]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa_misc.c
Illumos #1748: desire support for reguid in zfs
[mirror_zfs.git] / module / zfs / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/zio.h>
30 #include <sys/zio_checksum.h>
31 #include <sys/zio_compress.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/zap.h>
35 #include <sys/zil.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/uberblock_impl.h>
39 #include <sys/txg.h>
40 #include <sys/avl.h>
41 #include <sys/unique.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/fm/util.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/arc.h>
50 #include <sys/ddt.h>
51 #include "zfs_prop.h"
52
53 /*
54 * SPA locking
55 *
56 * There are four basic locks for managing spa_t structures:
57 *
58 * spa_namespace_lock (global mutex)
59 *
60 * This lock must be acquired to do any of the following:
61 *
62 * - Lookup a spa_t by name
63 * - Add or remove a spa_t from the namespace
64 * - Increase spa_refcount from non-zero
65 * - Check if spa_refcount is zero
66 * - Rename a spa_t
67 * - add/remove/attach/detach devices
68 * - Held for the duration of create/destroy/import/export
69 *
70 * It does not need to handle recursion. A create or destroy may
71 * reference objects (files or zvols) in other pools, but by
72 * definition they must have an existing reference, and will never need
73 * to lookup a spa_t by name.
74 *
75 * spa_refcount (per-spa refcount_t protected by mutex)
76 *
77 * This reference count keep track of any active users of the spa_t. The
78 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
79 * the refcount is never really 'zero' - opening a pool implicitly keeps
80 * some references in the DMU. Internally we check against spa_minref, but
81 * present the image of a zero/non-zero value to consumers.
82 *
83 * spa_config_lock[] (per-spa array of rwlocks)
84 *
85 * This protects the spa_t from config changes, and must be held in
86 * the following circumstances:
87 *
88 * - RW_READER to perform I/O to the spa
89 * - RW_WRITER to change the vdev config
90 *
91 * The locking order is fairly straightforward:
92 *
93 * spa_namespace_lock -> spa_refcount
94 *
95 * The namespace lock must be acquired to increase the refcount from 0
96 * or to check if it is zero.
97 *
98 * spa_refcount -> spa_config_lock[]
99 *
100 * There must be at least one valid reference on the spa_t to acquire
101 * the config lock.
102 *
103 * spa_namespace_lock -> spa_config_lock[]
104 *
105 * The namespace lock must always be taken before the config lock.
106 *
107 *
108 * The spa_namespace_lock can be acquired directly and is globally visible.
109 *
110 * The namespace is manipulated using the following functions, all of which
111 * require the spa_namespace_lock to be held.
112 *
113 * spa_lookup() Lookup a spa_t by name.
114 *
115 * spa_add() Create a new spa_t in the namespace.
116 *
117 * spa_remove() Remove a spa_t from the namespace. This also
118 * frees up any memory associated with the spa_t.
119 *
120 * spa_next() Returns the next spa_t in the system, or the
121 * first if NULL is passed.
122 *
123 * spa_evict_all() Shutdown and remove all spa_t structures in
124 * the system.
125 *
126 * spa_guid_exists() Determine whether a pool/device guid exists.
127 *
128 * The spa_refcount is manipulated using the following functions:
129 *
130 * spa_open_ref() Adds a reference to the given spa_t. Must be
131 * called with spa_namespace_lock held if the
132 * refcount is currently zero.
133 *
134 * spa_close() Remove a reference from the spa_t. This will
135 * not free the spa_t or remove it from the
136 * namespace. No locking is required.
137 *
138 * spa_refcount_zero() Returns true if the refcount is currently
139 * zero. Must be called with spa_namespace_lock
140 * held.
141 *
142 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
143 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
144 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
145 *
146 * To read the configuration, it suffices to hold one of these locks as reader.
147 * To modify the configuration, you must hold all locks as writer. To modify
148 * vdev state without altering the vdev tree's topology (e.g. online/offline),
149 * you must hold SCL_STATE and SCL_ZIO as writer.
150 *
151 * We use these distinct config locks to avoid recursive lock entry.
152 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
153 * block allocations (SCL_ALLOC), which may require reading space maps
154 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
155 *
156 * The spa config locks cannot be normal rwlocks because we need the
157 * ability to hand off ownership. For example, SCL_ZIO is acquired
158 * by the issuing thread and later released by an interrupt thread.
159 * They do, however, obey the usual write-wanted semantics to prevent
160 * writer (i.e. system administrator) starvation.
161 *
162 * The lock acquisition rules are as follows:
163 *
164 * SCL_CONFIG
165 * Protects changes to the vdev tree topology, such as vdev
166 * add/remove/attach/detach. Protects the dirty config list
167 * (spa_config_dirty_list) and the set of spares and l2arc devices.
168 *
169 * SCL_STATE
170 * Protects changes to pool state and vdev state, such as vdev
171 * online/offline/fault/degrade/clear. Protects the dirty state list
172 * (spa_state_dirty_list) and global pool state (spa_state).
173 *
174 * SCL_ALLOC
175 * Protects changes to metaslab groups and classes.
176 * Held as reader by metaslab_alloc() and metaslab_claim().
177 *
178 * SCL_ZIO
179 * Held by bp-level zios (those which have no io_vd upon entry)
180 * to prevent changes to the vdev tree. The bp-level zio implicitly
181 * protects all of its vdev child zios, which do not hold SCL_ZIO.
182 *
183 * SCL_FREE
184 * Protects changes to metaslab groups and classes.
185 * Held as reader by metaslab_free(). SCL_FREE is distinct from
186 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
187 * blocks in zio_done() while another i/o that holds either
188 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
189 *
190 * SCL_VDEV
191 * Held as reader to prevent changes to the vdev tree during trivial
192 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
193 * other locks, and lower than all of them, to ensure that it's safe
194 * to acquire regardless of caller context.
195 *
196 * In addition, the following rules apply:
197 *
198 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
199 * The lock ordering is SCL_CONFIG > spa_props_lock.
200 *
201 * (b) I/O operations on leaf vdevs. For any zio operation that takes
202 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
203 * or zio_write_phys() -- the caller must ensure that the config cannot
204 * cannot change in the interim, and that the vdev cannot be reopened.
205 * SCL_STATE as reader suffices for both.
206 *
207 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
208 *
209 * spa_vdev_enter() Acquire the namespace lock and the config lock
210 * for writing.
211 *
212 * spa_vdev_exit() Release the config lock, wait for all I/O
213 * to complete, sync the updated configs to the
214 * cache, and release the namespace lock.
215 *
216 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
217 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
218 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
219 *
220 * spa_rename() is also implemented within this file since is requires
221 * manipulation of the namespace.
222 */
223
224 static avl_tree_t spa_namespace_avl;
225 kmutex_t spa_namespace_lock;
226 static kcondvar_t spa_namespace_cv;
227 static int spa_active_count;
228 int spa_max_replication_override = SPA_DVAS_PER_BP;
229
230 static kmutex_t spa_spare_lock;
231 static avl_tree_t spa_spare_avl;
232 static kmutex_t spa_l2cache_lock;
233 static avl_tree_t spa_l2cache_avl;
234
235 kmem_cache_t *spa_buffer_pool;
236 int spa_mode_global;
237
238 /*
239 * ==========================================================================
240 * SPA config locking
241 * ==========================================================================
242 */
243 static void
244 spa_config_lock_init(spa_t *spa)
245 {
246 int i;
247
248 for (i = 0; i < SCL_LOCKS; i++) {
249 spa_config_lock_t *scl = &spa->spa_config_lock[i];
250 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
251 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
252 refcount_create(&scl->scl_count);
253 scl->scl_writer = NULL;
254 scl->scl_write_wanted = 0;
255 }
256 }
257
258 static void
259 spa_config_lock_destroy(spa_t *spa)
260 {
261 int i;
262
263 for (i = 0; i < SCL_LOCKS; i++) {
264 spa_config_lock_t *scl = &spa->spa_config_lock[i];
265 mutex_destroy(&scl->scl_lock);
266 cv_destroy(&scl->scl_cv);
267 refcount_destroy(&scl->scl_count);
268 ASSERT(scl->scl_writer == NULL);
269 ASSERT(scl->scl_write_wanted == 0);
270 }
271 }
272
273 int
274 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
275 {
276 int i;
277
278 for (i = 0; i < SCL_LOCKS; i++) {
279 spa_config_lock_t *scl = &spa->spa_config_lock[i];
280 if (!(locks & (1 << i)))
281 continue;
282 mutex_enter(&scl->scl_lock);
283 if (rw == RW_READER) {
284 if (scl->scl_writer || scl->scl_write_wanted) {
285 mutex_exit(&scl->scl_lock);
286 spa_config_exit(spa, locks ^ (1 << i), tag);
287 return (0);
288 }
289 } else {
290 ASSERT(scl->scl_writer != curthread);
291 if (!refcount_is_zero(&scl->scl_count)) {
292 mutex_exit(&scl->scl_lock);
293 spa_config_exit(spa, locks ^ (1 << i), tag);
294 return (0);
295 }
296 scl->scl_writer = curthread;
297 }
298 (void) refcount_add(&scl->scl_count, tag);
299 mutex_exit(&scl->scl_lock);
300 }
301 return (1);
302 }
303
304 void
305 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
306 {
307 int wlocks_held = 0;
308 int i;
309
310 for (i = 0; i < SCL_LOCKS; i++) {
311 spa_config_lock_t *scl = &spa->spa_config_lock[i];
312 if (scl->scl_writer == curthread)
313 wlocks_held |= (1 << i);
314 if (!(locks & (1 << i)))
315 continue;
316 mutex_enter(&scl->scl_lock);
317 if (rw == RW_READER) {
318 while (scl->scl_writer || scl->scl_write_wanted) {
319 cv_wait(&scl->scl_cv, &scl->scl_lock);
320 }
321 } else {
322 ASSERT(scl->scl_writer != curthread);
323 while (!refcount_is_zero(&scl->scl_count)) {
324 scl->scl_write_wanted++;
325 cv_wait(&scl->scl_cv, &scl->scl_lock);
326 scl->scl_write_wanted--;
327 }
328 scl->scl_writer = curthread;
329 }
330 (void) refcount_add(&scl->scl_count, tag);
331 mutex_exit(&scl->scl_lock);
332 }
333 ASSERT(wlocks_held <= locks);
334 }
335
336 void
337 spa_config_exit(spa_t *spa, int locks, void *tag)
338 {
339 int i;
340
341 for (i = SCL_LOCKS - 1; i >= 0; i--) {
342 spa_config_lock_t *scl = &spa->spa_config_lock[i];
343 if (!(locks & (1 << i)))
344 continue;
345 mutex_enter(&scl->scl_lock);
346 ASSERT(!refcount_is_zero(&scl->scl_count));
347 if (refcount_remove(&scl->scl_count, tag) == 0) {
348 ASSERT(scl->scl_writer == NULL ||
349 scl->scl_writer == curthread);
350 scl->scl_writer = NULL; /* OK in either case */
351 cv_broadcast(&scl->scl_cv);
352 }
353 mutex_exit(&scl->scl_lock);
354 }
355 }
356
357 int
358 spa_config_held(spa_t *spa, int locks, krw_t rw)
359 {
360 int i, locks_held = 0;
361
362 for (i = 0; i < SCL_LOCKS; i++) {
363 spa_config_lock_t *scl = &spa->spa_config_lock[i];
364 if (!(locks & (1 << i)))
365 continue;
366 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
367 (rw == RW_WRITER && scl->scl_writer == curthread))
368 locks_held |= 1 << i;
369 }
370
371 return (locks_held);
372 }
373
374 /*
375 * ==========================================================================
376 * SPA namespace functions
377 * ==========================================================================
378 */
379
380 /*
381 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
382 * Returns NULL if no matching spa_t is found.
383 */
384 spa_t *
385 spa_lookup(const char *name)
386 {
387 static spa_t search; /* spa_t is large; don't allocate on stack */
388 spa_t *spa;
389 avl_index_t where;
390 char c = 0;
391 char *cp;
392
393 ASSERT(MUTEX_HELD(&spa_namespace_lock));
394
395 /*
396 * If it's a full dataset name, figure out the pool name and
397 * just use that.
398 */
399 cp = strpbrk(name, "/@");
400 if (cp) {
401 c = *cp;
402 *cp = '\0';
403 }
404
405 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
406 spa = avl_find(&spa_namespace_avl, &search, &where);
407
408 if (cp)
409 *cp = c;
410
411 return (spa);
412 }
413
414 /*
415 * Create an uninitialized spa_t with the given name. Requires
416 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
417 * exist by calling spa_lookup() first.
418 */
419 spa_t *
420 spa_add(const char *name, nvlist_t *config, const char *altroot)
421 {
422 spa_t *spa;
423 spa_config_dirent_t *dp;
424 int t;
425
426 ASSERT(MUTEX_HELD(&spa_namespace_lock));
427
428 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP | KM_NODEBUG);
429
430 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
431 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
432 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
433 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
434 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
435 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
436 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
437 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
438 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
439
440 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
441 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
442 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
443 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
444
445 for (t = 0; t < TXG_SIZE; t++)
446 bplist_create(&spa->spa_free_bplist[t]);
447
448 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
449 spa->spa_state = POOL_STATE_UNINITIALIZED;
450 spa->spa_freeze_txg = UINT64_MAX;
451 spa->spa_final_txg = UINT64_MAX;
452 spa->spa_load_max_txg = UINT64_MAX;
453 spa->spa_proc = &p0;
454 spa->spa_proc_state = SPA_PROC_NONE;
455
456 refcount_create(&spa->spa_refcount);
457 spa_config_lock_init(spa);
458
459 avl_add(&spa_namespace_avl, spa);
460
461 /*
462 * Set the alternate root, if there is one.
463 */
464 if (altroot) {
465 spa->spa_root = spa_strdup(altroot);
466 spa_active_count++;
467 }
468
469 /*
470 * Every pool starts with the default cachefile
471 */
472 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
473 offsetof(spa_config_dirent_t, scd_link));
474
475 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
476 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
477 list_insert_head(&spa->spa_config_list, dp);
478
479 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
480 KM_SLEEP) == 0);
481
482 if (config != NULL)
483 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
484
485 return (spa);
486 }
487
488 /*
489 * Removes a spa_t from the namespace, freeing up any memory used. Requires
490 * spa_namespace_lock. This is called only after the spa_t has been closed and
491 * deactivated.
492 */
493 void
494 spa_remove(spa_t *spa)
495 {
496 spa_config_dirent_t *dp;
497 int t;
498
499 ASSERT(MUTEX_HELD(&spa_namespace_lock));
500 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
501
502 nvlist_free(spa->spa_config_splitting);
503
504 avl_remove(&spa_namespace_avl, spa);
505 cv_broadcast(&spa_namespace_cv);
506
507 if (spa->spa_root) {
508 spa_strfree(spa->spa_root);
509 spa_active_count--;
510 }
511
512 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
513 list_remove(&spa->spa_config_list, dp);
514 if (dp->scd_path != NULL)
515 spa_strfree(dp->scd_path);
516 kmem_free(dp, sizeof (spa_config_dirent_t));
517 }
518
519 list_destroy(&spa->spa_config_list);
520
521 nvlist_free(spa->spa_load_info);
522 spa_config_set(spa, NULL);
523
524 refcount_destroy(&spa->spa_refcount);
525
526 spa_config_lock_destroy(spa);
527
528 for (t = 0; t < TXG_SIZE; t++)
529 bplist_destroy(&spa->spa_free_bplist[t]);
530
531 cv_destroy(&spa->spa_async_cv);
532 cv_destroy(&spa->spa_proc_cv);
533 cv_destroy(&spa->spa_scrub_io_cv);
534 cv_destroy(&spa->spa_suspend_cv);
535
536 mutex_destroy(&spa->spa_async_lock);
537 mutex_destroy(&spa->spa_errlist_lock);
538 mutex_destroy(&spa->spa_errlog_lock);
539 mutex_destroy(&spa->spa_history_lock);
540 mutex_destroy(&spa->spa_proc_lock);
541 mutex_destroy(&spa->spa_props_lock);
542 mutex_destroy(&spa->spa_scrub_lock);
543 mutex_destroy(&spa->spa_suspend_lock);
544 mutex_destroy(&spa->spa_vdev_top_lock);
545
546 kmem_free(spa, sizeof (spa_t));
547 }
548
549 /*
550 * Given a pool, return the next pool in the namespace, or NULL if there is
551 * none. If 'prev' is NULL, return the first pool.
552 */
553 spa_t *
554 spa_next(spa_t *prev)
555 {
556 ASSERT(MUTEX_HELD(&spa_namespace_lock));
557
558 if (prev)
559 return (AVL_NEXT(&spa_namespace_avl, prev));
560 else
561 return (avl_first(&spa_namespace_avl));
562 }
563
564 /*
565 * ==========================================================================
566 * SPA refcount functions
567 * ==========================================================================
568 */
569
570 /*
571 * Add a reference to the given spa_t. Must have at least one reference, or
572 * have the namespace lock held.
573 */
574 void
575 spa_open_ref(spa_t *spa, void *tag)
576 {
577 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
578 MUTEX_HELD(&spa_namespace_lock));
579 (void) refcount_add(&spa->spa_refcount, tag);
580 }
581
582 /*
583 * Remove a reference to the given spa_t. Must have at least one reference, or
584 * have the namespace lock held.
585 */
586 void
587 spa_close(spa_t *spa, void *tag)
588 {
589 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
590 MUTEX_HELD(&spa_namespace_lock));
591 (void) refcount_remove(&spa->spa_refcount, tag);
592 }
593
594 /*
595 * Check to see if the spa refcount is zero. Must be called with
596 * spa_namespace_lock held. We really compare against spa_minref, which is the
597 * number of references acquired when opening a pool
598 */
599 boolean_t
600 spa_refcount_zero(spa_t *spa)
601 {
602 ASSERT(MUTEX_HELD(&spa_namespace_lock));
603
604 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
605 }
606
607 /*
608 * ==========================================================================
609 * SPA spare and l2cache tracking
610 * ==========================================================================
611 */
612
613 /*
614 * Hot spares and cache devices are tracked using the same code below,
615 * for 'auxiliary' devices.
616 */
617
618 typedef struct spa_aux {
619 uint64_t aux_guid;
620 uint64_t aux_pool;
621 avl_node_t aux_avl;
622 int aux_count;
623 } spa_aux_t;
624
625 static int
626 spa_aux_compare(const void *a, const void *b)
627 {
628 const spa_aux_t *sa = a;
629 const spa_aux_t *sb = b;
630
631 if (sa->aux_guid < sb->aux_guid)
632 return (-1);
633 else if (sa->aux_guid > sb->aux_guid)
634 return (1);
635 else
636 return (0);
637 }
638
639 void
640 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
641 {
642 avl_index_t where;
643 spa_aux_t search;
644 spa_aux_t *aux;
645
646 search.aux_guid = vd->vdev_guid;
647 if ((aux = avl_find(avl, &search, &where)) != NULL) {
648 aux->aux_count++;
649 } else {
650 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
651 aux->aux_guid = vd->vdev_guid;
652 aux->aux_count = 1;
653 avl_insert(avl, aux, where);
654 }
655 }
656
657 void
658 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
659 {
660 spa_aux_t search;
661 spa_aux_t *aux;
662 avl_index_t where;
663
664 search.aux_guid = vd->vdev_guid;
665 aux = avl_find(avl, &search, &where);
666
667 ASSERT(aux != NULL);
668
669 if (--aux->aux_count == 0) {
670 avl_remove(avl, aux);
671 kmem_free(aux, sizeof (spa_aux_t));
672 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
673 aux->aux_pool = 0ULL;
674 }
675 }
676
677 boolean_t
678 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
679 {
680 spa_aux_t search, *found;
681
682 search.aux_guid = guid;
683 found = avl_find(avl, &search, NULL);
684
685 if (pool) {
686 if (found)
687 *pool = found->aux_pool;
688 else
689 *pool = 0ULL;
690 }
691
692 if (refcnt) {
693 if (found)
694 *refcnt = found->aux_count;
695 else
696 *refcnt = 0;
697 }
698
699 return (found != NULL);
700 }
701
702 void
703 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
704 {
705 spa_aux_t search, *found;
706 avl_index_t where;
707
708 search.aux_guid = vd->vdev_guid;
709 found = avl_find(avl, &search, &where);
710 ASSERT(found != NULL);
711 ASSERT(found->aux_pool == 0ULL);
712
713 found->aux_pool = spa_guid(vd->vdev_spa);
714 }
715
716 /*
717 * Spares are tracked globally due to the following constraints:
718 *
719 * - A spare may be part of multiple pools.
720 * - A spare may be added to a pool even if it's actively in use within
721 * another pool.
722 * - A spare in use in any pool can only be the source of a replacement if
723 * the target is a spare in the same pool.
724 *
725 * We keep track of all spares on the system through the use of a reference
726 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
727 * spare, then we bump the reference count in the AVL tree. In addition, we set
728 * the 'vdev_isspare' member to indicate that the device is a spare (active or
729 * inactive). When a spare is made active (used to replace a device in the
730 * pool), we also keep track of which pool its been made a part of.
731 *
732 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
733 * called under the spa_namespace lock as part of vdev reconfiguration. The
734 * separate spare lock exists for the status query path, which does not need to
735 * be completely consistent with respect to other vdev configuration changes.
736 */
737
738 static int
739 spa_spare_compare(const void *a, const void *b)
740 {
741 return (spa_aux_compare(a, b));
742 }
743
744 void
745 spa_spare_add(vdev_t *vd)
746 {
747 mutex_enter(&spa_spare_lock);
748 ASSERT(!vd->vdev_isspare);
749 spa_aux_add(vd, &spa_spare_avl);
750 vd->vdev_isspare = B_TRUE;
751 mutex_exit(&spa_spare_lock);
752 }
753
754 void
755 spa_spare_remove(vdev_t *vd)
756 {
757 mutex_enter(&spa_spare_lock);
758 ASSERT(vd->vdev_isspare);
759 spa_aux_remove(vd, &spa_spare_avl);
760 vd->vdev_isspare = B_FALSE;
761 mutex_exit(&spa_spare_lock);
762 }
763
764 boolean_t
765 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
766 {
767 boolean_t found;
768
769 mutex_enter(&spa_spare_lock);
770 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
771 mutex_exit(&spa_spare_lock);
772
773 return (found);
774 }
775
776 void
777 spa_spare_activate(vdev_t *vd)
778 {
779 mutex_enter(&spa_spare_lock);
780 ASSERT(vd->vdev_isspare);
781 spa_aux_activate(vd, &spa_spare_avl);
782 mutex_exit(&spa_spare_lock);
783 }
784
785 /*
786 * Level 2 ARC devices are tracked globally for the same reasons as spares.
787 * Cache devices currently only support one pool per cache device, and so
788 * for these devices the aux reference count is currently unused beyond 1.
789 */
790
791 static int
792 spa_l2cache_compare(const void *a, const void *b)
793 {
794 return (spa_aux_compare(a, b));
795 }
796
797 void
798 spa_l2cache_add(vdev_t *vd)
799 {
800 mutex_enter(&spa_l2cache_lock);
801 ASSERT(!vd->vdev_isl2cache);
802 spa_aux_add(vd, &spa_l2cache_avl);
803 vd->vdev_isl2cache = B_TRUE;
804 mutex_exit(&spa_l2cache_lock);
805 }
806
807 void
808 spa_l2cache_remove(vdev_t *vd)
809 {
810 mutex_enter(&spa_l2cache_lock);
811 ASSERT(vd->vdev_isl2cache);
812 spa_aux_remove(vd, &spa_l2cache_avl);
813 vd->vdev_isl2cache = B_FALSE;
814 mutex_exit(&spa_l2cache_lock);
815 }
816
817 boolean_t
818 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
819 {
820 boolean_t found;
821
822 mutex_enter(&spa_l2cache_lock);
823 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
824 mutex_exit(&spa_l2cache_lock);
825
826 return (found);
827 }
828
829 void
830 spa_l2cache_activate(vdev_t *vd)
831 {
832 mutex_enter(&spa_l2cache_lock);
833 ASSERT(vd->vdev_isl2cache);
834 spa_aux_activate(vd, &spa_l2cache_avl);
835 mutex_exit(&spa_l2cache_lock);
836 }
837
838 /*
839 * ==========================================================================
840 * SPA vdev locking
841 * ==========================================================================
842 */
843
844 /*
845 * Lock the given spa_t for the purpose of adding or removing a vdev.
846 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
847 * It returns the next transaction group for the spa_t.
848 */
849 uint64_t
850 spa_vdev_enter(spa_t *spa)
851 {
852 mutex_enter(&spa->spa_vdev_top_lock);
853 mutex_enter(&spa_namespace_lock);
854 return (spa_vdev_config_enter(spa));
855 }
856
857 /*
858 * Internal implementation for spa_vdev_enter(). Used when a vdev
859 * operation requires multiple syncs (i.e. removing a device) while
860 * keeping the spa_namespace_lock held.
861 */
862 uint64_t
863 spa_vdev_config_enter(spa_t *spa)
864 {
865 ASSERT(MUTEX_HELD(&spa_namespace_lock));
866
867 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
868
869 return (spa_last_synced_txg(spa) + 1);
870 }
871
872 /*
873 * Used in combination with spa_vdev_config_enter() to allow the syncing
874 * of multiple transactions without releasing the spa_namespace_lock.
875 */
876 void
877 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
878 {
879 int config_changed = B_FALSE;
880
881 ASSERT(MUTEX_HELD(&spa_namespace_lock));
882 ASSERT(txg > spa_last_synced_txg(spa));
883
884 spa->spa_pending_vdev = NULL;
885
886 /*
887 * Reassess the DTLs.
888 */
889 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
890
891 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
892 config_changed = B_TRUE;
893 spa->spa_config_generation++;
894 }
895
896 /*
897 * Verify the metaslab classes.
898 */
899 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
900 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
901
902 spa_config_exit(spa, SCL_ALL, spa);
903
904 /*
905 * Panic the system if the specified tag requires it. This
906 * is useful for ensuring that configurations are updated
907 * transactionally.
908 */
909 if (zio_injection_enabled)
910 zio_handle_panic_injection(spa, tag, 0);
911
912 /*
913 * Note: this txg_wait_synced() is important because it ensures
914 * that there won't be more than one config change per txg.
915 * This allows us to use the txg as the generation number.
916 */
917 if (error == 0)
918 txg_wait_synced(spa->spa_dsl_pool, txg);
919
920 if (vd != NULL) {
921 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
922 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
923 vdev_free(vd);
924 spa_config_exit(spa, SCL_ALL, spa);
925 }
926
927 /*
928 * If the config changed, update the config cache.
929 */
930 if (config_changed)
931 spa_config_sync(spa, B_FALSE, B_TRUE);
932 }
933
934 /*
935 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
936 * locking of spa_vdev_enter(), we also want make sure the transactions have
937 * synced to disk, and then update the global configuration cache with the new
938 * information.
939 */
940 int
941 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
942 {
943 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
944 mutex_exit(&spa_namespace_lock);
945 mutex_exit(&spa->spa_vdev_top_lock);
946
947 return (error);
948 }
949
950 /*
951 * Lock the given spa_t for the purpose of changing vdev state.
952 */
953 void
954 spa_vdev_state_enter(spa_t *spa, int oplocks)
955 {
956 int locks = SCL_STATE_ALL | oplocks;
957
958 /*
959 * Root pools may need to read of the underlying devfs filesystem
960 * when opening up a vdev. Unfortunately if we're holding the
961 * SCL_ZIO lock it will result in a deadlock when we try to issue
962 * the read from the root filesystem. Instead we "prefetch"
963 * the associated vnodes that we need prior to opening the
964 * underlying devices and cache them so that we can prevent
965 * any I/O when we are doing the actual open.
966 */
967 if (spa_is_root(spa)) {
968 int low = locks & ~(SCL_ZIO - 1);
969 int high = locks & ~low;
970
971 spa_config_enter(spa, high, spa, RW_WRITER);
972 vdev_hold(spa->spa_root_vdev);
973 spa_config_enter(spa, low, spa, RW_WRITER);
974 } else {
975 spa_config_enter(spa, locks, spa, RW_WRITER);
976 }
977 spa->spa_vdev_locks = locks;
978 }
979
980 int
981 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
982 {
983 boolean_t config_changed = B_FALSE;
984
985 if (vd != NULL || error == 0)
986 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
987 0, 0, B_FALSE);
988
989 if (vd != NULL) {
990 vdev_state_dirty(vd->vdev_top);
991 config_changed = B_TRUE;
992 spa->spa_config_generation++;
993 }
994
995 if (spa_is_root(spa))
996 vdev_rele(spa->spa_root_vdev);
997
998 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
999 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1000
1001 /*
1002 * If anything changed, wait for it to sync. This ensures that,
1003 * from the system administrator's perspective, zpool(1M) commands
1004 * are synchronous. This is important for things like zpool offline:
1005 * when the command completes, you expect no further I/O from ZFS.
1006 */
1007 if (vd != NULL)
1008 txg_wait_synced(spa->spa_dsl_pool, 0);
1009
1010 /*
1011 * If the config changed, update the config cache.
1012 */
1013 if (config_changed) {
1014 mutex_enter(&spa_namespace_lock);
1015 spa_config_sync(spa, B_FALSE, B_TRUE);
1016 mutex_exit(&spa_namespace_lock);
1017 }
1018
1019 return (error);
1020 }
1021
1022 /*
1023 * ==========================================================================
1024 * Miscellaneous functions
1025 * ==========================================================================
1026 */
1027
1028 /*
1029 * Rename a spa_t.
1030 */
1031 int
1032 spa_rename(const char *name, const char *newname)
1033 {
1034 spa_t *spa;
1035 int err;
1036
1037 /*
1038 * Lookup the spa_t and grab the config lock for writing. We need to
1039 * actually open the pool so that we can sync out the necessary labels.
1040 * It's OK to call spa_open() with the namespace lock held because we
1041 * allow recursive calls for other reasons.
1042 */
1043 mutex_enter(&spa_namespace_lock);
1044 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1045 mutex_exit(&spa_namespace_lock);
1046 return (err);
1047 }
1048
1049 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1050
1051 avl_remove(&spa_namespace_avl, spa);
1052 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1053 avl_add(&spa_namespace_avl, spa);
1054
1055 /*
1056 * Sync all labels to disk with the new names by marking the root vdev
1057 * dirty and waiting for it to sync. It will pick up the new pool name
1058 * during the sync.
1059 */
1060 vdev_config_dirty(spa->spa_root_vdev);
1061
1062 spa_config_exit(spa, SCL_ALL, FTAG);
1063
1064 txg_wait_synced(spa->spa_dsl_pool, 0);
1065
1066 /*
1067 * Sync the updated config cache.
1068 */
1069 spa_config_sync(spa, B_FALSE, B_TRUE);
1070
1071 spa_close(spa, FTAG);
1072
1073 mutex_exit(&spa_namespace_lock);
1074
1075 return (0);
1076 }
1077
1078 /*
1079 * Return the spa_t associated with given pool_guid, if it exists. If
1080 * device_guid is non-zero, determine whether the pool exists *and* contains
1081 * a device with the specified device_guid.
1082 */
1083 spa_t *
1084 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1085 {
1086 spa_t *spa;
1087 avl_tree_t *t = &spa_namespace_avl;
1088
1089 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1090
1091 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1092 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1093 continue;
1094 if (spa->spa_root_vdev == NULL)
1095 continue;
1096 if (spa_guid(spa) == pool_guid) {
1097 if (device_guid == 0)
1098 break;
1099
1100 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1101 device_guid) != NULL)
1102 break;
1103
1104 /*
1105 * Check any devices we may be in the process of adding.
1106 */
1107 if (spa->spa_pending_vdev) {
1108 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1109 device_guid) != NULL)
1110 break;
1111 }
1112 }
1113 }
1114
1115 return (spa);
1116 }
1117
1118 /*
1119 * Determine whether a pool with the given pool_guid exists.
1120 */
1121 boolean_t
1122 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1123 {
1124 return (spa_by_guid(pool_guid, device_guid) != NULL);
1125 }
1126
1127 char *
1128 spa_strdup(const char *s)
1129 {
1130 size_t len;
1131 char *new;
1132
1133 len = strlen(s);
1134 new = kmem_alloc(len + 1, KM_SLEEP);
1135 bcopy(s, new, len);
1136 new[len] = '\0';
1137
1138 return (new);
1139 }
1140
1141 void
1142 spa_strfree(char *s)
1143 {
1144 kmem_free(s, strlen(s) + 1);
1145 }
1146
1147 uint64_t
1148 spa_get_random(uint64_t range)
1149 {
1150 uint64_t r;
1151
1152 ASSERT(range != 0);
1153
1154 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1155
1156 return (r % range);
1157 }
1158
1159 uint64_t
1160 spa_generate_guid(spa_t *spa)
1161 {
1162 uint64_t guid = spa_get_random(-1ULL);
1163
1164 if (spa != NULL) {
1165 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1166 guid = spa_get_random(-1ULL);
1167 } else {
1168 while (guid == 0 || spa_guid_exists(guid, 0))
1169 guid = spa_get_random(-1ULL);
1170 }
1171
1172 return (guid);
1173 }
1174
1175 void
1176 sprintf_blkptr(char *buf, const blkptr_t *bp)
1177 {
1178 char *type = NULL;
1179 char *checksum = NULL;
1180 char *compress = NULL;
1181
1182 if (bp != NULL) {
1183 type = dmu_ot[BP_GET_TYPE(bp)].ot_name;
1184 checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1185 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1186 }
1187
1188 SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1189 }
1190
1191 void
1192 spa_freeze(spa_t *spa)
1193 {
1194 uint64_t freeze_txg = 0;
1195
1196 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1197 if (spa->spa_freeze_txg == UINT64_MAX) {
1198 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1199 spa->spa_freeze_txg = freeze_txg;
1200 }
1201 spa_config_exit(spa, SCL_ALL, FTAG);
1202 if (freeze_txg != 0)
1203 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1204 }
1205
1206 /*
1207 * This is a stripped-down version of strtoull, suitable only for converting
1208 * lowercase hexidecimal numbers that don't overflow.
1209 */
1210 uint64_t
1211 strtonum(const char *str, char **nptr)
1212 {
1213 uint64_t val = 0;
1214 char c;
1215 int digit;
1216
1217 while ((c = *str) != '\0') {
1218 if (c >= '0' && c <= '9')
1219 digit = c - '0';
1220 else if (c >= 'a' && c <= 'f')
1221 digit = 10 + c - 'a';
1222 else
1223 break;
1224
1225 val *= 16;
1226 val += digit;
1227
1228 str++;
1229 }
1230
1231 if (nptr)
1232 *nptr = (char *)str;
1233
1234 return (val);
1235 }
1236
1237 /*
1238 * ==========================================================================
1239 * Accessor functions
1240 * ==========================================================================
1241 */
1242
1243 boolean_t
1244 spa_shutting_down(spa_t *spa)
1245 {
1246 return (spa->spa_async_suspended);
1247 }
1248
1249 dsl_pool_t *
1250 spa_get_dsl(spa_t *spa)
1251 {
1252 return (spa->spa_dsl_pool);
1253 }
1254
1255 blkptr_t *
1256 spa_get_rootblkptr(spa_t *spa)
1257 {
1258 return (&spa->spa_ubsync.ub_rootbp);
1259 }
1260
1261 void
1262 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1263 {
1264 spa->spa_uberblock.ub_rootbp = *bp;
1265 }
1266
1267 void
1268 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1269 {
1270 if (spa->spa_root == NULL)
1271 buf[0] = '\0';
1272 else
1273 (void) strncpy(buf, spa->spa_root, buflen);
1274 }
1275
1276 int
1277 spa_sync_pass(spa_t *spa)
1278 {
1279 return (spa->spa_sync_pass);
1280 }
1281
1282 char *
1283 spa_name(spa_t *spa)
1284 {
1285 return (spa->spa_name);
1286 }
1287
1288 uint64_t
1289 spa_guid(spa_t *spa)
1290 {
1291 /*
1292 * If we fail to parse the config during spa_load(), we can go through
1293 * the error path (which posts an ereport) and end up here with no root
1294 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1295 * this case.
1296 */
1297 if (spa->spa_root_vdev != NULL)
1298 return (spa->spa_root_vdev->vdev_guid);
1299 else
1300 return (spa->spa_config_guid);
1301 }
1302
1303 uint64_t
1304 spa_load_guid(spa_t *spa)
1305 {
1306 /*
1307 * This is a GUID that exists solely as a reference for the
1308 * purposes of the arc. It is generated at load time, and
1309 * is never written to persistent storage.
1310 */
1311 return (spa->spa_load_guid);
1312 }
1313
1314 uint64_t
1315 spa_last_synced_txg(spa_t *spa)
1316 {
1317 return (spa->spa_ubsync.ub_txg);
1318 }
1319
1320 uint64_t
1321 spa_first_txg(spa_t *spa)
1322 {
1323 return (spa->spa_first_txg);
1324 }
1325
1326 uint64_t
1327 spa_syncing_txg(spa_t *spa)
1328 {
1329 return (spa->spa_syncing_txg);
1330 }
1331
1332 pool_state_t
1333 spa_state(spa_t *spa)
1334 {
1335 return (spa->spa_state);
1336 }
1337
1338 spa_load_state_t
1339 spa_load_state(spa_t *spa)
1340 {
1341 return (spa->spa_load_state);
1342 }
1343
1344 uint64_t
1345 spa_freeze_txg(spa_t *spa)
1346 {
1347 return (spa->spa_freeze_txg);
1348 }
1349
1350 /* ARGSUSED */
1351 uint64_t
1352 spa_get_asize(spa_t *spa, uint64_t lsize)
1353 {
1354 /*
1355 * The worst case is single-sector max-parity RAID-Z blocks, in which
1356 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
1357 * times the size; so just assume that. Add to this the fact that
1358 * we can have up to 3 DVAs per bp, and one more factor of 2 because
1359 * the block may be dittoed with up to 3 DVAs by ddt_sync().
1360 */
1361 return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
1362 }
1363
1364 uint64_t
1365 spa_get_dspace(spa_t *spa)
1366 {
1367 return (spa->spa_dspace);
1368 }
1369
1370 void
1371 spa_update_dspace(spa_t *spa)
1372 {
1373 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1374 ddt_get_dedup_dspace(spa);
1375 }
1376
1377 /*
1378 * Return the failure mode that has been set to this pool. The default
1379 * behavior will be to block all I/Os when a complete failure occurs.
1380 */
1381 uint8_t
1382 spa_get_failmode(spa_t *spa)
1383 {
1384 return (spa->spa_failmode);
1385 }
1386
1387 boolean_t
1388 spa_suspended(spa_t *spa)
1389 {
1390 return (spa->spa_suspended);
1391 }
1392
1393 uint64_t
1394 spa_version(spa_t *spa)
1395 {
1396 return (spa->spa_ubsync.ub_version);
1397 }
1398
1399 boolean_t
1400 spa_deflate(spa_t *spa)
1401 {
1402 return (spa->spa_deflate);
1403 }
1404
1405 metaslab_class_t *
1406 spa_normal_class(spa_t *spa)
1407 {
1408 return (spa->spa_normal_class);
1409 }
1410
1411 metaslab_class_t *
1412 spa_log_class(spa_t *spa)
1413 {
1414 return (spa->spa_log_class);
1415 }
1416
1417 int
1418 spa_max_replication(spa_t *spa)
1419 {
1420 /*
1421 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1422 * handle BPs with more than one DVA allocated. Set our max
1423 * replication level accordingly.
1424 */
1425 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1426 return (1);
1427 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1428 }
1429
1430 int
1431 spa_prev_software_version(spa_t *spa)
1432 {
1433 return (spa->spa_prev_software_version);
1434 }
1435
1436 uint64_t
1437 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1438 {
1439 uint64_t asize = DVA_GET_ASIZE(dva);
1440 uint64_t dsize = asize;
1441
1442 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1443
1444 if (asize != 0 && spa->spa_deflate) {
1445 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1446 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1447 }
1448
1449 return (dsize);
1450 }
1451
1452 uint64_t
1453 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1454 {
1455 uint64_t dsize = 0;
1456 int d;
1457
1458 for (d = 0; d < SPA_DVAS_PER_BP; d++)
1459 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1460
1461 return (dsize);
1462 }
1463
1464 uint64_t
1465 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1466 {
1467 uint64_t dsize = 0;
1468 int d;
1469
1470 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1471
1472 for (d = 0; d < SPA_DVAS_PER_BP; d++)
1473 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1474
1475 spa_config_exit(spa, SCL_VDEV, FTAG);
1476
1477 return (dsize);
1478 }
1479
1480 /*
1481 * ==========================================================================
1482 * Initialization and Termination
1483 * ==========================================================================
1484 */
1485
1486 static int
1487 spa_name_compare(const void *a1, const void *a2)
1488 {
1489 const spa_t *s1 = a1;
1490 const spa_t *s2 = a2;
1491 int s;
1492
1493 s = strcmp(s1->spa_name, s2->spa_name);
1494 if (s > 0)
1495 return (1);
1496 if (s < 0)
1497 return (-1);
1498 return (0);
1499 }
1500
1501 void
1502 spa_boot_init(void)
1503 {
1504 spa_config_load();
1505 }
1506
1507 void
1508 spa_init(int mode)
1509 {
1510 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1511 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1512 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1513 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1514
1515 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1516 offsetof(spa_t, spa_avl));
1517
1518 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1519 offsetof(spa_aux_t, aux_avl));
1520
1521 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1522 offsetof(spa_aux_t, aux_avl));
1523
1524 spa_mode_global = mode;
1525
1526 fm_init();
1527 refcount_init();
1528 unique_init();
1529 zio_init();
1530 dmu_init();
1531 zil_init();
1532 vdev_cache_stat_init();
1533 zfs_prop_init();
1534 zpool_prop_init();
1535 spa_config_load();
1536 l2arc_start();
1537 }
1538
1539 void
1540 spa_fini(void)
1541 {
1542 l2arc_stop();
1543
1544 spa_evict_all();
1545
1546 vdev_cache_stat_fini();
1547 zil_fini();
1548 dmu_fini();
1549 zio_fini();
1550 unique_fini();
1551 refcount_fini();
1552 fm_fini();
1553
1554 avl_destroy(&spa_namespace_avl);
1555 avl_destroy(&spa_spare_avl);
1556 avl_destroy(&spa_l2cache_avl);
1557
1558 cv_destroy(&spa_namespace_cv);
1559 mutex_destroy(&spa_namespace_lock);
1560 mutex_destroy(&spa_spare_lock);
1561 mutex_destroy(&spa_l2cache_lock);
1562 }
1563
1564 /*
1565 * Return whether this pool has slogs. No locking needed.
1566 * It's not a problem if the wrong answer is returned as it's only for
1567 * performance and not correctness
1568 */
1569 boolean_t
1570 spa_has_slogs(spa_t *spa)
1571 {
1572 return (spa->spa_log_class->mc_rotor != NULL);
1573 }
1574
1575 spa_log_state_t
1576 spa_get_log_state(spa_t *spa)
1577 {
1578 return (spa->spa_log_state);
1579 }
1580
1581 void
1582 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1583 {
1584 spa->spa_log_state = state;
1585 }
1586
1587 boolean_t
1588 spa_is_root(spa_t *spa)
1589 {
1590 return (spa->spa_is_root);
1591 }
1592
1593 boolean_t
1594 spa_writeable(spa_t *spa)
1595 {
1596 return (!!(spa->spa_mode & FWRITE));
1597 }
1598
1599 int
1600 spa_mode(spa_t *spa)
1601 {
1602 return (spa->spa_mode);
1603 }
1604
1605 uint64_t
1606 spa_bootfs(spa_t *spa)
1607 {
1608 return (spa->spa_bootfs);
1609 }
1610
1611 uint64_t
1612 spa_delegation(spa_t *spa)
1613 {
1614 return (spa->spa_delegation);
1615 }
1616
1617 objset_t *
1618 spa_meta_objset(spa_t *spa)
1619 {
1620 return (spa->spa_meta_objset);
1621 }
1622
1623 enum zio_checksum
1624 spa_dedup_checksum(spa_t *spa)
1625 {
1626 return (spa->spa_dedup_checksum);
1627 }
1628
1629 /*
1630 * Reset pool scan stat per scan pass (or reboot).
1631 */
1632 void
1633 spa_scan_stat_init(spa_t *spa)
1634 {
1635 /* data not stored on disk */
1636 spa->spa_scan_pass_start = gethrestime_sec();
1637 spa->spa_scan_pass_exam = 0;
1638 vdev_scan_stat_init(spa->spa_root_vdev);
1639 }
1640
1641 /*
1642 * Get scan stats for zpool status reports
1643 */
1644 int
1645 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1646 {
1647 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1648
1649 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1650 return (ENOENT);
1651 bzero(ps, sizeof (pool_scan_stat_t));
1652
1653 /* data stored on disk */
1654 ps->pss_func = scn->scn_phys.scn_func;
1655 ps->pss_start_time = scn->scn_phys.scn_start_time;
1656 ps->pss_end_time = scn->scn_phys.scn_end_time;
1657 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1658 ps->pss_examined = scn->scn_phys.scn_examined;
1659 ps->pss_to_process = scn->scn_phys.scn_to_process;
1660 ps->pss_processed = scn->scn_phys.scn_processed;
1661 ps->pss_errors = scn->scn_phys.scn_errors;
1662 ps->pss_state = scn->scn_phys.scn_state;
1663
1664 /* data not stored on disk */
1665 ps->pss_pass_start = spa->spa_scan_pass_start;
1666 ps->pss_pass_exam = spa->spa_scan_pass_exam;
1667
1668 return (0);
1669 }
1670
1671 boolean_t
1672 spa_debug_enabled(spa_t *spa)
1673 {
1674 return (spa->spa_debug);
1675 }
1676
1677 #if defined(_KERNEL) && defined(HAVE_SPL)
1678 /* Namespace manipulation */
1679 EXPORT_SYMBOL(spa_lookup);
1680 EXPORT_SYMBOL(spa_add);
1681 EXPORT_SYMBOL(spa_remove);
1682 EXPORT_SYMBOL(spa_next);
1683
1684 /* Refcount functions */
1685 EXPORT_SYMBOL(spa_open_ref);
1686 EXPORT_SYMBOL(spa_close);
1687 EXPORT_SYMBOL(spa_refcount_zero);
1688
1689 /* Pool configuration lock */
1690 EXPORT_SYMBOL(spa_config_tryenter);
1691 EXPORT_SYMBOL(spa_config_enter);
1692 EXPORT_SYMBOL(spa_config_exit);
1693 EXPORT_SYMBOL(spa_config_held);
1694
1695 /* Pool vdev add/remove lock */
1696 EXPORT_SYMBOL(spa_vdev_enter);
1697 EXPORT_SYMBOL(spa_vdev_exit);
1698
1699 /* Pool vdev state change lock */
1700 EXPORT_SYMBOL(spa_vdev_state_enter);
1701 EXPORT_SYMBOL(spa_vdev_state_exit);
1702
1703 /* Accessor functions */
1704 EXPORT_SYMBOL(spa_shutting_down);
1705 EXPORT_SYMBOL(spa_get_dsl);
1706 EXPORT_SYMBOL(spa_get_rootblkptr);
1707 EXPORT_SYMBOL(spa_set_rootblkptr);
1708 EXPORT_SYMBOL(spa_altroot);
1709 EXPORT_SYMBOL(spa_sync_pass);
1710 EXPORT_SYMBOL(spa_name);
1711 EXPORT_SYMBOL(spa_guid);
1712 EXPORT_SYMBOL(spa_last_synced_txg);
1713 EXPORT_SYMBOL(spa_first_txg);
1714 EXPORT_SYMBOL(spa_syncing_txg);
1715 EXPORT_SYMBOL(spa_version);
1716 EXPORT_SYMBOL(spa_state);
1717 EXPORT_SYMBOL(spa_load_state);
1718 EXPORT_SYMBOL(spa_freeze_txg);
1719 EXPORT_SYMBOL(spa_get_asize);
1720 EXPORT_SYMBOL(spa_get_dspace);
1721 EXPORT_SYMBOL(spa_update_dspace);
1722 EXPORT_SYMBOL(spa_deflate);
1723 EXPORT_SYMBOL(spa_normal_class);
1724 EXPORT_SYMBOL(spa_log_class);
1725 EXPORT_SYMBOL(spa_max_replication);
1726 EXPORT_SYMBOL(spa_prev_software_version);
1727 EXPORT_SYMBOL(spa_get_failmode);
1728 EXPORT_SYMBOL(spa_suspended);
1729 EXPORT_SYMBOL(spa_bootfs);
1730 EXPORT_SYMBOL(spa_delegation);
1731 EXPORT_SYMBOL(spa_meta_objset);
1732
1733 /* Miscellaneous support routines */
1734 EXPORT_SYMBOL(spa_rename);
1735 EXPORT_SYMBOL(spa_guid_exists);
1736 EXPORT_SYMBOL(spa_strdup);
1737 EXPORT_SYMBOL(spa_strfree);
1738 EXPORT_SYMBOL(spa_get_random);
1739 EXPORT_SYMBOL(spa_generate_guid);
1740 EXPORT_SYMBOL(sprintf_blkptr);
1741 EXPORT_SYMBOL(spa_freeze);
1742 EXPORT_SYMBOL(spa_upgrade);
1743 EXPORT_SYMBOL(spa_evict_all);
1744 EXPORT_SYMBOL(spa_lookup_by_guid);
1745 EXPORT_SYMBOL(spa_has_spare);
1746 EXPORT_SYMBOL(dva_get_dsize_sync);
1747 EXPORT_SYMBOL(bp_get_dsize_sync);
1748 EXPORT_SYMBOL(bp_get_dsize);
1749 EXPORT_SYMBOL(spa_has_slogs);
1750 EXPORT_SYMBOL(spa_is_root);
1751 EXPORT_SYMBOL(spa_writeable);
1752 EXPORT_SYMBOL(spa_mode);
1753
1754 EXPORT_SYMBOL(spa_namespace_lock);
1755 #endif