]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa_misc.c
Illumos #3112, #3113, #3114
[mirror_zfs.git] / module / zfs / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/zio.h>
30 #include <sys/zio_checksum.h>
31 #include <sys/zio_compress.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/zap.h>
35 #include <sys/zil.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/uberblock_impl.h>
39 #include <sys/txg.h>
40 #include <sys/avl.h>
41 #include <sys/unique.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/fm/util.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/arc.h>
50 #include <sys/ddt.h>
51 #include <sys/kstat.h>
52 #include "zfs_prop.h"
53 #include "zfeature_common.h"
54
55 /*
56 * SPA locking
57 *
58 * There are four basic locks for managing spa_t structures:
59 *
60 * spa_namespace_lock (global mutex)
61 *
62 * This lock must be acquired to do any of the following:
63 *
64 * - Lookup a spa_t by name
65 * - Add or remove a spa_t from the namespace
66 * - Increase spa_refcount from non-zero
67 * - Check if spa_refcount is zero
68 * - Rename a spa_t
69 * - add/remove/attach/detach devices
70 * - Held for the duration of create/destroy/import/export
71 *
72 * It does not need to handle recursion. A create or destroy may
73 * reference objects (files or zvols) in other pools, but by
74 * definition they must have an existing reference, and will never need
75 * to lookup a spa_t by name.
76 *
77 * spa_refcount (per-spa refcount_t protected by mutex)
78 *
79 * This reference count keep track of any active users of the spa_t. The
80 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
81 * the refcount is never really 'zero' - opening a pool implicitly keeps
82 * some references in the DMU. Internally we check against spa_minref, but
83 * present the image of a zero/non-zero value to consumers.
84 *
85 * spa_config_lock[] (per-spa array of rwlocks)
86 *
87 * This protects the spa_t from config changes, and must be held in
88 * the following circumstances:
89 *
90 * - RW_READER to perform I/O to the spa
91 * - RW_WRITER to change the vdev config
92 *
93 * The locking order is fairly straightforward:
94 *
95 * spa_namespace_lock -> spa_refcount
96 *
97 * The namespace lock must be acquired to increase the refcount from 0
98 * or to check if it is zero.
99 *
100 * spa_refcount -> spa_config_lock[]
101 *
102 * There must be at least one valid reference on the spa_t to acquire
103 * the config lock.
104 *
105 * spa_namespace_lock -> spa_config_lock[]
106 *
107 * The namespace lock must always be taken before the config lock.
108 *
109 *
110 * The spa_namespace_lock can be acquired directly and is globally visible.
111 *
112 * The namespace is manipulated using the following functions, all of which
113 * require the spa_namespace_lock to be held.
114 *
115 * spa_lookup() Lookup a spa_t by name.
116 *
117 * spa_add() Create a new spa_t in the namespace.
118 *
119 * spa_remove() Remove a spa_t from the namespace. This also
120 * frees up any memory associated with the spa_t.
121 *
122 * spa_next() Returns the next spa_t in the system, or the
123 * first if NULL is passed.
124 *
125 * spa_evict_all() Shutdown and remove all spa_t structures in
126 * the system.
127 *
128 * spa_guid_exists() Determine whether a pool/device guid exists.
129 *
130 * The spa_refcount is manipulated using the following functions:
131 *
132 * spa_open_ref() Adds a reference to the given spa_t. Must be
133 * called with spa_namespace_lock held if the
134 * refcount is currently zero.
135 *
136 * spa_close() Remove a reference from the spa_t. This will
137 * not free the spa_t or remove it from the
138 * namespace. No locking is required.
139 *
140 * spa_refcount_zero() Returns true if the refcount is currently
141 * zero. Must be called with spa_namespace_lock
142 * held.
143 *
144 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
145 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
146 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
147 *
148 * To read the configuration, it suffices to hold one of these locks as reader.
149 * To modify the configuration, you must hold all locks as writer. To modify
150 * vdev state without altering the vdev tree's topology (e.g. online/offline),
151 * you must hold SCL_STATE and SCL_ZIO as writer.
152 *
153 * We use these distinct config locks to avoid recursive lock entry.
154 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
155 * block allocations (SCL_ALLOC), which may require reading space maps
156 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
157 *
158 * The spa config locks cannot be normal rwlocks because we need the
159 * ability to hand off ownership. For example, SCL_ZIO is acquired
160 * by the issuing thread and later released by an interrupt thread.
161 * They do, however, obey the usual write-wanted semantics to prevent
162 * writer (i.e. system administrator) starvation.
163 *
164 * The lock acquisition rules are as follows:
165 *
166 * SCL_CONFIG
167 * Protects changes to the vdev tree topology, such as vdev
168 * add/remove/attach/detach. Protects the dirty config list
169 * (spa_config_dirty_list) and the set of spares and l2arc devices.
170 *
171 * SCL_STATE
172 * Protects changes to pool state and vdev state, such as vdev
173 * online/offline/fault/degrade/clear. Protects the dirty state list
174 * (spa_state_dirty_list) and global pool state (spa_state).
175 *
176 * SCL_ALLOC
177 * Protects changes to metaslab groups and classes.
178 * Held as reader by metaslab_alloc() and metaslab_claim().
179 *
180 * SCL_ZIO
181 * Held by bp-level zios (those which have no io_vd upon entry)
182 * to prevent changes to the vdev tree. The bp-level zio implicitly
183 * protects all of its vdev child zios, which do not hold SCL_ZIO.
184 *
185 * SCL_FREE
186 * Protects changes to metaslab groups and classes.
187 * Held as reader by metaslab_free(). SCL_FREE is distinct from
188 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
189 * blocks in zio_done() while another i/o that holds either
190 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
191 *
192 * SCL_VDEV
193 * Held as reader to prevent changes to the vdev tree during trivial
194 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
195 * other locks, and lower than all of them, to ensure that it's safe
196 * to acquire regardless of caller context.
197 *
198 * In addition, the following rules apply:
199 *
200 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
201 * The lock ordering is SCL_CONFIG > spa_props_lock.
202 *
203 * (b) I/O operations on leaf vdevs. For any zio operation that takes
204 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
205 * or zio_write_phys() -- the caller must ensure that the config cannot
206 * cannot change in the interim, and that the vdev cannot be reopened.
207 * SCL_STATE as reader suffices for both.
208 *
209 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
210 *
211 * spa_vdev_enter() Acquire the namespace lock and the config lock
212 * for writing.
213 *
214 * spa_vdev_exit() Release the config lock, wait for all I/O
215 * to complete, sync the updated configs to the
216 * cache, and release the namespace lock.
217 *
218 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
219 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
220 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
221 *
222 * spa_rename() is also implemented within this file since it requires
223 * manipulation of the namespace.
224 */
225
226 static avl_tree_t spa_namespace_avl;
227 kmutex_t spa_namespace_lock;
228 static kcondvar_t spa_namespace_cv;
229 static int spa_active_count;
230 int spa_max_replication_override = SPA_DVAS_PER_BP;
231
232 static kmutex_t spa_spare_lock;
233 static avl_tree_t spa_spare_avl;
234 static kmutex_t spa_l2cache_lock;
235 static avl_tree_t spa_l2cache_avl;
236
237 kmem_cache_t *spa_buffer_pool;
238 int spa_mode_global;
239
240 /*
241 * Expiration time in units of zfs_txg_synctime_ms. This value has two
242 * meanings. First it is used to determine when the spa_deadman logic
243 * should fire. By default the spa_deadman will fire if spa_sync has
244 * not completed in 1000 * zfs_txg_synctime_ms (i.e. 1000 seconds).
245 * Secondly, the value determines if an I/O is considered "hung".
246 * Any I/O that has not completed in zfs_deadman_synctime is considered
247 * "hung" resulting in a zevent being posted.
248 */
249 unsigned long zfs_deadman_synctime = 1000ULL;
250
251 /*
252 * By default the deadman is enabled.
253 */
254 int zfs_deadman_enabled = 1;
255
256 /*
257 * ==========================================================================
258 * SPA config locking
259 * ==========================================================================
260 */
261 static void
262 spa_config_lock_init(spa_t *spa)
263 {
264 int i;
265
266 for (i = 0; i < SCL_LOCKS; i++) {
267 spa_config_lock_t *scl = &spa->spa_config_lock[i];
268 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
269 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
270 refcount_create_untracked(&scl->scl_count);
271 scl->scl_writer = NULL;
272 scl->scl_write_wanted = 0;
273 }
274 }
275
276 static void
277 spa_config_lock_destroy(spa_t *spa)
278 {
279 int i;
280
281 for (i = 0; i < SCL_LOCKS; i++) {
282 spa_config_lock_t *scl = &spa->spa_config_lock[i];
283 mutex_destroy(&scl->scl_lock);
284 cv_destroy(&scl->scl_cv);
285 refcount_destroy(&scl->scl_count);
286 ASSERT(scl->scl_writer == NULL);
287 ASSERT(scl->scl_write_wanted == 0);
288 }
289 }
290
291 int
292 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
293 {
294 int i;
295
296 for (i = 0; i < SCL_LOCKS; i++) {
297 spa_config_lock_t *scl = &spa->spa_config_lock[i];
298 if (!(locks & (1 << i)))
299 continue;
300 mutex_enter(&scl->scl_lock);
301 if (rw == RW_READER) {
302 if (scl->scl_writer || scl->scl_write_wanted) {
303 mutex_exit(&scl->scl_lock);
304 spa_config_exit(spa, locks ^ (1 << i), tag);
305 return (0);
306 }
307 } else {
308 ASSERT(scl->scl_writer != curthread);
309 if (!refcount_is_zero(&scl->scl_count)) {
310 mutex_exit(&scl->scl_lock);
311 spa_config_exit(spa, locks ^ (1 << i), tag);
312 return (0);
313 }
314 scl->scl_writer = curthread;
315 }
316 (void) refcount_add(&scl->scl_count, tag);
317 mutex_exit(&scl->scl_lock);
318 }
319 return (1);
320 }
321
322 void
323 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
324 {
325 int wlocks_held = 0;
326 int i;
327
328 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
329
330 for (i = 0; i < SCL_LOCKS; i++) {
331 spa_config_lock_t *scl = &spa->spa_config_lock[i];
332 if (scl->scl_writer == curthread)
333 wlocks_held |= (1 << i);
334 if (!(locks & (1 << i)))
335 continue;
336 mutex_enter(&scl->scl_lock);
337 if (rw == RW_READER) {
338 while (scl->scl_writer || scl->scl_write_wanted) {
339 cv_wait(&scl->scl_cv, &scl->scl_lock);
340 }
341 } else {
342 ASSERT(scl->scl_writer != curthread);
343 while (!refcount_is_zero(&scl->scl_count)) {
344 scl->scl_write_wanted++;
345 cv_wait(&scl->scl_cv, &scl->scl_lock);
346 scl->scl_write_wanted--;
347 }
348 scl->scl_writer = curthread;
349 }
350 (void) refcount_add(&scl->scl_count, tag);
351 mutex_exit(&scl->scl_lock);
352 }
353 ASSERT(wlocks_held <= locks);
354 }
355
356 void
357 spa_config_exit(spa_t *spa, int locks, void *tag)
358 {
359 int i;
360
361 for (i = SCL_LOCKS - 1; i >= 0; i--) {
362 spa_config_lock_t *scl = &spa->spa_config_lock[i];
363 if (!(locks & (1 << i)))
364 continue;
365 mutex_enter(&scl->scl_lock);
366 ASSERT(!refcount_is_zero(&scl->scl_count));
367 if (refcount_remove(&scl->scl_count, tag) == 0) {
368 ASSERT(scl->scl_writer == NULL ||
369 scl->scl_writer == curthread);
370 scl->scl_writer = NULL; /* OK in either case */
371 cv_broadcast(&scl->scl_cv);
372 }
373 mutex_exit(&scl->scl_lock);
374 }
375 }
376
377 int
378 spa_config_held(spa_t *spa, int locks, krw_t rw)
379 {
380 int i, locks_held = 0;
381
382 for (i = 0; i < SCL_LOCKS; i++) {
383 spa_config_lock_t *scl = &spa->spa_config_lock[i];
384 if (!(locks & (1 << i)))
385 continue;
386 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
387 (rw == RW_WRITER && scl->scl_writer == curthread))
388 locks_held |= 1 << i;
389 }
390
391 return (locks_held);
392 }
393
394 /*
395 * ==========================================================================
396 * SPA namespace functions
397 * ==========================================================================
398 */
399
400 /*
401 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
402 * Returns NULL if no matching spa_t is found.
403 */
404 spa_t *
405 spa_lookup(const char *name)
406 {
407 static spa_t search; /* spa_t is large; don't allocate on stack */
408 spa_t *spa;
409 avl_index_t where;
410 char *cp;
411
412 ASSERT(MUTEX_HELD(&spa_namespace_lock));
413
414 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
415
416 /*
417 * If it's a full dataset name, figure out the pool name and
418 * just use that.
419 */
420 cp = strpbrk(search.spa_name, "/@");
421 if (cp != NULL)
422 *cp = '\0';
423
424 spa = avl_find(&spa_namespace_avl, &search, &where);
425
426 return (spa);
427 }
428
429 /*
430 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
431 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
432 * looking for potentially hung I/Os.
433 */
434 void
435 spa_deadman(void *arg)
436 {
437 spa_t *spa = arg;
438
439 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
440 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
441 ++spa->spa_deadman_calls);
442 if (zfs_deadman_enabled)
443 vdev_deadman(spa->spa_root_vdev);
444
445 spa->spa_deadman_tqid = taskq_dispatch_delay(system_taskq,
446 spa_deadman, spa, TQ_PUSHPAGE, ddi_get_lbolt() +
447 NSEC_TO_TICK(spa->spa_deadman_synctime));
448 }
449
450 /*
451 * Create an uninitialized spa_t with the given name. Requires
452 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
453 * exist by calling spa_lookup() first.
454 */
455 spa_t *
456 spa_add(const char *name, nvlist_t *config, const char *altroot)
457 {
458 spa_t *spa;
459 spa_config_dirent_t *dp;
460 int t;
461
462 ASSERT(MUTEX_HELD(&spa_namespace_lock));
463
464 spa = kmem_zalloc(sizeof (spa_t), KM_PUSHPAGE | KM_NODEBUG);
465
466 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
467 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
468 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
469 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
470 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
471 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
472 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
473 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
474 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
475
476 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
477 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
478 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
479 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
480
481 for (t = 0; t < TXG_SIZE; t++)
482 bplist_create(&spa->spa_free_bplist[t]);
483
484 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
485 spa->spa_state = POOL_STATE_UNINITIALIZED;
486 spa->spa_freeze_txg = UINT64_MAX;
487 spa->spa_final_txg = UINT64_MAX;
488 spa->spa_load_max_txg = UINT64_MAX;
489 spa->spa_proc = &p0;
490 spa->spa_proc_state = SPA_PROC_NONE;
491
492 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime *
493 zfs_txg_synctime_ms);
494
495 refcount_create(&spa->spa_refcount);
496 spa_config_lock_init(spa);
497 spa_stats_init(spa);
498
499 avl_add(&spa_namespace_avl, spa);
500
501 /*
502 * Set the alternate root, if there is one.
503 */
504 if (altroot) {
505 spa->spa_root = spa_strdup(altroot);
506 spa_active_count++;
507 }
508
509 /*
510 * Every pool starts with the default cachefile
511 */
512 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
513 offsetof(spa_config_dirent_t, scd_link));
514
515 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_PUSHPAGE);
516 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
517 list_insert_head(&spa->spa_config_list, dp);
518
519 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
520 KM_PUSHPAGE) == 0);
521
522 if (config != NULL) {
523 nvlist_t *features;
524
525 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
526 &features) == 0) {
527 VERIFY(nvlist_dup(features, &spa->spa_label_features,
528 0) == 0);
529 }
530
531 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
532 }
533
534 if (spa->spa_label_features == NULL) {
535 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
536 KM_SLEEP) == 0);
537 }
538
539 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
540
541 return (spa);
542 }
543
544 /*
545 * Removes a spa_t from the namespace, freeing up any memory used. Requires
546 * spa_namespace_lock. This is called only after the spa_t has been closed and
547 * deactivated.
548 */
549 void
550 spa_remove(spa_t *spa)
551 {
552 spa_config_dirent_t *dp;
553 int t;
554
555 ASSERT(MUTEX_HELD(&spa_namespace_lock));
556 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
557
558 nvlist_free(spa->spa_config_splitting);
559
560 avl_remove(&spa_namespace_avl, spa);
561 cv_broadcast(&spa_namespace_cv);
562
563 if (spa->spa_root) {
564 spa_strfree(spa->spa_root);
565 spa_active_count--;
566 }
567
568 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
569 list_remove(&spa->spa_config_list, dp);
570 if (dp->scd_path != NULL)
571 spa_strfree(dp->scd_path);
572 kmem_free(dp, sizeof (spa_config_dirent_t));
573 }
574
575 list_destroy(&spa->spa_config_list);
576
577 nvlist_free(spa->spa_label_features);
578 nvlist_free(spa->spa_load_info);
579 spa_config_set(spa, NULL);
580
581 refcount_destroy(&spa->spa_refcount);
582
583 spa_stats_destroy(spa);
584 spa_config_lock_destroy(spa);
585
586 for (t = 0; t < TXG_SIZE; t++)
587 bplist_destroy(&spa->spa_free_bplist[t]);
588
589 cv_destroy(&spa->spa_async_cv);
590 cv_destroy(&spa->spa_proc_cv);
591 cv_destroy(&spa->spa_scrub_io_cv);
592 cv_destroy(&spa->spa_suspend_cv);
593
594 mutex_destroy(&spa->spa_async_lock);
595 mutex_destroy(&spa->spa_errlist_lock);
596 mutex_destroy(&spa->spa_errlog_lock);
597 mutex_destroy(&spa->spa_history_lock);
598 mutex_destroy(&spa->spa_proc_lock);
599 mutex_destroy(&spa->spa_props_lock);
600 mutex_destroy(&spa->spa_scrub_lock);
601 mutex_destroy(&spa->spa_suspend_lock);
602 mutex_destroy(&spa->spa_vdev_top_lock);
603
604 kmem_free(spa, sizeof (spa_t));
605 }
606
607 /*
608 * Given a pool, return the next pool in the namespace, or NULL if there is
609 * none. If 'prev' is NULL, return the first pool.
610 */
611 spa_t *
612 spa_next(spa_t *prev)
613 {
614 ASSERT(MUTEX_HELD(&spa_namespace_lock));
615
616 if (prev)
617 return (AVL_NEXT(&spa_namespace_avl, prev));
618 else
619 return (avl_first(&spa_namespace_avl));
620 }
621
622 /*
623 * ==========================================================================
624 * SPA refcount functions
625 * ==========================================================================
626 */
627
628 /*
629 * Add a reference to the given spa_t. Must have at least one reference, or
630 * have the namespace lock held.
631 */
632 void
633 spa_open_ref(spa_t *spa, void *tag)
634 {
635 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
636 MUTEX_HELD(&spa_namespace_lock));
637 (void) refcount_add(&spa->spa_refcount, tag);
638 }
639
640 /*
641 * Remove a reference to the given spa_t. Must have at least one reference, or
642 * have the namespace lock held.
643 */
644 void
645 spa_close(spa_t *spa, void *tag)
646 {
647 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
648 MUTEX_HELD(&spa_namespace_lock));
649 (void) refcount_remove(&spa->spa_refcount, tag);
650 }
651
652 /*
653 * Check to see if the spa refcount is zero. Must be called with
654 * spa_namespace_lock held. We really compare against spa_minref, which is the
655 * number of references acquired when opening a pool
656 */
657 boolean_t
658 spa_refcount_zero(spa_t *spa)
659 {
660 ASSERT(MUTEX_HELD(&spa_namespace_lock));
661
662 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
663 }
664
665 /*
666 * ==========================================================================
667 * SPA spare and l2cache tracking
668 * ==========================================================================
669 */
670
671 /*
672 * Hot spares and cache devices are tracked using the same code below,
673 * for 'auxiliary' devices.
674 */
675
676 typedef struct spa_aux {
677 uint64_t aux_guid;
678 uint64_t aux_pool;
679 avl_node_t aux_avl;
680 int aux_count;
681 } spa_aux_t;
682
683 static int
684 spa_aux_compare(const void *a, const void *b)
685 {
686 const spa_aux_t *sa = a;
687 const spa_aux_t *sb = b;
688
689 if (sa->aux_guid < sb->aux_guid)
690 return (-1);
691 else if (sa->aux_guid > sb->aux_guid)
692 return (1);
693 else
694 return (0);
695 }
696
697 void
698 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
699 {
700 avl_index_t where;
701 spa_aux_t search;
702 spa_aux_t *aux;
703
704 search.aux_guid = vd->vdev_guid;
705 if ((aux = avl_find(avl, &search, &where)) != NULL) {
706 aux->aux_count++;
707 } else {
708 aux = kmem_zalloc(sizeof (spa_aux_t), KM_PUSHPAGE);
709 aux->aux_guid = vd->vdev_guid;
710 aux->aux_count = 1;
711 avl_insert(avl, aux, where);
712 }
713 }
714
715 void
716 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
717 {
718 spa_aux_t search;
719 spa_aux_t *aux;
720 avl_index_t where;
721
722 search.aux_guid = vd->vdev_guid;
723 aux = avl_find(avl, &search, &where);
724
725 ASSERT(aux != NULL);
726
727 if (--aux->aux_count == 0) {
728 avl_remove(avl, aux);
729 kmem_free(aux, sizeof (spa_aux_t));
730 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
731 aux->aux_pool = 0ULL;
732 }
733 }
734
735 boolean_t
736 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
737 {
738 spa_aux_t search, *found;
739
740 search.aux_guid = guid;
741 found = avl_find(avl, &search, NULL);
742
743 if (pool) {
744 if (found)
745 *pool = found->aux_pool;
746 else
747 *pool = 0ULL;
748 }
749
750 if (refcnt) {
751 if (found)
752 *refcnt = found->aux_count;
753 else
754 *refcnt = 0;
755 }
756
757 return (found != NULL);
758 }
759
760 void
761 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
762 {
763 spa_aux_t search, *found;
764 avl_index_t where;
765
766 search.aux_guid = vd->vdev_guid;
767 found = avl_find(avl, &search, &where);
768 ASSERT(found != NULL);
769 ASSERT(found->aux_pool == 0ULL);
770
771 found->aux_pool = spa_guid(vd->vdev_spa);
772 }
773
774 /*
775 * Spares are tracked globally due to the following constraints:
776 *
777 * - A spare may be part of multiple pools.
778 * - A spare may be added to a pool even if it's actively in use within
779 * another pool.
780 * - A spare in use in any pool can only be the source of a replacement if
781 * the target is a spare in the same pool.
782 *
783 * We keep track of all spares on the system through the use of a reference
784 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
785 * spare, then we bump the reference count in the AVL tree. In addition, we set
786 * the 'vdev_isspare' member to indicate that the device is a spare (active or
787 * inactive). When a spare is made active (used to replace a device in the
788 * pool), we also keep track of which pool its been made a part of.
789 *
790 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
791 * called under the spa_namespace lock as part of vdev reconfiguration. The
792 * separate spare lock exists for the status query path, which does not need to
793 * be completely consistent with respect to other vdev configuration changes.
794 */
795
796 static int
797 spa_spare_compare(const void *a, const void *b)
798 {
799 return (spa_aux_compare(a, b));
800 }
801
802 void
803 spa_spare_add(vdev_t *vd)
804 {
805 mutex_enter(&spa_spare_lock);
806 ASSERT(!vd->vdev_isspare);
807 spa_aux_add(vd, &spa_spare_avl);
808 vd->vdev_isspare = B_TRUE;
809 mutex_exit(&spa_spare_lock);
810 }
811
812 void
813 spa_spare_remove(vdev_t *vd)
814 {
815 mutex_enter(&spa_spare_lock);
816 ASSERT(vd->vdev_isspare);
817 spa_aux_remove(vd, &spa_spare_avl);
818 vd->vdev_isspare = B_FALSE;
819 mutex_exit(&spa_spare_lock);
820 }
821
822 boolean_t
823 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
824 {
825 boolean_t found;
826
827 mutex_enter(&spa_spare_lock);
828 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
829 mutex_exit(&spa_spare_lock);
830
831 return (found);
832 }
833
834 void
835 spa_spare_activate(vdev_t *vd)
836 {
837 mutex_enter(&spa_spare_lock);
838 ASSERT(vd->vdev_isspare);
839 spa_aux_activate(vd, &spa_spare_avl);
840 mutex_exit(&spa_spare_lock);
841 }
842
843 /*
844 * Level 2 ARC devices are tracked globally for the same reasons as spares.
845 * Cache devices currently only support one pool per cache device, and so
846 * for these devices the aux reference count is currently unused beyond 1.
847 */
848
849 static int
850 spa_l2cache_compare(const void *a, const void *b)
851 {
852 return (spa_aux_compare(a, b));
853 }
854
855 void
856 spa_l2cache_add(vdev_t *vd)
857 {
858 mutex_enter(&spa_l2cache_lock);
859 ASSERT(!vd->vdev_isl2cache);
860 spa_aux_add(vd, &spa_l2cache_avl);
861 vd->vdev_isl2cache = B_TRUE;
862 mutex_exit(&spa_l2cache_lock);
863 }
864
865 void
866 spa_l2cache_remove(vdev_t *vd)
867 {
868 mutex_enter(&spa_l2cache_lock);
869 ASSERT(vd->vdev_isl2cache);
870 spa_aux_remove(vd, &spa_l2cache_avl);
871 vd->vdev_isl2cache = B_FALSE;
872 mutex_exit(&spa_l2cache_lock);
873 }
874
875 boolean_t
876 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
877 {
878 boolean_t found;
879
880 mutex_enter(&spa_l2cache_lock);
881 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
882 mutex_exit(&spa_l2cache_lock);
883
884 return (found);
885 }
886
887 void
888 spa_l2cache_activate(vdev_t *vd)
889 {
890 mutex_enter(&spa_l2cache_lock);
891 ASSERT(vd->vdev_isl2cache);
892 spa_aux_activate(vd, &spa_l2cache_avl);
893 mutex_exit(&spa_l2cache_lock);
894 }
895
896 /*
897 * ==========================================================================
898 * SPA vdev locking
899 * ==========================================================================
900 */
901
902 /*
903 * Lock the given spa_t for the purpose of adding or removing a vdev.
904 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
905 * It returns the next transaction group for the spa_t.
906 */
907 uint64_t
908 spa_vdev_enter(spa_t *spa)
909 {
910 mutex_enter(&spa->spa_vdev_top_lock);
911 mutex_enter(&spa_namespace_lock);
912 return (spa_vdev_config_enter(spa));
913 }
914
915 /*
916 * Internal implementation for spa_vdev_enter(). Used when a vdev
917 * operation requires multiple syncs (i.e. removing a device) while
918 * keeping the spa_namespace_lock held.
919 */
920 uint64_t
921 spa_vdev_config_enter(spa_t *spa)
922 {
923 ASSERT(MUTEX_HELD(&spa_namespace_lock));
924
925 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
926
927 return (spa_last_synced_txg(spa) + 1);
928 }
929
930 /*
931 * Used in combination with spa_vdev_config_enter() to allow the syncing
932 * of multiple transactions without releasing the spa_namespace_lock.
933 */
934 void
935 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
936 {
937 int config_changed = B_FALSE;
938
939 ASSERT(MUTEX_HELD(&spa_namespace_lock));
940 ASSERT(txg > spa_last_synced_txg(spa));
941
942 spa->spa_pending_vdev = NULL;
943
944 /*
945 * Reassess the DTLs.
946 */
947 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
948
949 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
950 config_changed = B_TRUE;
951 spa->spa_config_generation++;
952 }
953
954 /*
955 * Verify the metaslab classes.
956 */
957 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
958 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
959
960 spa_config_exit(spa, SCL_ALL, spa);
961
962 /*
963 * Panic the system if the specified tag requires it. This
964 * is useful for ensuring that configurations are updated
965 * transactionally.
966 */
967 if (zio_injection_enabled)
968 zio_handle_panic_injection(spa, tag, 0);
969
970 /*
971 * Note: this txg_wait_synced() is important because it ensures
972 * that there won't be more than one config change per txg.
973 * This allows us to use the txg as the generation number.
974 */
975 if (error == 0)
976 txg_wait_synced(spa->spa_dsl_pool, txg);
977
978 if (vd != NULL) {
979 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
980 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
981 vdev_free(vd);
982 spa_config_exit(spa, SCL_ALL, spa);
983 }
984
985 /*
986 * If the config changed, update the config cache.
987 */
988 if (config_changed)
989 spa_config_sync(spa, B_FALSE, B_TRUE);
990 }
991
992 /*
993 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
994 * locking of spa_vdev_enter(), we also want make sure the transactions have
995 * synced to disk, and then update the global configuration cache with the new
996 * information.
997 */
998 int
999 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1000 {
1001 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1002 mutex_exit(&spa_namespace_lock);
1003 mutex_exit(&spa->spa_vdev_top_lock);
1004
1005 return (error);
1006 }
1007
1008 /*
1009 * Lock the given spa_t for the purpose of changing vdev state.
1010 */
1011 void
1012 spa_vdev_state_enter(spa_t *spa, int oplocks)
1013 {
1014 int locks = SCL_STATE_ALL | oplocks;
1015
1016 /*
1017 * Root pools may need to read of the underlying devfs filesystem
1018 * when opening up a vdev. Unfortunately if we're holding the
1019 * SCL_ZIO lock it will result in a deadlock when we try to issue
1020 * the read from the root filesystem. Instead we "prefetch"
1021 * the associated vnodes that we need prior to opening the
1022 * underlying devices and cache them so that we can prevent
1023 * any I/O when we are doing the actual open.
1024 */
1025 if (spa_is_root(spa)) {
1026 int low = locks & ~(SCL_ZIO - 1);
1027 int high = locks & ~low;
1028
1029 spa_config_enter(spa, high, spa, RW_WRITER);
1030 vdev_hold(spa->spa_root_vdev);
1031 spa_config_enter(spa, low, spa, RW_WRITER);
1032 } else {
1033 spa_config_enter(spa, locks, spa, RW_WRITER);
1034 }
1035 spa->spa_vdev_locks = locks;
1036 }
1037
1038 int
1039 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1040 {
1041 boolean_t config_changed = B_FALSE;
1042
1043 if (vd != NULL || error == 0)
1044 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1045 0, 0, B_FALSE);
1046
1047 if (vd != NULL) {
1048 vdev_state_dirty(vd->vdev_top);
1049 config_changed = B_TRUE;
1050 spa->spa_config_generation++;
1051 }
1052
1053 if (spa_is_root(spa))
1054 vdev_rele(spa->spa_root_vdev);
1055
1056 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1057 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1058
1059 /*
1060 * If anything changed, wait for it to sync. This ensures that,
1061 * from the system administrator's perspective, zpool(1M) commands
1062 * are synchronous. This is important for things like zpool offline:
1063 * when the command completes, you expect no further I/O from ZFS.
1064 */
1065 if (vd != NULL)
1066 txg_wait_synced(spa->spa_dsl_pool, 0);
1067
1068 /*
1069 * If the config changed, update the config cache.
1070 */
1071 if (config_changed) {
1072 mutex_enter(&spa_namespace_lock);
1073 spa_config_sync(spa, B_FALSE, B_TRUE);
1074 mutex_exit(&spa_namespace_lock);
1075 }
1076
1077 return (error);
1078 }
1079
1080 /*
1081 * ==========================================================================
1082 * Miscellaneous functions
1083 * ==========================================================================
1084 */
1085
1086 void
1087 spa_activate_mos_feature(spa_t *spa, const char *feature)
1088 {
1089 (void) nvlist_add_boolean(spa->spa_label_features, feature);
1090 vdev_config_dirty(spa->spa_root_vdev);
1091 }
1092
1093 void
1094 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1095 {
1096 (void) nvlist_remove_all(spa->spa_label_features, feature);
1097 vdev_config_dirty(spa->spa_root_vdev);
1098 }
1099
1100 /*
1101 * Rename a spa_t.
1102 */
1103 int
1104 spa_rename(const char *name, const char *newname)
1105 {
1106 spa_t *spa;
1107 int err;
1108
1109 /*
1110 * Lookup the spa_t and grab the config lock for writing. We need to
1111 * actually open the pool so that we can sync out the necessary labels.
1112 * It's OK to call spa_open() with the namespace lock held because we
1113 * allow recursive calls for other reasons.
1114 */
1115 mutex_enter(&spa_namespace_lock);
1116 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1117 mutex_exit(&spa_namespace_lock);
1118 return (err);
1119 }
1120
1121 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1122
1123 avl_remove(&spa_namespace_avl, spa);
1124 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1125 avl_add(&spa_namespace_avl, spa);
1126
1127 /*
1128 * Sync all labels to disk with the new names by marking the root vdev
1129 * dirty and waiting for it to sync. It will pick up the new pool name
1130 * during the sync.
1131 */
1132 vdev_config_dirty(spa->spa_root_vdev);
1133
1134 spa_config_exit(spa, SCL_ALL, FTAG);
1135
1136 txg_wait_synced(spa->spa_dsl_pool, 0);
1137
1138 /*
1139 * Sync the updated config cache.
1140 */
1141 spa_config_sync(spa, B_FALSE, B_TRUE);
1142
1143 spa_close(spa, FTAG);
1144
1145 mutex_exit(&spa_namespace_lock);
1146
1147 return (0);
1148 }
1149
1150 /*
1151 * Return the spa_t associated with given pool_guid, if it exists. If
1152 * device_guid is non-zero, determine whether the pool exists *and* contains
1153 * a device with the specified device_guid.
1154 */
1155 spa_t *
1156 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1157 {
1158 spa_t *spa;
1159 avl_tree_t *t = &spa_namespace_avl;
1160
1161 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1162
1163 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1164 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1165 continue;
1166 if (spa->spa_root_vdev == NULL)
1167 continue;
1168 if (spa_guid(spa) == pool_guid) {
1169 if (device_guid == 0)
1170 break;
1171
1172 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1173 device_guid) != NULL)
1174 break;
1175
1176 /*
1177 * Check any devices we may be in the process of adding.
1178 */
1179 if (spa->spa_pending_vdev) {
1180 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1181 device_guid) != NULL)
1182 break;
1183 }
1184 }
1185 }
1186
1187 return (spa);
1188 }
1189
1190 /*
1191 * Determine whether a pool with the given pool_guid exists.
1192 */
1193 boolean_t
1194 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1195 {
1196 return (spa_by_guid(pool_guid, device_guid) != NULL);
1197 }
1198
1199 char *
1200 spa_strdup(const char *s)
1201 {
1202 size_t len;
1203 char *new;
1204
1205 len = strlen(s);
1206 new = kmem_alloc(len + 1, KM_PUSHPAGE);
1207 bcopy(s, new, len);
1208 new[len] = '\0';
1209
1210 return (new);
1211 }
1212
1213 void
1214 spa_strfree(char *s)
1215 {
1216 kmem_free(s, strlen(s) + 1);
1217 }
1218
1219 uint64_t
1220 spa_get_random(uint64_t range)
1221 {
1222 uint64_t r;
1223
1224 ASSERT(range != 0);
1225
1226 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1227
1228 return (r % range);
1229 }
1230
1231 uint64_t
1232 spa_generate_guid(spa_t *spa)
1233 {
1234 uint64_t guid = spa_get_random(-1ULL);
1235
1236 if (spa != NULL) {
1237 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1238 guid = spa_get_random(-1ULL);
1239 } else {
1240 while (guid == 0 || spa_guid_exists(guid, 0))
1241 guid = spa_get_random(-1ULL);
1242 }
1243
1244 return (guid);
1245 }
1246
1247 void
1248 sprintf_blkptr(char *buf, const blkptr_t *bp)
1249 {
1250 char type[256];
1251 char *checksum = NULL;
1252 char *compress = NULL;
1253
1254 if (bp != NULL) {
1255 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1256 dmu_object_byteswap_t bswap =
1257 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1258 (void) snprintf(type, sizeof (type), "bswap %s %s",
1259 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1260 "metadata" : "data",
1261 dmu_ot_byteswap[bswap].ob_name);
1262 } else {
1263 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1264 sizeof (type));
1265 }
1266 checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1267 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1268 }
1269
1270 SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1271 }
1272
1273 void
1274 spa_freeze(spa_t *spa)
1275 {
1276 uint64_t freeze_txg = 0;
1277
1278 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1279 if (spa->spa_freeze_txg == UINT64_MAX) {
1280 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1281 spa->spa_freeze_txg = freeze_txg;
1282 }
1283 spa_config_exit(spa, SCL_ALL, FTAG);
1284 if (freeze_txg != 0)
1285 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1286 }
1287
1288 /*
1289 * This is a stripped-down version of strtoull, suitable only for converting
1290 * lowercase hexadecimal numbers that don't overflow.
1291 */
1292 uint64_t
1293 strtonum(const char *str, char **nptr)
1294 {
1295 uint64_t val = 0;
1296 char c;
1297 int digit;
1298
1299 while ((c = *str) != '\0') {
1300 if (c >= '0' && c <= '9')
1301 digit = c - '0';
1302 else if (c >= 'a' && c <= 'f')
1303 digit = 10 + c - 'a';
1304 else
1305 break;
1306
1307 val *= 16;
1308 val += digit;
1309
1310 str++;
1311 }
1312
1313 if (nptr)
1314 *nptr = (char *)str;
1315
1316 return (val);
1317 }
1318
1319 /*
1320 * ==========================================================================
1321 * Accessor functions
1322 * ==========================================================================
1323 */
1324
1325 boolean_t
1326 spa_shutting_down(spa_t *spa)
1327 {
1328 return (spa->spa_async_suspended);
1329 }
1330
1331 dsl_pool_t *
1332 spa_get_dsl(spa_t *spa)
1333 {
1334 return (spa->spa_dsl_pool);
1335 }
1336
1337 boolean_t
1338 spa_is_initializing(spa_t *spa)
1339 {
1340 return (spa->spa_is_initializing);
1341 }
1342
1343 blkptr_t *
1344 spa_get_rootblkptr(spa_t *spa)
1345 {
1346 return (&spa->spa_ubsync.ub_rootbp);
1347 }
1348
1349 void
1350 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1351 {
1352 spa->spa_uberblock.ub_rootbp = *bp;
1353 }
1354
1355 void
1356 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1357 {
1358 if (spa->spa_root == NULL)
1359 buf[0] = '\0';
1360 else
1361 (void) strncpy(buf, spa->spa_root, buflen);
1362 }
1363
1364 int
1365 spa_sync_pass(spa_t *spa)
1366 {
1367 return (spa->spa_sync_pass);
1368 }
1369
1370 char *
1371 spa_name(spa_t *spa)
1372 {
1373 return (spa->spa_name);
1374 }
1375
1376 uint64_t
1377 spa_guid(spa_t *spa)
1378 {
1379 dsl_pool_t *dp = spa_get_dsl(spa);
1380 uint64_t guid;
1381
1382 /*
1383 * If we fail to parse the config during spa_load(), we can go through
1384 * the error path (which posts an ereport) and end up here with no root
1385 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1386 * this case.
1387 */
1388 if (spa->spa_root_vdev == NULL)
1389 return (spa->spa_config_guid);
1390
1391 guid = spa->spa_last_synced_guid != 0 ?
1392 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1393
1394 /*
1395 * Return the most recently synced out guid unless we're
1396 * in syncing context.
1397 */
1398 if (dp && dsl_pool_sync_context(dp))
1399 return (spa->spa_root_vdev->vdev_guid);
1400 else
1401 return (guid);
1402 }
1403
1404 uint64_t
1405 spa_load_guid(spa_t *spa)
1406 {
1407 /*
1408 * This is a GUID that exists solely as a reference for the
1409 * purposes of the arc. It is generated at load time, and
1410 * is never written to persistent storage.
1411 */
1412 return (spa->spa_load_guid);
1413 }
1414
1415 uint64_t
1416 spa_last_synced_txg(spa_t *spa)
1417 {
1418 return (spa->spa_ubsync.ub_txg);
1419 }
1420
1421 uint64_t
1422 spa_first_txg(spa_t *spa)
1423 {
1424 return (spa->spa_first_txg);
1425 }
1426
1427 uint64_t
1428 spa_syncing_txg(spa_t *spa)
1429 {
1430 return (spa->spa_syncing_txg);
1431 }
1432
1433 pool_state_t
1434 spa_state(spa_t *spa)
1435 {
1436 return (spa->spa_state);
1437 }
1438
1439 spa_load_state_t
1440 spa_load_state(spa_t *spa)
1441 {
1442 return (spa->spa_load_state);
1443 }
1444
1445 uint64_t
1446 spa_freeze_txg(spa_t *spa)
1447 {
1448 return (spa->spa_freeze_txg);
1449 }
1450
1451 /* ARGSUSED */
1452 uint64_t
1453 spa_get_asize(spa_t *spa, uint64_t lsize)
1454 {
1455 /*
1456 * The worst case is single-sector max-parity RAID-Z blocks, in which
1457 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
1458 * times the size; so just assume that. Add to this the fact that
1459 * we can have up to 3 DVAs per bp, and one more factor of 2 because
1460 * the block may be dittoed with up to 3 DVAs by ddt_sync().
1461 */
1462 return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
1463 }
1464
1465 uint64_t
1466 spa_get_dspace(spa_t *spa)
1467 {
1468 return (spa->spa_dspace);
1469 }
1470
1471 void
1472 spa_update_dspace(spa_t *spa)
1473 {
1474 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1475 ddt_get_dedup_dspace(spa);
1476 }
1477
1478 /*
1479 * Return the failure mode that has been set to this pool. The default
1480 * behavior will be to block all I/Os when a complete failure occurs.
1481 */
1482 uint8_t
1483 spa_get_failmode(spa_t *spa)
1484 {
1485 return (spa->spa_failmode);
1486 }
1487
1488 boolean_t
1489 spa_suspended(spa_t *spa)
1490 {
1491 return (spa->spa_suspended);
1492 }
1493
1494 uint64_t
1495 spa_version(spa_t *spa)
1496 {
1497 return (spa->spa_ubsync.ub_version);
1498 }
1499
1500 boolean_t
1501 spa_deflate(spa_t *spa)
1502 {
1503 return (spa->spa_deflate);
1504 }
1505
1506 metaslab_class_t *
1507 spa_normal_class(spa_t *spa)
1508 {
1509 return (spa->spa_normal_class);
1510 }
1511
1512 metaslab_class_t *
1513 spa_log_class(spa_t *spa)
1514 {
1515 return (spa->spa_log_class);
1516 }
1517
1518 int
1519 spa_max_replication(spa_t *spa)
1520 {
1521 /*
1522 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1523 * handle BPs with more than one DVA allocated. Set our max
1524 * replication level accordingly.
1525 */
1526 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1527 return (1);
1528 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1529 }
1530
1531 int
1532 spa_prev_software_version(spa_t *spa)
1533 {
1534 return (spa->spa_prev_software_version);
1535 }
1536
1537 uint64_t
1538 spa_deadman_synctime(spa_t *spa)
1539 {
1540 return (spa->spa_deadman_synctime);
1541 }
1542
1543 uint64_t
1544 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1545 {
1546 uint64_t asize = DVA_GET_ASIZE(dva);
1547 uint64_t dsize = asize;
1548
1549 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1550
1551 if (asize != 0 && spa->spa_deflate) {
1552 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1553 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1554 }
1555
1556 return (dsize);
1557 }
1558
1559 uint64_t
1560 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1561 {
1562 uint64_t dsize = 0;
1563 int d;
1564
1565 for (d = 0; d < SPA_DVAS_PER_BP; d++)
1566 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1567
1568 return (dsize);
1569 }
1570
1571 uint64_t
1572 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1573 {
1574 uint64_t dsize = 0;
1575 int d;
1576
1577 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1578
1579 for (d = 0; d < SPA_DVAS_PER_BP; d++)
1580 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1581
1582 spa_config_exit(spa, SCL_VDEV, FTAG);
1583
1584 return (dsize);
1585 }
1586
1587 /*
1588 * ==========================================================================
1589 * Initialization and Termination
1590 * ==========================================================================
1591 */
1592
1593 static int
1594 spa_name_compare(const void *a1, const void *a2)
1595 {
1596 const spa_t *s1 = a1;
1597 const spa_t *s2 = a2;
1598 int s;
1599
1600 s = strcmp(s1->spa_name, s2->spa_name);
1601 if (s > 0)
1602 return (1);
1603 if (s < 0)
1604 return (-1);
1605 return (0);
1606 }
1607
1608 void
1609 spa_boot_init(void)
1610 {
1611 spa_config_load();
1612 }
1613
1614 void
1615 spa_init(int mode)
1616 {
1617 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1618 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1619 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1620 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1621
1622 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1623 offsetof(spa_t, spa_avl));
1624
1625 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1626 offsetof(spa_aux_t, aux_avl));
1627
1628 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1629 offsetof(spa_aux_t, aux_avl));
1630
1631 spa_mode_global = mode;
1632
1633 #ifndef _KERNEL
1634 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1635 struct sigaction sa;
1636
1637 sa.sa_flags = SA_SIGINFO;
1638 sigemptyset(&sa.sa_mask);
1639 sa.sa_sigaction = arc_buf_sigsegv;
1640
1641 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
1642 perror("could not enable watchpoints: "
1643 "sigaction(SIGSEGV, ...) = ");
1644 } else {
1645 arc_watch = B_TRUE;
1646 }
1647 }
1648 #endif
1649
1650 fm_init();
1651 refcount_init();
1652 unique_init();
1653 space_map_init();
1654 zio_init();
1655 dmu_init();
1656 zil_init();
1657 vdev_cache_stat_init();
1658 zfs_prop_init();
1659 zpool_prop_init();
1660 zpool_feature_init();
1661 spa_config_load();
1662 l2arc_start();
1663 }
1664
1665 void
1666 spa_fini(void)
1667 {
1668 l2arc_stop();
1669
1670 spa_evict_all();
1671
1672 vdev_cache_stat_fini();
1673 zil_fini();
1674 dmu_fini();
1675 zio_fini();
1676 space_map_fini();
1677 unique_fini();
1678 refcount_fini();
1679 fm_fini();
1680
1681 avl_destroy(&spa_namespace_avl);
1682 avl_destroy(&spa_spare_avl);
1683 avl_destroy(&spa_l2cache_avl);
1684
1685 cv_destroy(&spa_namespace_cv);
1686 mutex_destroy(&spa_namespace_lock);
1687 mutex_destroy(&spa_spare_lock);
1688 mutex_destroy(&spa_l2cache_lock);
1689 }
1690
1691 /*
1692 * Return whether this pool has slogs. No locking needed.
1693 * It's not a problem if the wrong answer is returned as it's only for
1694 * performance and not correctness
1695 */
1696 boolean_t
1697 spa_has_slogs(spa_t *spa)
1698 {
1699 return (spa->spa_log_class->mc_rotor != NULL);
1700 }
1701
1702 spa_log_state_t
1703 spa_get_log_state(spa_t *spa)
1704 {
1705 return (spa->spa_log_state);
1706 }
1707
1708 void
1709 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1710 {
1711 spa->spa_log_state = state;
1712 }
1713
1714 boolean_t
1715 spa_is_root(spa_t *spa)
1716 {
1717 return (spa->spa_is_root);
1718 }
1719
1720 boolean_t
1721 spa_writeable(spa_t *spa)
1722 {
1723 return (!!(spa->spa_mode & FWRITE));
1724 }
1725
1726 int
1727 spa_mode(spa_t *spa)
1728 {
1729 return (spa->spa_mode);
1730 }
1731
1732 uint64_t
1733 spa_bootfs(spa_t *spa)
1734 {
1735 return (spa->spa_bootfs);
1736 }
1737
1738 uint64_t
1739 spa_delegation(spa_t *spa)
1740 {
1741 return (spa->spa_delegation);
1742 }
1743
1744 objset_t *
1745 spa_meta_objset(spa_t *spa)
1746 {
1747 return (spa->spa_meta_objset);
1748 }
1749
1750 enum zio_checksum
1751 spa_dedup_checksum(spa_t *spa)
1752 {
1753 return (spa->spa_dedup_checksum);
1754 }
1755
1756 /*
1757 * Reset pool scan stat per scan pass (or reboot).
1758 */
1759 void
1760 spa_scan_stat_init(spa_t *spa)
1761 {
1762 /* data not stored on disk */
1763 spa->spa_scan_pass_start = gethrestime_sec();
1764 spa->spa_scan_pass_exam = 0;
1765 vdev_scan_stat_init(spa->spa_root_vdev);
1766 }
1767
1768 /*
1769 * Get scan stats for zpool status reports
1770 */
1771 int
1772 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1773 {
1774 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1775
1776 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1777 return (SET_ERROR(ENOENT));
1778 bzero(ps, sizeof (pool_scan_stat_t));
1779
1780 /* data stored on disk */
1781 ps->pss_func = scn->scn_phys.scn_func;
1782 ps->pss_start_time = scn->scn_phys.scn_start_time;
1783 ps->pss_end_time = scn->scn_phys.scn_end_time;
1784 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1785 ps->pss_examined = scn->scn_phys.scn_examined;
1786 ps->pss_to_process = scn->scn_phys.scn_to_process;
1787 ps->pss_processed = scn->scn_phys.scn_processed;
1788 ps->pss_errors = scn->scn_phys.scn_errors;
1789 ps->pss_state = scn->scn_phys.scn_state;
1790
1791 /* data not stored on disk */
1792 ps->pss_pass_start = spa->spa_scan_pass_start;
1793 ps->pss_pass_exam = spa->spa_scan_pass_exam;
1794
1795 return (0);
1796 }
1797
1798 boolean_t
1799 spa_debug_enabled(spa_t *spa)
1800 {
1801 return (spa->spa_debug);
1802 }
1803
1804 #if defined(_KERNEL) && defined(HAVE_SPL)
1805 /* Namespace manipulation */
1806 EXPORT_SYMBOL(spa_lookup);
1807 EXPORT_SYMBOL(spa_add);
1808 EXPORT_SYMBOL(spa_remove);
1809 EXPORT_SYMBOL(spa_next);
1810
1811 /* Refcount functions */
1812 EXPORT_SYMBOL(spa_open_ref);
1813 EXPORT_SYMBOL(spa_close);
1814 EXPORT_SYMBOL(spa_refcount_zero);
1815
1816 /* Pool configuration lock */
1817 EXPORT_SYMBOL(spa_config_tryenter);
1818 EXPORT_SYMBOL(spa_config_enter);
1819 EXPORT_SYMBOL(spa_config_exit);
1820 EXPORT_SYMBOL(spa_config_held);
1821
1822 /* Pool vdev add/remove lock */
1823 EXPORT_SYMBOL(spa_vdev_enter);
1824 EXPORT_SYMBOL(spa_vdev_exit);
1825
1826 /* Pool vdev state change lock */
1827 EXPORT_SYMBOL(spa_vdev_state_enter);
1828 EXPORT_SYMBOL(spa_vdev_state_exit);
1829
1830 /* Accessor functions */
1831 EXPORT_SYMBOL(spa_shutting_down);
1832 EXPORT_SYMBOL(spa_get_dsl);
1833 EXPORT_SYMBOL(spa_get_rootblkptr);
1834 EXPORT_SYMBOL(spa_set_rootblkptr);
1835 EXPORT_SYMBOL(spa_altroot);
1836 EXPORT_SYMBOL(spa_sync_pass);
1837 EXPORT_SYMBOL(spa_name);
1838 EXPORT_SYMBOL(spa_guid);
1839 EXPORT_SYMBOL(spa_last_synced_txg);
1840 EXPORT_SYMBOL(spa_first_txg);
1841 EXPORT_SYMBOL(spa_syncing_txg);
1842 EXPORT_SYMBOL(spa_version);
1843 EXPORT_SYMBOL(spa_state);
1844 EXPORT_SYMBOL(spa_load_state);
1845 EXPORT_SYMBOL(spa_freeze_txg);
1846 EXPORT_SYMBOL(spa_get_asize);
1847 EXPORT_SYMBOL(spa_get_dspace);
1848 EXPORT_SYMBOL(spa_update_dspace);
1849 EXPORT_SYMBOL(spa_deflate);
1850 EXPORT_SYMBOL(spa_normal_class);
1851 EXPORT_SYMBOL(spa_log_class);
1852 EXPORT_SYMBOL(spa_max_replication);
1853 EXPORT_SYMBOL(spa_prev_software_version);
1854 EXPORT_SYMBOL(spa_get_failmode);
1855 EXPORT_SYMBOL(spa_suspended);
1856 EXPORT_SYMBOL(spa_bootfs);
1857 EXPORT_SYMBOL(spa_delegation);
1858 EXPORT_SYMBOL(spa_meta_objset);
1859
1860 /* Miscellaneous support routines */
1861 EXPORT_SYMBOL(spa_rename);
1862 EXPORT_SYMBOL(spa_guid_exists);
1863 EXPORT_SYMBOL(spa_strdup);
1864 EXPORT_SYMBOL(spa_strfree);
1865 EXPORT_SYMBOL(spa_get_random);
1866 EXPORT_SYMBOL(spa_generate_guid);
1867 EXPORT_SYMBOL(sprintf_blkptr);
1868 EXPORT_SYMBOL(spa_freeze);
1869 EXPORT_SYMBOL(spa_upgrade);
1870 EXPORT_SYMBOL(spa_evict_all);
1871 EXPORT_SYMBOL(spa_lookup_by_guid);
1872 EXPORT_SYMBOL(spa_has_spare);
1873 EXPORT_SYMBOL(dva_get_dsize_sync);
1874 EXPORT_SYMBOL(bp_get_dsize_sync);
1875 EXPORT_SYMBOL(bp_get_dsize);
1876 EXPORT_SYMBOL(spa_has_slogs);
1877 EXPORT_SYMBOL(spa_is_root);
1878 EXPORT_SYMBOL(spa_writeable);
1879 EXPORT_SYMBOL(spa_mode);
1880
1881 EXPORT_SYMBOL(spa_namespace_lock);
1882
1883 module_param(zfs_deadman_synctime, ulong, 0644);
1884 MODULE_PARM_DESC(zfs_deadman_synctime,"Expire in units of zfs_txg_synctime_ms");
1885
1886 module_param(zfs_deadman_enabled, int, 0644);
1887 MODULE_PARM_DESC(zfs_deadman_enabled, "Enable deadman timer");
1888 #endif