]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa_misc.c
zed: post a udev change event from spa_vdev_attach()
[mirror_zfs.git] / module / zfs / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2017 Datto Inc.
28 * Copyright (c) 2017, Intel Corporation.
29 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
30 */
31
32 #include <sys/zfs_context.h>
33 #include <sys/zfs_chksum.h>
34 #include <sys/spa_impl.h>
35 #include <sys/zio.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/zio_compress.h>
38 #include <sys/dmu.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/zap.h>
41 #include <sys/zil.h>
42 #include <sys/vdev_impl.h>
43 #include <sys/vdev_initialize.h>
44 #include <sys/vdev_trim.h>
45 #include <sys/vdev_file.h>
46 #include <sys/vdev_raidz.h>
47 #include <sys/metaslab.h>
48 #include <sys/uberblock_impl.h>
49 #include <sys/txg.h>
50 #include <sys/avl.h>
51 #include <sys/unique.h>
52 #include <sys/dsl_pool.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/fm/util.h>
56 #include <sys/dsl_scan.h>
57 #include <sys/fs/zfs.h>
58 #include <sys/metaslab_impl.h>
59 #include <sys/arc.h>
60 #include <sys/ddt.h>
61 #include <sys/kstat.h>
62 #include "zfs_prop.h"
63 #include <sys/btree.h>
64 #include <sys/zfeature.h>
65 #include <sys/qat.h>
66 #include <sys/zstd/zstd.h>
67
68 /*
69 * SPA locking
70 *
71 * There are three basic locks for managing spa_t structures:
72 *
73 * spa_namespace_lock (global mutex)
74 *
75 * This lock must be acquired to do any of the following:
76 *
77 * - Lookup a spa_t by name
78 * - Add or remove a spa_t from the namespace
79 * - Increase spa_refcount from non-zero
80 * - Check if spa_refcount is zero
81 * - Rename a spa_t
82 * - add/remove/attach/detach devices
83 * - Held for the duration of create/destroy/import/export
84 *
85 * It does not need to handle recursion. A create or destroy may
86 * reference objects (files or zvols) in other pools, but by
87 * definition they must have an existing reference, and will never need
88 * to lookup a spa_t by name.
89 *
90 * spa_refcount (per-spa zfs_refcount_t protected by mutex)
91 *
92 * This reference count keep track of any active users of the spa_t. The
93 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
94 * the refcount is never really 'zero' - opening a pool implicitly keeps
95 * some references in the DMU. Internally we check against spa_minref, but
96 * present the image of a zero/non-zero value to consumers.
97 *
98 * spa_config_lock[] (per-spa array of rwlocks)
99 *
100 * This protects the spa_t from config changes, and must be held in
101 * the following circumstances:
102 *
103 * - RW_READER to perform I/O to the spa
104 * - RW_WRITER to change the vdev config
105 *
106 * The locking order is fairly straightforward:
107 *
108 * spa_namespace_lock -> spa_refcount
109 *
110 * The namespace lock must be acquired to increase the refcount from 0
111 * or to check if it is zero.
112 *
113 * spa_refcount -> spa_config_lock[]
114 *
115 * There must be at least one valid reference on the spa_t to acquire
116 * the config lock.
117 *
118 * spa_namespace_lock -> spa_config_lock[]
119 *
120 * The namespace lock must always be taken before the config lock.
121 *
122 *
123 * The spa_namespace_lock can be acquired directly and is globally visible.
124 *
125 * The namespace is manipulated using the following functions, all of which
126 * require the spa_namespace_lock to be held.
127 *
128 * spa_lookup() Lookup a spa_t by name.
129 *
130 * spa_add() Create a new spa_t in the namespace.
131 *
132 * spa_remove() Remove a spa_t from the namespace. This also
133 * frees up any memory associated with the spa_t.
134 *
135 * spa_next() Returns the next spa_t in the system, or the
136 * first if NULL is passed.
137 *
138 * spa_evict_all() Shutdown and remove all spa_t structures in
139 * the system.
140 *
141 * spa_guid_exists() Determine whether a pool/device guid exists.
142 *
143 * The spa_refcount is manipulated using the following functions:
144 *
145 * spa_open_ref() Adds a reference to the given spa_t. Must be
146 * called with spa_namespace_lock held if the
147 * refcount is currently zero.
148 *
149 * spa_close() Remove a reference from the spa_t. This will
150 * not free the spa_t or remove it from the
151 * namespace. No locking is required.
152 *
153 * spa_refcount_zero() Returns true if the refcount is currently
154 * zero. Must be called with spa_namespace_lock
155 * held.
156 *
157 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
158 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
159 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
160 *
161 * To read the configuration, it suffices to hold one of these locks as reader.
162 * To modify the configuration, you must hold all locks as writer. To modify
163 * vdev state without altering the vdev tree's topology (e.g. online/offline),
164 * you must hold SCL_STATE and SCL_ZIO as writer.
165 *
166 * We use these distinct config locks to avoid recursive lock entry.
167 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
168 * block allocations (SCL_ALLOC), which may require reading space maps
169 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
170 *
171 * The spa config locks cannot be normal rwlocks because we need the
172 * ability to hand off ownership. For example, SCL_ZIO is acquired
173 * by the issuing thread and later released by an interrupt thread.
174 * They do, however, obey the usual write-wanted semantics to prevent
175 * writer (i.e. system administrator) starvation.
176 *
177 * The lock acquisition rules are as follows:
178 *
179 * SCL_CONFIG
180 * Protects changes to the vdev tree topology, such as vdev
181 * add/remove/attach/detach. Protects the dirty config list
182 * (spa_config_dirty_list) and the set of spares and l2arc devices.
183 *
184 * SCL_STATE
185 * Protects changes to pool state and vdev state, such as vdev
186 * online/offline/fault/degrade/clear. Protects the dirty state list
187 * (spa_state_dirty_list) and global pool state (spa_state).
188 *
189 * SCL_ALLOC
190 * Protects changes to metaslab groups and classes.
191 * Held as reader by metaslab_alloc() and metaslab_claim().
192 *
193 * SCL_ZIO
194 * Held by bp-level zios (those which have no io_vd upon entry)
195 * to prevent changes to the vdev tree. The bp-level zio implicitly
196 * protects all of its vdev child zios, which do not hold SCL_ZIO.
197 *
198 * SCL_FREE
199 * Protects changes to metaslab groups and classes.
200 * Held as reader by metaslab_free(). SCL_FREE is distinct from
201 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
202 * blocks in zio_done() while another i/o that holds either
203 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
204 *
205 * SCL_VDEV
206 * Held as reader to prevent changes to the vdev tree during trivial
207 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
208 * other locks, and lower than all of them, to ensure that it's safe
209 * to acquire regardless of caller context.
210 *
211 * In addition, the following rules apply:
212 *
213 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
214 * The lock ordering is SCL_CONFIG > spa_props_lock.
215 *
216 * (b) I/O operations on leaf vdevs. For any zio operation that takes
217 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
218 * or zio_write_phys() -- the caller must ensure that the config cannot
219 * cannot change in the interim, and that the vdev cannot be reopened.
220 * SCL_STATE as reader suffices for both.
221 *
222 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
223 *
224 * spa_vdev_enter() Acquire the namespace lock and the config lock
225 * for writing.
226 *
227 * spa_vdev_exit() Release the config lock, wait for all I/O
228 * to complete, sync the updated configs to the
229 * cache, and release the namespace lock.
230 *
231 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
232 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
233 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
234 */
235
236 static avl_tree_t spa_namespace_avl;
237 kmutex_t spa_namespace_lock;
238 static kcondvar_t spa_namespace_cv;
239 static const int spa_max_replication_override = SPA_DVAS_PER_BP;
240
241 static kmutex_t spa_spare_lock;
242 static avl_tree_t spa_spare_avl;
243 static kmutex_t spa_l2cache_lock;
244 static avl_tree_t spa_l2cache_avl;
245
246 spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
247
248 #ifdef ZFS_DEBUG
249 /*
250 * Everything except dprintf, set_error, spa, and indirect_remap is on
251 * by default in debug builds.
252 */
253 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
254 ZFS_DEBUG_INDIRECT_REMAP);
255 #else
256 int zfs_flags = 0;
257 #endif
258
259 /*
260 * zfs_recover can be set to nonzero to attempt to recover from
261 * otherwise-fatal errors, typically caused by on-disk corruption. When
262 * set, calls to zfs_panic_recover() will turn into warning messages.
263 * This should only be used as a last resort, as it typically results
264 * in leaked space, or worse.
265 */
266 int zfs_recover = B_FALSE;
267
268 /*
269 * If destroy encounters an EIO while reading metadata (e.g. indirect
270 * blocks), space referenced by the missing metadata can not be freed.
271 * Normally this causes the background destroy to become "stalled", as
272 * it is unable to make forward progress. While in this stalled state,
273 * all remaining space to free from the error-encountering filesystem is
274 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
275 * permanently leak the space from indirect blocks that can not be read,
276 * and continue to free everything else that it can.
277 *
278 * The default, "stalling" behavior is useful if the storage partially
279 * fails (i.e. some but not all i/os fail), and then later recovers. In
280 * this case, we will be able to continue pool operations while it is
281 * partially failed, and when it recovers, we can continue to free the
282 * space, with no leaks. However, note that this case is actually
283 * fairly rare.
284 *
285 * Typically pools either (a) fail completely (but perhaps temporarily,
286 * e.g. a top-level vdev going offline), or (b) have localized,
287 * permanent errors (e.g. disk returns the wrong data due to bit flip or
288 * firmware bug). In case (a), this setting does not matter because the
289 * pool will be suspended and the sync thread will not be able to make
290 * forward progress regardless. In case (b), because the error is
291 * permanent, the best we can do is leak the minimum amount of space,
292 * which is what setting this flag will do. Therefore, it is reasonable
293 * for this flag to normally be set, but we chose the more conservative
294 * approach of not setting it, so that there is no possibility of
295 * leaking space in the "partial temporary" failure case.
296 */
297 int zfs_free_leak_on_eio = B_FALSE;
298
299 /*
300 * Expiration time in milliseconds. This value has two meanings. First it is
301 * used to determine when the spa_deadman() logic should fire. By default the
302 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
303 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
304 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
305 * in one of three behaviors controlled by zfs_deadman_failmode.
306 */
307 uint64_t zfs_deadman_synctime_ms = 600000UL; /* 10 min. */
308
309 /*
310 * This value controls the maximum amount of time zio_wait() will block for an
311 * outstanding IO. By default this is 300 seconds at which point the "hung"
312 * behavior will be applied as described for zfs_deadman_synctime_ms.
313 */
314 uint64_t zfs_deadman_ziotime_ms = 300000UL; /* 5 min. */
315
316 /*
317 * Check time in milliseconds. This defines the frequency at which we check
318 * for hung I/O.
319 */
320 uint64_t zfs_deadman_checktime_ms = 60000UL; /* 1 min. */
321
322 /*
323 * By default the deadman is enabled.
324 */
325 int zfs_deadman_enabled = B_TRUE;
326
327 /*
328 * Controls the behavior of the deadman when it detects a "hung" I/O.
329 * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
330 *
331 * wait - Wait for the "hung" I/O (default)
332 * continue - Attempt to recover from a "hung" I/O
333 * panic - Panic the system
334 */
335 const char *zfs_deadman_failmode = "wait";
336
337 /*
338 * The worst case is single-sector max-parity RAID-Z blocks, in which
339 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
340 * times the size; so just assume that. Add to this the fact that
341 * we can have up to 3 DVAs per bp, and one more factor of 2 because
342 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
343 * the worst case is:
344 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
345 */
346 uint_t spa_asize_inflation = 24;
347
348 /*
349 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
350 * the pool to be consumed (bounded by spa_max_slop). This ensures that we
351 * don't run the pool completely out of space, due to unaccounted changes (e.g.
352 * to the MOS). It also limits the worst-case time to allocate space. If we
353 * have less than this amount of free space, most ZPL operations (e.g. write,
354 * create) will return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are
355 * also part of this 3.2% of space which can't be consumed by normal writes;
356 * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded
357 * log space.
358 *
359 * Certain operations (e.g. file removal, most administrative actions) can
360 * use half the slop space. They will only return ENOSPC if less than half
361 * the slop space is free. Typically, once the pool has less than the slop
362 * space free, the user will use these operations to free up space in the pool.
363 * These are the operations that call dsl_pool_adjustedsize() with the netfree
364 * argument set to TRUE.
365 *
366 * Operations that are almost guaranteed to free up space in the absence of
367 * a pool checkpoint can use up to three quarters of the slop space
368 * (e.g zfs destroy).
369 *
370 * A very restricted set of operations are always permitted, regardless of
371 * the amount of free space. These are the operations that call
372 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
373 * increase in the amount of space used, it is possible to run the pool
374 * completely out of space, causing it to be permanently read-only.
375 *
376 * Note that on very small pools, the slop space will be larger than
377 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
378 * but we never allow it to be more than half the pool size.
379 *
380 * Further, on very large pools, the slop space will be smaller than
381 * 3.2%, to avoid reserving much more space than we actually need; bounded
382 * by spa_max_slop (128GB).
383 *
384 * See also the comments in zfs_space_check_t.
385 */
386 uint_t spa_slop_shift = 5;
387 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024;
388 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024;
389 static const int spa_allocators = 4;
390
391
392 void
393 spa_load_failed(spa_t *spa, const char *fmt, ...)
394 {
395 va_list adx;
396 char buf[256];
397
398 va_start(adx, fmt);
399 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
400 va_end(adx);
401
402 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
403 spa->spa_trust_config ? "trusted" : "untrusted", buf);
404 }
405
406 void
407 spa_load_note(spa_t *spa, const char *fmt, ...)
408 {
409 va_list adx;
410 char buf[256];
411
412 va_start(adx, fmt);
413 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
414 va_end(adx);
415
416 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
417 spa->spa_trust_config ? "trusted" : "untrusted", buf);
418 }
419
420 /*
421 * By default dedup and user data indirects land in the special class
422 */
423 static int zfs_ddt_data_is_special = B_TRUE;
424 static int zfs_user_indirect_is_special = B_TRUE;
425
426 /*
427 * The percentage of special class final space reserved for metadata only.
428 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
429 * let metadata into the class.
430 */
431 static uint_t zfs_special_class_metadata_reserve_pct = 25;
432
433 /*
434 * ==========================================================================
435 * SPA config locking
436 * ==========================================================================
437 */
438 static void
439 spa_config_lock_init(spa_t *spa)
440 {
441 for (int i = 0; i < SCL_LOCKS; i++) {
442 spa_config_lock_t *scl = &spa->spa_config_lock[i];
443 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
444 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
445 scl->scl_writer = NULL;
446 scl->scl_write_wanted = 0;
447 scl->scl_count = 0;
448 }
449 }
450
451 static void
452 spa_config_lock_destroy(spa_t *spa)
453 {
454 for (int i = 0; i < SCL_LOCKS; i++) {
455 spa_config_lock_t *scl = &spa->spa_config_lock[i];
456 mutex_destroy(&scl->scl_lock);
457 cv_destroy(&scl->scl_cv);
458 ASSERT(scl->scl_writer == NULL);
459 ASSERT(scl->scl_write_wanted == 0);
460 ASSERT(scl->scl_count == 0);
461 }
462 }
463
464 int
465 spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw)
466 {
467 for (int i = 0; i < SCL_LOCKS; i++) {
468 spa_config_lock_t *scl = &spa->spa_config_lock[i];
469 if (!(locks & (1 << i)))
470 continue;
471 mutex_enter(&scl->scl_lock);
472 if (rw == RW_READER) {
473 if (scl->scl_writer || scl->scl_write_wanted) {
474 mutex_exit(&scl->scl_lock);
475 spa_config_exit(spa, locks & ((1 << i) - 1),
476 tag);
477 return (0);
478 }
479 } else {
480 ASSERT(scl->scl_writer != curthread);
481 if (scl->scl_count != 0) {
482 mutex_exit(&scl->scl_lock);
483 spa_config_exit(spa, locks & ((1 << i) - 1),
484 tag);
485 return (0);
486 }
487 scl->scl_writer = curthread;
488 }
489 scl->scl_count++;
490 mutex_exit(&scl->scl_lock);
491 }
492 return (1);
493 }
494
495 void
496 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
497 {
498 (void) tag;
499 int wlocks_held = 0;
500
501 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
502
503 for (int i = 0; i < SCL_LOCKS; i++) {
504 spa_config_lock_t *scl = &spa->spa_config_lock[i];
505 if (scl->scl_writer == curthread)
506 wlocks_held |= (1 << i);
507 if (!(locks & (1 << i)))
508 continue;
509 mutex_enter(&scl->scl_lock);
510 if (rw == RW_READER) {
511 while (scl->scl_writer || scl->scl_write_wanted) {
512 cv_wait(&scl->scl_cv, &scl->scl_lock);
513 }
514 } else {
515 ASSERT(scl->scl_writer != curthread);
516 while (scl->scl_count != 0) {
517 scl->scl_write_wanted++;
518 cv_wait(&scl->scl_cv, &scl->scl_lock);
519 scl->scl_write_wanted--;
520 }
521 scl->scl_writer = curthread;
522 }
523 scl->scl_count++;
524 mutex_exit(&scl->scl_lock);
525 }
526 ASSERT3U(wlocks_held, <=, locks);
527 }
528
529 void
530 spa_config_exit(spa_t *spa, int locks, const void *tag)
531 {
532 (void) tag;
533 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
534 spa_config_lock_t *scl = &spa->spa_config_lock[i];
535 if (!(locks & (1 << i)))
536 continue;
537 mutex_enter(&scl->scl_lock);
538 ASSERT(scl->scl_count > 0);
539 if (--scl->scl_count == 0) {
540 ASSERT(scl->scl_writer == NULL ||
541 scl->scl_writer == curthread);
542 scl->scl_writer = NULL; /* OK in either case */
543 cv_broadcast(&scl->scl_cv);
544 }
545 mutex_exit(&scl->scl_lock);
546 }
547 }
548
549 int
550 spa_config_held(spa_t *spa, int locks, krw_t rw)
551 {
552 int locks_held = 0;
553
554 for (int i = 0; i < SCL_LOCKS; i++) {
555 spa_config_lock_t *scl = &spa->spa_config_lock[i];
556 if (!(locks & (1 << i)))
557 continue;
558 if ((rw == RW_READER && scl->scl_count != 0) ||
559 (rw == RW_WRITER && scl->scl_writer == curthread))
560 locks_held |= 1 << i;
561 }
562
563 return (locks_held);
564 }
565
566 /*
567 * ==========================================================================
568 * SPA namespace functions
569 * ==========================================================================
570 */
571
572 /*
573 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
574 * Returns NULL if no matching spa_t is found.
575 */
576 spa_t *
577 spa_lookup(const char *name)
578 {
579 static spa_t search; /* spa_t is large; don't allocate on stack */
580 spa_t *spa;
581 avl_index_t where;
582 char *cp;
583
584 ASSERT(MUTEX_HELD(&spa_namespace_lock));
585
586 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
587
588 /*
589 * If it's a full dataset name, figure out the pool name and
590 * just use that.
591 */
592 cp = strpbrk(search.spa_name, "/@#");
593 if (cp != NULL)
594 *cp = '\0';
595
596 spa = avl_find(&spa_namespace_avl, &search, &where);
597
598 return (spa);
599 }
600
601 /*
602 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
603 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
604 * looking for potentially hung I/Os.
605 */
606 void
607 spa_deadman(void *arg)
608 {
609 spa_t *spa = arg;
610
611 /* Disable the deadman if the pool is suspended. */
612 if (spa_suspended(spa))
613 return;
614
615 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
616 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
617 (u_longlong_t)++spa->spa_deadman_calls);
618 if (zfs_deadman_enabled)
619 vdev_deadman(spa->spa_root_vdev, FTAG);
620
621 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
622 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
623 MSEC_TO_TICK(zfs_deadman_checktime_ms));
624 }
625
626 static int
627 spa_log_sm_sort_by_txg(const void *va, const void *vb)
628 {
629 const spa_log_sm_t *a = va;
630 const spa_log_sm_t *b = vb;
631
632 return (TREE_CMP(a->sls_txg, b->sls_txg));
633 }
634
635 /*
636 * Create an uninitialized spa_t with the given name. Requires
637 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
638 * exist by calling spa_lookup() first.
639 */
640 spa_t *
641 spa_add(const char *name, nvlist_t *config, const char *altroot)
642 {
643 spa_t *spa;
644 spa_config_dirent_t *dp;
645
646 ASSERT(MUTEX_HELD(&spa_namespace_lock));
647
648 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
649
650 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
651 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
652 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
653 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
654 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
655 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
656 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
657 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
658 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
659 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
660 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
661 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
662 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
663 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
664
665 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
666 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
667 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
668 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
669 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
670 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
671 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
672
673 for (int t = 0; t < TXG_SIZE; t++)
674 bplist_create(&spa->spa_free_bplist[t]);
675
676 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
677 spa->spa_state = POOL_STATE_UNINITIALIZED;
678 spa->spa_freeze_txg = UINT64_MAX;
679 spa->spa_final_txg = UINT64_MAX;
680 spa->spa_load_max_txg = UINT64_MAX;
681 spa->spa_proc = &p0;
682 spa->spa_proc_state = SPA_PROC_NONE;
683 spa->spa_trust_config = B_TRUE;
684 spa->spa_hostid = zone_get_hostid(NULL);
685
686 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
687 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
688 spa_set_deadman_failmode(spa, zfs_deadman_failmode);
689
690 zfs_refcount_create(&spa->spa_refcount);
691 spa_config_lock_init(spa);
692 spa_stats_init(spa);
693
694 avl_add(&spa_namespace_avl, spa);
695
696 /*
697 * Set the alternate root, if there is one.
698 */
699 if (altroot)
700 spa->spa_root = spa_strdup(altroot);
701
702 spa->spa_alloc_count = spa_allocators;
703 spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count *
704 sizeof (spa_alloc_t), KM_SLEEP);
705 for (int i = 0; i < spa->spa_alloc_count; i++) {
706 mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT,
707 NULL);
708 avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare,
709 sizeof (zio_t), offsetof(zio_t, io_alloc_node));
710 }
711 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
712 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
713 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
714 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
715 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
716 offsetof(log_summary_entry_t, lse_node));
717
718 /*
719 * Every pool starts with the default cachefile
720 */
721 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
722 offsetof(spa_config_dirent_t, scd_link));
723
724 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
725 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
726 list_insert_head(&spa->spa_config_list, dp);
727
728 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
729 KM_SLEEP) == 0);
730
731 if (config != NULL) {
732 nvlist_t *features;
733
734 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
735 &features) == 0) {
736 VERIFY(nvlist_dup(features, &spa->spa_label_features,
737 0) == 0);
738 }
739
740 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
741 }
742
743 if (spa->spa_label_features == NULL) {
744 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
745 KM_SLEEP) == 0);
746 }
747
748 spa->spa_min_ashift = INT_MAX;
749 spa->spa_max_ashift = 0;
750 spa->spa_min_alloc = INT_MAX;
751
752 /* Reset cached value */
753 spa->spa_dedup_dspace = ~0ULL;
754
755 /*
756 * As a pool is being created, treat all features as disabled by
757 * setting SPA_FEATURE_DISABLED for all entries in the feature
758 * refcount cache.
759 */
760 for (int i = 0; i < SPA_FEATURES; i++) {
761 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
762 }
763
764 list_create(&spa->spa_leaf_list, sizeof (vdev_t),
765 offsetof(vdev_t, vdev_leaf_node));
766
767 return (spa);
768 }
769
770 /*
771 * Removes a spa_t from the namespace, freeing up any memory used. Requires
772 * spa_namespace_lock. This is called only after the spa_t has been closed and
773 * deactivated.
774 */
775 void
776 spa_remove(spa_t *spa)
777 {
778 spa_config_dirent_t *dp;
779
780 ASSERT(MUTEX_HELD(&spa_namespace_lock));
781 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
782 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
783 ASSERT0(spa->spa_waiters);
784
785 nvlist_free(spa->spa_config_splitting);
786
787 avl_remove(&spa_namespace_avl, spa);
788 cv_broadcast(&spa_namespace_cv);
789
790 if (spa->spa_root)
791 spa_strfree(spa->spa_root);
792
793 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
794 list_remove(&spa->spa_config_list, dp);
795 if (dp->scd_path != NULL)
796 spa_strfree(dp->scd_path);
797 kmem_free(dp, sizeof (spa_config_dirent_t));
798 }
799
800 for (int i = 0; i < spa->spa_alloc_count; i++) {
801 avl_destroy(&spa->spa_allocs[i].spaa_tree);
802 mutex_destroy(&spa->spa_allocs[i].spaa_lock);
803 }
804 kmem_free(spa->spa_allocs, spa->spa_alloc_count *
805 sizeof (spa_alloc_t));
806
807 avl_destroy(&spa->spa_metaslabs_by_flushed);
808 avl_destroy(&spa->spa_sm_logs_by_txg);
809 list_destroy(&spa->spa_log_summary);
810 list_destroy(&spa->spa_config_list);
811 list_destroy(&spa->spa_leaf_list);
812
813 nvlist_free(spa->spa_label_features);
814 nvlist_free(spa->spa_load_info);
815 nvlist_free(spa->spa_feat_stats);
816 spa_config_set(spa, NULL);
817
818 zfs_refcount_destroy(&spa->spa_refcount);
819
820 spa_stats_destroy(spa);
821 spa_config_lock_destroy(spa);
822
823 for (int t = 0; t < TXG_SIZE; t++)
824 bplist_destroy(&spa->spa_free_bplist[t]);
825
826 zio_checksum_templates_free(spa);
827
828 cv_destroy(&spa->spa_async_cv);
829 cv_destroy(&spa->spa_evicting_os_cv);
830 cv_destroy(&spa->spa_proc_cv);
831 cv_destroy(&spa->spa_scrub_io_cv);
832 cv_destroy(&spa->spa_suspend_cv);
833 cv_destroy(&spa->spa_activities_cv);
834 cv_destroy(&spa->spa_waiters_cv);
835
836 mutex_destroy(&spa->spa_flushed_ms_lock);
837 mutex_destroy(&spa->spa_async_lock);
838 mutex_destroy(&spa->spa_errlist_lock);
839 mutex_destroy(&spa->spa_errlog_lock);
840 mutex_destroy(&spa->spa_evicting_os_lock);
841 mutex_destroy(&spa->spa_history_lock);
842 mutex_destroy(&spa->spa_proc_lock);
843 mutex_destroy(&spa->spa_props_lock);
844 mutex_destroy(&spa->spa_cksum_tmpls_lock);
845 mutex_destroy(&spa->spa_scrub_lock);
846 mutex_destroy(&spa->spa_suspend_lock);
847 mutex_destroy(&spa->spa_vdev_top_lock);
848 mutex_destroy(&spa->spa_feat_stats_lock);
849 mutex_destroy(&spa->spa_activities_lock);
850
851 kmem_free(spa, sizeof (spa_t));
852 }
853
854 /*
855 * Given a pool, return the next pool in the namespace, or NULL if there is
856 * none. If 'prev' is NULL, return the first pool.
857 */
858 spa_t *
859 spa_next(spa_t *prev)
860 {
861 ASSERT(MUTEX_HELD(&spa_namespace_lock));
862
863 if (prev)
864 return (AVL_NEXT(&spa_namespace_avl, prev));
865 else
866 return (avl_first(&spa_namespace_avl));
867 }
868
869 /*
870 * ==========================================================================
871 * SPA refcount functions
872 * ==========================================================================
873 */
874
875 /*
876 * Add a reference to the given spa_t. Must have at least one reference, or
877 * have the namespace lock held.
878 */
879 void
880 spa_open_ref(spa_t *spa, const void *tag)
881 {
882 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
883 MUTEX_HELD(&spa_namespace_lock));
884 (void) zfs_refcount_add(&spa->spa_refcount, tag);
885 }
886
887 /*
888 * Remove a reference to the given spa_t. Must have at least one reference, or
889 * have the namespace lock held.
890 */
891 void
892 spa_close(spa_t *spa, const void *tag)
893 {
894 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
895 MUTEX_HELD(&spa_namespace_lock));
896 (void) zfs_refcount_remove(&spa->spa_refcount, tag);
897 }
898
899 /*
900 * Remove a reference to the given spa_t held by a dsl dir that is
901 * being asynchronously released. Async releases occur from a taskq
902 * performing eviction of dsl datasets and dirs. The namespace lock
903 * isn't held and the hold by the object being evicted may contribute to
904 * spa_minref (e.g. dataset or directory released during pool export),
905 * so the asserts in spa_close() do not apply.
906 */
907 void
908 spa_async_close(spa_t *spa, const void *tag)
909 {
910 (void) zfs_refcount_remove(&spa->spa_refcount, tag);
911 }
912
913 /*
914 * Check to see if the spa refcount is zero. Must be called with
915 * spa_namespace_lock held. We really compare against spa_minref, which is the
916 * number of references acquired when opening a pool
917 */
918 boolean_t
919 spa_refcount_zero(spa_t *spa)
920 {
921 ASSERT(MUTEX_HELD(&spa_namespace_lock));
922
923 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
924 }
925
926 /*
927 * ==========================================================================
928 * SPA spare and l2cache tracking
929 * ==========================================================================
930 */
931
932 /*
933 * Hot spares and cache devices are tracked using the same code below,
934 * for 'auxiliary' devices.
935 */
936
937 typedef struct spa_aux {
938 uint64_t aux_guid;
939 uint64_t aux_pool;
940 avl_node_t aux_avl;
941 int aux_count;
942 } spa_aux_t;
943
944 static inline int
945 spa_aux_compare(const void *a, const void *b)
946 {
947 const spa_aux_t *sa = (const spa_aux_t *)a;
948 const spa_aux_t *sb = (const spa_aux_t *)b;
949
950 return (TREE_CMP(sa->aux_guid, sb->aux_guid));
951 }
952
953 static void
954 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
955 {
956 avl_index_t where;
957 spa_aux_t search;
958 spa_aux_t *aux;
959
960 search.aux_guid = vd->vdev_guid;
961 if ((aux = avl_find(avl, &search, &where)) != NULL) {
962 aux->aux_count++;
963 } else {
964 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
965 aux->aux_guid = vd->vdev_guid;
966 aux->aux_count = 1;
967 avl_insert(avl, aux, where);
968 }
969 }
970
971 static void
972 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
973 {
974 spa_aux_t search;
975 spa_aux_t *aux;
976 avl_index_t where;
977
978 search.aux_guid = vd->vdev_guid;
979 aux = avl_find(avl, &search, &where);
980
981 ASSERT(aux != NULL);
982
983 if (--aux->aux_count == 0) {
984 avl_remove(avl, aux);
985 kmem_free(aux, sizeof (spa_aux_t));
986 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
987 aux->aux_pool = 0ULL;
988 }
989 }
990
991 static boolean_t
992 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
993 {
994 spa_aux_t search, *found;
995
996 search.aux_guid = guid;
997 found = avl_find(avl, &search, NULL);
998
999 if (pool) {
1000 if (found)
1001 *pool = found->aux_pool;
1002 else
1003 *pool = 0ULL;
1004 }
1005
1006 if (refcnt) {
1007 if (found)
1008 *refcnt = found->aux_count;
1009 else
1010 *refcnt = 0;
1011 }
1012
1013 return (found != NULL);
1014 }
1015
1016 static void
1017 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1018 {
1019 spa_aux_t search, *found;
1020 avl_index_t where;
1021
1022 search.aux_guid = vd->vdev_guid;
1023 found = avl_find(avl, &search, &where);
1024 ASSERT(found != NULL);
1025 ASSERT(found->aux_pool == 0ULL);
1026
1027 found->aux_pool = spa_guid(vd->vdev_spa);
1028 }
1029
1030 /*
1031 * Spares are tracked globally due to the following constraints:
1032 *
1033 * - A spare may be part of multiple pools.
1034 * - A spare may be added to a pool even if it's actively in use within
1035 * another pool.
1036 * - A spare in use in any pool can only be the source of a replacement if
1037 * the target is a spare in the same pool.
1038 *
1039 * We keep track of all spares on the system through the use of a reference
1040 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
1041 * spare, then we bump the reference count in the AVL tree. In addition, we set
1042 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1043 * inactive). When a spare is made active (used to replace a device in the
1044 * pool), we also keep track of which pool its been made a part of.
1045 *
1046 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
1047 * called under the spa_namespace lock as part of vdev reconfiguration. The
1048 * separate spare lock exists for the status query path, which does not need to
1049 * be completely consistent with respect to other vdev configuration changes.
1050 */
1051
1052 static int
1053 spa_spare_compare(const void *a, const void *b)
1054 {
1055 return (spa_aux_compare(a, b));
1056 }
1057
1058 void
1059 spa_spare_add(vdev_t *vd)
1060 {
1061 mutex_enter(&spa_spare_lock);
1062 ASSERT(!vd->vdev_isspare);
1063 spa_aux_add(vd, &spa_spare_avl);
1064 vd->vdev_isspare = B_TRUE;
1065 mutex_exit(&spa_spare_lock);
1066 }
1067
1068 void
1069 spa_spare_remove(vdev_t *vd)
1070 {
1071 mutex_enter(&spa_spare_lock);
1072 ASSERT(vd->vdev_isspare);
1073 spa_aux_remove(vd, &spa_spare_avl);
1074 vd->vdev_isspare = B_FALSE;
1075 mutex_exit(&spa_spare_lock);
1076 }
1077
1078 boolean_t
1079 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1080 {
1081 boolean_t found;
1082
1083 mutex_enter(&spa_spare_lock);
1084 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1085 mutex_exit(&spa_spare_lock);
1086
1087 return (found);
1088 }
1089
1090 void
1091 spa_spare_activate(vdev_t *vd)
1092 {
1093 mutex_enter(&spa_spare_lock);
1094 ASSERT(vd->vdev_isspare);
1095 spa_aux_activate(vd, &spa_spare_avl);
1096 mutex_exit(&spa_spare_lock);
1097 }
1098
1099 /*
1100 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1101 * Cache devices currently only support one pool per cache device, and so
1102 * for these devices the aux reference count is currently unused beyond 1.
1103 */
1104
1105 static int
1106 spa_l2cache_compare(const void *a, const void *b)
1107 {
1108 return (spa_aux_compare(a, b));
1109 }
1110
1111 void
1112 spa_l2cache_add(vdev_t *vd)
1113 {
1114 mutex_enter(&spa_l2cache_lock);
1115 ASSERT(!vd->vdev_isl2cache);
1116 spa_aux_add(vd, &spa_l2cache_avl);
1117 vd->vdev_isl2cache = B_TRUE;
1118 mutex_exit(&spa_l2cache_lock);
1119 }
1120
1121 void
1122 spa_l2cache_remove(vdev_t *vd)
1123 {
1124 mutex_enter(&spa_l2cache_lock);
1125 ASSERT(vd->vdev_isl2cache);
1126 spa_aux_remove(vd, &spa_l2cache_avl);
1127 vd->vdev_isl2cache = B_FALSE;
1128 mutex_exit(&spa_l2cache_lock);
1129 }
1130
1131 boolean_t
1132 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1133 {
1134 boolean_t found;
1135
1136 mutex_enter(&spa_l2cache_lock);
1137 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1138 mutex_exit(&spa_l2cache_lock);
1139
1140 return (found);
1141 }
1142
1143 void
1144 spa_l2cache_activate(vdev_t *vd)
1145 {
1146 mutex_enter(&spa_l2cache_lock);
1147 ASSERT(vd->vdev_isl2cache);
1148 spa_aux_activate(vd, &spa_l2cache_avl);
1149 mutex_exit(&spa_l2cache_lock);
1150 }
1151
1152 /*
1153 * ==========================================================================
1154 * SPA vdev locking
1155 * ==========================================================================
1156 */
1157
1158 /*
1159 * Lock the given spa_t for the purpose of adding or removing a vdev.
1160 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1161 * It returns the next transaction group for the spa_t.
1162 */
1163 uint64_t
1164 spa_vdev_enter(spa_t *spa)
1165 {
1166 mutex_enter(&spa->spa_vdev_top_lock);
1167 mutex_enter(&spa_namespace_lock);
1168
1169 vdev_autotrim_stop_all(spa);
1170
1171 return (spa_vdev_config_enter(spa));
1172 }
1173
1174 /*
1175 * The same as spa_vdev_enter() above but additionally takes the guid of
1176 * the vdev being detached. When there is a rebuild in process it will be
1177 * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1178 * The rebuild is canceled if only a single child remains after the detach.
1179 */
1180 uint64_t
1181 spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1182 {
1183 mutex_enter(&spa->spa_vdev_top_lock);
1184 mutex_enter(&spa_namespace_lock);
1185
1186 vdev_autotrim_stop_all(spa);
1187
1188 if (guid != 0) {
1189 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1190 if (vd) {
1191 vdev_rebuild_stop_wait(vd->vdev_top);
1192 }
1193 }
1194
1195 return (spa_vdev_config_enter(spa));
1196 }
1197
1198 /*
1199 * Internal implementation for spa_vdev_enter(). Used when a vdev
1200 * operation requires multiple syncs (i.e. removing a device) while
1201 * keeping the spa_namespace_lock held.
1202 */
1203 uint64_t
1204 spa_vdev_config_enter(spa_t *spa)
1205 {
1206 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1207
1208 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1209
1210 return (spa_last_synced_txg(spa) + 1);
1211 }
1212
1213 /*
1214 * Used in combination with spa_vdev_config_enter() to allow the syncing
1215 * of multiple transactions without releasing the spa_namespace_lock.
1216 */
1217 void
1218 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error,
1219 const char *tag)
1220 {
1221 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1222
1223 int config_changed = B_FALSE;
1224
1225 ASSERT(txg > spa_last_synced_txg(spa));
1226
1227 spa->spa_pending_vdev = NULL;
1228
1229 /*
1230 * Reassess the DTLs.
1231 */
1232 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
1233
1234 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1235 config_changed = B_TRUE;
1236 spa->spa_config_generation++;
1237 }
1238
1239 /*
1240 * Verify the metaslab classes.
1241 */
1242 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1243 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1244 ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0);
1245 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1246 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1247
1248 spa_config_exit(spa, SCL_ALL, spa);
1249
1250 /*
1251 * Panic the system if the specified tag requires it. This
1252 * is useful for ensuring that configurations are updated
1253 * transactionally.
1254 */
1255 if (zio_injection_enabled)
1256 zio_handle_panic_injection(spa, tag, 0);
1257
1258 /*
1259 * Note: this txg_wait_synced() is important because it ensures
1260 * that there won't be more than one config change per txg.
1261 * This allows us to use the txg as the generation number.
1262 */
1263 if (error == 0)
1264 txg_wait_synced(spa->spa_dsl_pool, txg);
1265
1266 if (vd != NULL) {
1267 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1268 if (vd->vdev_ops->vdev_op_leaf) {
1269 mutex_enter(&vd->vdev_initialize_lock);
1270 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1271 NULL);
1272 mutex_exit(&vd->vdev_initialize_lock);
1273
1274 mutex_enter(&vd->vdev_trim_lock);
1275 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1276 mutex_exit(&vd->vdev_trim_lock);
1277 }
1278
1279 /*
1280 * The vdev may be both a leaf and top-level device.
1281 */
1282 vdev_autotrim_stop_wait(vd);
1283
1284 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
1285 vdev_free(vd);
1286 spa_config_exit(spa, SCL_STATE_ALL, spa);
1287 }
1288
1289 /*
1290 * If the config changed, update the config cache.
1291 */
1292 if (config_changed)
1293 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1294 }
1295
1296 /*
1297 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1298 * locking of spa_vdev_enter(), we also want make sure the transactions have
1299 * synced to disk, and then update the global configuration cache with the new
1300 * information.
1301 */
1302 int
1303 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1304 {
1305 vdev_autotrim_restart(spa);
1306 vdev_rebuild_restart(spa);
1307
1308 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1309 mutex_exit(&spa_namespace_lock);
1310 mutex_exit(&spa->spa_vdev_top_lock);
1311
1312 return (error);
1313 }
1314
1315 /*
1316 * Lock the given spa_t for the purpose of changing vdev state.
1317 */
1318 void
1319 spa_vdev_state_enter(spa_t *spa, int oplocks)
1320 {
1321 int locks = SCL_STATE_ALL | oplocks;
1322
1323 /*
1324 * Root pools may need to read of the underlying devfs filesystem
1325 * when opening up a vdev. Unfortunately if we're holding the
1326 * SCL_ZIO lock it will result in a deadlock when we try to issue
1327 * the read from the root filesystem. Instead we "prefetch"
1328 * the associated vnodes that we need prior to opening the
1329 * underlying devices and cache them so that we can prevent
1330 * any I/O when we are doing the actual open.
1331 */
1332 if (spa_is_root(spa)) {
1333 int low = locks & ~(SCL_ZIO - 1);
1334 int high = locks & ~low;
1335
1336 spa_config_enter(spa, high, spa, RW_WRITER);
1337 vdev_hold(spa->spa_root_vdev);
1338 spa_config_enter(spa, low, spa, RW_WRITER);
1339 } else {
1340 spa_config_enter(spa, locks, spa, RW_WRITER);
1341 }
1342 spa->spa_vdev_locks = locks;
1343 }
1344
1345 int
1346 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1347 {
1348 boolean_t config_changed = B_FALSE;
1349 vdev_t *vdev_top;
1350
1351 if (vd == NULL || vd == spa->spa_root_vdev) {
1352 vdev_top = spa->spa_root_vdev;
1353 } else {
1354 vdev_top = vd->vdev_top;
1355 }
1356
1357 if (vd != NULL || error == 0)
1358 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
1359
1360 if (vd != NULL) {
1361 if (vd != spa->spa_root_vdev)
1362 vdev_state_dirty(vdev_top);
1363
1364 config_changed = B_TRUE;
1365 spa->spa_config_generation++;
1366 }
1367
1368 if (spa_is_root(spa))
1369 vdev_rele(spa->spa_root_vdev);
1370
1371 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1372 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1373
1374 /*
1375 * If anything changed, wait for it to sync. This ensures that,
1376 * from the system administrator's perspective, zpool(8) commands
1377 * are synchronous. This is important for things like zpool offline:
1378 * when the command completes, you expect no further I/O from ZFS.
1379 */
1380 if (vd != NULL)
1381 txg_wait_synced(spa->spa_dsl_pool, 0);
1382
1383 /*
1384 * If the config changed, update the config cache.
1385 */
1386 if (config_changed) {
1387 mutex_enter(&spa_namespace_lock);
1388 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
1389 mutex_exit(&spa_namespace_lock);
1390 }
1391
1392 return (error);
1393 }
1394
1395 /*
1396 * ==========================================================================
1397 * Miscellaneous functions
1398 * ==========================================================================
1399 */
1400
1401 void
1402 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1403 {
1404 if (!nvlist_exists(spa->spa_label_features, feature)) {
1405 fnvlist_add_boolean(spa->spa_label_features, feature);
1406 /*
1407 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1408 * dirty the vdev config because lock SCL_CONFIG is not held.
1409 * Thankfully, in this case we don't need to dirty the config
1410 * because it will be written out anyway when we finish
1411 * creating the pool.
1412 */
1413 if (tx->tx_txg != TXG_INITIAL)
1414 vdev_config_dirty(spa->spa_root_vdev);
1415 }
1416 }
1417
1418 void
1419 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1420 {
1421 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1422 vdev_config_dirty(spa->spa_root_vdev);
1423 }
1424
1425 /*
1426 * Return the spa_t associated with given pool_guid, if it exists. If
1427 * device_guid is non-zero, determine whether the pool exists *and* contains
1428 * a device with the specified device_guid.
1429 */
1430 spa_t *
1431 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1432 {
1433 spa_t *spa;
1434 avl_tree_t *t = &spa_namespace_avl;
1435
1436 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1437
1438 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1439 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1440 continue;
1441 if (spa->spa_root_vdev == NULL)
1442 continue;
1443 if (spa_guid(spa) == pool_guid) {
1444 if (device_guid == 0)
1445 break;
1446
1447 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1448 device_guid) != NULL)
1449 break;
1450
1451 /*
1452 * Check any devices we may be in the process of adding.
1453 */
1454 if (spa->spa_pending_vdev) {
1455 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1456 device_guid) != NULL)
1457 break;
1458 }
1459 }
1460 }
1461
1462 return (spa);
1463 }
1464
1465 /*
1466 * Determine whether a pool with the given pool_guid exists.
1467 */
1468 boolean_t
1469 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1470 {
1471 return (spa_by_guid(pool_guid, device_guid) != NULL);
1472 }
1473
1474 char *
1475 spa_strdup(const char *s)
1476 {
1477 size_t len;
1478 char *new;
1479
1480 len = strlen(s);
1481 new = kmem_alloc(len + 1, KM_SLEEP);
1482 memcpy(new, s, len + 1);
1483
1484 return (new);
1485 }
1486
1487 void
1488 spa_strfree(char *s)
1489 {
1490 kmem_free(s, strlen(s) + 1);
1491 }
1492
1493 uint64_t
1494 spa_generate_guid(spa_t *spa)
1495 {
1496 uint64_t guid;
1497
1498 if (spa != NULL) {
1499 do {
1500 (void) random_get_pseudo_bytes((void *)&guid,
1501 sizeof (guid));
1502 } while (guid == 0 || spa_guid_exists(spa_guid(spa), guid));
1503 } else {
1504 do {
1505 (void) random_get_pseudo_bytes((void *)&guid,
1506 sizeof (guid));
1507 } while (guid == 0 || spa_guid_exists(guid, 0));
1508 }
1509
1510 return (guid);
1511 }
1512
1513 void
1514 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1515 {
1516 char type[256];
1517 const char *checksum = NULL;
1518 const char *compress = NULL;
1519
1520 if (bp != NULL) {
1521 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1522 dmu_object_byteswap_t bswap =
1523 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1524 (void) snprintf(type, sizeof (type), "bswap %s %s",
1525 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1526 "metadata" : "data",
1527 dmu_ot_byteswap[bswap].ob_name);
1528 } else {
1529 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1530 sizeof (type));
1531 }
1532 if (!BP_IS_EMBEDDED(bp)) {
1533 checksum =
1534 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1535 }
1536 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1537 }
1538
1539 SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum,
1540 compress);
1541 }
1542
1543 void
1544 spa_freeze(spa_t *spa)
1545 {
1546 uint64_t freeze_txg = 0;
1547
1548 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1549 if (spa->spa_freeze_txg == UINT64_MAX) {
1550 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1551 spa->spa_freeze_txg = freeze_txg;
1552 }
1553 spa_config_exit(spa, SCL_ALL, FTAG);
1554 if (freeze_txg != 0)
1555 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1556 }
1557
1558 void
1559 zfs_panic_recover(const char *fmt, ...)
1560 {
1561 va_list adx;
1562
1563 va_start(adx, fmt);
1564 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1565 va_end(adx);
1566 }
1567
1568 /*
1569 * This is a stripped-down version of strtoull, suitable only for converting
1570 * lowercase hexadecimal numbers that don't overflow.
1571 */
1572 uint64_t
1573 zfs_strtonum(const char *str, char **nptr)
1574 {
1575 uint64_t val = 0;
1576 char c;
1577 int digit;
1578
1579 while ((c = *str) != '\0') {
1580 if (c >= '0' && c <= '9')
1581 digit = c - '0';
1582 else if (c >= 'a' && c <= 'f')
1583 digit = 10 + c - 'a';
1584 else
1585 break;
1586
1587 val *= 16;
1588 val += digit;
1589
1590 str++;
1591 }
1592
1593 if (nptr)
1594 *nptr = (char *)str;
1595
1596 return (val);
1597 }
1598
1599 void
1600 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1601 {
1602 /*
1603 * We bump the feature refcount for each special vdev added to the pool
1604 */
1605 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1606 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1607 }
1608
1609 /*
1610 * ==========================================================================
1611 * Accessor functions
1612 * ==========================================================================
1613 */
1614
1615 boolean_t
1616 spa_shutting_down(spa_t *spa)
1617 {
1618 return (spa->spa_async_suspended);
1619 }
1620
1621 dsl_pool_t *
1622 spa_get_dsl(spa_t *spa)
1623 {
1624 return (spa->spa_dsl_pool);
1625 }
1626
1627 boolean_t
1628 spa_is_initializing(spa_t *spa)
1629 {
1630 return (spa->spa_is_initializing);
1631 }
1632
1633 boolean_t
1634 spa_indirect_vdevs_loaded(spa_t *spa)
1635 {
1636 return (spa->spa_indirect_vdevs_loaded);
1637 }
1638
1639 blkptr_t *
1640 spa_get_rootblkptr(spa_t *spa)
1641 {
1642 return (&spa->spa_ubsync.ub_rootbp);
1643 }
1644
1645 void
1646 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1647 {
1648 spa->spa_uberblock.ub_rootbp = *bp;
1649 }
1650
1651 void
1652 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1653 {
1654 if (spa->spa_root == NULL)
1655 buf[0] = '\0';
1656 else
1657 (void) strlcpy(buf, spa->spa_root, buflen);
1658 }
1659
1660 uint32_t
1661 spa_sync_pass(spa_t *spa)
1662 {
1663 return (spa->spa_sync_pass);
1664 }
1665
1666 char *
1667 spa_name(spa_t *spa)
1668 {
1669 return (spa->spa_name);
1670 }
1671
1672 uint64_t
1673 spa_guid(spa_t *spa)
1674 {
1675 dsl_pool_t *dp = spa_get_dsl(spa);
1676 uint64_t guid;
1677
1678 /*
1679 * If we fail to parse the config during spa_load(), we can go through
1680 * the error path (which posts an ereport) and end up here with no root
1681 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1682 * this case.
1683 */
1684 if (spa->spa_root_vdev == NULL)
1685 return (spa->spa_config_guid);
1686
1687 guid = spa->spa_last_synced_guid != 0 ?
1688 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1689
1690 /*
1691 * Return the most recently synced out guid unless we're
1692 * in syncing context.
1693 */
1694 if (dp && dsl_pool_sync_context(dp))
1695 return (spa->spa_root_vdev->vdev_guid);
1696 else
1697 return (guid);
1698 }
1699
1700 uint64_t
1701 spa_load_guid(spa_t *spa)
1702 {
1703 /*
1704 * This is a GUID that exists solely as a reference for the
1705 * purposes of the arc. It is generated at load time, and
1706 * is never written to persistent storage.
1707 */
1708 return (spa->spa_load_guid);
1709 }
1710
1711 uint64_t
1712 spa_last_synced_txg(spa_t *spa)
1713 {
1714 return (spa->spa_ubsync.ub_txg);
1715 }
1716
1717 uint64_t
1718 spa_first_txg(spa_t *spa)
1719 {
1720 return (spa->spa_first_txg);
1721 }
1722
1723 uint64_t
1724 spa_syncing_txg(spa_t *spa)
1725 {
1726 return (spa->spa_syncing_txg);
1727 }
1728
1729 /*
1730 * Return the last txg where data can be dirtied. The final txgs
1731 * will be used to just clear out any deferred frees that remain.
1732 */
1733 uint64_t
1734 spa_final_dirty_txg(spa_t *spa)
1735 {
1736 return (spa->spa_final_txg - TXG_DEFER_SIZE);
1737 }
1738
1739 pool_state_t
1740 spa_state(spa_t *spa)
1741 {
1742 return (spa->spa_state);
1743 }
1744
1745 spa_load_state_t
1746 spa_load_state(spa_t *spa)
1747 {
1748 return (spa->spa_load_state);
1749 }
1750
1751 uint64_t
1752 spa_freeze_txg(spa_t *spa)
1753 {
1754 return (spa->spa_freeze_txg);
1755 }
1756
1757 /*
1758 * Return the inflated asize for a logical write in bytes. This is used by the
1759 * DMU to calculate the space a logical write will require on disk.
1760 * If lsize is smaller than the largest physical block size allocatable on this
1761 * pool we use its value instead, since the write will end up using the whole
1762 * block anyway.
1763 */
1764 uint64_t
1765 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1766 {
1767 if (lsize == 0)
1768 return (0); /* No inflation needed */
1769 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1770 }
1771
1772 /*
1773 * Return the amount of slop space in bytes. It is typically 1/32 of the pool
1774 * (3.2%), minus the embedded log space. On very small pools, it may be
1775 * slightly larger than this. On very large pools, it will be capped to
1776 * the value of spa_max_slop. The embedded log space is not included in
1777 * spa_dspace. By subtracting it, the usable space (per "zfs list") is a
1778 * constant 97% of the total space, regardless of metaslab size (assuming the
1779 * default spa_slop_shift=5 and a non-tiny pool).
1780 *
1781 * See the comment above spa_slop_shift for more details.
1782 */
1783 uint64_t
1784 spa_get_slop_space(spa_t *spa)
1785 {
1786 uint64_t space = 0;
1787 uint64_t slop = 0;
1788
1789 /*
1790 * Make sure spa_dedup_dspace has been set.
1791 */
1792 if (spa->spa_dedup_dspace == ~0ULL)
1793 spa_update_dspace(spa);
1794
1795 /*
1796 * spa_get_dspace() includes the space only logically "used" by
1797 * deduplicated data, so since it's not useful to reserve more
1798 * space with more deduplicated data, we subtract that out here.
1799 */
1800 space = spa_get_dspace(spa) - spa->spa_dedup_dspace;
1801 slop = MIN(space >> spa_slop_shift, spa_max_slop);
1802
1803 /*
1804 * Subtract the embedded log space, but no more than half the (3.2%)
1805 * unusable space. Note, the "no more than half" is only relevant if
1806 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by
1807 * default.
1808 */
1809 uint64_t embedded_log =
1810 metaslab_class_get_dspace(spa_embedded_log_class(spa));
1811 slop -= MIN(embedded_log, slop >> 1);
1812
1813 /*
1814 * Slop space should be at least spa_min_slop, but no more than half
1815 * the entire pool.
1816 */
1817 slop = MAX(slop, MIN(space >> 1, spa_min_slop));
1818 return (slop);
1819 }
1820
1821 uint64_t
1822 spa_get_dspace(spa_t *spa)
1823 {
1824 return (spa->spa_dspace);
1825 }
1826
1827 uint64_t
1828 spa_get_checkpoint_space(spa_t *spa)
1829 {
1830 return (spa->spa_checkpoint_info.sci_dspace);
1831 }
1832
1833 void
1834 spa_update_dspace(spa_t *spa)
1835 {
1836 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1837 ddt_get_dedup_dspace(spa);
1838 if (spa->spa_nonallocating_dspace > 0) {
1839 /*
1840 * Subtract the space provided by all non-allocating vdevs that
1841 * contribute to dspace. If a file is overwritten, its old
1842 * blocks are freed and new blocks are allocated. If there are
1843 * no snapshots of the file, the available space should remain
1844 * the same. The old blocks could be freed from the
1845 * non-allocating vdev, but the new blocks must be allocated on
1846 * other (allocating) vdevs. By reserving the entire size of
1847 * the non-allocating vdevs (including allocated space), we
1848 * ensure that there will be enough space on the allocating
1849 * vdevs for this file overwrite to succeed.
1850 *
1851 * Note that the DMU/DSL doesn't actually know or care
1852 * how much space is allocated (it does its own tracking
1853 * of how much space has been logically used). So it
1854 * doesn't matter that the data we are moving may be
1855 * allocated twice (on the old device and the new device).
1856 */
1857 ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace);
1858 spa->spa_dspace -= spa->spa_nonallocating_dspace;
1859 }
1860 }
1861
1862 /*
1863 * Return the failure mode that has been set to this pool. The default
1864 * behavior will be to block all I/Os when a complete failure occurs.
1865 */
1866 uint64_t
1867 spa_get_failmode(spa_t *spa)
1868 {
1869 return (spa->spa_failmode);
1870 }
1871
1872 boolean_t
1873 spa_suspended(spa_t *spa)
1874 {
1875 return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1876 }
1877
1878 uint64_t
1879 spa_version(spa_t *spa)
1880 {
1881 return (spa->spa_ubsync.ub_version);
1882 }
1883
1884 boolean_t
1885 spa_deflate(spa_t *spa)
1886 {
1887 return (spa->spa_deflate);
1888 }
1889
1890 metaslab_class_t *
1891 spa_normal_class(spa_t *spa)
1892 {
1893 return (spa->spa_normal_class);
1894 }
1895
1896 metaslab_class_t *
1897 spa_log_class(spa_t *spa)
1898 {
1899 return (spa->spa_log_class);
1900 }
1901
1902 metaslab_class_t *
1903 spa_embedded_log_class(spa_t *spa)
1904 {
1905 return (spa->spa_embedded_log_class);
1906 }
1907
1908 metaslab_class_t *
1909 spa_special_class(spa_t *spa)
1910 {
1911 return (spa->spa_special_class);
1912 }
1913
1914 metaslab_class_t *
1915 spa_dedup_class(spa_t *spa)
1916 {
1917 return (spa->spa_dedup_class);
1918 }
1919
1920 /*
1921 * Locate an appropriate allocation class
1922 */
1923 metaslab_class_t *
1924 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1925 uint_t level, uint_t special_smallblk)
1926 {
1927 /*
1928 * ZIL allocations determine their class in zio_alloc_zil().
1929 */
1930 ASSERT(objtype != DMU_OT_INTENT_LOG);
1931
1932 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1933
1934 if (DMU_OT_IS_DDT(objtype)) {
1935 if (spa->spa_dedup_class->mc_groups != 0)
1936 return (spa_dedup_class(spa));
1937 else if (has_special_class && zfs_ddt_data_is_special)
1938 return (spa_special_class(spa));
1939 else
1940 return (spa_normal_class(spa));
1941 }
1942
1943 /* Indirect blocks for user data can land in special if allowed */
1944 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1945 if (has_special_class && zfs_user_indirect_is_special)
1946 return (spa_special_class(spa));
1947 else
1948 return (spa_normal_class(spa));
1949 }
1950
1951 if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1952 if (has_special_class)
1953 return (spa_special_class(spa));
1954 else
1955 return (spa_normal_class(spa));
1956 }
1957
1958 /*
1959 * Allow small file blocks in special class in some cases (like
1960 * for the dRAID vdev feature). But always leave a reserve of
1961 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
1962 */
1963 if (DMU_OT_IS_FILE(objtype) &&
1964 has_special_class && size <= special_smallblk) {
1965 metaslab_class_t *special = spa_special_class(spa);
1966 uint64_t alloc = metaslab_class_get_alloc(special);
1967 uint64_t space = metaslab_class_get_space(special);
1968 uint64_t limit =
1969 (space * (100 - zfs_special_class_metadata_reserve_pct))
1970 / 100;
1971
1972 if (alloc < limit)
1973 return (special);
1974 }
1975
1976 return (spa_normal_class(spa));
1977 }
1978
1979 void
1980 spa_evicting_os_register(spa_t *spa, objset_t *os)
1981 {
1982 mutex_enter(&spa->spa_evicting_os_lock);
1983 list_insert_head(&spa->spa_evicting_os_list, os);
1984 mutex_exit(&spa->spa_evicting_os_lock);
1985 }
1986
1987 void
1988 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1989 {
1990 mutex_enter(&spa->spa_evicting_os_lock);
1991 list_remove(&spa->spa_evicting_os_list, os);
1992 cv_broadcast(&spa->spa_evicting_os_cv);
1993 mutex_exit(&spa->spa_evicting_os_lock);
1994 }
1995
1996 void
1997 spa_evicting_os_wait(spa_t *spa)
1998 {
1999 mutex_enter(&spa->spa_evicting_os_lock);
2000 while (!list_is_empty(&spa->spa_evicting_os_list))
2001 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
2002 mutex_exit(&spa->spa_evicting_os_lock);
2003
2004 dmu_buf_user_evict_wait();
2005 }
2006
2007 int
2008 spa_max_replication(spa_t *spa)
2009 {
2010 /*
2011 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
2012 * handle BPs with more than one DVA allocated. Set our max
2013 * replication level accordingly.
2014 */
2015 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
2016 return (1);
2017 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
2018 }
2019
2020 int
2021 spa_prev_software_version(spa_t *spa)
2022 {
2023 return (spa->spa_prev_software_version);
2024 }
2025
2026 uint64_t
2027 spa_deadman_synctime(spa_t *spa)
2028 {
2029 return (spa->spa_deadman_synctime);
2030 }
2031
2032 spa_autotrim_t
2033 spa_get_autotrim(spa_t *spa)
2034 {
2035 return (spa->spa_autotrim);
2036 }
2037
2038 uint64_t
2039 spa_deadman_ziotime(spa_t *spa)
2040 {
2041 return (spa->spa_deadman_ziotime);
2042 }
2043
2044 uint64_t
2045 spa_get_deadman_failmode(spa_t *spa)
2046 {
2047 return (spa->spa_deadman_failmode);
2048 }
2049
2050 void
2051 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2052 {
2053 if (strcmp(failmode, "wait") == 0)
2054 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2055 else if (strcmp(failmode, "continue") == 0)
2056 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2057 else if (strcmp(failmode, "panic") == 0)
2058 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2059 else
2060 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2061 }
2062
2063 void
2064 spa_set_deadman_ziotime(hrtime_t ns)
2065 {
2066 spa_t *spa = NULL;
2067
2068 if (spa_mode_global != SPA_MODE_UNINIT) {
2069 mutex_enter(&spa_namespace_lock);
2070 while ((spa = spa_next(spa)) != NULL)
2071 spa->spa_deadman_ziotime = ns;
2072 mutex_exit(&spa_namespace_lock);
2073 }
2074 }
2075
2076 void
2077 spa_set_deadman_synctime(hrtime_t ns)
2078 {
2079 spa_t *spa = NULL;
2080
2081 if (spa_mode_global != SPA_MODE_UNINIT) {
2082 mutex_enter(&spa_namespace_lock);
2083 while ((spa = spa_next(spa)) != NULL)
2084 spa->spa_deadman_synctime = ns;
2085 mutex_exit(&spa_namespace_lock);
2086 }
2087 }
2088
2089 uint64_t
2090 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2091 {
2092 uint64_t asize = DVA_GET_ASIZE(dva);
2093 uint64_t dsize = asize;
2094
2095 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2096
2097 if (asize != 0 && spa->spa_deflate) {
2098 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2099 if (vd != NULL)
2100 dsize = (asize >> SPA_MINBLOCKSHIFT) *
2101 vd->vdev_deflate_ratio;
2102 }
2103
2104 return (dsize);
2105 }
2106
2107 uint64_t
2108 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2109 {
2110 uint64_t dsize = 0;
2111
2112 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2113 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2114
2115 return (dsize);
2116 }
2117
2118 uint64_t
2119 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2120 {
2121 uint64_t dsize = 0;
2122
2123 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2124
2125 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2126 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2127
2128 spa_config_exit(spa, SCL_VDEV, FTAG);
2129
2130 return (dsize);
2131 }
2132
2133 uint64_t
2134 spa_dirty_data(spa_t *spa)
2135 {
2136 return (spa->spa_dsl_pool->dp_dirty_total);
2137 }
2138
2139 /*
2140 * ==========================================================================
2141 * SPA Import Progress Routines
2142 * ==========================================================================
2143 */
2144
2145 typedef struct spa_import_progress {
2146 uint64_t pool_guid; /* unique id for updates */
2147 char *pool_name;
2148 spa_load_state_t spa_load_state;
2149 uint64_t mmp_sec_remaining; /* MMP activity check */
2150 uint64_t spa_load_max_txg; /* rewind txg */
2151 procfs_list_node_t smh_node;
2152 } spa_import_progress_t;
2153
2154 spa_history_list_t *spa_import_progress_list = NULL;
2155
2156 static int
2157 spa_import_progress_show_header(struct seq_file *f)
2158 {
2159 seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid",
2160 "load_state", "multihost_secs", "max_txg",
2161 "pool_name");
2162 return (0);
2163 }
2164
2165 static int
2166 spa_import_progress_show(struct seq_file *f, void *data)
2167 {
2168 spa_import_progress_t *sip = (spa_import_progress_t *)data;
2169
2170 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n",
2171 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2172 (u_longlong_t)sip->mmp_sec_remaining,
2173 (u_longlong_t)sip->spa_load_max_txg,
2174 (sip->pool_name ? sip->pool_name : "-"));
2175
2176 return (0);
2177 }
2178
2179 /* Remove oldest elements from list until there are no more than 'size' left */
2180 static void
2181 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2182 {
2183 spa_import_progress_t *sip;
2184 while (shl->size > size) {
2185 sip = list_remove_head(&shl->procfs_list.pl_list);
2186 if (sip->pool_name)
2187 spa_strfree(sip->pool_name);
2188 kmem_free(sip, sizeof (spa_import_progress_t));
2189 shl->size--;
2190 }
2191
2192 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2193 }
2194
2195 static void
2196 spa_import_progress_init(void)
2197 {
2198 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2199 KM_SLEEP);
2200
2201 spa_import_progress_list->size = 0;
2202
2203 spa_import_progress_list->procfs_list.pl_private =
2204 spa_import_progress_list;
2205
2206 procfs_list_install("zfs",
2207 NULL,
2208 "import_progress",
2209 0644,
2210 &spa_import_progress_list->procfs_list,
2211 spa_import_progress_show,
2212 spa_import_progress_show_header,
2213 NULL,
2214 offsetof(spa_import_progress_t, smh_node));
2215 }
2216
2217 static void
2218 spa_import_progress_destroy(void)
2219 {
2220 spa_history_list_t *shl = spa_import_progress_list;
2221 procfs_list_uninstall(&shl->procfs_list);
2222 spa_import_progress_truncate(shl, 0);
2223 procfs_list_destroy(&shl->procfs_list);
2224 kmem_free(shl, sizeof (spa_history_list_t));
2225 }
2226
2227 int
2228 spa_import_progress_set_state(uint64_t pool_guid,
2229 spa_load_state_t load_state)
2230 {
2231 spa_history_list_t *shl = spa_import_progress_list;
2232 spa_import_progress_t *sip;
2233 int error = ENOENT;
2234
2235 if (shl->size == 0)
2236 return (0);
2237
2238 mutex_enter(&shl->procfs_list.pl_lock);
2239 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2240 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2241 if (sip->pool_guid == pool_guid) {
2242 sip->spa_load_state = load_state;
2243 error = 0;
2244 break;
2245 }
2246 }
2247 mutex_exit(&shl->procfs_list.pl_lock);
2248
2249 return (error);
2250 }
2251
2252 int
2253 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2254 {
2255 spa_history_list_t *shl = spa_import_progress_list;
2256 spa_import_progress_t *sip;
2257 int error = ENOENT;
2258
2259 if (shl->size == 0)
2260 return (0);
2261
2262 mutex_enter(&shl->procfs_list.pl_lock);
2263 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2264 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2265 if (sip->pool_guid == pool_guid) {
2266 sip->spa_load_max_txg = load_max_txg;
2267 error = 0;
2268 break;
2269 }
2270 }
2271 mutex_exit(&shl->procfs_list.pl_lock);
2272
2273 return (error);
2274 }
2275
2276 int
2277 spa_import_progress_set_mmp_check(uint64_t pool_guid,
2278 uint64_t mmp_sec_remaining)
2279 {
2280 spa_history_list_t *shl = spa_import_progress_list;
2281 spa_import_progress_t *sip;
2282 int error = ENOENT;
2283
2284 if (shl->size == 0)
2285 return (0);
2286
2287 mutex_enter(&shl->procfs_list.pl_lock);
2288 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2289 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2290 if (sip->pool_guid == pool_guid) {
2291 sip->mmp_sec_remaining = mmp_sec_remaining;
2292 error = 0;
2293 break;
2294 }
2295 }
2296 mutex_exit(&shl->procfs_list.pl_lock);
2297
2298 return (error);
2299 }
2300
2301 /*
2302 * A new import is in progress, add an entry.
2303 */
2304 void
2305 spa_import_progress_add(spa_t *spa)
2306 {
2307 spa_history_list_t *shl = spa_import_progress_list;
2308 spa_import_progress_t *sip;
2309 char *poolname = NULL;
2310
2311 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2312 sip->pool_guid = spa_guid(spa);
2313
2314 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2315 &poolname);
2316 if (poolname == NULL)
2317 poolname = spa_name(spa);
2318 sip->pool_name = spa_strdup(poolname);
2319 sip->spa_load_state = spa_load_state(spa);
2320
2321 mutex_enter(&shl->procfs_list.pl_lock);
2322 procfs_list_add(&shl->procfs_list, sip);
2323 shl->size++;
2324 mutex_exit(&shl->procfs_list.pl_lock);
2325 }
2326
2327 void
2328 spa_import_progress_remove(uint64_t pool_guid)
2329 {
2330 spa_history_list_t *shl = spa_import_progress_list;
2331 spa_import_progress_t *sip;
2332
2333 mutex_enter(&shl->procfs_list.pl_lock);
2334 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2335 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2336 if (sip->pool_guid == pool_guid) {
2337 if (sip->pool_name)
2338 spa_strfree(sip->pool_name);
2339 list_remove(&shl->procfs_list.pl_list, sip);
2340 shl->size--;
2341 kmem_free(sip, sizeof (spa_import_progress_t));
2342 break;
2343 }
2344 }
2345 mutex_exit(&shl->procfs_list.pl_lock);
2346 }
2347
2348 /*
2349 * ==========================================================================
2350 * Initialization and Termination
2351 * ==========================================================================
2352 */
2353
2354 static int
2355 spa_name_compare(const void *a1, const void *a2)
2356 {
2357 const spa_t *s1 = a1;
2358 const spa_t *s2 = a2;
2359 int s;
2360
2361 s = strcmp(s1->spa_name, s2->spa_name);
2362
2363 return (TREE_ISIGN(s));
2364 }
2365
2366 void
2367 spa_boot_init(void)
2368 {
2369 spa_config_load();
2370 }
2371
2372 void
2373 spa_init(spa_mode_t mode)
2374 {
2375 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2376 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2377 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2378 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2379
2380 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2381 offsetof(spa_t, spa_avl));
2382
2383 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2384 offsetof(spa_aux_t, aux_avl));
2385
2386 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2387 offsetof(spa_aux_t, aux_avl));
2388
2389 spa_mode_global = mode;
2390
2391 #ifndef _KERNEL
2392 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
2393 struct sigaction sa;
2394
2395 sa.sa_flags = SA_SIGINFO;
2396 sigemptyset(&sa.sa_mask);
2397 sa.sa_sigaction = arc_buf_sigsegv;
2398
2399 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2400 perror("could not enable watchpoints: "
2401 "sigaction(SIGSEGV, ...) = ");
2402 } else {
2403 arc_watch = B_TRUE;
2404 }
2405 }
2406 #endif
2407
2408 fm_init();
2409 zfs_refcount_init();
2410 unique_init();
2411 zfs_btree_init();
2412 metaslab_stat_init();
2413 ddt_init();
2414 zio_init();
2415 dmu_init();
2416 zil_init();
2417 vdev_cache_stat_init();
2418 vdev_mirror_stat_init();
2419 vdev_raidz_math_init();
2420 vdev_file_init();
2421 zfs_prop_init();
2422 chksum_init();
2423 zpool_prop_init();
2424 zpool_feature_init();
2425 spa_config_load();
2426 vdev_prop_init();
2427 l2arc_start();
2428 scan_init();
2429 qat_init();
2430 spa_import_progress_init();
2431 }
2432
2433 void
2434 spa_fini(void)
2435 {
2436 l2arc_stop();
2437
2438 spa_evict_all();
2439
2440 vdev_file_fini();
2441 vdev_cache_stat_fini();
2442 vdev_mirror_stat_fini();
2443 vdev_raidz_math_fini();
2444 chksum_fini();
2445 zil_fini();
2446 dmu_fini();
2447 zio_fini();
2448 ddt_fini();
2449 metaslab_stat_fini();
2450 zfs_btree_fini();
2451 unique_fini();
2452 zfs_refcount_fini();
2453 fm_fini();
2454 scan_fini();
2455 qat_fini();
2456 spa_import_progress_destroy();
2457
2458 avl_destroy(&spa_namespace_avl);
2459 avl_destroy(&spa_spare_avl);
2460 avl_destroy(&spa_l2cache_avl);
2461
2462 cv_destroy(&spa_namespace_cv);
2463 mutex_destroy(&spa_namespace_lock);
2464 mutex_destroy(&spa_spare_lock);
2465 mutex_destroy(&spa_l2cache_lock);
2466 }
2467
2468 /*
2469 * Return whether this pool has a dedicated slog device. No locking needed.
2470 * It's not a problem if the wrong answer is returned as it's only for
2471 * performance and not correctness.
2472 */
2473 boolean_t
2474 spa_has_slogs(spa_t *spa)
2475 {
2476 return (spa->spa_log_class->mc_groups != 0);
2477 }
2478
2479 spa_log_state_t
2480 spa_get_log_state(spa_t *spa)
2481 {
2482 return (spa->spa_log_state);
2483 }
2484
2485 void
2486 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2487 {
2488 spa->spa_log_state = state;
2489 }
2490
2491 boolean_t
2492 spa_is_root(spa_t *spa)
2493 {
2494 return (spa->spa_is_root);
2495 }
2496
2497 boolean_t
2498 spa_writeable(spa_t *spa)
2499 {
2500 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
2501 }
2502
2503 /*
2504 * Returns true if there is a pending sync task in any of the current
2505 * syncing txg, the current quiescing txg, or the current open txg.
2506 */
2507 boolean_t
2508 spa_has_pending_synctask(spa_t *spa)
2509 {
2510 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2511 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2512 }
2513
2514 spa_mode_t
2515 spa_mode(spa_t *spa)
2516 {
2517 return (spa->spa_mode);
2518 }
2519
2520 uint64_t
2521 spa_bootfs(spa_t *spa)
2522 {
2523 return (spa->spa_bootfs);
2524 }
2525
2526 uint64_t
2527 spa_delegation(spa_t *spa)
2528 {
2529 return (spa->spa_delegation);
2530 }
2531
2532 objset_t *
2533 spa_meta_objset(spa_t *spa)
2534 {
2535 return (spa->spa_meta_objset);
2536 }
2537
2538 enum zio_checksum
2539 spa_dedup_checksum(spa_t *spa)
2540 {
2541 return (spa->spa_dedup_checksum);
2542 }
2543
2544 /*
2545 * Reset pool scan stat per scan pass (or reboot).
2546 */
2547 void
2548 spa_scan_stat_init(spa_t *spa)
2549 {
2550 /* data not stored on disk */
2551 spa->spa_scan_pass_start = gethrestime_sec();
2552 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2553 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2554 else
2555 spa->spa_scan_pass_scrub_pause = 0;
2556 spa->spa_scan_pass_scrub_spent_paused = 0;
2557 spa->spa_scan_pass_exam = 0;
2558 spa->spa_scan_pass_issued = 0;
2559 vdev_scan_stat_init(spa->spa_root_vdev);
2560 }
2561
2562 /*
2563 * Get scan stats for zpool status reports
2564 */
2565 int
2566 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2567 {
2568 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2569
2570 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2571 return (SET_ERROR(ENOENT));
2572 memset(ps, 0, sizeof (pool_scan_stat_t));
2573
2574 /* data stored on disk */
2575 ps->pss_func = scn->scn_phys.scn_func;
2576 ps->pss_state = scn->scn_phys.scn_state;
2577 ps->pss_start_time = scn->scn_phys.scn_start_time;
2578 ps->pss_end_time = scn->scn_phys.scn_end_time;
2579 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2580 ps->pss_examined = scn->scn_phys.scn_examined;
2581 ps->pss_to_process = scn->scn_phys.scn_to_process;
2582 ps->pss_processed = scn->scn_phys.scn_processed;
2583 ps->pss_errors = scn->scn_phys.scn_errors;
2584
2585 /* data not stored on disk */
2586 ps->pss_pass_exam = spa->spa_scan_pass_exam;
2587 ps->pss_pass_start = spa->spa_scan_pass_start;
2588 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2589 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2590 ps->pss_pass_issued = spa->spa_scan_pass_issued;
2591 ps->pss_issued =
2592 scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2593
2594 return (0);
2595 }
2596
2597 int
2598 spa_maxblocksize(spa_t *spa)
2599 {
2600 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2601 return (SPA_MAXBLOCKSIZE);
2602 else
2603 return (SPA_OLD_MAXBLOCKSIZE);
2604 }
2605
2606
2607 /*
2608 * Returns the txg that the last device removal completed. No indirect mappings
2609 * have been added since this txg.
2610 */
2611 uint64_t
2612 spa_get_last_removal_txg(spa_t *spa)
2613 {
2614 uint64_t vdevid;
2615 uint64_t ret = -1ULL;
2616
2617 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2618 /*
2619 * sr_prev_indirect_vdev is only modified while holding all the
2620 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2621 * examining it.
2622 */
2623 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2624
2625 while (vdevid != -1ULL) {
2626 vdev_t *vd = vdev_lookup_top(spa, vdevid);
2627 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2628
2629 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2630
2631 /*
2632 * If the removal did not remap any data, we don't care.
2633 */
2634 if (vdev_indirect_births_count(vib) != 0) {
2635 ret = vdev_indirect_births_last_entry_txg(vib);
2636 break;
2637 }
2638
2639 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2640 }
2641 spa_config_exit(spa, SCL_VDEV, FTAG);
2642
2643 IMPLY(ret != -1ULL,
2644 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2645
2646 return (ret);
2647 }
2648
2649 int
2650 spa_maxdnodesize(spa_t *spa)
2651 {
2652 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2653 return (DNODE_MAX_SIZE);
2654 else
2655 return (DNODE_MIN_SIZE);
2656 }
2657
2658 boolean_t
2659 spa_multihost(spa_t *spa)
2660 {
2661 return (spa->spa_multihost ? B_TRUE : B_FALSE);
2662 }
2663
2664 uint32_t
2665 spa_get_hostid(spa_t *spa)
2666 {
2667 return (spa->spa_hostid);
2668 }
2669
2670 boolean_t
2671 spa_trust_config(spa_t *spa)
2672 {
2673 return (spa->spa_trust_config);
2674 }
2675
2676 uint64_t
2677 spa_missing_tvds_allowed(spa_t *spa)
2678 {
2679 return (spa->spa_missing_tvds_allowed);
2680 }
2681
2682 space_map_t *
2683 spa_syncing_log_sm(spa_t *spa)
2684 {
2685 return (spa->spa_syncing_log_sm);
2686 }
2687
2688 void
2689 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2690 {
2691 spa->spa_missing_tvds = missing;
2692 }
2693
2694 /*
2695 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2696 */
2697 const char *
2698 spa_state_to_name(spa_t *spa)
2699 {
2700 ASSERT3P(spa, !=, NULL);
2701
2702 /*
2703 * it is possible for the spa to exist, without root vdev
2704 * as the spa transitions during import/export
2705 */
2706 vdev_t *rvd = spa->spa_root_vdev;
2707 if (rvd == NULL) {
2708 return ("TRANSITIONING");
2709 }
2710 vdev_state_t state = rvd->vdev_state;
2711 vdev_aux_t aux = rvd->vdev_stat.vs_aux;
2712
2713 if (spa_suspended(spa) &&
2714 (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE))
2715 return ("SUSPENDED");
2716
2717 switch (state) {
2718 case VDEV_STATE_CLOSED:
2719 case VDEV_STATE_OFFLINE:
2720 return ("OFFLINE");
2721 case VDEV_STATE_REMOVED:
2722 return ("REMOVED");
2723 case VDEV_STATE_CANT_OPEN:
2724 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2725 return ("FAULTED");
2726 else if (aux == VDEV_AUX_SPLIT_POOL)
2727 return ("SPLIT");
2728 else
2729 return ("UNAVAIL");
2730 case VDEV_STATE_FAULTED:
2731 return ("FAULTED");
2732 case VDEV_STATE_DEGRADED:
2733 return ("DEGRADED");
2734 case VDEV_STATE_HEALTHY:
2735 return ("ONLINE");
2736 default:
2737 break;
2738 }
2739
2740 return ("UNKNOWN");
2741 }
2742
2743 boolean_t
2744 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2745 {
2746 vdev_t *rvd = spa->spa_root_vdev;
2747 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2748 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2749 return (B_FALSE);
2750 }
2751 return (B_TRUE);
2752 }
2753
2754 boolean_t
2755 spa_has_checkpoint(spa_t *spa)
2756 {
2757 return (spa->spa_checkpoint_txg != 0);
2758 }
2759
2760 boolean_t
2761 spa_importing_readonly_checkpoint(spa_t *spa)
2762 {
2763 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2764 spa->spa_mode == SPA_MODE_READ);
2765 }
2766
2767 uint64_t
2768 spa_min_claim_txg(spa_t *spa)
2769 {
2770 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2771
2772 if (checkpoint_txg != 0)
2773 return (checkpoint_txg + 1);
2774
2775 return (spa->spa_first_txg);
2776 }
2777
2778 /*
2779 * If there is a checkpoint, async destroys may consume more space from
2780 * the pool instead of freeing it. In an attempt to save the pool from
2781 * getting suspended when it is about to run out of space, we stop
2782 * processing async destroys.
2783 */
2784 boolean_t
2785 spa_suspend_async_destroy(spa_t *spa)
2786 {
2787 dsl_pool_t *dp = spa_get_dsl(spa);
2788
2789 uint64_t unreserved = dsl_pool_unreserved_space(dp,
2790 ZFS_SPACE_CHECK_EXTRA_RESERVED);
2791 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2792 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2793
2794 if (spa_has_checkpoint(spa) && avail == 0)
2795 return (B_TRUE);
2796
2797 return (B_FALSE);
2798 }
2799
2800 #if defined(_KERNEL)
2801
2802 int
2803 param_set_deadman_failmode_common(const char *val)
2804 {
2805 spa_t *spa = NULL;
2806 char *p;
2807
2808 if (val == NULL)
2809 return (SET_ERROR(EINVAL));
2810
2811 if ((p = strchr(val, '\n')) != NULL)
2812 *p = '\0';
2813
2814 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
2815 strcmp(val, "panic"))
2816 return (SET_ERROR(EINVAL));
2817
2818 if (spa_mode_global != SPA_MODE_UNINIT) {
2819 mutex_enter(&spa_namespace_lock);
2820 while ((spa = spa_next(spa)) != NULL)
2821 spa_set_deadman_failmode(spa, val);
2822 mutex_exit(&spa_namespace_lock);
2823 }
2824
2825 return (0);
2826 }
2827 #endif
2828
2829 /* Namespace manipulation */
2830 EXPORT_SYMBOL(spa_lookup);
2831 EXPORT_SYMBOL(spa_add);
2832 EXPORT_SYMBOL(spa_remove);
2833 EXPORT_SYMBOL(spa_next);
2834
2835 /* Refcount functions */
2836 EXPORT_SYMBOL(spa_open_ref);
2837 EXPORT_SYMBOL(spa_close);
2838 EXPORT_SYMBOL(spa_refcount_zero);
2839
2840 /* Pool configuration lock */
2841 EXPORT_SYMBOL(spa_config_tryenter);
2842 EXPORT_SYMBOL(spa_config_enter);
2843 EXPORT_SYMBOL(spa_config_exit);
2844 EXPORT_SYMBOL(spa_config_held);
2845
2846 /* Pool vdev add/remove lock */
2847 EXPORT_SYMBOL(spa_vdev_enter);
2848 EXPORT_SYMBOL(spa_vdev_exit);
2849
2850 /* Pool vdev state change lock */
2851 EXPORT_SYMBOL(spa_vdev_state_enter);
2852 EXPORT_SYMBOL(spa_vdev_state_exit);
2853
2854 /* Accessor functions */
2855 EXPORT_SYMBOL(spa_shutting_down);
2856 EXPORT_SYMBOL(spa_get_dsl);
2857 EXPORT_SYMBOL(spa_get_rootblkptr);
2858 EXPORT_SYMBOL(spa_set_rootblkptr);
2859 EXPORT_SYMBOL(spa_altroot);
2860 EXPORT_SYMBOL(spa_sync_pass);
2861 EXPORT_SYMBOL(spa_name);
2862 EXPORT_SYMBOL(spa_guid);
2863 EXPORT_SYMBOL(spa_last_synced_txg);
2864 EXPORT_SYMBOL(spa_first_txg);
2865 EXPORT_SYMBOL(spa_syncing_txg);
2866 EXPORT_SYMBOL(spa_version);
2867 EXPORT_SYMBOL(spa_state);
2868 EXPORT_SYMBOL(spa_load_state);
2869 EXPORT_SYMBOL(spa_freeze_txg);
2870 EXPORT_SYMBOL(spa_get_dspace);
2871 EXPORT_SYMBOL(spa_update_dspace);
2872 EXPORT_SYMBOL(spa_deflate);
2873 EXPORT_SYMBOL(spa_normal_class);
2874 EXPORT_SYMBOL(spa_log_class);
2875 EXPORT_SYMBOL(spa_special_class);
2876 EXPORT_SYMBOL(spa_preferred_class);
2877 EXPORT_SYMBOL(spa_max_replication);
2878 EXPORT_SYMBOL(spa_prev_software_version);
2879 EXPORT_SYMBOL(spa_get_failmode);
2880 EXPORT_SYMBOL(spa_suspended);
2881 EXPORT_SYMBOL(spa_bootfs);
2882 EXPORT_SYMBOL(spa_delegation);
2883 EXPORT_SYMBOL(spa_meta_objset);
2884 EXPORT_SYMBOL(spa_maxblocksize);
2885 EXPORT_SYMBOL(spa_maxdnodesize);
2886
2887 /* Miscellaneous support routines */
2888 EXPORT_SYMBOL(spa_guid_exists);
2889 EXPORT_SYMBOL(spa_strdup);
2890 EXPORT_SYMBOL(spa_strfree);
2891 EXPORT_SYMBOL(spa_generate_guid);
2892 EXPORT_SYMBOL(snprintf_blkptr);
2893 EXPORT_SYMBOL(spa_freeze);
2894 EXPORT_SYMBOL(spa_upgrade);
2895 EXPORT_SYMBOL(spa_evict_all);
2896 EXPORT_SYMBOL(spa_lookup_by_guid);
2897 EXPORT_SYMBOL(spa_has_spare);
2898 EXPORT_SYMBOL(dva_get_dsize_sync);
2899 EXPORT_SYMBOL(bp_get_dsize_sync);
2900 EXPORT_SYMBOL(bp_get_dsize);
2901 EXPORT_SYMBOL(spa_has_slogs);
2902 EXPORT_SYMBOL(spa_is_root);
2903 EXPORT_SYMBOL(spa_writeable);
2904 EXPORT_SYMBOL(spa_mode);
2905 EXPORT_SYMBOL(spa_namespace_lock);
2906 EXPORT_SYMBOL(spa_trust_config);
2907 EXPORT_SYMBOL(spa_missing_tvds_allowed);
2908 EXPORT_SYMBOL(spa_set_missing_tvds);
2909 EXPORT_SYMBOL(spa_state_to_name);
2910 EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
2911 EXPORT_SYMBOL(spa_min_claim_txg);
2912 EXPORT_SYMBOL(spa_suspend_async_destroy);
2913 EXPORT_SYMBOL(spa_has_checkpoint);
2914 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
2915
2916 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
2917 "Set additional debugging flags");
2918
2919 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
2920 "Set to attempt to recover from fatal errors");
2921
2922 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
2923 "Set to ignore IO errors during free and permanently leak the space");
2924
2925 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW,
2926 "Dead I/O check interval in milliseconds");
2927
2928 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW,
2929 "Enable deadman timer");
2930
2931 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW,
2932 "SPA size estimate multiplication factor");
2933
2934 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
2935 "Place DDT data into the special class");
2936
2937 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
2938 "Place user data indirect blocks into the special class");
2939
2940 /* BEGIN CSTYLED */
2941 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
2942 param_set_deadman_failmode, param_get_charp, ZMOD_RW,
2943 "Failmode for deadman timer");
2944
2945 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
2946 param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW,
2947 "Pool sync expiration time in milliseconds");
2948
2949 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
2950 param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW,
2951 "IO expiration time in milliseconds");
2952
2953 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW,
2954 "Small file blocks in special vdevs depends on this much "
2955 "free space available");
2956 /* END CSTYLED */
2957
2958 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
2959 param_get_uint, ZMOD_RW, "Reserved free space in pool");