]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa_misc.c
Remove bcopy(), bzero(), bcmp()
[mirror_zfs.git] / module / zfs / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2017 Datto Inc.
28 * Copyright (c) 2017, Intel Corporation.
29 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
30 */
31
32 #include <sys/zfs_context.h>
33 #include <sys/spa_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/zio_compress.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/vdev_initialize.h>
43 #include <sys/vdev_trim.h>
44 #include <sys/vdev_file.h>
45 #include <sys/vdev_raidz.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dir.h>
53 #include <sys/dsl_prop.h>
54 #include <sys/fm/util.h>
55 #include <sys/dsl_scan.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/metaslab_impl.h>
58 #include <sys/arc.h>
59 #include <sys/ddt.h>
60 #include <sys/kstat.h>
61 #include "zfs_prop.h"
62 #include <sys/btree.h>
63 #include <sys/zfeature.h>
64 #include <sys/qat.h>
65 #include <sys/zstd/zstd.h>
66
67 /*
68 * SPA locking
69 *
70 * There are three basic locks for managing spa_t structures:
71 *
72 * spa_namespace_lock (global mutex)
73 *
74 * This lock must be acquired to do any of the following:
75 *
76 * - Lookup a spa_t by name
77 * - Add or remove a spa_t from the namespace
78 * - Increase spa_refcount from non-zero
79 * - Check if spa_refcount is zero
80 * - Rename a spa_t
81 * - add/remove/attach/detach devices
82 * - Held for the duration of create/destroy/import/export
83 *
84 * It does not need to handle recursion. A create or destroy may
85 * reference objects (files or zvols) in other pools, but by
86 * definition they must have an existing reference, and will never need
87 * to lookup a spa_t by name.
88 *
89 * spa_refcount (per-spa zfs_refcount_t protected by mutex)
90 *
91 * This reference count keep track of any active users of the spa_t. The
92 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
93 * the refcount is never really 'zero' - opening a pool implicitly keeps
94 * some references in the DMU. Internally we check against spa_minref, but
95 * present the image of a zero/non-zero value to consumers.
96 *
97 * spa_config_lock[] (per-spa array of rwlocks)
98 *
99 * This protects the spa_t from config changes, and must be held in
100 * the following circumstances:
101 *
102 * - RW_READER to perform I/O to the spa
103 * - RW_WRITER to change the vdev config
104 *
105 * The locking order is fairly straightforward:
106 *
107 * spa_namespace_lock -> spa_refcount
108 *
109 * The namespace lock must be acquired to increase the refcount from 0
110 * or to check if it is zero.
111 *
112 * spa_refcount -> spa_config_lock[]
113 *
114 * There must be at least one valid reference on the spa_t to acquire
115 * the config lock.
116 *
117 * spa_namespace_lock -> spa_config_lock[]
118 *
119 * The namespace lock must always be taken before the config lock.
120 *
121 *
122 * The spa_namespace_lock can be acquired directly and is globally visible.
123 *
124 * The namespace is manipulated using the following functions, all of which
125 * require the spa_namespace_lock to be held.
126 *
127 * spa_lookup() Lookup a spa_t by name.
128 *
129 * spa_add() Create a new spa_t in the namespace.
130 *
131 * spa_remove() Remove a spa_t from the namespace. This also
132 * frees up any memory associated with the spa_t.
133 *
134 * spa_next() Returns the next spa_t in the system, or the
135 * first if NULL is passed.
136 *
137 * spa_evict_all() Shutdown and remove all spa_t structures in
138 * the system.
139 *
140 * spa_guid_exists() Determine whether a pool/device guid exists.
141 *
142 * The spa_refcount is manipulated using the following functions:
143 *
144 * spa_open_ref() Adds a reference to the given spa_t. Must be
145 * called with spa_namespace_lock held if the
146 * refcount is currently zero.
147 *
148 * spa_close() Remove a reference from the spa_t. This will
149 * not free the spa_t or remove it from the
150 * namespace. No locking is required.
151 *
152 * spa_refcount_zero() Returns true if the refcount is currently
153 * zero. Must be called with spa_namespace_lock
154 * held.
155 *
156 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
157 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
158 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
159 *
160 * To read the configuration, it suffices to hold one of these locks as reader.
161 * To modify the configuration, you must hold all locks as writer. To modify
162 * vdev state without altering the vdev tree's topology (e.g. online/offline),
163 * you must hold SCL_STATE and SCL_ZIO as writer.
164 *
165 * We use these distinct config locks to avoid recursive lock entry.
166 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
167 * block allocations (SCL_ALLOC), which may require reading space maps
168 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
169 *
170 * The spa config locks cannot be normal rwlocks because we need the
171 * ability to hand off ownership. For example, SCL_ZIO is acquired
172 * by the issuing thread and later released by an interrupt thread.
173 * They do, however, obey the usual write-wanted semantics to prevent
174 * writer (i.e. system administrator) starvation.
175 *
176 * The lock acquisition rules are as follows:
177 *
178 * SCL_CONFIG
179 * Protects changes to the vdev tree topology, such as vdev
180 * add/remove/attach/detach. Protects the dirty config list
181 * (spa_config_dirty_list) and the set of spares and l2arc devices.
182 *
183 * SCL_STATE
184 * Protects changes to pool state and vdev state, such as vdev
185 * online/offline/fault/degrade/clear. Protects the dirty state list
186 * (spa_state_dirty_list) and global pool state (spa_state).
187 *
188 * SCL_ALLOC
189 * Protects changes to metaslab groups and classes.
190 * Held as reader by metaslab_alloc() and metaslab_claim().
191 *
192 * SCL_ZIO
193 * Held by bp-level zios (those which have no io_vd upon entry)
194 * to prevent changes to the vdev tree. The bp-level zio implicitly
195 * protects all of its vdev child zios, which do not hold SCL_ZIO.
196 *
197 * SCL_FREE
198 * Protects changes to metaslab groups and classes.
199 * Held as reader by metaslab_free(). SCL_FREE is distinct from
200 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
201 * blocks in zio_done() while another i/o that holds either
202 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
203 *
204 * SCL_VDEV
205 * Held as reader to prevent changes to the vdev tree during trivial
206 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
207 * other locks, and lower than all of them, to ensure that it's safe
208 * to acquire regardless of caller context.
209 *
210 * In addition, the following rules apply:
211 *
212 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
213 * The lock ordering is SCL_CONFIG > spa_props_lock.
214 *
215 * (b) I/O operations on leaf vdevs. For any zio operation that takes
216 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
217 * or zio_write_phys() -- the caller must ensure that the config cannot
218 * cannot change in the interim, and that the vdev cannot be reopened.
219 * SCL_STATE as reader suffices for both.
220 *
221 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
222 *
223 * spa_vdev_enter() Acquire the namespace lock and the config lock
224 * for writing.
225 *
226 * spa_vdev_exit() Release the config lock, wait for all I/O
227 * to complete, sync the updated configs to the
228 * cache, and release the namespace lock.
229 *
230 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
231 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
232 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
233 */
234
235 static avl_tree_t spa_namespace_avl;
236 kmutex_t spa_namespace_lock;
237 static kcondvar_t spa_namespace_cv;
238 static const int spa_max_replication_override = SPA_DVAS_PER_BP;
239
240 static kmutex_t spa_spare_lock;
241 static avl_tree_t spa_spare_avl;
242 static kmutex_t spa_l2cache_lock;
243 static avl_tree_t spa_l2cache_avl;
244
245 spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
246
247 #ifdef ZFS_DEBUG
248 /*
249 * Everything except dprintf, set_error, spa, and indirect_remap is on
250 * by default in debug builds.
251 */
252 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
253 ZFS_DEBUG_INDIRECT_REMAP);
254 #else
255 int zfs_flags = 0;
256 #endif
257
258 /*
259 * zfs_recover can be set to nonzero to attempt to recover from
260 * otherwise-fatal errors, typically caused by on-disk corruption. When
261 * set, calls to zfs_panic_recover() will turn into warning messages.
262 * This should only be used as a last resort, as it typically results
263 * in leaked space, or worse.
264 */
265 int zfs_recover = B_FALSE;
266
267 /*
268 * If destroy encounters an EIO while reading metadata (e.g. indirect
269 * blocks), space referenced by the missing metadata can not be freed.
270 * Normally this causes the background destroy to become "stalled", as
271 * it is unable to make forward progress. While in this stalled state,
272 * all remaining space to free from the error-encountering filesystem is
273 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
274 * permanently leak the space from indirect blocks that can not be read,
275 * and continue to free everything else that it can.
276 *
277 * The default, "stalling" behavior is useful if the storage partially
278 * fails (i.e. some but not all i/os fail), and then later recovers. In
279 * this case, we will be able to continue pool operations while it is
280 * partially failed, and when it recovers, we can continue to free the
281 * space, with no leaks. However, note that this case is actually
282 * fairly rare.
283 *
284 * Typically pools either (a) fail completely (but perhaps temporarily,
285 * e.g. a top-level vdev going offline), or (b) have localized,
286 * permanent errors (e.g. disk returns the wrong data due to bit flip or
287 * firmware bug). In case (a), this setting does not matter because the
288 * pool will be suspended and the sync thread will not be able to make
289 * forward progress regardless. In case (b), because the error is
290 * permanent, the best we can do is leak the minimum amount of space,
291 * which is what setting this flag will do. Therefore, it is reasonable
292 * for this flag to normally be set, but we chose the more conservative
293 * approach of not setting it, so that there is no possibility of
294 * leaking space in the "partial temporary" failure case.
295 */
296 int zfs_free_leak_on_eio = B_FALSE;
297
298 /*
299 * Expiration time in milliseconds. This value has two meanings. First it is
300 * used to determine when the spa_deadman() logic should fire. By default the
301 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
302 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
303 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
304 * in one of three behaviors controlled by zfs_deadman_failmode.
305 */
306 unsigned long zfs_deadman_synctime_ms = 600000UL; /* 10 min. */
307
308 /*
309 * This value controls the maximum amount of time zio_wait() will block for an
310 * outstanding IO. By default this is 300 seconds at which point the "hung"
311 * behavior will be applied as described for zfs_deadman_synctime_ms.
312 */
313 unsigned long zfs_deadman_ziotime_ms = 300000UL; /* 5 min. */
314
315 /*
316 * Check time in milliseconds. This defines the frequency at which we check
317 * for hung I/O.
318 */
319 unsigned long zfs_deadman_checktime_ms = 60000UL; /* 1 min. */
320
321 /*
322 * By default the deadman is enabled.
323 */
324 int zfs_deadman_enabled = B_TRUE;
325
326 /*
327 * Controls the behavior of the deadman when it detects a "hung" I/O.
328 * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
329 *
330 * wait - Wait for the "hung" I/O (default)
331 * continue - Attempt to recover from a "hung" I/O
332 * panic - Panic the system
333 */
334 const char *zfs_deadman_failmode = "wait";
335
336 /*
337 * The worst case is single-sector max-parity RAID-Z blocks, in which
338 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
339 * times the size; so just assume that. Add to this the fact that
340 * we can have up to 3 DVAs per bp, and one more factor of 2 because
341 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
342 * the worst case is:
343 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
344 */
345 int spa_asize_inflation = 24;
346
347 /*
348 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
349 * the pool to be consumed (bounded by spa_max_slop). This ensures that we
350 * don't run the pool completely out of space, due to unaccounted changes (e.g.
351 * to the MOS). It also limits the worst-case time to allocate space. If we
352 * have less than this amount of free space, most ZPL operations (e.g. write,
353 * create) will return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are
354 * also part of this 3.2% of space which can't be consumed by normal writes;
355 * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded
356 * log space.
357 *
358 * Certain operations (e.g. file removal, most administrative actions) can
359 * use half the slop space. They will only return ENOSPC if less than half
360 * the slop space is free. Typically, once the pool has less than the slop
361 * space free, the user will use these operations to free up space in the pool.
362 * These are the operations that call dsl_pool_adjustedsize() with the netfree
363 * argument set to TRUE.
364 *
365 * Operations that are almost guaranteed to free up space in the absence of
366 * a pool checkpoint can use up to three quarters of the slop space
367 * (e.g zfs destroy).
368 *
369 * A very restricted set of operations are always permitted, regardless of
370 * the amount of free space. These are the operations that call
371 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
372 * increase in the amount of space used, it is possible to run the pool
373 * completely out of space, causing it to be permanently read-only.
374 *
375 * Note that on very small pools, the slop space will be larger than
376 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
377 * but we never allow it to be more than half the pool size.
378 *
379 * Further, on very large pools, the slop space will be smaller than
380 * 3.2%, to avoid reserving much more space than we actually need; bounded
381 * by spa_max_slop (128GB).
382 *
383 * See also the comments in zfs_space_check_t.
384 */
385 int spa_slop_shift = 5;
386 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024;
387 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024;
388 static const int spa_allocators = 4;
389
390
391 void
392 spa_load_failed(spa_t *spa, const char *fmt, ...)
393 {
394 va_list adx;
395 char buf[256];
396
397 va_start(adx, fmt);
398 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
399 va_end(adx);
400
401 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
402 spa->spa_trust_config ? "trusted" : "untrusted", buf);
403 }
404
405 void
406 spa_load_note(spa_t *spa, const char *fmt, ...)
407 {
408 va_list adx;
409 char buf[256];
410
411 va_start(adx, fmt);
412 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
413 va_end(adx);
414
415 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
416 spa->spa_trust_config ? "trusted" : "untrusted", buf);
417 }
418
419 /*
420 * By default dedup and user data indirects land in the special class
421 */
422 static int zfs_ddt_data_is_special = B_TRUE;
423 static int zfs_user_indirect_is_special = B_TRUE;
424
425 /*
426 * The percentage of special class final space reserved for metadata only.
427 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
428 * let metadata into the class.
429 */
430 static int zfs_special_class_metadata_reserve_pct = 25;
431
432 /*
433 * ==========================================================================
434 * SPA config locking
435 * ==========================================================================
436 */
437 static void
438 spa_config_lock_init(spa_t *spa)
439 {
440 for (int i = 0; i < SCL_LOCKS; i++) {
441 spa_config_lock_t *scl = &spa->spa_config_lock[i];
442 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
443 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
444 scl->scl_writer = NULL;
445 scl->scl_write_wanted = 0;
446 scl->scl_count = 0;
447 }
448 }
449
450 static void
451 spa_config_lock_destroy(spa_t *spa)
452 {
453 for (int i = 0; i < SCL_LOCKS; i++) {
454 spa_config_lock_t *scl = &spa->spa_config_lock[i];
455 mutex_destroy(&scl->scl_lock);
456 cv_destroy(&scl->scl_cv);
457 ASSERT(scl->scl_writer == NULL);
458 ASSERT(scl->scl_write_wanted == 0);
459 ASSERT(scl->scl_count == 0);
460 }
461 }
462
463 int
464 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
465 {
466 for (int i = 0; i < SCL_LOCKS; i++) {
467 spa_config_lock_t *scl = &spa->spa_config_lock[i];
468 if (!(locks & (1 << i)))
469 continue;
470 mutex_enter(&scl->scl_lock);
471 if (rw == RW_READER) {
472 if (scl->scl_writer || scl->scl_write_wanted) {
473 mutex_exit(&scl->scl_lock);
474 spa_config_exit(spa, locks & ((1 << i) - 1),
475 tag);
476 return (0);
477 }
478 } else {
479 ASSERT(scl->scl_writer != curthread);
480 if (scl->scl_count != 0) {
481 mutex_exit(&scl->scl_lock);
482 spa_config_exit(spa, locks & ((1 << i) - 1),
483 tag);
484 return (0);
485 }
486 scl->scl_writer = curthread;
487 }
488 scl->scl_count++;
489 mutex_exit(&scl->scl_lock);
490 }
491 return (1);
492 }
493
494 void
495 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
496 {
497 (void) tag;
498 int wlocks_held = 0;
499
500 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
501
502 for (int i = 0; i < SCL_LOCKS; i++) {
503 spa_config_lock_t *scl = &spa->spa_config_lock[i];
504 if (scl->scl_writer == curthread)
505 wlocks_held |= (1 << i);
506 if (!(locks & (1 << i)))
507 continue;
508 mutex_enter(&scl->scl_lock);
509 if (rw == RW_READER) {
510 while (scl->scl_writer || scl->scl_write_wanted) {
511 cv_wait(&scl->scl_cv, &scl->scl_lock);
512 }
513 } else {
514 ASSERT(scl->scl_writer != curthread);
515 while (scl->scl_count != 0) {
516 scl->scl_write_wanted++;
517 cv_wait(&scl->scl_cv, &scl->scl_lock);
518 scl->scl_write_wanted--;
519 }
520 scl->scl_writer = curthread;
521 }
522 scl->scl_count++;
523 mutex_exit(&scl->scl_lock);
524 }
525 ASSERT3U(wlocks_held, <=, locks);
526 }
527
528 void
529 spa_config_exit(spa_t *spa, int locks, const void *tag)
530 {
531 (void) tag;
532 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
533 spa_config_lock_t *scl = &spa->spa_config_lock[i];
534 if (!(locks & (1 << i)))
535 continue;
536 mutex_enter(&scl->scl_lock);
537 ASSERT(scl->scl_count > 0);
538 if (--scl->scl_count == 0) {
539 ASSERT(scl->scl_writer == NULL ||
540 scl->scl_writer == curthread);
541 scl->scl_writer = NULL; /* OK in either case */
542 cv_broadcast(&scl->scl_cv);
543 }
544 mutex_exit(&scl->scl_lock);
545 }
546 }
547
548 int
549 spa_config_held(spa_t *spa, int locks, krw_t rw)
550 {
551 int locks_held = 0;
552
553 for (int i = 0; i < SCL_LOCKS; i++) {
554 spa_config_lock_t *scl = &spa->spa_config_lock[i];
555 if (!(locks & (1 << i)))
556 continue;
557 if ((rw == RW_READER && scl->scl_count != 0) ||
558 (rw == RW_WRITER && scl->scl_writer == curthread))
559 locks_held |= 1 << i;
560 }
561
562 return (locks_held);
563 }
564
565 /*
566 * ==========================================================================
567 * SPA namespace functions
568 * ==========================================================================
569 */
570
571 /*
572 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
573 * Returns NULL if no matching spa_t is found.
574 */
575 spa_t *
576 spa_lookup(const char *name)
577 {
578 static spa_t search; /* spa_t is large; don't allocate on stack */
579 spa_t *spa;
580 avl_index_t where;
581 char *cp;
582
583 ASSERT(MUTEX_HELD(&spa_namespace_lock));
584
585 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
586
587 /*
588 * If it's a full dataset name, figure out the pool name and
589 * just use that.
590 */
591 cp = strpbrk(search.spa_name, "/@#");
592 if (cp != NULL)
593 *cp = '\0';
594
595 spa = avl_find(&spa_namespace_avl, &search, &where);
596
597 return (spa);
598 }
599
600 /*
601 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
602 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
603 * looking for potentially hung I/Os.
604 */
605 void
606 spa_deadman(void *arg)
607 {
608 spa_t *spa = arg;
609
610 /* Disable the deadman if the pool is suspended. */
611 if (spa_suspended(spa))
612 return;
613
614 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
615 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
616 (u_longlong_t)++spa->spa_deadman_calls);
617 if (zfs_deadman_enabled)
618 vdev_deadman(spa->spa_root_vdev, FTAG);
619
620 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
621 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
622 MSEC_TO_TICK(zfs_deadman_checktime_ms));
623 }
624
625 static int
626 spa_log_sm_sort_by_txg(const void *va, const void *vb)
627 {
628 const spa_log_sm_t *a = va;
629 const spa_log_sm_t *b = vb;
630
631 return (TREE_CMP(a->sls_txg, b->sls_txg));
632 }
633
634 /*
635 * Create an uninitialized spa_t with the given name. Requires
636 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
637 * exist by calling spa_lookup() first.
638 */
639 spa_t *
640 spa_add(const char *name, nvlist_t *config, const char *altroot)
641 {
642 spa_t *spa;
643 spa_config_dirent_t *dp;
644
645 ASSERT(MUTEX_HELD(&spa_namespace_lock));
646
647 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
648
649 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
650 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
651 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
652 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
653 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
654 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
655 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
656 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
657 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
658 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
659 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
660 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
661 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
662 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
663
664 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
665 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
666 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
667 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
668 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
669 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
670 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
671
672 for (int t = 0; t < TXG_SIZE; t++)
673 bplist_create(&spa->spa_free_bplist[t]);
674
675 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
676 spa->spa_state = POOL_STATE_UNINITIALIZED;
677 spa->spa_freeze_txg = UINT64_MAX;
678 spa->spa_final_txg = UINT64_MAX;
679 spa->spa_load_max_txg = UINT64_MAX;
680 spa->spa_proc = &p0;
681 spa->spa_proc_state = SPA_PROC_NONE;
682 spa->spa_trust_config = B_TRUE;
683 spa->spa_hostid = zone_get_hostid(NULL);
684
685 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
686 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
687 spa_set_deadman_failmode(spa, zfs_deadman_failmode);
688
689 zfs_refcount_create(&spa->spa_refcount);
690 spa_config_lock_init(spa);
691 spa_stats_init(spa);
692
693 avl_add(&spa_namespace_avl, spa);
694
695 /*
696 * Set the alternate root, if there is one.
697 */
698 if (altroot)
699 spa->spa_root = spa_strdup(altroot);
700
701 spa->spa_alloc_count = spa_allocators;
702 spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count *
703 sizeof (spa_alloc_t), KM_SLEEP);
704 for (int i = 0; i < spa->spa_alloc_count; i++) {
705 mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT,
706 NULL);
707 avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare,
708 sizeof (zio_t), offsetof(zio_t, io_alloc_node));
709 }
710 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
711 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
712 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
713 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
714 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
715 offsetof(log_summary_entry_t, lse_node));
716
717 /*
718 * Every pool starts with the default cachefile
719 */
720 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
721 offsetof(spa_config_dirent_t, scd_link));
722
723 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
724 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
725 list_insert_head(&spa->spa_config_list, dp);
726
727 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
728 KM_SLEEP) == 0);
729
730 if (config != NULL) {
731 nvlist_t *features;
732
733 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
734 &features) == 0) {
735 VERIFY(nvlist_dup(features, &spa->spa_label_features,
736 0) == 0);
737 }
738
739 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
740 }
741
742 if (spa->spa_label_features == NULL) {
743 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
744 KM_SLEEP) == 0);
745 }
746
747 spa->spa_min_ashift = INT_MAX;
748 spa->spa_max_ashift = 0;
749 spa->spa_min_alloc = INT_MAX;
750
751 /* Reset cached value */
752 spa->spa_dedup_dspace = ~0ULL;
753
754 /*
755 * As a pool is being created, treat all features as disabled by
756 * setting SPA_FEATURE_DISABLED for all entries in the feature
757 * refcount cache.
758 */
759 for (int i = 0; i < SPA_FEATURES; i++) {
760 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
761 }
762
763 list_create(&spa->spa_leaf_list, sizeof (vdev_t),
764 offsetof(vdev_t, vdev_leaf_node));
765
766 return (spa);
767 }
768
769 /*
770 * Removes a spa_t from the namespace, freeing up any memory used. Requires
771 * spa_namespace_lock. This is called only after the spa_t has been closed and
772 * deactivated.
773 */
774 void
775 spa_remove(spa_t *spa)
776 {
777 spa_config_dirent_t *dp;
778
779 ASSERT(MUTEX_HELD(&spa_namespace_lock));
780 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
781 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
782 ASSERT0(spa->spa_waiters);
783
784 nvlist_free(spa->spa_config_splitting);
785
786 avl_remove(&spa_namespace_avl, spa);
787 cv_broadcast(&spa_namespace_cv);
788
789 if (spa->spa_root)
790 spa_strfree(spa->spa_root);
791
792 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
793 list_remove(&spa->spa_config_list, dp);
794 if (dp->scd_path != NULL)
795 spa_strfree(dp->scd_path);
796 kmem_free(dp, sizeof (spa_config_dirent_t));
797 }
798
799 for (int i = 0; i < spa->spa_alloc_count; i++) {
800 avl_destroy(&spa->spa_allocs[i].spaa_tree);
801 mutex_destroy(&spa->spa_allocs[i].spaa_lock);
802 }
803 kmem_free(spa->spa_allocs, spa->spa_alloc_count *
804 sizeof (spa_alloc_t));
805
806 avl_destroy(&spa->spa_metaslabs_by_flushed);
807 avl_destroy(&spa->spa_sm_logs_by_txg);
808 list_destroy(&spa->spa_log_summary);
809 list_destroy(&spa->spa_config_list);
810 list_destroy(&spa->spa_leaf_list);
811
812 nvlist_free(spa->spa_label_features);
813 nvlist_free(spa->spa_load_info);
814 nvlist_free(spa->spa_feat_stats);
815 spa_config_set(spa, NULL);
816
817 zfs_refcount_destroy(&spa->spa_refcount);
818
819 spa_stats_destroy(spa);
820 spa_config_lock_destroy(spa);
821
822 for (int t = 0; t < TXG_SIZE; t++)
823 bplist_destroy(&spa->spa_free_bplist[t]);
824
825 zio_checksum_templates_free(spa);
826
827 cv_destroy(&spa->spa_async_cv);
828 cv_destroy(&spa->spa_evicting_os_cv);
829 cv_destroy(&spa->spa_proc_cv);
830 cv_destroy(&spa->spa_scrub_io_cv);
831 cv_destroy(&spa->spa_suspend_cv);
832 cv_destroy(&spa->spa_activities_cv);
833 cv_destroy(&spa->spa_waiters_cv);
834
835 mutex_destroy(&spa->spa_flushed_ms_lock);
836 mutex_destroy(&spa->spa_async_lock);
837 mutex_destroy(&spa->spa_errlist_lock);
838 mutex_destroy(&spa->spa_errlog_lock);
839 mutex_destroy(&spa->spa_evicting_os_lock);
840 mutex_destroy(&spa->spa_history_lock);
841 mutex_destroy(&spa->spa_proc_lock);
842 mutex_destroy(&spa->spa_props_lock);
843 mutex_destroy(&spa->spa_cksum_tmpls_lock);
844 mutex_destroy(&spa->spa_scrub_lock);
845 mutex_destroy(&spa->spa_suspend_lock);
846 mutex_destroy(&spa->spa_vdev_top_lock);
847 mutex_destroy(&spa->spa_feat_stats_lock);
848 mutex_destroy(&spa->spa_activities_lock);
849
850 kmem_free(spa, sizeof (spa_t));
851 }
852
853 /*
854 * Given a pool, return the next pool in the namespace, or NULL if there is
855 * none. If 'prev' is NULL, return the first pool.
856 */
857 spa_t *
858 spa_next(spa_t *prev)
859 {
860 ASSERT(MUTEX_HELD(&spa_namespace_lock));
861
862 if (prev)
863 return (AVL_NEXT(&spa_namespace_avl, prev));
864 else
865 return (avl_first(&spa_namespace_avl));
866 }
867
868 /*
869 * ==========================================================================
870 * SPA refcount functions
871 * ==========================================================================
872 */
873
874 /*
875 * Add a reference to the given spa_t. Must have at least one reference, or
876 * have the namespace lock held.
877 */
878 void
879 spa_open_ref(spa_t *spa, void *tag)
880 {
881 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
882 MUTEX_HELD(&spa_namespace_lock));
883 (void) zfs_refcount_add(&spa->spa_refcount, tag);
884 }
885
886 /*
887 * Remove a reference to the given spa_t. Must have at least one reference, or
888 * have the namespace lock held.
889 */
890 void
891 spa_close(spa_t *spa, void *tag)
892 {
893 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
894 MUTEX_HELD(&spa_namespace_lock));
895 (void) zfs_refcount_remove(&spa->spa_refcount, tag);
896 }
897
898 /*
899 * Remove a reference to the given spa_t held by a dsl dir that is
900 * being asynchronously released. Async releases occur from a taskq
901 * performing eviction of dsl datasets and dirs. The namespace lock
902 * isn't held and the hold by the object being evicted may contribute to
903 * spa_minref (e.g. dataset or directory released during pool export),
904 * so the asserts in spa_close() do not apply.
905 */
906 void
907 spa_async_close(spa_t *spa, void *tag)
908 {
909 (void) zfs_refcount_remove(&spa->spa_refcount, tag);
910 }
911
912 /*
913 * Check to see if the spa refcount is zero. Must be called with
914 * spa_namespace_lock held. We really compare against spa_minref, which is the
915 * number of references acquired when opening a pool
916 */
917 boolean_t
918 spa_refcount_zero(spa_t *spa)
919 {
920 ASSERT(MUTEX_HELD(&spa_namespace_lock));
921
922 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
923 }
924
925 /*
926 * ==========================================================================
927 * SPA spare and l2cache tracking
928 * ==========================================================================
929 */
930
931 /*
932 * Hot spares and cache devices are tracked using the same code below,
933 * for 'auxiliary' devices.
934 */
935
936 typedef struct spa_aux {
937 uint64_t aux_guid;
938 uint64_t aux_pool;
939 avl_node_t aux_avl;
940 int aux_count;
941 } spa_aux_t;
942
943 static inline int
944 spa_aux_compare(const void *a, const void *b)
945 {
946 const spa_aux_t *sa = (const spa_aux_t *)a;
947 const spa_aux_t *sb = (const spa_aux_t *)b;
948
949 return (TREE_CMP(sa->aux_guid, sb->aux_guid));
950 }
951
952 static void
953 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
954 {
955 avl_index_t where;
956 spa_aux_t search;
957 spa_aux_t *aux;
958
959 search.aux_guid = vd->vdev_guid;
960 if ((aux = avl_find(avl, &search, &where)) != NULL) {
961 aux->aux_count++;
962 } else {
963 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
964 aux->aux_guid = vd->vdev_guid;
965 aux->aux_count = 1;
966 avl_insert(avl, aux, where);
967 }
968 }
969
970 static void
971 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
972 {
973 spa_aux_t search;
974 spa_aux_t *aux;
975 avl_index_t where;
976
977 search.aux_guid = vd->vdev_guid;
978 aux = avl_find(avl, &search, &where);
979
980 ASSERT(aux != NULL);
981
982 if (--aux->aux_count == 0) {
983 avl_remove(avl, aux);
984 kmem_free(aux, sizeof (spa_aux_t));
985 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
986 aux->aux_pool = 0ULL;
987 }
988 }
989
990 static boolean_t
991 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
992 {
993 spa_aux_t search, *found;
994
995 search.aux_guid = guid;
996 found = avl_find(avl, &search, NULL);
997
998 if (pool) {
999 if (found)
1000 *pool = found->aux_pool;
1001 else
1002 *pool = 0ULL;
1003 }
1004
1005 if (refcnt) {
1006 if (found)
1007 *refcnt = found->aux_count;
1008 else
1009 *refcnt = 0;
1010 }
1011
1012 return (found != NULL);
1013 }
1014
1015 static void
1016 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1017 {
1018 spa_aux_t search, *found;
1019 avl_index_t where;
1020
1021 search.aux_guid = vd->vdev_guid;
1022 found = avl_find(avl, &search, &where);
1023 ASSERT(found != NULL);
1024 ASSERT(found->aux_pool == 0ULL);
1025
1026 found->aux_pool = spa_guid(vd->vdev_spa);
1027 }
1028
1029 /*
1030 * Spares are tracked globally due to the following constraints:
1031 *
1032 * - A spare may be part of multiple pools.
1033 * - A spare may be added to a pool even if it's actively in use within
1034 * another pool.
1035 * - A spare in use in any pool can only be the source of a replacement if
1036 * the target is a spare in the same pool.
1037 *
1038 * We keep track of all spares on the system through the use of a reference
1039 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
1040 * spare, then we bump the reference count in the AVL tree. In addition, we set
1041 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1042 * inactive). When a spare is made active (used to replace a device in the
1043 * pool), we also keep track of which pool its been made a part of.
1044 *
1045 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
1046 * called under the spa_namespace lock as part of vdev reconfiguration. The
1047 * separate spare lock exists for the status query path, which does not need to
1048 * be completely consistent with respect to other vdev configuration changes.
1049 */
1050
1051 static int
1052 spa_spare_compare(const void *a, const void *b)
1053 {
1054 return (spa_aux_compare(a, b));
1055 }
1056
1057 void
1058 spa_spare_add(vdev_t *vd)
1059 {
1060 mutex_enter(&spa_spare_lock);
1061 ASSERT(!vd->vdev_isspare);
1062 spa_aux_add(vd, &spa_spare_avl);
1063 vd->vdev_isspare = B_TRUE;
1064 mutex_exit(&spa_spare_lock);
1065 }
1066
1067 void
1068 spa_spare_remove(vdev_t *vd)
1069 {
1070 mutex_enter(&spa_spare_lock);
1071 ASSERT(vd->vdev_isspare);
1072 spa_aux_remove(vd, &spa_spare_avl);
1073 vd->vdev_isspare = B_FALSE;
1074 mutex_exit(&spa_spare_lock);
1075 }
1076
1077 boolean_t
1078 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1079 {
1080 boolean_t found;
1081
1082 mutex_enter(&spa_spare_lock);
1083 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1084 mutex_exit(&spa_spare_lock);
1085
1086 return (found);
1087 }
1088
1089 void
1090 spa_spare_activate(vdev_t *vd)
1091 {
1092 mutex_enter(&spa_spare_lock);
1093 ASSERT(vd->vdev_isspare);
1094 spa_aux_activate(vd, &spa_spare_avl);
1095 mutex_exit(&spa_spare_lock);
1096 }
1097
1098 /*
1099 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1100 * Cache devices currently only support one pool per cache device, and so
1101 * for these devices the aux reference count is currently unused beyond 1.
1102 */
1103
1104 static int
1105 spa_l2cache_compare(const void *a, const void *b)
1106 {
1107 return (spa_aux_compare(a, b));
1108 }
1109
1110 void
1111 spa_l2cache_add(vdev_t *vd)
1112 {
1113 mutex_enter(&spa_l2cache_lock);
1114 ASSERT(!vd->vdev_isl2cache);
1115 spa_aux_add(vd, &spa_l2cache_avl);
1116 vd->vdev_isl2cache = B_TRUE;
1117 mutex_exit(&spa_l2cache_lock);
1118 }
1119
1120 void
1121 spa_l2cache_remove(vdev_t *vd)
1122 {
1123 mutex_enter(&spa_l2cache_lock);
1124 ASSERT(vd->vdev_isl2cache);
1125 spa_aux_remove(vd, &spa_l2cache_avl);
1126 vd->vdev_isl2cache = B_FALSE;
1127 mutex_exit(&spa_l2cache_lock);
1128 }
1129
1130 boolean_t
1131 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1132 {
1133 boolean_t found;
1134
1135 mutex_enter(&spa_l2cache_lock);
1136 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1137 mutex_exit(&spa_l2cache_lock);
1138
1139 return (found);
1140 }
1141
1142 void
1143 spa_l2cache_activate(vdev_t *vd)
1144 {
1145 mutex_enter(&spa_l2cache_lock);
1146 ASSERT(vd->vdev_isl2cache);
1147 spa_aux_activate(vd, &spa_l2cache_avl);
1148 mutex_exit(&spa_l2cache_lock);
1149 }
1150
1151 /*
1152 * ==========================================================================
1153 * SPA vdev locking
1154 * ==========================================================================
1155 */
1156
1157 /*
1158 * Lock the given spa_t for the purpose of adding or removing a vdev.
1159 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1160 * It returns the next transaction group for the spa_t.
1161 */
1162 uint64_t
1163 spa_vdev_enter(spa_t *spa)
1164 {
1165 mutex_enter(&spa->spa_vdev_top_lock);
1166 mutex_enter(&spa_namespace_lock);
1167
1168 vdev_autotrim_stop_all(spa);
1169
1170 return (spa_vdev_config_enter(spa));
1171 }
1172
1173 /*
1174 * The same as spa_vdev_enter() above but additionally takes the guid of
1175 * the vdev being detached. When there is a rebuild in process it will be
1176 * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1177 * The rebuild is canceled if only a single child remains after the detach.
1178 */
1179 uint64_t
1180 spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1181 {
1182 mutex_enter(&spa->spa_vdev_top_lock);
1183 mutex_enter(&spa_namespace_lock);
1184
1185 vdev_autotrim_stop_all(spa);
1186
1187 if (guid != 0) {
1188 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1189 if (vd) {
1190 vdev_rebuild_stop_wait(vd->vdev_top);
1191 }
1192 }
1193
1194 return (spa_vdev_config_enter(spa));
1195 }
1196
1197 /*
1198 * Internal implementation for spa_vdev_enter(). Used when a vdev
1199 * operation requires multiple syncs (i.e. removing a device) while
1200 * keeping the spa_namespace_lock held.
1201 */
1202 uint64_t
1203 spa_vdev_config_enter(spa_t *spa)
1204 {
1205 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1206
1207 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1208
1209 return (spa_last_synced_txg(spa) + 1);
1210 }
1211
1212 /*
1213 * Used in combination with spa_vdev_config_enter() to allow the syncing
1214 * of multiple transactions without releasing the spa_namespace_lock.
1215 */
1216 void
1217 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1218 {
1219 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1220
1221 int config_changed = B_FALSE;
1222
1223 ASSERT(txg > spa_last_synced_txg(spa));
1224
1225 spa->spa_pending_vdev = NULL;
1226
1227 /*
1228 * Reassess the DTLs.
1229 */
1230 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
1231
1232 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1233 config_changed = B_TRUE;
1234 spa->spa_config_generation++;
1235 }
1236
1237 /*
1238 * Verify the metaslab classes.
1239 */
1240 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1241 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1242 ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0);
1243 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1244 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1245
1246 spa_config_exit(spa, SCL_ALL, spa);
1247
1248 /*
1249 * Panic the system if the specified tag requires it. This
1250 * is useful for ensuring that configurations are updated
1251 * transactionally.
1252 */
1253 if (zio_injection_enabled)
1254 zio_handle_panic_injection(spa, tag, 0);
1255
1256 /*
1257 * Note: this txg_wait_synced() is important because it ensures
1258 * that there won't be more than one config change per txg.
1259 * This allows us to use the txg as the generation number.
1260 */
1261 if (error == 0)
1262 txg_wait_synced(spa->spa_dsl_pool, txg);
1263
1264 if (vd != NULL) {
1265 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1266 if (vd->vdev_ops->vdev_op_leaf) {
1267 mutex_enter(&vd->vdev_initialize_lock);
1268 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1269 NULL);
1270 mutex_exit(&vd->vdev_initialize_lock);
1271
1272 mutex_enter(&vd->vdev_trim_lock);
1273 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1274 mutex_exit(&vd->vdev_trim_lock);
1275 }
1276
1277 /*
1278 * The vdev may be both a leaf and top-level device.
1279 */
1280 vdev_autotrim_stop_wait(vd);
1281
1282 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
1283 vdev_free(vd);
1284 spa_config_exit(spa, SCL_STATE_ALL, spa);
1285 }
1286
1287 /*
1288 * If the config changed, update the config cache.
1289 */
1290 if (config_changed)
1291 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1292 }
1293
1294 /*
1295 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1296 * locking of spa_vdev_enter(), we also want make sure the transactions have
1297 * synced to disk, and then update the global configuration cache with the new
1298 * information.
1299 */
1300 int
1301 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1302 {
1303 vdev_autotrim_restart(spa);
1304 vdev_rebuild_restart(spa);
1305
1306 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1307 mutex_exit(&spa_namespace_lock);
1308 mutex_exit(&spa->spa_vdev_top_lock);
1309
1310 return (error);
1311 }
1312
1313 /*
1314 * Lock the given spa_t for the purpose of changing vdev state.
1315 */
1316 void
1317 spa_vdev_state_enter(spa_t *spa, int oplocks)
1318 {
1319 int locks = SCL_STATE_ALL | oplocks;
1320
1321 /*
1322 * Root pools may need to read of the underlying devfs filesystem
1323 * when opening up a vdev. Unfortunately if we're holding the
1324 * SCL_ZIO lock it will result in a deadlock when we try to issue
1325 * the read from the root filesystem. Instead we "prefetch"
1326 * the associated vnodes that we need prior to opening the
1327 * underlying devices and cache them so that we can prevent
1328 * any I/O when we are doing the actual open.
1329 */
1330 if (spa_is_root(spa)) {
1331 int low = locks & ~(SCL_ZIO - 1);
1332 int high = locks & ~low;
1333
1334 spa_config_enter(spa, high, spa, RW_WRITER);
1335 vdev_hold(spa->spa_root_vdev);
1336 spa_config_enter(spa, low, spa, RW_WRITER);
1337 } else {
1338 spa_config_enter(spa, locks, spa, RW_WRITER);
1339 }
1340 spa->spa_vdev_locks = locks;
1341 }
1342
1343 int
1344 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1345 {
1346 boolean_t config_changed = B_FALSE;
1347 vdev_t *vdev_top;
1348
1349 if (vd == NULL || vd == spa->spa_root_vdev) {
1350 vdev_top = spa->spa_root_vdev;
1351 } else {
1352 vdev_top = vd->vdev_top;
1353 }
1354
1355 if (vd != NULL || error == 0)
1356 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
1357
1358 if (vd != NULL) {
1359 if (vd != spa->spa_root_vdev)
1360 vdev_state_dirty(vdev_top);
1361
1362 config_changed = B_TRUE;
1363 spa->spa_config_generation++;
1364 }
1365
1366 if (spa_is_root(spa))
1367 vdev_rele(spa->spa_root_vdev);
1368
1369 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1370 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1371
1372 /*
1373 * If anything changed, wait for it to sync. This ensures that,
1374 * from the system administrator's perspective, zpool(8) commands
1375 * are synchronous. This is important for things like zpool offline:
1376 * when the command completes, you expect no further I/O from ZFS.
1377 */
1378 if (vd != NULL)
1379 txg_wait_synced(spa->spa_dsl_pool, 0);
1380
1381 /*
1382 * If the config changed, update the config cache.
1383 */
1384 if (config_changed) {
1385 mutex_enter(&spa_namespace_lock);
1386 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1387 mutex_exit(&spa_namespace_lock);
1388 }
1389
1390 return (error);
1391 }
1392
1393 /*
1394 * ==========================================================================
1395 * Miscellaneous functions
1396 * ==========================================================================
1397 */
1398
1399 void
1400 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1401 {
1402 if (!nvlist_exists(spa->spa_label_features, feature)) {
1403 fnvlist_add_boolean(spa->spa_label_features, feature);
1404 /*
1405 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1406 * dirty the vdev config because lock SCL_CONFIG is not held.
1407 * Thankfully, in this case we don't need to dirty the config
1408 * because it will be written out anyway when we finish
1409 * creating the pool.
1410 */
1411 if (tx->tx_txg != TXG_INITIAL)
1412 vdev_config_dirty(spa->spa_root_vdev);
1413 }
1414 }
1415
1416 void
1417 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1418 {
1419 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1420 vdev_config_dirty(spa->spa_root_vdev);
1421 }
1422
1423 /*
1424 * Return the spa_t associated with given pool_guid, if it exists. If
1425 * device_guid is non-zero, determine whether the pool exists *and* contains
1426 * a device with the specified device_guid.
1427 */
1428 spa_t *
1429 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1430 {
1431 spa_t *spa;
1432 avl_tree_t *t = &spa_namespace_avl;
1433
1434 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1435
1436 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1437 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1438 continue;
1439 if (spa->spa_root_vdev == NULL)
1440 continue;
1441 if (spa_guid(spa) == pool_guid) {
1442 if (device_guid == 0)
1443 break;
1444
1445 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1446 device_guid) != NULL)
1447 break;
1448
1449 /*
1450 * Check any devices we may be in the process of adding.
1451 */
1452 if (spa->spa_pending_vdev) {
1453 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1454 device_guid) != NULL)
1455 break;
1456 }
1457 }
1458 }
1459
1460 return (spa);
1461 }
1462
1463 /*
1464 * Determine whether a pool with the given pool_guid exists.
1465 */
1466 boolean_t
1467 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1468 {
1469 return (spa_by_guid(pool_guid, device_guid) != NULL);
1470 }
1471
1472 char *
1473 spa_strdup(const char *s)
1474 {
1475 size_t len;
1476 char *new;
1477
1478 len = strlen(s);
1479 new = kmem_alloc(len + 1, KM_SLEEP);
1480 memcpy(new, s, len + 1);
1481
1482 return (new);
1483 }
1484
1485 void
1486 spa_strfree(char *s)
1487 {
1488 kmem_free(s, strlen(s) + 1);
1489 }
1490
1491 uint64_t
1492 spa_generate_guid(spa_t *spa)
1493 {
1494 uint64_t guid;
1495
1496 if (spa != NULL) {
1497 do {
1498 (void) random_get_pseudo_bytes((void *)&guid,
1499 sizeof (guid));
1500 } while (guid == 0 || spa_guid_exists(spa_guid(spa), guid));
1501 } else {
1502 do {
1503 (void) random_get_pseudo_bytes((void *)&guid,
1504 sizeof (guid));
1505 } while (guid == 0 || spa_guid_exists(guid, 0));
1506 }
1507
1508 return (guid);
1509 }
1510
1511 void
1512 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1513 {
1514 char type[256];
1515 char *checksum = NULL;
1516 char *compress = NULL;
1517
1518 if (bp != NULL) {
1519 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1520 dmu_object_byteswap_t bswap =
1521 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1522 (void) snprintf(type, sizeof (type), "bswap %s %s",
1523 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1524 "metadata" : "data",
1525 dmu_ot_byteswap[bswap].ob_name);
1526 } else {
1527 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1528 sizeof (type));
1529 }
1530 if (!BP_IS_EMBEDDED(bp)) {
1531 checksum =
1532 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1533 }
1534 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1535 }
1536
1537 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1538 compress);
1539 }
1540
1541 void
1542 spa_freeze(spa_t *spa)
1543 {
1544 uint64_t freeze_txg = 0;
1545
1546 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1547 if (spa->spa_freeze_txg == UINT64_MAX) {
1548 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1549 spa->spa_freeze_txg = freeze_txg;
1550 }
1551 spa_config_exit(spa, SCL_ALL, FTAG);
1552 if (freeze_txg != 0)
1553 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1554 }
1555
1556 void
1557 zfs_panic_recover(const char *fmt, ...)
1558 {
1559 va_list adx;
1560
1561 va_start(adx, fmt);
1562 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1563 va_end(adx);
1564 }
1565
1566 /*
1567 * This is a stripped-down version of strtoull, suitable only for converting
1568 * lowercase hexadecimal numbers that don't overflow.
1569 */
1570 uint64_t
1571 zfs_strtonum(const char *str, char **nptr)
1572 {
1573 uint64_t val = 0;
1574 char c;
1575 int digit;
1576
1577 while ((c = *str) != '\0') {
1578 if (c >= '0' && c <= '9')
1579 digit = c - '0';
1580 else if (c >= 'a' && c <= 'f')
1581 digit = 10 + c - 'a';
1582 else
1583 break;
1584
1585 val *= 16;
1586 val += digit;
1587
1588 str++;
1589 }
1590
1591 if (nptr)
1592 *nptr = (char *)str;
1593
1594 return (val);
1595 }
1596
1597 void
1598 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1599 {
1600 /*
1601 * We bump the feature refcount for each special vdev added to the pool
1602 */
1603 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1604 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1605 }
1606
1607 /*
1608 * ==========================================================================
1609 * Accessor functions
1610 * ==========================================================================
1611 */
1612
1613 boolean_t
1614 spa_shutting_down(spa_t *spa)
1615 {
1616 return (spa->spa_async_suspended);
1617 }
1618
1619 dsl_pool_t *
1620 spa_get_dsl(spa_t *spa)
1621 {
1622 return (spa->spa_dsl_pool);
1623 }
1624
1625 boolean_t
1626 spa_is_initializing(spa_t *spa)
1627 {
1628 return (spa->spa_is_initializing);
1629 }
1630
1631 boolean_t
1632 spa_indirect_vdevs_loaded(spa_t *spa)
1633 {
1634 return (spa->spa_indirect_vdevs_loaded);
1635 }
1636
1637 blkptr_t *
1638 spa_get_rootblkptr(spa_t *spa)
1639 {
1640 return (&spa->spa_ubsync.ub_rootbp);
1641 }
1642
1643 void
1644 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1645 {
1646 spa->spa_uberblock.ub_rootbp = *bp;
1647 }
1648
1649 void
1650 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1651 {
1652 if (spa->spa_root == NULL)
1653 buf[0] = '\0';
1654 else
1655 (void) strncpy(buf, spa->spa_root, buflen);
1656 }
1657
1658 int
1659 spa_sync_pass(spa_t *spa)
1660 {
1661 return (spa->spa_sync_pass);
1662 }
1663
1664 char *
1665 spa_name(spa_t *spa)
1666 {
1667 return (spa->spa_name);
1668 }
1669
1670 uint64_t
1671 spa_guid(spa_t *spa)
1672 {
1673 dsl_pool_t *dp = spa_get_dsl(spa);
1674 uint64_t guid;
1675
1676 /*
1677 * If we fail to parse the config during spa_load(), we can go through
1678 * the error path (which posts an ereport) and end up here with no root
1679 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1680 * this case.
1681 */
1682 if (spa->spa_root_vdev == NULL)
1683 return (spa->spa_config_guid);
1684
1685 guid = spa->spa_last_synced_guid != 0 ?
1686 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1687
1688 /*
1689 * Return the most recently synced out guid unless we're
1690 * in syncing context.
1691 */
1692 if (dp && dsl_pool_sync_context(dp))
1693 return (spa->spa_root_vdev->vdev_guid);
1694 else
1695 return (guid);
1696 }
1697
1698 uint64_t
1699 spa_load_guid(spa_t *spa)
1700 {
1701 /*
1702 * This is a GUID that exists solely as a reference for the
1703 * purposes of the arc. It is generated at load time, and
1704 * is never written to persistent storage.
1705 */
1706 return (spa->spa_load_guid);
1707 }
1708
1709 uint64_t
1710 spa_last_synced_txg(spa_t *spa)
1711 {
1712 return (spa->spa_ubsync.ub_txg);
1713 }
1714
1715 uint64_t
1716 spa_first_txg(spa_t *spa)
1717 {
1718 return (spa->spa_first_txg);
1719 }
1720
1721 uint64_t
1722 spa_syncing_txg(spa_t *spa)
1723 {
1724 return (spa->spa_syncing_txg);
1725 }
1726
1727 /*
1728 * Return the last txg where data can be dirtied. The final txgs
1729 * will be used to just clear out any deferred frees that remain.
1730 */
1731 uint64_t
1732 spa_final_dirty_txg(spa_t *spa)
1733 {
1734 return (spa->spa_final_txg - TXG_DEFER_SIZE);
1735 }
1736
1737 pool_state_t
1738 spa_state(spa_t *spa)
1739 {
1740 return (spa->spa_state);
1741 }
1742
1743 spa_load_state_t
1744 spa_load_state(spa_t *spa)
1745 {
1746 return (spa->spa_load_state);
1747 }
1748
1749 uint64_t
1750 spa_freeze_txg(spa_t *spa)
1751 {
1752 return (spa->spa_freeze_txg);
1753 }
1754
1755 /*
1756 * Return the inflated asize for a logical write in bytes. This is used by the
1757 * DMU to calculate the space a logical write will require on disk.
1758 * If lsize is smaller than the largest physical block size allocatable on this
1759 * pool we use its value instead, since the write will end up using the whole
1760 * block anyway.
1761 */
1762 uint64_t
1763 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1764 {
1765 if (lsize == 0)
1766 return (0); /* No inflation needed */
1767 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1768 }
1769
1770 /*
1771 * Return the amount of slop space in bytes. It is typically 1/32 of the pool
1772 * (3.2%), minus the embedded log space. On very small pools, it may be
1773 * slightly larger than this. On very large pools, it will be capped to
1774 * the value of spa_max_slop. The embedded log space is not included in
1775 * spa_dspace. By subtracting it, the usable space (per "zfs list") is a
1776 * constant 97% of the total space, regardless of metaslab size (assuming the
1777 * default spa_slop_shift=5 and a non-tiny pool).
1778 *
1779 * See the comment above spa_slop_shift for more details.
1780 */
1781 uint64_t
1782 spa_get_slop_space(spa_t *spa)
1783 {
1784 uint64_t space = 0;
1785 uint64_t slop = 0;
1786
1787 /*
1788 * Make sure spa_dedup_dspace has been set.
1789 */
1790 if (spa->spa_dedup_dspace == ~0ULL)
1791 spa_update_dspace(spa);
1792
1793 /*
1794 * spa_get_dspace() includes the space only logically "used" by
1795 * deduplicated data, so since it's not useful to reserve more
1796 * space with more deduplicated data, we subtract that out here.
1797 */
1798 space = spa_get_dspace(spa) - spa->spa_dedup_dspace;
1799 slop = MIN(space >> spa_slop_shift, spa_max_slop);
1800
1801 /*
1802 * Subtract the embedded log space, but no more than half the (3.2%)
1803 * unusable space. Note, the "no more than half" is only relevant if
1804 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by
1805 * default.
1806 */
1807 uint64_t embedded_log =
1808 metaslab_class_get_dspace(spa_embedded_log_class(spa));
1809 slop -= MIN(embedded_log, slop >> 1);
1810
1811 /*
1812 * Slop space should be at least spa_min_slop, but no more than half
1813 * the entire pool.
1814 */
1815 slop = MAX(slop, MIN(space >> 1, spa_min_slop));
1816 return (slop);
1817 }
1818
1819 uint64_t
1820 spa_get_dspace(spa_t *spa)
1821 {
1822 return (spa->spa_dspace);
1823 }
1824
1825 uint64_t
1826 spa_get_checkpoint_space(spa_t *spa)
1827 {
1828 return (spa->spa_checkpoint_info.sci_dspace);
1829 }
1830
1831 void
1832 spa_update_dspace(spa_t *spa)
1833 {
1834 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1835 ddt_get_dedup_dspace(spa);
1836 if (spa->spa_nonallocating_dspace > 0) {
1837 /*
1838 * Subtract the space provided by all non-allocating vdevs that
1839 * contribute to dspace. If a file is overwritten, its old
1840 * blocks are freed and new blocks are allocated. If there are
1841 * no snapshots of the file, the available space should remain
1842 * the same. The old blocks could be freed from the
1843 * non-allocating vdev, but the new blocks must be allocated on
1844 * other (allocating) vdevs. By reserving the entire size of
1845 * the non-allocating vdevs (including allocated space), we
1846 * ensure that there will be enough space on the allocating
1847 * vdevs for this file overwrite to succeed.
1848 *
1849 * Note that the DMU/DSL doesn't actually know or care
1850 * how much space is allocated (it does its own tracking
1851 * of how much space has been logically used). So it
1852 * doesn't matter that the data we are moving may be
1853 * allocated twice (on the old device and the new device).
1854 */
1855 ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace);
1856 spa->spa_dspace -= spa->spa_nonallocating_dspace;
1857 }
1858 }
1859
1860 /*
1861 * Return the failure mode that has been set to this pool. The default
1862 * behavior will be to block all I/Os when a complete failure occurs.
1863 */
1864 uint64_t
1865 spa_get_failmode(spa_t *spa)
1866 {
1867 return (spa->spa_failmode);
1868 }
1869
1870 boolean_t
1871 spa_suspended(spa_t *spa)
1872 {
1873 return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1874 }
1875
1876 uint64_t
1877 spa_version(spa_t *spa)
1878 {
1879 return (spa->spa_ubsync.ub_version);
1880 }
1881
1882 boolean_t
1883 spa_deflate(spa_t *spa)
1884 {
1885 return (spa->spa_deflate);
1886 }
1887
1888 metaslab_class_t *
1889 spa_normal_class(spa_t *spa)
1890 {
1891 return (spa->spa_normal_class);
1892 }
1893
1894 metaslab_class_t *
1895 spa_log_class(spa_t *spa)
1896 {
1897 return (spa->spa_log_class);
1898 }
1899
1900 metaslab_class_t *
1901 spa_embedded_log_class(spa_t *spa)
1902 {
1903 return (spa->spa_embedded_log_class);
1904 }
1905
1906 metaslab_class_t *
1907 spa_special_class(spa_t *spa)
1908 {
1909 return (spa->spa_special_class);
1910 }
1911
1912 metaslab_class_t *
1913 spa_dedup_class(spa_t *spa)
1914 {
1915 return (spa->spa_dedup_class);
1916 }
1917
1918 /*
1919 * Locate an appropriate allocation class
1920 */
1921 metaslab_class_t *
1922 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1923 uint_t level, uint_t special_smallblk)
1924 {
1925 /*
1926 * ZIL allocations determine their class in zio_alloc_zil().
1927 */
1928 ASSERT(objtype != DMU_OT_INTENT_LOG);
1929
1930 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1931
1932 if (DMU_OT_IS_DDT(objtype)) {
1933 if (spa->spa_dedup_class->mc_groups != 0)
1934 return (spa_dedup_class(spa));
1935 else if (has_special_class && zfs_ddt_data_is_special)
1936 return (spa_special_class(spa));
1937 else
1938 return (spa_normal_class(spa));
1939 }
1940
1941 /* Indirect blocks for user data can land in special if allowed */
1942 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1943 if (has_special_class && zfs_user_indirect_is_special)
1944 return (spa_special_class(spa));
1945 else
1946 return (spa_normal_class(spa));
1947 }
1948
1949 if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1950 if (has_special_class)
1951 return (spa_special_class(spa));
1952 else
1953 return (spa_normal_class(spa));
1954 }
1955
1956 /*
1957 * Allow small file blocks in special class in some cases (like
1958 * for the dRAID vdev feature). But always leave a reserve of
1959 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
1960 */
1961 if (DMU_OT_IS_FILE(objtype) &&
1962 has_special_class && size <= special_smallblk) {
1963 metaslab_class_t *special = spa_special_class(spa);
1964 uint64_t alloc = metaslab_class_get_alloc(special);
1965 uint64_t space = metaslab_class_get_space(special);
1966 uint64_t limit =
1967 (space * (100 - zfs_special_class_metadata_reserve_pct))
1968 / 100;
1969
1970 if (alloc < limit)
1971 return (special);
1972 }
1973
1974 return (spa_normal_class(spa));
1975 }
1976
1977 void
1978 spa_evicting_os_register(spa_t *spa, objset_t *os)
1979 {
1980 mutex_enter(&spa->spa_evicting_os_lock);
1981 list_insert_head(&spa->spa_evicting_os_list, os);
1982 mutex_exit(&spa->spa_evicting_os_lock);
1983 }
1984
1985 void
1986 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1987 {
1988 mutex_enter(&spa->spa_evicting_os_lock);
1989 list_remove(&spa->spa_evicting_os_list, os);
1990 cv_broadcast(&spa->spa_evicting_os_cv);
1991 mutex_exit(&spa->spa_evicting_os_lock);
1992 }
1993
1994 void
1995 spa_evicting_os_wait(spa_t *spa)
1996 {
1997 mutex_enter(&spa->spa_evicting_os_lock);
1998 while (!list_is_empty(&spa->spa_evicting_os_list))
1999 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
2000 mutex_exit(&spa->spa_evicting_os_lock);
2001
2002 dmu_buf_user_evict_wait();
2003 }
2004
2005 int
2006 spa_max_replication(spa_t *spa)
2007 {
2008 /*
2009 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
2010 * handle BPs with more than one DVA allocated. Set our max
2011 * replication level accordingly.
2012 */
2013 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
2014 return (1);
2015 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
2016 }
2017
2018 int
2019 spa_prev_software_version(spa_t *spa)
2020 {
2021 return (spa->spa_prev_software_version);
2022 }
2023
2024 uint64_t
2025 spa_deadman_synctime(spa_t *spa)
2026 {
2027 return (spa->spa_deadman_synctime);
2028 }
2029
2030 spa_autotrim_t
2031 spa_get_autotrim(spa_t *spa)
2032 {
2033 return (spa->spa_autotrim);
2034 }
2035
2036 uint64_t
2037 spa_deadman_ziotime(spa_t *spa)
2038 {
2039 return (spa->spa_deadman_ziotime);
2040 }
2041
2042 uint64_t
2043 spa_get_deadman_failmode(spa_t *spa)
2044 {
2045 return (spa->spa_deadman_failmode);
2046 }
2047
2048 void
2049 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2050 {
2051 if (strcmp(failmode, "wait") == 0)
2052 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2053 else if (strcmp(failmode, "continue") == 0)
2054 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2055 else if (strcmp(failmode, "panic") == 0)
2056 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2057 else
2058 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2059 }
2060
2061 void
2062 spa_set_deadman_ziotime(hrtime_t ns)
2063 {
2064 spa_t *spa = NULL;
2065
2066 if (spa_mode_global != SPA_MODE_UNINIT) {
2067 mutex_enter(&spa_namespace_lock);
2068 while ((spa = spa_next(spa)) != NULL)
2069 spa->spa_deadman_ziotime = ns;
2070 mutex_exit(&spa_namespace_lock);
2071 }
2072 }
2073
2074 void
2075 spa_set_deadman_synctime(hrtime_t ns)
2076 {
2077 spa_t *spa = NULL;
2078
2079 if (spa_mode_global != SPA_MODE_UNINIT) {
2080 mutex_enter(&spa_namespace_lock);
2081 while ((spa = spa_next(spa)) != NULL)
2082 spa->spa_deadman_synctime = ns;
2083 mutex_exit(&spa_namespace_lock);
2084 }
2085 }
2086
2087 uint64_t
2088 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2089 {
2090 uint64_t asize = DVA_GET_ASIZE(dva);
2091 uint64_t dsize = asize;
2092
2093 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2094
2095 if (asize != 0 && spa->spa_deflate) {
2096 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2097 if (vd != NULL)
2098 dsize = (asize >> SPA_MINBLOCKSHIFT) *
2099 vd->vdev_deflate_ratio;
2100 }
2101
2102 return (dsize);
2103 }
2104
2105 uint64_t
2106 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2107 {
2108 uint64_t dsize = 0;
2109
2110 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2111 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2112
2113 return (dsize);
2114 }
2115
2116 uint64_t
2117 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2118 {
2119 uint64_t dsize = 0;
2120
2121 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2122
2123 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2124 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2125
2126 spa_config_exit(spa, SCL_VDEV, FTAG);
2127
2128 return (dsize);
2129 }
2130
2131 uint64_t
2132 spa_dirty_data(spa_t *spa)
2133 {
2134 return (spa->spa_dsl_pool->dp_dirty_total);
2135 }
2136
2137 /*
2138 * ==========================================================================
2139 * SPA Import Progress Routines
2140 * ==========================================================================
2141 */
2142
2143 typedef struct spa_import_progress {
2144 uint64_t pool_guid; /* unique id for updates */
2145 char *pool_name;
2146 spa_load_state_t spa_load_state;
2147 uint64_t mmp_sec_remaining; /* MMP activity check */
2148 uint64_t spa_load_max_txg; /* rewind txg */
2149 procfs_list_node_t smh_node;
2150 } spa_import_progress_t;
2151
2152 spa_history_list_t *spa_import_progress_list = NULL;
2153
2154 static int
2155 spa_import_progress_show_header(struct seq_file *f)
2156 {
2157 seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid",
2158 "load_state", "multihost_secs", "max_txg",
2159 "pool_name");
2160 return (0);
2161 }
2162
2163 static int
2164 spa_import_progress_show(struct seq_file *f, void *data)
2165 {
2166 spa_import_progress_t *sip = (spa_import_progress_t *)data;
2167
2168 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n",
2169 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2170 (u_longlong_t)sip->mmp_sec_remaining,
2171 (u_longlong_t)sip->spa_load_max_txg,
2172 (sip->pool_name ? sip->pool_name : "-"));
2173
2174 return (0);
2175 }
2176
2177 /* Remove oldest elements from list until there are no more than 'size' left */
2178 static void
2179 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2180 {
2181 spa_import_progress_t *sip;
2182 while (shl->size > size) {
2183 sip = list_remove_head(&shl->procfs_list.pl_list);
2184 if (sip->pool_name)
2185 spa_strfree(sip->pool_name);
2186 kmem_free(sip, sizeof (spa_import_progress_t));
2187 shl->size--;
2188 }
2189
2190 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2191 }
2192
2193 static void
2194 spa_import_progress_init(void)
2195 {
2196 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2197 KM_SLEEP);
2198
2199 spa_import_progress_list->size = 0;
2200
2201 spa_import_progress_list->procfs_list.pl_private =
2202 spa_import_progress_list;
2203
2204 procfs_list_install("zfs",
2205 NULL,
2206 "import_progress",
2207 0644,
2208 &spa_import_progress_list->procfs_list,
2209 spa_import_progress_show,
2210 spa_import_progress_show_header,
2211 NULL,
2212 offsetof(spa_import_progress_t, smh_node));
2213 }
2214
2215 static void
2216 spa_import_progress_destroy(void)
2217 {
2218 spa_history_list_t *shl = spa_import_progress_list;
2219 procfs_list_uninstall(&shl->procfs_list);
2220 spa_import_progress_truncate(shl, 0);
2221 procfs_list_destroy(&shl->procfs_list);
2222 kmem_free(shl, sizeof (spa_history_list_t));
2223 }
2224
2225 int
2226 spa_import_progress_set_state(uint64_t pool_guid,
2227 spa_load_state_t load_state)
2228 {
2229 spa_history_list_t *shl = spa_import_progress_list;
2230 spa_import_progress_t *sip;
2231 int error = ENOENT;
2232
2233 if (shl->size == 0)
2234 return (0);
2235
2236 mutex_enter(&shl->procfs_list.pl_lock);
2237 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2238 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2239 if (sip->pool_guid == pool_guid) {
2240 sip->spa_load_state = load_state;
2241 error = 0;
2242 break;
2243 }
2244 }
2245 mutex_exit(&shl->procfs_list.pl_lock);
2246
2247 return (error);
2248 }
2249
2250 int
2251 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2252 {
2253 spa_history_list_t *shl = spa_import_progress_list;
2254 spa_import_progress_t *sip;
2255 int error = ENOENT;
2256
2257 if (shl->size == 0)
2258 return (0);
2259
2260 mutex_enter(&shl->procfs_list.pl_lock);
2261 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2262 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2263 if (sip->pool_guid == pool_guid) {
2264 sip->spa_load_max_txg = load_max_txg;
2265 error = 0;
2266 break;
2267 }
2268 }
2269 mutex_exit(&shl->procfs_list.pl_lock);
2270
2271 return (error);
2272 }
2273
2274 int
2275 spa_import_progress_set_mmp_check(uint64_t pool_guid,
2276 uint64_t mmp_sec_remaining)
2277 {
2278 spa_history_list_t *shl = spa_import_progress_list;
2279 spa_import_progress_t *sip;
2280 int error = ENOENT;
2281
2282 if (shl->size == 0)
2283 return (0);
2284
2285 mutex_enter(&shl->procfs_list.pl_lock);
2286 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2287 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2288 if (sip->pool_guid == pool_guid) {
2289 sip->mmp_sec_remaining = mmp_sec_remaining;
2290 error = 0;
2291 break;
2292 }
2293 }
2294 mutex_exit(&shl->procfs_list.pl_lock);
2295
2296 return (error);
2297 }
2298
2299 /*
2300 * A new import is in progress, add an entry.
2301 */
2302 void
2303 spa_import_progress_add(spa_t *spa)
2304 {
2305 spa_history_list_t *shl = spa_import_progress_list;
2306 spa_import_progress_t *sip;
2307 char *poolname = NULL;
2308
2309 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2310 sip->pool_guid = spa_guid(spa);
2311
2312 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2313 &poolname);
2314 if (poolname == NULL)
2315 poolname = spa_name(spa);
2316 sip->pool_name = spa_strdup(poolname);
2317 sip->spa_load_state = spa_load_state(spa);
2318
2319 mutex_enter(&shl->procfs_list.pl_lock);
2320 procfs_list_add(&shl->procfs_list, sip);
2321 shl->size++;
2322 mutex_exit(&shl->procfs_list.pl_lock);
2323 }
2324
2325 void
2326 spa_import_progress_remove(uint64_t pool_guid)
2327 {
2328 spa_history_list_t *shl = spa_import_progress_list;
2329 spa_import_progress_t *sip;
2330
2331 mutex_enter(&shl->procfs_list.pl_lock);
2332 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2333 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2334 if (sip->pool_guid == pool_guid) {
2335 if (sip->pool_name)
2336 spa_strfree(sip->pool_name);
2337 list_remove(&shl->procfs_list.pl_list, sip);
2338 shl->size--;
2339 kmem_free(sip, sizeof (spa_import_progress_t));
2340 break;
2341 }
2342 }
2343 mutex_exit(&shl->procfs_list.pl_lock);
2344 }
2345
2346 /*
2347 * ==========================================================================
2348 * Initialization and Termination
2349 * ==========================================================================
2350 */
2351
2352 static int
2353 spa_name_compare(const void *a1, const void *a2)
2354 {
2355 const spa_t *s1 = a1;
2356 const spa_t *s2 = a2;
2357 int s;
2358
2359 s = strcmp(s1->spa_name, s2->spa_name);
2360
2361 return (TREE_ISIGN(s));
2362 }
2363
2364 void
2365 spa_boot_init(void)
2366 {
2367 spa_config_load();
2368 }
2369
2370 void
2371 spa_init(spa_mode_t mode)
2372 {
2373 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2374 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2375 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2376 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2377
2378 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2379 offsetof(spa_t, spa_avl));
2380
2381 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2382 offsetof(spa_aux_t, aux_avl));
2383
2384 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2385 offsetof(spa_aux_t, aux_avl));
2386
2387 spa_mode_global = mode;
2388
2389 #ifndef _KERNEL
2390 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
2391 struct sigaction sa;
2392
2393 sa.sa_flags = SA_SIGINFO;
2394 sigemptyset(&sa.sa_mask);
2395 sa.sa_sigaction = arc_buf_sigsegv;
2396
2397 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2398 perror("could not enable watchpoints: "
2399 "sigaction(SIGSEGV, ...) = ");
2400 } else {
2401 arc_watch = B_TRUE;
2402 }
2403 }
2404 #endif
2405
2406 fm_init();
2407 zfs_refcount_init();
2408 unique_init();
2409 zfs_btree_init();
2410 metaslab_stat_init();
2411 ddt_init();
2412 zio_init();
2413 dmu_init();
2414 zil_init();
2415 vdev_cache_stat_init();
2416 vdev_mirror_stat_init();
2417 vdev_raidz_math_init();
2418 vdev_file_init();
2419 zfs_prop_init();
2420 zpool_prop_init();
2421 zpool_feature_init();
2422 spa_config_load();
2423 vdev_prop_init();
2424 l2arc_start();
2425 scan_init();
2426 qat_init();
2427 spa_import_progress_init();
2428 }
2429
2430 void
2431 spa_fini(void)
2432 {
2433 l2arc_stop();
2434
2435 spa_evict_all();
2436
2437 vdev_file_fini();
2438 vdev_cache_stat_fini();
2439 vdev_mirror_stat_fini();
2440 vdev_raidz_math_fini();
2441 zil_fini();
2442 dmu_fini();
2443 zio_fini();
2444 ddt_fini();
2445 metaslab_stat_fini();
2446 zfs_btree_fini();
2447 unique_fini();
2448 zfs_refcount_fini();
2449 fm_fini();
2450 scan_fini();
2451 qat_fini();
2452 spa_import_progress_destroy();
2453
2454 avl_destroy(&spa_namespace_avl);
2455 avl_destroy(&spa_spare_avl);
2456 avl_destroy(&spa_l2cache_avl);
2457
2458 cv_destroy(&spa_namespace_cv);
2459 mutex_destroy(&spa_namespace_lock);
2460 mutex_destroy(&spa_spare_lock);
2461 mutex_destroy(&spa_l2cache_lock);
2462 }
2463
2464 /*
2465 * Return whether this pool has a dedicated slog device. No locking needed.
2466 * It's not a problem if the wrong answer is returned as it's only for
2467 * performance and not correctness.
2468 */
2469 boolean_t
2470 spa_has_slogs(spa_t *spa)
2471 {
2472 return (spa->spa_log_class->mc_groups != 0);
2473 }
2474
2475 spa_log_state_t
2476 spa_get_log_state(spa_t *spa)
2477 {
2478 return (spa->spa_log_state);
2479 }
2480
2481 void
2482 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2483 {
2484 spa->spa_log_state = state;
2485 }
2486
2487 boolean_t
2488 spa_is_root(spa_t *spa)
2489 {
2490 return (spa->spa_is_root);
2491 }
2492
2493 boolean_t
2494 spa_writeable(spa_t *spa)
2495 {
2496 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
2497 }
2498
2499 /*
2500 * Returns true if there is a pending sync task in any of the current
2501 * syncing txg, the current quiescing txg, or the current open txg.
2502 */
2503 boolean_t
2504 spa_has_pending_synctask(spa_t *spa)
2505 {
2506 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2507 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2508 }
2509
2510 spa_mode_t
2511 spa_mode(spa_t *spa)
2512 {
2513 return (spa->spa_mode);
2514 }
2515
2516 uint64_t
2517 spa_bootfs(spa_t *spa)
2518 {
2519 return (spa->spa_bootfs);
2520 }
2521
2522 uint64_t
2523 spa_delegation(spa_t *spa)
2524 {
2525 return (spa->spa_delegation);
2526 }
2527
2528 objset_t *
2529 spa_meta_objset(spa_t *spa)
2530 {
2531 return (spa->spa_meta_objset);
2532 }
2533
2534 enum zio_checksum
2535 spa_dedup_checksum(spa_t *spa)
2536 {
2537 return (spa->spa_dedup_checksum);
2538 }
2539
2540 /*
2541 * Reset pool scan stat per scan pass (or reboot).
2542 */
2543 void
2544 spa_scan_stat_init(spa_t *spa)
2545 {
2546 /* data not stored on disk */
2547 spa->spa_scan_pass_start = gethrestime_sec();
2548 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2549 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2550 else
2551 spa->spa_scan_pass_scrub_pause = 0;
2552 spa->spa_scan_pass_scrub_spent_paused = 0;
2553 spa->spa_scan_pass_exam = 0;
2554 spa->spa_scan_pass_issued = 0;
2555 vdev_scan_stat_init(spa->spa_root_vdev);
2556 }
2557
2558 /*
2559 * Get scan stats for zpool status reports
2560 */
2561 int
2562 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2563 {
2564 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2565
2566 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2567 return (SET_ERROR(ENOENT));
2568 memset(ps, 0, sizeof (pool_scan_stat_t));
2569
2570 /* data stored on disk */
2571 ps->pss_func = scn->scn_phys.scn_func;
2572 ps->pss_state = scn->scn_phys.scn_state;
2573 ps->pss_start_time = scn->scn_phys.scn_start_time;
2574 ps->pss_end_time = scn->scn_phys.scn_end_time;
2575 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2576 ps->pss_examined = scn->scn_phys.scn_examined;
2577 ps->pss_to_process = scn->scn_phys.scn_to_process;
2578 ps->pss_processed = scn->scn_phys.scn_processed;
2579 ps->pss_errors = scn->scn_phys.scn_errors;
2580
2581 /* data not stored on disk */
2582 ps->pss_pass_exam = spa->spa_scan_pass_exam;
2583 ps->pss_pass_start = spa->spa_scan_pass_start;
2584 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2585 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2586 ps->pss_pass_issued = spa->spa_scan_pass_issued;
2587 ps->pss_issued =
2588 scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2589
2590 return (0);
2591 }
2592
2593 int
2594 spa_maxblocksize(spa_t *spa)
2595 {
2596 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2597 return (SPA_MAXBLOCKSIZE);
2598 else
2599 return (SPA_OLD_MAXBLOCKSIZE);
2600 }
2601
2602
2603 /*
2604 * Returns the txg that the last device removal completed. No indirect mappings
2605 * have been added since this txg.
2606 */
2607 uint64_t
2608 spa_get_last_removal_txg(spa_t *spa)
2609 {
2610 uint64_t vdevid;
2611 uint64_t ret = -1ULL;
2612
2613 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2614 /*
2615 * sr_prev_indirect_vdev is only modified while holding all the
2616 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2617 * examining it.
2618 */
2619 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2620
2621 while (vdevid != -1ULL) {
2622 vdev_t *vd = vdev_lookup_top(spa, vdevid);
2623 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2624
2625 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2626
2627 /*
2628 * If the removal did not remap any data, we don't care.
2629 */
2630 if (vdev_indirect_births_count(vib) != 0) {
2631 ret = vdev_indirect_births_last_entry_txg(vib);
2632 break;
2633 }
2634
2635 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2636 }
2637 spa_config_exit(spa, SCL_VDEV, FTAG);
2638
2639 IMPLY(ret != -1ULL,
2640 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2641
2642 return (ret);
2643 }
2644
2645 int
2646 spa_maxdnodesize(spa_t *spa)
2647 {
2648 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2649 return (DNODE_MAX_SIZE);
2650 else
2651 return (DNODE_MIN_SIZE);
2652 }
2653
2654 boolean_t
2655 spa_multihost(spa_t *spa)
2656 {
2657 return (spa->spa_multihost ? B_TRUE : B_FALSE);
2658 }
2659
2660 uint32_t
2661 spa_get_hostid(spa_t *spa)
2662 {
2663 return (spa->spa_hostid);
2664 }
2665
2666 boolean_t
2667 spa_trust_config(spa_t *spa)
2668 {
2669 return (spa->spa_trust_config);
2670 }
2671
2672 uint64_t
2673 spa_missing_tvds_allowed(spa_t *spa)
2674 {
2675 return (spa->spa_missing_tvds_allowed);
2676 }
2677
2678 space_map_t *
2679 spa_syncing_log_sm(spa_t *spa)
2680 {
2681 return (spa->spa_syncing_log_sm);
2682 }
2683
2684 void
2685 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2686 {
2687 spa->spa_missing_tvds = missing;
2688 }
2689
2690 /*
2691 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2692 */
2693 const char *
2694 spa_state_to_name(spa_t *spa)
2695 {
2696 ASSERT3P(spa, !=, NULL);
2697
2698 /*
2699 * it is possible for the spa to exist, without root vdev
2700 * as the spa transitions during import/export
2701 */
2702 vdev_t *rvd = spa->spa_root_vdev;
2703 if (rvd == NULL) {
2704 return ("TRANSITIONING");
2705 }
2706 vdev_state_t state = rvd->vdev_state;
2707 vdev_aux_t aux = rvd->vdev_stat.vs_aux;
2708
2709 if (spa_suspended(spa) &&
2710 (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE))
2711 return ("SUSPENDED");
2712
2713 switch (state) {
2714 case VDEV_STATE_CLOSED:
2715 case VDEV_STATE_OFFLINE:
2716 return ("OFFLINE");
2717 case VDEV_STATE_REMOVED:
2718 return ("REMOVED");
2719 case VDEV_STATE_CANT_OPEN:
2720 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2721 return ("FAULTED");
2722 else if (aux == VDEV_AUX_SPLIT_POOL)
2723 return ("SPLIT");
2724 else
2725 return ("UNAVAIL");
2726 case VDEV_STATE_FAULTED:
2727 return ("FAULTED");
2728 case VDEV_STATE_DEGRADED:
2729 return ("DEGRADED");
2730 case VDEV_STATE_HEALTHY:
2731 return ("ONLINE");
2732 default:
2733 break;
2734 }
2735
2736 return ("UNKNOWN");
2737 }
2738
2739 boolean_t
2740 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2741 {
2742 vdev_t *rvd = spa->spa_root_vdev;
2743 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2744 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2745 return (B_FALSE);
2746 }
2747 return (B_TRUE);
2748 }
2749
2750 boolean_t
2751 spa_has_checkpoint(spa_t *spa)
2752 {
2753 return (spa->spa_checkpoint_txg != 0);
2754 }
2755
2756 boolean_t
2757 spa_importing_readonly_checkpoint(spa_t *spa)
2758 {
2759 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2760 spa->spa_mode == SPA_MODE_READ);
2761 }
2762
2763 uint64_t
2764 spa_min_claim_txg(spa_t *spa)
2765 {
2766 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2767
2768 if (checkpoint_txg != 0)
2769 return (checkpoint_txg + 1);
2770
2771 return (spa->spa_first_txg);
2772 }
2773
2774 /*
2775 * If there is a checkpoint, async destroys may consume more space from
2776 * the pool instead of freeing it. In an attempt to save the pool from
2777 * getting suspended when it is about to run out of space, we stop
2778 * processing async destroys.
2779 */
2780 boolean_t
2781 spa_suspend_async_destroy(spa_t *spa)
2782 {
2783 dsl_pool_t *dp = spa_get_dsl(spa);
2784
2785 uint64_t unreserved = dsl_pool_unreserved_space(dp,
2786 ZFS_SPACE_CHECK_EXTRA_RESERVED);
2787 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2788 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2789
2790 if (spa_has_checkpoint(spa) && avail == 0)
2791 return (B_TRUE);
2792
2793 return (B_FALSE);
2794 }
2795
2796 #if defined(_KERNEL)
2797
2798 int
2799 param_set_deadman_failmode_common(const char *val)
2800 {
2801 spa_t *spa = NULL;
2802 char *p;
2803
2804 if (val == NULL)
2805 return (SET_ERROR(EINVAL));
2806
2807 if ((p = strchr(val, '\n')) != NULL)
2808 *p = '\0';
2809
2810 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
2811 strcmp(val, "panic"))
2812 return (SET_ERROR(EINVAL));
2813
2814 if (spa_mode_global != SPA_MODE_UNINIT) {
2815 mutex_enter(&spa_namespace_lock);
2816 while ((spa = spa_next(spa)) != NULL)
2817 spa_set_deadman_failmode(spa, val);
2818 mutex_exit(&spa_namespace_lock);
2819 }
2820
2821 return (0);
2822 }
2823 #endif
2824
2825 /* Namespace manipulation */
2826 EXPORT_SYMBOL(spa_lookup);
2827 EXPORT_SYMBOL(spa_add);
2828 EXPORT_SYMBOL(spa_remove);
2829 EXPORT_SYMBOL(spa_next);
2830
2831 /* Refcount functions */
2832 EXPORT_SYMBOL(spa_open_ref);
2833 EXPORT_SYMBOL(spa_close);
2834 EXPORT_SYMBOL(spa_refcount_zero);
2835
2836 /* Pool configuration lock */
2837 EXPORT_SYMBOL(spa_config_tryenter);
2838 EXPORT_SYMBOL(spa_config_enter);
2839 EXPORT_SYMBOL(spa_config_exit);
2840 EXPORT_SYMBOL(spa_config_held);
2841
2842 /* Pool vdev add/remove lock */
2843 EXPORT_SYMBOL(spa_vdev_enter);
2844 EXPORT_SYMBOL(spa_vdev_exit);
2845
2846 /* Pool vdev state change lock */
2847 EXPORT_SYMBOL(spa_vdev_state_enter);
2848 EXPORT_SYMBOL(spa_vdev_state_exit);
2849
2850 /* Accessor functions */
2851 EXPORT_SYMBOL(spa_shutting_down);
2852 EXPORT_SYMBOL(spa_get_dsl);
2853 EXPORT_SYMBOL(spa_get_rootblkptr);
2854 EXPORT_SYMBOL(spa_set_rootblkptr);
2855 EXPORT_SYMBOL(spa_altroot);
2856 EXPORT_SYMBOL(spa_sync_pass);
2857 EXPORT_SYMBOL(spa_name);
2858 EXPORT_SYMBOL(spa_guid);
2859 EXPORT_SYMBOL(spa_last_synced_txg);
2860 EXPORT_SYMBOL(spa_first_txg);
2861 EXPORT_SYMBOL(spa_syncing_txg);
2862 EXPORT_SYMBOL(spa_version);
2863 EXPORT_SYMBOL(spa_state);
2864 EXPORT_SYMBOL(spa_load_state);
2865 EXPORT_SYMBOL(spa_freeze_txg);
2866 EXPORT_SYMBOL(spa_get_dspace);
2867 EXPORT_SYMBOL(spa_update_dspace);
2868 EXPORT_SYMBOL(spa_deflate);
2869 EXPORT_SYMBOL(spa_normal_class);
2870 EXPORT_SYMBOL(spa_log_class);
2871 EXPORT_SYMBOL(spa_special_class);
2872 EXPORT_SYMBOL(spa_preferred_class);
2873 EXPORT_SYMBOL(spa_max_replication);
2874 EXPORT_SYMBOL(spa_prev_software_version);
2875 EXPORT_SYMBOL(spa_get_failmode);
2876 EXPORT_SYMBOL(spa_suspended);
2877 EXPORT_SYMBOL(spa_bootfs);
2878 EXPORT_SYMBOL(spa_delegation);
2879 EXPORT_SYMBOL(spa_meta_objset);
2880 EXPORT_SYMBOL(spa_maxblocksize);
2881 EXPORT_SYMBOL(spa_maxdnodesize);
2882
2883 /* Miscellaneous support routines */
2884 EXPORT_SYMBOL(spa_guid_exists);
2885 EXPORT_SYMBOL(spa_strdup);
2886 EXPORT_SYMBOL(spa_strfree);
2887 EXPORT_SYMBOL(spa_generate_guid);
2888 EXPORT_SYMBOL(snprintf_blkptr);
2889 EXPORT_SYMBOL(spa_freeze);
2890 EXPORT_SYMBOL(spa_upgrade);
2891 EXPORT_SYMBOL(spa_evict_all);
2892 EXPORT_SYMBOL(spa_lookup_by_guid);
2893 EXPORT_SYMBOL(spa_has_spare);
2894 EXPORT_SYMBOL(dva_get_dsize_sync);
2895 EXPORT_SYMBOL(bp_get_dsize_sync);
2896 EXPORT_SYMBOL(bp_get_dsize);
2897 EXPORT_SYMBOL(spa_has_slogs);
2898 EXPORT_SYMBOL(spa_is_root);
2899 EXPORT_SYMBOL(spa_writeable);
2900 EXPORT_SYMBOL(spa_mode);
2901 EXPORT_SYMBOL(spa_namespace_lock);
2902 EXPORT_SYMBOL(spa_trust_config);
2903 EXPORT_SYMBOL(spa_missing_tvds_allowed);
2904 EXPORT_SYMBOL(spa_set_missing_tvds);
2905 EXPORT_SYMBOL(spa_state_to_name);
2906 EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
2907 EXPORT_SYMBOL(spa_min_claim_txg);
2908 EXPORT_SYMBOL(spa_suspend_async_destroy);
2909 EXPORT_SYMBOL(spa_has_checkpoint);
2910 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
2911
2912 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
2913 "Set additional debugging flags");
2914
2915 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
2916 "Set to attempt to recover from fatal errors");
2917
2918 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
2919 "Set to ignore IO errors during free and permanently leak the space");
2920
2921 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, ULONG, ZMOD_RW,
2922 "Dead I/O check interval in milliseconds");
2923
2924 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW,
2925 "Enable deadman timer");
2926
2927 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, INT, ZMOD_RW,
2928 "SPA size estimate multiplication factor");
2929
2930 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
2931 "Place DDT data into the special class");
2932
2933 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
2934 "Place user data indirect blocks into the special class");
2935
2936 /* BEGIN CSTYLED */
2937 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
2938 param_set_deadman_failmode, param_get_charp, ZMOD_RW,
2939 "Failmode for deadman timer");
2940
2941 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
2942 param_set_deadman_synctime, param_get_ulong, ZMOD_RW,
2943 "Pool sync expiration time in milliseconds");
2944
2945 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
2946 param_set_deadman_ziotime, param_get_ulong, ZMOD_RW,
2947 "IO expiration time in milliseconds");
2948
2949 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, INT, ZMOD_RW,
2950 "Small file blocks in special vdevs depends on this much "
2951 "free space available");
2952 /* END CSTYLED */
2953
2954 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
2955 param_get_int, ZMOD_RW, "Reserved free space in pool");