]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa_misc.c
Set aside a metaslab for ZIL blocks
[mirror_zfs.git] / module / zfs / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2017 Datto Inc.
28 * Copyright (c) 2017, Intel Corporation.
29 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
30 */
31
32 #include <sys/zfs_context.h>
33 #include <sys/spa_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/zio_compress.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/vdev_initialize.h>
43 #include <sys/vdev_trim.h>
44 #include <sys/vdev_file.h>
45 #include <sys/vdev_raidz.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dir.h>
53 #include <sys/dsl_prop.h>
54 #include <sys/fm/util.h>
55 #include <sys/dsl_scan.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/metaslab_impl.h>
58 #include <sys/arc.h>
59 #include <sys/ddt.h>
60 #include <sys/kstat.h>
61 #include "zfs_prop.h"
62 #include <sys/btree.h>
63 #include <sys/zfeature.h>
64 #include <sys/qat.h>
65 #include <sys/zstd/zstd.h>
66
67 /*
68 * SPA locking
69 *
70 * There are three basic locks for managing spa_t structures:
71 *
72 * spa_namespace_lock (global mutex)
73 *
74 * This lock must be acquired to do any of the following:
75 *
76 * - Lookup a spa_t by name
77 * - Add or remove a spa_t from the namespace
78 * - Increase spa_refcount from non-zero
79 * - Check if spa_refcount is zero
80 * - Rename a spa_t
81 * - add/remove/attach/detach devices
82 * - Held for the duration of create/destroy/import/export
83 *
84 * It does not need to handle recursion. A create or destroy may
85 * reference objects (files or zvols) in other pools, but by
86 * definition they must have an existing reference, and will never need
87 * to lookup a spa_t by name.
88 *
89 * spa_refcount (per-spa zfs_refcount_t protected by mutex)
90 *
91 * This reference count keep track of any active users of the spa_t. The
92 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
93 * the refcount is never really 'zero' - opening a pool implicitly keeps
94 * some references in the DMU. Internally we check against spa_minref, but
95 * present the image of a zero/non-zero value to consumers.
96 *
97 * spa_config_lock[] (per-spa array of rwlocks)
98 *
99 * This protects the spa_t from config changes, and must be held in
100 * the following circumstances:
101 *
102 * - RW_READER to perform I/O to the spa
103 * - RW_WRITER to change the vdev config
104 *
105 * The locking order is fairly straightforward:
106 *
107 * spa_namespace_lock -> spa_refcount
108 *
109 * The namespace lock must be acquired to increase the refcount from 0
110 * or to check if it is zero.
111 *
112 * spa_refcount -> spa_config_lock[]
113 *
114 * There must be at least one valid reference on the spa_t to acquire
115 * the config lock.
116 *
117 * spa_namespace_lock -> spa_config_lock[]
118 *
119 * The namespace lock must always be taken before the config lock.
120 *
121 *
122 * The spa_namespace_lock can be acquired directly and is globally visible.
123 *
124 * The namespace is manipulated using the following functions, all of which
125 * require the spa_namespace_lock to be held.
126 *
127 * spa_lookup() Lookup a spa_t by name.
128 *
129 * spa_add() Create a new spa_t in the namespace.
130 *
131 * spa_remove() Remove a spa_t from the namespace. This also
132 * frees up any memory associated with the spa_t.
133 *
134 * spa_next() Returns the next spa_t in the system, or the
135 * first if NULL is passed.
136 *
137 * spa_evict_all() Shutdown and remove all spa_t structures in
138 * the system.
139 *
140 * spa_guid_exists() Determine whether a pool/device guid exists.
141 *
142 * The spa_refcount is manipulated using the following functions:
143 *
144 * spa_open_ref() Adds a reference to the given spa_t. Must be
145 * called with spa_namespace_lock held if the
146 * refcount is currently zero.
147 *
148 * spa_close() Remove a reference from the spa_t. This will
149 * not free the spa_t or remove it from the
150 * namespace. No locking is required.
151 *
152 * spa_refcount_zero() Returns true if the refcount is currently
153 * zero. Must be called with spa_namespace_lock
154 * held.
155 *
156 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
157 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
158 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
159 *
160 * To read the configuration, it suffices to hold one of these locks as reader.
161 * To modify the configuration, you must hold all locks as writer. To modify
162 * vdev state without altering the vdev tree's topology (e.g. online/offline),
163 * you must hold SCL_STATE and SCL_ZIO as writer.
164 *
165 * We use these distinct config locks to avoid recursive lock entry.
166 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
167 * block allocations (SCL_ALLOC), which may require reading space maps
168 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
169 *
170 * The spa config locks cannot be normal rwlocks because we need the
171 * ability to hand off ownership. For example, SCL_ZIO is acquired
172 * by the issuing thread and later released by an interrupt thread.
173 * They do, however, obey the usual write-wanted semantics to prevent
174 * writer (i.e. system administrator) starvation.
175 *
176 * The lock acquisition rules are as follows:
177 *
178 * SCL_CONFIG
179 * Protects changes to the vdev tree topology, such as vdev
180 * add/remove/attach/detach. Protects the dirty config list
181 * (spa_config_dirty_list) and the set of spares and l2arc devices.
182 *
183 * SCL_STATE
184 * Protects changes to pool state and vdev state, such as vdev
185 * online/offline/fault/degrade/clear. Protects the dirty state list
186 * (spa_state_dirty_list) and global pool state (spa_state).
187 *
188 * SCL_ALLOC
189 * Protects changes to metaslab groups and classes.
190 * Held as reader by metaslab_alloc() and metaslab_claim().
191 *
192 * SCL_ZIO
193 * Held by bp-level zios (those which have no io_vd upon entry)
194 * to prevent changes to the vdev tree. The bp-level zio implicitly
195 * protects all of its vdev child zios, which do not hold SCL_ZIO.
196 *
197 * SCL_FREE
198 * Protects changes to metaslab groups and classes.
199 * Held as reader by metaslab_free(). SCL_FREE is distinct from
200 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
201 * blocks in zio_done() while another i/o that holds either
202 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
203 *
204 * SCL_VDEV
205 * Held as reader to prevent changes to the vdev tree during trivial
206 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
207 * other locks, and lower than all of them, to ensure that it's safe
208 * to acquire regardless of caller context.
209 *
210 * In addition, the following rules apply:
211 *
212 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
213 * The lock ordering is SCL_CONFIG > spa_props_lock.
214 *
215 * (b) I/O operations on leaf vdevs. For any zio operation that takes
216 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
217 * or zio_write_phys() -- the caller must ensure that the config cannot
218 * cannot change in the interim, and that the vdev cannot be reopened.
219 * SCL_STATE as reader suffices for both.
220 *
221 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
222 *
223 * spa_vdev_enter() Acquire the namespace lock and the config lock
224 * for writing.
225 *
226 * spa_vdev_exit() Release the config lock, wait for all I/O
227 * to complete, sync the updated configs to the
228 * cache, and release the namespace lock.
229 *
230 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
231 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
232 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
233 */
234
235 static avl_tree_t spa_namespace_avl;
236 kmutex_t spa_namespace_lock;
237 static kcondvar_t spa_namespace_cv;
238 int spa_max_replication_override = SPA_DVAS_PER_BP;
239
240 static kmutex_t spa_spare_lock;
241 static avl_tree_t spa_spare_avl;
242 static kmutex_t spa_l2cache_lock;
243 static avl_tree_t spa_l2cache_avl;
244
245 kmem_cache_t *spa_buffer_pool;
246 spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
247
248 #ifdef ZFS_DEBUG
249 /*
250 * Everything except dprintf, set_error, spa, and indirect_remap is on
251 * by default in debug builds.
252 */
253 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
254 ZFS_DEBUG_INDIRECT_REMAP);
255 #else
256 int zfs_flags = 0;
257 #endif
258
259 /*
260 * zfs_recover can be set to nonzero to attempt to recover from
261 * otherwise-fatal errors, typically caused by on-disk corruption. When
262 * set, calls to zfs_panic_recover() will turn into warning messages.
263 * This should only be used as a last resort, as it typically results
264 * in leaked space, or worse.
265 */
266 int zfs_recover = B_FALSE;
267
268 /*
269 * If destroy encounters an EIO while reading metadata (e.g. indirect
270 * blocks), space referenced by the missing metadata can not be freed.
271 * Normally this causes the background destroy to become "stalled", as
272 * it is unable to make forward progress. While in this stalled state,
273 * all remaining space to free from the error-encountering filesystem is
274 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
275 * permanently leak the space from indirect blocks that can not be read,
276 * and continue to free everything else that it can.
277 *
278 * The default, "stalling" behavior is useful if the storage partially
279 * fails (i.e. some but not all i/os fail), and then later recovers. In
280 * this case, we will be able to continue pool operations while it is
281 * partially failed, and when it recovers, we can continue to free the
282 * space, with no leaks. However, note that this case is actually
283 * fairly rare.
284 *
285 * Typically pools either (a) fail completely (but perhaps temporarily,
286 * e.g. a top-level vdev going offline), or (b) have localized,
287 * permanent errors (e.g. disk returns the wrong data due to bit flip or
288 * firmware bug). In case (a), this setting does not matter because the
289 * pool will be suspended and the sync thread will not be able to make
290 * forward progress regardless. In case (b), because the error is
291 * permanent, the best we can do is leak the minimum amount of space,
292 * which is what setting this flag will do. Therefore, it is reasonable
293 * for this flag to normally be set, but we chose the more conservative
294 * approach of not setting it, so that there is no possibility of
295 * leaking space in the "partial temporary" failure case.
296 */
297 int zfs_free_leak_on_eio = B_FALSE;
298
299 /*
300 * Expiration time in milliseconds. This value has two meanings. First it is
301 * used to determine when the spa_deadman() logic should fire. By default the
302 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
303 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
304 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
305 * in one of three behaviors controlled by zfs_deadman_failmode.
306 */
307 unsigned long zfs_deadman_synctime_ms = 600000UL;
308
309 /*
310 * This value controls the maximum amount of time zio_wait() will block for an
311 * outstanding IO. By default this is 300 seconds at which point the "hung"
312 * behavior will be applied as described for zfs_deadman_synctime_ms.
313 */
314 unsigned long zfs_deadman_ziotime_ms = 300000UL;
315
316 /*
317 * Check time in milliseconds. This defines the frequency at which we check
318 * for hung I/O.
319 */
320 unsigned long zfs_deadman_checktime_ms = 60000UL;
321
322 /*
323 * By default the deadman is enabled.
324 */
325 int zfs_deadman_enabled = 1;
326
327 /*
328 * Controls the behavior of the deadman when it detects a "hung" I/O.
329 * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
330 *
331 * wait - Wait for the "hung" I/O (default)
332 * continue - Attempt to recover from a "hung" I/O
333 * panic - Panic the system
334 */
335 char *zfs_deadman_failmode = "wait";
336
337 /*
338 * The worst case is single-sector max-parity RAID-Z blocks, in which
339 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
340 * times the size; so just assume that. Add to this the fact that
341 * we can have up to 3 DVAs per bp, and one more factor of 2 because
342 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
343 * the worst case is:
344 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
345 */
346 int spa_asize_inflation = 24;
347
348 /*
349 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
350 * the pool to be consumed. This ensures that we don't run the pool
351 * completely out of space, due to unaccounted changes (e.g. to the MOS).
352 * It also limits the worst-case time to allocate space. If we have less than
353 * this amount of free space, most ZPL operations (e.g. write, create) will
354 * return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are also part of
355 * this 3.2% of space which can't be consumed by normal writes; the slop space
356 * "proper" (spa_get_slop_space()) is decreased by the embedded log space.
357 *
358 * Certain operations (e.g. file removal, most administrative actions) can
359 * use half the slop space. They will only return ENOSPC if less than half
360 * the slop space is free. Typically, once the pool has less than the slop
361 * space free, the user will use these operations to free up space in the pool.
362 * These are the operations that call dsl_pool_adjustedsize() with the netfree
363 * argument set to TRUE.
364 *
365 * Operations that are almost guaranteed to free up space in the absence of
366 * a pool checkpoint can use up to three quarters of the slop space
367 * (e.g zfs destroy).
368 *
369 * A very restricted set of operations are always permitted, regardless of
370 * the amount of free space. These are the operations that call
371 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
372 * increase in the amount of space used, it is possible to run the pool
373 * completely out of space, causing it to be permanently read-only.
374 *
375 * Note that on very small pools, the slop space will be larger than
376 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
377 * but we never allow it to be more than half the pool size.
378 *
379 * See also the comments in zfs_space_check_t.
380 */
381 int spa_slop_shift = 5;
382 uint64_t spa_min_slop = 128 * 1024 * 1024;
383 int spa_allocators = 4;
384
385
386 /*PRINTFLIKE2*/
387 void
388 spa_load_failed(spa_t *spa, const char *fmt, ...)
389 {
390 va_list adx;
391 char buf[256];
392
393 va_start(adx, fmt);
394 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
395 va_end(adx);
396
397 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
398 spa->spa_trust_config ? "trusted" : "untrusted", buf);
399 }
400
401 /*PRINTFLIKE2*/
402 void
403 spa_load_note(spa_t *spa, const char *fmt, ...)
404 {
405 va_list adx;
406 char buf[256];
407
408 va_start(adx, fmt);
409 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
410 va_end(adx);
411
412 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
413 spa->spa_trust_config ? "trusted" : "untrusted", buf);
414 }
415
416 /*
417 * By default dedup and user data indirects land in the special class
418 */
419 int zfs_ddt_data_is_special = B_TRUE;
420 int zfs_user_indirect_is_special = B_TRUE;
421
422 /*
423 * The percentage of special class final space reserved for metadata only.
424 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
425 * let metadata into the class.
426 */
427 int zfs_special_class_metadata_reserve_pct = 25;
428
429 /*
430 * ==========================================================================
431 * SPA config locking
432 * ==========================================================================
433 */
434 static void
435 spa_config_lock_init(spa_t *spa)
436 {
437 for (int i = 0; i < SCL_LOCKS; i++) {
438 spa_config_lock_t *scl = &spa->spa_config_lock[i];
439 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
440 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
441 zfs_refcount_create_untracked(&scl->scl_count);
442 scl->scl_writer = NULL;
443 scl->scl_write_wanted = 0;
444 }
445 }
446
447 static void
448 spa_config_lock_destroy(spa_t *spa)
449 {
450 for (int i = 0; i < SCL_LOCKS; i++) {
451 spa_config_lock_t *scl = &spa->spa_config_lock[i];
452 mutex_destroy(&scl->scl_lock);
453 cv_destroy(&scl->scl_cv);
454 zfs_refcount_destroy(&scl->scl_count);
455 ASSERT(scl->scl_writer == NULL);
456 ASSERT(scl->scl_write_wanted == 0);
457 }
458 }
459
460 int
461 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
462 {
463 for (int i = 0; i < SCL_LOCKS; i++) {
464 spa_config_lock_t *scl = &spa->spa_config_lock[i];
465 if (!(locks & (1 << i)))
466 continue;
467 mutex_enter(&scl->scl_lock);
468 if (rw == RW_READER) {
469 if (scl->scl_writer || scl->scl_write_wanted) {
470 mutex_exit(&scl->scl_lock);
471 spa_config_exit(spa, locks & ((1 << i) - 1),
472 tag);
473 return (0);
474 }
475 } else {
476 ASSERT(scl->scl_writer != curthread);
477 if (!zfs_refcount_is_zero(&scl->scl_count)) {
478 mutex_exit(&scl->scl_lock);
479 spa_config_exit(spa, locks & ((1 << i) - 1),
480 tag);
481 return (0);
482 }
483 scl->scl_writer = curthread;
484 }
485 (void) zfs_refcount_add(&scl->scl_count, tag);
486 mutex_exit(&scl->scl_lock);
487 }
488 return (1);
489 }
490
491 void
492 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
493 {
494 int wlocks_held = 0;
495
496 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
497
498 for (int i = 0; i < SCL_LOCKS; i++) {
499 spa_config_lock_t *scl = &spa->spa_config_lock[i];
500 if (scl->scl_writer == curthread)
501 wlocks_held |= (1 << i);
502 if (!(locks & (1 << i)))
503 continue;
504 mutex_enter(&scl->scl_lock);
505 if (rw == RW_READER) {
506 while (scl->scl_writer || scl->scl_write_wanted) {
507 cv_wait(&scl->scl_cv, &scl->scl_lock);
508 }
509 } else {
510 ASSERT(scl->scl_writer != curthread);
511 while (!zfs_refcount_is_zero(&scl->scl_count)) {
512 scl->scl_write_wanted++;
513 cv_wait(&scl->scl_cv, &scl->scl_lock);
514 scl->scl_write_wanted--;
515 }
516 scl->scl_writer = curthread;
517 }
518 (void) zfs_refcount_add(&scl->scl_count, tag);
519 mutex_exit(&scl->scl_lock);
520 }
521 ASSERT3U(wlocks_held, <=, locks);
522 }
523
524 void
525 spa_config_exit(spa_t *spa, int locks, const void *tag)
526 {
527 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
528 spa_config_lock_t *scl = &spa->spa_config_lock[i];
529 if (!(locks & (1 << i)))
530 continue;
531 mutex_enter(&scl->scl_lock);
532 ASSERT(!zfs_refcount_is_zero(&scl->scl_count));
533 if (zfs_refcount_remove(&scl->scl_count, tag) == 0) {
534 ASSERT(scl->scl_writer == NULL ||
535 scl->scl_writer == curthread);
536 scl->scl_writer = NULL; /* OK in either case */
537 cv_broadcast(&scl->scl_cv);
538 }
539 mutex_exit(&scl->scl_lock);
540 }
541 }
542
543 int
544 spa_config_held(spa_t *spa, int locks, krw_t rw)
545 {
546 int locks_held = 0;
547
548 for (int i = 0; i < SCL_LOCKS; i++) {
549 spa_config_lock_t *scl = &spa->spa_config_lock[i];
550 if (!(locks & (1 << i)))
551 continue;
552 if ((rw == RW_READER &&
553 !zfs_refcount_is_zero(&scl->scl_count)) ||
554 (rw == RW_WRITER && scl->scl_writer == curthread))
555 locks_held |= 1 << i;
556 }
557
558 return (locks_held);
559 }
560
561 /*
562 * ==========================================================================
563 * SPA namespace functions
564 * ==========================================================================
565 */
566
567 /*
568 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
569 * Returns NULL if no matching spa_t is found.
570 */
571 spa_t *
572 spa_lookup(const char *name)
573 {
574 static spa_t search; /* spa_t is large; don't allocate on stack */
575 spa_t *spa;
576 avl_index_t where;
577 char *cp;
578
579 ASSERT(MUTEX_HELD(&spa_namespace_lock));
580
581 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
582
583 /*
584 * If it's a full dataset name, figure out the pool name and
585 * just use that.
586 */
587 cp = strpbrk(search.spa_name, "/@#");
588 if (cp != NULL)
589 *cp = '\0';
590
591 spa = avl_find(&spa_namespace_avl, &search, &where);
592
593 return (spa);
594 }
595
596 /*
597 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
598 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
599 * looking for potentially hung I/Os.
600 */
601 void
602 spa_deadman(void *arg)
603 {
604 spa_t *spa = arg;
605
606 /* Disable the deadman if the pool is suspended. */
607 if (spa_suspended(spa))
608 return;
609
610 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
611 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
612 ++spa->spa_deadman_calls);
613 if (zfs_deadman_enabled)
614 vdev_deadman(spa->spa_root_vdev, FTAG);
615
616 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
617 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
618 MSEC_TO_TICK(zfs_deadman_checktime_ms));
619 }
620
621 static int
622 spa_log_sm_sort_by_txg(const void *va, const void *vb)
623 {
624 const spa_log_sm_t *a = va;
625 const spa_log_sm_t *b = vb;
626
627 return (TREE_CMP(a->sls_txg, b->sls_txg));
628 }
629
630 /*
631 * Create an uninitialized spa_t with the given name. Requires
632 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
633 * exist by calling spa_lookup() first.
634 */
635 spa_t *
636 spa_add(const char *name, nvlist_t *config, const char *altroot)
637 {
638 spa_t *spa;
639 spa_config_dirent_t *dp;
640
641 ASSERT(MUTEX_HELD(&spa_namespace_lock));
642
643 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
644
645 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
646 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
647 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
648 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
649 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
650 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
651 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
652 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
653 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
654 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
655 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
656 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
657 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
658 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
659
660 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
661 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
662 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
663 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
664 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
665 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
666 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
667
668 for (int t = 0; t < TXG_SIZE; t++)
669 bplist_create(&spa->spa_free_bplist[t]);
670
671 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
672 spa->spa_state = POOL_STATE_UNINITIALIZED;
673 spa->spa_freeze_txg = UINT64_MAX;
674 spa->spa_final_txg = UINT64_MAX;
675 spa->spa_load_max_txg = UINT64_MAX;
676 spa->spa_proc = &p0;
677 spa->spa_proc_state = SPA_PROC_NONE;
678 spa->spa_trust_config = B_TRUE;
679 spa->spa_hostid = zone_get_hostid(NULL);
680
681 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
682 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
683 spa_set_deadman_failmode(spa, zfs_deadman_failmode);
684
685 zfs_refcount_create(&spa->spa_refcount);
686 spa_config_lock_init(spa);
687 spa_stats_init(spa);
688
689 avl_add(&spa_namespace_avl, spa);
690
691 /*
692 * Set the alternate root, if there is one.
693 */
694 if (altroot)
695 spa->spa_root = spa_strdup(altroot);
696
697 spa->spa_alloc_count = spa_allocators;
698 spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count *
699 sizeof (kmutex_t), KM_SLEEP);
700 spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count *
701 sizeof (avl_tree_t), KM_SLEEP);
702 for (int i = 0; i < spa->spa_alloc_count; i++) {
703 mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL);
704 avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare,
705 sizeof (zio_t), offsetof(zio_t, io_alloc_node));
706 }
707 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
708 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
709 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
710 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
711 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
712 offsetof(log_summary_entry_t, lse_node));
713
714 /*
715 * Every pool starts with the default cachefile
716 */
717 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
718 offsetof(spa_config_dirent_t, scd_link));
719
720 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
721 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
722 list_insert_head(&spa->spa_config_list, dp);
723
724 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
725 KM_SLEEP) == 0);
726
727 if (config != NULL) {
728 nvlist_t *features;
729
730 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
731 &features) == 0) {
732 VERIFY(nvlist_dup(features, &spa->spa_label_features,
733 0) == 0);
734 }
735
736 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
737 }
738
739 if (spa->spa_label_features == NULL) {
740 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
741 KM_SLEEP) == 0);
742 }
743
744 spa->spa_min_ashift = INT_MAX;
745 spa->spa_max_ashift = 0;
746 spa->spa_min_alloc = INT_MAX;
747
748 /* Reset cached value */
749 spa->spa_dedup_dspace = ~0ULL;
750
751 /*
752 * As a pool is being created, treat all features as disabled by
753 * setting SPA_FEATURE_DISABLED for all entries in the feature
754 * refcount cache.
755 */
756 for (int i = 0; i < SPA_FEATURES; i++) {
757 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
758 }
759
760 list_create(&spa->spa_leaf_list, sizeof (vdev_t),
761 offsetof(vdev_t, vdev_leaf_node));
762
763 return (spa);
764 }
765
766 /*
767 * Removes a spa_t from the namespace, freeing up any memory used. Requires
768 * spa_namespace_lock. This is called only after the spa_t has been closed and
769 * deactivated.
770 */
771 void
772 spa_remove(spa_t *spa)
773 {
774 spa_config_dirent_t *dp;
775
776 ASSERT(MUTEX_HELD(&spa_namespace_lock));
777 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
778 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
779 ASSERT0(spa->spa_waiters);
780
781 nvlist_free(spa->spa_config_splitting);
782
783 avl_remove(&spa_namespace_avl, spa);
784 cv_broadcast(&spa_namespace_cv);
785
786 if (spa->spa_root)
787 spa_strfree(spa->spa_root);
788
789 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
790 list_remove(&spa->spa_config_list, dp);
791 if (dp->scd_path != NULL)
792 spa_strfree(dp->scd_path);
793 kmem_free(dp, sizeof (spa_config_dirent_t));
794 }
795
796 for (int i = 0; i < spa->spa_alloc_count; i++) {
797 avl_destroy(&spa->spa_alloc_trees[i]);
798 mutex_destroy(&spa->spa_alloc_locks[i]);
799 }
800 kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count *
801 sizeof (kmutex_t));
802 kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count *
803 sizeof (avl_tree_t));
804
805 avl_destroy(&spa->spa_metaslabs_by_flushed);
806 avl_destroy(&spa->spa_sm_logs_by_txg);
807 list_destroy(&spa->spa_log_summary);
808 list_destroy(&spa->spa_config_list);
809 list_destroy(&spa->spa_leaf_list);
810
811 nvlist_free(spa->spa_label_features);
812 nvlist_free(spa->spa_load_info);
813 nvlist_free(spa->spa_feat_stats);
814 spa_config_set(spa, NULL);
815
816 zfs_refcount_destroy(&spa->spa_refcount);
817
818 spa_stats_destroy(spa);
819 spa_config_lock_destroy(spa);
820
821 for (int t = 0; t < TXG_SIZE; t++)
822 bplist_destroy(&spa->spa_free_bplist[t]);
823
824 zio_checksum_templates_free(spa);
825
826 cv_destroy(&spa->spa_async_cv);
827 cv_destroy(&spa->spa_evicting_os_cv);
828 cv_destroy(&spa->spa_proc_cv);
829 cv_destroy(&spa->spa_scrub_io_cv);
830 cv_destroy(&spa->spa_suspend_cv);
831 cv_destroy(&spa->spa_activities_cv);
832 cv_destroy(&spa->spa_waiters_cv);
833
834 mutex_destroy(&spa->spa_flushed_ms_lock);
835 mutex_destroy(&spa->spa_async_lock);
836 mutex_destroy(&spa->spa_errlist_lock);
837 mutex_destroy(&spa->spa_errlog_lock);
838 mutex_destroy(&spa->spa_evicting_os_lock);
839 mutex_destroy(&spa->spa_history_lock);
840 mutex_destroy(&spa->spa_proc_lock);
841 mutex_destroy(&spa->spa_props_lock);
842 mutex_destroy(&spa->spa_cksum_tmpls_lock);
843 mutex_destroy(&spa->spa_scrub_lock);
844 mutex_destroy(&spa->spa_suspend_lock);
845 mutex_destroy(&spa->spa_vdev_top_lock);
846 mutex_destroy(&spa->spa_feat_stats_lock);
847 mutex_destroy(&spa->spa_activities_lock);
848
849 kmem_free(spa, sizeof (spa_t));
850 }
851
852 /*
853 * Given a pool, return the next pool in the namespace, or NULL if there is
854 * none. If 'prev' is NULL, return the first pool.
855 */
856 spa_t *
857 spa_next(spa_t *prev)
858 {
859 ASSERT(MUTEX_HELD(&spa_namespace_lock));
860
861 if (prev)
862 return (AVL_NEXT(&spa_namespace_avl, prev));
863 else
864 return (avl_first(&spa_namespace_avl));
865 }
866
867 /*
868 * ==========================================================================
869 * SPA refcount functions
870 * ==========================================================================
871 */
872
873 /*
874 * Add a reference to the given spa_t. Must have at least one reference, or
875 * have the namespace lock held.
876 */
877 void
878 spa_open_ref(spa_t *spa, void *tag)
879 {
880 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
881 MUTEX_HELD(&spa_namespace_lock));
882 (void) zfs_refcount_add(&spa->spa_refcount, tag);
883 }
884
885 /*
886 * Remove a reference to the given spa_t. Must have at least one reference, or
887 * have the namespace lock held.
888 */
889 void
890 spa_close(spa_t *spa, void *tag)
891 {
892 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
893 MUTEX_HELD(&spa_namespace_lock));
894 (void) zfs_refcount_remove(&spa->spa_refcount, tag);
895 }
896
897 /*
898 * Remove a reference to the given spa_t held by a dsl dir that is
899 * being asynchronously released. Async releases occur from a taskq
900 * performing eviction of dsl datasets and dirs. The namespace lock
901 * isn't held and the hold by the object being evicted may contribute to
902 * spa_minref (e.g. dataset or directory released during pool export),
903 * so the asserts in spa_close() do not apply.
904 */
905 void
906 spa_async_close(spa_t *spa, void *tag)
907 {
908 (void) zfs_refcount_remove(&spa->spa_refcount, tag);
909 }
910
911 /*
912 * Check to see if the spa refcount is zero. Must be called with
913 * spa_namespace_lock held. We really compare against spa_minref, which is the
914 * number of references acquired when opening a pool
915 */
916 boolean_t
917 spa_refcount_zero(spa_t *spa)
918 {
919 ASSERT(MUTEX_HELD(&spa_namespace_lock));
920
921 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
922 }
923
924 /*
925 * ==========================================================================
926 * SPA spare and l2cache tracking
927 * ==========================================================================
928 */
929
930 /*
931 * Hot spares and cache devices are tracked using the same code below,
932 * for 'auxiliary' devices.
933 */
934
935 typedef struct spa_aux {
936 uint64_t aux_guid;
937 uint64_t aux_pool;
938 avl_node_t aux_avl;
939 int aux_count;
940 } spa_aux_t;
941
942 static inline int
943 spa_aux_compare(const void *a, const void *b)
944 {
945 const spa_aux_t *sa = (const spa_aux_t *)a;
946 const spa_aux_t *sb = (const spa_aux_t *)b;
947
948 return (TREE_CMP(sa->aux_guid, sb->aux_guid));
949 }
950
951 static void
952 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
953 {
954 avl_index_t where;
955 spa_aux_t search;
956 spa_aux_t *aux;
957
958 search.aux_guid = vd->vdev_guid;
959 if ((aux = avl_find(avl, &search, &where)) != NULL) {
960 aux->aux_count++;
961 } else {
962 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
963 aux->aux_guid = vd->vdev_guid;
964 aux->aux_count = 1;
965 avl_insert(avl, aux, where);
966 }
967 }
968
969 static void
970 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
971 {
972 spa_aux_t search;
973 spa_aux_t *aux;
974 avl_index_t where;
975
976 search.aux_guid = vd->vdev_guid;
977 aux = avl_find(avl, &search, &where);
978
979 ASSERT(aux != NULL);
980
981 if (--aux->aux_count == 0) {
982 avl_remove(avl, aux);
983 kmem_free(aux, sizeof (spa_aux_t));
984 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
985 aux->aux_pool = 0ULL;
986 }
987 }
988
989 static boolean_t
990 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
991 {
992 spa_aux_t search, *found;
993
994 search.aux_guid = guid;
995 found = avl_find(avl, &search, NULL);
996
997 if (pool) {
998 if (found)
999 *pool = found->aux_pool;
1000 else
1001 *pool = 0ULL;
1002 }
1003
1004 if (refcnt) {
1005 if (found)
1006 *refcnt = found->aux_count;
1007 else
1008 *refcnt = 0;
1009 }
1010
1011 return (found != NULL);
1012 }
1013
1014 static void
1015 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1016 {
1017 spa_aux_t search, *found;
1018 avl_index_t where;
1019
1020 search.aux_guid = vd->vdev_guid;
1021 found = avl_find(avl, &search, &where);
1022 ASSERT(found != NULL);
1023 ASSERT(found->aux_pool == 0ULL);
1024
1025 found->aux_pool = spa_guid(vd->vdev_spa);
1026 }
1027
1028 /*
1029 * Spares are tracked globally due to the following constraints:
1030 *
1031 * - A spare may be part of multiple pools.
1032 * - A spare may be added to a pool even if it's actively in use within
1033 * another pool.
1034 * - A spare in use in any pool can only be the source of a replacement if
1035 * the target is a spare in the same pool.
1036 *
1037 * We keep track of all spares on the system through the use of a reference
1038 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
1039 * spare, then we bump the reference count in the AVL tree. In addition, we set
1040 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1041 * inactive). When a spare is made active (used to replace a device in the
1042 * pool), we also keep track of which pool its been made a part of.
1043 *
1044 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
1045 * called under the spa_namespace lock as part of vdev reconfiguration. The
1046 * separate spare lock exists for the status query path, which does not need to
1047 * be completely consistent with respect to other vdev configuration changes.
1048 */
1049
1050 static int
1051 spa_spare_compare(const void *a, const void *b)
1052 {
1053 return (spa_aux_compare(a, b));
1054 }
1055
1056 void
1057 spa_spare_add(vdev_t *vd)
1058 {
1059 mutex_enter(&spa_spare_lock);
1060 ASSERT(!vd->vdev_isspare);
1061 spa_aux_add(vd, &spa_spare_avl);
1062 vd->vdev_isspare = B_TRUE;
1063 mutex_exit(&spa_spare_lock);
1064 }
1065
1066 void
1067 spa_spare_remove(vdev_t *vd)
1068 {
1069 mutex_enter(&spa_spare_lock);
1070 ASSERT(vd->vdev_isspare);
1071 spa_aux_remove(vd, &spa_spare_avl);
1072 vd->vdev_isspare = B_FALSE;
1073 mutex_exit(&spa_spare_lock);
1074 }
1075
1076 boolean_t
1077 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1078 {
1079 boolean_t found;
1080
1081 mutex_enter(&spa_spare_lock);
1082 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1083 mutex_exit(&spa_spare_lock);
1084
1085 return (found);
1086 }
1087
1088 void
1089 spa_spare_activate(vdev_t *vd)
1090 {
1091 mutex_enter(&spa_spare_lock);
1092 ASSERT(vd->vdev_isspare);
1093 spa_aux_activate(vd, &spa_spare_avl);
1094 mutex_exit(&spa_spare_lock);
1095 }
1096
1097 /*
1098 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1099 * Cache devices currently only support one pool per cache device, and so
1100 * for these devices the aux reference count is currently unused beyond 1.
1101 */
1102
1103 static int
1104 spa_l2cache_compare(const void *a, const void *b)
1105 {
1106 return (spa_aux_compare(a, b));
1107 }
1108
1109 void
1110 spa_l2cache_add(vdev_t *vd)
1111 {
1112 mutex_enter(&spa_l2cache_lock);
1113 ASSERT(!vd->vdev_isl2cache);
1114 spa_aux_add(vd, &spa_l2cache_avl);
1115 vd->vdev_isl2cache = B_TRUE;
1116 mutex_exit(&spa_l2cache_lock);
1117 }
1118
1119 void
1120 spa_l2cache_remove(vdev_t *vd)
1121 {
1122 mutex_enter(&spa_l2cache_lock);
1123 ASSERT(vd->vdev_isl2cache);
1124 spa_aux_remove(vd, &spa_l2cache_avl);
1125 vd->vdev_isl2cache = B_FALSE;
1126 mutex_exit(&spa_l2cache_lock);
1127 }
1128
1129 boolean_t
1130 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1131 {
1132 boolean_t found;
1133
1134 mutex_enter(&spa_l2cache_lock);
1135 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1136 mutex_exit(&spa_l2cache_lock);
1137
1138 return (found);
1139 }
1140
1141 void
1142 spa_l2cache_activate(vdev_t *vd)
1143 {
1144 mutex_enter(&spa_l2cache_lock);
1145 ASSERT(vd->vdev_isl2cache);
1146 spa_aux_activate(vd, &spa_l2cache_avl);
1147 mutex_exit(&spa_l2cache_lock);
1148 }
1149
1150 /*
1151 * ==========================================================================
1152 * SPA vdev locking
1153 * ==========================================================================
1154 */
1155
1156 /*
1157 * Lock the given spa_t for the purpose of adding or removing a vdev.
1158 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1159 * It returns the next transaction group for the spa_t.
1160 */
1161 uint64_t
1162 spa_vdev_enter(spa_t *spa)
1163 {
1164 mutex_enter(&spa->spa_vdev_top_lock);
1165 mutex_enter(&spa_namespace_lock);
1166
1167 vdev_autotrim_stop_all(spa);
1168
1169 return (spa_vdev_config_enter(spa));
1170 }
1171
1172 /*
1173 * The same as spa_vdev_enter() above but additionally takes the guid of
1174 * the vdev being detached. When there is a rebuild in process it will be
1175 * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1176 * The rebuild is canceled if only a single child remains after the detach.
1177 */
1178 uint64_t
1179 spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1180 {
1181 mutex_enter(&spa->spa_vdev_top_lock);
1182 mutex_enter(&spa_namespace_lock);
1183
1184 vdev_autotrim_stop_all(spa);
1185
1186 if (guid != 0) {
1187 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1188 if (vd) {
1189 vdev_rebuild_stop_wait(vd->vdev_top);
1190 }
1191 }
1192
1193 return (spa_vdev_config_enter(spa));
1194 }
1195
1196 /*
1197 * Internal implementation for spa_vdev_enter(). Used when a vdev
1198 * operation requires multiple syncs (i.e. removing a device) while
1199 * keeping the spa_namespace_lock held.
1200 */
1201 uint64_t
1202 spa_vdev_config_enter(spa_t *spa)
1203 {
1204 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1205
1206 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1207
1208 return (spa_last_synced_txg(spa) + 1);
1209 }
1210
1211 /*
1212 * Used in combination with spa_vdev_config_enter() to allow the syncing
1213 * of multiple transactions without releasing the spa_namespace_lock.
1214 */
1215 void
1216 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1217 {
1218 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1219
1220 int config_changed = B_FALSE;
1221
1222 ASSERT(txg > spa_last_synced_txg(spa));
1223
1224 spa->spa_pending_vdev = NULL;
1225
1226 /*
1227 * Reassess the DTLs.
1228 */
1229 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
1230
1231 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1232 config_changed = B_TRUE;
1233 spa->spa_config_generation++;
1234 }
1235
1236 /*
1237 * Verify the metaslab classes.
1238 */
1239 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1240 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1241 ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0);
1242 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1243 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1244
1245 spa_config_exit(spa, SCL_ALL, spa);
1246
1247 /*
1248 * Panic the system if the specified tag requires it. This
1249 * is useful for ensuring that configurations are updated
1250 * transactionally.
1251 */
1252 if (zio_injection_enabled)
1253 zio_handle_panic_injection(spa, tag, 0);
1254
1255 /*
1256 * Note: this txg_wait_synced() is important because it ensures
1257 * that there won't be more than one config change per txg.
1258 * This allows us to use the txg as the generation number.
1259 */
1260 if (error == 0)
1261 txg_wait_synced(spa->spa_dsl_pool, txg);
1262
1263 if (vd != NULL) {
1264 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1265 if (vd->vdev_ops->vdev_op_leaf) {
1266 mutex_enter(&vd->vdev_initialize_lock);
1267 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1268 NULL);
1269 mutex_exit(&vd->vdev_initialize_lock);
1270
1271 mutex_enter(&vd->vdev_trim_lock);
1272 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1273 mutex_exit(&vd->vdev_trim_lock);
1274 }
1275
1276 /*
1277 * The vdev may be both a leaf and top-level device.
1278 */
1279 vdev_autotrim_stop_wait(vd);
1280
1281 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1282 vdev_free(vd);
1283 spa_config_exit(spa, SCL_ALL, spa);
1284 }
1285
1286 /*
1287 * If the config changed, update the config cache.
1288 */
1289 if (config_changed)
1290 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1291 }
1292
1293 /*
1294 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1295 * locking of spa_vdev_enter(), we also want make sure the transactions have
1296 * synced to disk, and then update the global configuration cache with the new
1297 * information.
1298 */
1299 int
1300 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1301 {
1302 vdev_autotrim_restart(spa);
1303 vdev_rebuild_restart(spa);
1304
1305 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1306 mutex_exit(&spa_namespace_lock);
1307 mutex_exit(&spa->spa_vdev_top_lock);
1308
1309 return (error);
1310 }
1311
1312 /*
1313 * Lock the given spa_t for the purpose of changing vdev state.
1314 */
1315 void
1316 spa_vdev_state_enter(spa_t *spa, int oplocks)
1317 {
1318 int locks = SCL_STATE_ALL | oplocks;
1319
1320 /*
1321 * Root pools may need to read of the underlying devfs filesystem
1322 * when opening up a vdev. Unfortunately if we're holding the
1323 * SCL_ZIO lock it will result in a deadlock when we try to issue
1324 * the read from the root filesystem. Instead we "prefetch"
1325 * the associated vnodes that we need prior to opening the
1326 * underlying devices and cache them so that we can prevent
1327 * any I/O when we are doing the actual open.
1328 */
1329 if (spa_is_root(spa)) {
1330 int low = locks & ~(SCL_ZIO - 1);
1331 int high = locks & ~low;
1332
1333 spa_config_enter(spa, high, spa, RW_WRITER);
1334 vdev_hold(spa->spa_root_vdev);
1335 spa_config_enter(spa, low, spa, RW_WRITER);
1336 } else {
1337 spa_config_enter(spa, locks, spa, RW_WRITER);
1338 }
1339 spa->spa_vdev_locks = locks;
1340 }
1341
1342 int
1343 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1344 {
1345 boolean_t config_changed = B_FALSE;
1346 vdev_t *vdev_top;
1347
1348 if (vd == NULL || vd == spa->spa_root_vdev) {
1349 vdev_top = spa->spa_root_vdev;
1350 } else {
1351 vdev_top = vd->vdev_top;
1352 }
1353
1354 if (vd != NULL || error == 0)
1355 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
1356
1357 if (vd != NULL) {
1358 if (vd != spa->spa_root_vdev)
1359 vdev_state_dirty(vdev_top);
1360
1361 config_changed = B_TRUE;
1362 spa->spa_config_generation++;
1363 }
1364
1365 if (spa_is_root(spa))
1366 vdev_rele(spa->spa_root_vdev);
1367
1368 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1369 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1370
1371 /*
1372 * If anything changed, wait for it to sync. This ensures that,
1373 * from the system administrator's perspective, zpool(8) commands
1374 * are synchronous. This is important for things like zpool offline:
1375 * when the command completes, you expect no further I/O from ZFS.
1376 */
1377 if (vd != NULL)
1378 txg_wait_synced(spa->spa_dsl_pool, 0);
1379
1380 /*
1381 * If the config changed, update the config cache.
1382 */
1383 if (config_changed) {
1384 mutex_enter(&spa_namespace_lock);
1385 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1386 mutex_exit(&spa_namespace_lock);
1387 }
1388
1389 return (error);
1390 }
1391
1392 /*
1393 * ==========================================================================
1394 * Miscellaneous functions
1395 * ==========================================================================
1396 */
1397
1398 void
1399 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1400 {
1401 if (!nvlist_exists(spa->spa_label_features, feature)) {
1402 fnvlist_add_boolean(spa->spa_label_features, feature);
1403 /*
1404 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1405 * dirty the vdev config because lock SCL_CONFIG is not held.
1406 * Thankfully, in this case we don't need to dirty the config
1407 * because it will be written out anyway when we finish
1408 * creating the pool.
1409 */
1410 if (tx->tx_txg != TXG_INITIAL)
1411 vdev_config_dirty(spa->spa_root_vdev);
1412 }
1413 }
1414
1415 void
1416 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1417 {
1418 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1419 vdev_config_dirty(spa->spa_root_vdev);
1420 }
1421
1422 /*
1423 * Return the spa_t associated with given pool_guid, if it exists. If
1424 * device_guid is non-zero, determine whether the pool exists *and* contains
1425 * a device with the specified device_guid.
1426 */
1427 spa_t *
1428 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1429 {
1430 spa_t *spa;
1431 avl_tree_t *t = &spa_namespace_avl;
1432
1433 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1434
1435 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1436 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1437 continue;
1438 if (spa->spa_root_vdev == NULL)
1439 continue;
1440 if (spa_guid(spa) == pool_guid) {
1441 if (device_guid == 0)
1442 break;
1443
1444 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1445 device_guid) != NULL)
1446 break;
1447
1448 /*
1449 * Check any devices we may be in the process of adding.
1450 */
1451 if (spa->spa_pending_vdev) {
1452 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1453 device_guid) != NULL)
1454 break;
1455 }
1456 }
1457 }
1458
1459 return (spa);
1460 }
1461
1462 /*
1463 * Determine whether a pool with the given pool_guid exists.
1464 */
1465 boolean_t
1466 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1467 {
1468 return (spa_by_guid(pool_guid, device_guid) != NULL);
1469 }
1470
1471 char *
1472 spa_strdup(const char *s)
1473 {
1474 size_t len;
1475 char *new;
1476
1477 len = strlen(s);
1478 new = kmem_alloc(len + 1, KM_SLEEP);
1479 bcopy(s, new, len);
1480 new[len] = '\0';
1481
1482 return (new);
1483 }
1484
1485 void
1486 spa_strfree(char *s)
1487 {
1488 kmem_free(s, strlen(s) + 1);
1489 }
1490
1491 uint64_t
1492 spa_get_random(uint64_t range)
1493 {
1494 uint64_t r;
1495
1496 ASSERT(range != 0);
1497
1498 if (range == 1)
1499 return (0);
1500
1501 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1502
1503 return (r % range);
1504 }
1505
1506 uint64_t
1507 spa_generate_guid(spa_t *spa)
1508 {
1509 uint64_t guid = spa_get_random(-1ULL);
1510
1511 if (spa != NULL) {
1512 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1513 guid = spa_get_random(-1ULL);
1514 } else {
1515 while (guid == 0 || spa_guid_exists(guid, 0))
1516 guid = spa_get_random(-1ULL);
1517 }
1518
1519 return (guid);
1520 }
1521
1522 void
1523 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1524 {
1525 char type[256];
1526 char *checksum = NULL;
1527 char *compress = NULL;
1528
1529 if (bp != NULL) {
1530 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1531 dmu_object_byteswap_t bswap =
1532 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1533 (void) snprintf(type, sizeof (type), "bswap %s %s",
1534 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1535 "metadata" : "data",
1536 dmu_ot_byteswap[bswap].ob_name);
1537 } else {
1538 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1539 sizeof (type));
1540 }
1541 if (!BP_IS_EMBEDDED(bp)) {
1542 checksum =
1543 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1544 }
1545 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1546 }
1547
1548 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1549 compress);
1550 }
1551
1552 void
1553 spa_freeze(spa_t *spa)
1554 {
1555 uint64_t freeze_txg = 0;
1556
1557 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1558 if (spa->spa_freeze_txg == UINT64_MAX) {
1559 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1560 spa->spa_freeze_txg = freeze_txg;
1561 }
1562 spa_config_exit(spa, SCL_ALL, FTAG);
1563 if (freeze_txg != 0)
1564 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1565 }
1566
1567 void
1568 zfs_panic_recover(const char *fmt, ...)
1569 {
1570 va_list adx;
1571
1572 va_start(adx, fmt);
1573 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1574 va_end(adx);
1575 }
1576
1577 /*
1578 * This is a stripped-down version of strtoull, suitable only for converting
1579 * lowercase hexadecimal numbers that don't overflow.
1580 */
1581 uint64_t
1582 zfs_strtonum(const char *str, char **nptr)
1583 {
1584 uint64_t val = 0;
1585 char c;
1586 int digit;
1587
1588 while ((c = *str) != '\0') {
1589 if (c >= '0' && c <= '9')
1590 digit = c - '0';
1591 else if (c >= 'a' && c <= 'f')
1592 digit = 10 + c - 'a';
1593 else
1594 break;
1595
1596 val *= 16;
1597 val += digit;
1598
1599 str++;
1600 }
1601
1602 if (nptr)
1603 *nptr = (char *)str;
1604
1605 return (val);
1606 }
1607
1608 void
1609 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1610 {
1611 /*
1612 * We bump the feature refcount for each special vdev added to the pool
1613 */
1614 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1615 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1616 }
1617
1618 /*
1619 * ==========================================================================
1620 * Accessor functions
1621 * ==========================================================================
1622 */
1623
1624 boolean_t
1625 spa_shutting_down(spa_t *spa)
1626 {
1627 return (spa->spa_async_suspended);
1628 }
1629
1630 dsl_pool_t *
1631 spa_get_dsl(spa_t *spa)
1632 {
1633 return (spa->spa_dsl_pool);
1634 }
1635
1636 boolean_t
1637 spa_is_initializing(spa_t *spa)
1638 {
1639 return (spa->spa_is_initializing);
1640 }
1641
1642 boolean_t
1643 spa_indirect_vdevs_loaded(spa_t *spa)
1644 {
1645 return (spa->spa_indirect_vdevs_loaded);
1646 }
1647
1648 blkptr_t *
1649 spa_get_rootblkptr(spa_t *spa)
1650 {
1651 return (&spa->spa_ubsync.ub_rootbp);
1652 }
1653
1654 void
1655 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1656 {
1657 spa->spa_uberblock.ub_rootbp = *bp;
1658 }
1659
1660 void
1661 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1662 {
1663 if (spa->spa_root == NULL)
1664 buf[0] = '\0';
1665 else
1666 (void) strncpy(buf, spa->spa_root, buflen);
1667 }
1668
1669 int
1670 spa_sync_pass(spa_t *spa)
1671 {
1672 return (spa->spa_sync_pass);
1673 }
1674
1675 char *
1676 spa_name(spa_t *spa)
1677 {
1678 return (spa->spa_name);
1679 }
1680
1681 uint64_t
1682 spa_guid(spa_t *spa)
1683 {
1684 dsl_pool_t *dp = spa_get_dsl(spa);
1685 uint64_t guid;
1686
1687 /*
1688 * If we fail to parse the config during spa_load(), we can go through
1689 * the error path (which posts an ereport) and end up here with no root
1690 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1691 * this case.
1692 */
1693 if (spa->spa_root_vdev == NULL)
1694 return (spa->spa_config_guid);
1695
1696 guid = spa->spa_last_synced_guid != 0 ?
1697 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1698
1699 /*
1700 * Return the most recently synced out guid unless we're
1701 * in syncing context.
1702 */
1703 if (dp && dsl_pool_sync_context(dp))
1704 return (spa->spa_root_vdev->vdev_guid);
1705 else
1706 return (guid);
1707 }
1708
1709 uint64_t
1710 spa_load_guid(spa_t *spa)
1711 {
1712 /*
1713 * This is a GUID that exists solely as a reference for the
1714 * purposes of the arc. It is generated at load time, and
1715 * is never written to persistent storage.
1716 */
1717 return (spa->spa_load_guid);
1718 }
1719
1720 uint64_t
1721 spa_last_synced_txg(spa_t *spa)
1722 {
1723 return (spa->spa_ubsync.ub_txg);
1724 }
1725
1726 uint64_t
1727 spa_first_txg(spa_t *spa)
1728 {
1729 return (spa->spa_first_txg);
1730 }
1731
1732 uint64_t
1733 spa_syncing_txg(spa_t *spa)
1734 {
1735 return (spa->spa_syncing_txg);
1736 }
1737
1738 /*
1739 * Return the last txg where data can be dirtied. The final txgs
1740 * will be used to just clear out any deferred frees that remain.
1741 */
1742 uint64_t
1743 spa_final_dirty_txg(spa_t *spa)
1744 {
1745 return (spa->spa_final_txg - TXG_DEFER_SIZE);
1746 }
1747
1748 pool_state_t
1749 spa_state(spa_t *spa)
1750 {
1751 return (spa->spa_state);
1752 }
1753
1754 spa_load_state_t
1755 spa_load_state(spa_t *spa)
1756 {
1757 return (spa->spa_load_state);
1758 }
1759
1760 uint64_t
1761 spa_freeze_txg(spa_t *spa)
1762 {
1763 return (spa->spa_freeze_txg);
1764 }
1765
1766 /*
1767 * Return the inflated asize for a logical write in bytes. This is used by the
1768 * DMU to calculate the space a logical write will require on disk.
1769 * If lsize is smaller than the largest physical block size allocatable on this
1770 * pool we use its value instead, since the write will end up using the whole
1771 * block anyway.
1772 */
1773 uint64_t
1774 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1775 {
1776 if (lsize == 0)
1777 return (0); /* No inflation needed */
1778 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1779 }
1780
1781 /*
1782 * Return the amount of slop space in bytes. It is typically 1/32 of the pool
1783 * (3.2%), minus the embedded log space. On very small pools, it may be
1784 * slightly larger than this. The embedded log space is not included in
1785 * spa_dspace. By subtracting it, the usable space (per "zfs list") is a
1786 * constant 97% of the total space, regardless of metaslab size (assuming the
1787 * default spa_slop_shift=5 and a non-tiny pool).
1788 *
1789 * See the comment above spa_slop_shift for more details.
1790 */
1791 uint64_t
1792 spa_get_slop_space(spa_t *spa)
1793 {
1794 uint64_t space = spa_get_dspace(spa);
1795 uint64_t slop = space >> spa_slop_shift;
1796
1797 /*
1798 * Subtract the embedded log space, but no more than half the (3.2%)
1799 * unusable space. Note, the "no more than half" is only relevant if
1800 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by
1801 * default.
1802 */
1803 uint64_t embedded_log =
1804 metaslab_class_get_dspace(spa_embedded_log_class(spa));
1805 slop -= MIN(embedded_log, slop >> 1);
1806
1807 /*
1808 * Slop space should be at least spa_min_slop, but no more than half
1809 * the entire pool.
1810 */
1811 slop = MAX(slop, MIN(space >> 1, spa_min_slop));
1812 return (slop);
1813 }
1814
1815 uint64_t
1816 spa_get_dspace(spa_t *spa)
1817 {
1818 return (spa->spa_dspace);
1819 }
1820
1821 uint64_t
1822 spa_get_checkpoint_space(spa_t *spa)
1823 {
1824 return (spa->spa_checkpoint_info.sci_dspace);
1825 }
1826
1827 void
1828 spa_update_dspace(spa_t *spa)
1829 {
1830 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1831 ddt_get_dedup_dspace(spa);
1832 if (spa->spa_vdev_removal != NULL) {
1833 /*
1834 * We can't allocate from the removing device, so subtract
1835 * its size if it was included in dspace (i.e. if this is a
1836 * normal-class vdev, not special/dedup). This prevents the
1837 * DMU/DSL from filling up the (now smaller) pool while we
1838 * are in the middle of removing the device.
1839 *
1840 * Note that the DMU/DSL doesn't actually know or care
1841 * how much space is allocated (it does its own tracking
1842 * of how much space has been logically used). So it
1843 * doesn't matter that the data we are moving may be
1844 * allocated twice (on the old device and the new
1845 * device).
1846 */
1847 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1848 vdev_t *vd =
1849 vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1850 if (vd->vdev_mg->mg_class == spa_normal_class(spa)) {
1851 spa->spa_dspace -= spa_deflate(spa) ?
1852 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1853 }
1854 spa_config_exit(spa, SCL_VDEV, FTAG);
1855 }
1856 }
1857
1858 /*
1859 * Return the failure mode that has been set to this pool. The default
1860 * behavior will be to block all I/Os when a complete failure occurs.
1861 */
1862 uint64_t
1863 spa_get_failmode(spa_t *spa)
1864 {
1865 return (spa->spa_failmode);
1866 }
1867
1868 boolean_t
1869 spa_suspended(spa_t *spa)
1870 {
1871 return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1872 }
1873
1874 uint64_t
1875 spa_version(spa_t *spa)
1876 {
1877 return (spa->spa_ubsync.ub_version);
1878 }
1879
1880 boolean_t
1881 spa_deflate(spa_t *spa)
1882 {
1883 return (spa->spa_deflate);
1884 }
1885
1886 metaslab_class_t *
1887 spa_normal_class(spa_t *spa)
1888 {
1889 return (spa->spa_normal_class);
1890 }
1891
1892 metaslab_class_t *
1893 spa_log_class(spa_t *spa)
1894 {
1895 return (spa->spa_log_class);
1896 }
1897
1898 metaslab_class_t *
1899 spa_embedded_log_class(spa_t *spa)
1900 {
1901 return (spa->spa_embedded_log_class);
1902 }
1903
1904 metaslab_class_t *
1905 spa_special_class(spa_t *spa)
1906 {
1907 return (spa->spa_special_class);
1908 }
1909
1910 metaslab_class_t *
1911 spa_dedup_class(spa_t *spa)
1912 {
1913 return (spa->spa_dedup_class);
1914 }
1915
1916 /*
1917 * Locate an appropriate allocation class
1918 */
1919 metaslab_class_t *
1920 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1921 uint_t level, uint_t special_smallblk)
1922 {
1923 /*
1924 * ZIL allocations determine their class in zio_alloc_zil().
1925 */
1926 ASSERT(objtype != DMU_OT_INTENT_LOG);
1927
1928 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1929
1930 if (DMU_OT_IS_DDT(objtype)) {
1931 if (spa->spa_dedup_class->mc_groups != 0)
1932 return (spa_dedup_class(spa));
1933 else if (has_special_class && zfs_ddt_data_is_special)
1934 return (spa_special_class(spa));
1935 else
1936 return (spa_normal_class(spa));
1937 }
1938
1939 /* Indirect blocks for user data can land in special if allowed */
1940 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1941 if (has_special_class && zfs_user_indirect_is_special)
1942 return (spa_special_class(spa));
1943 else
1944 return (spa_normal_class(spa));
1945 }
1946
1947 if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1948 if (has_special_class)
1949 return (spa_special_class(spa));
1950 else
1951 return (spa_normal_class(spa));
1952 }
1953
1954 /*
1955 * Allow small file blocks in special class in some cases (like
1956 * for the dRAID vdev feature). But always leave a reserve of
1957 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
1958 */
1959 if (DMU_OT_IS_FILE(objtype) &&
1960 has_special_class && size <= special_smallblk) {
1961 metaslab_class_t *special = spa_special_class(spa);
1962 uint64_t alloc = metaslab_class_get_alloc(special);
1963 uint64_t space = metaslab_class_get_space(special);
1964 uint64_t limit =
1965 (space * (100 - zfs_special_class_metadata_reserve_pct))
1966 / 100;
1967
1968 if (alloc < limit)
1969 return (special);
1970 }
1971
1972 return (spa_normal_class(spa));
1973 }
1974
1975 void
1976 spa_evicting_os_register(spa_t *spa, objset_t *os)
1977 {
1978 mutex_enter(&spa->spa_evicting_os_lock);
1979 list_insert_head(&spa->spa_evicting_os_list, os);
1980 mutex_exit(&spa->spa_evicting_os_lock);
1981 }
1982
1983 void
1984 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1985 {
1986 mutex_enter(&spa->spa_evicting_os_lock);
1987 list_remove(&spa->spa_evicting_os_list, os);
1988 cv_broadcast(&spa->spa_evicting_os_cv);
1989 mutex_exit(&spa->spa_evicting_os_lock);
1990 }
1991
1992 void
1993 spa_evicting_os_wait(spa_t *spa)
1994 {
1995 mutex_enter(&spa->spa_evicting_os_lock);
1996 while (!list_is_empty(&spa->spa_evicting_os_list))
1997 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1998 mutex_exit(&spa->spa_evicting_os_lock);
1999
2000 dmu_buf_user_evict_wait();
2001 }
2002
2003 int
2004 spa_max_replication(spa_t *spa)
2005 {
2006 /*
2007 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
2008 * handle BPs with more than one DVA allocated. Set our max
2009 * replication level accordingly.
2010 */
2011 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
2012 return (1);
2013 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
2014 }
2015
2016 int
2017 spa_prev_software_version(spa_t *spa)
2018 {
2019 return (spa->spa_prev_software_version);
2020 }
2021
2022 uint64_t
2023 spa_deadman_synctime(spa_t *spa)
2024 {
2025 return (spa->spa_deadman_synctime);
2026 }
2027
2028 spa_autotrim_t
2029 spa_get_autotrim(spa_t *spa)
2030 {
2031 return (spa->spa_autotrim);
2032 }
2033
2034 uint64_t
2035 spa_deadman_ziotime(spa_t *spa)
2036 {
2037 return (spa->spa_deadman_ziotime);
2038 }
2039
2040 uint64_t
2041 spa_get_deadman_failmode(spa_t *spa)
2042 {
2043 return (spa->spa_deadman_failmode);
2044 }
2045
2046 void
2047 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2048 {
2049 if (strcmp(failmode, "wait") == 0)
2050 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2051 else if (strcmp(failmode, "continue") == 0)
2052 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2053 else if (strcmp(failmode, "panic") == 0)
2054 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2055 else
2056 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2057 }
2058
2059 void
2060 spa_set_deadman_ziotime(hrtime_t ns)
2061 {
2062 spa_t *spa = NULL;
2063
2064 if (spa_mode_global != SPA_MODE_UNINIT) {
2065 mutex_enter(&spa_namespace_lock);
2066 while ((spa = spa_next(spa)) != NULL)
2067 spa->spa_deadman_ziotime = ns;
2068 mutex_exit(&spa_namespace_lock);
2069 }
2070 }
2071
2072 void
2073 spa_set_deadman_synctime(hrtime_t ns)
2074 {
2075 spa_t *spa = NULL;
2076
2077 if (spa_mode_global != SPA_MODE_UNINIT) {
2078 mutex_enter(&spa_namespace_lock);
2079 while ((spa = spa_next(spa)) != NULL)
2080 spa->spa_deadman_synctime = ns;
2081 mutex_exit(&spa_namespace_lock);
2082 }
2083 }
2084
2085 uint64_t
2086 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2087 {
2088 uint64_t asize = DVA_GET_ASIZE(dva);
2089 uint64_t dsize = asize;
2090
2091 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2092
2093 if (asize != 0 && spa->spa_deflate) {
2094 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2095 if (vd != NULL)
2096 dsize = (asize >> SPA_MINBLOCKSHIFT) *
2097 vd->vdev_deflate_ratio;
2098 }
2099
2100 return (dsize);
2101 }
2102
2103 uint64_t
2104 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2105 {
2106 uint64_t dsize = 0;
2107
2108 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2109 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2110
2111 return (dsize);
2112 }
2113
2114 uint64_t
2115 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2116 {
2117 uint64_t dsize = 0;
2118
2119 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2120
2121 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2122 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2123
2124 spa_config_exit(spa, SCL_VDEV, FTAG);
2125
2126 return (dsize);
2127 }
2128
2129 uint64_t
2130 spa_dirty_data(spa_t *spa)
2131 {
2132 return (spa->spa_dsl_pool->dp_dirty_total);
2133 }
2134
2135 /*
2136 * ==========================================================================
2137 * SPA Import Progress Routines
2138 * ==========================================================================
2139 */
2140
2141 typedef struct spa_import_progress {
2142 uint64_t pool_guid; /* unique id for updates */
2143 char *pool_name;
2144 spa_load_state_t spa_load_state;
2145 uint64_t mmp_sec_remaining; /* MMP activity check */
2146 uint64_t spa_load_max_txg; /* rewind txg */
2147 procfs_list_node_t smh_node;
2148 } spa_import_progress_t;
2149
2150 spa_history_list_t *spa_import_progress_list = NULL;
2151
2152 static int
2153 spa_import_progress_show_header(struct seq_file *f)
2154 {
2155 seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid",
2156 "load_state", "multihost_secs", "max_txg",
2157 "pool_name");
2158 return (0);
2159 }
2160
2161 static int
2162 spa_import_progress_show(struct seq_file *f, void *data)
2163 {
2164 spa_import_progress_t *sip = (spa_import_progress_t *)data;
2165
2166 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n",
2167 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2168 (u_longlong_t)sip->mmp_sec_remaining,
2169 (u_longlong_t)sip->spa_load_max_txg,
2170 (sip->pool_name ? sip->pool_name : "-"));
2171
2172 return (0);
2173 }
2174
2175 /* Remove oldest elements from list until there are no more than 'size' left */
2176 static void
2177 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2178 {
2179 spa_import_progress_t *sip;
2180 while (shl->size > size) {
2181 sip = list_remove_head(&shl->procfs_list.pl_list);
2182 if (sip->pool_name)
2183 spa_strfree(sip->pool_name);
2184 kmem_free(sip, sizeof (spa_import_progress_t));
2185 shl->size--;
2186 }
2187
2188 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2189 }
2190
2191 static void
2192 spa_import_progress_init(void)
2193 {
2194 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2195 KM_SLEEP);
2196
2197 spa_import_progress_list->size = 0;
2198
2199 spa_import_progress_list->procfs_list.pl_private =
2200 spa_import_progress_list;
2201
2202 procfs_list_install("zfs",
2203 NULL,
2204 "import_progress",
2205 0644,
2206 &spa_import_progress_list->procfs_list,
2207 spa_import_progress_show,
2208 spa_import_progress_show_header,
2209 NULL,
2210 offsetof(spa_import_progress_t, smh_node));
2211 }
2212
2213 static void
2214 spa_import_progress_destroy(void)
2215 {
2216 spa_history_list_t *shl = spa_import_progress_list;
2217 procfs_list_uninstall(&shl->procfs_list);
2218 spa_import_progress_truncate(shl, 0);
2219 procfs_list_destroy(&shl->procfs_list);
2220 kmem_free(shl, sizeof (spa_history_list_t));
2221 }
2222
2223 int
2224 spa_import_progress_set_state(uint64_t pool_guid,
2225 spa_load_state_t load_state)
2226 {
2227 spa_history_list_t *shl = spa_import_progress_list;
2228 spa_import_progress_t *sip;
2229 int error = ENOENT;
2230
2231 if (shl->size == 0)
2232 return (0);
2233
2234 mutex_enter(&shl->procfs_list.pl_lock);
2235 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2236 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2237 if (sip->pool_guid == pool_guid) {
2238 sip->spa_load_state = load_state;
2239 error = 0;
2240 break;
2241 }
2242 }
2243 mutex_exit(&shl->procfs_list.pl_lock);
2244
2245 return (error);
2246 }
2247
2248 int
2249 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2250 {
2251 spa_history_list_t *shl = spa_import_progress_list;
2252 spa_import_progress_t *sip;
2253 int error = ENOENT;
2254
2255 if (shl->size == 0)
2256 return (0);
2257
2258 mutex_enter(&shl->procfs_list.pl_lock);
2259 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2260 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2261 if (sip->pool_guid == pool_guid) {
2262 sip->spa_load_max_txg = load_max_txg;
2263 error = 0;
2264 break;
2265 }
2266 }
2267 mutex_exit(&shl->procfs_list.pl_lock);
2268
2269 return (error);
2270 }
2271
2272 int
2273 spa_import_progress_set_mmp_check(uint64_t pool_guid,
2274 uint64_t mmp_sec_remaining)
2275 {
2276 spa_history_list_t *shl = spa_import_progress_list;
2277 spa_import_progress_t *sip;
2278 int error = ENOENT;
2279
2280 if (shl->size == 0)
2281 return (0);
2282
2283 mutex_enter(&shl->procfs_list.pl_lock);
2284 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2285 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2286 if (sip->pool_guid == pool_guid) {
2287 sip->mmp_sec_remaining = mmp_sec_remaining;
2288 error = 0;
2289 break;
2290 }
2291 }
2292 mutex_exit(&shl->procfs_list.pl_lock);
2293
2294 return (error);
2295 }
2296
2297 /*
2298 * A new import is in progress, add an entry.
2299 */
2300 void
2301 spa_import_progress_add(spa_t *spa)
2302 {
2303 spa_history_list_t *shl = spa_import_progress_list;
2304 spa_import_progress_t *sip;
2305 char *poolname = NULL;
2306
2307 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2308 sip->pool_guid = spa_guid(spa);
2309
2310 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2311 &poolname);
2312 if (poolname == NULL)
2313 poolname = spa_name(spa);
2314 sip->pool_name = spa_strdup(poolname);
2315 sip->spa_load_state = spa_load_state(spa);
2316
2317 mutex_enter(&shl->procfs_list.pl_lock);
2318 procfs_list_add(&shl->procfs_list, sip);
2319 shl->size++;
2320 mutex_exit(&shl->procfs_list.pl_lock);
2321 }
2322
2323 void
2324 spa_import_progress_remove(uint64_t pool_guid)
2325 {
2326 spa_history_list_t *shl = spa_import_progress_list;
2327 spa_import_progress_t *sip;
2328
2329 mutex_enter(&shl->procfs_list.pl_lock);
2330 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2331 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2332 if (sip->pool_guid == pool_guid) {
2333 if (sip->pool_name)
2334 spa_strfree(sip->pool_name);
2335 list_remove(&shl->procfs_list.pl_list, sip);
2336 shl->size--;
2337 kmem_free(sip, sizeof (spa_import_progress_t));
2338 break;
2339 }
2340 }
2341 mutex_exit(&shl->procfs_list.pl_lock);
2342 }
2343
2344 /*
2345 * ==========================================================================
2346 * Initialization and Termination
2347 * ==========================================================================
2348 */
2349
2350 static int
2351 spa_name_compare(const void *a1, const void *a2)
2352 {
2353 const spa_t *s1 = a1;
2354 const spa_t *s2 = a2;
2355 int s;
2356
2357 s = strcmp(s1->spa_name, s2->spa_name);
2358
2359 return (TREE_ISIGN(s));
2360 }
2361
2362 void
2363 spa_boot_init(void)
2364 {
2365 spa_config_load();
2366 }
2367
2368 void
2369 spa_init(spa_mode_t mode)
2370 {
2371 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2372 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2373 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2374 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2375
2376 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2377 offsetof(spa_t, spa_avl));
2378
2379 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2380 offsetof(spa_aux_t, aux_avl));
2381
2382 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2383 offsetof(spa_aux_t, aux_avl));
2384
2385 spa_mode_global = mode;
2386
2387 #ifndef _KERNEL
2388 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
2389 struct sigaction sa;
2390
2391 sa.sa_flags = SA_SIGINFO;
2392 sigemptyset(&sa.sa_mask);
2393 sa.sa_sigaction = arc_buf_sigsegv;
2394
2395 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2396 perror("could not enable watchpoints: "
2397 "sigaction(SIGSEGV, ...) = ");
2398 } else {
2399 arc_watch = B_TRUE;
2400 }
2401 }
2402 #endif
2403
2404 fm_init();
2405 zfs_refcount_init();
2406 unique_init();
2407 zfs_btree_init();
2408 metaslab_stat_init();
2409 ddt_init();
2410 zio_init();
2411 dmu_init();
2412 zil_init();
2413 vdev_cache_stat_init();
2414 vdev_mirror_stat_init();
2415 vdev_raidz_math_init();
2416 vdev_file_init();
2417 zfs_prop_init();
2418 zpool_prop_init();
2419 zpool_feature_init();
2420 spa_config_load();
2421 l2arc_start();
2422 scan_init();
2423 qat_init();
2424 spa_import_progress_init();
2425 }
2426
2427 void
2428 spa_fini(void)
2429 {
2430 l2arc_stop();
2431
2432 spa_evict_all();
2433
2434 vdev_file_fini();
2435 vdev_cache_stat_fini();
2436 vdev_mirror_stat_fini();
2437 vdev_raidz_math_fini();
2438 zil_fini();
2439 dmu_fini();
2440 zio_fini();
2441 ddt_fini();
2442 metaslab_stat_fini();
2443 zfs_btree_fini();
2444 unique_fini();
2445 zfs_refcount_fini();
2446 fm_fini();
2447 scan_fini();
2448 qat_fini();
2449 spa_import_progress_destroy();
2450
2451 avl_destroy(&spa_namespace_avl);
2452 avl_destroy(&spa_spare_avl);
2453 avl_destroy(&spa_l2cache_avl);
2454
2455 cv_destroy(&spa_namespace_cv);
2456 mutex_destroy(&spa_namespace_lock);
2457 mutex_destroy(&spa_spare_lock);
2458 mutex_destroy(&spa_l2cache_lock);
2459 }
2460
2461 /*
2462 * Return whether this pool has a dedicated slog device. No locking needed.
2463 * It's not a problem if the wrong answer is returned as it's only for
2464 * performance and not correctness.
2465 */
2466 boolean_t
2467 spa_has_slogs(spa_t *spa)
2468 {
2469 return (spa->spa_log_class->mc_groups != 0);
2470 }
2471
2472 spa_log_state_t
2473 spa_get_log_state(spa_t *spa)
2474 {
2475 return (spa->spa_log_state);
2476 }
2477
2478 void
2479 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2480 {
2481 spa->spa_log_state = state;
2482 }
2483
2484 boolean_t
2485 spa_is_root(spa_t *spa)
2486 {
2487 return (spa->spa_is_root);
2488 }
2489
2490 boolean_t
2491 spa_writeable(spa_t *spa)
2492 {
2493 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
2494 }
2495
2496 /*
2497 * Returns true if there is a pending sync task in any of the current
2498 * syncing txg, the current quiescing txg, or the current open txg.
2499 */
2500 boolean_t
2501 spa_has_pending_synctask(spa_t *spa)
2502 {
2503 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2504 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2505 }
2506
2507 spa_mode_t
2508 spa_mode(spa_t *spa)
2509 {
2510 return (spa->spa_mode);
2511 }
2512
2513 uint64_t
2514 spa_bootfs(spa_t *spa)
2515 {
2516 return (spa->spa_bootfs);
2517 }
2518
2519 uint64_t
2520 spa_delegation(spa_t *spa)
2521 {
2522 return (spa->spa_delegation);
2523 }
2524
2525 objset_t *
2526 spa_meta_objset(spa_t *spa)
2527 {
2528 return (spa->spa_meta_objset);
2529 }
2530
2531 enum zio_checksum
2532 spa_dedup_checksum(spa_t *spa)
2533 {
2534 return (spa->spa_dedup_checksum);
2535 }
2536
2537 /*
2538 * Reset pool scan stat per scan pass (or reboot).
2539 */
2540 void
2541 spa_scan_stat_init(spa_t *spa)
2542 {
2543 /* data not stored on disk */
2544 spa->spa_scan_pass_start = gethrestime_sec();
2545 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2546 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2547 else
2548 spa->spa_scan_pass_scrub_pause = 0;
2549 spa->spa_scan_pass_scrub_spent_paused = 0;
2550 spa->spa_scan_pass_exam = 0;
2551 spa->spa_scan_pass_issued = 0;
2552 vdev_scan_stat_init(spa->spa_root_vdev);
2553 }
2554
2555 /*
2556 * Get scan stats for zpool status reports
2557 */
2558 int
2559 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2560 {
2561 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2562
2563 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2564 return (SET_ERROR(ENOENT));
2565 bzero(ps, sizeof (pool_scan_stat_t));
2566
2567 /* data stored on disk */
2568 ps->pss_func = scn->scn_phys.scn_func;
2569 ps->pss_state = scn->scn_phys.scn_state;
2570 ps->pss_start_time = scn->scn_phys.scn_start_time;
2571 ps->pss_end_time = scn->scn_phys.scn_end_time;
2572 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2573 ps->pss_examined = scn->scn_phys.scn_examined;
2574 ps->pss_to_process = scn->scn_phys.scn_to_process;
2575 ps->pss_processed = scn->scn_phys.scn_processed;
2576 ps->pss_errors = scn->scn_phys.scn_errors;
2577
2578 /* data not stored on disk */
2579 ps->pss_pass_exam = spa->spa_scan_pass_exam;
2580 ps->pss_pass_start = spa->spa_scan_pass_start;
2581 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2582 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2583 ps->pss_pass_issued = spa->spa_scan_pass_issued;
2584 ps->pss_issued =
2585 scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2586
2587 return (0);
2588 }
2589
2590 int
2591 spa_maxblocksize(spa_t *spa)
2592 {
2593 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2594 return (SPA_MAXBLOCKSIZE);
2595 else
2596 return (SPA_OLD_MAXBLOCKSIZE);
2597 }
2598
2599
2600 /*
2601 * Returns the txg that the last device removal completed. No indirect mappings
2602 * have been added since this txg.
2603 */
2604 uint64_t
2605 spa_get_last_removal_txg(spa_t *spa)
2606 {
2607 uint64_t vdevid;
2608 uint64_t ret = -1ULL;
2609
2610 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2611 /*
2612 * sr_prev_indirect_vdev is only modified while holding all the
2613 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2614 * examining it.
2615 */
2616 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2617
2618 while (vdevid != -1ULL) {
2619 vdev_t *vd = vdev_lookup_top(spa, vdevid);
2620 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2621
2622 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2623
2624 /*
2625 * If the removal did not remap any data, we don't care.
2626 */
2627 if (vdev_indirect_births_count(vib) != 0) {
2628 ret = vdev_indirect_births_last_entry_txg(vib);
2629 break;
2630 }
2631
2632 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2633 }
2634 spa_config_exit(spa, SCL_VDEV, FTAG);
2635
2636 IMPLY(ret != -1ULL,
2637 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2638
2639 return (ret);
2640 }
2641
2642 int
2643 spa_maxdnodesize(spa_t *spa)
2644 {
2645 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2646 return (DNODE_MAX_SIZE);
2647 else
2648 return (DNODE_MIN_SIZE);
2649 }
2650
2651 boolean_t
2652 spa_multihost(spa_t *spa)
2653 {
2654 return (spa->spa_multihost ? B_TRUE : B_FALSE);
2655 }
2656
2657 uint32_t
2658 spa_get_hostid(spa_t *spa)
2659 {
2660 return (spa->spa_hostid);
2661 }
2662
2663 boolean_t
2664 spa_trust_config(spa_t *spa)
2665 {
2666 return (spa->spa_trust_config);
2667 }
2668
2669 uint64_t
2670 spa_missing_tvds_allowed(spa_t *spa)
2671 {
2672 return (spa->spa_missing_tvds_allowed);
2673 }
2674
2675 space_map_t *
2676 spa_syncing_log_sm(spa_t *spa)
2677 {
2678 return (spa->spa_syncing_log_sm);
2679 }
2680
2681 void
2682 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2683 {
2684 spa->spa_missing_tvds = missing;
2685 }
2686
2687 /*
2688 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2689 */
2690 const char *
2691 spa_state_to_name(spa_t *spa)
2692 {
2693 ASSERT3P(spa, !=, NULL);
2694
2695 /*
2696 * it is possible for the spa to exist, without root vdev
2697 * as the spa transitions during import/export
2698 */
2699 vdev_t *rvd = spa->spa_root_vdev;
2700 if (rvd == NULL) {
2701 return ("TRANSITIONING");
2702 }
2703 vdev_state_t state = rvd->vdev_state;
2704 vdev_aux_t aux = rvd->vdev_stat.vs_aux;
2705
2706 if (spa_suspended(spa) &&
2707 (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE))
2708 return ("SUSPENDED");
2709
2710 switch (state) {
2711 case VDEV_STATE_CLOSED:
2712 case VDEV_STATE_OFFLINE:
2713 return ("OFFLINE");
2714 case VDEV_STATE_REMOVED:
2715 return ("REMOVED");
2716 case VDEV_STATE_CANT_OPEN:
2717 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2718 return ("FAULTED");
2719 else if (aux == VDEV_AUX_SPLIT_POOL)
2720 return ("SPLIT");
2721 else
2722 return ("UNAVAIL");
2723 case VDEV_STATE_FAULTED:
2724 return ("FAULTED");
2725 case VDEV_STATE_DEGRADED:
2726 return ("DEGRADED");
2727 case VDEV_STATE_HEALTHY:
2728 return ("ONLINE");
2729 default:
2730 break;
2731 }
2732
2733 return ("UNKNOWN");
2734 }
2735
2736 boolean_t
2737 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2738 {
2739 vdev_t *rvd = spa->spa_root_vdev;
2740 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2741 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2742 return (B_FALSE);
2743 }
2744 return (B_TRUE);
2745 }
2746
2747 boolean_t
2748 spa_has_checkpoint(spa_t *spa)
2749 {
2750 return (spa->spa_checkpoint_txg != 0);
2751 }
2752
2753 boolean_t
2754 spa_importing_readonly_checkpoint(spa_t *spa)
2755 {
2756 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2757 spa->spa_mode == SPA_MODE_READ);
2758 }
2759
2760 uint64_t
2761 spa_min_claim_txg(spa_t *spa)
2762 {
2763 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2764
2765 if (checkpoint_txg != 0)
2766 return (checkpoint_txg + 1);
2767
2768 return (spa->spa_first_txg);
2769 }
2770
2771 /*
2772 * If there is a checkpoint, async destroys may consume more space from
2773 * the pool instead of freeing it. In an attempt to save the pool from
2774 * getting suspended when it is about to run out of space, we stop
2775 * processing async destroys.
2776 */
2777 boolean_t
2778 spa_suspend_async_destroy(spa_t *spa)
2779 {
2780 dsl_pool_t *dp = spa_get_dsl(spa);
2781
2782 uint64_t unreserved = dsl_pool_unreserved_space(dp,
2783 ZFS_SPACE_CHECK_EXTRA_RESERVED);
2784 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2785 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2786
2787 if (spa_has_checkpoint(spa) && avail == 0)
2788 return (B_TRUE);
2789
2790 return (B_FALSE);
2791 }
2792
2793 #if defined(_KERNEL)
2794
2795 int
2796 param_set_deadman_failmode_common(const char *val)
2797 {
2798 spa_t *spa = NULL;
2799 char *p;
2800
2801 if (val == NULL)
2802 return (SET_ERROR(EINVAL));
2803
2804 if ((p = strchr(val, '\n')) != NULL)
2805 *p = '\0';
2806
2807 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
2808 strcmp(val, "panic"))
2809 return (SET_ERROR(EINVAL));
2810
2811 if (spa_mode_global != SPA_MODE_UNINIT) {
2812 mutex_enter(&spa_namespace_lock);
2813 while ((spa = spa_next(spa)) != NULL)
2814 spa_set_deadman_failmode(spa, val);
2815 mutex_exit(&spa_namespace_lock);
2816 }
2817
2818 return (0);
2819 }
2820 #endif
2821
2822 /* Namespace manipulation */
2823 EXPORT_SYMBOL(spa_lookup);
2824 EXPORT_SYMBOL(spa_add);
2825 EXPORT_SYMBOL(spa_remove);
2826 EXPORT_SYMBOL(spa_next);
2827
2828 /* Refcount functions */
2829 EXPORT_SYMBOL(spa_open_ref);
2830 EXPORT_SYMBOL(spa_close);
2831 EXPORT_SYMBOL(spa_refcount_zero);
2832
2833 /* Pool configuration lock */
2834 EXPORT_SYMBOL(spa_config_tryenter);
2835 EXPORT_SYMBOL(spa_config_enter);
2836 EXPORT_SYMBOL(spa_config_exit);
2837 EXPORT_SYMBOL(spa_config_held);
2838
2839 /* Pool vdev add/remove lock */
2840 EXPORT_SYMBOL(spa_vdev_enter);
2841 EXPORT_SYMBOL(spa_vdev_exit);
2842
2843 /* Pool vdev state change lock */
2844 EXPORT_SYMBOL(spa_vdev_state_enter);
2845 EXPORT_SYMBOL(spa_vdev_state_exit);
2846
2847 /* Accessor functions */
2848 EXPORT_SYMBOL(spa_shutting_down);
2849 EXPORT_SYMBOL(spa_get_dsl);
2850 EXPORT_SYMBOL(spa_get_rootblkptr);
2851 EXPORT_SYMBOL(spa_set_rootblkptr);
2852 EXPORT_SYMBOL(spa_altroot);
2853 EXPORT_SYMBOL(spa_sync_pass);
2854 EXPORT_SYMBOL(spa_name);
2855 EXPORT_SYMBOL(spa_guid);
2856 EXPORT_SYMBOL(spa_last_synced_txg);
2857 EXPORT_SYMBOL(spa_first_txg);
2858 EXPORT_SYMBOL(spa_syncing_txg);
2859 EXPORT_SYMBOL(spa_version);
2860 EXPORT_SYMBOL(spa_state);
2861 EXPORT_SYMBOL(spa_load_state);
2862 EXPORT_SYMBOL(spa_freeze_txg);
2863 EXPORT_SYMBOL(spa_get_dspace);
2864 EXPORT_SYMBOL(spa_update_dspace);
2865 EXPORT_SYMBOL(spa_deflate);
2866 EXPORT_SYMBOL(spa_normal_class);
2867 EXPORT_SYMBOL(spa_log_class);
2868 EXPORT_SYMBOL(spa_special_class);
2869 EXPORT_SYMBOL(spa_preferred_class);
2870 EXPORT_SYMBOL(spa_max_replication);
2871 EXPORT_SYMBOL(spa_prev_software_version);
2872 EXPORT_SYMBOL(spa_get_failmode);
2873 EXPORT_SYMBOL(spa_suspended);
2874 EXPORT_SYMBOL(spa_bootfs);
2875 EXPORT_SYMBOL(spa_delegation);
2876 EXPORT_SYMBOL(spa_meta_objset);
2877 EXPORT_SYMBOL(spa_maxblocksize);
2878 EXPORT_SYMBOL(spa_maxdnodesize);
2879
2880 /* Miscellaneous support routines */
2881 EXPORT_SYMBOL(spa_guid_exists);
2882 EXPORT_SYMBOL(spa_strdup);
2883 EXPORT_SYMBOL(spa_strfree);
2884 EXPORT_SYMBOL(spa_get_random);
2885 EXPORT_SYMBOL(spa_generate_guid);
2886 EXPORT_SYMBOL(snprintf_blkptr);
2887 EXPORT_SYMBOL(spa_freeze);
2888 EXPORT_SYMBOL(spa_upgrade);
2889 EXPORT_SYMBOL(spa_evict_all);
2890 EXPORT_SYMBOL(spa_lookup_by_guid);
2891 EXPORT_SYMBOL(spa_has_spare);
2892 EXPORT_SYMBOL(dva_get_dsize_sync);
2893 EXPORT_SYMBOL(bp_get_dsize_sync);
2894 EXPORT_SYMBOL(bp_get_dsize);
2895 EXPORT_SYMBOL(spa_has_slogs);
2896 EXPORT_SYMBOL(spa_is_root);
2897 EXPORT_SYMBOL(spa_writeable);
2898 EXPORT_SYMBOL(spa_mode);
2899 EXPORT_SYMBOL(spa_namespace_lock);
2900 EXPORT_SYMBOL(spa_trust_config);
2901 EXPORT_SYMBOL(spa_missing_tvds_allowed);
2902 EXPORT_SYMBOL(spa_set_missing_tvds);
2903 EXPORT_SYMBOL(spa_state_to_name);
2904 EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
2905 EXPORT_SYMBOL(spa_min_claim_txg);
2906 EXPORT_SYMBOL(spa_suspend_async_destroy);
2907 EXPORT_SYMBOL(spa_has_checkpoint);
2908 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
2909
2910 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
2911 "Set additional debugging flags");
2912
2913 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
2914 "Set to attempt to recover from fatal errors");
2915
2916 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
2917 "Set to ignore IO errors during free and permanently leak the space");
2918
2919 ZFS_MODULE_PARAM(zfs, zfs_, deadman_checktime_ms, ULONG, ZMOD_RW,
2920 "Dead I/O check interval in milliseconds");
2921
2922 ZFS_MODULE_PARAM(zfs, zfs_, deadman_enabled, INT, ZMOD_RW,
2923 "Enable deadman timer");
2924
2925 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, INT, ZMOD_RW,
2926 "SPA size estimate multiplication factor");
2927
2928 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
2929 "Place DDT data into the special class");
2930
2931 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
2932 "Place user data indirect blocks into the special class");
2933
2934 /* BEGIN CSTYLED */
2935 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
2936 param_set_deadman_failmode, param_get_charp, ZMOD_RW,
2937 "Failmode for deadman timer");
2938
2939 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
2940 param_set_deadman_synctime, param_get_ulong, ZMOD_RW,
2941 "Pool sync expiration time in milliseconds");
2942
2943 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
2944 param_set_deadman_ziotime, param_get_ulong, ZMOD_RW,
2945 "IO expiration time in milliseconds");
2946
2947 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, INT, ZMOD_RW,
2948 "Small file blocks in special vdevs depends on this much "
2949 "free space available");
2950 /* END CSTYLED */
2951
2952 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
2953 param_get_int, ZMOD_RW, "Reserved free space in pool");