026
1027 boolean_t
1028 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1029 {
1030 boolean_t found;
1031
1032 mutex_enter(&spa_l2cache_lock);
1033 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1034 mutex_exit(&spa_l2cache_lock);
1035
1036 return (found);
1037 }
1038
1039 void
1040 spa_l2cache_activate(vdev_t *vd)
1041 {
1042 mutex_enter(&spa_l2cache_lock);
1043 ASSERT(vd->vdev_isl2cache);
1044 spa_aux_activate(vd, &spa_l2cache_avl);
1045 mutex_exit(&spa_l2cache_lock);
1046 }
1047
1048 /*
1049 * ==========================================================================
1050 * SPA vdev locking
1051 * ==========================================================================
1052 */
1053
1054 /*
1055 * Lock the given spa_t for the purpose of adding or removing a vdev.
1056 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1057 * It returns the next transaction group for the spa_t.
1058 */
1059 uint64_t
1060 spa_vdev_enter(spa_t *spa)
1061 {
1062 mutex_enter(&spa->spa_vdev_top_lock);
1063 mutex_enter(&spa_namespace_lock);
1064 return (spa_vdev_config_enter(spa));
1065 }
1066
1067 /*
1068 * Internal implementation for spa_vdev_enter(). Used when a vdev
1069 * operation requires multiple syncs (i.e. removing a device) while
1070 * keeping the spa_namespace_lock held.
1071 */
1072 uint64_t
1073 spa_vdev_config_enter(spa_t *spa)
1074 {
1075 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1076
1077 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1078
1079 return (spa_last_synced_txg(spa) + 1);
1080 }
1081
1082 /*
1083 * Used in combination with spa_vdev_config_enter() to allow the syncing
1084 * of multiple transactions without releasing the spa_namespace_lock.
1085 */
1086 void
1087 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1088 {
1089 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1090
1091 int config_changed = B_FALSE;
1092
1093 ASSERT(txg > spa_last_synced_txg(spa));
1094
1095 spa->spa_pending_vdev = NULL;
1096
1097 /*
1098 * Reassess the DTLs.
1099 */
1100 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1101
1102 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1103 config_changed = B_TRUE;
1104 spa->spa_config_generation++;
1105 }
1106
1107 /*
1108 * Verify the metaslab classes.
1109 */
1110 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1111 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1112
1113 spa_config_exit(spa, SCL_ALL, spa);
1114
1115 /*
1116 * Panic the system if the specified tag requires it. This
1117 * is useful for ensuring that configurations are updated
1118 * transactionally.
1119 */
1120 if (zio_injection_enabled)
1121 zio_handle_panic_injection(spa, tag, 0);
1122
1123 /*
1124 * Note: this txg_wait_synced() is important because it ensures
1125 * that there won't be more than one config change per txg.
1126 * This allows us to use the txg as the generation number.
1127 */
1128 if (error == 0)
1129 txg_wait_synced(spa->spa_dsl_pool, txg);
1130
1131 if (vd != NULL) {
1132 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1133 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1134 vdev_free(vd);
1135 spa_config_exit(spa, SCL_ALL, spa);
1136 }
1137
1138 /*
1139 * If the config changed, update the config cache.
1140 */
1141 if (config_changed)
1142 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1143 }
1144
1145 /*
1146 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1147 * locking of spa_vdev_enter(), we also want make sure the transactions have
1148 * synced to disk, and then update the global configuration cache with the new
1149 * information.
1150 */
1151 int
1152 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1153 {
1154 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1155 mutex_exit(&spa_namespace_lock);
1156 mutex_exit(&spa->spa_vdev_top_lock);
1157
1158 return (error);
1159 }
1160
1161 /*
1162 * Lock the given spa_t for the purpose of changing vdev state.
1163 */
1164 void
1165 spa_vdev_state_enter(spa_t *spa, int oplocks)
1166 {
1167 int locks = SCL_STATE_ALL | oplocks;
1168
1169 /*
1170 * Root pools may need to read of the underlying devfs filesystem
1171 * when opening up a vdev. Unfortunately if we're holding the
1172 * SCL_ZIO lock it will result in a deadlock when we try to issue
1173 * the read from the root filesystem. Instead we "prefetch"
1174 * the associated vnodes that we need prior to opening the
1175 * underlying devices and cache them so that we can prevent
1176 * any I/O when we are doing the actual open.
1177 */
1178 if (spa_is_root(spa)) {
1179 int low = locks & ~(SCL_ZIO - 1);
1180 int high = locks & ~low;
1181
1182 spa_config_enter(spa, high, spa, RW_WRITER);
1183 vdev_hold(spa->spa_root_vdev);
1184 spa_config_enter(spa, low, spa, RW_WRITER);
1185 } else {
1186 spa_config_enter(spa, locks, spa, RW_WRITER);
1187 }
1188 spa->spa_vdev_locks = locks;
1189 }
1190
1191 int
1192 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1193 {
1194 boolean_t config_changed = B_FALSE;
1195 vdev_t *vdev_top;
1196
1197 if (vd == NULL || vd == spa->spa_root_vdev) {
1198 vdev_top = spa->spa_root_vdev;
1199 } else {
1200 vdev_top = vd->vdev_top;
1201 }
1202
1203 if (vd != NULL || error == 0)
1204 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE);
1205
1206 if (vd != NULL) {
1207 if (vd != spa->spa_root_vdev)
1208 vdev_state_dirty(vdev_top);
1209
1210 config_changed = B_TRUE;
1211 spa->spa_config_generation++;
1212 }
1213
1214 if (spa_is_root(spa))
1215 vdev_rele(spa->spa_root_vdev);
1216
1217 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1218 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1219
1220 /*
1221 * If anything changed, wait for it to sync. This ensures that,
1222 * from the system administrator's perspective, zpool(1M) commands
1223 * are synchronous. This is important for things like zpool offline:
1224 * when the command completes, you expect no further I/O from ZFS.
1225 */
1226 if (vd != NULL)
1227 txg_wait_synced(spa->spa_dsl_pool, 0);
1228
1229 /*
1230 * If the config changed, update the config cache.
1231 */
1232 if (config_changed) {
1233 mutex_enter(&spa_namespace_lock);
1234 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1235 mutex_exit(&spa_namespace_lock);
1236 }
1237
1238 return (error);
1239 }
1240
1241 /*
1242 * ==========================================================================
1243 * Miscellaneous functions
1244 * ==========================================================================
1245 */
1246
1247 void
1248 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1249 {
1250 if (!nvlist_exists(spa->spa_label_features, feature)) {
1251 fnvlist_add_boolean(spa->spa_label_features, feature);
1252 /*
1253 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1254 * dirty the vdev config because lock SCL_CONFIG is not held.
1255 * Thankfully, in this case we don't need to dirty the config
1256 * because it will be written out anyway when we finish
1257 * creating the pool.
1258 */
1259 if (tx->tx_txg != TXG_INITIAL)
1260 vdev_config_dirty(spa->spa_root_vdev);
1261 }
1262 }
1263
1264 void
1265 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1266 {
1267 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1268 vdev_config_dirty(spa->spa_root_vdev);
1269 }
1270
1271 /*
1272 * Rename a spa_t.
1273 */
1274 int
1275 spa_rename(const char *name, const char *newname)
1276 {
1277 spa_t *spa;
1278 int err;
1279
1280 /*
1281 * Lookup the spa_t and grab the config lock for writing. We need to
1282 * actually open the pool so that we can sync out the necessary labels.
1283 * It's OK to call spa_open() with the namespace lock held because we
1284 * allow recursive calls for other reasons.
1285 */
1286 mutex_enter(&spa_namespace_lock);
1287 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1288 mutex_exit(&spa_namespace_lock);
1289 return (err);
1290 }
1291
1292 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1293
1294 avl_remove(&spa_namespace_avl, spa);
1295 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1296 avl_add(&spa_namespace_avl, spa);
1297
1298 /*
1299 * Sync all labels to disk with the new names by marking the root vdev
1300 * dirty and waiting for it to sync. It will pick up the new pool name
1301 * during the sync.
1302 */
1303 vdev_config_dirty(spa->spa_root_vdev);
1304
1305 spa_config_exit(spa, SCL_ALL, FTAG);
1306
1307 txg_wait_synced(spa->spa_dsl_pool, 0);
1308
1309 /*
1310 * Sync the updated config cache.
1311 */
1312 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1313
1314 spa_close(spa, FTAG);
1315
1316 mutex_exit(&spa_namespace_lock);
1317
1318 return (0);
1319 }
1320
1321 /*
1322 * Return the spa_t associated with given pool_guid, if it exists. If
1323 * device_guid is non-zero, determine whether the pool exists *and* contains
1324 * a device with the specified device_guid.
1325 */
1326 spa_t *
1327 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1328 {
1329 spa_t *spa;
1330 avl_tree_t *t = &spa_namespace_avl;
1331
1332 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1333
1334 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1335 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1336 continue;
1337 if (spa->spa_root_vdev == NULL)
1338 continue;
1339 if (spa_guid(spa) == pool_guid) {
1340 if (device_guid == 0)
1341 break;
1342
1343 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1344 device_guid) != NULL)
1345 break;
1346
1347 /*
1348 * Check any devices we may be in the process of adding.
1349 */
1350 if (spa->spa_pending_vdev) {
1351 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1352 device_guid) != NULL)
1353 break;
1354 }
1355 }
1356 }
1357
1358 return (spa);
1359 }
1360
1361 /*
1362 * Determine whether a pool with the given pool_guid exists.
1363 */
1364 boolean_t
1365 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1366 {
1367 return (spa_by_guid(pool_guid, device_guid) != NULL);
1368 }
1369
1370 char *
1371 spa_strdup(const char *s)
1372 {
1373 size_t len;
1374 char *new;
1375
1376 len = strlen(s);
1377 new = kmem_alloc(len + 1, KM_SLEEP);
1378 bcopy(s, new, len);
1379 new[len] = '\0';
1380
1381 return (new);
1382 }
1383
1384 void
1385 spa_strfree(char *s)
1386 {
1387 kmem_free(s, strlen(s) + 1);
1388 }
1389
1390 uint64_t
1391 spa_get_random(uint64_t range)
1392 {
1393 uint64_t r;
1394
1395 ASSERT(range != 0);
1396
1397 if (range == 1)
1398 return (0);
1399
1400 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1401
1402 return (r % range);
1403 }
1404
1405 uint64_t
1406 spa_generate_guid(spa_t *spa)
1407 {
1408 uint64_t guid = spa_get_random(-1ULL);
1409
1410 if (spa != NULL) {
1411 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1412 guid = spa_get_random(-1ULL);
1413 } else {
1414 while (guid == 0 || spa_guid_exists(guid, 0))
1415 guid = spa_get_random(-1ULL);
1416 }
1417
1418 return (guid);
1419 }
1420
1421 void
1422 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1423 {
1424 char type[256];
1425 char *checksum = NULL;
1426 char *compress = NULL;
1427
1428 if (bp != NULL) {
1429 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1430 dmu_object_byteswap_t bswap =
1431 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1432 (void) snprintf(type, sizeof (type), "bswap %s %s",
1433 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1434 "metadata" : "data",
1435 dmu_ot_byteswap[bswap].ob_name);
1436 } else {
1437 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1438 sizeof (type));
1439 }
1440 if (!BP_IS_EMBEDDED(bp)) {
1441 checksum =
1442 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1443 }
1444 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1445 }
1446
1447 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1448 compress);
1449 }
1450
1451 void
1452 spa_freeze(spa_t *spa)
1453 {
1454 uint64_t freeze_txg = 0;
1455
1456 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1457 if (spa->spa_freeze_txg == UINT64_MAX) {
1458 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1459 spa->spa_freeze_txg = freeze_txg;
1460 }
1461 spa_config_exit(spa, SCL_ALL, FTAG);
1462 if (freeze_txg != 0)
1463 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1464 }
1465
1466 void
1467 zfs_panic_recover(const char *fmt, ...)
1468 {
1469 va_list adx;
1470
1471 va_start(adx, fmt);
1472 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1473 va_end(adx);
1474 }
1475
1476 /*
1477 * This is a stripped-down version of strtoull, suitable only for converting
1478 * lowercase hexadecimal numbers that don't overflow.
1479 */
1480 uint64_t
1481 zfs_strtonum(const char *str, char **nptr)
1482 {
1483 uint64_t val = 0;
1484 char c;
1485 int digit;
1486
1487 while ((c = *str) != '\0') {
1488 if (c >= '0' && c <= '9')
1489 digit = c - '0';
1490 else if (c >= 'a' && c <= 'f')
1491 digit = 10 + c - 'a';
1492 else
1493 break;
1494
1495 val *= 16;
1496 val += digit;
1497
1498 str++;
1499 }
1500
1501 if (nptr)
1502 *nptr = (char *)str;
1503
1504 return (val);
1505 }
1506
1507 /*
1508 * ==========================================================================
1509 * Accessor functions
1510 * ==========================================================================
1511 */
1512
1513 boolean_t
1514 spa_shutting_down(spa_t *spa)
1515 {
1516 return (spa->spa_async_suspended);
1517 }
1518
1519 dsl_pool_t *
1520 spa_get_dsl(spa_t *spa)
1521 {
1522 return (spa->spa_dsl_pool);
1523 }
1524
1525 boolean_t
1526 spa_is_initializing(spa_t *spa)
1527 {
1528 return (spa->spa_is_initializing);
1529 }
1530
1531 boolean_t
1532 spa_indirect_vdevs_loaded(spa_t *spa)
1533 {
1534 return (spa->spa_indirect_vdevs_loaded);
1535 }
1536
1537 blkptr_t *
1538 spa_get_rootblkptr(spa_t *spa)
1539 {
1540 return (&spa->spa_ubsync.ub_rootbp);
1541 }
1542
1543 void
1544 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1545 {
1546 spa->spa_uberblock.ub_rootbp = *bp;
1547 }
1548
1549 void
1550 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1551 {
1552 if (spa->spa_root == NULL)
1553 buf[0] = '\0';
1554 else
1555 (void) strncpy(buf, spa->spa_root, buflen);
1556 }
1557
1558 int
1559 spa_sync_pass(spa_t *spa)
1560 {
1561 return (spa->spa_sync_pass);
1562 }
1563
1564 char *
1565 spa_name(spa_t *spa)
1566 {
1567 return (spa->spa_name);
1568 }
1569
1570 uint64_t
1571 spa_guid(spa_t *spa)
1572 {
1573 dsl_pool_t *dp = spa_get_dsl(spa);
1574 uint64_t guid;
1575
1576 /*
1577 * If we fail to parse the config during spa_load(), we can go through
1578 * the error path (which posts an ereport) and end up here with no root
1579 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1580 * this case.
1581 */
1582 if (spa->spa_root_vdev == NULL)
1583 return (spa->spa_config_guid);
1584
1585 guid = spa->spa_last_synced_guid != 0 ?
1586 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1587
1588 /*
1589 * Return the most recently synced out guid unless we're
1590 * in syncing context.
1591 */
1592 if (dp && dsl_pool_sync_context(dp))
1593 return (spa->spa_root_vdev->vdev_guid);
1594 else
1595 return (guid);
1596 }
1597
1598 uint64_t
1599 spa_load_guid(spa_t *spa)
1600 {
1601 /*
1602 * This is a GUID that exists solely as a reference for the
1603 * purposes of the arc. It is generated at load time, and
1604 * is never written to persistent storage.
1605 */
1606 return (spa->spa_load_guid);
1607 }
1608
1609 uint64_t
1610 spa_last_synced_txg(spa_t *spa)
1611 {
1612 return (spa->spa_ubsync.ub_txg);
1613 }
1614
1615 uint64_t
1616 spa_first_txg(spa_t *spa)
1617 {
1618 return (spa->spa_first_txg);
1619 }
1620
1621 uint64_t
1622 spa_syncing_txg(spa_t *spa)
1623 {
1624 return (spa->spa_syncing_txg);
1625 }
1626
1627 /*
1628 * Return the last txg where data can be dirtied. The final txgs
1629 * will be used to just clear out any deferred frees that remain.
1630 */
1631 uint64_t
1632 spa_final_dirty_txg(spa_t *spa)
1633 {
1634 return (spa->spa_final_txg - TXG_DEFER_SIZE);
1635 }
1636
1637 pool_state_t
1638 spa_state(spa_t *spa)
1639 {
1640 return (spa->spa_state);
1641 }
1642
1643 spa_load_state_t
1644 spa_load_state(spa_t *spa)
1645 {
1646 return (spa->spa_load_state);
1647 }
1648
1649 uint64_t
1650 spa_freeze_txg(spa_t *spa)
1651 {
1652 return (spa->spa_freeze_txg);
1653 }
1654
1655 /*
1656 * Return the inflated asize for a logical write in bytes. This is used by the
1657 * DMU to calculate the space a logical write will require on disk.
1658 * If lsize is smaller than the largest physical block size allocatable on this
1659 * pool we use its value instead, since the write will end up using the whole
1660 * block anyway.
1661 */
1662 uint64_t
1663 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1664 {
1665 if (lsize == 0)
1666 return (0); /* No inflation needed */
1667 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1668 }
1669
1670 /*
1671 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%),
1672 * or at least 128MB, unless that would cause it to be more than half the
1673 * pool size.
1674 *
1675 * See the comment above spa_slop_shift for details.
1676 */
1677 uint64_t
1678 spa_get_slop_space(spa_t *spa)
1679 {
1680 uint64_t space = spa_get_dspace(spa);
1681 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1682 }
1683
1684 uint64_t
1685 spa_get_dspace(spa_t *spa)
1686 {
1687 return (spa->spa_dspace);
1688 }
1689
1690 void
1691 spa_update_dspace(spa_t *spa)
1692 {
1693 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1694 ddt_get_dedup_dspace(spa);
1695 if (spa->spa_vdev_removal != NULL) {
1696 /*
1697 * We can't allocate from the removing device, so
1698 * subtract its size. This prevents the DMU/DSL from
1699 * filling up the (now smaller) pool while we are in the
1700 * middle of removing the device.
1701 *
1702 * Note that the DMU/DSL doesn't actually know or care
1703 * how much space is allocated (it does its own tracking
1704 * of how much space has been logically used). So it
1705 * doesn't matter that the data we are moving may be
1706 * allocated twice (on the old device and the new
1707 * device).
1708 */
1709 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1710 vdev_t *vd =
1711 vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1712 spa->spa_dspace -= spa_deflate(spa) ?
1713 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1714 spa_config_exit(spa, SCL_VDEV, FTAG);
1715 }
1716 }
1717
1718 /*
1719 * Return the failure mode that has been set to this pool. The default
1720 * behavior will be to block all I/Os when a complete failure occurs.
1721 */
1722 uint64_t
1723 spa_get_failmode(spa_t *spa)
1724 {
1725 return (spa->spa_failmode);
1726 }
1727
1728 boolean_t
1729 spa_suspended(spa_t *spa)
1730 {
1731 return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1732 }
1733
1734 uint64_t
1735 spa_version(spa_t *spa)
1736 {
1737 return (spa->spa_ubsync.ub_version);
1738 }
1739
1740 boolean_t
1741 spa_deflate(spa_t *spa)
1742 {
1743 return (spa->spa_deflate);
1744 }
1745
1746 metaslab_class_t *
1747 spa_normal_class(spa_t *spa)
1748 {
1749 return (spa->spa_normal_class);
1750 }
1751
1752 metaslab_class_t *
1753 spa_log_class(spa_t *spa)
1754 {
1755 return (spa->spa_log_class);
1756 }
1757
1758 void
1759 spa_evicting_os_register(spa_t *spa, objset_t *os)
1760 {
1761 mutex_enter(&spa->spa_evicting_os_lock);
1762 list_insert_head(&spa->spa_evicting_os_list, os);
1763 mutex_exit(&spa->spa_evicting_os_lock);
1764 }
1765
1766 void
1767 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1768 {
1769 mutex_enter(&spa->spa_evicting_os_lock);
1770 list_remove(&spa->spa_evicting_os_list, os);
1771 cv_broadcast(&spa->spa_evicting_os_cv);
1772 mutex_exit(&spa->spa_evicting_os_lock);
1773 }
1774
1775 void
1776 spa_evicting_os_wait(spa_t *spa)
1777 {
1778 mutex_enter(&spa->spa_evicting_os_lock);
1779 while (!list_is_empty(&spa->spa_evicting_os_list))
1780 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1781 mutex_exit(&spa->spa_evicting_os_lock);
1782
1783 dmu_buf_user_evict_wait();
1784 }
1785
1786 int
1787 spa_max_replication(spa_t *spa)
1788 {
1789 /*
1790 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1791 * handle BPs with more than one DVA allocated. Set our max
1792 * replication level accordingly.
1793 */
1794 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1795 return (1);
1796 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1797 }
1798
1799 int
1800 spa_prev_software_version(spa_t *spa)
1801 {
1802 return (spa->spa_prev_software_version);
1803 }
1804
1805 uint64_t
1806 spa_deadman_synctime(spa_t *spa)
1807 {
1808 return (spa->spa_deadman_synctime);
1809 }
1810
1811 uint64_t
1812 spa_deadman_ziotime(spa_t *spa)
1813 {
1814 return (spa->spa_deadman_ziotime);
1815 }
1816
1817 uint64_t
1818 spa_get_deadman_failmode(spa_t *spa)
1819 {
1820 return (spa->spa_deadman_failmode);
1821 }
1822
1823 void
1824 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
1825 {
1826 if (strcmp(failmode, "wait") == 0)
1827 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
1828 else if (strcmp(failmode, "continue") == 0)
1829 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
1830 else if (strcmp(failmode, "panic") == 0)
1831 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
1832 else
1833 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
1834 }
1835
1836 uint64_t
1837 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1838 {
1839 uint64_t asize = DVA_GET_ASIZE(dva);
1840 uint64_t dsize = asize;
1841
1842 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1843
1844 if (asize != 0 && spa->spa_deflate) {
1845 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1846 if (vd != NULL)
1847 dsize = (asize >> SPA_MINBLOCKSHIFT) *
1848 vd->vdev_deflate_ratio;
1849 }
1850
1851 return (dsize);
1852 }
1853
1854 uint64_t
1855 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1856 {
1857 uint64_t dsize = 0;
1858
1859 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1860 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1861
1862 return (dsize);
1863 }
1864
1865 uint64_t
1866 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1867 {
1868 uint64_t dsize = 0;
1869
1870 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1871
1872 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1873 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1874
1875 spa_config_exit(spa, SCL_VDEV, FTAG);
1876
1877 return (dsize);
1878 }
1879
1880 /*
1881 * ==========================================================================
1882 * Initialization and Termination
1883 * ==========================================================================
1884 */
1885
1886 static int
1887 spa_name_compare(const void *a1, const void *a2)
1888 {
1889 const spa_t *s1 = a1;
1890 const spa_t *s2 = a2;
1891 int s;
1892
1893 s = strcmp(s1->spa_name, s2->spa_name);
1894
1895 return (AVL_ISIGN(s));
1896 }
1897
1898 void
1899 spa_boot_init(void)
1900 {
1901 spa_config_load();
1902 }
1903
1904 void
1905 spa_init(int mode)
1906 {
1907 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1908 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1909 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1910 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1911
1912 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1913 offsetof(spa_t, spa_avl));
1914
1915 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1916 offsetof(spa_aux_t, aux_avl));
1917
1918 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1919 offsetof(spa_aux_t, aux_avl));
1920
1921 spa_mode_global = mode;
1922
1923 #ifndef _KERNEL
1924 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1925 struct sigaction sa;
1926
1927 sa.sa_flags = SA_SIGINFO;
1928 sigemptyset(&sa.sa_mask);
1929 sa.sa_sigaction = arc_buf_sigsegv;
1930
1931 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
1932 perror("could not enable watchpoints: "
1933 "sigaction(SIGSEGV, ...) = ");
1934 } else {
1935 arc_watch = B_TRUE;
1936 }
1937 }
1938 #endif
1939
1940 fm_init();
1941 refcount_init();
1942 unique_init();
1943 range_tree_init();
1944 metaslab_alloc_trace_init();
1945 ddt_init();
1946 zio_init();
1947 dmu_init();
1948 zil_init();
1949 vdev_cache_stat_init();
1950 vdev_mirror_stat_init();
1951 vdev_raidz_math_init();
1952 vdev_file_init();
1953 zfs_prop_init();
1954 zpool_prop_init();
1955 zpool_feature_init();
1956 spa_config_load();
1957 l2arc_start();
1958 scan_init();
1959 qat_init();
1960 }
1961
1962 void
1963 spa_fini(void)
1964 {
1965 l2arc_stop();
1966
1967 spa_evict_all();
1968
1969 vdev_file_fini();
1970 vdev_cache_stat_fini();
1971 vdev_mirror_stat_fini();
1972 vdev_raidz_math_fini();
1973 zil_fini();
1974 dmu_fini();
1975 zio_fini();
1976 ddt_fini();
1977 metaslab_alloc_trace_fini();
1978 range_tree_fini();
1979 unique_fini();
1980 refcount_fini();
1981 fm_fini();
1982 scan_fini();
1983 qat_fini();
1984
1985 avl_destroy(&spa_namespace_avl);
1986 avl_destroy(&spa_spare_avl);
1987 avl_destroy(&spa_l2cache_avl);
1988
1989 cv_destroy(&spa_namespace_cv);
1990 mutex_destroy(&spa_namespace_lock);
1991 mutex_destroy(&spa_spare_lock);
1992 mutex_destroy(&spa_l2cache_lock);
1993 }
1994
1995 /*
1996 * Return whether this pool has slogs. No locking needed.
1997 * It's not a problem if the wrong answer is returned as it's only for
1998 * performance and not correctness
1999 */
2000 boolean_t
2001 spa_has_slogs(spa_t *spa)
2002 {
2003 return (spa->spa_log_class->mc_rotor != NULL);
2004 }
2005
2006 spa_log_state_t
2007 spa_get_log_state(spa_t *spa)
2008 {
2009 return (spa->spa_log_state);
2010 }
2011
2012 void
2013 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2014 {
2015 spa->spa_log_state = state;
2016 }
2017
2018 boolean_t
2019 spa_is_root(spa_t *spa)
2020 {
2021 return (spa->spa_is_root);
2022 }
2023
2024 boolean_t
2025 spa_writeable(spa_t *spa)
2026 {
2027 return (!!(spa->spa_mode & FWRITE));
2028 }
2029
2030 /*
2031 * Returns true if there is a pending sync task in any of the current
2032 * syncing txg, the current quiescing txg, or the current open txg.
2033 */
2034 boolean_t
2035 spa_has_pending_synctask(spa_t *spa)
2036 {
2037 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
2038 }
2039
2040 int
2041 spa_mode(spa_t *spa)
2042 {
2043 return (spa->spa_mode);
2044 }
2045
2046 uint64_t
2047 spa_bootfs(spa_t *spa)
2048 {
2049 return (spa->spa_bootfs);
2050 }
2051
2052 uint64_t
2053 spa_delegation(spa_t *spa)
2054 {
2055 return (spa->spa_delegation);
2056 }
2057
2058 objset_t *
2059 spa_meta_objset(spa_t *spa)
2060 {
2061 return (spa->spa_meta_objset);
2062 }
2063
2064 enum zio_checksum
2065 spa_dedup_checksum(spa_t *spa)
2066 {
2067 return (spa->spa_dedup_checksum);
2068 }
2069
2070 /*
2071 * Reset pool scan stat per scan pass (or reboot).
2072 */
2073 void
2074 spa_scan_stat_init(spa_t *spa)
2075 {
2076 /* data not stored on disk */
2077 spa->spa_scan_pass_start = gethrestime_sec();
2078 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2079 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2080 else
2081 spa->spa_scan_pass_scrub_pause = 0;
2082 spa->spa_scan_pass_scrub_spent_paused = 0;
2083 spa->spa_scan_pass_exam = 0;
2084 spa->spa_scan_pass_issued = 0;
2085 vdev_scan_stat_init(spa->spa_root_vdev);
2086 }
2087
2088 /*
2089 * Get scan stats for zpool status reports
2090 */
2091 int
2092 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2093 {
2094 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2095
2096 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2097 return (SET_ERROR(ENOENT));
2098 bzero(ps, sizeof (pool_scan_stat_t));
2099
2100 /* data stored on disk */
2101 ps->pss_func = scn->scn_phys.scn_func;
2102 ps->pss_state = scn->scn_phys.scn_state;
2103 ps->pss_start_time = scn->scn_phys.scn_start_time;
2104 ps->pss_end_time = scn->scn_phys.scn_end_time;
2105 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2106 ps->pss_examined = scn->scn_phys.scn_examined;
2107 ps->pss_to_process = scn->scn_phys.scn_to_process;
2108 ps->pss_processed = scn->scn_phys.scn_processed;
2109 ps->pss_errors = scn->scn_phys.scn_errors;
2110
2111 /* data not stored on disk */
2112 ps->pss_pass_exam = spa->spa_scan_pass_exam;
2113 ps->pss_pass_start = spa->spa_scan_pass_start;
2114 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2115 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2116 ps->pss_pass_issued = spa->spa_scan_pass_issued;
2117 ps->pss_issued =
2118 scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2119
2120 return (0);
2121 }
2122
2123 int
2124 spa_maxblocksize(spa_t *spa)
2125 {
2126 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2127 return (SPA_MAXBLOCKSIZE);
2128 else
2129 return (SPA_OLD_MAXBLOCKSIZE);
2130 }
2131
2132
2133 /*
2134 * Returns the txg that the last device removal completed. No indirect mappings
2135 * have been added since this txg.
2136 */
2137 uint64_t
2138 spa_get_last_removal_txg(spa_t *spa)
2139 {
2140 uint64_t vdevid;
2141 uint64_t ret = -1ULL;
2142
2143 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2144 /*
2145 * sr_prev_indirect_vdev is only modified while holding all the
2146 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2147 * examining it.
2148 */
2149 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2150
2151 while (vdevid != -1ULL) {
2152 vdev_t *vd = vdev_lookup_top(spa, vdevid);
2153 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2154
2155 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2156
2157 /*
2158 * If the removal did not remap any data, we don't care.
2159 */
2160 if (vdev_indirect_births_count(vib) != 0) {
2161 ret = vdev_indirect_births_last_entry_txg(vib);
2162 break;
2163 }
2164
2165 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2166 }
2167 spa_config_exit(spa, SCL_VDEV, FTAG);
2168
2169 IMPLY(ret != -1ULL,
2170 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2171
2172 return (ret);
2173 }
2174
2175 int
2176 spa_maxdnodesize(spa_t *spa)
2177 {
2178 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2179 return (DNODE_MAX_SIZE);
2180 else
2181 return (DNODE_MIN_SIZE);
2182 }
2183
2184 boolean_t
2185 spa_multihost(spa_t *spa)
2186 {
2187 return (spa->spa_multihost ? B_TRUE : B_FALSE);
2188 }
2189
2190 unsigned long
2191 spa_get_hostid(void)
2192 {
2193 unsigned long myhostid;
2194
2195 #ifdef _KERNEL
2196 myhostid = zone_get_hostid(NULL);
2197 #else /* _KERNEL */
2198 /*
2199 * We're emulating the system's hostid in userland, so
2200 * we can't use zone_get_hostid().
2201 */
2202 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2203 #endif /* _KERNEL */
2204
2205 return (myhostid);
2206 }
2207
2208 #if defined(_KERNEL) && defined(HAVE_SPL)
2209
2210 #include <linux/mod_compat.h>
2211
2212 static int
2213 param_set_deadman_failmode(const char *val, zfs_kernel_param_t *kp)
2214 {
2215 spa_t *spa = NULL;
2216 char *p;
2217
2218 if (val == NULL)
2219 return (SET_ERROR(-EINVAL));
2220
2221 if ((p = strchr(val, '\n')) != NULL)
2222 *p = '\0';
2223
2224 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
2225 strcmp(val, "panic"))
2226 return (SET_ERROR(-EINVAL));
2227
2228 mutex_enter(&spa_namespace_lock);
2229 while ((spa = spa_next(spa)) != NULL)
2230 spa_set_deadman_failmode(spa, val);
2231 mutex_exit(&spa_namespace_lock);
2232
2233 return (param_set_charp(val, kp));
2234 }
2235
2236 /* Namespace manipulation */
2237 EXPORT_SYMBOL(spa_lookup);
2238 EXPORT_SYMBOL(spa_add);
2239 EXPORT_SYMBOL(spa_remove);
2240 EXPORT_SYMBOL(spa_next);
2241
2242 /* Refcount functions */
2243 EXPORT_SYMBOL(spa_open_ref);
2244 EXPORT_SYMBOL(spa_close);
2245 EXPORT_SYMBOL(spa_refcount_zero);
2246
2247 /* Pool configuration lock */
2248 EXPORT_SYMBOL(spa_config_tryenter);
2249 EXPORT_SYMBOL(spa_config_enter);
2250 EXPORT_SYMBOL(spa_config_exit);
2251 EXPORT_SYMBOL(spa_config_held);
2252
2253 /* Pool vdev add/remove lock */
2254 EXPORT_SYMBOL(spa_vdev_enter);
2255 EXPORT_SYMBOL(spa_vdev_exit);
2256
2257 /* Pool vdev state change lock */
2258 EXPORT_SYMBOL(spa_vdev_state_enter);
2259 EXPORT_SYMBOL(spa_vdev_state_exit);
2260
2261 /* Accessor functions */
2262 EXPORT_SYMBOL(spa_shutting_down);
2263 EXPORT_SYMBOL(spa_get_dsl);
2264 EXPORT_SYMBOL(spa_get_rootblkptr);
2265 EXPORT_SYMBOL(spa_set_rootblkptr);
2266 EXPORT_SYMBOL(spa_altroot);
2267 EXPORT_SYMBOL(spa_sync_pass);
2268 EXPORT_SYMBOL(spa_name);
2269 EXPORT_SYMBOL(spa_guid);
2270 EXPORT_SYMBOL(spa_last_synced_txg);
2271 EXPORT_SYMBOL(spa_first_txg);
2272 EXPORT_SYMBOL(spa_syncing_txg);
2273 EXPORT_SYMBOL(spa_version);
2274 EXPORT_SYMBOL(spa_state);
2275 EXPORT_SYMBOL(spa_load_state);
2276 EXPORT_SYMBOL(spa_freeze_txg);
2277 EXPORT_SYMBOL(spa_get_dspace);
2278 EXPORT_SYMBOL(spa_update_dspace);
2279 EXPORT_SYMBOL(spa_deflate);
2280 EXPORT_SYMBOL(spa_normal_class);
2281 EXPORT_SYMBOL(spa_log_class);
2282 EXPORT_SYMBOL(spa_max_replication);
2283 EXPORT_SYMBOL(spa_prev_software_version);
2284 EXPORT_SYMBOL(spa_get_failmode);
2285 EXPORT_SYMBOL(spa_suspended);
2286 EXPORT_SYMBOL(spa_bootfs);
2287 EXPORT_SYMBOL(spa_delegation);
2288 EXPORT_SYMBOL(spa_meta_objset);
2289 EXPORT_SYMBOL(spa_maxblocksize);
2290 EXPORT_SYMBOL(spa_maxdnodesize);
2291
2292 /* Miscellaneous support routines */
2293 EXPORT_SYMBOL(spa_rename);
2294 EXPORT_SYMBOL(spa_guid_exists);
2295 EXPORT_SYMBOL(spa_strdup);
2296 EXPORT_SYMBOL(spa_strfree);
2297 EXPORT_SYMBOL(spa_get_random);
2298 EXPORT_SYMBOL(spa_generate_guid);
2299 EXPORT_SYMBOL(snprintf_blkptr);
2300 EXPORT_SYMBOL(spa_freeze);
2301 EXPORT_SYMBOL(spa_upgrade);
2302 EXPORT_SYMBOL(spa_evict_all);
2303 EXPORT_SYMBOL(spa_lookup_by_guid);
2304 EXPORT_SYMBOL(spa_has_spare);
2305 EXPORT_SYMBOL(dva_get_dsize_sync);
2306 EXPORT_SYMBOL(bp_get_dsize_sync);
2307 EXPORT_SYMBOL(bp_get_dsize);
2308 EXPORT_SYMBOL(spa_has_slogs);
2309 EXPORT_SYMBOL(spa_is_root);
2310 EXPORT_SYMBOL(spa_writeable);
2311 EXPORT_SYMBOL(spa_mode);
2312 EXPORT_SYMBOL(spa_namespace_lock);
2313
2314 /* BEGIN CSTYLED */
2315 module_param(zfs_flags, uint, 0644);
2316 MODULE_PARM_DESC(zfs_flags, "Set additional debugging flags");
2317
2318 module_param(zfs_recover, int, 0644);
2319 MODULE_PARM_DESC(zfs_recover, "Set to attempt to recover from fatal errors");
2320
2321 module_param(zfs_free_leak_on_eio, int, 0644);
2322 MODULE_PARM_DESC(zfs_free_leak_on_eio,
2323 "Set to ignore IO errors during free and permanently leak the space");
2324
2325 module_param(zfs_deadman_synctime_ms, ulong, 0644);
2326 MODULE_PARM_DESC(zfs_deadman_synctime_ms,
2327 "Pool sync expiration time in milliseconds");
2328
2329 module_param(zfs_deadman_ziotime_ms, ulong, 0644);
2330 MODULE_PARM_DESC(zfs_deadman_ziotime_ms,
2331 "IO expiration time in milliseconds");
2332
2333 module_param(zfs_deadman_checktime_ms, ulong, 0644);
2334 MODULE_PARM_DESC(zfs_deadman_checktime_ms,
2335 "Dead I/O check interval in milliseconds");
2336
2337 module_param(zfs_deadman_enabled, int, 0644);
2338 MODULE_PARM_DESC(zfs_deadman_enabled, "Enable deadman timer");
2339
2340 module_param_call(zfs_deadman_failmode, param_set_deadman_failmode,
2341 param_get_charp, &zfs_deadman_failmode, 0644);
2342 MODULE_PARM_DESC(zfs_deadman_failmode, "Failmode for deadman timer");
2343
2344 module_param(spa_asize_inflation, int, 0644);
2345 MODULE_PARM_DESC(spa_asize_inflation,
2346 "SPA size estimate multiplication factor");
2347
2348 module_param(spa_slop_shift, int, 0644);
2349 MODULE_PARM_DESC(spa_slop_shift, "Reserved free space in pool");
2350 /* END CSTYLED */
2351 #endif