]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa_misc.c
Rebase master to b121
[mirror_zfs.git] / module / zfs / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #include <sys/zfs_context.h>
27 #include <sys/spa_impl.h>
28 #include <sys/zio.h>
29 #include <sys/zio_checksum.h>
30 #include <sys/zio_compress.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/zap.h>
34 #include <sys/zil.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/txg.h>
39 #include <sys/avl.h>
40 #include <sys/unique.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/sunddi.h>
47 #include <sys/arc.h>
48 #include "zfs_prop.h"
49
50 /*
51 * SPA locking
52 *
53 * There are four basic locks for managing spa_t structures:
54 *
55 * spa_namespace_lock (global mutex)
56 *
57 * This lock must be acquired to do any of the following:
58 *
59 * - Lookup a spa_t by name
60 * - Add or remove a spa_t from the namespace
61 * - Increase spa_refcount from non-zero
62 * - Check if spa_refcount is zero
63 * - Rename a spa_t
64 * - add/remove/attach/detach devices
65 * - Held for the duration of create/destroy/import/export
66 *
67 * It does not need to handle recursion. A create or destroy may
68 * reference objects (files or zvols) in other pools, but by
69 * definition they must have an existing reference, and will never need
70 * to lookup a spa_t by name.
71 *
72 * spa_refcount (per-spa refcount_t protected by mutex)
73 *
74 * This reference count keep track of any active users of the spa_t. The
75 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
76 * the refcount is never really 'zero' - opening a pool implicitly keeps
77 * some references in the DMU. Internally we check against spa_minref, but
78 * present the image of a zero/non-zero value to consumers.
79 *
80 * spa_config_lock[] (per-spa array of rwlocks)
81 *
82 * This protects the spa_t from config changes, and must be held in
83 * the following circumstances:
84 *
85 * - RW_READER to perform I/O to the spa
86 * - RW_WRITER to change the vdev config
87 *
88 * The locking order is fairly straightforward:
89 *
90 * spa_namespace_lock -> spa_refcount
91 *
92 * The namespace lock must be acquired to increase the refcount from 0
93 * or to check if it is zero.
94 *
95 * spa_refcount -> spa_config_lock[]
96 *
97 * There must be at least one valid reference on the spa_t to acquire
98 * the config lock.
99 *
100 * spa_namespace_lock -> spa_config_lock[]
101 *
102 * The namespace lock must always be taken before the config lock.
103 *
104 *
105 * The spa_namespace_lock can be acquired directly and is globally visible.
106 *
107 * The namespace is manipulated using the following functions, all of which
108 * require the spa_namespace_lock to be held.
109 *
110 * spa_lookup() Lookup a spa_t by name.
111 *
112 * spa_add() Create a new spa_t in the namespace.
113 *
114 * spa_remove() Remove a spa_t from the namespace. This also
115 * frees up any memory associated with the spa_t.
116 *
117 * spa_next() Returns the next spa_t in the system, or the
118 * first if NULL is passed.
119 *
120 * spa_evict_all() Shutdown and remove all spa_t structures in
121 * the system.
122 *
123 * spa_guid_exists() Determine whether a pool/device guid exists.
124 *
125 * The spa_refcount is manipulated using the following functions:
126 *
127 * spa_open_ref() Adds a reference to the given spa_t. Must be
128 * called with spa_namespace_lock held if the
129 * refcount is currently zero.
130 *
131 * spa_close() Remove a reference from the spa_t. This will
132 * not free the spa_t or remove it from the
133 * namespace. No locking is required.
134 *
135 * spa_refcount_zero() Returns true if the refcount is currently
136 * zero. Must be called with spa_namespace_lock
137 * held.
138 *
139 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
140 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
141 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
142 *
143 * To read the configuration, it suffices to hold one of these locks as reader.
144 * To modify the configuration, you must hold all locks as writer. To modify
145 * vdev state without altering the vdev tree's topology (e.g. online/offline),
146 * you must hold SCL_STATE and SCL_ZIO as writer.
147 *
148 * We use these distinct config locks to avoid recursive lock entry.
149 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
150 * block allocations (SCL_ALLOC), which may require reading space maps
151 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
152 *
153 * The spa config locks cannot be normal rwlocks because we need the
154 * ability to hand off ownership. For example, SCL_ZIO is acquired
155 * by the issuing thread and later released by an interrupt thread.
156 * They do, however, obey the usual write-wanted semantics to prevent
157 * writer (i.e. system administrator) starvation.
158 *
159 * The lock acquisition rules are as follows:
160 *
161 * SCL_CONFIG
162 * Protects changes to the vdev tree topology, such as vdev
163 * add/remove/attach/detach. Protects the dirty config list
164 * (spa_config_dirty_list) and the set of spares and l2arc devices.
165 *
166 * SCL_STATE
167 * Protects changes to pool state and vdev state, such as vdev
168 * online/offline/fault/degrade/clear. Protects the dirty state list
169 * (spa_state_dirty_list) and global pool state (spa_state).
170 *
171 * SCL_ALLOC
172 * Protects changes to metaslab groups and classes.
173 * Held as reader by metaslab_alloc() and metaslab_claim().
174 *
175 * SCL_ZIO
176 * Held by bp-level zios (those which have no io_vd upon entry)
177 * to prevent changes to the vdev tree. The bp-level zio implicitly
178 * protects all of its vdev child zios, which do not hold SCL_ZIO.
179 *
180 * SCL_FREE
181 * Protects changes to metaslab groups and classes.
182 * Held as reader by metaslab_free(). SCL_FREE is distinct from
183 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
184 * blocks in zio_done() while another i/o that holds either
185 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
186 *
187 * SCL_VDEV
188 * Held as reader to prevent changes to the vdev tree during trivial
189 * inquiries such as bp_get_dasize(). SCL_VDEV is distinct from the
190 * other locks, and lower than all of them, to ensure that it's safe
191 * to acquire regardless of caller context.
192 *
193 * In addition, the following rules apply:
194 *
195 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
196 * The lock ordering is SCL_CONFIG > spa_props_lock.
197 *
198 * (b) I/O operations on leaf vdevs. For any zio operation that takes
199 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
200 * or zio_write_phys() -- the caller must ensure that the config cannot
201 * cannot change in the interim, and that the vdev cannot be reopened.
202 * SCL_STATE as reader suffices for both.
203 *
204 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
205 *
206 * spa_vdev_enter() Acquire the namespace lock and the config lock
207 * for writing.
208 *
209 * spa_vdev_exit() Release the config lock, wait for all I/O
210 * to complete, sync the updated configs to the
211 * cache, and release the namespace lock.
212 *
213 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
214 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
215 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
216 *
217 * spa_rename() is also implemented within this file since is requires
218 * manipulation of the namespace.
219 */
220
221 static avl_tree_t spa_namespace_avl;
222 kmutex_t spa_namespace_lock;
223 static kcondvar_t spa_namespace_cv;
224 static int spa_active_count;
225 int spa_max_replication_override = SPA_DVAS_PER_BP;
226
227 static kmutex_t spa_spare_lock;
228 static avl_tree_t spa_spare_avl;
229 static kmutex_t spa_l2cache_lock;
230 static avl_tree_t spa_l2cache_avl;
231
232 kmem_cache_t *spa_buffer_pool;
233 int spa_mode_global;
234
235 #ifdef ZFS_DEBUG
236 /* Everything except dprintf is on by default in debug builds */
237 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
238 #else
239 int zfs_flags = 0;
240 #endif
241
242 /*
243 * zfs_recover can be set to nonzero to attempt to recover from
244 * otherwise-fatal errors, typically caused by on-disk corruption. When
245 * set, calls to zfs_panic_recover() will turn into warning messages.
246 */
247 int zfs_recover = 0;
248
249
250 /*
251 * ==========================================================================
252 * SPA config locking
253 * ==========================================================================
254 */
255 static void
256 spa_config_lock_init(spa_t *spa)
257 {
258 for (int i = 0; i < SCL_LOCKS; i++) {
259 spa_config_lock_t *scl = &spa->spa_config_lock[i];
260 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
261 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
262 refcount_create(&scl->scl_count);
263 scl->scl_writer = NULL;
264 scl->scl_write_wanted = 0;
265 }
266 }
267
268 static void
269 spa_config_lock_destroy(spa_t *spa)
270 {
271 for (int i = 0; i < SCL_LOCKS; i++) {
272 spa_config_lock_t *scl = &spa->spa_config_lock[i];
273 mutex_destroy(&scl->scl_lock);
274 cv_destroy(&scl->scl_cv);
275 refcount_destroy(&scl->scl_count);
276 ASSERT(scl->scl_writer == NULL);
277 ASSERT(scl->scl_write_wanted == 0);
278 }
279 }
280
281 int
282 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
283 {
284 for (int i = 0; i < SCL_LOCKS; i++) {
285 spa_config_lock_t *scl = &spa->spa_config_lock[i];
286 if (!(locks & (1 << i)))
287 continue;
288 mutex_enter(&scl->scl_lock);
289 if (rw == RW_READER) {
290 if (scl->scl_writer || scl->scl_write_wanted) {
291 mutex_exit(&scl->scl_lock);
292 spa_config_exit(spa, locks ^ (1 << i), tag);
293 return (0);
294 }
295 } else {
296 ASSERT(scl->scl_writer != curthread);
297 if (!refcount_is_zero(&scl->scl_count)) {
298 mutex_exit(&scl->scl_lock);
299 spa_config_exit(spa, locks ^ (1 << i), tag);
300 return (0);
301 }
302 scl->scl_writer = curthread;
303 }
304 (void) refcount_add(&scl->scl_count, tag);
305 mutex_exit(&scl->scl_lock);
306 }
307 return (1);
308 }
309
310 void
311 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
312 {
313 int wlocks_held = 0;
314
315 for (int i = 0; i < SCL_LOCKS; i++) {
316 spa_config_lock_t *scl = &spa->spa_config_lock[i];
317 if (scl->scl_writer == curthread)
318 wlocks_held |= (1 << i);
319 if (!(locks & (1 << i)))
320 continue;
321 mutex_enter(&scl->scl_lock);
322 if (rw == RW_READER) {
323 while (scl->scl_writer || scl->scl_write_wanted) {
324 cv_wait(&scl->scl_cv, &scl->scl_lock);
325 }
326 } else {
327 ASSERT(scl->scl_writer != curthread);
328 while (!refcount_is_zero(&scl->scl_count)) {
329 scl->scl_write_wanted++;
330 cv_wait(&scl->scl_cv, &scl->scl_lock);
331 scl->scl_write_wanted--;
332 }
333 scl->scl_writer = curthread;
334 }
335 (void) refcount_add(&scl->scl_count, tag);
336 mutex_exit(&scl->scl_lock);
337 }
338 ASSERT(wlocks_held <= locks);
339 }
340
341 void
342 spa_config_exit(spa_t *spa, int locks, void *tag)
343 {
344 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
345 spa_config_lock_t *scl = &spa->spa_config_lock[i];
346 if (!(locks & (1 << i)))
347 continue;
348 mutex_enter(&scl->scl_lock);
349 ASSERT(!refcount_is_zero(&scl->scl_count));
350 if (refcount_remove(&scl->scl_count, tag) == 0) {
351 ASSERT(scl->scl_writer == NULL ||
352 scl->scl_writer == curthread);
353 scl->scl_writer = NULL; /* OK in either case */
354 cv_broadcast(&scl->scl_cv);
355 }
356 mutex_exit(&scl->scl_lock);
357 }
358 }
359
360 int
361 spa_config_held(spa_t *spa, int locks, krw_t rw)
362 {
363 int locks_held = 0;
364
365 for (int i = 0; i < SCL_LOCKS; i++) {
366 spa_config_lock_t *scl = &spa->spa_config_lock[i];
367 if (!(locks & (1 << i)))
368 continue;
369 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
370 (rw == RW_WRITER && scl->scl_writer == curthread))
371 locks_held |= 1 << i;
372 }
373
374 return (locks_held);
375 }
376
377 /*
378 * ==========================================================================
379 * SPA namespace functions
380 * ==========================================================================
381 */
382
383 /*
384 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
385 * Returns NULL if no matching spa_t is found.
386 */
387 spa_t *
388 spa_lookup(const char *name)
389 {
390 static spa_t search; /* spa_t is large; don't allocate on stack */
391 spa_t *spa;
392 avl_index_t where;
393 char c;
394 char *cp;
395
396 ASSERT(MUTEX_HELD(&spa_namespace_lock));
397
398 /*
399 * If it's a full dataset name, figure out the pool name and
400 * just use that.
401 */
402 cp = strpbrk(name, "/@");
403 if (cp) {
404 c = *cp;
405 *cp = '\0';
406 }
407
408 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
409 spa = avl_find(&spa_namespace_avl, &search, &where);
410
411 if (cp)
412 *cp = c;
413
414 return (spa);
415 }
416
417 /*
418 * Create an uninitialized spa_t with the given name. Requires
419 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
420 * exist by calling spa_lookup() first.
421 */
422 spa_t *
423 spa_add(const char *name, const char *altroot)
424 {
425 spa_t *spa;
426 spa_config_dirent_t *dp;
427
428 ASSERT(MUTEX_HELD(&spa_namespace_lock));
429
430 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
431
432 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
433 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
434 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
435 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
436 mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
437 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
438 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
439
440 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
441 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
442 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
443
444 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
445 spa->spa_state = POOL_STATE_UNINITIALIZED;
446 spa->spa_freeze_txg = UINT64_MAX;
447 spa->spa_final_txg = UINT64_MAX;
448
449 refcount_create(&spa->spa_refcount);
450 spa_config_lock_init(spa);
451
452 avl_add(&spa_namespace_avl, spa);
453
454 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
455
456 /*
457 * Set the alternate root, if there is one.
458 */
459 if (altroot) {
460 spa->spa_root = spa_strdup(altroot);
461 spa_active_count++;
462 }
463
464 /*
465 * Every pool starts with the default cachefile
466 */
467 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
468 offsetof(spa_config_dirent_t, scd_link));
469
470 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
471 dp->scd_path = spa_strdup(spa_config_path);
472 list_insert_head(&spa->spa_config_list, dp);
473
474 return (spa);
475 }
476
477 /*
478 * Removes a spa_t from the namespace, freeing up any memory used. Requires
479 * spa_namespace_lock. This is called only after the spa_t has been closed and
480 * deactivated.
481 */
482 void
483 spa_remove(spa_t *spa)
484 {
485 spa_config_dirent_t *dp;
486
487 ASSERT(MUTEX_HELD(&spa_namespace_lock));
488 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
489
490 avl_remove(&spa_namespace_avl, spa);
491 cv_broadcast(&spa_namespace_cv);
492
493 if (spa->spa_root) {
494 spa_strfree(spa->spa_root);
495 spa_active_count--;
496 }
497
498 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
499 list_remove(&spa->spa_config_list, dp);
500 if (dp->scd_path != NULL)
501 spa_strfree(dp->scd_path);
502 kmem_free(dp, sizeof (spa_config_dirent_t));
503 }
504
505 list_destroy(&spa->spa_config_list);
506
507 spa_config_set(spa, NULL);
508
509 refcount_destroy(&spa->spa_refcount);
510
511 spa_config_lock_destroy(spa);
512
513 cv_destroy(&spa->spa_async_cv);
514 cv_destroy(&spa->spa_scrub_io_cv);
515 cv_destroy(&spa->spa_suspend_cv);
516
517 mutex_destroy(&spa->spa_async_lock);
518 mutex_destroy(&spa->spa_scrub_lock);
519 mutex_destroy(&spa->spa_errlog_lock);
520 mutex_destroy(&spa->spa_errlist_lock);
521 mutex_destroy(&spa->spa_sync_bplist.bpl_lock);
522 mutex_destroy(&spa->spa_history_lock);
523 mutex_destroy(&spa->spa_props_lock);
524 mutex_destroy(&spa->spa_suspend_lock);
525
526 kmem_free(spa, sizeof (spa_t));
527 }
528
529 /*
530 * Given a pool, return the next pool in the namespace, or NULL if there is
531 * none. If 'prev' is NULL, return the first pool.
532 */
533 spa_t *
534 spa_next(spa_t *prev)
535 {
536 ASSERT(MUTEX_HELD(&spa_namespace_lock));
537
538 if (prev)
539 return (AVL_NEXT(&spa_namespace_avl, prev));
540 else
541 return (avl_first(&spa_namespace_avl));
542 }
543
544 /*
545 * ==========================================================================
546 * SPA refcount functions
547 * ==========================================================================
548 */
549
550 /*
551 * Add a reference to the given spa_t. Must have at least one reference, or
552 * have the namespace lock held.
553 */
554 void
555 spa_open_ref(spa_t *spa, void *tag)
556 {
557 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
558 MUTEX_HELD(&spa_namespace_lock));
559 (void) refcount_add(&spa->spa_refcount, tag);
560 }
561
562 /*
563 * Remove a reference to the given spa_t. Must have at least one reference, or
564 * have the namespace lock held.
565 */
566 void
567 spa_close(spa_t *spa, void *tag)
568 {
569 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
570 MUTEX_HELD(&spa_namespace_lock));
571 (void) refcount_remove(&spa->spa_refcount, tag);
572 }
573
574 /*
575 * Check to see if the spa refcount is zero. Must be called with
576 * spa_namespace_lock held. We really compare against spa_minref, which is the
577 * number of references acquired when opening a pool
578 */
579 boolean_t
580 spa_refcount_zero(spa_t *spa)
581 {
582 ASSERT(MUTEX_HELD(&spa_namespace_lock));
583
584 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
585 }
586
587 /*
588 * ==========================================================================
589 * SPA spare and l2cache tracking
590 * ==========================================================================
591 */
592
593 /*
594 * Hot spares and cache devices are tracked using the same code below,
595 * for 'auxiliary' devices.
596 */
597
598 typedef struct spa_aux {
599 uint64_t aux_guid;
600 uint64_t aux_pool;
601 avl_node_t aux_avl;
602 int aux_count;
603 } spa_aux_t;
604
605 static int
606 spa_aux_compare(const void *a, const void *b)
607 {
608 const spa_aux_t *sa = a;
609 const spa_aux_t *sb = b;
610
611 if (sa->aux_guid < sb->aux_guid)
612 return (-1);
613 else if (sa->aux_guid > sb->aux_guid)
614 return (1);
615 else
616 return (0);
617 }
618
619 void
620 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
621 {
622 avl_index_t where;
623 spa_aux_t search;
624 spa_aux_t *aux;
625
626 search.aux_guid = vd->vdev_guid;
627 if ((aux = avl_find(avl, &search, &where)) != NULL) {
628 aux->aux_count++;
629 } else {
630 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
631 aux->aux_guid = vd->vdev_guid;
632 aux->aux_count = 1;
633 avl_insert(avl, aux, where);
634 }
635 }
636
637 void
638 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
639 {
640 spa_aux_t search;
641 spa_aux_t *aux;
642 avl_index_t where;
643
644 search.aux_guid = vd->vdev_guid;
645 aux = avl_find(avl, &search, &where);
646
647 ASSERT(aux != NULL);
648
649 if (--aux->aux_count == 0) {
650 avl_remove(avl, aux);
651 kmem_free(aux, sizeof (spa_aux_t));
652 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
653 aux->aux_pool = 0ULL;
654 }
655 }
656
657 boolean_t
658 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
659 {
660 spa_aux_t search, *found;
661
662 search.aux_guid = guid;
663 found = avl_find(avl, &search, NULL);
664
665 if (pool) {
666 if (found)
667 *pool = found->aux_pool;
668 else
669 *pool = 0ULL;
670 }
671
672 if (refcnt) {
673 if (found)
674 *refcnt = found->aux_count;
675 else
676 *refcnt = 0;
677 }
678
679 return (found != NULL);
680 }
681
682 void
683 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
684 {
685 spa_aux_t search, *found;
686 avl_index_t where;
687
688 search.aux_guid = vd->vdev_guid;
689 found = avl_find(avl, &search, &where);
690 ASSERT(found != NULL);
691 ASSERT(found->aux_pool == 0ULL);
692
693 found->aux_pool = spa_guid(vd->vdev_spa);
694 }
695
696 /*
697 * Spares are tracked globally due to the following constraints:
698 *
699 * - A spare may be part of multiple pools.
700 * - A spare may be added to a pool even if it's actively in use within
701 * another pool.
702 * - A spare in use in any pool can only be the source of a replacement if
703 * the target is a spare in the same pool.
704 *
705 * We keep track of all spares on the system through the use of a reference
706 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
707 * spare, then we bump the reference count in the AVL tree. In addition, we set
708 * the 'vdev_isspare' member to indicate that the device is a spare (active or
709 * inactive). When a spare is made active (used to replace a device in the
710 * pool), we also keep track of which pool its been made a part of.
711 *
712 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
713 * called under the spa_namespace lock as part of vdev reconfiguration. The
714 * separate spare lock exists for the status query path, which does not need to
715 * be completely consistent with respect to other vdev configuration changes.
716 */
717
718 static int
719 spa_spare_compare(const void *a, const void *b)
720 {
721 return (spa_aux_compare(a, b));
722 }
723
724 void
725 spa_spare_add(vdev_t *vd)
726 {
727 mutex_enter(&spa_spare_lock);
728 ASSERT(!vd->vdev_isspare);
729 spa_aux_add(vd, &spa_spare_avl);
730 vd->vdev_isspare = B_TRUE;
731 mutex_exit(&spa_spare_lock);
732 }
733
734 void
735 spa_spare_remove(vdev_t *vd)
736 {
737 mutex_enter(&spa_spare_lock);
738 ASSERT(vd->vdev_isspare);
739 spa_aux_remove(vd, &spa_spare_avl);
740 vd->vdev_isspare = B_FALSE;
741 mutex_exit(&spa_spare_lock);
742 }
743
744 boolean_t
745 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
746 {
747 boolean_t found;
748
749 mutex_enter(&spa_spare_lock);
750 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
751 mutex_exit(&spa_spare_lock);
752
753 return (found);
754 }
755
756 void
757 spa_spare_activate(vdev_t *vd)
758 {
759 mutex_enter(&spa_spare_lock);
760 ASSERT(vd->vdev_isspare);
761 spa_aux_activate(vd, &spa_spare_avl);
762 mutex_exit(&spa_spare_lock);
763 }
764
765 /*
766 * Level 2 ARC devices are tracked globally for the same reasons as spares.
767 * Cache devices currently only support one pool per cache device, and so
768 * for these devices the aux reference count is currently unused beyond 1.
769 */
770
771 static int
772 spa_l2cache_compare(const void *a, const void *b)
773 {
774 return (spa_aux_compare(a, b));
775 }
776
777 void
778 spa_l2cache_add(vdev_t *vd)
779 {
780 mutex_enter(&spa_l2cache_lock);
781 ASSERT(!vd->vdev_isl2cache);
782 spa_aux_add(vd, &spa_l2cache_avl);
783 vd->vdev_isl2cache = B_TRUE;
784 mutex_exit(&spa_l2cache_lock);
785 }
786
787 void
788 spa_l2cache_remove(vdev_t *vd)
789 {
790 mutex_enter(&spa_l2cache_lock);
791 ASSERT(vd->vdev_isl2cache);
792 spa_aux_remove(vd, &spa_l2cache_avl);
793 vd->vdev_isl2cache = B_FALSE;
794 mutex_exit(&spa_l2cache_lock);
795 }
796
797 boolean_t
798 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
799 {
800 boolean_t found;
801
802 mutex_enter(&spa_l2cache_lock);
803 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
804 mutex_exit(&spa_l2cache_lock);
805
806 return (found);
807 }
808
809 void
810 spa_l2cache_activate(vdev_t *vd)
811 {
812 mutex_enter(&spa_l2cache_lock);
813 ASSERT(vd->vdev_isl2cache);
814 spa_aux_activate(vd, &spa_l2cache_avl);
815 mutex_exit(&spa_l2cache_lock);
816 }
817
818 void
819 spa_l2cache_space_update(vdev_t *vd, int64_t space, int64_t alloc)
820 {
821 vdev_space_update(vd, space, alloc, B_FALSE);
822 }
823
824 /*
825 * ==========================================================================
826 * SPA vdev locking
827 * ==========================================================================
828 */
829
830 /*
831 * Lock the given spa_t for the purpose of adding or removing a vdev.
832 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
833 * It returns the next transaction group for the spa_t.
834 */
835 uint64_t
836 spa_vdev_enter(spa_t *spa)
837 {
838 mutex_enter(&spa_namespace_lock);
839
840 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
841
842 return (spa_last_synced_txg(spa) + 1);
843 }
844
845 /*
846 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
847 * locking of spa_vdev_enter(), we also want make sure the transactions have
848 * synced to disk, and then update the global configuration cache with the new
849 * information.
850 */
851 int
852 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
853 {
854 int config_changed = B_FALSE;
855
856 ASSERT(txg > spa_last_synced_txg(spa));
857
858 spa->spa_pending_vdev = NULL;
859
860 /*
861 * Reassess the DTLs.
862 */
863 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
864
865 /*
866 * If the config changed, notify the scrub thread that it must restart.
867 */
868 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
869 dsl_pool_scrub_restart(spa->spa_dsl_pool);
870 config_changed = B_TRUE;
871 }
872
873 spa_config_exit(spa, SCL_ALL, spa);
874
875 /*
876 * Note: this txg_wait_synced() is important because it ensures
877 * that there won't be more than one config change per txg.
878 * This allows us to use the txg as the generation number.
879 */
880 if (error == 0)
881 txg_wait_synced(spa->spa_dsl_pool, txg);
882
883 if (vd != NULL) {
884 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
885 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
886 vdev_free(vd);
887 spa_config_exit(spa, SCL_ALL, spa);
888 }
889
890 /*
891 * If the config changed, update the config cache.
892 */
893 if (config_changed)
894 spa_config_sync(spa, B_FALSE, B_TRUE);
895
896 mutex_exit(&spa_namespace_lock);
897
898 return (error);
899 }
900
901 /*
902 * Lock the given spa_t for the purpose of changing vdev state.
903 */
904 void
905 spa_vdev_state_enter(spa_t *spa)
906 {
907 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
908 }
909
910 int
911 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
912 {
913 if (vd != NULL)
914 vdev_state_dirty(vd->vdev_top);
915
916 spa_config_exit(spa, SCL_STATE_ALL, spa);
917
918 /*
919 * If anything changed, wait for it to sync. This ensures that,
920 * from the system administrator's perspective, zpool(1M) commands
921 * are synchronous. This is important for things like zpool offline:
922 * when the command completes, you expect no further I/O from ZFS.
923 */
924 if (vd != NULL)
925 txg_wait_synced(spa->spa_dsl_pool, 0);
926
927 return (error);
928 }
929
930 /*
931 * ==========================================================================
932 * Miscellaneous functions
933 * ==========================================================================
934 */
935
936 /*
937 * Rename a spa_t.
938 */
939 int
940 spa_rename(const char *name, const char *newname)
941 {
942 spa_t *spa;
943 int err;
944
945 /*
946 * Lookup the spa_t and grab the config lock for writing. We need to
947 * actually open the pool so that we can sync out the necessary labels.
948 * It's OK to call spa_open() with the namespace lock held because we
949 * allow recursive calls for other reasons.
950 */
951 mutex_enter(&spa_namespace_lock);
952 if ((err = spa_open(name, &spa, FTAG)) != 0) {
953 mutex_exit(&spa_namespace_lock);
954 return (err);
955 }
956
957 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
958
959 avl_remove(&spa_namespace_avl, spa);
960 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
961 avl_add(&spa_namespace_avl, spa);
962
963 /*
964 * Sync all labels to disk with the new names by marking the root vdev
965 * dirty and waiting for it to sync. It will pick up the new pool name
966 * during the sync.
967 */
968 vdev_config_dirty(spa->spa_root_vdev);
969
970 spa_config_exit(spa, SCL_ALL, FTAG);
971
972 txg_wait_synced(spa->spa_dsl_pool, 0);
973
974 /*
975 * Sync the updated config cache.
976 */
977 spa_config_sync(spa, B_FALSE, B_TRUE);
978
979 spa_close(spa, FTAG);
980
981 mutex_exit(&spa_namespace_lock);
982
983 return (0);
984 }
985
986
987 /*
988 * Determine whether a pool with given pool_guid exists. If device_guid is
989 * non-zero, determine whether the pool exists *and* contains a device with the
990 * specified device_guid.
991 */
992 boolean_t
993 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
994 {
995 spa_t *spa;
996 avl_tree_t *t = &spa_namespace_avl;
997
998 ASSERT(MUTEX_HELD(&spa_namespace_lock));
999
1000 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1001 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1002 continue;
1003 if (spa->spa_root_vdev == NULL)
1004 continue;
1005 if (spa_guid(spa) == pool_guid) {
1006 if (device_guid == 0)
1007 break;
1008
1009 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1010 device_guid) != NULL)
1011 break;
1012
1013 /*
1014 * Check any devices we may be in the process of adding.
1015 */
1016 if (spa->spa_pending_vdev) {
1017 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1018 device_guid) != NULL)
1019 break;
1020 }
1021 }
1022 }
1023
1024 return (spa != NULL);
1025 }
1026
1027 char *
1028 spa_strdup(const char *s)
1029 {
1030 size_t len;
1031 char *new;
1032
1033 len = strlen(s);
1034 new = kmem_alloc(len + 1, KM_SLEEP);
1035 bcopy(s, new, len);
1036 new[len] = '\0';
1037
1038 return (new);
1039 }
1040
1041 void
1042 spa_strfree(char *s)
1043 {
1044 kmem_free(s, strlen(s) + 1);
1045 }
1046
1047 uint64_t
1048 spa_get_random(uint64_t range)
1049 {
1050 uint64_t r;
1051
1052 ASSERT(range != 0);
1053
1054 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1055
1056 return (r % range);
1057 }
1058
1059 void
1060 sprintf_blkptr(char *buf, int len, const blkptr_t *bp)
1061 {
1062 int d;
1063
1064 if (bp == NULL) {
1065 (void) snprintf(buf, len, "<NULL>");
1066 return;
1067 }
1068
1069 if (BP_IS_HOLE(bp)) {
1070 (void) snprintf(buf, len, "<hole>");
1071 return;
1072 }
1073
1074 (void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ",
1075 (u_longlong_t)BP_GET_LEVEL(bp),
1076 dmu_ot[BP_GET_TYPE(bp)].ot_name,
1077 (u_longlong_t)BP_GET_LSIZE(bp),
1078 (u_longlong_t)BP_GET_PSIZE(bp));
1079
1080 for (d = 0; d < BP_GET_NDVAS(bp); d++) {
1081 const dva_t *dva = &bp->blk_dva[d];
1082 (void) snprintf(buf + strlen(buf), len - strlen(buf),
1083 "DVA[%d]=<%llu:%llx:%llx> ", d,
1084 (u_longlong_t)DVA_GET_VDEV(dva),
1085 (u_longlong_t)DVA_GET_OFFSET(dva),
1086 (u_longlong_t)DVA_GET_ASIZE(dva));
1087 }
1088
1089 (void) snprintf(buf + strlen(buf), len - strlen(buf),
1090 "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx",
1091 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name,
1092 zio_compress_table[BP_GET_COMPRESS(bp)].ci_name,
1093 BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",
1094 BP_IS_GANG(bp) ? "gang" : "contiguous",
1095 (u_longlong_t)bp->blk_birth,
1096 (u_longlong_t)bp->blk_fill,
1097 (u_longlong_t)bp->blk_cksum.zc_word[0],
1098 (u_longlong_t)bp->blk_cksum.zc_word[1],
1099 (u_longlong_t)bp->blk_cksum.zc_word[2],
1100 (u_longlong_t)bp->blk_cksum.zc_word[3]);
1101 }
1102
1103 void
1104 spa_freeze(spa_t *spa)
1105 {
1106 uint64_t freeze_txg = 0;
1107
1108 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1109 if (spa->spa_freeze_txg == UINT64_MAX) {
1110 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1111 spa->spa_freeze_txg = freeze_txg;
1112 }
1113 spa_config_exit(spa, SCL_ALL, FTAG);
1114 if (freeze_txg != 0)
1115 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1116 }
1117
1118 void
1119 zfs_panic_recover(const char *fmt, ...)
1120 {
1121 va_list adx;
1122
1123 va_start(adx, fmt);
1124 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1125 va_end(adx);
1126 }
1127
1128 /*
1129 * ==========================================================================
1130 * Accessor functions
1131 * ==========================================================================
1132 */
1133
1134 boolean_t
1135 spa_shutting_down(spa_t *spa)
1136 {
1137 return (spa->spa_async_suspended);
1138 }
1139
1140 dsl_pool_t *
1141 spa_get_dsl(spa_t *spa)
1142 {
1143 return (spa->spa_dsl_pool);
1144 }
1145
1146 blkptr_t *
1147 spa_get_rootblkptr(spa_t *spa)
1148 {
1149 return (&spa->spa_ubsync.ub_rootbp);
1150 }
1151
1152 void
1153 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1154 {
1155 spa->spa_uberblock.ub_rootbp = *bp;
1156 }
1157
1158 void
1159 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1160 {
1161 if (spa->spa_root == NULL)
1162 buf[0] = '\0';
1163 else
1164 (void) strncpy(buf, spa->spa_root, buflen);
1165 }
1166
1167 int
1168 spa_sync_pass(spa_t *spa)
1169 {
1170 return (spa->spa_sync_pass);
1171 }
1172
1173 char *
1174 spa_name(spa_t *spa)
1175 {
1176 return (spa->spa_name);
1177 }
1178
1179 uint64_t
1180 spa_guid(spa_t *spa)
1181 {
1182 /*
1183 * If we fail to parse the config during spa_load(), we can go through
1184 * the error path (which posts an ereport) and end up here with no root
1185 * vdev. We stash the original pool guid in 'spa_load_guid' to handle
1186 * this case.
1187 */
1188 if (spa->spa_root_vdev != NULL)
1189 return (spa->spa_root_vdev->vdev_guid);
1190 else
1191 return (spa->spa_load_guid);
1192 }
1193
1194 uint64_t
1195 spa_last_synced_txg(spa_t *spa)
1196 {
1197 return (spa->spa_ubsync.ub_txg);
1198 }
1199
1200 uint64_t
1201 spa_first_txg(spa_t *spa)
1202 {
1203 return (spa->spa_first_txg);
1204 }
1205
1206 pool_state_t
1207 spa_state(spa_t *spa)
1208 {
1209 return (spa->spa_state);
1210 }
1211
1212 uint64_t
1213 spa_freeze_txg(spa_t *spa)
1214 {
1215 return (spa->spa_freeze_txg);
1216 }
1217
1218 /*
1219 * Return how much space is allocated in the pool (ie. sum of all asize)
1220 */
1221 uint64_t
1222 spa_get_alloc(spa_t *spa)
1223 {
1224 return (spa->spa_root_vdev->vdev_stat.vs_alloc);
1225 }
1226
1227 /*
1228 * Return how much (raid-z inflated) space there is in the pool.
1229 */
1230 uint64_t
1231 spa_get_space(spa_t *spa)
1232 {
1233 return (spa->spa_root_vdev->vdev_stat.vs_space);
1234 }
1235
1236 /*
1237 * Return the amount of raid-z-deflated space in the pool.
1238 */
1239 uint64_t
1240 spa_get_dspace(spa_t *spa)
1241 {
1242 if (spa->spa_deflate)
1243 return (spa->spa_root_vdev->vdev_stat.vs_dspace);
1244 else
1245 return (spa->spa_root_vdev->vdev_stat.vs_space);
1246 }
1247
1248 /* ARGSUSED */
1249 uint64_t
1250 spa_get_asize(spa_t *spa, uint64_t lsize)
1251 {
1252 /*
1253 * For now, the worst case is 512-byte RAID-Z blocks, in which
1254 * case the space requirement is exactly 2x; so just assume that.
1255 * Add to this the fact that we can have up to 3 DVAs per bp, and
1256 * we have to multiply by a total of 6x.
1257 */
1258 return (lsize * 6);
1259 }
1260
1261 /*
1262 * Return the failure mode that has been set to this pool. The default
1263 * behavior will be to block all I/Os when a complete failure occurs.
1264 */
1265 uint8_t
1266 spa_get_failmode(spa_t *spa)
1267 {
1268 return (spa->spa_failmode);
1269 }
1270
1271 boolean_t
1272 spa_suspended(spa_t *spa)
1273 {
1274 return (spa->spa_suspended);
1275 }
1276
1277 uint64_t
1278 spa_version(spa_t *spa)
1279 {
1280 return (spa->spa_ubsync.ub_version);
1281 }
1282
1283 int
1284 spa_max_replication(spa_t *spa)
1285 {
1286 /*
1287 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1288 * handle BPs with more than one DVA allocated. Set our max
1289 * replication level accordingly.
1290 */
1291 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1292 return (1);
1293 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1294 }
1295
1296 uint64_t
1297 bp_get_dasize(spa_t *spa, const blkptr_t *bp)
1298 {
1299 int sz = 0, i;
1300
1301 if (!spa->spa_deflate)
1302 return (BP_GET_ASIZE(bp));
1303
1304 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1305 for (i = 0; i < SPA_DVAS_PER_BP; i++) {
1306 vdev_t *vd =
1307 vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i]));
1308 if (vd)
1309 sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >>
1310 SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1311 }
1312 spa_config_exit(spa, SCL_VDEV, FTAG);
1313 return (sz);
1314 }
1315
1316 /*
1317 * ==========================================================================
1318 * Initialization and Termination
1319 * ==========================================================================
1320 */
1321
1322 static int
1323 spa_name_compare(const void *a1, const void *a2)
1324 {
1325 const spa_t *s1 = a1;
1326 const spa_t *s2 = a2;
1327 int s;
1328
1329 s = strcmp(s1->spa_name, s2->spa_name);
1330 if (s > 0)
1331 return (1);
1332 if (s < 0)
1333 return (-1);
1334 return (0);
1335 }
1336
1337 int
1338 spa_busy(void)
1339 {
1340 return (spa_active_count);
1341 }
1342
1343 void
1344 spa_boot_init()
1345 {
1346 spa_config_load();
1347 }
1348
1349 void
1350 spa_init(int mode)
1351 {
1352 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1353 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1354 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1355 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1356
1357 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1358 offsetof(spa_t, spa_avl));
1359
1360 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1361 offsetof(spa_aux_t, aux_avl));
1362
1363 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1364 offsetof(spa_aux_t, aux_avl));
1365
1366 spa_mode_global = mode;
1367
1368 refcount_init();
1369 unique_init();
1370 zio_init();
1371 dmu_init();
1372 zil_init();
1373 vdev_cache_stat_init();
1374 zfs_prop_init();
1375 zpool_prop_init();
1376 spa_config_load();
1377 l2arc_start();
1378 }
1379
1380 void
1381 spa_fini(void)
1382 {
1383 l2arc_stop();
1384
1385 spa_evict_all();
1386
1387 vdev_cache_stat_fini();
1388 zil_fini();
1389 dmu_fini();
1390 zio_fini();
1391 unique_fini();
1392 refcount_fini();
1393
1394 avl_destroy(&spa_namespace_avl);
1395 avl_destroy(&spa_spare_avl);
1396 avl_destroy(&spa_l2cache_avl);
1397
1398 cv_destroy(&spa_namespace_cv);
1399 mutex_destroy(&spa_namespace_lock);
1400 mutex_destroy(&spa_spare_lock);
1401 mutex_destroy(&spa_l2cache_lock);
1402 }
1403
1404 /*
1405 * Return whether this pool has slogs. No locking needed.
1406 * It's not a problem if the wrong answer is returned as it's only for
1407 * performance and not correctness
1408 */
1409 boolean_t
1410 spa_has_slogs(spa_t *spa)
1411 {
1412 return (spa->spa_log_class->mc_rotor != NULL);
1413 }
1414
1415 /*
1416 * Return whether this pool is the root pool.
1417 */
1418 boolean_t
1419 spa_is_root(spa_t *spa)
1420 {
1421 return (spa->spa_is_root);
1422 }
1423
1424 boolean_t
1425 spa_writeable(spa_t *spa)
1426 {
1427 return (!!(spa->spa_mode & FWRITE));
1428 }
1429
1430 int
1431 spa_mode(spa_t *spa)
1432 {
1433 return (spa->spa_mode);
1434 }