]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa_misc.c
Use system_delay_taskq for long delay tasks
[mirror_zfs.git] / module / zfs / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
31 #include <sys/zio.h>
32 #include <sys/zio_checksum.h>
33 #include <sys/zio_compress.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/zap.h>
37 #include <sys/zil.h>
38 #include <sys/vdev_impl.h>
39 #include <sys/vdev_file.h>
40 #include <sys/vdev_raidz.h>
41 #include <sys/metaslab.h>
42 #include <sys/uberblock_impl.h>
43 #include <sys/txg.h>
44 #include <sys/avl.h>
45 #include <sys/unique.h>
46 #include <sys/dsl_pool.h>
47 #include <sys/dsl_dir.h>
48 #include <sys/dsl_prop.h>
49 #include <sys/fm/util.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/metaslab_impl.h>
53 #include <sys/arc.h>
54 #include <sys/ddt.h>
55 #include <sys/kstat.h>
56 #include "zfs_prop.h"
57 #include <sys/zfeature.h>
58
59 /*
60 * SPA locking
61 *
62 * There are four basic locks for managing spa_t structures:
63 *
64 * spa_namespace_lock (global mutex)
65 *
66 * This lock must be acquired to do any of the following:
67 *
68 * - Lookup a spa_t by name
69 * - Add or remove a spa_t from the namespace
70 * - Increase spa_refcount from non-zero
71 * - Check if spa_refcount is zero
72 * - Rename a spa_t
73 * - add/remove/attach/detach devices
74 * - Held for the duration of create/destroy/import/export
75 *
76 * It does not need to handle recursion. A create or destroy may
77 * reference objects (files or zvols) in other pools, but by
78 * definition they must have an existing reference, and will never need
79 * to lookup a spa_t by name.
80 *
81 * spa_refcount (per-spa refcount_t protected by mutex)
82 *
83 * This reference count keep track of any active users of the spa_t. The
84 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
85 * the refcount is never really 'zero' - opening a pool implicitly keeps
86 * some references in the DMU. Internally we check against spa_minref, but
87 * present the image of a zero/non-zero value to consumers.
88 *
89 * spa_config_lock[] (per-spa array of rwlocks)
90 *
91 * This protects the spa_t from config changes, and must be held in
92 * the following circumstances:
93 *
94 * - RW_READER to perform I/O to the spa
95 * - RW_WRITER to change the vdev config
96 *
97 * The locking order is fairly straightforward:
98 *
99 * spa_namespace_lock -> spa_refcount
100 *
101 * The namespace lock must be acquired to increase the refcount from 0
102 * or to check if it is zero.
103 *
104 * spa_refcount -> spa_config_lock[]
105 *
106 * There must be at least one valid reference on the spa_t to acquire
107 * the config lock.
108 *
109 * spa_namespace_lock -> spa_config_lock[]
110 *
111 * The namespace lock must always be taken before the config lock.
112 *
113 *
114 * The spa_namespace_lock can be acquired directly and is globally visible.
115 *
116 * The namespace is manipulated using the following functions, all of which
117 * require the spa_namespace_lock to be held.
118 *
119 * spa_lookup() Lookup a spa_t by name.
120 *
121 * spa_add() Create a new spa_t in the namespace.
122 *
123 * spa_remove() Remove a spa_t from the namespace. This also
124 * frees up any memory associated with the spa_t.
125 *
126 * spa_next() Returns the next spa_t in the system, or the
127 * first if NULL is passed.
128 *
129 * spa_evict_all() Shutdown and remove all spa_t structures in
130 * the system.
131 *
132 * spa_guid_exists() Determine whether a pool/device guid exists.
133 *
134 * The spa_refcount is manipulated using the following functions:
135 *
136 * spa_open_ref() Adds a reference to the given spa_t. Must be
137 * called with spa_namespace_lock held if the
138 * refcount is currently zero.
139 *
140 * spa_close() Remove a reference from the spa_t. This will
141 * not free the spa_t or remove it from the
142 * namespace. No locking is required.
143 *
144 * spa_refcount_zero() Returns true if the refcount is currently
145 * zero. Must be called with spa_namespace_lock
146 * held.
147 *
148 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
149 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
150 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
151 *
152 * To read the configuration, it suffices to hold one of these locks as reader.
153 * To modify the configuration, you must hold all locks as writer. To modify
154 * vdev state without altering the vdev tree's topology (e.g. online/offline),
155 * you must hold SCL_STATE and SCL_ZIO as writer.
156 *
157 * We use these distinct config locks to avoid recursive lock entry.
158 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
159 * block allocations (SCL_ALLOC), which may require reading space maps
160 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
161 *
162 * The spa config locks cannot be normal rwlocks because we need the
163 * ability to hand off ownership. For example, SCL_ZIO is acquired
164 * by the issuing thread and later released by an interrupt thread.
165 * They do, however, obey the usual write-wanted semantics to prevent
166 * writer (i.e. system administrator) starvation.
167 *
168 * The lock acquisition rules are as follows:
169 *
170 * SCL_CONFIG
171 * Protects changes to the vdev tree topology, such as vdev
172 * add/remove/attach/detach. Protects the dirty config list
173 * (spa_config_dirty_list) and the set of spares and l2arc devices.
174 *
175 * SCL_STATE
176 * Protects changes to pool state and vdev state, such as vdev
177 * online/offline/fault/degrade/clear. Protects the dirty state list
178 * (spa_state_dirty_list) and global pool state (spa_state).
179 *
180 * SCL_ALLOC
181 * Protects changes to metaslab groups and classes.
182 * Held as reader by metaslab_alloc() and metaslab_claim().
183 *
184 * SCL_ZIO
185 * Held by bp-level zios (those which have no io_vd upon entry)
186 * to prevent changes to the vdev tree. The bp-level zio implicitly
187 * protects all of its vdev child zios, which do not hold SCL_ZIO.
188 *
189 * SCL_FREE
190 * Protects changes to metaslab groups and classes.
191 * Held as reader by metaslab_free(). SCL_FREE is distinct from
192 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
193 * blocks in zio_done() while another i/o that holds either
194 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
195 *
196 * SCL_VDEV
197 * Held as reader to prevent changes to the vdev tree during trivial
198 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
199 * other locks, and lower than all of them, to ensure that it's safe
200 * to acquire regardless of caller context.
201 *
202 * In addition, the following rules apply:
203 *
204 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
205 * The lock ordering is SCL_CONFIG > spa_props_lock.
206 *
207 * (b) I/O operations on leaf vdevs. For any zio operation that takes
208 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
209 * or zio_write_phys() -- the caller must ensure that the config cannot
210 * cannot change in the interim, and that the vdev cannot be reopened.
211 * SCL_STATE as reader suffices for both.
212 *
213 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
214 *
215 * spa_vdev_enter() Acquire the namespace lock and the config lock
216 * for writing.
217 *
218 * spa_vdev_exit() Release the config lock, wait for all I/O
219 * to complete, sync the updated configs to the
220 * cache, and release the namespace lock.
221 *
222 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
223 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
224 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
225 *
226 * spa_rename() is also implemented within this file since it requires
227 * manipulation of the namespace.
228 */
229
230 static avl_tree_t spa_namespace_avl;
231 kmutex_t spa_namespace_lock;
232 static kcondvar_t spa_namespace_cv;
233 int spa_max_replication_override = SPA_DVAS_PER_BP;
234
235 static kmutex_t spa_spare_lock;
236 static avl_tree_t spa_spare_avl;
237 static kmutex_t spa_l2cache_lock;
238 static avl_tree_t spa_l2cache_avl;
239
240 kmem_cache_t *spa_buffer_pool;
241 int spa_mode_global;
242
243 #ifdef ZFS_DEBUG
244 /* Everything except dprintf and spa is on by default in debug builds */
245 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
246 #else
247 int zfs_flags = 0;
248 #endif
249
250 /*
251 * zfs_recover can be set to nonzero to attempt to recover from
252 * otherwise-fatal errors, typically caused by on-disk corruption. When
253 * set, calls to zfs_panic_recover() will turn into warning messages.
254 * This should only be used as a last resort, as it typically results
255 * in leaked space, or worse.
256 */
257 int zfs_recover = B_FALSE;
258
259 /*
260 * If destroy encounters an EIO while reading metadata (e.g. indirect
261 * blocks), space referenced by the missing metadata can not be freed.
262 * Normally this causes the background destroy to become "stalled", as
263 * it is unable to make forward progress. While in this stalled state,
264 * all remaining space to free from the error-encountering filesystem is
265 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
266 * permanently leak the space from indirect blocks that can not be read,
267 * and continue to free everything else that it can.
268 *
269 * The default, "stalling" behavior is useful if the storage partially
270 * fails (i.e. some but not all i/os fail), and then later recovers. In
271 * this case, we will be able to continue pool operations while it is
272 * partially failed, and when it recovers, we can continue to free the
273 * space, with no leaks. However, note that this case is actually
274 * fairly rare.
275 *
276 * Typically pools either (a) fail completely (but perhaps temporarily,
277 * e.g. a top-level vdev going offline), or (b) have localized,
278 * permanent errors (e.g. disk returns the wrong data due to bit flip or
279 * firmware bug). In case (a), this setting does not matter because the
280 * pool will be suspended and the sync thread will not be able to make
281 * forward progress regardless. In case (b), because the error is
282 * permanent, the best we can do is leak the minimum amount of space,
283 * which is what setting this flag will do. Therefore, it is reasonable
284 * for this flag to normally be set, but we chose the more conservative
285 * approach of not setting it, so that there is no possibility of
286 * leaking space in the "partial temporary" failure case.
287 */
288 int zfs_free_leak_on_eio = B_FALSE;
289
290 /*
291 * Expiration time in milliseconds. This value has two meanings. First it is
292 * used to determine when the spa_deadman() logic should fire. By default the
293 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
294 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
295 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
296 * in a system panic.
297 */
298 unsigned long zfs_deadman_synctime_ms = 1000000ULL;
299
300 /*
301 * By default the deadman is enabled.
302 */
303 int zfs_deadman_enabled = 1;
304
305 /*
306 * The worst case is single-sector max-parity RAID-Z blocks, in which
307 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
308 * times the size; so just assume that. Add to this the fact that
309 * we can have up to 3 DVAs per bp, and one more factor of 2 because
310 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
311 * the worst case is:
312 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
313 */
314 int spa_asize_inflation = 24;
315
316 /*
317 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
318 * the pool to be consumed. This ensures that we don't run the pool
319 * completely out of space, due to unaccounted changes (e.g. to the MOS).
320 * It also limits the worst-case time to allocate space. If we have
321 * less than this amount of free space, most ZPL operations (e.g. write,
322 * create) will return ENOSPC.
323 *
324 * Certain operations (e.g. file removal, most administrative actions) can
325 * use half the slop space. They will only return ENOSPC if less than half
326 * the slop space is free. Typically, once the pool has less than the slop
327 * space free, the user will use these operations to free up space in the pool.
328 * These are the operations that call dsl_pool_adjustedsize() with the netfree
329 * argument set to TRUE.
330 *
331 * A very restricted set of operations are always permitted, regardless of
332 * the amount of free space. These are the operations that call
333 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy". If these
334 * operations result in a net increase in the amount of space used,
335 * it is possible to run the pool completely out of space, causing it to
336 * be permanently read-only.
337 *
338 * See also the comments in zfs_space_check_t.
339 */
340 int spa_slop_shift = 5;
341
342 /*
343 * ==========================================================================
344 * SPA config locking
345 * ==========================================================================
346 */
347 static void
348 spa_config_lock_init(spa_t *spa)
349 {
350 int i;
351
352 for (i = 0; i < SCL_LOCKS; i++) {
353 spa_config_lock_t *scl = &spa->spa_config_lock[i];
354 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
355 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
356 refcount_create_untracked(&scl->scl_count);
357 scl->scl_writer = NULL;
358 scl->scl_write_wanted = 0;
359 }
360 }
361
362 static void
363 spa_config_lock_destroy(spa_t *spa)
364 {
365 int i;
366
367 for (i = 0; i < SCL_LOCKS; i++) {
368 spa_config_lock_t *scl = &spa->spa_config_lock[i];
369 mutex_destroy(&scl->scl_lock);
370 cv_destroy(&scl->scl_cv);
371 refcount_destroy(&scl->scl_count);
372 ASSERT(scl->scl_writer == NULL);
373 ASSERT(scl->scl_write_wanted == 0);
374 }
375 }
376
377 int
378 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
379 {
380 int i;
381
382 for (i = 0; i < SCL_LOCKS; i++) {
383 spa_config_lock_t *scl = &spa->spa_config_lock[i];
384 if (!(locks & (1 << i)))
385 continue;
386 mutex_enter(&scl->scl_lock);
387 if (rw == RW_READER) {
388 if (scl->scl_writer || scl->scl_write_wanted) {
389 mutex_exit(&scl->scl_lock);
390 spa_config_exit(spa, locks & ((1 << i) - 1),
391 tag);
392 return (0);
393 }
394 } else {
395 ASSERT(scl->scl_writer != curthread);
396 if (!refcount_is_zero(&scl->scl_count)) {
397 mutex_exit(&scl->scl_lock);
398 spa_config_exit(spa, locks & ((1 << i) - 1),
399 tag);
400 return (0);
401 }
402 scl->scl_writer = curthread;
403 }
404 (void) refcount_add(&scl->scl_count, tag);
405 mutex_exit(&scl->scl_lock);
406 }
407 return (1);
408 }
409
410 void
411 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
412 {
413 int wlocks_held = 0;
414 int i;
415
416 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
417
418 for (i = 0; i < SCL_LOCKS; i++) {
419 spa_config_lock_t *scl = &spa->spa_config_lock[i];
420 if (scl->scl_writer == curthread)
421 wlocks_held |= (1 << i);
422 if (!(locks & (1 << i)))
423 continue;
424 mutex_enter(&scl->scl_lock);
425 if (rw == RW_READER) {
426 while (scl->scl_writer || scl->scl_write_wanted) {
427 cv_wait(&scl->scl_cv, &scl->scl_lock);
428 }
429 } else {
430 ASSERT(scl->scl_writer != curthread);
431 while (!refcount_is_zero(&scl->scl_count)) {
432 scl->scl_write_wanted++;
433 cv_wait(&scl->scl_cv, &scl->scl_lock);
434 scl->scl_write_wanted--;
435 }
436 scl->scl_writer = curthread;
437 }
438 (void) refcount_add(&scl->scl_count, tag);
439 mutex_exit(&scl->scl_lock);
440 }
441 ASSERT(wlocks_held <= locks);
442 }
443
444 void
445 spa_config_exit(spa_t *spa, int locks, void *tag)
446 {
447 int i;
448
449 for (i = SCL_LOCKS - 1; i >= 0; i--) {
450 spa_config_lock_t *scl = &spa->spa_config_lock[i];
451 if (!(locks & (1 << i)))
452 continue;
453 mutex_enter(&scl->scl_lock);
454 ASSERT(!refcount_is_zero(&scl->scl_count));
455 if (refcount_remove(&scl->scl_count, tag) == 0) {
456 ASSERT(scl->scl_writer == NULL ||
457 scl->scl_writer == curthread);
458 scl->scl_writer = NULL; /* OK in either case */
459 cv_broadcast(&scl->scl_cv);
460 }
461 mutex_exit(&scl->scl_lock);
462 }
463 }
464
465 int
466 spa_config_held(spa_t *spa, int locks, krw_t rw)
467 {
468 int i, locks_held = 0;
469
470 for (i = 0; i < SCL_LOCKS; i++) {
471 spa_config_lock_t *scl = &spa->spa_config_lock[i];
472 if (!(locks & (1 << i)))
473 continue;
474 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
475 (rw == RW_WRITER && scl->scl_writer == curthread))
476 locks_held |= 1 << i;
477 }
478
479 return (locks_held);
480 }
481
482 /*
483 * ==========================================================================
484 * SPA namespace functions
485 * ==========================================================================
486 */
487
488 /*
489 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
490 * Returns NULL if no matching spa_t is found.
491 */
492 spa_t *
493 spa_lookup(const char *name)
494 {
495 static spa_t search; /* spa_t is large; don't allocate on stack */
496 spa_t *spa;
497 avl_index_t where;
498 char *cp;
499
500 ASSERT(MUTEX_HELD(&spa_namespace_lock));
501
502 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
503
504 /*
505 * If it's a full dataset name, figure out the pool name and
506 * just use that.
507 */
508 cp = strpbrk(search.spa_name, "/@#");
509 if (cp != NULL)
510 *cp = '\0';
511
512 spa = avl_find(&spa_namespace_avl, &search, &where);
513
514 return (spa);
515 }
516
517 /*
518 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
519 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
520 * looking for potentially hung I/Os.
521 */
522 void
523 spa_deadman(void *arg)
524 {
525 spa_t *spa = arg;
526
527 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
528 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
529 ++spa->spa_deadman_calls);
530 if (zfs_deadman_enabled)
531 vdev_deadman(spa->spa_root_vdev);
532
533 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
534 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
535 NSEC_TO_TICK(spa->spa_deadman_synctime));
536 }
537
538 /*
539 * Create an uninitialized spa_t with the given name. Requires
540 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
541 * exist by calling spa_lookup() first.
542 */
543 spa_t *
544 spa_add(const char *name, nvlist_t *config, const char *altroot)
545 {
546 spa_t *spa;
547 spa_config_dirent_t *dp;
548 int t;
549 int i;
550
551 ASSERT(MUTEX_HELD(&spa_namespace_lock));
552
553 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
554
555 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
556 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
557 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
558 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
559 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
560 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
561 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
562 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
563 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
564 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
565 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
566 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
567 mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL);
568
569 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
570 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
571 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
572 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
573 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
574
575 for (t = 0; t < TXG_SIZE; t++)
576 bplist_create(&spa->spa_free_bplist[t]);
577
578 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
579 spa->spa_state = POOL_STATE_UNINITIALIZED;
580 spa->spa_freeze_txg = UINT64_MAX;
581 spa->spa_final_txg = UINT64_MAX;
582 spa->spa_load_max_txg = UINT64_MAX;
583 spa->spa_proc = &p0;
584 spa->spa_proc_state = SPA_PROC_NONE;
585
586 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
587
588 refcount_create(&spa->spa_refcount);
589 spa_config_lock_init(spa);
590 spa_stats_init(spa);
591
592 avl_add(&spa_namespace_avl, spa);
593
594 /*
595 * Set the alternate root, if there is one.
596 */
597 if (altroot)
598 spa->spa_root = spa_strdup(altroot);
599
600 avl_create(&spa->spa_alloc_tree, zio_timestamp_compare,
601 sizeof (zio_t), offsetof(zio_t, io_alloc_node));
602
603 /*
604 * Every pool starts with the default cachefile
605 */
606 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
607 offsetof(spa_config_dirent_t, scd_link));
608
609 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
610 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
611 list_insert_head(&spa->spa_config_list, dp);
612
613 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
614 KM_SLEEP) == 0);
615
616 if (config != NULL) {
617 nvlist_t *features;
618
619 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
620 &features) == 0) {
621 VERIFY(nvlist_dup(features, &spa->spa_label_features,
622 0) == 0);
623 }
624
625 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
626 }
627
628 if (spa->spa_label_features == NULL) {
629 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
630 KM_SLEEP) == 0);
631 }
632
633 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
634
635 spa->spa_min_ashift = INT_MAX;
636 spa->spa_max_ashift = 0;
637
638 /*
639 * As a pool is being created, treat all features as disabled by
640 * setting SPA_FEATURE_DISABLED for all entries in the feature
641 * refcount cache.
642 */
643 for (i = 0; i < SPA_FEATURES; i++) {
644 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
645 }
646
647 return (spa);
648 }
649
650 /*
651 * Removes a spa_t from the namespace, freeing up any memory used. Requires
652 * spa_namespace_lock. This is called only after the spa_t has been closed and
653 * deactivated.
654 */
655 void
656 spa_remove(spa_t *spa)
657 {
658 spa_config_dirent_t *dp;
659 int t;
660
661 ASSERT(MUTEX_HELD(&spa_namespace_lock));
662 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
663 ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
664
665 nvlist_free(spa->spa_config_splitting);
666
667 avl_remove(&spa_namespace_avl, spa);
668 cv_broadcast(&spa_namespace_cv);
669
670 if (spa->spa_root)
671 spa_strfree(spa->spa_root);
672
673 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
674 list_remove(&spa->spa_config_list, dp);
675 if (dp->scd_path != NULL)
676 spa_strfree(dp->scd_path);
677 kmem_free(dp, sizeof (spa_config_dirent_t));
678 }
679
680 avl_destroy(&spa->spa_alloc_tree);
681 list_destroy(&spa->spa_config_list);
682
683 nvlist_free(spa->spa_label_features);
684 nvlist_free(spa->spa_load_info);
685 nvlist_free(spa->spa_feat_stats);
686 spa_config_set(spa, NULL);
687
688 refcount_destroy(&spa->spa_refcount);
689
690 spa_stats_destroy(spa);
691 spa_config_lock_destroy(spa);
692
693 for (t = 0; t < TXG_SIZE; t++)
694 bplist_destroy(&spa->spa_free_bplist[t]);
695
696 zio_checksum_templates_free(spa);
697
698 cv_destroy(&spa->spa_async_cv);
699 cv_destroy(&spa->spa_evicting_os_cv);
700 cv_destroy(&spa->spa_proc_cv);
701 cv_destroy(&spa->spa_scrub_io_cv);
702 cv_destroy(&spa->spa_suspend_cv);
703
704 mutex_destroy(&spa->spa_alloc_lock);
705 mutex_destroy(&spa->spa_async_lock);
706 mutex_destroy(&spa->spa_errlist_lock);
707 mutex_destroy(&spa->spa_errlog_lock);
708 mutex_destroy(&spa->spa_evicting_os_lock);
709 mutex_destroy(&spa->spa_history_lock);
710 mutex_destroy(&spa->spa_proc_lock);
711 mutex_destroy(&spa->spa_props_lock);
712 mutex_destroy(&spa->spa_cksum_tmpls_lock);
713 mutex_destroy(&spa->spa_scrub_lock);
714 mutex_destroy(&spa->spa_suspend_lock);
715 mutex_destroy(&spa->spa_vdev_top_lock);
716 mutex_destroy(&spa->spa_feat_stats_lock);
717
718 kmem_free(spa, sizeof (spa_t));
719 }
720
721 /*
722 * Given a pool, return the next pool in the namespace, or NULL if there is
723 * none. If 'prev' is NULL, return the first pool.
724 */
725 spa_t *
726 spa_next(spa_t *prev)
727 {
728 ASSERT(MUTEX_HELD(&spa_namespace_lock));
729
730 if (prev)
731 return (AVL_NEXT(&spa_namespace_avl, prev));
732 else
733 return (avl_first(&spa_namespace_avl));
734 }
735
736 /*
737 * ==========================================================================
738 * SPA refcount functions
739 * ==========================================================================
740 */
741
742 /*
743 * Add a reference to the given spa_t. Must have at least one reference, or
744 * have the namespace lock held.
745 */
746 void
747 spa_open_ref(spa_t *spa, void *tag)
748 {
749 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
750 MUTEX_HELD(&spa_namespace_lock));
751 (void) refcount_add(&spa->spa_refcount, tag);
752 }
753
754 /*
755 * Remove a reference to the given spa_t. Must have at least one reference, or
756 * have the namespace lock held.
757 */
758 void
759 spa_close(spa_t *spa, void *tag)
760 {
761 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
762 MUTEX_HELD(&spa_namespace_lock));
763 (void) refcount_remove(&spa->spa_refcount, tag);
764 }
765
766 /*
767 * Remove a reference to the given spa_t held by a dsl dir that is
768 * being asynchronously released. Async releases occur from a taskq
769 * performing eviction of dsl datasets and dirs. The namespace lock
770 * isn't held and the hold by the object being evicted may contribute to
771 * spa_minref (e.g. dataset or directory released during pool export),
772 * so the asserts in spa_close() do not apply.
773 */
774 void
775 spa_async_close(spa_t *spa, void *tag)
776 {
777 (void) refcount_remove(&spa->spa_refcount, tag);
778 }
779
780 /*
781 * Check to see if the spa refcount is zero. Must be called with
782 * spa_namespace_lock held. We really compare against spa_minref, which is the
783 * number of references acquired when opening a pool
784 */
785 boolean_t
786 spa_refcount_zero(spa_t *spa)
787 {
788 ASSERT(MUTEX_HELD(&spa_namespace_lock));
789
790 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
791 }
792
793 /*
794 * ==========================================================================
795 * SPA spare and l2cache tracking
796 * ==========================================================================
797 */
798
799 /*
800 * Hot spares and cache devices are tracked using the same code below,
801 * for 'auxiliary' devices.
802 */
803
804 typedef struct spa_aux {
805 uint64_t aux_guid;
806 uint64_t aux_pool;
807 avl_node_t aux_avl;
808 int aux_count;
809 } spa_aux_t;
810
811 static inline int
812 spa_aux_compare(const void *a, const void *b)
813 {
814 const spa_aux_t *sa = (const spa_aux_t *)a;
815 const spa_aux_t *sb = (const spa_aux_t *)b;
816
817 return (AVL_CMP(sa->aux_guid, sb->aux_guid));
818 }
819
820 void
821 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
822 {
823 avl_index_t where;
824 spa_aux_t search;
825 spa_aux_t *aux;
826
827 search.aux_guid = vd->vdev_guid;
828 if ((aux = avl_find(avl, &search, &where)) != NULL) {
829 aux->aux_count++;
830 } else {
831 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
832 aux->aux_guid = vd->vdev_guid;
833 aux->aux_count = 1;
834 avl_insert(avl, aux, where);
835 }
836 }
837
838 void
839 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
840 {
841 spa_aux_t search;
842 spa_aux_t *aux;
843 avl_index_t where;
844
845 search.aux_guid = vd->vdev_guid;
846 aux = avl_find(avl, &search, &where);
847
848 ASSERT(aux != NULL);
849
850 if (--aux->aux_count == 0) {
851 avl_remove(avl, aux);
852 kmem_free(aux, sizeof (spa_aux_t));
853 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
854 aux->aux_pool = 0ULL;
855 }
856 }
857
858 boolean_t
859 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
860 {
861 spa_aux_t search, *found;
862
863 search.aux_guid = guid;
864 found = avl_find(avl, &search, NULL);
865
866 if (pool) {
867 if (found)
868 *pool = found->aux_pool;
869 else
870 *pool = 0ULL;
871 }
872
873 if (refcnt) {
874 if (found)
875 *refcnt = found->aux_count;
876 else
877 *refcnt = 0;
878 }
879
880 return (found != NULL);
881 }
882
883 void
884 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
885 {
886 spa_aux_t search, *found;
887 avl_index_t where;
888
889 search.aux_guid = vd->vdev_guid;
890 found = avl_find(avl, &search, &where);
891 ASSERT(found != NULL);
892 ASSERT(found->aux_pool == 0ULL);
893
894 found->aux_pool = spa_guid(vd->vdev_spa);
895 }
896
897 /*
898 * Spares are tracked globally due to the following constraints:
899 *
900 * - A spare may be part of multiple pools.
901 * - A spare may be added to a pool even if it's actively in use within
902 * another pool.
903 * - A spare in use in any pool can only be the source of a replacement if
904 * the target is a spare in the same pool.
905 *
906 * We keep track of all spares on the system through the use of a reference
907 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
908 * spare, then we bump the reference count in the AVL tree. In addition, we set
909 * the 'vdev_isspare' member to indicate that the device is a spare (active or
910 * inactive). When a spare is made active (used to replace a device in the
911 * pool), we also keep track of which pool its been made a part of.
912 *
913 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
914 * called under the spa_namespace lock as part of vdev reconfiguration. The
915 * separate spare lock exists for the status query path, which does not need to
916 * be completely consistent with respect to other vdev configuration changes.
917 */
918
919 static int
920 spa_spare_compare(const void *a, const void *b)
921 {
922 return (spa_aux_compare(a, b));
923 }
924
925 void
926 spa_spare_add(vdev_t *vd)
927 {
928 mutex_enter(&spa_spare_lock);
929 ASSERT(!vd->vdev_isspare);
930 spa_aux_add(vd, &spa_spare_avl);
931 vd->vdev_isspare = B_TRUE;
932 mutex_exit(&spa_spare_lock);
933 }
934
935 void
936 spa_spare_remove(vdev_t *vd)
937 {
938 mutex_enter(&spa_spare_lock);
939 ASSERT(vd->vdev_isspare);
940 spa_aux_remove(vd, &spa_spare_avl);
941 vd->vdev_isspare = B_FALSE;
942 mutex_exit(&spa_spare_lock);
943 }
944
945 boolean_t
946 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
947 {
948 boolean_t found;
949
950 mutex_enter(&spa_spare_lock);
951 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
952 mutex_exit(&spa_spare_lock);
953
954 return (found);
955 }
956
957 void
958 spa_spare_activate(vdev_t *vd)
959 {
960 mutex_enter(&spa_spare_lock);
961 ASSERT(vd->vdev_isspare);
962 spa_aux_activate(vd, &spa_spare_avl);
963 mutex_exit(&spa_spare_lock);
964 }
965
966 /*
967 * Level 2 ARC devices are tracked globally for the same reasons as spares.
968 * Cache devices currently only support one pool per cache device, and so
969 * for these devices the aux reference count is currently unused beyond 1.
970 */
971
972 static int
973 spa_l2cache_compare(const void *a, const void *b)
974 {
975 return (spa_aux_compare(a, b));
976 }
977
978 void
979 spa_l2cache_add(vdev_t *vd)
980 {
981 mutex_enter(&spa_l2cache_lock);
982 ASSERT(!vd->vdev_isl2cache);
983 spa_aux_add(vd, &spa_l2cache_avl);
984 vd->vdev_isl2cache = B_TRUE;
985 mutex_exit(&spa_l2cache_lock);
986 }
987
988 void
989 spa_l2cache_remove(vdev_t *vd)
990 {
991 mutex_enter(&spa_l2cache_lock);
992 ASSERT(vd->vdev_isl2cache);
993 spa_aux_remove(vd, &spa_l2cache_avl);
994 vd->vdev_isl2cache = B_FALSE;
995 mutex_exit(&spa_l2cache_lock);
996 }
997
998 boolean_t
999 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1000 {
1001 boolean_t found;
1002
1003 mutex_enter(&spa_l2cache_lock);
1004 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1005 mutex_exit(&spa_l2cache_lock);
1006
1007 return (found);
1008 }
1009
1010 void
1011 spa_l2cache_activate(vdev_t *vd)
1012 {
1013 mutex_enter(&spa_l2cache_lock);
1014 ASSERT(vd->vdev_isl2cache);
1015 spa_aux_activate(vd, &spa_l2cache_avl);
1016 mutex_exit(&spa_l2cache_lock);
1017 }
1018
1019 /*
1020 * ==========================================================================
1021 * SPA vdev locking
1022 * ==========================================================================
1023 */
1024
1025 /*
1026 * Lock the given spa_t for the purpose of adding or removing a vdev.
1027 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1028 * It returns the next transaction group for the spa_t.
1029 */
1030 uint64_t
1031 spa_vdev_enter(spa_t *spa)
1032 {
1033 mutex_enter(&spa->spa_vdev_top_lock);
1034 mutex_enter(&spa_namespace_lock);
1035 return (spa_vdev_config_enter(spa));
1036 }
1037
1038 /*
1039 * Internal implementation for spa_vdev_enter(). Used when a vdev
1040 * operation requires multiple syncs (i.e. removing a device) while
1041 * keeping the spa_namespace_lock held.
1042 */
1043 uint64_t
1044 spa_vdev_config_enter(spa_t *spa)
1045 {
1046 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1047
1048 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1049
1050 return (spa_last_synced_txg(spa) + 1);
1051 }
1052
1053 /*
1054 * Used in combination with spa_vdev_config_enter() to allow the syncing
1055 * of multiple transactions without releasing the spa_namespace_lock.
1056 */
1057 void
1058 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1059 {
1060 int config_changed = B_FALSE;
1061
1062 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1063 ASSERT(txg > spa_last_synced_txg(spa));
1064
1065 spa->spa_pending_vdev = NULL;
1066
1067 /*
1068 * Reassess the DTLs.
1069 */
1070 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1071
1072 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1073 config_changed = B_TRUE;
1074 spa->spa_config_generation++;
1075 }
1076
1077 /*
1078 * Verify the metaslab classes.
1079 */
1080 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1081 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1082
1083 spa_config_exit(spa, SCL_ALL, spa);
1084
1085 /*
1086 * Panic the system if the specified tag requires it. This
1087 * is useful for ensuring that configurations are updated
1088 * transactionally.
1089 */
1090 if (zio_injection_enabled)
1091 zio_handle_panic_injection(spa, tag, 0);
1092
1093 /*
1094 * Note: this txg_wait_synced() is important because it ensures
1095 * that there won't be more than one config change per txg.
1096 * This allows us to use the txg as the generation number.
1097 */
1098 if (error == 0)
1099 txg_wait_synced(spa->spa_dsl_pool, txg);
1100
1101 if (vd != NULL) {
1102 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1103 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1104 vdev_free(vd);
1105 spa_config_exit(spa, SCL_ALL, spa);
1106 }
1107
1108 /*
1109 * If the config changed, update the config cache.
1110 */
1111 if (config_changed)
1112 spa_config_sync(spa, B_FALSE, B_TRUE);
1113 }
1114
1115 /*
1116 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1117 * locking of spa_vdev_enter(), we also want make sure the transactions have
1118 * synced to disk, and then update the global configuration cache with the new
1119 * information.
1120 */
1121 int
1122 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1123 {
1124 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1125 mutex_exit(&spa_namespace_lock);
1126 mutex_exit(&spa->spa_vdev_top_lock);
1127
1128 return (error);
1129 }
1130
1131 /*
1132 * Lock the given spa_t for the purpose of changing vdev state.
1133 */
1134 void
1135 spa_vdev_state_enter(spa_t *spa, int oplocks)
1136 {
1137 int locks = SCL_STATE_ALL | oplocks;
1138
1139 /*
1140 * Root pools may need to read of the underlying devfs filesystem
1141 * when opening up a vdev. Unfortunately if we're holding the
1142 * SCL_ZIO lock it will result in a deadlock when we try to issue
1143 * the read from the root filesystem. Instead we "prefetch"
1144 * the associated vnodes that we need prior to opening the
1145 * underlying devices and cache them so that we can prevent
1146 * any I/O when we are doing the actual open.
1147 */
1148 if (spa_is_root(spa)) {
1149 int low = locks & ~(SCL_ZIO - 1);
1150 int high = locks & ~low;
1151
1152 spa_config_enter(spa, high, spa, RW_WRITER);
1153 vdev_hold(spa->spa_root_vdev);
1154 spa_config_enter(spa, low, spa, RW_WRITER);
1155 } else {
1156 spa_config_enter(spa, locks, spa, RW_WRITER);
1157 }
1158 spa->spa_vdev_locks = locks;
1159 }
1160
1161 int
1162 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1163 {
1164 boolean_t config_changed = B_FALSE;
1165
1166 if (vd != NULL || error == 0)
1167 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1168 0, 0, B_FALSE);
1169
1170 if (vd != NULL) {
1171 vdev_state_dirty(vd->vdev_top);
1172 config_changed = B_TRUE;
1173 spa->spa_config_generation++;
1174 }
1175
1176 if (spa_is_root(spa))
1177 vdev_rele(spa->spa_root_vdev);
1178
1179 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1180 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1181
1182 /*
1183 * If anything changed, wait for it to sync. This ensures that,
1184 * from the system administrator's perspective, zpool(1M) commands
1185 * are synchronous. This is important for things like zpool offline:
1186 * when the command completes, you expect no further I/O from ZFS.
1187 */
1188 if (vd != NULL)
1189 txg_wait_synced(spa->spa_dsl_pool, 0);
1190
1191 /*
1192 * If the config changed, update the config cache.
1193 */
1194 if (config_changed) {
1195 mutex_enter(&spa_namespace_lock);
1196 spa_config_sync(spa, B_FALSE, B_TRUE);
1197 mutex_exit(&spa_namespace_lock);
1198 }
1199
1200 return (error);
1201 }
1202
1203 /*
1204 * ==========================================================================
1205 * Miscellaneous functions
1206 * ==========================================================================
1207 */
1208
1209 void
1210 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1211 {
1212 if (!nvlist_exists(spa->spa_label_features, feature)) {
1213 fnvlist_add_boolean(spa->spa_label_features, feature);
1214 /*
1215 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1216 * dirty the vdev config because lock SCL_CONFIG is not held.
1217 * Thankfully, in this case we don't need to dirty the config
1218 * because it will be written out anyway when we finish
1219 * creating the pool.
1220 */
1221 if (tx->tx_txg != TXG_INITIAL)
1222 vdev_config_dirty(spa->spa_root_vdev);
1223 }
1224 }
1225
1226 void
1227 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1228 {
1229 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1230 vdev_config_dirty(spa->spa_root_vdev);
1231 }
1232
1233 /*
1234 * Rename a spa_t.
1235 */
1236 int
1237 spa_rename(const char *name, const char *newname)
1238 {
1239 spa_t *spa;
1240 int err;
1241
1242 /*
1243 * Lookup the spa_t and grab the config lock for writing. We need to
1244 * actually open the pool so that we can sync out the necessary labels.
1245 * It's OK to call spa_open() with the namespace lock held because we
1246 * allow recursive calls for other reasons.
1247 */
1248 mutex_enter(&spa_namespace_lock);
1249 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1250 mutex_exit(&spa_namespace_lock);
1251 return (err);
1252 }
1253
1254 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1255
1256 avl_remove(&spa_namespace_avl, spa);
1257 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1258 avl_add(&spa_namespace_avl, spa);
1259
1260 /*
1261 * Sync all labels to disk with the new names by marking the root vdev
1262 * dirty and waiting for it to sync. It will pick up the new pool name
1263 * during the sync.
1264 */
1265 vdev_config_dirty(spa->spa_root_vdev);
1266
1267 spa_config_exit(spa, SCL_ALL, FTAG);
1268
1269 txg_wait_synced(spa->spa_dsl_pool, 0);
1270
1271 /*
1272 * Sync the updated config cache.
1273 */
1274 spa_config_sync(spa, B_FALSE, B_TRUE);
1275
1276 spa_close(spa, FTAG);
1277
1278 mutex_exit(&spa_namespace_lock);
1279
1280 return (0);
1281 }
1282
1283 /*
1284 * Return the spa_t associated with given pool_guid, if it exists. If
1285 * device_guid is non-zero, determine whether the pool exists *and* contains
1286 * a device with the specified device_guid.
1287 */
1288 spa_t *
1289 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1290 {
1291 spa_t *spa;
1292 avl_tree_t *t = &spa_namespace_avl;
1293
1294 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1295
1296 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1297 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1298 continue;
1299 if (spa->spa_root_vdev == NULL)
1300 continue;
1301 if (spa_guid(spa) == pool_guid) {
1302 if (device_guid == 0)
1303 break;
1304
1305 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1306 device_guid) != NULL)
1307 break;
1308
1309 /*
1310 * Check any devices we may be in the process of adding.
1311 */
1312 if (spa->spa_pending_vdev) {
1313 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1314 device_guid) != NULL)
1315 break;
1316 }
1317 }
1318 }
1319
1320 return (spa);
1321 }
1322
1323 /*
1324 * Determine whether a pool with the given pool_guid exists.
1325 */
1326 boolean_t
1327 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1328 {
1329 return (spa_by_guid(pool_guid, device_guid) != NULL);
1330 }
1331
1332 char *
1333 spa_strdup(const char *s)
1334 {
1335 size_t len;
1336 char *new;
1337
1338 len = strlen(s);
1339 new = kmem_alloc(len + 1, KM_SLEEP);
1340 bcopy(s, new, len);
1341 new[len] = '\0';
1342
1343 return (new);
1344 }
1345
1346 void
1347 spa_strfree(char *s)
1348 {
1349 kmem_free(s, strlen(s) + 1);
1350 }
1351
1352 uint64_t
1353 spa_get_random(uint64_t range)
1354 {
1355 uint64_t r;
1356
1357 ASSERT(range != 0);
1358
1359 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1360
1361 return (r % range);
1362 }
1363
1364 uint64_t
1365 spa_generate_guid(spa_t *spa)
1366 {
1367 uint64_t guid = spa_get_random(-1ULL);
1368
1369 if (spa != NULL) {
1370 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1371 guid = spa_get_random(-1ULL);
1372 } else {
1373 while (guid == 0 || spa_guid_exists(guid, 0))
1374 guid = spa_get_random(-1ULL);
1375 }
1376
1377 return (guid);
1378 }
1379
1380 void
1381 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1382 {
1383 char type[256];
1384 char *checksum = NULL;
1385 char *compress = NULL;
1386
1387 if (bp != NULL) {
1388 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1389 dmu_object_byteswap_t bswap =
1390 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1391 (void) snprintf(type, sizeof (type), "bswap %s %s",
1392 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1393 "metadata" : "data",
1394 dmu_ot_byteswap[bswap].ob_name);
1395 } else {
1396 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1397 sizeof (type));
1398 }
1399 if (!BP_IS_EMBEDDED(bp)) {
1400 checksum =
1401 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1402 }
1403 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1404 }
1405
1406 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1407 compress);
1408 }
1409
1410 void
1411 spa_freeze(spa_t *spa)
1412 {
1413 uint64_t freeze_txg = 0;
1414
1415 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1416 if (spa->spa_freeze_txg == UINT64_MAX) {
1417 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1418 spa->spa_freeze_txg = freeze_txg;
1419 }
1420 spa_config_exit(spa, SCL_ALL, FTAG);
1421 if (freeze_txg != 0)
1422 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1423 }
1424
1425 void
1426 zfs_panic_recover(const char *fmt, ...)
1427 {
1428 va_list adx;
1429
1430 va_start(adx, fmt);
1431 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1432 va_end(adx);
1433 }
1434
1435 /*
1436 * This is a stripped-down version of strtoull, suitable only for converting
1437 * lowercase hexadecimal numbers that don't overflow.
1438 */
1439 uint64_t
1440 strtonum(const char *str, char **nptr)
1441 {
1442 uint64_t val = 0;
1443 char c;
1444 int digit;
1445
1446 while ((c = *str) != '\0') {
1447 if (c >= '0' && c <= '9')
1448 digit = c - '0';
1449 else if (c >= 'a' && c <= 'f')
1450 digit = 10 + c - 'a';
1451 else
1452 break;
1453
1454 val *= 16;
1455 val += digit;
1456
1457 str++;
1458 }
1459
1460 if (nptr)
1461 *nptr = (char *)str;
1462
1463 return (val);
1464 }
1465
1466 /*
1467 * ==========================================================================
1468 * Accessor functions
1469 * ==========================================================================
1470 */
1471
1472 boolean_t
1473 spa_shutting_down(spa_t *spa)
1474 {
1475 return (spa->spa_async_suspended);
1476 }
1477
1478 dsl_pool_t *
1479 spa_get_dsl(spa_t *spa)
1480 {
1481 return (spa->spa_dsl_pool);
1482 }
1483
1484 boolean_t
1485 spa_is_initializing(spa_t *spa)
1486 {
1487 return (spa->spa_is_initializing);
1488 }
1489
1490 blkptr_t *
1491 spa_get_rootblkptr(spa_t *spa)
1492 {
1493 return (&spa->spa_ubsync.ub_rootbp);
1494 }
1495
1496 void
1497 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1498 {
1499 spa->spa_uberblock.ub_rootbp = *bp;
1500 }
1501
1502 void
1503 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1504 {
1505 if (spa->spa_root == NULL)
1506 buf[0] = '\0';
1507 else
1508 (void) strncpy(buf, spa->spa_root, buflen);
1509 }
1510
1511 int
1512 spa_sync_pass(spa_t *spa)
1513 {
1514 return (spa->spa_sync_pass);
1515 }
1516
1517 char *
1518 spa_name(spa_t *spa)
1519 {
1520 return (spa->spa_name);
1521 }
1522
1523 uint64_t
1524 spa_guid(spa_t *spa)
1525 {
1526 dsl_pool_t *dp = spa_get_dsl(spa);
1527 uint64_t guid;
1528
1529 /*
1530 * If we fail to parse the config during spa_load(), we can go through
1531 * the error path (which posts an ereport) and end up here with no root
1532 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1533 * this case.
1534 */
1535 if (spa->spa_root_vdev == NULL)
1536 return (spa->spa_config_guid);
1537
1538 guid = spa->spa_last_synced_guid != 0 ?
1539 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1540
1541 /*
1542 * Return the most recently synced out guid unless we're
1543 * in syncing context.
1544 */
1545 if (dp && dsl_pool_sync_context(dp))
1546 return (spa->spa_root_vdev->vdev_guid);
1547 else
1548 return (guid);
1549 }
1550
1551 uint64_t
1552 spa_load_guid(spa_t *spa)
1553 {
1554 /*
1555 * This is a GUID that exists solely as a reference for the
1556 * purposes of the arc. It is generated at load time, and
1557 * is never written to persistent storage.
1558 */
1559 return (spa->spa_load_guid);
1560 }
1561
1562 uint64_t
1563 spa_last_synced_txg(spa_t *spa)
1564 {
1565 return (spa->spa_ubsync.ub_txg);
1566 }
1567
1568 uint64_t
1569 spa_first_txg(spa_t *spa)
1570 {
1571 return (spa->spa_first_txg);
1572 }
1573
1574 uint64_t
1575 spa_syncing_txg(spa_t *spa)
1576 {
1577 return (spa->spa_syncing_txg);
1578 }
1579
1580 pool_state_t
1581 spa_state(spa_t *spa)
1582 {
1583 return (spa->spa_state);
1584 }
1585
1586 spa_load_state_t
1587 spa_load_state(spa_t *spa)
1588 {
1589 return (spa->spa_load_state);
1590 }
1591
1592 uint64_t
1593 spa_freeze_txg(spa_t *spa)
1594 {
1595 return (spa->spa_freeze_txg);
1596 }
1597
1598 /* ARGSUSED */
1599 uint64_t
1600 spa_get_asize(spa_t *spa, uint64_t lsize)
1601 {
1602 return (lsize * spa_asize_inflation);
1603 }
1604
1605 /*
1606 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%),
1607 * or at least 32MB.
1608 *
1609 * See the comment above spa_slop_shift for details.
1610 */
1611 uint64_t
1612 spa_get_slop_space(spa_t *spa) {
1613 uint64_t space = spa_get_dspace(spa);
1614 return (MAX(space >> spa_slop_shift, SPA_MINDEVSIZE >> 1));
1615 }
1616
1617 uint64_t
1618 spa_get_dspace(spa_t *spa)
1619 {
1620 return (spa->spa_dspace);
1621 }
1622
1623 void
1624 spa_update_dspace(spa_t *spa)
1625 {
1626 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1627 ddt_get_dedup_dspace(spa);
1628 }
1629
1630 /*
1631 * Return the failure mode that has been set to this pool. The default
1632 * behavior will be to block all I/Os when a complete failure occurs.
1633 */
1634 uint8_t
1635 spa_get_failmode(spa_t *spa)
1636 {
1637 return (spa->spa_failmode);
1638 }
1639
1640 boolean_t
1641 spa_suspended(spa_t *spa)
1642 {
1643 return (spa->spa_suspended);
1644 }
1645
1646 uint64_t
1647 spa_version(spa_t *spa)
1648 {
1649 return (spa->spa_ubsync.ub_version);
1650 }
1651
1652 boolean_t
1653 spa_deflate(spa_t *spa)
1654 {
1655 return (spa->spa_deflate);
1656 }
1657
1658 metaslab_class_t *
1659 spa_normal_class(spa_t *spa)
1660 {
1661 return (spa->spa_normal_class);
1662 }
1663
1664 metaslab_class_t *
1665 spa_log_class(spa_t *spa)
1666 {
1667 return (spa->spa_log_class);
1668 }
1669
1670 void
1671 spa_evicting_os_register(spa_t *spa, objset_t *os)
1672 {
1673 mutex_enter(&spa->spa_evicting_os_lock);
1674 list_insert_head(&spa->spa_evicting_os_list, os);
1675 mutex_exit(&spa->spa_evicting_os_lock);
1676 }
1677
1678 void
1679 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1680 {
1681 mutex_enter(&spa->spa_evicting_os_lock);
1682 list_remove(&spa->spa_evicting_os_list, os);
1683 cv_broadcast(&spa->spa_evicting_os_cv);
1684 mutex_exit(&spa->spa_evicting_os_lock);
1685 }
1686
1687 void
1688 spa_evicting_os_wait(spa_t *spa)
1689 {
1690 mutex_enter(&spa->spa_evicting_os_lock);
1691 while (!list_is_empty(&spa->spa_evicting_os_list))
1692 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1693 mutex_exit(&spa->spa_evicting_os_lock);
1694
1695 dmu_buf_user_evict_wait();
1696 }
1697
1698 int
1699 spa_max_replication(spa_t *spa)
1700 {
1701 /*
1702 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1703 * handle BPs with more than one DVA allocated. Set our max
1704 * replication level accordingly.
1705 */
1706 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1707 return (1);
1708 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1709 }
1710
1711 int
1712 spa_prev_software_version(spa_t *spa)
1713 {
1714 return (spa->spa_prev_software_version);
1715 }
1716
1717 uint64_t
1718 spa_deadman_synctime(spa_t *spa)
1719 {
1720 return (spa->spa_deadman_synctime);
1721 }
1722
1723 uint64_t
1724 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1725 {
1726 uint64_t asize = DVA_GET_ASIZE(dva);
1727 uint64_t dsize = asize;
1728
1729 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1730
1731 if (asize != 0 && spa->spa_deflate) {
1732 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1733 if (vd != NULL)
1734 dsize = (asize >> SPA_MINBLOCKSHIFT) *
1735 vd->vdev_deflate_ratio;
1736 }
1737
1738 return (dsize);
1739 }
1740
1741 uint64_t
1742 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1743 {
1744 uint64_t dsize = 0;
1745 int d;
1746
1747 for (d = 0; d < BP_GET_NDVAS(bp); d++)
1748 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1749
1750 return (dsize);
1751 }
1752
1753 uint64_t
1754 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1755 {
1756 uint64_t dsize = 0;
1757 int d;
1758
1759 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1760
1761 for (d = 0; d < BP_GET_NDVAS(bp); d++)
1762 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1763
1764 spa_config_exit(spa, SCL_VDEV, FTAG);
1765
1766 return (dsize);
1767 }
1768
1769 /*
1770 * ==========================================================================
1771 * Initialization and Termination
1772 * ==========================================================================
1773 */
1774
1775 static int
1776 spa_name_compare(const void *a1, const void *a2)
1777 {
1778 const spa_t *s1 = a1;
1779 const spa_t *s2 = a2;
1780 int s;
1781
1782 s = strcmp(s1->spa_name, s2->spa_name);
1783
1784 return (AVL_ISIGN(s));
1785 }
1786
1787 void
1788 spa_boot_init(void)
1789 {
1790 spa_config_load();
1791 }
1792
1793 void
1794 spa_init(int mode)
1795 {
1796 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1797 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1798 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1799 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1800
1801 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1802 offsetof(spa_t, spa_avl));
1803
1804 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1805 offsetof(spa_aux_t, aux_avl));
1806
1807 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1808 offsetof(spa_aux_t, aux_avl));
1809
1810 spa_mode_global = mode;
1811
1812 #ifndef _KERNEL
1813 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1814 struct sigaction sa;
1815
1816 sa.sa_flags = SA_SIGINFO;
1817 sigemptyset(&sa.sa_mask);
1818 sa.sa_sigaction = arc_buf_sigsegv;
1819
1820 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
1821 perror("could not enable watchpoints: "
1822 "sigaction(SIGSEGV, ...) = ");
1823 } else {
1824 arc_watch = B_TRUE;
1825 }
1826 }
1827 #endif
1828
1829 fm_init();
1830 refcount_init();
1831 unique_init();
1832 range_tree_init();
1833 ddt_init();
1834 zio_init();
1835 dmu_init();
1836 zil_init();
1837 vdev_cache_stat_init();
1838 vdev_raidz_math_init();
1839 zfs_prop_init();
1840 zpool_prop_init();
1841 zpool_feature_init();
1842 spa_config_load();
1843 l2arc_start();
1844 }
1845
1846 void
1847 spa_fini(void)
1848 {
1849 l2arc_stop();
1850
1851 spa_evict_all();
1852
1853 vdev_cache_stat_fini();
1854 vdev_raidz_math_fini();
1855 zil_fini();
1856 dmu_fini();
1857 zio_fini();
1858 ddt_fini();
1859 range_tree_fini();
1860 unique_fini();
1861 refcount_fini();
1862 fm_fini();
1863
1864 avl_destroy(&spa_namespace_avl);
1865 avl_destroy(&spa_spare_avl);
1866 avl_destroy(&spa_l2cache_avl);
1867
1868 cv_destroy(&spa_namespace_cv);
1869 mutex_destroy(&spa_namespace_lock);
1870 mutex_destroy(&spa_spare_lock);
1871 mutex_destroy(&spa_l2cache_lock);
1872 }
1873
1874 /*
1875 * Return whether this pool has slogs. No locking needed.
1876 * It's not a problem if the wrong answer is returned as it's only for
1877 * performance and not correctness
1878 */
1879 boolean_t
1880 spa_has_slogs(spa_t *spa)
1881 {
1882 return (spa->spa_log_class->mc_rotor != NULL);
1883 }
1884
1885 spa_log_state_t
1886 spa_get_log_state(spa_t *spa)
1887 {
1888 return (spa->spa_log_state);
1889 }
1890
1891 void
1892 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1893 {
1894 spa->spa_log_state = state;
1895 }
1896
1897 boolean_t
1898 spa_is_root(spa_t *spa)
1899 {
1900 return (spa->spa_is_root);
1901 }
1902
1903 boolean_t
1904 spa_writeable(spa_t *spa)
1905 {
1906 return (!!(spa->spa_mode & FWRITE));
1907 }
1908
1909 /*
1910 * Returns true if there is a pending sync task in any of the current
1911 * syncing txg, the current quiescing txg, or the current open txg.
1912 */
1913 boolean_t
1914 spa_has_pending_synctask(spa_t *spa)
1915 {
1916 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
1917 }
1918
1919 int
1920 spa_mode(spa_t *spa)
1921 {
1922 return (spa->spa_mode);
1923 }
1924
1925 uint64_t
1926 spa_bootfs(spa_t *spa)
1927 {
1928 return (spa->spa_bootfs);
1929 }
1930
1931 uint64_t
1932 spa_delegation(spa_t *spa)
1933 {
1934 return (spa->spa_delegation);
1935 }
1936
1937 objset_t *
1938 spa_meta_objset(spa_t *spa)
1939 {
1940 return (spa->spa_meta_objset);
1941 }
1942
1943 enum zio_checksum
1944 spa_dedup_checksum(spa_t *spa)
1945 {
1946 return (spa->spa_dedup_checksum);
1947 }
1948
1949 /*
1950 * Reset pool scan stat per scan pass (or reboot).
1951 */
1952 void
1953 spa_scan_stat_init(spa_t *spa)
1954 {
1955 /* data not stored on disk */
1956 spa->spa_scan_pass_start = gethrestime_sec();
1957 spa->spa_scan_pass_exam = 0;
1958 vdev_scan_stat_init(spa->spa_root_vdev);
1959 }
1960
1961 /*
1962 * Get scan stats for zpool status reports
1963 */
1964 int
1965 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1966 {
1967 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1968
1969 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1970 return (SET_ERROR(ENOENT));
1971 bzero(ps, sizeof (pool_scan_stat_t));
1972
1973 /* data stored on disk */
1974 ps->pss_func = scn->scn_phys.scn_func;
1975 ps->pss_start_time = scn->scn_phys.scn_start_time;
1976 ps->pss_end_time = scn->scn_phys.scn_end_time;
1977 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1978 ps->pss_examined = scn->scn_phys.scn_examined;
1979 ps->pss_to_process = scn->scn_phys.scn_to_process;
1980 ps->pss_processed = scn->scn_phys.scn_processed;
1981 ps->pss_errors = scn->scn_phys.scn_errors;
1982 ps->pss_state = scn->scn_phys.scn_state;
1983
1984 /* data not stored on disk */
1985 ps->pss_pass_start = spa->spa_scan_pass_start;
1986 ps->pss_pass_exam = spa->spa_scan_pass_exam;
1987
1988 return (0);
1989 }
1990
1991 boolean_t
1992 spa_debug_enabled(spa_t *spa)
1993 {
1994 return (spa->spa_debug);
1995 }
1996
1997 int
1998 spa_maxblocksize(spa_t *spa)
1999 {
2000 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2001 return (SPA_MAXBLOCKSIZE);
2002 else
2003 return (SPA_OLD_MAXBLOCKSIZE);
2004 }
2005
2006 int
2007 spa_maxdnodesize(spa_t *spa)
2008 {
2009 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2010 return (DNODE_MAX_SIZE);
2011 else
2012 return (DNODE_MIN_SIZE);
2013 }
2014
2015 #if defined(_KERNEL) && defined(HAVE_SPL)
2016 /* Namespace manipulation */
2017 EXPORT_SYMBOL(spa_lookup);
2018 EXPORT_SYMBOL(spa_add);
2019 EXPORT_SYMBOL(spa_remove);
2020 EXPORT_SYMBOL(spa_next);
2021
2022 /* Refcount functions */
2023 EXPORT_SYMBOL(spa_open_ref);
2024 EXPORT_SYMBOL(spa_close);
2025 EXPORT_SYMBOL(spa_refcount_zero);
2026
2027 /* Pool configuration lock */
2028 EXPORT_SYMBOL(spa_config_tryenter);
2029 EXPORT_SYMBOL(spa_config_enter);
2030 EXPORT_SYMBOL(spa_config_exit);
2031 EXPORT_SYMBOL(spa_config_held);
2032
2033 /* Pool vdev add/remove lock */
2034 EXPORT_SYMBOL(spa_vdev_enter);
2035 EXPORT_SYMBOL(spa_vdev_exit);
2036
2037 /* Pool vdev state change lock */
2038 EXPORT_SYMBOL(spa_vdev_state_enter);
2039 EXPORT_SYMBOL(spa_vdev_state_exit);
2040
2041 /* Accessor functions */
2042 EXPORT_SYMBOL(spa_shutting_down);
2043 EXPORT_SYMBOL(spa_get_dsl);
2044 EXPORT_SYMBOL(spa_get_rootblkptr);
2045 EXPORT_SYMBOL(spa_set_rootblkptr);
2046 EXPORT_SYMBOL(spa_altroot);
2047 EXPORT_SYMBOL(spa_sync_pass);
2048 EXPORT_SYMBOL(spa_name);
2049 EXPORT_SYMBOL(spa_guid);
2050 EXPORT_SYMBOL(spa_last_synced_txg);
2051 EXPORT_SYMBOL(spa_first_txg);
2052 EXPORT_SYMBOL(spa_syncing_txg);
2053 EXPORT_SYMBOL(spa_version);
2054 EXPORT_SYMBOL(spa_state);
2055 EXPORT_SYMBOL(spa_load_state);
2056 EXPORT_SYMBOL(spa_freeze_txg);
2057 EXPORT_SYMBOL(spa_get_asize);
2058 EXPORT_SYMBOL(spa_get_dspace);
2059 EXPORT_SYMBOL(spa_update_dspace);
2060 EXPORT_SYMBOL(spa_deflate);
2061 EXPORT_SYMBOL(spa_normal_class);
2062 EXPORT_SYMBOL(spa_log_class);
2063 EXPORT_SYMBOL(spa_max_replication);
2064 EXPORT_SYMBOL(spa_prev_software_version);
2065 EXPORT_SYMBOL(spa_get_failmode);
2066 EXPORT_SYMBOL(spa_suspended);
2067 EXPORT_SYMBOL(spa_bootfs);
2068 EXPORT_SYMBOL(spa_delegation);
2069 EXPORT_SYMBOL(spa_meta_objset);
2070 EXPORT_SYMBOL(spa_maxblocksize);
2071 EXPORT_SYMBOL(spa_maxdnodesize);
2072
2073 /* Miscellaneous support routines */
2074 EXPORT_SYMBOL(spa_rename);
2075 EXPORT_SYMBOL(spa_guid_exists);
2076 EXPORT_SYMBOL(spa_strdup);
2077 EXPORT_SYMBOL(spa_strfree);
2078 EXPORT_SYMBOL(spa_get_random);
2079 EXPORT_SYMBOL(spa_generate_guid);
2080 EXPORT_SYMBOL(snprintf_blkptr);
2081 EXPORT_SYMBOL(spa_freeze);
2082 EXPORT_SYMBOL(spa_upgrade);
2083 EXPORT_SYMBOL(spa_evict_all);
2084 EXPORT_SYMBOL(spa_lookup_by_guid);
2085 EXPORT_SYMBOL(spa_has_spare);
2086 EXPORT_SYMBOL(dva_get_dsize_sync);
2087 EXPORT_SYMBOL(bp_get_dsize_sync);
2088 EXPORT_SYMBOL(bp_get_dsize);
2089 EXPORT_SYMBOL(spa_has_slogs);
2090 EXPORT_SYMBOL(spa_is_root);
2091 EXPORT_SYMBOL(spa_writeable);
2092 EXPORT_SYMBOL(spa_mode);
2093
2094 EXPORT_SYMBOL(spa_namespace_lock);
2095
2096 module_param(zfs_flags, uint, 0644);
2097 MODULE_PARM_DESC(zfs_flags, "Set additional debugging flags");
2098
2099 module_param(zfs_recover, int, 0644);
2100 MODULE_PARM_DESC(zfs_recover, "Set to attempt to recover from fatal errors");
2101
2102 module_param(zfs_free_leak_on_eio, int, 0644);
2103 MODULE_PARM_DESC(zfs_free_leak_on_eio,
2104 "Set to ignore IO errors during free and permanently leak the space");
2105
2106 module_param(zfs_deadman_synctime_ms, ulong, 0644);
2107 MODULE_PARM_DESC(zfs_deadman_synctime_ms, "Expiration time in milliseconds");
2108
2109 module_param(zfs_deadman_enabled, int, 0644);
2110 MODULE_PARM_DESC(zfs_deadman_enabled, "Enable deadman timer");
2111
2112 module_param(spa_asize_inflation, int, 0644);
2113 MODULE_PARM_DESC(spa_asize_inflation,
2114 "SPA size estimate multiplication factor");
2115
2116 module_param(spa_slop_shift, int, 0644);
2117 MODULE_PARM_DESC(spa_slop_shift, "Reserved free space in pool");
2118 #endif