]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa_misc.c
Remove useless variable spa_active_count
[mirror_zfs.git] / module / zfs / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/zio.h>
30 #include <sys/zio_checksum.h>
31 #include <sys/zio_compress.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/zap.h>
35 #include <sys/zil.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/vdev_file.h>
38 #include <sys/metaslab.h>
39 #include <sys/uberblock_impl.h>
40 #include <sys/txg.h>
41 #include <sys/avl.h>
42 #include <sys/unique.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/fm/util.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/arc.h>
51 #include <sys/ddt.h>
52 #include <sys/kstat.h>
53 #include "zfs_prop.h"
54 #include "zfeature_common.h"
55
56 /*
57 * SPA locking
58 *
59 * There are four basic locks for managing spa_t structures:
60 *
61 * spa_namespace_lock (global mutex)
62 *
63 * This lock must be acquired to do any of the following:
64 *
65 * - Lookup a spa_t by name
66 * - Add or remove a spa_t from the namespace
67 * - Increase spa_refcount from non-zero
68 * - Check if spa_refcount is zero
69 * - Rename a spa_t
70 * - add/remove/attach/detach devices
71 * - Held for the duration of create/destroy/import/export
72 *
73 * It does not need to handle recursion. A create or destroy may
74 * reference objects (files or zvols) in other pools, but by
75 * definition they must have an existing reference, and will never need
76 * to lookup a spa_t by name.
77 *
78 * spa_refcount (per-spa refcount_t protected by mutex)
79 *
80 * This reference count keep track of any active users of the spa_t. The
81 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
82 * the refcount is never really 'zero' - opening a pool implicitly keeps
83 * some references in the DMU. Internally we check against spa_minref, but
84 * present the image of a zero/non-zero value to consumers.
85 *
86 * spa_config_lock[] (per-spa array of rwlocks)
87 *
88 * This protects the spa_t from config changes, and must be held in
89 * the following circumstances:
90 *
91 * - RW_READER to perform I/O to the spa
92 * - RW_WRITER to change the vdev config
93 *
94 * The locking order is fairly straightforward:
95 *
96 * spa_namespace_lock -> spa_refcount
97 *
98 * The namespace lock must be acquired to increase the refcount from 0
99 * or to check if it is zero.
100 *
101 * spa_refcount -> spa_config_lock[]
102 *
103 * There must be at least one valid reference on the spa_t to acquire
104 * the config lock.
105 *
106 * spa_namespace_lock -> spa_config_lock[]
107 *
108 * The namespace lock must always be taken before the config lock.
109 *
110 *
111 * The spa_namespace_lock can be acquired directly and is globally visible.
112 *
113 * The namespace is manipulated using the following functions, all of which
114 * require the spa_namespace_lock to be held.
115 *
116 * spa_lookup() Lookup a spa_t by name.
117 *
118 * spa_add() Create a new spa_t in the namespace.
119 *
120 * spa_remove() Remove a spa_t from the namespace. This also
121 * frees up any memory associated with the spa_t.
122 *
123 * spa_next() Returns the next spa_t in the system, or the
124 * first if NULL is passed.
125 *
126 * spa_evict_all() Shutdown and remove all spa_t structures in
127 * the system.
128 *
129 * spa_guid_exists() Determine whether a pool/device guid exists.
130 *
131 * The spa_refcount is manipulated using the following functions:
132 *
133 * spa_open_ref() Adds a reference to the given spa_t. Must be
134 * called with spa_namespace_lock held if the
135 * refcount is currently zero.
136 *
137 * spa_close() Remove a reference from the spa_t. This will
138 * not free the spa_t or remove it from the
139 * namespace. No locking is required.
140 *
141 * spa_refcount_zero() Returns true if the refcount is currently
142 * zero. Must be called with spa_namespace_lock
143 * held.
144 *
145 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
146 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
147 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
148 *
149 * To read the configuration, it suffices to hold one of these locks as reader.
150 * To modify the configuration, you must hold all locks as writer. To modify
151 * vdev state without altering the vdev tree's topology (e.g. online/offline),
152 * you must hold SCL_STATE and SCL_ZIO as writer.
153 *
154 * We use these distinct config locks to avoid recursive lock entry.
155 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
156 * block allocations (SCL_ALLOC), which may require reading space maps
157 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
158 *
159 * The spa config locks cannot be normal rwlocks because we need the
160 * ability to hand off ownership. For example, SCL_ZIO is acquired
161 * by the issuing thread and later released by an interrupt thread.
162 * They do, however, obey the usual write-wanted semantics to prevent
163 * writer (i.e. system administrator) starvation.
164 *
165 * The lock acquisition rules are as follows:
166 *
167 * SCL_CONFIG
168 * Protects changes to the vdev tree topology, such as vdev
169 * add/remove/attach/detach. Protects the dirty config list
170 * (spa_config_dirty_list) and the set of spares and l2arc devices.
171 *
172 * SCL_STATE
173 * Protects changes to pool state and vdev state, such as vdev
174 * online/offline/fault/degrade/clear. Protects the dirty state list
175 * (spa_state_dirty_list) and global pool state (spa_state).
176 *
177 * SCL_ALLOC
178 * Protects changes to metaslab groups and classes.
179 * Held as reader by metaslab_alloc() and metaslab_claim().
180 *
181 * SCL_ZIO
182 * Held by bp-level zios (those which have no io_vd upon entry)
183 * to prevent changes to the vdev tree. The bp-level zio implicitly
184 * protects all of its vdev child zios, which do not hold SCL_ZIO.
185 *
186 * SCL_FREE
187 * Protects changes to metaslab groups and classes.
188 * Held as reader by metaslab_free(). SCL_FREE is distinct from
189 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
190 * blocks in zio_done() while another i/o that holds either
191 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
192 *
193 * SCL_VDEV
194 * Held as reader to prevent changes to the vdev tree during trivial
195 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
196 * other locks, and lower than all of them, to ensure that it's safe
197 * to acquire regardless of caller context.
198 *
199 * In addition, the following rules apply:
200 *
201 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
202 * The lock ordering is SCL_CONFIG > spa_props_lock.
203 *
204 * (b) I/O operations on leaf vdevs. For any zio operation that takes
205 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
206 * or zio_write_phys() -- the caller must ensure that the config cannot
207 * cannot change in the interim, and that the vdev cannot be reopened.
208 * SCL_STATE as reader suffices for both.
209 *
210 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
211 *
212 * spa_vdev_enter() Acquire the namespace lock and the config lock
213 * for writing.
214 *
215 * spa_vdev_exit() Release the config lock, wait for all I/O
216 * to complete, sync the updated configs to the
217 * cache, and release the namespace lock.
218 *
219 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
220 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
221 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
222 *
223 * spa_rename() is also implemented within this file since it requires
224 * manipulation of the namespace.
225 */
226
227 static avl_tree_t spa_namespace_avl;
228 kmutex_t spa_namespace_lock;
229 static kcondvar_t spa_namespace_cv;
230 int spa_max_replication_override = SPA_DVAS_PER_BP;
231
232 static kmutex_t spa_spare_lock;
233 static avl_tree_t spa_spare_avl;
234 static kmutex_t spa_l2cache_lock;
235 static avl_tree_t spa_l2cache_avl;
236
237 kmem_cache_t *spa_buffer_pool;
238 int spa_mode_global;
239
240 #ifdef ZFS_DEBUG
241 /* Everything except dprintf and spa is on by default in debug builds */
242 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
243 #else
244 int zfs_flags = 0;
245 #endif
246
247 /*
248 * zfs_recover can be set to nonzero to attempt to recover from
249 * otherwise-fatal errors, typically caused by on-disk corruption. When
250 * set, calls to zfs_panic_recover() will turn into warning messages.
251 * This should only be used as a last resort, as it typically results
252 * in leaked space, or worse.
253 */
254 int zfs_recover = B_FALSE;
255
256 /*
257 * If destroy encounters an EIO while reading metadata (e.g. indirect
258 * blocks), space referenced by the missing metadata can not be freed.
259 * Normally this causes the background destroy to become "stalled", as
260 * it is unable to make forward progress. While in this stalled state,
261 * all remaining space to free from the error-encountering filesystem is
262 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
263 * permanently leak the space from indirect blocks that can not be read,
264 * and continue to free everything else that it can.
265 *
266 * The default, "stalling" behavior is useful if the storage partially
267 * fails (i.e. some but not all i/os fail), and then later recovers. In
268 * this case, we will be able to continue pool operations while it is
269 * partially failed, and when it recovers, we can continue to free the
270 * space, with no leaks. However, note that this case is actually
271 * fairly rare.
272 *
273 * Typically pools either (a) fail completely (but perhaps temporarily,
274 * e.g. a top-level vdev going offline), or (b) have localized,
275 * permanent errors (e.g. disk returns the wrong data due to bit flip or
276 * firmware bug). In case (a), this setting does not matter because the
277 * pool will be suspended and the sync thread will not be able to make
278 * forward progress regardless. In case (b), because the error is
279 * permanent, the best we can do is leak the minimum amount of space,
280 * which is what setting this flag will do. Therefore, it is reasonable
281 * for this flag to normally be set, but we chose the more conservative
282 * approach of not setting it, so that there is no possibility of
283 * leaking space in the "partial temporary" failure case.
284 */
285 int zfs_free_leak_on_eio = B_FALSE;
286
287 /*
288 * Expiration time in milliseconds. This value has two meanings. First it is
289 * used to determine when the spa_deadman() logic should fire. By default the
290 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
291 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
292 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
293 * in a system panic.
294 */
295 unsigned long zfs_deadman_synctime_ms = 1000000ULL;
296
297 /*
298 * By default the deadman is enabled.
299 */
300 int zfs_deadman_enabled = 1;
301
302 /*
303 * The worst case is single-sector max-parity RAID-Z blocks, in which
304 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
305 * times the size; so just assume that. Add to this the fact that
306 * we can have up to 3 DVAs per bp, and one more factor of 2 because
307 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
308 * the worst case is:
309 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
310 */
311 int spa_asize_inflation = 24;
312
313 /*
314 * ==========================================================================
315 * SPA config locking
316 * ==========================================================================
317 */
318 static void
319 spa_config_lock_init(spa_t *spa)
320 {
321 int i;
322
323 for (i = 0; i < SCL_LOCKS; i++) {
324 spa_config_lock_t *scl = &spa->spa_config_lock[i];
325 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
326 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
327 refcount_create_untracked(&scl->scl_count);
328 scl->scl_writer = NULL;
329 scl->scl_write_wanted = 0;
330 }
331 }
332
333 static void
334 spa_config_lock_destroy(spa_t *spa)
335 {
336 int i;
337
338 for (i = 0; i < SCL_LOCKS; i++) {
339 spa_config_lock_t *scl = &spa->spa_config_lock[i];
340 mutex_destroy(&scl->scl_lock);
341 cv_destroy(&scl->scl_cv);
342 refcount_destroy(&scl->scl_count);
343 ASSERT(scl->scl_writer == NULL);
344 ASSERT(scl->scl_write_wanted == 0);
345 }
346 }
347
348 int
349 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
350 {
351 int i;
352
353 for (i = 0; i < SCL_LOCKS; i++) {
354 spa_config_lock_t *scl = &spa->spa_config_lock[i];
355 if (!(locks & (1 << i)))
356 continue;
357 mutex_enter(&scl->scl_lock);
358 if (rw == RW_READER) {
359 if (scl->scl_writer || scl->scl_write_wanted) {
360 mutex_exit(&scl->scl_lock);
361 spa_config_exit(spa, locks ^ (1 << i), tag);
362 return (0);
363 }
364 } else {
365 ASSERT(scl->scl_writer != curthread);
366 if (!refcount_is_zero(&scl->scl_count)) {
367 mutex_exit(&scl->scl_lock);
368 spa_config_exit(spa, locks ^ (1 << i), tag);
369 return (0);
370 }
371 scl->scl_writer = curthread;
372 }
373 (void) refcount_add(&scl->scl_count, tag);
374 mutex_exit(&scl->scl_lock);
375 }
376 return (1);
377 }
378
379 void
380 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
381 {
382 int wlocks_held = 0;
383 int i;
384
385 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
386
387 for (i = 0; i < SCL_LOCKS; i++) {
388 spa_config_lock_t *scl = &spa->spa_config_lock[i];
389 if (scl->scl_writer == curthread)
390 wlocks_held |= (1 << i);
391 if (!(locks & (1 << i)))
392 continue;
393 mutex_enter(&scl->scl_lock);
394 if (rw == RW_READER) {
395 while (scl->scl_writer || scl->scl_write_wanted) {
396 cv_wait(&scl->scl_cv, &scl->scl_lock);
397 }
398 } else {
399 ASSERT(scl->scl_writer != curthread);
400 while (!refcount_is_zero(&scl->scl_count)) {
401 scl->scl_write_wanted++;
402 cv_wait(&scl->scl_cv, &scl->scl_lock);
403 scl->scl_write_wanted--;
404 }
405 scl->scl_writer = curthread;
406 }
407 (void) refcount_add(&scl->scl_count, tag);
408 mutex_exit(&scl->scl_lock);
409 }
410 ASSERT(wlocks_held <= locks);
411 }
412
413 void
414 spa_config_exit(spa_t *spa, int locks, void *tag)
415 {
416 int i;
417
418 for (i = SCL_LOCKS - 1; i >= 0; i--) {
419 spa_config_lock_t *scl = &spa->spa_config_lock[i];
420 if (!(locks & (1 << i)))
421 continue;
422 mutex_enter(&scl->scl_lock);
423 ASSERT(!refcount_is_zero(&scl->scl_count));
424 if (refcount_remove(&scl->scl_count, tag) == 0) {
425 ASSERT(scl->scl_writer == NULL ||
426 scl->scl_writer == curthread);
427 scl->scl_writer = NULL; /* OK in either case */
428 cv_broadcast(&scl->scl_cv);
429 }
430 mutex_exit(&scl->scl_lock);
431 }
432 }
433
434 int
435 spa_config_held(spa_t *spa, int locks, krw_t rw)
436 {
437 int i, locks_held = 0;
438
439 for (i = 0; i < SCL_LOCKS; i++) {
440 spa_config_lock_t *scl = &spa->spa_config_lock[i];
441 if (!(locks & (1 << i)))
442 continue;
443 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
444 (rw == RW_WRITER && scl->scl_writer == curthread))
445 locks_held |= 1 << i;
446 }
447
448 return (locks_held);
449 }
450
451 /*
452 * ==========================================================================
453 * SPA namespace functions
454 * ==========================================================================
455 */
456
457 /*
458 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
459 * Returns NULL if no matching spa_t is found.
460 */
461 spa_t *
462 spa_lookup(const char *name)
463 {
464 static spa_t search; /* spa_t is large; don't allocate on stack */
465 spa_t *spa;
466 avl_index_t where;
467 char *cp;
468
469 ASSERT(MUTEX_HELD(&spa_namespace_lock));
470
471 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
472
473 /*
474 * If it's a full dataset name, figure out the pool name and
475 * just use that.
476 */
477 cp = strpbrk(search.spa_name, "/@#");
478 if (cp != NULL)
479 *cp = '\0';
480
481 spa = avl_find(&spa_namespace_avl, &search, &where);
482
483 return (spa);
484 }
485
486 /*
487 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
488 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
489 * looking for potentially hung I/Os.
490 */
491 void
492 spa_deadman(void *arg)
493 {
494 spa_t *spa = arg;
495
496 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
497 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
498 ++spa->spa_deadman_calls);
499 if (zfs_deadman_enabled)
500 vdev_deadman(spa->spa_root_vdev);
501
502 spa->spa_deadman_tqid = taskq_dispatch_delay(system_taskq,
503 spa_deadman, spa, KM_SLEEP, ddi_get_lbolt() +
504 NSEC_TO_TICK(spa->spa_deadman_synctime));
505 }
506
507 /*
508 * Create an uninitialized spa_t with the given name. Requires
509 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
510 * exist by calling spa_lookup() first.
511 */
512 spa_t *
513 spa_add(const char *name, nvlist_t *config, const char *altroot)
514 {
515 spa_t *spa;
516 spa_config_dirent_t *dp;
517 int t;
518 int i;
519
520 ASSERT(MUTEX_HELD(&spa_namespace_lock));
521
522 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
523
524 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
525 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
526 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
527 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
528 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
529 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
530 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
531 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
532 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
533 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
534
535 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
536 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
537 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
538 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
539
540 for (t = 0; t < TXG_SIZE; t++)
541 bplist_create(&spa->spa_free_bplist[t]);
542
543 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
544 spa->spa_state = POOL_STATE_UNINITIALIZED;
545 spa->spa_freeze_txg = UINT64_MAX;
546 spa->spa_final_txg = UINT64_MAX;
547 spa->spa_load_max_txg = UINT64_MAX;
548 spa->spa_proc = &p0;
549 spa->spa_proc_state = SPA_PROC_NONE;
550
551 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
552
553 refcount_create(&spa->spa_refcount);
554 spa_config_lock_init(spa);
555 spa_stats_init(spa);
556
557 avl_add(&spa_namespace_avl, spa);
558
559 /*
560 * Set the alternate root, if there is one.
561 */
562 if (altroot)
563 spa->spa_root = spa_strdup(altroot);
564
565 /*
566 * Every pool starts with the default cachefile
567 */
568 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
569 offsetof(spa_config_dirent_t, scd_link));
570
571 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
572 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
573 list_insert_head(&spa->spa_config_list, dp);
574
575 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
576 KM_SLEEP) == 0);
577
578 if (config != NULL) {
579 nvlist_t *features;
580
581 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
582 &features) == 0) {
583 VERIFY(nvlist_dup(features, &spa->spa_label_features,
584 0) == 0);
585 }
586
587 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
588 }
589
590 if (spa->spa_label_features == NULL) {
591 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
592 KM_SLEEP) == 0);
593 }
594
595 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
596
597 /*
598 * As a pool is being created, treat all features as disabled by
599 * setting SPA_FEATURE_DISABLED for all entries in the feature
600 * refcount cache.
601 */
602 for (i = 0; i < SPA_FEATURES; i++) {
603 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
604 }
605
606 return (spa);
607 }
608
609 /*
610 * Removes a spa_t from the namespace, freeing up any memory used. Requires
611 * spa_namespace_lock. This is called only after the spa_t has been closed and
612 * deactivated.
613 */
614 void
615 spa_remove(spa_t *spa)
616 {
617 spa_config_dirent_t *dp;
618 int t;
619
620 ASSERT(MUTEX_HELD(&spa_namespace_lock));
621 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
622
623 nvlist_free(spa->spa_config_splitting);
624
625 avl_remove(&spa_namespace_avl, spa);
626 cv_broadcast(&spa_namespace_cv);
627
628 if (spa->spa_root)
629 spa_strfree(spa->spa_root);
630
631 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
632 list_remove(&spa->spa_config_list, dp);
633 if (dp->scd_path != NULL)
634 spa_strfree(dp->scd_path);
635 kmem_free(dp, sizeof (spa_config_dirent_t));
636 }
637
638 list_destroy(&spa->spa_config_list);
639
640 nvlist_free(spa->spa_label_features);
641 nvlist_free(spa->spa_load_info);
642 nvlist_free(spa->spa_feat_stats);
643 spa_config_set(spa, NULL);
644
645 refcount_destroy(&spa->spa_refcount);
646
647 spa_stats_destroy(spa);
648 spa_config_lock_destroy(spa);
649
650 for (t = 0; t < TXG_SIZE; t++)
651 bplist_destroy(&spa->spa_free_bplist[t]);
652
653 cv_destroy(&spa->spa_async_cv);
654 cv_destroy(&spa->spa_proc_cv);
655 cv_destroy(&spa->spa_scrub_io_cv);
656 cv_destroy(&spa->spa_suspend_cv);
657
658 mutex_destroy(&spa->spa_async_lock);
659 mutex_destroy(&spa->spa_errlist_lock);
660 mutex_destroy(&spa->spa_errlog_lock);
661 mutex_destroy(&spa->spa_history_lock);
662 mutex_destroy(&spa->spa_proc_lock);
663 mutex_destroy(&spa->spa_props_lock);
664 mutex_destroy(&spa->spa_scrub_lock);
665 mutex_destroy(&spa->spa_suspend_lock);
666 mutex_destroy(&spa->spa_vdev_top_lock);
667 mutex_destroy(&spa->spa_feat_stats_lock);
668
669 kmem_free(spa, sizeof (spa_t));
670 }
671
672 /*
673 * Given a pool, return the next pool in the namespace, or NULL if there is
674 * none. If 'prev' is NULL, return the first pool.
675 */
676 spa_t *
677 spa_next(spa_t *prev)
678 {
679 ASSERT(MUTEX_HELD(&spa_namespace_lock));
680
681 if (prev)
682 return (AVL_NEXT(&spa_namespace_avl, prev));
683 else
684 return (avl_first(&spa_namespace_avl));
685 }
686
687 /*
688 * ==========================================================================
689 * SPA refcount functions
690 * ==========================================================================
691 */
692
693 /*
694 * Add a reference to the given spa_t. Must have at least one reference, or
695 * have the namespace lock held.
696 */
697 void
698 spa_open_ref(spa_t *spa, void *tag)
699 {
700 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
701 MUTEX_HELD(&spa_namespace_lock));
702 (void) refcount_add(&spa->spa_refcount, tag);
703 }
704
705 /*
706 * Remove a reference to the given spa_t. Must have at least one reference, or
707 * have the namespace lock held.
708 */
709 void
710 spa_close(spa_t *spa, void *tag)
711 {
712 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
713 MUTEX_HELD(&spa_namespace_lock));
714 (void) refcount_remove(&spa->spa_refcount, tag);
715 }
716
717 /*
718 * Check to see if the spa refcount is zero. Must be called with
719 * spa_namespace_lock held. We really compare against spa_minref, which is the
720 * number of references acquired when opening a pool
721 */
722 boolean_t
723 spa_refcount_zero(spa_t *spa)
724 {
725 ASSERT(MUTEX_HELD(&spa_namespace_lock));
726
727 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
728 }
729
730 /*
731 * ==========================================================================
732 * SPA spare and l2cache tracking
733 * ==========================================================================
734 */
735
736 /*
737 * Hot spares and cache devices are tracked using the same code below,
738 * for 'auxiliary' devices.
739 */
740
741 typedef struct spa_aux {
742 uint64_t aux_guid;
743 uint64_t aux_pool;
744 avl_node_t aux_avl;
745 int aux_count;
746 } spa_aux_t;
747
748 static int
749 spa_aux_compare(const void *a, const void *b)
750 {
751 const spa_aux_t *sa = a;
752 const spa_aux_t *sb = b;
753
754 if (sa->aux_guid < sb->aux_guid)
755 return (-1);
756 else if (sa->aux_guid > sb->aux_guid)
757 return (1);
758 else
759 return (0);
760 }
761
762 void
763 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
764 {
765 avl_index_t where;
766 spa_aux_t search;
767 spa_aux_t *aux;
768
769 search.aux_guid = vd->vdev_guid;
770 if ((aux = avl_find(avl, &search, &where)) != NULL) {
771 aux->aux_count++;
772 } else {
773 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
774 aux->aux_guid = vd->vdev_guid;
775 aux->aux_count = 1;
776 avl_insert(avl, aux, where);
777 }
778 }
779
780 void
781 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
782 {
783 spa_aux_t search;
784 spa_aux_t *aux;
785 avl_index_t where;
786
787 search.aux_guid = vd->vdev_guid;
788 aux = avl_find(avl, &search, &where);
789
790 ASSERT(aux != NULL);
791
792 if (--aux->aux_count == 0) {
793 avl_remove(avl, aux);
794 kmem_free(aux, sizeof (spa_aux_t));
795 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
796 aux->aux_pool = 0ULL;
797 }
798 }
799
800 boolean_t
801 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
802 {
803 spa_aux_t search, *found;
804
805 search.aux_guid = guid;
806 found = avl_find(avl, &search, NULL);
807
808 if (pool) {
809 if (found)
810 *pool = found->aux_pool;
811 else
812 *pool = 0ULL;
813 }
814
815 if (refcnt) {
816 if (found)
817 *refcnt = found->aux_count;
818 else
819 *refcnt = 0;
820 }
821
822 return (found != NULL);
823 }
824
825 void
826 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
827 {
828 spa_aux_t search, *found;
829 avl_index_t where;
830
831 search.aux_guid = vd->vdev_guid;
832 found = avl_find(avl, &search, &where);
833 ASSERT(found != NULL);
834 ASSERT(found->aux_pool == 0ULL);
835
836 found->aux_pool = spa_guid(vd->vdev_spa);
837 }
838
839 /*
840 * Spares are tracked globally due to the following constraints:
841 *
842 * - A spare may be part of multiple pools.
843 * - A spare may be added to a pool even if it's actively in use within
844 * another pool.
845 * - A spare in use in any pool can only be the source of a replacement if
846 * the target is a spare in the same pool.
847 *
848 * We keep track of all spares on the system through the use of a reference
849 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
850 * spare, then we bump the reference count in the AVL tree. In addition, we set
851 * the 'vdev_isspare' member to indicate that the device is a spare (active or
852 * inactive). When a spare is made active (used to replace a device in the
853 * pool), we also keep track of which pool its been made a part of.
854 *
855 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
856 * called under the spa_namespace lock as part of vdev reconfiguration. The
857 * separate spare lock exists for the status query path, which does not need to
858 * be completely consistent with respect to other vdev configuration changes.
859 */
860
861 static int
862 spa_spare_compare(const void *a, const void *b)
863 {
864 return (spa_aux_compare(a, b));
865 }
866
867 void
868 spa_spare_add(vdev_t *vd)
869 {
870 mutex_enter(&spa_spare_lock);
871 ASSERT(!vd->vdev_isspare);
872 spa_aux_add(vd, &spa_spare_avl);
873 vd->vdev_isspare = B_TRUE;
874 mutex_exit(&spa_spare_lock);
875 }
876
877 void
878 spa_spare_remove(vdev_t *vd)
879 {
880 mutex_enter(&spa_spare_lock);
881 ASSERT(vd->vdev_isspare);
882 spa_aux_remove(vd, &spa_spare_avl);
883 vd->vdev_isspare = B_FALSE;
884 mutex_exit(&spa_spare_lock);
885 }
886
887 boolean_t
888 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
889 {
890 boolean_t found;
891
892 mutex_enter(&spa_spare_lock);
893 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
894 mutex_exit(&spa_spare_lock);
895
896 return (found);
897 }
898
899 void
900 spa_spare_activate(vdev_t *vd)
901 {
902 mutex_enter(&spa_spare_lock);
903 ASSERT(vd->vdev_isspare);
904 spa_aux_activate(vd, &spa_spare_avl);
905 mutex_exit(&spa_spare_lock);
906 }
907
908 /*
909 * Level 2 ARC devices are tracked globally for the same reasons as spares.
910 * Cache devices currently only support one pool per cache device, and so
911 * for these devices the aux reference count is currently unused beyond 1.
912 */
913
914 static int
915 spa_l2cache_compare(const void *a, const void *b)
916 {
917 return (spa_aux_compare(a, b));
918 }
919
920 void
921 spa_l2cache_add(vdev_t *vd)
922 {
923 mutex_enter(&spa_l2cache_lock);
924 ASSERT(!vd->vdev_isl2cache);
925 spa_aux_add(vd, &spa_l2cache_avl);
926 vd->vdev_isl2cache = B_TRUE;
927 mutex_exit(&spa_l2cache_lock);
928 }
929
930 void
931 spa_l2cache_remove(vdev_t *vd)
932 {
933 mutex_enter(&spa_l2cache_lock);
934 ASSERT(vd->vdev_isl2cache);
935 spa_aux_remove(vd, &spa_l2cache_avl);
936 vd->vdev_isl2cache = B_FALSE;
937 mutex_exit(&spa_l2cache_lock);
938 }
939
940 boolean_t
941 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
942 {
943 boolean_t found;
944
945 mutex_enter(&spa_l2cache_lock);
946 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
947 mutex_exit(&spa_l2cache_lock);
948
949 return (found);
950 }
951
952 void
953 spa_l2cache_activate(vdev_t *vd)
954 {
955 mutex_enter(&spa_l2cache_lock);
956 ASSERT(vd->vdev_isl2cache);
957 spa_aux_activate(vd, &spa_l2cache_avl);
958 mutex_exit(&spa_l2cache_lock);
959 }
960
961 /*
962 * ==========================================================================
963 * SPA vdev locking
964 * ==========================================================================
965 */
966
967 /*
968 * Lock the given spa_t for the purpose of adding or removing a vdev.
969 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
970 * It returns the next transaction group for the spa_t.
971 */
972 uint64_t
973 spa_vdev_enter(spa_t *spa)
974 {
975 mutex_enter(&spa->spa_vdev_top_lock);
976 mutex_enter(&spa_namespace_lock);
977 return (spa_vdev_config_enter(spa));
978 }
979
980 /*
981 * Internal implementation for spa_vdev_enter(). Used when a vdev
982 * operation requires multiple syncs (i.e. removing a device) while
983 * keeping the spa_namespace_lock held.
984 */
985 uint64_t
986 spa_vdev_config_enter(spa_t *spa)
987 {
988 ASSERT(MUTEX_HELD(&spa_namespace_lock));
989
990 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
991
992 return (spa_last_synced_txg(spa) + 1);
993 }
994
995 /*
996 * Used in combination with spa_vdev_config_enter() to allow the syncing
997 * of multiple transactions without releasing the spa_namespace_lock.
998 */
999 void
1000 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1001 {
1002 int config_changed = B_FALSE;
1003
1004 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1005 ASSERT(txg > spa_last_synced_txg(spa));
1006
1007 spa->spa_pending_vdev = NULL;
1008
1009 /*
1010 * Reassess the DTLs.
1011 */
1012 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1013
1014 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1015 config_changed = B_TRUE;
1016 spa->spa_config_generation++;
1017 }
1018
1019 /*
1020 * Verify the metaslab classes.
1021 */
1022 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1023 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1024
1025 spa_config_exit(spa, SCL_ALL, spa);
1026
1027 /*
1028 * Panic the system if the specified tag requires it. This
1029 * is useful for ensuring that configurations are updated
1030 * transactionally.
1031 */
1032 if (zio_injection_enabled)
1033 zio_handle_panic_injection(spa, tag, 0);
1034
1035 /*
1036 * Note: this txg_wait_synced() is important because it ensures
1037 * that there won't be more than one config change per txg.
1038 * This allows us to use the txg as the generation number.
1039 */
1040 if (error == 0)
1041 txg_wait_synced(spa->spa_dsl_pool, txg);
1042
1043 if (vd != NULL) {
1044 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1045 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1046 vdev_free(vd);
1047 spa_config_exit(spa, SCL_ALL, spa);
1048 }
1049
1050 /*
1051 * If the config changed, update the config cache.
1052 */
1053 if (config_changed)
1054 spa_config_sync(spa, B_FALSE, B_TRUE);
1055 }
1056
1057 /*
1058 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1059 * locking of spa_vdev_enter(), we also want make sure the transactions have
1060 * synced to disk, and then update the global configuration cache with the new
1061 * information.
1062 */
1063 int
1064 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1065 {
1066 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1067 mutex_exit(&spa_namespace_lock);
1068 mutex_exit(&spa->spa_vdev_top_lock);
1069
1070 return (error);
1071 }
1072
1073 /*
1074 * Lock the given spa_t for the purpose of changing vdev state.
1075 */
1076 void
1077 spa_vdev_state_enter(spa_t *spa, int oplocks)
1078 {
1079 int locks = SCL_STATE_ALL | oplocks;
1080
1081 /*
1082 * Root pools may need to read of the underlying devfs filesystem
1083 * when opening up a vdev. Unfortunately if we're holding the
1084 * SCL_ZIO lock it will result in a deadlock when we try to issue
1085 * the read from the root filesystem. Instead we "prefetch"
1086 * the associated vnodes that we need prior to opening the
1087 * underlying devices and cache them so that we can prevent
1088 * any I/O when we are doing the actual open.
1089 */
1090 if (spa_is_root(spa)) {
1091 int low = locks & ~(SCL_ZIO - 1);
1092 int high = locks & ~low;
1093
1094 spa_config_enter(spa, high, spa, RW_WRITER);
1095 vdev_hold(spa->spa_root_vdev);
1096 spa_config_enter(spa, low, spa, RW_WRITER);
1097 } else {
1098 spa_config_enter(spa, locks, spa, RW_WRITER);
1099 }
1100 spa->spa_vdev_locks = locks;
1101 }
1102
1103 int
1104 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1105 {
1106 boolean_t config_changed = B_FALSE;
1107
1108 if (vd != NULL || error == 0)
1109 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1110 0, 0, B_FALSE);
1111
1112 if (vd != NULL) {
1113 vdev_state_dirty(vd->vdev_top);
1114 config_changed = B_TRUE;
1115 spa->spa_config_generation++;
1116 }
1117
1118 if (spa_is_root(spa))
1119 vdev_rele(spa->spa_root_vdev);
1120
1121 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1122 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1123
1124 /*
1125 * If anything changed, wait for it to sync. This ensures that,
1126 * from the system administrator's perspective, zpool(1M) commands
1127 * are synchronous. This is important for things like zpool offline:
1128 * when the command completes, you expect no further I/O from ZFS.
1129 */
1130 if (vd != NULL)
1131 txg_wait_synced(spa->spa_dsl_pool, 0);
1132
1133 /*
1134 * If the config changed, update the config cache.
1135 */
1136 if (config_changed) {
1137 mutex_enter(&spa_namespace_lock);
1138 spa_config_sync(spa, B_FALSE, B_TRUE);
1139 mutex_exit(&spa_namespace_lock);
1140 }
1141
1142 return (error);
1143 }
1144
1145 /*
1146 * ==========================================================================
1147 * Miscellaneous functions
1148 * ==========================================================================
1149 */
1150
1151 void
1152 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1153 {
1154 if (!nvlist_exists(spa->spa_label_features, feature)) {
1155 fnvlist_add_boolean(spa->spa_label_features, feature);
1156 /*
1157 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1158 * dirty the vdev config because lock SCL_CONFIG is not held.
1159 * Thankfully, in this case we don't need to dirty the config
1160 * because it will be written out anyway when we finish
1161 * creating the pool.
1162 */
1163 if (tx->tx_txg != TXG_INITIAL)
1164 vdev_config_dirty(spa->spa_root_vdev);
1165 }
1166 }
1167
1168 void
1169 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1170 {
1171 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1172 vdev_config_dirty(spa->spa_root_vdev);
1173 }
1174
1175 /*
1176 * Rename a spa_t.
1177 */
1178 int
1179 spa_rename(const char *name, const char *newname)
1180 {
1181 spa_t *spa;
1182 int err;
1183
1184 /*
1185 * Lookup the spa_t and grab the config lock for writing. We need to
1186 * actually open the pool so that we can sync out the necessary labels.
1187 * It's OK to call spa_open() with the namespace lock held because we
1188 * allow recursive calls for other reasons.
1189 */
1190 mutex_enter(&spa_namespace_lock);
1191 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1192 mutex_exit(&spa_namespace_lock);
1193 return (err);
1194 }
1195
1196 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1197
1198 avl_remove(&spa_namespace_avl, spa);
1199 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1200 avl_add(&spa_namespace_avl, spa);
1201
1202 /*
1203 * Sync all labels to disk with the new names by marking the root vdev
1204 * dirty and waiting for it to sync. It will pick up the new pool name
1205 * during the sync.
1206 */
1207 vdev_config_dirty(spa->spa_root_vdev);
1208
1209 spa_config_exit(spa, SCL_ALL, FTAG);
1210
1211 txg_wait_synced(spa->spa_dsl_pool, 0);
1212
1213 /*
1214 * Sync the updated config cache.
1215 */
1216 spa_config_sync(spa, B_FALSE, B_TRUE);
1217
1218 spa_close(spa, FTAG);
1219
1220 mutex_exit(&spa_namespace_lock);
1221
1222 return (0);
1223 }
1224
1225 /*
1226 * Return the spa_t associated with given pool_guid, if it exists. If
1227 * device_guid is non-zero, determine whether the pool exists *and* contains
1228 * a device with the specified device_guid.
1229 */
1230 spa_t *
1231 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1232 {
1233 spa_t *spa;
1234 avl_tree_t *t = &spa_namespace_avl;
1235
1236 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1237
1238 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1239 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1240 continue;
1241 if (spa->spa_root_vdev == NULL)
1242 continue;
1243 if (spa_guid(spa) == pool_guid) {
1244 if (device_guid == 0)
1245 break;
1246
1247 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1248 device_guid) != NULL)
1249 break;
1250
1251 /*
1252 * Check any devices we may be in the process of adding.
1253 */
1254 if (spa->spa_pending_vdev) {
1255 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1256 device_guid) != NULL)
1257 break;
1258 }
1259 }
1260 }
1261
1262 return (spa);
1263 }
1264
1265 /*
1266 * Determine whether a pool with the given pool_guid exists.
1267 */
1268 boolean_t
1269 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1270 {
1271 return (spa_by_guid(pool_guid, device_guid) != NULL);
1272 }
1273
1274 char *
1275 spa_strdup(const char *s)
1276 {
1277 size_t len;
1278 char *new;
1279
1280 len = strlen(s);
1281 new = kmem_alloc(len + 1, KM_SLEEP);
1282 bcopy(s, new, len);
1283 new[len] = '\0';
1284
1285 return (new);
1286 }
1287
1288 void
1289 spa_strfree(char *s)
1290 {
1291 kmem_free(s, strlen(s) + 1);
1292 }
1293
1294 uint64_t
1295 spa_get_random(uint64_t range)
1296 {
1297 uint64_t r;
1298
1299 ASSERT(range != 0);
1300
1301 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1302
1303 return (r % range);
1304 }
1305
1306 uint64_t
1307 spa_generate_guid(spa_t *spa)
1308 {
1309 uint64_t guid = spa_get_random(-1ULL);
1310
1311 if (spa != NULL) {
1312 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1313 guid = spa_get_random(-1ULL);
1314 } else {
1315 while (guid == 0 || spa_guid_exists(guid, 0))
1316 guid = spa_get_random(-1ULL);
1317 }
1318
1319 return (guid);
1320 }
1321
1322 void
1323 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1324 {
1325 char type[256];
1326 char *checksum = NULL;
1327 char *compress = NULL;
1328
1329 if (bp != NULL) {
1330 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1331 dmu_object_byteswap_t bswap =
1332 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1333 (void) snprintf(type, sizeof (type), "bswap %s %s",
1334 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1335 "metadata" : "data",
1336 dmu_ot_byteswap[bswap].ob_name);
1337 } else {
1338 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1339 sizeof (type));
1340 }
1341 if (!BP_IS_EMBEDDED(bp)) {
1342 checksum =
1343 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1344 }
1345 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1346 }
1347
1348 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1349 compress);
1350 }
1351
1352 void
1353 spa_freeze(spa_t *spa)
1354 {
1355 uint64_t freeze_txg = 0;
1356
1357 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1358 if (spa->spa_freeze_txg == UINT64_MAX) {
1359 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1360 spa->spa_freeze_txg = freeze_txg;
1361 }
1362 spa_config_exit(spa, SCL_ALL, FTAG);
1363 if (freeze_txg != 0)
1364 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1365 }
1366
1367 void
1368 zfs_panic_recover(const char *fmt, ...)
1369 {
1370 va_list adx;
1371
1372 va_start(adx, fmt);
1373 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1374 va_end(adx);
1375 }
1376
1377 /*
1378 * This is a stripped-down version of strtoull, suitable only for converting
1379 * lowercase hexadecimal numbers that don't overflow.
1380 */
1381 uint64_t
1382 strtonum(const char *str, char **nptr)
1383 {
1384 uint64_t val = 0;
1385 char c;
1386 int digit;
1387
1388 while ((c = *str) != '\0') {
1389 if (c >= '0' && c <= '9')
1390 digit = c - '0';
1391 else if (c >= 'a' && c <= 'f')
1392 digit = 10 + c - 'a';
1393 else
1394 break;
1395
1396 val *= 16;
1397 val += digit;
1398
1399 str++;
1400 }
1401
1402 if (nptr)
1403 *nptr = (char *)str;
1404
1405 return (val);
1406 }
1407
1408 /*
1409 * ==========================================================================
1410 * Accessor functions
1411 * ==========================================================================
1412 */
1413
1414 boolean_t
1415 spa_shutting_down(spa_t *spa)
1416 {
1417 return (spa->spa_async_suspended);
1418 }
1419
1420 dsl_pool_t *
1421 spa_get_dsl(spa_t *spa)
1422 {
1423 return (spa->spa_dsl_pool);
1424 }
1425
1426 boolean_t
1427 spa_is_initializing(spa_t *spa)
1428 {
1429 return (spa->spa_is_initializing);
1430 }
1431
1432 blkptr_t *
1433 spa_get_rootblkptr(spa_t *spa)
1434 {
1435 return (&spa->spa_ubsync.ub_rootbp);
1436 }
1437
1438 void
1439 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1440 {
1441 spa->spa_uberblock.ub_rootbp = *bp;
1442 }
1443
1444 void
1445 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1446 {
1447 if (spa->spa_root == NULL)
1448 buf[0] = '\0';
1449 else
1450 (void) strncpy(buf, spa->spa_root, buflen);
1451 }
1452
1453 int
1454 spa_sync_pass(spa_t *spa)
1455 {
1456 return (spa->spa_sync_pass);
1457 }
1458
1459 char *
1460 spa_name(spa_t *spa)
1461 {
1462 return (spa->spa_name);
1463 }
1464
1465 uint64_t
1466 spa_guid(spa_t *spa)
1467 {
1468 dsl_pool_t *dp = spa_get_dsl(spa);
1469 uint64_t guid;
1470
1471 /*
1472 * If we fail to parse the config during spa_load(), we can go through
1473 * the error path (which posts an ereport) and end up here with no root
1474 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1475 * this case.
1476 */
1477 if (spa->spa_root_vdev == NULL)
1478 return (spa->spa_config_guid);
1479
1480 guid = spa->spa_last_synced_guid != 0 ?
1481 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1482
1483 /*
1484 * Return the most recently synced out guid unless we're
1485 * in syncing context.
1486 */
1487 if (dp && dsl_pool_sync_context(dp))
1488 return (spa->spa_root_vdev->vdev_guid);
1489 else
1490 return (guid);
1491 }
1492
1493 uint64_t
1494 spa_load_guid(spa_t *spa)
1495 {
1496 /*
1497 * This is a GUID that exists solely as a reference for the
1498 * purposes of the arc. It is generated at load time, and
1499 * is never written to persistent storage.
1500 */
1501 return (spa->spa_load_guid);
1502 }
1503
1504 uint64_t
1505 spa_last_synced_txg(spa_t *spa)
1506 {
1507 return (spa->spa_ubsync.ub_txg);
1508 }
1509
1510 uint64_t
1511 spa_first_txg(spa_t *spa)
1512 {
1513 return (spa->spa_first_txg);
1514 }
1515
1516 uint64_t
1517 spa_syncing_txg(spa_t *spa)
1518 {
1519 return (spa->spa_syncing_txg);
1520 }
1521
1522 pool_state_t
1523 spa_state(spa_t *spa)
1524 {
1525 return (spa->spa_state);
1526 }
1527
1528 spa_load_state_t
1529 spa_load_state(spa_t *spa)
1530 {
1531 return (spa->spa_load_state);
1532 }
1533
1534 uint64_t
1535 spa_freeze_txg(spa_t *spa)
1536 {
1537 return (spa->spa_freeze_txg);
1538 }
1539
1540 /* ARGSUSED */
1541 uint64_t
1542 spa_get_asize(spa_t *spa, uint64_t lsize)
1543 {
1544 return (lsize * spa_asize_inflation);
1545 }
1546
1547 uint64_t
1548 spa_get_dspace(spa_t *spa)
1549 {
1550 return (spa->spa_dspace);
1551 }
1552
1553 void
1554 spa_update_dspace(spa_t *spa)
1555 {
1556 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1557 ddt_get_dedup_dspace(spa);
1558 }
1559
1560 /*
1561 * Return the failure mode that has been set to this pool. The default
1562 * behavior will be to block all I/Os when a complete failure occurs.
1563 */
1564 uint8_t
1565 spa_get_failmode(spa_t *spa)
1566 {
1567 return (spa->spa_failmode);
1568 }
1569
1570 boolean_t
1571 spa_suspended(spa_t *spa)
1572 {
1573 return (spa->spa_suspended);
1574 }
1575
1576 uint64_t
1577 spa_version(spa_t *spa)
1578 {
1579 return (spa->spa_ubsync.ub_version);
1580 }
1581
1582 boolean_t
1583 spa_deflate(spa_t *spa)
1584 {
1585 return (spa->spa_deflate);
1586 }
1587
1588 metaslab_class_t *
1589 spa_normal_class(spa_t *spa)
1590 {
1591 return (spa->spa_normal_class);
1592 }
1593
1594 metaslab_class_t *
1595 spa_log_class(spa_t *spa)
1596 {
1597 return (spa->spa_log_class);
1598 }
1599
1600 int
1601 spa_max_replication(spa_t *spa)
1602 {
1603 /*
1604 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1605 * handle BPs with more than one DVA allocated. Set our max
1606 * replication level accordingly.
1607 */
1608 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1609 return (1);
1610 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1611 }
1612
1613 int
1614 spa_prev_software_version(spa_t *spa)
1615 {
1616 return (spa->spa_prev_software_version);
1617 }
1618
1619 uint64_t
1620 spa_deadman_synctime(spa_t *spa)
1621 {
1622 return (spa->spa_deadman_synctime);
1623 }
1624
1625 uint64_t
1626 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1627 {
1628 uint64_t asize = DVA_GET_ASIZE(dva);
1629 uint64_t dsize = asize;
1630
1631 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1632
1633 if (asize != 0 && spa->spa_deflate) {
1634 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1635 if (vd != NULL)
1636 dsize = (asize >> SPA_MINBLOCKSHIFT) *
1637 vd->vdev_deflate_ratio;
1638 }
1639
1640 return (dsize);
1641 }
1642
1643 uint64_t
1644 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1645 {
1646 uint64_t dsize = 0;
1647 int d;
1648
1649 for (d = 0; d < BP_GET_NDVAS(bp); d++)
1650 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1651
1652 return (dsize);
1653 }
1654
1655 uint64_t
1656 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1657 {
1658 uint64_t dsize = 0;
1659 int d;
1660
1661 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1662
1663 for (d = 0; d < BP_GET_NDVAS(bp); d++)
1664 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1665
1666 spa_config_exit(spa, SCL_VDEV, FTAG);
1667
1668 return (dsize);
1669 }
1670
1671 /*
1672 * ==========================================================================
1673 * Initialization and Termination
1674 * ==========================================================================
1675 */
1676
1677 static int
1678 spa_name_compare(const void *a1, const void *a2)
1679 {
1680 const spa_t *s1 = a1;
1681 const spa_t *s2 = a2;
1682 int s;
1683
1684 s = strcmp(s1->spa_name, s2->spa_name);
1685 if (s > 0)
1686 return (1);
1687 if (s < 0)
1688 return (-1);
1689 return (0);
1690 }
1691
1692 void
1693 spa_boot_init(void)
1694 {
1695 spa_config_load();
1696 }
1697
1698 void
1699 spa_init(int mode)
1700 {
1701 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1702 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1703 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1704 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1705
1706 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1707 offsetof(spa_t, spa_avl));
1708
1709 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1710 offsetof(spa_aux_t, aux_avl));
1711
1712 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1713 offsetof(spa_aux_t, aux_avl));
1714
1715 spa_mode_global = mode;
1716
1717 #ifndef _KERNEL
1718 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1719 struct sigaction sa;
1720
1721 sa.sa_flags = SA_SIGINFO;
1722 sigemptyset(&sa.sa_mask);
1723 sa.sa_sigaction = arc_buf_sigsegv;
1724
1725 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
1726 perror("could not enable watchpoints: "
1727 "sigaction(SIGSEGV, ...) = ");
1728 } else {
1729 arc_watch = B_TRUE;
1730 }
1731 }
1732 #endif
1733
1734 fm_init();
1735 refcount_init();
1736 unique_init();
1737 range_tree_init();
1738 ddt_init();
1739 zio_init();
1740 dmu_init();
1741 zil_init();
1742 vdev_cache_stat_init();
1743 vdev_file_init();
1744 zfs_prop_init();
1745 zpool_prop_init();
1746 zpool_feature_init();
1747 spa_config_load();
1748 l2arc_start();
1749 }
1750
1751 void
1752 spa_fini(void)
1753 {
1754 l2arc_stop();
1755
1756 spa_evict_all();
1757
1758 vdev_file_fini();
1759 vdev_cache_stat_fini();
1760 zil_fini();
1761 dmu_fini();
1762 zio_fini();
1763 ddt_fini();
1764 range_tree_fini();
1765 unique_fini();
1766 refcount_fini();
1767 fm_fini();
1768
1769 avl_destroy(&spa_namespace_avl);
1770 avl_destroy(&spa_spare_avl);
1771 avl_destroy(&spa_l2cache_avl);
1772
1773 cv_destroy(&spa_namespace_cv);
1774 mutex_destroy(&spa_namespace_lock);
1775 mutex_destroy(&spa_spare_lock);
1776 mutex_destroy(&spa_l2cache_lock);
1777 }
1778
1779 /*
1780 * Return whether this pool has slogs. No locking needed.
1781 * It's not a problem if the wrong answer is returned as it's only for
1782 * performance and not correctness
1783 */
1784 boolean_t
1785 spa_has_slogs(spa_t *spa)
1786 {
1787 return (spa->spa_log_class->mc_rotor != NULL);
1788 }
1789
1790 spa_log_state_t
1791 spa_get_log_state(spa_t *spa)
1792 {
1793 return (spa->spa_log_state);
1794 }
1795
1796 void
1797 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1798 {
1799 spa->spa_log_state = state;
1800 }
1801
1802 boolean_t
1803 spa_is_root(spa_t *spa)
1804 {
1805 return (spa->spa_is_root);
1806 }
1807
1808 boolean_t
1809 spa_writeable(spa_t *spa)
1810 {
1811 return (!!(spa->spa_mode & FWRITE));
1812 }
1813
1814 /*
1815 * Returns true if there is a pending sync task in any of the current
1816 * syncing txg, the current quiescing txg, or the current open txg.
1817 */
1818 boolean_t
1819 spa_has_pending_synctask(spa_t *spa)
1820 {
1821 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
1822 }
1823
1824 int
1825 spa_mode(spa_t *spa)
1826 {
1827 return (spa->spa_mode);
1828 }
1829
1830 uint64_t
1831 spa_bootfs(spa_t *spa)
1832 {
1833 return (spa->spa_bootfs);
1834 }
1835
1836 uint64_t
1837 spa_delegation(spa_t *spa)
1838 {
1839 return (spa->spa_delegation);
1840 }
1841
1842 objset_t *
1843 spa_meta_objset(spa_t *spa)
1844 {
1845 return (spa->spa_meta_objset);
1846 }
1847
1848 enum zio_checksum
1849 spa_dedup_checksum(spa_t *spa)
1850 {
1851 return (spa->spa_dedup_checksum);
1852 }
1853
1854 /*
1855 * Reset pool scan stat per scan pass (or reboot).
1856 */
1857 void
1858 spa_scan_stat_init(spa_t *spa)
1859 {
1860 /* data not stored on disk */
1861 spa->spa_scan_pass_start = gethrestime_sec();
1862 spa->spa_scan_pass_exam = 0;
1863 vdev_scan_stat_init(spa->spa_root_vdev);
1864 }
1865
1866 /*
1867 * Get scan stats for zpool status reports
1868 */
1869 int
1870 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1871 {
1872 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1873
1874 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1875 return (SET_ERROR(ENOENT));
1876 bzero(ps, sizeof (pool_scan_stat_t));
1877
1878 /* data stored on disk */
1879 ps->pss_func = scn->scn_phys.scn_func;
1880 ps->pss_start_time = scn->scn_phys.scn_start_time;
1881 ps->pss_end_time = scn->scn_phys.scn_end_time;
1882 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1883 ps->pss_examined = scn->scn_phys.scn_examined;
1884 ps->pss_to_process = scn->scn_phys.scn_to_process;
1885 ps->pss_processed = scn->scn_phys.scn_processed;
1886 ps->pss_errors = scn->scn_phys.scn_errors;
1887 ps->pss_state = scn->scn_phys.scn_state;
1888
1889 /* data not stored on disk */
1890 ps->pss_pass_start = spa->spa_scan_pass_start;
1891 ps->pss_pass_exam = spa->spa_scan_pass_exam;
1892
1893 return (0);
1894 }
1895
1896 boolean_t
1897 spa_debug_enabled(spa_t *spa)
1898 {
1899 return (spa->spa_debug);
1900 }
1901
1902 #if defined(_KERNEL) && defined(HAVE_SPL)
1903 /* Namespace manipulation */
1904 EXPORT_SYMBOL(spa_lookup);
1905 EXPORT_SYMBOL(spa_add);
1906 EXPORT_SYMBOL(spa_remove);
1907 EXPORT_SYMBOL(spa_next);
1908
1909 /* Refcount functions */
1910 EXPORT_SYMBOL(spa_open_ref);
1911 EXPORT_SYMBOL(spa_close);
1912 EXPORT_SYMBOL(spa_refcount_zero);
1913
1914 /* Pool configuration lock */
1915 EXPORT_SYMBOL(spa_config_tryenter);
1916 EXPORT_SYMBOL(spa_config_enter);
1917 EXPORT_SYMBOL(spa_config_exit);
1918 EXPORT_SYMBOL(spa_config_held);
1919
1920 /* Pool vdev add/remove lock */
1921 EXPORT_SYMBOL(spa_vdev_enter);
1922 EXPORT_SYMBOL(spa_vdev_exit);
1923
1924 /* Pool vdev state change lock */
1925 EXPORT_SYMBOL(spa_vdev_state_enter);
1926 EXPORT_SYMBOL(spa_vdev_state_exit);
1927
1928 /* Accessor functions */
1929 EXPORT_SYMBOL(spa_shutting_down);
1930 EXPORT_SYMBOL(spa_get_dsl);
1931 EXPORT_SYMBOL(spa_get_rootblkptr);
1932 EXPORT_SYMBOL(spa_set_rootblkptr);
1933 EXPORT_SYMBOL(spa_altroot);
1934 EXPORT_SYMBOL(spa_sync_pass);
1935 EXPORT_SYMBOL(spa_name);
1936 EXPORT_SYMBOL(spa_guid);
1937 EXPORT_SYMBOL(spa_last_synced_txg);
1938 EXPORT_SYMBOL(spa_first_txg);
1939 EXPORT_SYMBOL(spa_syncing_txg);
1940 EXPORT_SYMBOL(spa_version);
1941 EXPORT_SYMBOL(spa_state);
1942 EXPORT_SYMBOL(spa_load_state);
1943 EXPORT_SYMBOL(spa_freeze_txg);
1944 EXPORT_SYMBOL(spa_get_asize);
1945 EXPORT_SYMBOL(spa_get_dspace);
1946 EXPORT_SYMBOL(spa_update_dspace);
1947 EXPORT_SYMBOL(spa_deflate);
1948 EXPORT_SYMBOL(spa_normal_class);
1949 EXPORT_SYMBOL(spa_log_class);
1950 EXPORT_SYMBOL(spa_max_replication);
1951 EXPORT_SYMBOL(spa_prev_software_version);
1952 EXPORT_SYMBOL(spa_get_failmode);
1953 EXPORT_SYMBOL(spa_suspended);
1954 EXPORT_SYMBOL(spa_bootfs);
1955 EXPORT_SYMBOL(spa_delegation);
1956 EXPORT_SYMBOL(spa_meta_objset);
1957
1958 /* Miscellaneous support routines */
1959 EXPORT_SYMBOL(spa_rename);
1960 EXPORT_SYMBOL(spa_guid_exists);
1961 EXPORT_SYMBOL(spa_strdup);
1962 EXPORT_SYMBOL(spa_strfree);
1963 EXPORT_SYMBOL(spa_get_random);
1964 EXPORT_SYMBOL(spa_generate_guid);
1965 EXPORT_SYMBOL(snprintf_blkptr);
1966 EXPORT_SYMBOL(spa_freeze);
1967 EXPORT_SYMBOL(spa_upgrade);
1968 EXPORT_SYMBOL(spa_evict_all);
1969 EXPORT_SYMBOL(spa_lookup_by_guid);
1970 EXPORT_SYMBOL(spa_has_spare);
1971 EXPORT_SYMBOL(dva_get_dsize_sync);
1972 EXPORT_SYMBOL(bp_get_dsize_sync);
1973 EXPORT_SYMBOL(bp_get_dsize);
1974 EXPORT_SYMBOL(spa_has_slogs);
1975 EXPORT_SYMBOL(spa_is_root);
1976 EXPORT_SYMBOL(spa_writeable);
1977 EXPORT_SYMBOL(spa_mode);
1978
1979 EXPORT_SYMBOL(spa_namespace_lock);
1980
1981 module_param(zfs_flags, uint, 0644);
1982 MODULE_PARM_DESC(zfs_flags, "Set additional debugging flags");
1983
1984 module_param(zfs_recover, int, 0644);
1985 MODULE_PARM_DESC(zfs_recover, "Set to attempt to recover from fatal errors");
1986
1987 module_param(zfs_free_leak_on_eio, int, 0644);
1988 MODULE_PARM_DESC(zfs_free_leak_on_eio,
1989 "Set to ignore IO errors during free and permanently leak the space");
1990
1991 module_param(zfs_deadman_synctime_ms, ulong, 0644);
1992 MODULE_PARM_DESC(zfs_deadman_synctime_ms, "Expiration time in milliseconds");
1993
1994 module_param(zfs_deadman_enabled, int, 0644);
1995 MODULE_PARM_DESC(zfs_deadman_enabled, "Enable deadman timer");
1996
1997 module_param(spa_asize_inflation, int, 0644);
1998 MODULE_PARM_DESC(spa_asize_inflation,
1999 "SPA size estimate multiplication factor");
2000 #endif