]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa_misc.c
Add visibility in to arc_read
[mirror_zfs.git] / module / zfs / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/zio.h>
30 #include <sys/zio_checksum.h>
31 #include <sys/zio_compress.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/zap.h>
35 #include <sys/zil.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/uberblock_impl.h>
39 #include <sys/txg.h>
40 #include <sys/avl.h>
41 #include <sys/unique.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/fm/util.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/arc.h>
50 #include <sys/ddt.h>
51 #include <sys/kstat.h>
52 #include "zfs_prop.h"
53 #include "zfeature_common.h"
54
55 /*
56 * SPA locking
57 *
58 * There are four basic locks for managing spa_t structures:
59 *
60 * spa_namespace_lock (global mutex)
61 *
62 * This lock must be acquired to do any of the following:
63 *
64 * - Lookup a spa_t by name
65 * - Add or remove a spa_t from the namespace
66 * - Increase spa_refcount from non-zero
67 * - Check if spa_refcount is zero
68 * - Rename a spa_t
69 * - add/remove/attach/detach devices
70 * - Held for the duration of create/destroy/import/export
71 *
72 * It does not need to handle recursion. A create or destroy may
73 * reference objects (files or zvols) in other pools, but by
74 * definition they must have an existing reference, and will never need
75 * to lookup a spa_t by name.
76 *
77 * spa_refcount (per-spa refcount_t protected by mutex)
78 *
79 * This reference count keep track of any active users of the spa_t. The
80 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
81 * the refcount is never really 'zero' - opening a pool implicitly keeps
82 * some references in the DMU. Internally we check against spa_minref, but
83 * present the image of a zero/non-zero value to consumers.
84 *
85 * spa_config_lock[] (per-spa array of rwlocks)
86 *
87 * This protects the spa_t from config changes, and must be held in
88 * the following circumstances:
89 *
90 * - RW_READER to perform I/O to the spa
91 * - RW_WRITER to change the vdev config
92 *
93 * The locking order is fairly straightforward:
94 *
95 * spa_namespace_lock -> spa_refcount
96 *
97 * The namespace lock must be acquired to increase the refcount from 0
98 * or to check if it is zero.
99 *
100 * spa_refcount -> spa_config_lock[]
101 *
102 * There must be at least one valid reference on the spa_t to acquire
103 * the config lock.
104 *
105 * spa_namespace_lock -> spa_config_lock[]
106 *
107 * The namespace lock must always be taken before the config lock.
108 *
109 *
110 * The spa_namespace_lock can be acquired directly and is globally visible.
111 *
112 * The namespace is manipulated using the following functions, all of which
113 * require the spa_namespace_lock to be held.
114 *
115 * spa_lookup() Lookup a spa_t by name.
116 *
117 * spa_add() Create a new spa_t in the namespace.
118 *
119 * spa_remove() Remove a spa_t from the namespace. This also
120 * frees up any memory associated with the spa_t.
121 *
122 * spa_next() Returns the next spa_t in the system, or the
123 * first if NULL is passed.
124 *
125 * spa_evict_all() Shutdown and remove all spa_t structures in
126 * the system.
127 *
128 * spa_guid_exists() Determine whether a pool/device guid exists.
129 *
130 * The spa_refcount is manipulated using the following functions:
131 *
132 * spa_open_ref() Adds a reference to the given spa_t. Must be
133 * called with spa_namespace_lock held if the
134 * refcount is currently zero.
135 *
136 * spa_close() Remove a reference from the spa_t. This will
137 * not free the spa_t or remove it from the
138 * namespace. No locking is required.
139 *
140 * spa_refcount_zero() Returns true if the refcount is currently
141 * zero. Must be called with spa_namespace_lock
142 * held.
143 *
144 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
145 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
146 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
147 *
148 * To read the configuration, it suffices to hold one of these locks as reader.
149 * To modify the configuration, you must hold all locks as writer. To modify
150 * vdev state without altering the vdev tree's topology (e.g. online/offline),
151 * you must hold SCL_STATE and SCL_ZIO as writer.
152 *
153 * We use these distinct config locks to avoid recursive lock entry.
154 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
155 * block allocations (SCL_ALLOC), which may require reading space maps
156 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
157 *
158 * The spa config locks cannot be normal rwlocks because we need the
159 * ability to hand off ownership. For example, SCL_ZIO is acquired
160 * by the issuing thread and later released by an interrupt thread.
161 * They do, however, obey the usual write-wanted semantics to prevent
162 * writer (i.e. system administrator) starvation.
163 *
164 * The lock acquisition rules are as follows:
165 *
166 * SCL_CONFIG
167 * Protects changes to the vdev tree topology, such as vdev
168 * add/remove/attach/detach. Protects the dirty config list
169 * (spa_config_dirty_list) and the set of spares and l2arc devices.
170 *
171 * SCL_STATE
172 * Protects changes to pool state and vdev state, such as vdev
173 * online/offline/fault/degrade/clear. Protects the dirty state list
174 * (spa_state_dirty_list) and global pool state (spa_state).
175 *
176 * SCL_ALLOC
177 * Protects changes to metaslab groups and classes.
178 * Held as reader by metaslab_alloc() and metaslab_claim().
179 *
180 * SCL_ZIO
181 * Held by bp-level zios (those which have no io_vd upon entry)
182 * to prevent changes to the vdev tree. The bp-level zio implicitly
183 * protects all of its vdev child zios, which do not hold SCL_ZIO.
184 *
185 * SCL_FREE
186 * Protects changes to metaslab groups and classes.
187 * Held as reader by metaslab_free(). SCL_FREE is distinct from
188 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
189 * blocks in zio_done() while another i/o that holds either
190 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
191 *
192 * SCL_VDEV
193 * Held as reader to prevent changes to the vdev tree during trivial
194 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
195 * other locks, and lower than all of them, to ensure that it's safe
196 * to acquire regardless of caller context.
197 *
198 * In addition, the following rules apply:
199 *
200 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
201 * The lock ordering is SCL_CONFIG > spa_props_lock.
202 *
203 * (b) I/O operations on leaf vdevs. For any zio operation that takes
204 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
205 * or zio_write_phys() -- the caller must ensure that the config cannot
206 * cannot change in the interim, and that the vdev cannot be reopened.
207 * SCL_STATE as reader suffices for both.
208 *
209 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
210 *
211 * spa_vdev_enter() Acquire the namespace lock and the config lock
212 * for writing.
213 *
214 * spa_vdev_exit() Release the config lock, wait for all I/O
215 * to complete, sync the updated configs to the
216 * cache, and release the namespace lock.
217 *
218 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
219 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
220 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
221 *
222 * spa_rename() is also implemented within this file since it requires
223 * manipulation of the namespace.
224 */
225
226 static avl_tree_t spa_namespace_avl;
227 kmutex_t spa_namespace_lock;
228 static kcondvar_t spa_namespace_cv;
229 static int spa_active_count;
230 int spa_max_replication_override = SPA_DVAS_PER_BP;
231
232 static kmutex_t spa_spare_lock;
233 static avl_tree_t spa_spare_avl;
234 static kmutex_t spa_l2cache_lock;
235 static avl_tree_t spa_l2cache_avl;
236
237 kmem_cache_t *spa_buffer_pool;
238 int spa_mode_global;
239
240 /*
241 * Expiration time in units of zfs_txg_synctime_ms. This value has two
242 * meanings. First it is used to determine when the spa_deadman logic
243 * should fire. By default the spa_deadman will fire if spa_sync has
244 * not completed in 1000 * zfs_txg_synctime_ms (i.e. 1000 seconds).
245 * Secondly, the value determines if an I/O is considered "hung".
246 * Any I/O that has not completed in zfs_deadman_synctime is considered
247 * "hung" resulting in a zevent being posted.
248 * 1000 zfs_txg_synctime_ms (i.e. 1000 seconds).
249 */
250 unsigned long zfs_deadman_synctime = 1000ULL;
251
252 /*
253 * By default the deadman is enabled.
254 */
255 int zfs_deadman_enabled = 1;
256
257 /*
258 * ==========================================================================
259 * SPA config locking
260 * ==========================================================================
261 */
262 static void
263 spa_config_lock_init(spa_t *spa)
264 {
265 int i;
266
267 for (i = 0; i < SCL_LOCKS; i++) {
268 spa_config_lock_t *scl = &spa->spa_config_lock[i];
269 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
270 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
271 refcount_create_untracked(&scl->scl_count);
272 scl->scl_writer = NULL;
273 scl->scl_write_wanted = 0;
274 }
275 }
276
277 static void
278 spa_config_lock_destroy(spa_t *spa)
279 {
280 int i;
281
282 for (i = 0; i < SCL_LOCKS; i++) {
283 spa_config_lock_t *scl = &spa->spa_config_lock[i];
284 mutex_destroy(&scl->scl_lock);
285 cv_destroy(&scl->scl_cv);
286 refcount_destroy(&scl->scl_count);
287 ASSERT(scl->scl_writer == NULL);
288 ASSERT(scl->scl_write_wanted == 0);
289 }
290 }
291
292 int
293 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
294 {
295 int i;
296
297 for (i = 0; i < SCL_LOCKS; i++) {
298 spa_config_lock_t *scl = &spa->spa_config_lock[i];
299 if (!(locks & (1 << i)))
300 continue;
301 mutex_enter(&scl->scl_lock);
302 if (rw == RW_READER) {
303 if (scl->scl_writer || scl->scl_write_wanted) {
304 mutex_exit(&scl->scl_lock);
305 spa_config_exit(spa, locks ^ (1 << i), tag);
306 return (0);
307 }
308 } else {
309 ASSERT(scl->scl_writer != curthread);
310 if (!refcount_is_zero(&scl->scl_count)) {
311 mutex_exit(&scl->scl_lock);
312 spa_config_exit(spa, locks ^ (1 << i), tag);
313 return (0);
314 }
315 scl->scl_writer = curthread;
316 }
317 (void) refcount_add(&scl->scl_count, tag);
318 mutex_exit(&scl->scl_lock);
319 }
320 return (1);
321 }
322
323 void
324 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
325 {
326 int wlocks_held = 0;
327 int i;
328
329 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
330
331 for (i = 0; i < SCL_LOCKS; i++) {
332 spa_config_lock_t *scl = &spa->spa_config_lock[i];
333 if (scl->scl_writer == curthread)
334 wlocks_held |= (1 << i);
335 if (!(locks & (1 << i)))
336 continue;
337 mutex_enter(&scl->scl_lock);
338 if (rw == RW_READER) {
339 while (scl->scl_writer || scl->scl_write_wanted) {
340 cv_wait(&scl->scl_cv, &scl->scl_lock);
341 }
342 } else {
343 ASSERT(scl->scl_writer != curthread);
344 while (!refcount_is_zero(&scl->scl_count)) {
345 scl->scl_write_wanted++;
346 cv_wait(&scl->scl_cv, &scl->scl_lock);
347 scl->scl_write_wanted--;
348 }
349 scl->scl_writer = curthread;
350 }
351 (void) refcount_add(&scl->scl_count, tag);
352 mutex_exit(&scl->scl_lock);
353 }
354 ASSERT(wlocks_held <= locks);
355 }
356
357 void
358 spa_config_exit(spa_t *spa, int locks, void *tag)
359 {
360 int i;
361
362 for (i = SCL_LOCKS - 1; i >= 0; i--) {
363 spa_config_lock_t *scl = &spa->spa_config_lock[i];
364 if (!(locks & (1 << i)))
365 continue;
366 mutex_enter(&scl->scl_lock);
367 ASSERT(!refcount_is_zero(&scl->scl_count));
368 if (refcount_remove(&scl->scl_count, tag) == 0) {
369 ASSERT(scl->scl_writer == NULL ||
370 scl->scl_writer == curthread);
371 scl->scl_writer = NULL; /* OK in either case */
372 cv_broadcast(&scl->scl_cv);
373 }
374 mutex_exit(&scl->scl_lock);
375 }
376 }
377
378 int
379 spa_config_held(spa_t *spa, int locks, krw_t rw)
380 {
381 int i, locks_held = 0;
382
383 for (i = 0; i < SCL_LOCKS; i++) {
384 spa_config_lock_t *scl = &spa->spa_config_lock[i];
385 if (!(locks & (1 << i)))
386 continue;
387 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
388 (rw == RW_WRITER && scl->scl_writer == curthread))
389 locks_held |= 1 << i;
390 }
391
392 return (locks_held);
393 }
394
395 /*
396 * ==========================================================================
397 * SPA namespace functions
398 * ==========================================================================
399 */
400
401 /*
402 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
403 * Returns NULL if no matching spa_t is found.
404 */
405 spa_t *
406 spa_lookup(const char *name)
407 {
408 static spa_t search; /* spa_t is large; don't allocate on stack */
409 spa_t *spa;
410 avl_index_t where;
411 char *cp;
412
413 ASSERT(MUTEX_HELD(&spa_namespace_lock));
414
415 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
416
417 /*
418 * If it's a full dataset name, figure out the pool name and
419 * just use that.
420 */
421 cp = strpbrk(search.spa_name, "/@");
422 if (cp != NULL)
423 *cp = '\0';
424
425 spa = avl_find(&spa_namespace_avl, &search, &where);
426
427 return (spa);
428 }
429
430 /*
431 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
432 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
433 * looking for potentially hung I/Os.
434 */
435 void
436 spa_deadman(void *arg)
437 {
438 spa_t *spa = arg;
439
440 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
441 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
442 ++spa->spa_deadman_calls);
443 if (zfs_deadman_enabled)
444 vdev_deadman(spa->spa_root_vdev);
445
446 spa->spa_deadman_tqid = taskq_dispatch_delay(system_taskq,
447 spa_deadman, spa, TQ_PUSHPAGE, ddi_get_lbolt() +
448 NSEC_TO_TICK(spa->spa_deadman_synctime));
449 }
450
451 /*
452 * Create an uninitialized spa_t with the given name. Requires
453 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
454 * exist by calling spa_lookup() first.
455 */
456 spa_t *
457 spa_add(const char *name, nvlist_t *config, const char *altroot)
458 {
459 spa_t *spa;
460 spa_config_dirent_t *dp;
461 int t;
462
463 ASSERT(MUTEX_HELD(&spa_namespace_lock));
464
465 spa = kmem_zalloc(sizeof (spa_t), KM_PUSHPAGE | KM_NODEBUG);
466
467 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
468 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
469 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
470 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
471 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
472 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
473 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
474 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
475 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
476
477 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
478 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
479 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
480 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
481
482 for (t = 0; t < TXG_SIZE; t++)
483 bplist_create(&spa->spa_free_bplist[t]);
484
485 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
486 spa->spa_state = POOL_STATE_UNINITIALIZED;
487 spa->spa_freeze_txg = UINT64_MAX;
488 spa->spa_final_txg = UINT64_MAX;
489 spa->spa_load_max_txg = UINT64_MAX;
490 spa->spa_proc = &p0;
491 spa->spa_proc_state = SPA_PROC_NONE;
492
493 spa->spa_deadman_synctime = zfs_deadman_synctime *
494 zfs_txg_synctime_ms * MICROSEC;
495
496 refcount_create(&spa->spa_refcount);
497 spa_config_lock_init(spa);
498 spa_stats_init(spa);
499
500 avl_add(&spa_namespace_avl, spa);
501
502 /*
503 * Set the alternate root, if there is one.
504 */
505 if (altroot) {
506 spa->spa_root = spa_strdup(altroot);
507 spa_active_count++;
508 }
509
510 /*
511 * Every pool starts with the default cachefile
512 */
513 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
514 offsetof(spa_config_dirent_t, scd_link));
515
516 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_PUSHPAGE);
517 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
518 list_insert_head(&spa->spa_config_list, dp);
519
520 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
521 KM_PUSHPAGE) == 0);
522
523 if (config != NULL) {
524 nvlist_t *features;
525
526 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
527 &features) == 0) {
528 VERIFY(nvlist_dup(features, &spa->spa_label_features,
529 0) == 0);
530 }
531
532 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
533 }
534
535 if (spa->spa_label_features == NULL) {
536 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
537 KM_SLEEP) == 0);
538 }
539
540 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
541
542 return (spa);
543 }
544
545 /*
546 * Removes a spa_t from the namespace, freeing up any memory used. Requires
547 * spa_namespace_lock. This is called only after the spa_t has been closed and
548 * deactivated.
549 */
550 void
551 spa_remove(spa_t *spa)
552 {
553 spa_config_dirent_t *dp;
554 int t;
555
556 ASSERT(MUTEX_HELD(&spa_namespace_lock));
557 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
558
559 nvlist_free(spa->spa_config_splitting);
560
561 avl_remove(&spa_namespace_avl, spa);
562 cv_broadcast(&spa_namespace_cv);
563
564 if (spa->spa_root) {
565 spa_strfree(spa->spa_root);
566 spa_active_count--;
567 }
568
569 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
570 list_remove(&spa->spa_config_list, dp);
571 if (dp->scd_path != NULL)
572 spa_strfree(dp->scd_path);
573 kmem_free(dp, sizeof (spa_config_dirent_t));
574 }
575
576 list_destroy(&spa->spa_config_list);
577
578 nvlist_free(spa->spa_label_features);
579 nvlist_free(spa->spa_load_info);
580 spa_config_set(spa, NULL);
581
582 refcount_destroy(&spa->spa_refcount);
583
584 spa_stats_destroy(spa);
585 spa_config_lock_destroy(spa);
586
587 for (t = 0; t < TXG_SIZE; t++)
588 bplist_destroy(&spa->spa_free_bplist[t]);
589
590 cv_destroy(&spa->spa_async_cv);
591 cv_destroy(&spa->spa_proc_cv);
592 cv_destroy(&spa->spa_scrub_io_cv);
593 cv_destroy(&spa->spa_suspend_cv);
594
595 mutex_destroy(&spa->spa_async_lock);
596 mutex_destroy(&spa->spa_errlist_lock);
597 mutex_destroy(&spa->spa_errlog_lock);
598 mutex_destroy(&spa->spa_history_lock);
599 mutex_destroy(&spa->spa_proc_lock);
600 mutex_destroy(&spa->spa_props_lock);
601 mutex_destroy(&spa->spa_scrub_lock);
602 mutex_destroy(&spa->spa_suspend_lock);
603 mutex_destroy(&spa->spa_vdev_top_lock);
604
605 kmem_free(spa, sizeof (spa_t));
606 }
607
608 /*
609 * Given a pool, return the next pool in the namespace, or NULL if there is
610 * none. If 'prev' is NULL, return the first pool.
611 */
612 spa_t *
613 spa_next(spa_t *prev)
614 {
615 ASSERT(MUTEX_HELD(&spa_namespace_lock));
616
617 if (prev)
618 return (AVL_NEXT(&spa_namespace_avl, prev));
619 else
620 return (avl_first(&spa_namespace_avl));
621 }
622
623 /*
624 * ==========================================================================
625 * SPA refcount functions
626 * ==========================================================================
627 */
628
629 /*
630 * Add a reference to the given spa_t. Must have at least one reference, or
631 * have the namespace lock held.
632 */
633 void
634 spa_open_ref(spa_t *spa, void *tag)
635 {
636 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
637 MUTEX_HELD(&spa_namespace_lock));
638 (void) refcount_add(&spa->spa_refcount, tag);
639 }
640
641 /*
642 * Remove a reference to the given spa_t. Must have at least one reference, or
643 * have the namespace lock held.
644 */
645 void
646 spa_close(spa_t *spa, void *tag)
647 {
648 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
649 MUTEX_HELD(&spa_namespace_lock));
650 (void) refcount_remove(&spa->spa_refcount, tag);
651 }
652
653 /*
654 * Check to see if the spa refcount is zero. Must be called with
655 * spa_namespace_lock held. We really compare against spa_minref, which is the
656 * number of references acquired when opening a pool
657 */
658 boolean_t
659 spa_refcount_zero(spa_t *spa)
660 {
661 ASSERT(MUTEX_HELD(&spa_namespace_lock));
662
663 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
664 }
665
666 /*
667 * ==========================================================================
668 * SPA spare and l2cache tracking
669 * ==========================================================================
670 */
671
672 /*
673 * Hot spares and cache devices are tracked using the same code below,
674 * for 'auxiliary' devices.
675 */
676
677 typedef struct spa_aux {
678 uint64_t aux_guid;
679 uint64_t aux_pool;
680 avl_node_t aux_avl;
681 int aux_count;
682 } spa_aux_t;
683
684 static int
685 spa_aux_compare(const void *a, const void *b)
686 {
687 const spa_aux_t *sa = a;
688 const spa_aux_t *sb = b;
689
690 if (sa->aux_guid < sb->aux_guid)
691 return (-1);
692 else if (sa->aux_guid > sb->aux_guid)
693 return (1);
694 else
695 return (0);
696 }
697
698 void
699 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
700 {
701 avl_index_t where;
702 spa_aux_t search;
703 spa_aux_t *aux;
704
705 search.aux_guid = vd->vdev_guid;
706 if ((aux = avl_find(avl, &search, &where)) != NULL) {
707 aux->aux_count++;
708 } else {
709 aux = kmem_zalloc(sizeof (spa_aux_t), KM_PUSHPAGE);
710 aux->aux_guid = vd->vdev_guid;
711 aux->aux_count = 1;
712 avl_insert(avl, aux, where);
713 }
714 }
715
716 void
717 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
718 {
719 spa_aux_t search;
720 spa_aux_t *aux;
721 avl_index_t where;
722
723 search.aux_guid = vd->vdev_guid;
724 aux = avl_find(avl, &search, &where);
725
726 ASSERT(aux != NULL);
727
728 if (--aux->aux_count == 0) {
729 avl_remove(avl, aux);
730 kmem_free(aux, sizeof (spa_aux_t));
731 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
732 aux->aux_pool = 0ULL;
733 }
734 }
735
736 boolean_t
737 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
738 {
739 spa_aux_t search, *found;
740
741 search.aux_guid = guid;
742 found = avl_find(avl, &search, NULL);
743
744 if (pool) {
745 if (found)
746 *pool = found->aux_pool;
747 else
748 *pool = 0ULL;
749 }
750
751 if (refcnt) {
752 if (found)
753 *refcnt = found->aux_count;
754 else
755 *refcnt = 0;
756 }
757
758 return (found != NULL);
759 }
760
761 void
762 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
763 {
764 spa_aux_t search, *found;
765 avl_index_t where;
766
767 search.aux_guid = vd->vdev_guid;
768 found = avl_find(avl, &search, &where);
769 ASSERT(found != NULL);
770 ASSERT(found->aux_pool == 0ULL);
771
772 found->aux_pool = spa_guid(vd->vdev_spa);
773 }
774
775 /*
776 * Spares are tracked globally due to the following constraints:
777 *
778 * - A spare may be part of multiple pools.
779 * - A spare may be added to a pool even if it's actively in use within
780 * another pool.
781 * - A spare in use in any pool can only be the source of a replacement if
782 * the target is a spare in the same pool.
783 *
784 * We keep track of all spares on the system through the use of a reference
785 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
786 * spare, then we bump the reference count in the AVL tree. In addition, we set
787 * the 'vdev_isspare' member to indicate that the device is a spare (active or
788 * inactive). When a spare is made active (used to replace a device in the
789 * pool), we also keep track of which pool its been made a part of.
790 *
791 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
792 * called under the spa_namespace lock as part of vdev reconfiguration. The
793 * separate spare lock exists for the status query path, which does not need to
794 * be completely consistent with respect to other vdev configuration changes.
795 */
796
797 static int
798 spa_spare_compare(const void *a, const void *b)
799 {
800 return (spa_aux_compare(a, b));
801 }
802
803 void
804 spa_spare_add(vdev_t *vd)
805 {
806 mutex_enter(&spa_spare_lock);
807 ASSERT(!vd->vdev_isspare);
808 spa_aux_add(vd, &spa_spare_avl);
809 vd->vdev_isspare = B_TRUE;
810 mutex_exit(&spa_spare_lock);
811 }
812
813 void
814 spa_spare_remove(vdev_t *vd)
815 {
816 mutex_enter(&spa_spare_lock);
817 ASSERT(vd->vdev_isspare);
818 spa_aux_remove(vd, &spa_spare_avl);
819 vd->vdev_isspare = B_FALSE;
820 mutex_exit(&spa_spare_lock);
821 }
822
823 boolean_t
824 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
825 {
826 boolean_t found;
827
828 mutex_enter(&spa_spare_lock);
829 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
830 mutex_exit(&spa_spare_lock);
831
832 return (found);
833 }
834
835 void
836 spa_spare_activate(vdev_t *vd)
837 {
838 mutex_enter(&spa_spare_lock);
839 ASSERT(vd->vdev_isspare);
840 spa_aux_activate(vd, &spa_spare_avl);
841 mutex_exit(&spa_spare_lock);
842 }
843
844 /*
845 * Level 2 ARC devices are tracked globally for the same reasons as spares.
846 * Cache devices currently only support one pool per cache device, and so
847 * for these devices the aux reference count is currently unused beyond 1.
848 */
849
850 static int
851 spa_l2cache_compare(const void *a, const void *b)
852 {
853 return (spa_aux_compare(a, b));
854 }
855
856 void
857 spa_l2cache_add(vdev_t *vd)
858 {
859 mutex_enter(&spa_l2cache_lock);
860 ASSERT(!vd->vdev_isl2cache);
861 spa_aux_add(vd, &spa_l2cache_avl);
862 vd->vdev_isl2cache = B_TRUE;
863 mutex_exit(&spa_l2cache_lock);
864 }
865
866 void
867 spa_l2cache_remove(vdev_t *vd)
868 {
869 mutex_enter(&spa_l2cache_lock);
870 ASSERT(vd->vdev_isl2cache);
871 spa_aux_remove(vd, &spa_l2cache_avl);
872 vd->vdev_isl2cache = B_FALSE;
873 mutex_exit(&spa_l2cache_lock);
874 }
875
876 boolean_t
877 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
878 {
879 boolean_t found;
880
881 mutex_enter(&spa_l2cache_lock);
882 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
883 mutex_exit(&spa_l2cache_lock);
884
885 return (found);
886 }
887
888 void
889 spa_l2cache_activate(vdev_t *vd)
890 {
891 mutex_enter(&spa_l2cache_lock);
892 ASSERT(vd->vdev_isl2cache);
893 spa_aux_activate(vd, &spa_l2cache_avl);
894 mutex_exit(&spa_l2cache_lock);
895 }
896
897 /*
898 * ==========================================================================
899 * SPA vdev locking
900 * ==========================================================================
901 */
902
903 /*
904 * Lock the given spa_t for the purpose of adding or removing a vdev.
905 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
906 * It returns the next transaction group for the spa_t.
907 */
908 uint64_t
909 spa_vdev_enter(spa_t *spa)
910 {
911 mutex_enter(&spa->spa_vdev_top_lock);
912 mutex_enter(&spa_namespace_lock);
913 return (spa_vdev_config_enter(spa));
914 }
915
916 /*
917 * Internal implementation for spa_vdev_enter(). Used when a vdev
918 * operation requires multiple syncs (i.e. removing a device) while
919 * keeping the spa_namespace_lock held.
920 */
921 uint64_t
922 spa_vdev_config_enter(spa_t *spa)
923 {
924 ASSERT(MUTEX_HELD(&spa_namespace_lock));
925
926 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
927
928 return (spa_last_synced_txg(spa) + 1);
929 }
930
931 /*
932 * Used in combination with spa_vdev_config_enter() to allow the syncing
933 * of multiple transactions without releasing the spa_namespace_lock.
934 */
935 void
936 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
937 {
938 int config_changed = B_FALSE;
939
940 ASSERT(MUTEX_HELD(&spa_namespace_lock));
941 ASSERT(txg > spa_last_synced_txg(spa));
942
943 spa->spa_pending_vdev = NULL;
944
945 /*
946 * Reassess the DTLs.
947 */
948 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
949
950 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
951 config_changed = B_TRUE;
952 spa->spa_config_generation++;
953 }
954
955 /*
956 * Verify the metaslab classes.
957 */
958 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
959 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
960
961 spa_config_exit(spa, SCL_ALL, spa);
962
963 /*
964 * Panic the system if the specified tag requires it. This
965 * is useful for ensuring that configurations are updated
966 * transactionally.
967 */
968 if (zio_injection_enabled)
969 zio_handle_panic_injection(spa, tag, 0);
970
971 /*
972 * Note: this txg_wait_synced() is important because it ensures
973 * that there won't be more than one config change per txg.
974 * This allows us to use the txg as the generation number.
975 */
976 if (error == 0)
977 txg_wait_synced(spa->spa_dsl_pool, txg);
978
979 if (vd != NULL) {
980 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
981 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
982 vdev_free(vd);
983 spa_config_exit(spa, SCL_ALL, spa);
984 }
985
986 /*
987 * If the config changed, update the config cache.
988 */
989 if (config_changed)
990 spa_config_sync(spa, B_FALSE, B_TRUE);
991 }
992
993 /*
994 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
995 * locking of spa_vdev_enter(), we also want make sure the transactions have
996 * synced to disk, and then update the global configuration cache with the new
997 * information.
998 */
999 int
1000 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1001 {
1002 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1003 mutex_exit(&spa_namespace_lock);
1004 mutex_exit(&spa->spa_vdev_top_lock);
1005
1006 return (error);
1007 }
1008
1009 /*
1010 * Lock the given spa_t for the purpose of changing vdev state.
1011 */
1012 void
1013 spa_vdev_state_enter(spa_t *spa, int oplocks)
1014 {
1015 int locks = SCL_STATE_ALL | oplocks;
1016
1017 /*
1018 * Root pools may need to read of the underlying devfs filesystem
1019 * when opening up a vdev. Unfortunately if we're holding the
1020 * SCL_ZIO lock it will result in a deadlock when we try to issue
1021 * the read from the root filesystem. Instead we "prefetch"
1022 * the associated vnodes that we need prior to opening the
1023 * underlying devices and cache them so that we can prevent
1024 * any I/O when we are doing the actual open.
1025 */
1026 if (spa_is_root(spa)) {
1027 int low = locks & ~(SCL_ZIO - 1);
1028 int high = locks & ~low;
1029
1030 spa_config_enter(spa, high, spa, RW_WRITER);
1031 vdev_hold(spa->spa_root_vdev);
1032 spa_config_enter(spa, low, spa, RW_WRITER);
1033 } else {
1034 spa_config_enter(spa, locks, spa, RW_WRITER);
1035 }
1036 spa->spa_vdev_locks = locks;
1037 }
1038
1039 int
1040 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1041 {
1042 boolean_t config_changed = B_FALSE;
1043
1044 if (vd != NULL || error == 0)
1045 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1046 0, 0, B_FALSE);
1047
1048 if (vd != NULL) {
1049 vdev_state_dirty(vd->vdev_top);
1050 config_changed = B_TRUE;
1051 spa->spa_config_generation++;
1052 }
1053
1054 if (spa_is_root(spa))
1055 vdev_rele(spa->spa_root_vdev);
1056
1057 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1058 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1059
1060 /*
1061 * If anything changed, wait for it to sync. This ensures that,
1062 * from the system administrator's perspective, zpool(1M) commands
1063 * are synchronous. This is important for things like zpool offline:
1064 * when the command completes, you expect no further I/O from ZFS.
1065 */
1066 if (vd != NULL)
1067 txg_wait_synced(spa->spa_dsl_pool, 0);
1068
1069 /*
1070 * If the config changed, update the config cache.
1071 */
1072 if (config_changed) {
1073 mutex_enter(&spa_namespace_lock);
1074 spa_config_sync(spa, B_FALSE, B_TRUE);
1075 mutex_exit(&spa_namespace_lock);
1076 }
1077
1078 return (error);
1079 }
1080
1081 /*
1082 * ==========================================================================
1083 * Miscellaneous functions
1084 * ==========================================================================
1085 */
1086
1087 void
1088 spa_activate_mos_feature(spa_t *spa, const char *feature)
1089 {
1090 (void) nvlist_add_boolean(spa->spa_label_features, feature);
1091 vdev_config_dirty(spa->spa_root_vdev);
1092 }
1093
1094 void
1095 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1096 {
1097 (void) nvlist_remove_all(spa->spa_label_features, feature);
1098 vdev_config_dirty(spa->spa_root_vdev);
1099 }
1100
1101 /*
1102 * Rename a spa_t.
1103 */
1104 int
1105 spa_rename(const char *name, const char *newname)
1106 {
1107 spa_t *spa;
1108 int err;
1109
1110 /*
1111 * Lookup the spa_t and grab the config lock for writing. We need to
1112 * actually open the pool so that we can sync out the necessary labels.
1113 * It's OK to call spa_open() with the namespace lock held because we
1114 * allow recursive calls for other reasons.
1115 */
1116 mutex_enter(&spa_namespace_lock);
1117 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1118 mutex_exit(&spa_namespace_lock);
1119 return (err);
1120 }
1121
1122 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1123
1124 avl_remove(&spa_namespace_avl, spa);
1125 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1126 avl_add(&spa_namespace_avl, spa);
1127
1128 /*
1129 * Sync all labels to disk with the new names by marking the root vdev
1130 * dirty and waiting for it to sync. It will pick up the new pool name
1131 * during the sync.
1132 */
1133 vdev_config_dirty(spa->spa_root_vdev);
1134
1135 spa_config_exit(spa, SCL_ALL, FTAG);
1136
1137 txg_wait_synced(spa->spa_dsl_pool, 0);
1138
1139 /*
1140 * Sync the updated config cache.
1141 */
1142 spa_config_sync(spa, B_FALSE, B_TRUE);
1143
1144 spa_close(spa, FTAG);
1145
1146 mutex_exit(&spa_namespace_lock);
1147
1148 return (0);
1149 }
1150
1151 /*
1152 * Return the spa_t associated with given pool_guid, if it exists. If
1153 * device_guid is non-zero, determine whether the pool exists *and* contains
1154 * a device with the specified device_guid.
1155 */
1156 spa_t *
1157 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1158 {
1159 spa_t *spa;
1160 avl_tree_t *t = &spa_namespace_avl;
1161
1162 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1163
1164 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1165 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1166 continue;
1167 if (spa->spa_root_vdev == NULL)
1168 continue;
1169 if (spa_guid(spa) == pool_guid) {
1170 if (device_guid == 0)
1171 break;
1172
1173 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1174 device_guid) != NULL)
1175 break;
1176
1177 /*
1178 * Check any devices we may be in the process of adding.
1179 */
1180 if (spa->spa_pending_vdev) {
1181 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1182 device_guid) != NULL)
1183 break;
1184 }
1185 }
1186 }
1187
1188 return (spa);
1189 }
1190
1191 /*
1192 * Determine whether a pool with the given pool_guid exists.
1193 */
1194 boolean_t
1195 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1196 {
1197 return (spa_by_guid(pool_guid, device_guid) != NULL);
1198 }
1199
1200 char *
1201 spa_strdup(const char *s)
1202 {
1203 size_t len;
1204 char *new;
1205
1206 len = strlen(s);
1207 new = kmem_alloc(len + 1, KM_PUSHPAGE);
1208 bcopy(s, new, len);
1209 new[len] = '\0';
1210
1211 return (new);
1212 }
1213
1214 void
1215 spa_strfree(char *s)
1216 {
1217 kmem_free(s, strlen(s) + 1);
1218 }
1219
1220 uint64_t
1221 spa_get_random(uint64_t range)
1222 {
1223 uint64_t r;
1224
1225 ASSERT(range != 0);
1226
1227 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1228
1229 return (r % range);
1230 }
1231
1232 uint64_t
1233 spa_generate_guid(spa_t *spa)
1234 {
1235 uint64_t guid = spa_get_random(-1ULL);
1236
1237 if (spa != NULL) {
1238 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1239 guid = spa_get_random(-1ULL);
1240 } else {
1241 while (guid == 0 || spa_guid_exists(guid, 0))
1242 guid = spa_get_random(-1ULL);
1243 }
1244
1245 return (guid);
1246 }
1247
1248 void
1249 sprintf_blkptr(char *buf, const blkptr_t *bp)
1250 {
1251 char type[256];
1252 char *checksum = NULL;
1253 char *compress = NULL;
1254
1255 if (bp != NULL) {
1256 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1257 dmu_object_byteswap_t bswap =
1258 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1259 (void) snprintf(type, sizeof (type), "bswap %s %s",
1260 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1261 "metadata" : "data",
1262 dmu_ot_byteswap[bswap].ob_name);
1263 } else {
1264 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1265 sizeof (type));
1266 }
1267 checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1268 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1269 }
1270
1271 SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1272 }
1273
1274 void
1275 spa_freeze(spa_t *spa)
1276 {
1277 uint64_t freeze_txg = 0;
1278
1279 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1280 if (spa->spa_freeze_txg == UINT64_MAX) {
1281 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1282 spa->spa_freeze_txg = freeze_txg;
1283 }
1284 spa_config_exit(spa, SCL_ALL, FTAG);
1285 if (freeze_txg != 0)
1286 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1287 }
1288
1289 /*
1290 * This is a stripped-down version of strtoull, suitable only for converting
1291 * lowercase hexidecimal numbers that don't overflow.
1292 */
1293 uint64_t
1294 strtonum(const char *str, char **nptr)
1295 {
1296 uint64_t val = 0;
1297 char c;
1298 int digit;
1299
1300 while ((c = *str) != '\0') {
1301 if (c >= '0' && c <= '9')
1302 digit = c - '0';
1303 else if (c >= 'a' && c <= 'f')
1304 digit = 10 + c - 'a';
1305 else
1306 break;
1307
1308 val *= 16;
1309 val += digit;
1310
1311 str++;
1312 }
1313
1314 if (nptr)
1315 *nptr = (char *)str;
1316
1317 return (val);
1318 }
1319
1320 /*
1321 * ==========================================================================
1322 * Accessor functions
1323 * ==========================================================================
1324 */
1325
1326 boolean_t
1327 spa_shutting_down(spa_t *spa)
1328 {
1329 return (spa->spa_async_suspended);
1330 }
1331
1332 dsl_pool_t *
1333 spa_get_dsl(spa_t *spa)
1334 {
1335 return (spa->spa_dsl_pool);
1336 }
1337
1338 boolean_t
1339 spa_is_initializing(spa_t *spa)
1340 {
1341 return (spa->spa_is_initializing);
1342 }
1343
1344 blkptr_t *
1345 spa_get_rootblkptr(spa_t *spa)
1346 {
1347 return (&spa->spa_ubsync.ub_rootbp);
1348 }
1349
1350 void
1351 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1352 {
1353 spa->spa_uberblock.ub_rootbp = *bp;
1354 }
1355
1356 void
1357 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1358 {
1359 if (spa->spa_root == NULL)
1360 buf[0] = '\0';
1361 else
1362 (void) strncpy(buf, spa->spa_root, buflen);
1363 }
1364
1365 int
1366 spa_sync_pass(spa_t *spa)
1367 {
1368 return (spa->spa_sync_pass);
1369 }
1370
1371 char *
1372 spa_name(spa_t *spa)
1373 {
1374 return (spa->spa_name);
1375 }
1376
1377 uint64_t
1378 spa_guid(spa_t *spa)
1379 {
1380 dsl_pool_t *dp = spa_get_dsl(spa);
1381 uint64_t guid;
1382
1383 /*
1384 * If we fail to parse the config during spa_load(), we can go through
1385 * the error path (which posts an ereport) and end up here with no root
1386 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1387 * this case.
1388 */
1389 if (spa->spa_root_vdev == NULL)
1390 return (spa->spa_config_guid);
1391
1392 guid = spa->spa_last_synced_guid != 0 ?
1393 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1394
1395 /*
1396 * Return the most recently synced out guid unless we're
1397 * in syncing context.
1398 */
1399 if (dp && dsl_pool_sync_context(dp))
1400 return (spa->spa_root_vdev->vdev_guid);
1401 else
1402 return (guid);
1403 }
1404
1405 uint64_t
1406 spa_load_guid(spa_t *spa)
1407 {
1408 /*
1409 * This is a GUID that exists solely as a reference for the
1410 * purposes of the arc. It is generated at load time, and
1411 * is never written to persistent storage.
1412 */
1413 return (spa->spa_load_guid);
1414 }
1415
1416 uint64_t
1417 spa_last_synced_txg(spa_t *spa)
1418 {
1419 return (spa->spa_ubsync.ub_txg);
1420 }
1421
1422 uint64_t
1423 spa_first_txg(spa_t *spa)
1424 {
1425 return (spa->spa_first_txg);
1426 }
1427
1428 uint64_t
1429 spa_syncing_txg(spa_t *spa)
1430 {
1431 return (spa->spa_syncing_txg);
1432 }
1433
1434 pool_state_t
1435 spa_state(spa_t *spa)
1436 {
1437 return (spa->spa_state);
1438 }
1439
1440 spa_load_state_t
1441 spa_load_state(spa_t *spa)
1442 {
1443 return (spa->spa_load_state);
1444 }
1445
1446 uint64_t
1447 spa_freeze_txg(spa_t *spa)
1448 {
1449 return (spa->spa_freeze_txg);
1450 }
1451
1452 /* ARGSUSED */
1453 uint64_t
1454 spa_get_asize(spa_t *spa, uint64_t lsize)
1455 {
1456 /*
1457 * The worst case is single-sector max-parity RAID-Z blocks, in which
1458 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
1459 * times the size; so just assume that. Add to this the fact that
1460 * we can have up to 3 DVAs per bp, and one more factor of 2 because
1461 * the block may be dittoed with up to 3 DVAs by ddt_sync().
1462 */
1463 return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
1464 }
1465
1466 uint64_t
1467 spa_get_dspace(spa_t *spa)
1468 {
1469 return (spa->spa_dspace);
1470 }
1471
1472 void
1473 spa_update_dspace(spa_t *spa)
1474 {
1475 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1476 ddt_get_dedup_dspace(spa);
1477 }
1478
1479 /*
1480 * Return the failure mode that has been set to this pool. The default
1481 * behavior will be to block all I/Os when a complete failure occurs.
1482 */
1483 uint8_t
1484 spa_get_failmode(spa_t *spa)
1485 {
1486 return (spa->spa_failmode);
1487 }
1488
1489 boolean_t
1490 spa_suspended(spa_t *spa)
1491 {
1492 return (spa->spa_suspended);
1493 }
1494
1495 uint64_t
1496 spa_version(spa_t *spa)
1497 {
1498 return (spa->spa_ubsync.ub_version);
1499 }
1500
1501 boolean_t
1502 spa_deflate(spa_t *spa)
1503 {
1504 return (spa->spa_deflate);
1505 }
1506
1507 metaslab_class_t *
1508 spa_normal_class(spa_t *spa)
1509 {
1510 return (spa->spa_normal_class);
1511 }
1512
1513 metaslab_class_t *
1514 spa_log_class(spa_t *spa)
1515 {
1516 return (spa->spa_log_class);
1517 }
1518
1519 int
1520 spa_max_replication(spa_t *spa)
1521 {
1522 /*
1523 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1524 * handle BPs with more than one DVA allocated. Set our max
1525 * replication level accordingly.
1526 */
1527 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1528 return (1);
1529 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1530 }
1531
1532 int
1533 spa_prev_software_version(spa_t *spa)
1534 {
1535 return (spa->spa_prev_software_version);
1536 }
1537
1538 uint64_t
1539 spa_deadman_synctime(spa_t *spa)
1540 {
1541 return (spa->spa_deadman_synctime);
1542 }
1543
1544 uint64_t
1545 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1546 {
1547 uint64_t asize = DVA_GET_ASIZE(dva);
1548 uint64_t dsize = asize;
1549
1550 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1551
1552 if (asize != 0 && spa->spa_deflate) {
1553 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1554 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1555 }
1556
1557 return (dsize);
1558 }
1559
1560 uint64_t
1561 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1562 {
1563 uint64_t dsize = 0;
1564 int d;
1565
1566 for (d = 0; d < SPA_DVAS_PER_BP; d++)
1567 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1568
1569 return (dsize);
1570 }
1571
1572 uint64_t
1573 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1574 {
1575 uint64_t dsize = 0;
1576 int d;
1577
1578 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1579
1580 for (d = 0; d < SPA_DVAS_PER_BP; d++)
1581 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1582
1583 spa_config_exit(spa, SCL_VDEV, FTAG);
1584
1585 return (dsize);
1586 }
1587
1588 /*
1589 * ==========================================================================
1590 * Initialization and Termination
1591 * ==========================================================================
1592 */
1593
1594 static int
1595 spa_name_compare(const void *a1, const void *a2)
1596 {
1597 const spa_t *s1 = a1;
1598 const spa_t *s2 = a2;
1599 int s;
1600
1601 s = strcmp(s1->spa_name, s2->spa_name);
1602 if (s > 0)
1603 return (1);
1604 if (s < 0)
1605 return (-1);
1606 return (0);
1607 }
1608
1609 void
1610 spa_boot_init(void)
1611 {
1612 spa_config_load();
1613 }
1614
1615 void
1616 spa_init(int mode)
1617 {
1618 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1619 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1620 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1621 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1622
1623 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1624 offsetof(spa_t, spa_avl));
1625
1626 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1627 offsetof(spa_aux_t, aux_avl));
1628
1629 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1630 offsetof(spa_aux_t, aux_avl));
1631
1632 spa_mode_global = mode;
1633
1634 fm_init();
1635 refcount_init();
1636 unique_init();
1637 space_map_init();
1638 zio_init();
1639 dmu_init();
1640 zil_init();
1641 vdev_cache_stat_init();
1642 zfs_prop_init();
1643 zpool_prop_init();
1644 zpool_feature_init();
1645 spa_config_load();
1646 l2arc_start();
1647 }
1648
1649 void
1650 spa_fini(void)
1651 {
1652 l2arc_stop();
1653
1654 spa_evict_all();
1655
1656 vdev_cache_stat_fini();
1657 zil_fini();
1658 dmu_fini();
1659 zio_fini();
1660 space_map_fini();
1661 unique_fini();
1662 refcount_fini();
1663 fm_fini();
1664
1665 avl_destroy(&spa_namespace_avl);
1666 avl_destroy(&spa_spare_avl);
1667 avl_destroy(&spa_l2cache_avl);
1668
1669 cv_destroy(&spa_namespace_cv);
1670 mutex_destroy(&spa_namespace_lock);
1671 mutex_destroy(&spa_spare_lock);
1672 mutex_destroy(&spa_l2cache_lock);
1673 }
1674
1675 /*
1676 * Return whether this pool has slogs. No locking needed.
1677 * It's not a problem if the wrong answer is returned as it's only for
1678 * performance and not correctness
1679 */
1680 boolean_t
1681 spa_has_slogs(spa_t *spa)
1682 {
1683 return (spa->spa_log_class->mc_rotor != NULL);
1684 }
1685
1686 spa_log_state_t
1687 spa_get_log_state(spa_t *spa)
1688 {
1689 return (spa->spa_log_state);
1690 }
1691
1692 void
1693 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1694 {
1695 spa->spa_log_state = state;
1696 }
1697
1698 boolean_t
1699 spa_is_root(spa_t *spa)
1700 {
1701 return (spa->spa_is_root);
1702 }
1703
1704 boolean_t
1705 spa_writeable(spa_t *spa)
1706 {
1707 return (!!(spa->spa_mode & FWRITE));
1708 }
1709
1710 int
1711 spa_mode(spa_t *spa)
1712 {
1713 return (spa->spa_mode);
1714 }
1715
1716 uint64_t
1717 spa_bootfs(spa_t *spa)
1718 {
1719 return (spa->spa_bootfs);
1720 }
1721
1722 uint64_t
1723 spa_delegation(spa_t *spa)
1724 {
1725 return (spa->spa_delegation);
1726 }
1727
1728 objset_t *
1729 spa_meta_objset(spa_t *spa)
1730 {
1731 return (spa->spa_meta_objset);
1732 }
1733
1734 enum zio_checksum
1735 spa_dedup_checksum(spa_t *spa)
1736 {
1737 return (spa->spa_dedup_checksum);
1738 }
1739
1740 /*
1741 * Reset pool scan stat per scan pass (or reboot).
1742 */
1743 void
1744 spa_scan_stat_init(spa_t *spa)
1745 {
1746 /* data not stored on disk */
1747 spa->spa_scan_pass_start = gethrestime_sec();
1748 spa->spa_scan_pass_exam = 0;
1749 vdev_scan_stat_init(spa->spa_root_vdev);
1750 }
1751
1752 /*
1753 * Get scan stats for zpool status reports
1754 */
1755 int
1756 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1757 {
1758 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1759
1760 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1761 return (ENOENT);
1762 bzero(ps, sizeof (pool_scan_stat_t));
1763
1764 /* data stored on disk */
1765 ps->pss_func = scn->scn_phys.scn_func;
1766 ps->pss_start_time = scn->scn_phys.scn_start_time;
1767 ps->pss_end_time = scn->scn_phys.scn_end_time;
1768 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1769 ps->pss_examined = scn->scn_phys.scn_examined;
1770 ps->pss_to_process = scn->scn_phys.scn_to_process;
1771 ps->pss_processed = scn->scn_phys.scn_processed;
1772 ps->pss_errors = scn->scn_phys.scn_errors;
1773 ps->pss_state = scn->scn_phys.scn_state;
1774
1775 /* data not stored on disk */
1776 ps->pss_pass_start = spa->spa_scan_pass_start;
1777 ps->pss_pass_exam = spa->spa_scan_pass_exam;
1778
1779 return (0);
1780 }
1781
1782 boolean_t
1783 spa_debug_enabled(spa_t *spa)
1784 {
1785 return (spa->spa_debug);
1786 }
1787
1788 #if defined(_KERNEL) && defined(HAVE_SPL)
1789 /* Namespace manipulation */
1790 EXPORT_SYMBOL(spa_lookup);
1791 EXPORT_SYMBOL(spa_add);
1792 EXPORT_SYMBOL(spa_remove);
1793 EXPORT_SYMBOL(spa_next);
1794
1795 /* Refcount functions */
1796 EXPORT_SYMBOL(spa_open_ref);
1797 EXPORT_SYMBOL(spa_close);
1798 EXPORT_SYMBOL(spa_refcount_zero);
1799
1800 /* Pool configuration lock */
1801 EXPORT_SYMBOL(spa_config_tryenter);
1802 EXPORT_SYMBOL(spa_config_enter);
1803 EXPORT_SYMBOL(spa_config_exit);
1804 EXPORT_SYMBOL(spa_config_held);
1805
1806 /* Pool vdev add/remove lock */
1807 EXPORT_SYMBOL(spa_vdev_enter);
1808 EXPORT_SYMBOL(spa_vdev_exit);
1809
1810 /* Pool vdev state change lock */
1811 EXPORT_SYMBOL(spa_vdev_state_enter);
1812 EXPORT_SYMBOL(spa_vdev_state_exit);
1813
1814 /* Accessor functions */
1815 EXPORT_SYMBOL(spa_shutting_down);
1816 EXPORT_SYMBOL(spa_get_dsl);
1817 EXPORT_SYMBOL(spa_get_rootblkptr);
1818 EXPORT_SYMBOL(spa_set_rootblkptr);
1819 EXPORT_SYMBOL(spa_altroot);
1820 EXPORT_SYMBOL(spa_sync_pass);
1821 EXPORT_SYMBOL(spa_name);
1822 EXPORT_SYMBOL(spa_guid);
1823 EXPORT_SYMBOL(spa_last_synced_txg);
1824 EXPORT_SYMBOL(spa_first_txg);
1825 EXPORT_SYMBOL(spa_syncing_txg);
1826 EXPORT_SYMBOL(spa_version);
1827 EXPORT_SYMBOL(spa_state);
1828 EXPORT_SYMBOL(spa_load_state);
1829 EXPORT_SYMBOL(spa_freeze_txg);
1830 EXPORT_SYMBOL(spa_get_asize);
1831 EXPORT_SYMBOL(spa_get_dspace);
1832 EXPORT_SYMBOL(spa_update_dspace);
1833 EXPORT_SYMBOL(spa_deflate);
1834 EXPORT_SYMBOL(spa_normal_class);
1835 EXPORT_SYMBOL(spa_log_class);
1836 EXPORT_SYMBOL(spa_max_replication);
1837 EXPORT_SYMBOL(spa_prev_software_version);
1838 EXPORT_SYMBOL(spa_get_failmode);
1839 EXPORT_SYMBOL(spa_suspended);
1840 EXPORT_SYMBOL(spa_bootfs);
1841 EXPORT_SYMBOL(spa_delegation);
1842 EXPORT_SYMBOL(spa_meta_objset);
1843
1844 /* Miscellaneous support routines */
1845 EXPORT_SYMBOL(spa_rename);
1846 EXPORT_SYMBOL(spa_guid_exists);
1847 EXPORT_SYMBOL(spa_strdup);
1848 EXPORT_SYMBOL(spa_strfree);
1849 EXPORT_SYMBOL(spa_get_random);
1850 EXPORT_SYMBOL(spa_generate_guid);
1851 EXPORT_SYMBOL(sprintf_blkptr);
1852 EXPORT_SYMBOL(spa_freeze);
1853 EXPORT_SYMBOL(spa_upgrade);
1854 EXPORT_SYMBOL(spa_evict_all);
1855 EXPORT_SYMBOL(spa_lookup_by_guid);
1856 EXPORT_SYMBOL(spa_has_spare);
1857 EXPORT_SYMBOL(dva_get_dsize_sync);
1858 EXPORT_SYMBOL(bp_get_dsize_sync);
1859 EXPORT_SYMBOL(bp_get_dsize);
1860 EXPORT_SYMBOL(spa_has_slogs);
1861 EXPORT_SYMBOL(spa_is_root);
1862 EXPORT_SYMBOL(spa_writeable);
1863 EXPORT_SYMBOL(spa_mode);
1864
1865 EXPORT_SYMBOL(spa_namespace_lock);
1866
1867 module_param(zfs_deadman_synctime, ulong, 0644);
1868 MODULE_PARM_DESC(zfs_deadman_synctime,"Expire in units of zfs_txg_synctime_ms");
1869
1870 module_param(zfs_deadman_enabled, int, 0644);
1871 MODULE_PARM_DESC(zfs_deadman_enabled, "Enable deadman timer");
1872 #endif