]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa_misc.c
Enable -Wwrite-strings
[mirror_zfs.git] / module / zfs / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2017 Datto Inc.
28 * Copyright (c) 2017, Intel Corporation.
29 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
30 */
31
32 #include <sys/zfs_context.h>
33 #include <sys/zfs_chksum.h>
34 #include <sys/spa_impl.h>
35 #include <sys/zio.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/zio_compress.h>
38 #include <sys/dmu.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/zap.h>
41 #include <sys/zil.h>
42 #include <sys/vdev_impl.h>
43 #include <sys/vdev_initialize.h>
44 #include <sys/vdev_trim.h>
45 #include <sys/vdev_file.h>
46 #include <sys/vdev_raidz.h>
47 #include <sys/metaslab.h>
48 #include <sys/uberblock_impl.h>
49 #include <sys/txg.h>
50 #include <sys/avl.h>
51 #include <sys/unique.h>
52 #include <sys/dsl_pool.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/fm/util.h>
56 #include <sys/dsl_scan.h>
57 #include <sys/fs/zfs.h>
58 #include <sys/metaslab_impl.h>
59 #include <sys/arc.h>
60 #include <sys/ddt.h>
61 #include <sys/kstat.h>
62 #include "zfs_prop.h"
63 #include <sys/btree.h>
64 #include <sys/zfeature.h>
65 #include <sys/qat.h>
66 #include <sys/zstd/zstd.h>
67
68 /*
69 * SPA locking
70 *
71 * There are three basic locks for managing spa_t structures:
72 *
73 * spa_namespace_lock (global mutex)
74 *
75 * This lock must be acquired to do any of the following:
76 *
77 * - Lookup a spa_t by name
78 * - Add or remove a spa_t from the namespace
79 * - Increase spa_refcount from non-zero
80 * - Check if spa_refcount is zero
81 * - Rename a spa_t
82 * - add/remove/attach/detach devices
83 * - Held for the duration of create/destroy/import/export
84 *
85 * It does not need to handle recursion. A create or destroy may
86 * reference objects (files or zvols) in other pools, but by
87 * definition they must have an existing reference, and will never need
88 * to lookup a spa_t by name.
89 *
90 * spa_refcount (per-spa zfs_refcount_t protected by mutex)
91 *
92 * This reference count keep track of any active users of the spa_t. The
93 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
94 * the refcount is never really 'zero' - opening a pool implicitly keeps
95 * some references in the DMU. Internally we check against spa_minref, but
96 * present the image of a zero/non-zero value to consumers.
97 *
98 * spa_config_lock[] (per-spa array of rwlocks)
99 *
100 * This protects the spa_t from config changes, and must be held in
101 * the following circumstances:
102 *
103 * - RW_READER to perform I/O to the spa
104 * - RW_WRITER to change the vdev config
105 *
106 * The locking order is fairly straightforward:
107 *
108 * spa_namespace_lock -> spa_refcount
109 *
110 * The namespace lock must be acquired to increase the refcount from 0
111 * or to check if it is zero.
112 *
113 * spa_refcount -> spa_config_lock[]
114 *
115 * There must be at least one valid reference on the spa_t to acquire
116 * the config lock.
117 *
118 * spa_namespace_lock -> spa_config_lock[]
119 *
120 * The namespace lock must always be taken before the config lock.
121 *
122 *
123 * The spa_namespace_lock can be acquired directly and is globally visible.
124 *
125 * The namespace is manipulated using the following functions, all of which
126 * require the spa_namespace_lock to be held.
127 *
128 * spa_lookup() Lookup a spa_t by name.
129 *
130 * spa_add() Create a new spa_t in the namespace.
131 *
132 * spa_remove() Remove a spa_t from the namespace. This also
133 * frees up any memory associated with the spa_t.
134 *
135 * spa_next() Returns the next spa_t in the system, or the
136 * first if NULL is passed.
137 *
138 * spa_evict_all() Shutdown and remove all spa_t structures in
139 * the system.
140 *
141 * spa_guid_exists() Determine whether a pool/device guid exists.
142 *
143 * The spa_refcount is manipulated using the following functions:
144 *
145 * spa_open_ref() Adds a reference to the given spa_t. Must be
146 * called with spa_namespace_lock held if the
147 * refcount is currently zero.
148 *
149 * spa_close() Remove a reference from the spa_t. This will
150 * not free the spa_t or remove it from the
151 * namespace. No locking is required.
152 *
153 * spa_refcount_zero() Returns true if the refcount is currently
154 * zero. Must be called with spa_namespace_lock
155 * held.
156 *
157 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
158 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
159 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
160 *
161 * To read the configuration, it suffices to hold one of these locks as reader.
162 * To modify the configuration, you must hold all locks as writer. To modify
163 * vdev state without altering the vdev tree's topology (e.g. online/offline),
164 * you must hold SCL_STATE and SCL_ZIO as writer.
165 *
166 * We use these distinct config locks to avoid recursive lock entry.
167 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
168 * block allocations (SCL_ALLOC), which may require reading space maps
169 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
170 *
171 * The spa config locks cannot be normal rwlocks because we need the
172 * ability to hand off ownership. For example, SCL_ZIO is acquired
173 * by the issuing thread and later released by an interrupt thread.
174 * They do, however, obey the usual write-wanted semantics to prevent
175 * writer (i.e. system administrator) starvation.
176 *
177 * The lock acquisition rules are as follows:
178 *
179 * SCL_CONFIG
180 * Protects changes to the vdev tree topology, such as vdev
181 * add/remove/attach/detach. Protects the dirty config list
182 * (spa_config_dirty_list) and the set of spares and l2arc devices.
183 *
184 * SCL_STATE
185 * Protects changes to pool state and vdev state, such as vdev
186 * online/offline/fault/degrade/clear. Protects the dirty state list
187 * (spa_state_dirty_list) and global pool state (spa_state).
188 *
189 * SCL_ALLOC
190 * Protects changes to metaslab groups and classes.
191 * Held as reader by metaslab_alloc() and metaslab_claim().
192 *
193 * SCL_ZIO
194 * Held by bp-level zios (those which have no io_vd upon entry)
195 * to prevent changes to the vdev tree. The bp-level zio implicitly
196 * protects all of its vdev child zios, which do not hold SCL_ZIO.
197 *
198 * SCL_FREE
199 * Protects changes to metaslab groups and classes.
200 * Held as reader by metaslab_free(). SCL_FREE is distinct from
201 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
202 * blocks in zio_done() while another i/o that holds either
203 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
204 *
205 * SCL_VDEV
206 * Held as reader to prevent changes to the vdev tree during trivial
207 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
208 * other locks, and lower than all of them, to ensure that it's safe
209 * to acquire regardless of caller context.
210 *
211 * In addition, the following rules apply:
212 *
213 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
214 * The lock ordering is SCL_CONFIG > spa_props_lock.
215 *
216 * (b) I/O operations on leaf vdevs. For any zio operation that takes
217 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
218 * or zio_write_phys() -- the caller must ensure that the config cannot
219 * cannot change in the interim, and that the vdev cannot be reopened.
220 * SCL_STATE as reader suffices for both.
221 *
222 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
223 *
224 * spa_vdev_enter() Acquire the namespace lock and the config lock
225 * for writing.
226 *
227 * spa_vdev_exit() Release the config lock, wait for all I/O
228 * to complete, sync the updated configs to the
229 * cache, and release the namespace lock.
230 *
231 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
232 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
233 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
234 */
235
236 static avl_tree_t spa_namespace_avl;
237 kmutex_t spa_namespace_lock;
238 static kcondvar_t spa_namespace_cv;
239 static const int spa_max_replication_override = SPA_DVAS_PER_BP;
240
241 static kmutex_t spa_spare_lock;
242 static avl_tree_t spa_spare_avl;
243 static kmutex_t spa_l2cache_lock;
244 static avl_tree_t spa_l2cache_avl;
245
246 spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
247
248 #ifdef ZFS_DEBUG
249 /*
250 * Everything except dprintf, set_error, spa, and indirect_remap is on
251 * by default in debug builds.
252 */
253 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
254 ZFS_DEBUG_INDIRECT_REMAP);
255 #else
256 int zfs_flags = 0;
257 #endif
258
259 /*
260 * zfs_recover can be set to nonzero to attempt to recover from
261 * otherwise-fatal errors, typically caused by on-disk corruption. When
262 * set, calls to zfs_panic_recover() will turn into warning messages.
263 * This should only be used as a last resort, as it typically results
264 * in leaked space, or worse.
265 */
266 int zfs_recover = B_FALSE;
267
268 /*
269 * If destroy encounters an EIO while reading metadata (e.g. indirect
270 * blocks), space referenced by the missing metadata can not be freed.
271 * Normally this causes the background destroy to become "stalled", as
272 * it is unable to make forward progress. While in this stalled state,
273 * all remaining space to free from the error-encountering filesystem is
274 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
275 * permanently leak the space from indirect blocks that can not be read,
276 * and continue to free everything else that it can.
277 *
278 * The default, "stalling" behavior is useful if the storage partially
279 * fails (i.e. some but not all i/os fail), and then later recovers. In
280 * this case, we will be able to continue pool operations while it is
281 * partially failed, and when it recovers, we can continue to free the
282 * space, with no leaks. However, note that this case is actually
283 * fairly rare.
284 *
285 * Typically pools either (a) fail completely (but perhaps temporarily,
286 * e.g. a top-level vdev going offline), or (b) have localized,
287 * permanent errors (e.g. disk returns the wrong data due to bit flip or
288 * firmware bug). In case (a), this setting does not matter because the
289 * pool will be suspended and the sync thread will not be able to make
290 * forward progress regardless. In case (b), because the error is
291 * permanent, the best we can do is leak the minimum amount of space,
292 * which is what setting this flag will do. Therefore, it is reasonable
293 * for this flag to normally be set, but we chose the more conservative
294 * approach of not setting it, so that there is no possibility of
295 * leaking space in the "partial temporary" failure case.
296 */
297 int zfs_free_leak_on_eio = B_FALSE;
298
299 /*
300 * Expiration time in milliseconds. This value has two meanings. First it is
301 * used to determine when the spa_deadman() logic should fire. By default the
302 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
303 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
304 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
305 * in one of three behaviors controlled by zfs_deadman_failmode.
306 */
307 unsigned long zfs_deadman_synctime_ms = 600000UL; /* 10 min. */
308
309 /*
310 * This value controls the maximum amount of time zio_wait() will block for an
311 * outstanding IO. By default this is 300 seconds at which point the "hung"
312 * behavior will be applied as described for zfs_deadman_synctime_ms.
313 */
314 unsigned long zfs_deadman_ziotime_ms = 300000UL; /* 5 min. */
315
316 /*
317 * Check time in milliseconds. This defines the frequency at which we check
318 * for hung I/O.
319 */
320 unsigned long zfs_deadman_checktime_ms = 60000UL; /* 1 min. */
321
322 /*
323 * By default the deadman is enabled.
324 */
325 int zfs_deadman_enabled = B_TRUE;
326
327 /*
328 * Controls the behavior of the deadman when it detects a "hung" I/O.
329 * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
330 *
331 * wait - Wait for the "hung" I/O (default)
332 * continue - Attempt to recover from a "hung" I/O
333 * panic - Panic the system
334 */
335 const char *zfs_deadman_failmode = "wait";
336
337 /*
338 * The worst case is single-sector max-parity RAID-Z blocks, in which
339 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
340 * times the size; so just assume that. Add to this the fact that
341 * we can have up to 3 DVAs per bp, and one more factor of 2 because
342 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
343 * the worst case is:
344 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
345 */
346 int spa_asize_inflation = 24;
347
348 /*
349 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
350 * the pool to be consumed (bounded by spa_max_slop). This ensures that we
351 * don't run the pool completely out of space, due to unaccounted changes (e.g.
352 * to the MOS). It also limits the worst-case time to allocate space. If we
353 * have less than this amount of free space, most ZPL operations (e.g. write,
354 * create) will return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are
355 * also part of this 3.2% of space which can't be consumed by normal writes;
356 * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded
357 * log space.
358 *
359 * Certain operations (e.g. file removal, most administrative actions) can
360 * use half the slop space. They will only return ENOSPC if less than half
361 * the slop space is free. Typically, once the pool has less than the slop
362 * space free, the user will use these operations to free up space in the pool.
363 * These are the operations that call dsl_pool_adjustedsize() with the netfree
364 * argument set to TRUE.
365 *
366 * Operations that are almost guaranteed to free up space in the absence of
367 * a pool checkpoint can use up to three quarters of the slop space
368 * (e.g zfs destroy).
369 *
370 * A very restricted set of operations are always permitted, regardless of
371 * the amount of free space. These are the operations that call
372 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
373 * increase in the amount of space used, it is possible to run the pool
374 * completely out of space, causing it to be permanently read-only.
375 *
376 * Note that on very small pools, the slop space will be larger than
377 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
378 * but we never allow it to be more than half the pool size.
379 *
380 * Further, on very large pools, the slop space will be smaller than
381 * 3.2%, to avoid reserving much more space than we actually need; bounded
382 * by spa_max_slop (128GB).
383 *
384 * See also the comments in zfs_space_check_t.
385 */
386 int spa_slop_shift = 5;
387 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024;
388 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024;
389 static const int spa_allocators = 4;
390
391
392 void
393 spa_load_failed(spa_t *spa, const char *fmt, ...)
394 {
395 va_list adx;
396 char buf[256];
397
398 va_start(adx, fmt);
399 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
400 va_end(adx);
401
402 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
403 spa->spa_trust_config ? "trusted" : "untrusted", buf);
404 }
405
406 void
407 spa_load_note(spa_t *spa, const char *fmt, ...)
408 {
409 va_list adx;
410 char buf[256];
411
412 va_start(adx, fmt);
413 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
414 va_end(adx);
415
416 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
417 spa->spa_trust_config ? "trusted" : "untrusted", buf);
418 }
419
420 /*
421 * By default dedup and user data indirects land in the special class
422 */
423 static int zfs_ddt_data_is_special = B_TRUE;
424 static int zfs_user_indirect_is_special = B_TRUE;
425
426 /*
427 * The percentage of special class final space reserved for metadata only.
428 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
429 * let metadata into the class.
430 */
431 static int zfs_special_class_metadata_reserve_pct = 25;
432
433 /*
434 * ==========================================================================
435 * SPA config locking
436 * ==========================================================================
437 */
438 static void
439 spa_config_lock_init(spa_t *spa)
440 {
441 for (int i = 0; i < SCL_LOCKS; i++) {
442 spa_config_lock_t *scl = &spa->spa_config_lock[i];
443 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
444 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
445 scl->scl_writer = NULL;
446 scl->scl_write_wanted = 0;
447 scl->scl_count = 0;
448 }
449 }
450
451 static void
452 spa_config_lock_destroy(spa_t *spa)
453 {
454 for (int i = 0; i < SCL_LOCKS; i++) {
455 spa_config_lock_t *scl = &spa->spa_config_lock[i];
456 mutex_destroy(&scl->scl_lock);
457 cv_destroy(&scl->scl_cv);
458 ASSERT(scl->scl_writer == NULL);
459 ASSERT(scl->scl_write_wanted == 0);
460 ASSERT(scl->scl_count == 0);
461 }
462 }
463
464 int
465 spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw)
466 {
467 for (int i = 0; i < SCL_LOCKS; i++) {
468 spa_config_lock_t *scl = &spa->spa_config_lock[i];
469 if (!(locks & (1 << i)))
470 continue;
471 mutex_enter(&scl->scl_lock);
472 if (rw == RW_READER) {
473 if (scl->scl_writer || scl->scl_write_wanted) {
474 mutex_exit(&scl->scl_lock);
475 spa_config_exit(spa, locks & ((1 << i) - 1),
476 tag);
477 return (0);
478 }
479 } else {
480 ASSERT(scl->scl_writer != curthread);
481 if (scl->scl_count != 0) {
482 mutex_exit(&scl->scl_lock);
483 spa_config_exit(spa, locks & ((1 << i) - 1),
484 tag);
485 return (0);
486 }
487 scl->scl_writer = curthread;
488 }
489 scl->scl_count++;
490 mutex_exit(&scl->scl_lock);
491 }
492 return (1);
493 }
494
495 void
496 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
497 {
498 (void) tag;
499 int wlocks_held = 0;
500
501 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
502
503 for (int i = 0; i < SCL_LOCKS; i++) {
504 spa_config_lock_t *scl = &spa->spa_config_lock[i];
505 if (scl->scl_writer == curthread)
506 wlocks_held |= (1 << i);
507 if (!(locks & (1 << i)))
508 continue;
509 mutex_enter(&scl->scl_lock);
510 if (rw == RW_READER) {
511 while (scl->scl_writer || scl->scl_write_wanted) {
512 cv_wait(&scl->scl_cv, &scl->scl_lock);
513 }
514 } else {
515 ASSERT(scl->scl_writer != curthread);
516 while (scl->scl_count != 0) {
517 scl->scl_write_wanted++;
518 cv_wait(&scl->scl_cv, &scl->scl_lock);
519 scl->scl_write_wanted--;
520 }
521 scl->scl_writer = curthread;
522 }
523 scl->scl_count++;
524 mutex_exit(&scl->scl_lock);
525 }
526 ASSERT3U(wlocks_held, <=, locks);
527 }
528
529 void
530 spa_config_exit(spa_t *spa, int locks, const void *tag)
531 {
532 (void) tag;
533 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
534 spa_config_lock_t *scl = &spa->spa_config_lock[i];
535 if (!(locks & (1 << i)))
536 continue;
537 mutex_enter(&scl->scl_lock);
538 ASSERT(scl->scl_count > 0);
539 if (--scl->scl_count == 0) {
540 ASSERT(scl->scl_writer == NULL ||
541 scl->scl_writer == curthread);
542 scl->scl_writer = NULL; /* OK in either case */
543 cv_broadcast(&scl->scl_cv);
544 }
545 mutex_exit(&scl->scl_lock);
546 }
547 }
548
549 int
550 spa_config_held(spa_t *spa, int locks, krw_t rw)
551 {
552 int locks_held = 0;
553
554 for (int i = 0; i < SCL_LOCKS; i++) {
555 spa_config_lock_t *scl = &spa->spa_config_lock[i];
556 if (!(locks & (1 << i)))
557 continue;
558 if ((rw == RW_READER && scl->scl_count != 0) ||
559 (rw == RW_WRITER && scl->scl_writer == curthread))
560 locks_held |= 1 << i;
561 }
562
563 return (locks_held);
564 }
565
566 /*
567 * ==========================================================================
568 * SPA namespace functions
569 * ==========================================================================
570 */
571
572 /*
573 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
574 * Returns NULL if no matching spa_t is found.
575 */
576 spa_t *
577 spa_lookup(const char *name)
578 {
579 static spa_t search; /* spa_t is large; don't allocate on stack */
580 spa_t *spa;
581 avl_index_t where;
582 char *cp;
583
584 ASSERT(MUTEX_HELD(&spa_namespace_lock));
585
586 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
587
588 /*
589 * If it's a full dataset name, figure out the pool name and
590 * just use that.
591 */
592 cp = strpbrk(search.spa_name, "/@#");
593 if (cp != NULL)
594 *cp = '\0';
595
596 spa = avl_find(&spa_namespace_avl, &search, &where);
597
598 return (spa);
599 }
600
601 /*
602 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
603 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
604 * looking for potentially hung I/Os.
605 */
606 void
607 spa_deadman(void *arg)
608 {
609 spa_t *spa = arg;
610
611 /* Disable the deadman if the pool is suspended. */
612 if (spa_suspended(spa))
613 return;
614
615 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
616 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
617 (u_longlong_t)++spa->spa_deadman_calls);
618 if (zfs_deadman_enabled)
619 vdev_deadman(spa->spa_root_vdev, FTAG);
620
621 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
622 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
623 MSEC_TO_TICK(zfs_deadman_checktime_ms));
624 }
625
626 static int
627 spa_log_sm_sort_by_txg(const void *va, const void *vb)
628 {
629 const spa_log_sm_t *a = va;
630 const spa_log_sm_t *b = vb;
631
632 return (TREE_CMP(a->sls_txg, b->sls_txg));
633 }
634
635 /*
636 * Create an uninitialized spa_t with the given name. Requires
637 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
638 * exist by calling spa_lookup() first.
639 */
640 spa_t *
641 spa_add(const char *name, nvlist_t *config, const char *altroot)
642 {
643 spa_t *spa;
644 spa_config_dirent_t *dp;
645
646 ASSERT(MUTEX_HELD(&spa_namespace_lock));
647
648 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
649
650 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
651 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
652 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
653 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
654 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
655 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
656 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
657 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
658 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
659 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
660 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
661 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
662 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
663 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
664
665 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
666 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
667 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
668 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
669 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
670 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
671 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
672
673 for (int t = 0; t < TXG_SIZE; t++)
674 bplist_create(&spa->spa_free_bplist[t]);
675
676 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
677 spa->spa_state = POOL_STATE_UNINITIALIZED;
678 spa->spa_freeze_txg = UINT64_MAX;
679 spa->spa_final_txg = UINT64_MAX;
680 spa->spa_load_max_txg = UINT64_MAX;
681 spa->spa_proc = &p0;
682 spa->spa_proc_state = SPA_PROC_NONE;
683 spa->spa_trust_config = B_TRUE;
684 spa->spa_hostid = zone_get_hostid(NULL);
685
686 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
687 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
688 spa_set_deadman_failmode(spa, zfs_deadman_failmode);
689
690 zfs_refcount_create(&spa->spa_refcount);
691 spa_config_lock_init(spa);
692 spa_stats_init(spa);
693
694 avl_add(&spa_namespace_avl, spa);
695
696 /*
697 * Set the alternate root, if there is one.
698 */
699 if (altroot)
700 spa->spa_root = spa_strdup(altroot);
701
702 spa->spa_alloc_count = spa_allocators;
703 spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count *
704 sizeof (spa_alloc_t), KM_SLEEP);
705 for (int i = 0; i < spa->spa_alloc_count; i++) {
706 mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT,
707 NULL);
708 avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare,
709 sizeof (zio_t), offsetof(zio_t, io_alloc_node));
710 }
711 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
712 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
713 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
714 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
715 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
716 offsetof(log_summary_entry_t, lse_node));
717
718 /*
719 * Every pool starts with the default cachefile
720 */
721 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
722 offsetof(spa_config_dirent_t, scd_link));
723
724 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
725 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
726 list_insert_head(&spa->spa_config_list, dp);
727
728 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
729 KM_SLEEP) == 0);
730
731 if (config != NULL) {
732 nvlist_t *features;
733
734 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
735 &features) == 0) {
736 VERIFY(nvlist_dup(features, &spa->spa_label_features,
737 0) == 0);
738 }
739
740 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
741 }
742
743 if (spa->spa_label_features == NULL) {
744 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
745 KM_SLEEP) == 0);
746 }
747
748 spa->spa_min_ashift = INT_MAX;
749 spa->spa_max_ashift = 0;
750 spa->spa_min_alloc = INT_MAX;
751
752 /* Reset cached value */
753 spa->spa_dedup_dspace = ~0ULL;
754
755 /*
756 * As a pool is being created, treat all features as disabled by
757 * setting SPA_FEATURE_DISABLED for all entries in the feature
758 * refcount cache.
759 */
760 for (int i = 0; i < SPA_FEATURES; i++) {
761 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
762 }
763
764 list_create(&spa->spa_leaf_list, sizeof (vdev_t),
765 offsetof(vdev_t, vdev_leaf_node));
766
767 return (spa);
768 }
769
770 /*
771 * Removes a spa_t from the namespace, freeing up any memory used. Requires
772 * spa_namespace_lock. This is called only after the spa_t has been closed and
773 * deactivated.
774 */
775 void
776 spa_remove(spa_t *spa)
777 {
778 spa_config_dirent_t *dp;
779
780 ASSERT(MUTEX_HELD(&spa_namespace_lock));
781 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
782 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
783 ASSERT0(spa->spa_waiters);
784
785 nvlist_free(spa->spa_config_splitting);
786
787 avl_remove(&spa_namespace_avl, spa);
788 cv_broadcast(&spa_namespace_cv);
789
790 if (spa->spa_root)
791 spa_strfree(spa->spa_root);
792
793 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
794 list_remove(&spa->spa_config_list, dp);
795 if (dp->scd_path != NULL)
796 spa_strfree(dp->scd_path);
797 kmem_free(dp, sizeof (spa_config_dirent_t));
798 }
799
800 for (int i = 0; i < spa->spa_alloc_count; i++) {
801 avl_destroy(&spa->spa_allocs[i].spaa_tree);
802 mutex_destroy(&spa->spa_allocs[i].spaa_lock);
803 }
804 kmem_free(spa->spa_allocs, spa->spa_alloc_count *
805 sizeof (spa_alloc_t));
806
807 avl_destroy(&spa->spa_metaslabs_by_flushed);
808 avl_destroy(&spa->spa_sm_logs_by_txg);
809 list_destroy(&spa->spa_log_summary);
810 list_destroy(&spa->spa_config_list);
811 list_destroy(&spa->spa_leaf_list);
812
813 nvlist_free(spa->spa_label_features);
814 nvlist_free(spa->spa_load_info);
815 nvlist_free(spa->spa_feat_stats);
816 spa_config_set(spa, NULL);
817
818 zfs_refcount_destroy(&spa->spa_refcount);
819
820 spa_stats_destroy(spa);
821 spa_config_lock_destroy(spa);
822
823 for (int t = 0; t < TXG_SIZE; t++)
824 bplist_destroy(&spa->spa_free_bplist[t]);
825
826 zio_checksum_templates_free(spa);
827
828 cv_destroy(&spa->spa_async_cv);
829 cv_destroy(&spa->spa_evicting_os_cv);
830 cv_destroy(&spa->spa_proc_cv);
831 cv_destroy(&spa->spa_scrub_io_cv);
832 cv_destroy(&spa->spa_suspend_cv);
833 cv_destroy(&spa->spa_activities_cv);
834 cv_destroy(&spa->spa_waiters_cv);
835
836 mutex_destroy(&spa->spa_flushed_ms_lock);
837 mutex_destroy(&spa->spa_async_lock);
838 mutex_destroy(&spa->spa_errlist_lock);
839 mutex_destroy(&spa->spa_errlog_lock);
840 mutex_destroy(&spa->spa_evicting_os_lock);
841 mutex_destroy(&spa->spa_history_lock);
842 mutex_destroy(&spa->spa_proc_lock);
843 mutex_destroy(&spa->spa_props_lock);
844 mutex_destroy(&spa->spa_cksum_tmpls_lock);
845 mutex_destroy(&spa->spa_scrub_lock);
846 mutex_destroy(&spa->spa_suspend_lock);
847 mutex_destroy(&spa->spa_vdev_top_lock);
848 mutex_destroy(&spa->spa_feat_stats_lock);
849 mutex_destroy(&spa->spa_activities_lock);
850
851 kmem_free(spa, sizeof (spa_t));
852 }
853
854 /*
855 * Given a pool, return the next pool in the namespace, or NULL if there is
856 * none. If 'prev' is NULL, return the first pool.
857 */
858 spa_t *
859 spa_next(spa_t *prev)
860 {
861 ASSERT(MUTEX_HELD(&spa_namespace_lock));
862
863 if (prev)
864 return (AVL_NEXT(&spa_namespace_avl, prev));
865 else
866 return (avl_first(&spa_namespace_avl));
867 }
868
869 /*
870 * ==========================================================================
871 * SPA refcount functions
872 * ==========================================================================
873 */
874
875 /*
876 * Add a reference to the given spa_t. Must have at least one reference, or
877 * have the namespace lock held.
878 */
879 void
880 spa_open_ref(spa_t *spa, const void *tag)
881 {
882 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
883 MUTEX_HELD(&spa_namespace_lock));
884 (void) zfs_refcount_add(&spa->spa_refcount, tag);
885 }
886
887 /*
888 * Remove a reference to the given spa_t. Must have at least one reference, or
889 * have the namespace lock held.
890 */
891 void
892 spa_close(spa_t *spa, const void *tag)
893 {
894 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
895 MUTEX_HELD(&spa_namespace_lock));
896 (void) zfs_refcount_remove(&spa->spa_refcount, tag);
897 }
898
899 /*
900 * Remove a reference to the given spa_t held by a dsl dir that is
901 * being asynchronously released. Async releases occur from a taskq
902 * performing eviction of dsl datasets and dirs. The namespace lock
903 * isn't held and the hold by the object being evicted may contribute to
904 * spa_minref (e.g. dataset or directory released during pool export),
905 * so the asserts in spa_close() do not apply.
906 */
907 void
908 spa_async_close(spa_t *spa, const void *tag)
909 {
910 (void) zfs_refcount_remove(&spa->spa_refcount, tag);
911 }
912
913 /*
914 * Check to see if the spa refcount is zero. Must be called with
915 * spa_namespace_lock held. We really compare against spa_minref, which is the
916 * number of references acquired when opening a pool
917 */
918 boolean_t
919 spa_refcount_zero(spa_t *spa)
920 {
921 ASSERT(MUTEX_HELD(&spa_namespace_lock));
922
923 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
924 }
925
926 /*
927 * ==========================================================================
928 * SPA spare and l2cache tracking
929 * ==========================================================================
930 */
931
932 /*
933 * Hot spares and cache devices are tracked using the same code below,
934 * for 'auxiliary' devices.
935 */
936
937 typedef struct spa_aux {
938 uint64_t aux_guid;
939 uint64_t aux_pool;
940 avl_node_t aux_avl;
941 int aux_count;
942 } spa_aux_t;
943
944 static inline int
945 spa_aux_compare(const void *a, const void *b)
946 {
947 const spa_aux_t *sa = (const spa_aux_t *)a;
948 const spa_aux_t *sb = (const spa_aux_t *)b;
949
950 return (TREE_CMP(sa->aux_guid, sb->aux_guid));
951 }
952
953 static void
954 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
955 {
956 avl_index_t where;
957 spa_aux_t search;
958 spa_aux_t *aux;
959
960 search.aux_guid = vd->vdev_guid;
961 if ((aux = avl_find(avl, &search, &where)) != NULL) {
962 aux->aux_count++;
963 } else {
964 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
965 aux->aux_guid = vd->vdev_guid;
966 aux->aux_count = 1;
967 avl_insert(avl, aux, where);
968 }
969 }
970
971 static void
972 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
973 {
974 spa_aux_t search;
975 spa_aux_t *aux;
976 avl_index_t where;
977
978 search.aux_guid = vd->vdev_guid;
979 aux = avl_find(avl, &search, &where);
980
981 ASSERT(aux != NULL);
982
983 if (--aux->aux_count == 0) {
984 avl_remove(avl, aux);
985 kmem_free(aux, sizeof (spa_aux_t));
986 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
987 aux->aux_pool = 0ULL;
988 }
989 }
990
991 static boolean_t
992 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
993 {
994 spa_aux_t search, *found;
995
996 search.aux_guid = guid;
997 found = avl_find(avl, &search, NULL);
998
999 if (pool) {
1000 if (found)
1001 *pool = found->aux_pool;
1002 else
1003 *pool = 0ULL;
1004 }
1005
1006 if (refcnt) {
1007 if (found)
1008 *refcnt = found->aux_count;
1009 else
1010 *refcnt = 0;
1011 }
1012
1013 return (found != NULL);
1014 }
1015
1016 static void
1017 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1018 {
1019 spa_aux_t search, *found;
1020 avl_index_t where;
1021
1022 search.aux_guid = vd->vdev_guid;
1023 found = avl_find(avl, &search, &where);
1024 ASSERT(found != NULL);
1025 ASSERT(found->aux_pool == 0ULL);
1026
1027 found->aux_pool = spa_guid(vd->vdev_spa);
1028 }
1029
1030 /*
1031 * Spares are tracked globally due to the following constraints:
1032 *
1033 * - A spare may be part of multiple pools.
1034 * - A spare may be added to a pool even if it's actively in use within
1035 * another pool.
1036 * - A spare in use in any pool can only be the source of a replacement if
1037 * the target is a spare in the same pool.
1038 *
1039 * We keep track of all spares on the system through the use of a reference
1040 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
1041 * spare, then we bump the reference count in the AVL tree. In addition, we set
1042 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1043 * inactive). When a spare is made active (used to replace a device in the
1044 * pool), we also keep track of which pool its been made a part of.
1045 *
1046 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
1047 * called under the spa_namespace lock as part of vdev reconfiguration. The
1048 * separate spare lock exists for the status query path, which does not need to
1049 * be completely consistent with respect to other vdev configuration changes.
1050 */
1051
1052 static int
1053 spa_spare_compare(const void *a, const void *b)
1054 {
1055 return (spa_aux_compare(a, b));
1056 }
1057
1058 void
1059 spa_spare_add(vdev_t *vd)
1060 {
1061 mutex_enter(&spa_spare_lock);
1062 ASSERT(!vd->vdev_isspare);
1063 spa_aux_add(vd, &spa_spare_avl);
1064 vd->vdev_isspare = B_TRUE;
1065 mutex_exit(&spa_spare_lock);
1066 }
1067
1068 void
1069 spa_spare_remove(vdev_t *vd)
1070 {
1071 mutex_enter(&spa_spare_lock);
1072 ASSERT(vd->vdev_isspare);
1073 spa_aux_remove(vd, &spa_spare_avl);
1074 vd->vdev_isspare = B_FALSE;
1075 mutex_exit(&spa_spare_lock);
1076 }
1077
1078 boolean_t
1079 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1080 {
1081 boolean_t found;
1082
1083 mutex_enter(&spa_spare_lock);
1084 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1085 mutex_exit(&spa_spare_lock);
1086
1087 return (found);
1088 }
1089
1090 void
1091 spa_spare_activate(vdev_t *vd)
1092 {
1093 mutex_enter(&spa_spare_lock);
1094 ASSERT(vd->vdev_isspare);
1095 spa_aux_activate(vd, &spa_spare_avl);
1096 mutex_exit(&spa_spare_lock);
1097 }
1098
1099 /*
1100 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1101 * Cache devices currently only support one pool per cache device, and so
1102 * for these devices the aux reference count is currently unused beyond 1.
1103 */
1104
1105 static int
1106 spa_l2cache_compare(const void *a, const void *b)
1107 {
1108 return (spa_aux_compare(a, b));
1109 }
1110
1111 void
1112 spa_l2cache_add(vdev_t *vd)
1113 {
1114 mutex_enter(&spa_l2cache_lock);
1115 ASSERT(!vd->vdev_isl2cache);
1116 spa_aux_add(vd, &spa_l2cache_avl);
1117 vd->vdev_isl2cache = B_TRUE;
1118 mutex_exit(&spa_l2cache_lock);
1119 }
1120
1121 void
1122 spa_l2cache_remove(vdev_t *vd)
1123 {
1124 mutex_enter(&spa_l2cache_lock);
1125 ASSERT(vd->vdev_isl2cache);
1126 spa_aux_remove(vd, &spa_l2cache_avl);
1127 vd->vdev_isl2cache = B_FALSE;
1128 mutex_exit(&spa_l2cache_lock);
1129 }
1130
1131 boolean_t
1132 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1133 {
1134 boolean_t found;
1135
1136 mutex_enter(&spa_l2cache_lock);
1137 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1138 mutex_exit(&spa_l2cache_lock);
1139
1140 return (found);
1141 }
1142
1143 void
1144 spa_l2cache_activate(vdev_t *vd)
1145 {
1146 mutex_enter(&spa_l2cache_lock);
1147 ASSERT(vd->vdev_isl2cache);
1148 spa_aux_activate(vd, &spa_l2cache_avl);
1149 mutex_exit(&spa_l2cache_lock);
1150 }
1151
1152 /*
1153 * ==========================================================================
1154 * SPA vdev locking
1155 * ==========================================================================
1156 */
1157
1158 /*
1159 * Lock the given spa_t for the purpose of adding or removing a vdev.
1160 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1161 * It returns the next transaction group for the spa_t.
1162 */
1163 uint64_t
1164 spa_vdev_enter(spa_t *spa)
1165 {
1166 mutex_enter(&spa->spa_vdev_top_lock);
1167 mutex_enter(&spa_namespace_lock);
1168
1169 vdev_autotrim_stop_all(spa);
1170
1171 return (spa_vdev_config_enter(spa));
1172 }
1173
1174 /*
1175 * The same as spa_vdev_enter() above but additionally takes the guid of
1176 * the vdev being detached. When there is a rebuild in process it will be
1177 * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1178 * The rebuild is canceled if only a single child remains after the detach.
1179 */
1180 uint64_t
1181 spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1182 {
1183 mutex_enter(&spa->spa_vdev_top_lock);
1184 mutex_enter(&spa_namespace_lock);
1185
1186 vdev_autotrim_stop_all(spa);
1187
1188 if (guid != 0) {
1189 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1190 if (vd) {
1191 vdev_rebuild_stop_wait(vd->vdev_top);
1192 }
1193 }
1194
1195 return (spa_vdev_config_enter(spa));
1196 }
1197
1198 /*
1199 * Internal implementation for spa_vdev_enter(). Used when a vdev
1200 * operation requires multiple syncs (i.e. removing a device) while
1201 * keeping the spa_namespace_lock held.
1202 */
1203 uint64_t
1204 spa_vdev_config_enter(spa_t *spa)
1205 {
1206 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1207
1208 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1209
1210 return (spa_last_synced_txg(spa) + 1);
1211 }
1212
1213 /*
1214 * Used in combination with spa_vdev_config_enter() to allow the syncing
1215 * of multiple transactions without releasing the spa_namespace_lock.
1216 */
1217 void
1218 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1219 {
1220 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1221
1222 int config_changed = B_FALSE;
1223
1224 ASSERT(txg > spa_last_synced_txg(spa));
1225
1226 spa->spa_pending_vdev = NULL;
1227
1228 /*
1229 * Reassess the DTLs.
1230 */
1231 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
1232
1233 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1234 config_changed = B_TRUE;
1235 spa->spa_config_generation++;
1236 }
1237
1238 /*
1239 * Verify the metaslab classes.
1240 */
1241 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1242 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1243 ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0);
1244 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1245 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1246
1247 spa_config_exit(spa, SCL_ALL, spa);
1248
1249 /*
1250 * Panic the system if the specified tag requires it. This
1251 * is useful for ensuring that configurations are updated
1252 * transactionally.
1253 */
1254 if (zio_injection_enabled)
1255 zio_handle_panic_injection(spa, tag, 0);
1256
1257 /*
1258 * Note: this txg_wait_synced() is important because it ensures
1259 * that there won't be more than one config change per txg.
1260 * This allows us to use the txg as the generation number.
1261 */
1262 if (error == 0)
1263 txg_wait_synced(spa->spa_dsl_pool, txg);
1264
1265 if (vd != NULL) {
1266 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1267 if (vd->vdev_ops->vdev_op_leaf) {
1268 mutex_enter(&vd->vdev_initialize_lock);
1269 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1270 NULL);
1271 mutex_exit(&vd->vdev_initialize_lock);
1272
1273 mutex_enter(&vd->vdev_trim_lock);
1274 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1275 mutex_exit(&vd->vdev_trim_lock);
1276 }
1277
1278 /*
1279 * The vdev may be both a leaf and top-level device.
1280 */
1281 vdev_autotrim_stop_wait(vd);
1282
1283 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
1284 vdev_free(vd);
1285 spa_config_exit(spa, SCL_STATE_ALL, spa);
1286 }
1287
1288 /*
1289 * If the config changed, update the config cache.
1290 */
1291 if (config_changed)
1292 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1293 }
1294
1295 /*
1296 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1297 * locking of spa_vdev_enter(), we also want make sure the transactions have
1298 * synced to disk, and then update the global configuration cache with the new
1299 * information.
1300 */
1301 int
1302 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1303 {
1304 vdev_autotrim_restart(spa);
1305 vdev_rebuild_restart(spa);
1306
1307 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1308 mutex_exit(&spa_namespace_lock);
1309 mutex_exit(&spa->spa_vdev_top_lock);
1310
1311 return (error);
1312 }
1313
1314 /*
1315 * Lock the given spa_t for the purpose of changing vdev state.
1316 */
1317 void
1318 spa_vdev_state_enter(spa_t *spa, int oplocks)
1319 {
1320 int locks = SCL_STATE_ALL | oplocks;
1321
1322 /*
1323 * Root pools may need to read of the underlying devfs filesystem
1324 * when opening up a vdev. Unfortunately if we're holding the
1325 * SCL_ZIO lock it will result in a deadlock when we try to issue
1326 * the read from the root filesystem. Instead we "prefetch"
1327 * the associated vnodes that we need prior to opening the
1328 * underlying devices and cache them so that we can prevent
1329 * any I/O when we are doing the actual open.
1330 */
1331 if (spa_is_root(spa)) {
1332 int low = locks & ~(SCL_ZIO - 1);
1333 int high = locks & ~low;
1334
1335 spa_config_enter(spa, high, spa, RW_WRITER);
1336 vdev_hold(spa->spa_root_vdev);
1337 spa_config_enter(spa, low, spa, RW_WRITER);
1338 } else {
1339 spa_config_enter(spa, locks, spa, RW_WRITER);
1340 }
1341 spa->spa_vdev_locks = locks;
1342 }
1343
1344 int
1345 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1346 {
1347 boolean_t config_changed = B_FALSE;
1348 vdev_t *vdev_top;
1349
1350 if (vd == NULL || vd == spa->spa_root_vdev) {
1351 vdev_top = spa->spa_root_vdev;
1352 } else {
1353 vdev_top = vd->vdev_top;
1354 }
1355
1356 if (vd != NULL || error == 0)
1357 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
1358
1359 if (vd != NULL) {
1360 if (vd != spa->spa_root_vdev)
1361 vdev_state_dirty(vdev_top);
1362
1363 config_changed = B_TRUE;
1364 spa->spa_config_generation++;
1365 }
1366
1367 if (spa_is_root(spa))
1368 vdev_rele(spa->spa_root_vdev);
1369
1370 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1371 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1372
1373 /*
1374 * If anything changed, wait for it to sync. This ensures that,
1375 * from the system administrator's perspective, zpool(8) commands
1376 * are synchronous. This is important for things like zpool offline:
1377 * when the command completes, you expect no further I/O from ZFS.
1378 */
1379 if (vd != NULL)
1380 txg_wait_synced(spa->spa_dsl_pool, 0);
1381
1382 /*
1383 * If the config changed, update the config cache.
1384 */
1385 if (config_changed) {
1386 mutex_enter(&spa_namespace_lock);
1387 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1388 mutex_exit(&spa_namespace_lock);
1389 }
1390
1391 return (error);
1392 }
1393
1394 /*
1395 * ==========================================================================
1396 * Miscellaneous functions
1397 * ==========================================================================
1398 */
1399
1400 void
1401 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1402 {
1403 if (!nvlist_exists(spa->spa_label_features, feature)) {
1404 fnvlist_add_boolean(spa->spa_label_features, feature);
1405 /*
1406 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1407 * dirty the vdev config because lock SCL_CONFIG is not held.
1408 * Thankfully, in this case we don't need to dirty the config
1409 * because it will be written out anyway when we finish
1410 * creating the pool.
1411 */
1412 if (tx->tx_txg != TXG_INITIAL)
1413 vdev_config_dirty(spa->spa_root_vdev);
1414 }
1415 }
1416
1417 void
1418 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1419 {
1420 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1421 vdev_config_dirty(spa->spa_root_vdev);
1422 }
1423
1424 /*
1425 * Return the spa_t associated with given pool_guid, if it exists. If
1426 * device_guid is non-zero, determine whether the pool exists *and* contains
1427 * a device with the specified device_guid.
1428 */
1429 spa_t *
1430 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1431 {
1432 spa_t *spa;
1433 avl_tree_t *t = &spa_namespace_avl;
1434
1435 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1436
1437 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1438 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1439 continue;
1440 if (spa->spa_root_vdev == NULL)
1441 continue;
1442 if (spa_guid(spa) == pool_guid) {
1443 if (device_guid == 0)
1444 break;
1445
1446 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1447 device_guid) != NULL)
1448 break;
1449
1450 /*
1451 * Check any devices we may be in the process of adding.
1452 */
1453 if (spa->spa_pending_vdev) {
1454 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1455 device_guid) != NULL)
1456 break;
1457 }
1458 }
1459 }
1460
1461 return (spa);
1462 }
1463
1464 /*
1465 * Determine whether a pool with the given pool_guid exists.
1466 */
1467 boolean_t
1468 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1469 {
1470 return (spa_by_guid(pool_guid, device_guid) != NULL);
1471 }
1472
1473 char *
1474 spa_strdup(const char *s)
1475 {
1476 size_t len;
1477 char *new;
1478
1479 len = strlen(s);
1480 new = kmem_alloc(len + 1, KM_SLEEP);
1481 memcpy(new, s, len + 1);
1482
1483 return (new);
1484 }
1485
1486 void
1487 spa_strfree(char *s)
1488 {
1489 kmem_free(s, strlen(s) + 1);
1490 }
1491
1492 uint64_t
1493 spa_generate_guid(spa_t *spa)
1494 {
1495 uint64_t guid;
1496
1497 if (spa != NULL) {
1498 do {
1499 (void) random_get_pseudo_bytes((void *)&guid,
1500 sizeof (guid));
1501 } while (guid == 0 || spa_guid_exists(spa_guid(spa), guid));
1502 } else {
1503 do {
1504 (void) random_get_pseudo_bytes((void *)&guid,
1505 sizeof (guid));
1506 } while (guid == 0 || spa_guid_exists(guid, 0));
1507 }
1508
1509 return (guid);
1510 }
1511
1512 void
1513 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1514 {
1515 char type[256];
1516 const char *checksum = NULL;
1517 const char *compress = NULL;
1518
1519 if (bp != NULL) {
1520 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1521 dmu_object_byteswap_t bswap =
1522 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1523 (void) snprintf(type, sizeof (type), "bswap %s %s",
1524 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1525 "metadata" : "data",
1526 dmu_ot_byteswap[bswap].ob_name);
1527 } else {
1528 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1529 sizeof (type));
1530 }
1531 if (!BP_IS_EMBEDDED(bp)) {
1532 checksum =
1533 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1534 }
1535 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1536 }
1537
1538 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1539 compress);
1540 }
1541
1542 void
1543 spa_freeze(spa_t *spa)
1544 {
1545 uint64_t freeze_txg = 0;
1546
1547 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1548 if (spa->spa_freeze_txg == UINT64_MAX) {
1549 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1550 spa->spa_freeze_txg = freeze_txg;
1551 }
1552 spa_config_exit(spa, SCL_ALL, FTAG);
1553 if (freeze_txg != 0)
1554 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1555 }
1556
1557 void
1558 zfs_panic_recover(const char *fmt, ...)
1559 {
1560 va_list adx;
1561
1562 va_start(adx, fmt);
1563 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1564 va_end(adx);
1565 }
1566
1567 /*
1568 * This is a stripped-down version of strtoull, suitable only for converting
1569 * lowercase hexadecimal numbers that don't overflow.
1570 */
1571 uint64_t
1572 zfs_strtonum(const char *str, char **nptr)
1573 {
1574 uint64_t val = 0;
1575 char c;
1576 int digit;
1577
1578 while ((c = *str) != '\0') {
1579 if (c >= '0' && c <= '9')
1580 digit = c - '0';
1581 else if (c >= 'a' && c <= 'f')
1582 digit = 10 + c - 'a';
1583 else
1584 break;
1585
1586 val *= 16;
1587 val += digit;
1588
1589 str++;
1590 }
1591
1592 if (nptr)
1593 *nptr = (char *)str;
1594
1595 return (val);
1596 }
1597
1598 void
1599 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1600 {
1601 /*
1602 * We bump the feature refcount for each special vdev added to the pool
1603 */
1604 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1605 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1606 }
1607
1608 /*
1609 * ==========================================================================
1610 * Accessor functions
1611 * ==========================================================================
1612 */
1613
1614 boolean_t
1615 spa_shutting_down(spa_t *spa)
1616 {
1617 return (spa->spa_async_suspended);
1618 }
1619
1620 dsl_pool_t *
1621 spa_get_dsl(spa_t *spa)
1622 {
1623 return (spa->spa_dsl_pool);
1624 }
1625
1626 boolean_t
1627 spa_is_initializing(spa_t *spa)
1628 {
1629 return (spa->spa_is_initializing);
1630 }
1631
1632 boolean_t
1633 spa_indirect_vdevs_loaded(spa_t *spa)
1634 {
1635 return (spa->spa_indirect_vdevs_loaded);
1636 }
1637
1638 blkptr_t *
1639 spa_get_rootblkptr(spa_t *spa)
1640 {
1641 return (&spa->spa_ubsync.ub_rootbp);
1642 }
1643
1644 void
1645 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1646 {
1647 spa->spa_uberblock.ub_rootbp = *bp;
1648 }
1649
1650 void
1651 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1652 {
1653 if (spa->spa_root == NULL)
1654 buf[0] = '\0';
1655 else
1656 (void) strncpy(buf, spa->spa_root, buflen);
1657 }
1658
1659 int
1660 spa_sync_pass(spa_t *spa)
1661 {
1662 return (spa->spa_sync_pass);
1663 }
1664
1665 char *
1666 spa_name(spa_t *spa)
1667 {
1668 return (spa->spa_name);
1669 }
1670
1671 uint64_t
1672 spa_guid(spa_t *spa)
1673 {
1674 dsl_pool_t *dp = spa_get_dsl(spa);
1675 uint64_t guid;
1676
1677 /*
1678 * If we fail to parse the config during spa_load(), we can go through
1679 * the error path (which posts an ereport) and end up here with no root
1680 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1681 * this case.
1682 */
1683 if (spa->spa_root_vdev == NULL)
1684 return (spa->spa_config_guid);
1685
1686 guid = spa->spa_last_synced_guid != 0 ?
1687 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1688
1689 /*
1690 * Return the most recently synced out guid unless we're
1691 * in syncing context.
1692 */
1693 if (dp && dsl_pool_sync_context(dp))
1694 return (spa->spa_root_vdev->vdev_guid);
1695 else
1696 return (guid);
1697 }
1698
1699 uint64_t
1700 spa_load_guid(spa_t *spa)
1701 {
1702 /*
1703 * This is a GUID that exists solely as a reference for the
1704 * purposes of the arc. It is generated at load time, and
1705 * is never written to persistent storage.
1706 */
1707 return (spa->spa_load_guid);
1708 }
1709
1710 uint64_t
1711 spa_last_synced_txg(spa_t *spa)
1712 {
1713 return (spa->spa_ubsync.ub_txg);
1714 }
1715
1716 uint64_t
1717 spa_first_txg(spa_t *spa)
1718 {
1719 return (spa->spa_first_txg);
1720 }
1721
1722 uint64_t
1723 spa_syncing_txg(spa_t *spa)
1724 {
1725 return (spa->spa_syncing_txg);
1726 }
1727
1728 /*
1729 * Return the last txg where data can be dirtied. The final txgs
1730 * will be used to just clear out any deferred frees that remain.
1731 */
1732 uint64_t
1733 spa_final_dirty_txg(spa_t *spa)
1734 {
1735 return (spa->spa_final_txg - TXG_DEFER_SIZE);
1736 }
1737
1738 pool_state_t
1739 spa_state(spa_t *spa)
1740 {
1741 return (spa->spa_state);
1742 }
1743
1744 spa_load_state_t
1745 spa_load_state(spa_t *spa)
1746 {
1747 return (spa->spa_load_state);
1748 }
1749
1750 uint64_t
1751 spa_freeze_txg(spa_t *spa)
1752 {
1753 return (spa->spa_freeze_txg);
1754 }
1755
1756 /*
1757 * Return the inflated asize for a logical write in bytes. This is used by the
1758 * DMU to calculate the space a logical write will require on disk.
1759 * If lsize is smaller than the largest physical block size allocatable on this
1760 * pool we use its value instead, since the write will end up using the whole
1761 * block anyway.
1762 */
1763 uint64_t
1764 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1765 {
1766 if (lsize == 0)
1767 return (0); /* No inflation needed */
1768 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1769 }
1770
1771 /*
1772 * Return the amount of slop space in bytes. It is typically 1/32 of the pool
1773 * (3.2%), minus the embedded log space. On very small pools, it may be
1774 * slightly larger than this. On very large pools, it will be capped to
1775 * the value of spa_max_slop. The embedded log space is not included in
1776 * spa_dspace. By subtracting it, the usable space (per "zfs list") is a
1777 * constant 97% of the total space, regardless of metaslab size (assuming the
1778 * default spa_slop_shift=5 and a non-tiny pool).
1779 *
1780 * See the comment above spa_slop_shift for more details.
1781 */
1782 uint64_t
1783 spa_get_slop_space(spa_t *spa)
1784 {
1785 uint64_t space = 0;
1786 uint64_t slop = 0;
1787
1788 /*
1789 * Make sure spa_dedup_dspace has been set.
1790 */
1791 if (spa->spa_dedup_dspace == ~0ULL)
1792 spa_update_dspace(spa);
1793
1794 /*
1795 * spa_get_dspace() includes the space only logically "used" by
1796 * deduplicated data, so since it's not useful to reserve more
1797 * space with more deduplicated data, we subtract that out here.
1798 */
1799 space = spa_get_dspace(spa) - spa->spa_dedup_dspace;
1800 slop = MIN(space >> spa_slop_shift, spa_max_slop);
1801
1802 /*
1803 * Subtract the embedded log space, but no more than half the (3.2%)
1804 * unusable space. Note, the "no more than half" is only relevant if
1805 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by
1806 * default.
1807 */
1808 uint64_t embedded_log =
1809 metaslab_class_get_dspace(spa_embedded_log_class(spa));
1810 slop -= MIN(embedded_log, slop >> 1);
1811
1812 /*
1813 * Slop space should be at least spa_min_slop, but no more than half
1814 * the entire pool.
1815 */
1816 slop = MAX(slop, MIN(space >> 1, spa_min_slop));
1817 return (slop);
1818 }
1819
1820 uint64_t
1821 spa_get_dspace(spa_t *spa)
1822 {
1823 return (spa->spa_dspace);
1824 }
1825
1826 uint64_t
1827 spa_get_checkpoint_space(spa_t *spa)
1828 {
1829 return (spa->spa_checkpoint_info.sci_dspace);
1830 }
1831
1832 void
1833 spa_update_dspace(spa_t *spa)
1834 {
1835 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1836 ddt_get_dedup_dspace(spa);
1837 if (spa->spa_nonallocating_dspace > 0) {
1838 /*
1839 * Subtract the space provided by all non-allocating vdevs that
1840 * contribute to dspace. If a file is overwritten, its old
1841 * blocks are freed and new blocks are allocated. If there are
1842 * no snapshots of the file, the available space should remain
1843 * the same. The old blocks could be freed from the
1844 * non-allocating vdev, but the new blocks must be allocated on
1845 * other (allocating) vdevs. By reserving the entire size of
1846 * the non-allocating vdevs (including allocated space), we
1847 * ensure that there will be enough space on the allocating
1848 * vdevs for this file overwrite to succeed.
1849 *
1850 * Note that the DMU/DSL doesn't actually know or care
1851 * how much space is allocated (it does its own tracking
1852 * of how much space has been logically used). So it
1853 * doesn't matter that the data we are moving may be
1854 * allocated twice (on the old device and the new device).
1855 */
1856 ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace);
1857 spa->spa_dspace -= spa->spa_nonallocating_dspace;
1858 }
1859 }
1860
1861 /*
1862 * Return the failure mode that has been set to this pool. The default
1863 * behavior will be to block all I/Os when a complete failure occurs.
1864 */
1865 uint64_t
1866 spa_get_failmode(spa_t *spa)
1867 {
1868 return (spa->spa_failmode);
1869 }
1870
1871 boolean_t
1872 spa_suspended(spa_t *spa)
1873 {
1874 return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1875 }
1876
1877 uint64_t
1878 spa_version(spa_t *spa)
1879 {
1880 return (spa->spa_ubsync.ub_version);
1881 }
1882
1883 boolean_t
1884 spa_deflate(spa_t *spa)
1885 {
1886 return (spa->spa_deflate);
1887 }
1888
1889 metaslab_class_t *
1890 spa_normal_class(spa_t *spa)
1891 {
1892 return (spa->spa_normal_class);
1893 }
1894
1895 metaslab_class_t *
1896 spa_log_class(spa_t *spa)
1897 {
1898 return (spa->spa_log_class);
1899 }
1900
1901 metaslab_class_t *
1902 spa_embedded_log_class(spa_t *spa)
1903 {
1904 return (spa->spa_embedded_log_class);
1905 }
1906
1907 metaslab_class_t *
1908 spa_special_class(spa_t *spa)
1909 {
1910 return (spa->spa_special_class);
1911 }
1912
1913 metaslab_class_t *
1914 spa_dedup_class(spa_t *spa)
1915 {
1916 return (spa->spa_dedup_class);
1917 }
1918
1919 /*
1920 * Locate an appropriate allocation class
1921 */
1922 metaslab_class_t *
1923 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1924 uint_t level, uint_t special_smallblk)
1925 {
1926 /*
1927 * ZIL allocations determine their class in zio_alloc_zil().
1928 */
1929 ASSERT(objtype != DMU_OT_INTENT_LOG);
1930
1931 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1932
1933 if (DMU_OT_IS_DDT(objtype)) {
1934 if (spa->spa_dedup_class->mc_groups != 0)
1935 return (spa_dedup_class(spa));
1936 else if (has_special_class && zfs_ddt_data_is_special)
1937 return (spa_special_class(spa));
1938 else
1939 return (spa_normal_class(spa));
1940 }
1941
1942 /* Indirect blocks for user data can land in special if allowed */
1943 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1944 if (has_special_class && zfs_user_indirect_is_special)
1945 return (spa_special_class(spa));
1946 else
1947 return (spa_normal_class(spa));
1948 }
1949
1950 if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1951 if (has_special_class)
1952 return (spa_special_class(spa));
1953 else
1954 return (spa_normal_class(spa));
1955 }
1956
1957 /*
1958 * Allow small file blocks in special class in some cases (like
1959 * for the dRAID vdev feature). But always leave a reserve of
1960 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
1961 */
1962 if (DMU_OT_IS_FILE(objtype) &&
1963 has_special_class && size <= special_smallblk) {
1964 metaslab_class_t *special = spa_special_class(spa);
1965 uint64_t alloc = metaslab_class_get_alloc(special);
1966 uint64_t space = metaslab_class_get_space(special);
1967 uint64_t limit =
1968 (space * (100 - zfs_special_class_metadata_reserve_pct))
1969 / 100;
1970
1971 if (alloc < limit)
1972 return (special);
1973 }
1974
1975 return (spa_normal_class(spa));
1976 }
1977
1978 void
1979 spa_evicting_os_register(spa_t *spa, objset_t *os)
1980 {
1981 mutex_enter(&spa->spa_evicting_os_lock);
1982 list_insert_head(&spa->spa_evicting_os_list, os);
1983 mutex_exit(&spa->spa_evicting_os_lock);
1984 }
1985
1986 void
1987 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1988 {
1989 mutex_enter(&spa->spa_evicting_os_lock);
1990 list_remove(&spa->spa_evicting_os_list, os);
1991 cv_broadcast(&spa->spa_evicting_os_cv);
1992 mutex_exit(&spa->spa_evicting_os_lock);
1993 }
1994
1995 void
1996 spa_evicting_os_wait(spa_t *spa)
1997 {
1998 mutex_enter(&spa->spa_evicting_os_lock);
1999 while (!list_is_empty(&spa->spa_evicting_os_list))
2000 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
2001 mutex_exit(&spa->spa_evicting_os_lock);
2002
2003 dmu_buf_user_evict_wait();
2004 }
2005
2006 int
2007 spa_max_replication(spa_t *spa)
2008 {
2009 /*
2010 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
2011 * handle BPs with more than one DVA allocated. Set our max
2012 * replication level accordingly.
2013 */
2014 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
2015 return (1);
2016 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
2017 }
2018
2019 int
2020 spa_prev_software_version(spa_t *spa)
2021 {
2022 return (spa->spa_prev_software_version);
2023 }
2024
2025 uint64_t
2026 spa_deadman_synctime(spa_t *spa)
2027 {
2028 return (spa->spa_deadman_synctime);
2029 }
2030
2031 spa_autotrim_t
2032 spa_get_autotrim(spa_t *spa)
2033 {
2034 return (spa->spa_autotrim);
2035 }
2036
2037 uint64_t
2038 spa_deadman_ziotime(spa_t *spa)
2039 {
2040 return (spa->spa_deadman_ziotime);
2041 }
2042
2043 uint64_t
2044 spa_get_deadman_failmode(spa_t *spa)
2045 {
2046 return (spa->spa_deadman_failmode);
2047 }
2048
2049 void
2050 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2051 {
2052 if (strcmp(failmode, "wait") == 0)
2053 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2054 else if (strcmp(failmode, "continue") == 0)
2055 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2056 else if (strcmp(failmode, "panic") == 0)
2057 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2058 else
2059 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2060 }
2061
2062 void
2063 spa_set_deadman_ziotime(hrtime_t ns)
2064 {
2065 spa_t *spa = NULL;
2066
2067 if (spa_mode_global != SPA_MODE_UNINIT) {
2068 mutex_enter(&spa_namespace_lock);
2069 while ((spa = spa_next(spa)) != NULL)
2070 spa->spa_deadman_ziotime = ns;
2071 mutex_exit(&spa_namespace_lock);
2072 }
2073 }
2074
2075 void
2076 spa_set_deadman_synctime(hrtime_t ns)
2077 {
2078 spa_t *spa = NULL;
2079
2080 if (spa_mode_global != SPA_MODE_UNINIT) {
2081 mutex_enter(&spa_namespace_lock);
2082 while ((spa = spa_next(spa)) != NULL)
2083 spa->spa_deadman_synctime = ns;
2084 mutex_exit(&spa_namespace_lock);
2085 }
2086 }
2087
2088 uint64_t
2089 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2090 {
2091 uint64_t asize = DVA_GET_ASIZE(dva);
2092 uint64_t dsize = asize;
2093
2094 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2095
2096 if (asize != 0 && spa->spa_deflate) {
2097 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2098 if (vd != NULL)
2099 dsize = (asize >> SPA_MINBLOCKSHIFT) *
2100 vd->vdev_deflate_ratio;
2101 }
2102
2103 return (dsize);
2104 }
2105
2106 uint64_t
2107 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2108 {
2109 uint64_t dsize = 0;
2110
2111 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2112 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2113
2114 return (dsize);
2115 }
2116
2117 uint64_t
2118 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2119 {
2120 uint64_t dsize = 0;
2121
2122 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2123
2124 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2125 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2126
2127 spa_config_exit(spa, SCL_VDEV, FTAG);
2128
2129 return (dsize);
2130 }
2131
2132 uint64_t
2133 spa_dirty_data(spa_t *spa)
2134 {
2135 return (spa->spa_dsl_pool->dp_dirty_total);
2136 }
2137
2138 /*
2139 * ==========================================================================
2140 * SPA Import Progress Routines
2141 * ==========================================================================
2142 */
2143
2144 typedef struct spa_import_progress {
2145 uint64_t pool_guid; /* unique id for updates */
2146 char *pool_name;
2147 spa_load_state_t spa_load_state;
2148 uint64_t mmp_sec_remaining; /* MMP activity check */
2149 uint64_t spa_load_max_txg; /* rewind txg */
2150 procfs_list_node_t smh_node;
2151 } spa_import_progress_t;
2152
2153 spa_history_list_t *spa_import_progress_list = NULL;
2154
2155 static int
2156 spa_import_progress_show_header(struct seq_file *f)
2157 {
2158 seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid",
2159 "load_state", "multihost_secs", "max_txg",
2160 "pool_name");
2161 return (0);
2162 }
2163
2164 static int
2165 spa_import_progress_show(struct seq_file *f, void *data)
2166 {
2167 spa_import_progress_t *sip = (spa_import_progress_t *)data;
2168
2169 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n",
2170 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2171 (u_longlong_t)sip->mmp_sec_remaining,
2172 (u_longlong_t)sip->spa_load_max_txg,
2173 (sip->pool_name ? sip->pool_name : "-"));
2174
2175 return (0);
2176 }
2177
2178 /* Remove oldest elements from list until there are no more than 'size' left */
2179 static void
2180 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2181 {
2182 spa_import_progress_t *sip;
2183 while (shl->size > size) {
2184 sip = list_remove_head(&shl->procfs_list.pl_list);
2185 if (sip->pool_name)
2186 spa_strfree(sip->pool_name);
2187 kmem_free(sip, sizeof (spa_import_progress_t));
2188 shl->size--;
2189 }
2190
2191 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2192 }
2193
2194 static void
2195 spa_import_progress_init(void)
2196 {
2197 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2198 KM_SLEEP);
2199
2200 spa_import_progress_list->size = 0;
2201
2202 spa_import_progress_list->procfs_list.pl_private =
2203 spa_import_progress_list;
2204
2205 procfs_list_install("zfs",
2206 NULL,
2207 "import_progress",
2208 0644,
2209 &spa_import_progress_list->procfs_list,
2210 spa_import_progress_show,
2211 spa_import_progress_show_header,
2212 NULL,
2213 offsetof(spa_import_progress_t, smh_node));
2214 }
2215
2216 static void
2217 spa_import_progress_destroy(void)
2218 {
2219 spa_history_list_t *shl = spa_import_progress_list;
2220 procfs_list_uninstall(&shl->procfs_list);
2221 spa_import_progress_truncate(shl, 0);
2222 procfs_list_destroy(&shl->procfs_list);
2223 kmem_free(shl, sizeof (spa_history_list_t));
2224 }
2225
2226 int
2227 spa_import_progress_set_state(uint64_t pool_guid,
2228 spa_load_state_t load_state)
2229 {
2230 spa_history_list_t *shl = spa_import_progress_list;
2231 spa_import_progress_t *sip;
2232 int error = ENOENT;
2233
2234 if (shl->size == 0)
2235 return (0);
2236
2237 mutex_enter(&shl->procfs_list.pl_lock);
2238 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2239 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2240 if (sip->pool_guid == pool_guid) {
2241 sip->spa_load_state = load_state;
2242 error = 0;
2243 break;
2244 }
2245 }
2246 mutex_exit(&shl->procfs_list.pl_lock);
2247
2248 return (error);
2249 }
2250
2251 int
2252 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2253 {
2254 spa_history_list_t *shl = spa_import_progress_list;
2255 spa_import_progress_t *sip;
2256 int error = ENOENT;
2257
2258 if (shl->size == 0)
2259 return (0);
2260
2261 mutex_enter(&shl->procfs_list.pl_lock);
2262 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2263 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2264 if (sip->pool_guid == pool_guid) {
2265 sip->spa_load_max_txg = load_max_txg;
2266 error = 0;
2267 break;
2268 }
2269 }
2270 mutex_exit(&shl->procfs_list.pl_lock);
2271
2272 return (error);
2273 }
2274
2275 int
2276 spa_import_progress_set_mmp_check(uint64_t pool_guid,
2277 uint64_t mmp_sec_remaining)
2278 {
2279 spa_history_list_t *shl = spa_import_progress_list;
2280 spa_import_progress_t *sip;
2281 int error = ENOENT;
2282
2283 if (shl->size == 0)
2284 return (0);
2285
2286 mutex_enter(&shl->procfs_list.pl_lock);
2287 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2288 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2289 if (sip->pool_guid == pool_guid) {
2290 sip->mmp_sec_remaining = mmp_sec_remaining;
2291 error = 0;
2292 break;
2293 }
2294 }
2295 mutex_exit(&shl->procfs_list.pl_lock);
2296
2297 return (error);
2298 }
2299
2300 /*
2301 * A new import is in progress, add an entry.
2302 */
2303 void
2304 spa_import_progress_add(spa_t *spa)
2305 {
2306 spa_history_list_t *shl = spa_import_progress_list;
2307 spa_import_progress_t *sip;
2308 char *poolname = NULL;
2309
2310 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2311 sip->pool_guid = spa_guid(spa);
2312
2313 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2314 &poolname);
2315 if (poolname == NULL)
2316 poolname = spa_name(spa);
2317 sip->pool_name = spa_strdup(poolname);
2318 sip->spa_load_state = spa_load_state(spa);
2319
2320 mutex_enter(&shl->procfs_list.pl_lock);
2321 procfs_list_add(&shl->procfs_list, sip);
2322 shl->size++;
2323 mutex_exit(&shl->procfs_list.pl_lock);
2324 }
2325
2326 void
2327 spa_import_progress_remove(uint64_t pool_guid)
2328 {
2329 spa_history_list_t *shl = spa_import_progress_list;
2330 spa_import_progress_t *sip;
2331
2332 mutex_enter(&shl->procfs_list.pl_lock);
2333 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2334 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2335 if (sip->pool_guid == pool_guid) {
2336 if (sip->pool_name)
2337 spa_strfree(sip->pool_name);
2338 list_remove(&shl->procfs_list.pl_list, sip);
2339 shl->size--;
2340 kmem_free(sip, sizeof (spa_import_progress_t));
2341 break;
2342 }
2343 }
2344 mutex_exit(&shl->procfs_list.pl_lock);
2345 }
2346
2347 /*
2348 * ==========================================================================
2349 * Initialization and Termination
2350 * ==========================================================================
2351 */
2352
2353 static int
2354 spa_name_compare(const void *a1, const void *a2)
2355 {
2356 const spa_t *s1 = a1;
2357 const spa_t *s2 = a2;
2358 int s;
2359
2360 s = strcmp(s1->spa_name, s2->spa_name);
2361
2362 return (TREE_ISIGN(s));
2363 }
2364
2365 void
2366 spa_boot_init(void)
2367 {
2368 spa_config_load();
2369 }
2370
2371 void
2372 spa_init(spa_mode_t mode)
2373 {
2374 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2375 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2376 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2377 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2378
2379 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2380 offsetof(spa_t, spa_avl));
2381
2382 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2383 offsetof(spa_aux_t, aux_avl));
2384
2385 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2386 offsetof(spa_aux_t, aux_avl));
2387
2388 spa_mode_global = mode;
2389
2390 #ifndef _KERNEL
2391 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
2392 struct sigaction sa;
2393
2394 sa.sa_flags = SA_SIGINFO;
2395 sigemptyset(&sa.sa_mask);
2396 sa.sa_sigaction = arc_buf_sigsegv;
2397
2398 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2399 perror("could not enable watchpoints: "
2400 "sigaction(SIGSEGV, ...) = ");
2401 } else {
2402 arc_watch = B_TRUE;
2403 }
2404 }
2405 #endif
2406
2407 fm_init();
2408 zfs_refcount_init();
2409 unique_init();
2410 zfs_btree_init();
2411 metaslab_stat_init();
2412 ddt_init();
2413 zio_init();
2414 dmu_init();
2415 zil_init();
2416 vdev_cache_stat_init();
2417 vdev_mirror_stat_init();
2418 vdev_raidz_math_init();
2419 vdev_file_init();
2420 zfs_prop_init();
2421 chksum_init();
2422 zpool_prop_init();
2423 zpool_feature_init();
2424 spa_config_load();
2425 vdev_prop_init();
2426 l2arc_start();
2427 scan_init();
2428 qat_init();
2429 spa_import_progress_init();
2430 }
2431
2432 void
2433 spa_fini(void)
2434 {
2435 l2arc_stop();
2436
2437 spa_evict_all();
2438
2439 vdev_file_fini();
2440 vdev_cache_stat_fini();
2441 vdev_mirror_stat_fini();
2442 vdev_raidz_math_fini();
2443 chksum_fini();
2444 zil_fini();
2445 dmu_fini();
2446 zio_fini();
2447 ddt_fini();
2448 metaslab_stat_fini();
2449 zfs_btree_fini();
2450 unique_fini();
2451 zfs_refcount_fini();
2452 fm_fini();
2453 scan_fini();
2454 qat_fini();
2455 spa_import_progress_destroy();
2456
2457 avl_destroy(&spa_namespace_avl);
2458 avl_destroy(&spa_spare_avl);
2459 avl_destroy(&spa_l2cache_avl);
2460
2461 cv_destroy(&spa_namespace_cv);
2462 mutex_destroy(&spa_namespace_lock);
2463 mutex_destroy(&spa_spare_lock);
2464 mutex_destroy(&spa_l2cache_lock);
2465 }
2466
2467 /*
2468 * Return whether this pool has a dedicated slog device. No locking needed.
2469 * It's not a problem if the wrong answer is returned as it's only for
2470 * performance and not correctness.
2471 */
2472 boolean_t
2473 spa_has_slogs(spa_t *spa)
2474 {
2475 return (spa->spa_log_class->mc_groups != 0);
2476 }
2477
2478 spa_log_state_t
2479 spa_get_log_state(spa_t *spa)
2480 {
2481 return (spa->spa_log_state);
2482 }
2483
2484 void
2485 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2486 {
2487 spa->spa_log_state = state;
2488 }
2489
2490 boolean_t
2491 spa_is_root(spa_t *spa)
2492 {
2493 return (spa->spa_is_root);
2494 }
2495
2496 boolean_t
2497 spa_writeable(spa_t *spa)
2498 {
2499 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
2500 }
2501
2502 /*
2503 * Returns true if there is a pending sync task in any of the current
2504 * syncing txg, the current quiescing txg, or the current open txg.
2505 */
2506 boolean_t
2507 spa_has_pending_synctask(spa_t *spa)
2508 {
2509 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2510 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2511 }
2512
2513 spa_mode_t
2514 spa_mode(spa_t *spa)
2515 {
2516 return (spa->spa_mode);
2517 }
2518
2519 uint64_t
2520 spa_bootfs(spa_t *spa)
2521 {
2522 return (spa->spa_bootfs);
2523 }
2524
2525 uint64_t
2526 spa_delegation(spa_t *spa)
2527 {
2528 return (spa->spa_delegation);
2529 }
2530
2531 objset_t *
2532 spa_meta_objset(spa_t *spa)
2533 {
2534 return (spa->spa_meta_objset);
2535 }
2536
2537 enum zio_checksum
2538 spa_dedup_checksum(spa_t *spa)
2539 {
2540 return (spa->spa_dedup_checksum);
2541 }
2542
2543 /*
2544 * Reset pool scan stat per scan pass (or reboot).
2545 */
2546 void
2547 spa_scan_stat_init(spa_t *spa)
2548 {
2549 /* data not stored on disk */
2550 spa->spa_scan_pass_start = gethrestime_sec();
2551 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2552 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2553 else
2554 spa->spa_scan_pass_scrub_pause = 0;
2555 spa->spa_scan_pass_scrub_spent_paused = 0;
2556 spa->spa_scan_pass_exam = 0;
2557 spa->spa_scan_pass_issued = 0;
2558 vdev_scan_stat_init(spa->spa_root_vdev);
2559 }
2560
2561 /*
2562 * Get scan stats for zpool status reports
2563 */
2564 int
2565 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2566 {
2567 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2568
2569 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2570 return (SET_ERROR(ENOENT));
2571 memset(ps, 0, sizeof (pool_scan_stat_t));
2572
2573 /* data stored on disk */
2574 ps->pss_func = scn->scn_phys.scn_func;
2575 ps->pss_state = scn->scn_phys.scn_state;
2576 ps->pss_start_time = scn->scn_phys.scn_start_time;
2577 ps->pss_end_time = scn->scn_phys.scn_end_time;
2578 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2579 ps->pss_examined = scn->scn_phys.scn_examined;
2580 ps->pss_to_process = scn->scn_phys.scn_to_process;
2581 ps->pss_processed = scn->scn_phys.scn_processed;
2582 ps->pss_errors = scn->scn_phys.scn_errors;
2583
2584 /* data not stored on disk */
2585 ps->pss_pass_exam = spa->spa_scan_pass_exam;
2586 ps->pss_pass_start = spa->spa_scan_pass_start;
2587 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2588 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2589 ps->pss_pass_issued = spa->spa_scan_pass_issued;
2590 ps->pss_issued =
2591 scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2592
2593 return (0);
2594 }
2595
2596 int
2597 spa_maxblocksize(spa_t *spa)
2598 {
2599 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2600 return (SPA_MAXBLOCKSIZE);
2601 else
2602 return (SPA_OLD_MAXBLOCKSIZE);
2603 }
2604
2605
2606 /*
2607 * Returns the txg that the last device removal completed. No indirect mappings
2608 * have been added since this txg.
2609 */
2610 uint64_t
2611 spa_get_last_removal_txg(spa_t *spa)
2612 {
2613 uint64_t vdevid;
2614 uint64_t ret = -1ULL;
2615
2616 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2617 /*
2618 * sr_prev_indirect_vdev is only modified while holding all the
2619 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2620 * examining it.
2621 */
2622 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2623
2624 while (vdevid != -1ULL) {
2625 vdev_t *vd = vdev_lookup_top(spa, vdevid);
2626 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2627
2628 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2629
2630 /*
2631 * If the removal did not remap any data, we don't care.
2632 */
2633 if (vdev_indirect_births_count(vib) != 0) {
2634 ret = vdev_indirect_births_last_entry_txg(vib);
2635 break;
2636 }
2637
2638 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2639 }
2640 spa_config_exit(spa, SCL_VDEV, FTAG);
2641
2642 IMPLY(ret != -1ULL,
2643 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2644
2645 return (ret);
2646 }
2647
2648 int
2649 spa_maxdnodesize(spa_t *spa)
2650 {
2651 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2652 return (DNODE_MAX_SIZE);
2653 else
2654 return (DNODE_MIN_SIZE);
2655 }
2656
2657 boolean_t
2658 spa_multihost(spa_t *spa)
2659 {
2660 return (spa->spa_multihost ? B_TRUE : B_FALSE);
2661 }
2662
2663 uint32_t
2664 spa_get_hostid(spa_t *spa)
2665 {
2666 return (spa->spa_hostid);
2667 }
2668
2669 boolean_t
2670 spa_trust_config(spa_t *spa)
2671 {
2672 return (spa->spa_trust_config);
2673 }
2674
2675 uint64_t
2676 spa_missing_tvds_allowed(spa_t *spa)
2677 {
2678 return (spa->spa_missing_tvds_allowed);
2679 }
2680
2681 space_map_t *
2682 spa_syncing_log_sm(spa_t *spa)
2683 {
2684 return (spa->spa_syncing_log_sm);
2685 }
2686
2687 void
2688 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2689 {
2690 spa->spa_missing_tvds = missing;
2691 }
2692
2693 /*
2694 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2695 */
2696 const char *
2697 spa_state_to_name(spa_t *spa)
2698 {
2699 ASSERT3P(spa, !=, NULL);
2700
2701 /*
2702 * it is possible for the spa to exist, without root vdev
2703 * as the spa transitions during import/export
2704 */
2705 vdev_t *rvd = spa->spa_root_vdev;
2706 if (rvd == NULL) {
2707 return ("TRANSITIONING");
2708 }
2709 vdev_state_t state = rvd->vdev_state;
2710 vdev_aux_t aux = rvd->vdev_stat.vs_aux;
2711
2712 if (spa_suspended(spa) &&
2713 (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE))
2714 return ("SUSPENDED");
2715
2716 switch (state) {
2717 case VDEV_STATE_CLOSED:
2718 case VDEV_STATE_OFFLINE:
2719 return ("OFFLINE");
2720 case VDEV_STATE_REMOVED:
2721 return ("REMOVED");
2722 case VDEV_STATE_CANT_OPEN:
2723 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2724 return ("FAULTED");
2725 else if (aux == VDEV_AUX_SPLIT_POOL)
2726 return ("SPLIT");
2727 else
2728 return ("UNAVAIL");
2729 case VDEV_STATE_FAULTED:
2730 return ("FAULTED");
2731 case VDEV_STATE_DEGRADED:
2732 return ("DEGRADED");
2733 case VDEV_STATE_HEALTHY:
2734 return ("ONLINE");
2735 default:
2736 break;
2737 }
2738
2739 return ("UNKNOWN");
2740 }
2741
2742 boolean_t
2743 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2744 {
2745 vdev_t *rvd = spa->spa_root_vdev;
2746 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2747 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2748 return (B_FALSE);
2749 }
2750 return (B_TRUE);
2751 }
2752
2753 boolean_t
2754 spa_has_checkpoint(spa_t *spa)
2755 {
2756 return (spa->spa_checkpoint_txg != 0);
2757 }
2758
2759 boolean_t
2760 spa_importing_readonly_checkpoint(spa_t *spa)
2761 {
2762 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2763 spa->spa_mode == SPA_MODE_READ);
2764 }
2765
2766 uint64_t
2767 spa_min_claim_txg(spa_t *spa)
2768 {
2769 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2770
2771 if (checkpoint_txg != 0)
2772 return (checkpoint_txg + 1);
2773
2774 return (spa->spa_first_txg);
2775 }
2776
2777 /*
2778 * If there is a checkpoint, async destroys may consume more space from
2779 * the pool instead of freeing it. In an attempt to save the pool from
2780 * getting suspended when it is about to run out of space, we stop
2781 * processing async destroys.
2782 */
2783 boolean_t
2784 spa_suspend_async_destroy(spa_t *spa)
2785 {
2786 dsl_pool_t *dp = spa_get_dsl(spa);
2787
2788 uint64_t unreserved = dsl_pool_unreserved_space(dp,
2789 ZFS_SPACE_CHECK_EXTRA_RESERVED);
2790 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2791 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2792
2793 if (spa_has_checkpoint(spa) && avail == 0)
2794 return (B_TRUE);
2795
2796 return (B_FALSE);
2797 }
2798
2799 #if defined(_KERNEL)
2800
2801 int
2802 param_set_deadman_failmode_common(const char *val)
2803 {
2804 spa_t *spa = NULL;
2805 char *p;
2806
2807 if (val == NULL)
2808 return (SET_ERROR(EINVAL));
2809
2810 if ((p = strchr(val, '\n')) != NULL)
2811 *p = '\0';
2812
2813 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
2814 strcmp(val, "panic"))
2815 return (SET_ERROR(EINVAL));
2816
2817 if (spa_mode_global != SPA_MODE_UNINIT) {
2818 mutex_enter(&spa_namespace_lock);
2819 while ((spa = spa_next(spa)) != NULL)
2820 spa_set_deadman_failmode(spa, val);
2821 mutex_exit(&spa_namespace_lock);
2822 }
2823
2824 return (0);
2825 }
2826 #endif
2827
2828 /* Namespace manipulation */
2829 EXPORT_SYMBOL(spa_lookup);
2830 EXPORT_SYMBOL(spa_add);
2831 EXPORT_SYMBOL(spa_remove);
2832 EXPORT_SYMBOL(spa_next);
2833
2834 /* Refcount functions */
2835 EXPORT_SYMBOL(spa_open_ref);
2836 EXPORT_SYMBOL(spa_close);
2837 EXPORT_SYMBOL(spa_refcount_zero);
2838
2839 /* Pool configuration lock */
2840 EXPORT_SYMBOL(spa_config_tryenter);
2841 EXPORT_SYMBOL(spa_config_enter);
2842 EXPORT_SYMBOL(spa_config_exit);
2843 EXPORT_SYMBOL(spa_config_held);
2844
2845 /* Pool vdev add/remove lock */
2846 EXPORT_SYMBOL(spa_vdev_enter);
2847 EXPORT_SYMBOL(spa_vdev_exit);
2848
2849 /* Pool vdev state change lock */
2850 EXPORT_SYMBOL(spa_vdev_state_enter);
2851 EXPORT_SYMBOL(spa_vdev_state_exit);
2852
2853 /* Accessor functions */
2854 EXPORT_SYMBOL(spa_shutting_down);
2855 EXPORT_SYMBOL(spa_get_dsl);
2856 EXPORT_SYMBOL(spa_get_rootblkptr);
2857 EXPORT_SYMBOL(spa_set_rootblkptr);
2858 EXPORT_SYMBOL(spa_altroot);
2859 EXPORT_SYMBOL(spa_sync_pass);
2860 EXPORT_SYMBOL(spa_name);
2861 EXPORT_SYMBOL(spa_guid);
2862 EXPORT_SYMBOL(spa_last_synced_txg);
2863 EXPORT_SYMBOL(spa_first_txg);
2864 EXPORT_SYMBOL(spa_syncing_txg);
2865 EXPORT_SYMBOL(spa_version);
2866 EXPORT_SYMBOL(spa_state);
2867 EXPORT_SYMBOL(spa_load_state);
2868 EXPORT_SYMBOL(spa_freeze_txg);
2869 EXPORT_SYMBOL(spa_get_dspace);
2870 EXPORT_SYMBOL(spa_update_dspace);
2871 EXPORT_SYMBOL(spa_deflate);
2872 EXPORT_SYMBOL(spa_normal_class);
2873 EXPORT_SYMBOL(spa_log_class);
2874 EXPORT_SYMBOL(spa_special_class);
2875 EXPORT_SYMBOL(spa_preferred_class);
2876 EXPORT_SYMBOL(spa_max_replication);
2877 EXPORT_SYMBOL(spa_prev_software_version);
2878 EXPORT_SYMBOL(spa_get_failmode);
2879 EXPORT_SYMBOL(spa_suspended);
2880 EXPORT_SYMBOL(spa_bootfs);
2881 EXPORT_SYMBOL(spa_delegation);
2882 EXPORT_SYMBOL(spa_meta_objset);
2883 EXPORT_SYMBOL(spa_maxblocksize);
2884 EXPORT_SYMBOL(spa_maxdnodesize);
2885
2886 /* Miscellaneous support routines */
2887 EXPORT_SYMBOL(spa_guid_exists);
2888 EXPORT_SYMBOL(spa_strdup);
2889 EXPORT_SYMBOL(spa_strfree);
2890 EXPORT_SYMBOL(spa_generate_guid);
2891 EXPORT_SYMBOL(snprintf_blkptr);
2892 EXPORT_SYMBOL(spa_freeze);
2893 EXPORT_SYMBOL(spa_upgrade);
2894 EXPORT_SYMBOL(spa_evict_all);
2895 EXPORT_SYMBOL(spa_lookup_by_guid);
2896 EXPORT_SYMBOL(spa_has_spare);
2897 EXPORT_SYMBOL(dva_get_dsize_sync);
2898 EXPORT_SYMBOL(bp_get_dsize_sync);
2899 EXPORT_SYMBOL(bp_get_dsize);
2900 EXPORT_SYMBOL(spa_has_slogs);
2901 EXPORT_SYMBOL(spa_is_root);
2902 EXPORT_SYMBOL(spa_writeable);
2903 EXPORT_SYMBOL(spa_mode);
2904 EXPORT_SYMBOL(spa_namespace_lock);
2905 EXPORT_SYMBOL(spa_trust_config);
2906 EXPORT_SYMBOL(spa_missing_tvds_allowed);
2907 EXPORT_SYMBOL(spa_set_missing_tvds);
2908 EXPORT_SYMBOL(spa_state_to_name);
2909 EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
2910 EXPORT_SYMBOL(spa_min_claim_txg);
2911 EXPORT_SYMBOL(spa_suspend_async_destroy);
2912 EXPORT_SYMBOL(spa_has_checkpoint);
2913 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
2914
2915 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
2916 "Set additional debugging flags");
2917
2918 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
2919 "Set to attempt to recover from fatal errors");
2920
2921 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
2922 "Set to ignore IO errors during free and permanently leak the space");
2923
2924 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, ULONG, ZMOD_RW,
2925 "Dead I/O check interval in milliseconds");
2926
2927 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW,
2928 "Enable deadman timer");
2929
2930 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, INT, ZMOD_RW,
2931 "SPA size estimate multiplication factor");
2932
2933 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
2934 "Place DDT data into the special class");
2935
2936 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
2937 "Place user data indirect blocks into the special class");
2938
2939 /* BEGIN CSTYLED */
2940 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
2941 param_set_deadman_failmode, param_get_charp, ZMOD_RW,
2942 "Failmode for deadman timer");
2943
2944 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
2945 param_set_deadman_synctime, param_get_ulong, ZMOD_RW,
2946 "Pool sync expiration time in milliseconds");
2947
2948 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
2949 param_set_deadman_ziotime, param_get_ulong, ZMOD_RW,
2950 "IO expiration time in milliseconds");
2951
2952 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, INT, ZMOD_RW,
2953 "Small file blocks in special vdevs depends on this much "
2954 "free space available");
2955 /* END CSTYLED */
2956
2957 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
2958 param_get_int, ZMOD_RW, "Reserved free space in pool");