]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/spa_misc.c
Add linux kernel module support
[mirror_zfs-debian.git] / module / zfs / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <sys/zfs_context.h>
26 #include <sys/spa_impl.h>
27 #include <sys/zio.h>
28 #include <sys/zio_checksum.h>
29 #include <sys/zio_compress.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/zap.h>
33 #include <sys/zil.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/txg.h>
38 #include <sys/avl.h>
39 #include <sys/unique.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/dsl_prop.h>
43 #include <sys/fm/util.h>
44 #include <sys/dsl_scan.h>
45 #include <sys/fs/zfs.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/arc.h>
48 #include <sys/ddt.h>
49 #include "zfs_prop.h"
50
51 /*
52 * SPA locking
53 *
54 * There are four basic locks for managing spa_t structures:
55 *
56 * spa_namespace_lock (global mutex)
57 *
58 * This lock must be acquired to do any of the following:
59 *
60 * - Lookup a spa_t by name
61 * - Add or remove a spa_t from the namespace
62 * - Increase spa_refcount from non-zero
63 * - Check if spa_refcount is zero
64 * - Rename a spa_t
65 * - add/remove/attach/detach devices
66 * - Held for the duration of create/destroy/import/export
67 *
68 * It does not need to handle recursion. A create or destroy may
69 * reference objects (files or zvols) in other pools, but by
70 * definition they must have an existing reference, and will never need
71 * to lookup a spa_t by name.
72 *
73 * spa_refcount (per-spa refcount_t protected by mutex)
74 *
75 * This reference count keep track of any active users of the spa_t. The
76 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
77 * the refcount is never really 'zero' - opening a pool implicitly keeps
78 * some references in the DMU. Internally we check against spa_minref, but
79 * present the image of a zero/non-zero value to consumers.
80 *
81 * spa_config_lock[] (per-spa array of rwlocks)
82 *
83 * This protects the spa_t from config changes, and must be held in
84 * the following circumstances:
85 *
86 * - RW_READER to perform I/O to the spa
87 * - RW_WRITER to change the vdev config
88 *
89 * The locking order is fairly straightforward:
90 *
91 * spa_namespace_lock -> spa_refcount
92 *
93 * The namespace lock must be acquired to increase the refcount from 0
94 * or to check if it is zero.
95 *
96 * spa_refcount -> spa_config_lock[]
97 *
98 * There must be at least one valid reference on the spa_t to acquire
99 * the config lock.
100 *
101 * spa_namespace_lock -> spa_config_lock[]
102 *
103 * The namespace lock must always be taken before the config lock.
104 *
105 *
106 * The spa_namespace_lock can be acquired directly and is globally visible.
107 *
108 * The namespace is manipulated using the following functions, all of which
109 * require the spa_namespace_lock to be held.
110 *
111 * spa_lookup() Lookup a spa_t by name.
112 *
113 * spa_add() Create a new spa_t in the namespace.
114 *
115 * spa_remove() Remove a spa_t from the namespace. This also
116 * frees up any memory associated with the spa_t.
117 *
118 * spa_next() Returns the next spa_t in the system, or the
119 * first if NULL is passed.
120 *
121 * spa_evict_all() Shutdown and remove all spa_t structures in
122 * the system.
123 *
124 * spa_guid_exists() Determine whether a pool/device guid exists.
125 *
126 * The spa_refcount is manipulated using the following functions:
127 *
128 * spa_open_ref() Adds a reference to the given spa_t. Must be
129 * called with spa_namespace_lock held if the
130 * refcount is currently zero.
131 *
132 * spa_close() Remove a reference from the spa_t. This will
133 * not free the spa_t or remove it from the
134 * namespace. No locking is required.
135 *
136 * spa_refcount_zero() Returns true if the refcount is currently
137 * zero. Must be called with spa_namespace_lock
138 * held.
139 *
140 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
141 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
142 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
143 *
144 * To read the configuration, it suffices to hold one of these locks as reader.
145 * To modify the configuration, you must hold all locks as writer. To modify
146 * vdev state without altering the vdev tree's topology (e.g. online/offline),
147 * you must hold SCL_STATE and SCL_ZIO as writer.
148 *
149 * We use these distinct config locks to avoid recursive lock entry.
150 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
151 * block allocations (SCL_ALLOC), which may require reading space maps
152 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
153 *
154 * The spa config locks cannot be normal rwlocks because we need the
155 * ability to hand off ownership. For example, SCL_ZIO is acquired
156 * by the issuing thread and later released by an interrupt thread.
157 * They do, however, obey the usual write-wanted semantics to prevent
158 * writer (i.e. system administrator) starvation.
159 *
160 * The lock acquisition rules are as follows:
161 *
162 * SCL_CONFIG
163 * Protects changes to the vdev tree topology, such as vdev
164 * add/remove/attach/detach. Protects the dirty config list
165 * (spa_config_dirty_list) and the set of spares and l2arc devices.
166 *
167 * SCL_STATE
168 * Protects changes to pool state and vdev state, such as vdev
169 * online/offline/fault/degrade/clear. Protects the dirty state list
170 * (spa_state_dirty_list) and global pool state (spa_state).
171 *
172 * SCL_ALLOC
173 * Protects changes to metaslab groups and classes.
174 * Held as reader by metaslab_alloc() and metaslab_claim().
175 *
176 * SCL_ZIO
177 * Held by bp-level zios (those which have no io_vd upon entry)
178 * to prevent changes to the vdev tree. The bp-level zio implicitly
179 * protects all of its vdev child zios, which do not hold SCL_ZIO.
180 *
181 * SCL_FREE
182 * Protects changes to metaslab groups and classes.
183 * Held as reader by metaslab_free(). SCL_FREE is distinct from
184 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
185 * blocks in zio_done() while another i/o that holds either
186 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
187 *
188 * SCL_VDEV
189 * Held as reader to prevent changes to the vdev tree during trivial
190 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
191 * other locks, and lower than all of them, to ensure that it's safe
192 * to acquire regardless of caller context.
193 *
194 * In addition, the following rules apply:
195 *
196 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
197 * The lock ordering is SCL_CONFIG > spa_props_lock.
198 *
199 * (b) I/O operations on leaf vdevs. For any zio operation that takes
200 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
201 * or zio_write_phys() -- the caller must ensure that the config cannot
202 * cannot change in the interim, and that the vdev cannot be reopened.
203 * SCL_STATE as reader suffices for both.
204 *
205 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
206 *
207 * spa_vdev_enter() Acquire the namespace lock and the config lock
208 * for writing.
209 *
210 * spa_vdev_exit() Release the config lock, wait for all I/O
211 * to complete, sync the updated configs to the
212 * cache, and release the namespace lock.
213 *
214 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
215 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
216 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
217 *
218 * spa_rename() is also implemented within this file since is requires
219 * manipulation of the namespace.
220 */
221
222 static avl_tree_t spa_namespace_avl;
223 kmutex_t spa_namespace_lock;
224 static kcondvar_t spa_namespace_cv;
225 static int spa_active_count;
226 int spa_max_replication_override = SPA_DVAS_PER_BP;
227
228 static kmutex_t spa_spare_lock;
229 static avl_tree_t spa_spare_avl;
230 static kmutex_t spa_l2cache_lock;
231 static avl_tree_t spa_l2cache_avl;
232
233 kmem_cache_t *spa_buffer_pool;
234 int spa_mode_global;
235
236 #ifdef ZFS_DEBUG
237 /* Everything except dprintf is on by default in debug builds */
238 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
239 #else
240 int zfs_flags = 0;
241 #endif
242
243 /*
244 * zfs_recover can be set to nonzero to attempt to recover from
245 * otherwise-fatal errors, typically caused by on-disk corruption. When
246 * set, calls to zfs_panic_recover() will turn into warning messages.
247 */
248 int zfs_recover = 0;
249
250
251 /*
252 * ==========================================================================
253 * SPA config locking
254 * ==========================================================================
255 */
256 static void
257 spa_config_lock_init(spa_t *spa)
258 {
259 int i;
260
261 for (i = 0; i < SCL_LOCKS; i++) {
262 spa_config_lock_t *scl = &spa->spa_config_lock[i];
263 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
264 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
265 refcount_create(&scl->scl_count);
266 scl->scl_writer = NULL;
267 scl->scl_write_wanted = 0;
268 }
269 }
270
271 static void
272 spa_config_lock_destroy(spa_t *spa)
273 {
274 int i;
275
276 for (i = 0; i < SCL_LOCKS; i++) {
277 spa_config_lock_t *scl = &spa->spa_config_lock[i];
278 mutex_destroy(&scl->scl_lock);
279 cv_destroy(&scl->scl_cv);
280 refcount_destroy(&scl->scl_count);
281 ASSERT(scl->scl_writer == NULL);
282 ASSERT(scl->scl_write_wanted == 0);
283 }
284 }
285
286 int
287 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
288 {
289 int i;
290
291 for (i = 0; i < SCL_LOCKS; i++) {
292 spa_config_lock_t *scl = &spa->spa_config_lock[i];
293 if (!(locks & (1 << i)))
294 continue;
295 mutex_enter(&scl->scl_lock);
296 if (rw == RW_READER) {
297 if (scl->scl_writer || scl->scl_write_wanted) {
298 mutex_exit(&scl->scl_lock);
299 spa_config_exit(spa, locks ^ (1 << i), tag);
300 return (0);
301 }
302 } else {
303 ASSERT(scl->scl_writer != curthread);
304 if (!refcount_is_zero(&scl->scl_count)) {
305 mutex_exit(&scl->scl_lock);
306 spa_config_exit(spa, locks ^ (1 << i), tag);
307 return (0);
308 }
309 scl->scl_writer = curthread;
310 }
311 (void) refcount_add(&scl->scl_count, tag);
312 mutex_exit(&scl->scl_lock);
313 }
314 return (1);
315 }
316
317 void
318 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
319 {
320 int wlocks_held = 0;
321 int i;
322
323 for (i = 0; i < SCL_LOCKS; i++) {
324 spa_config_lock_t *scl = &spa->spa_config_lock[i];
325 if (scl->scl_writer == curthread)
326 wlocks_held |= (1 << i);
327 if (!(locks & (1 << i)))
328 continue;
329 mutex_enter(&scl->scl_lock);
330 if (rw == RW_READER) {
331 while (scl->scl_writer || scl->scl_write_wanted) {
332 cv_wait(&scl->scl_cv, &scl->scl_lock);
333 }
334 } else {
335 ASSERT(scl->scl_writer != curthread);
336 while (!refcount_is_zero(&scl->scl_count)) {
337 scl->scl_write_wanted++;
338 cv_wait(&scl->scl_cv, &scl->scl_lock);
339 scl->scl_write_wanted--;
340 }
341 scl->scl_writer = curthread;
342 }
343 (void) refcount_add(&scl->scl_count, tag);
344 mutex_exit(&scl->scl_lock);
345 }
346 ASSERT(wlocks_held <= locks);
347 }
348
349 void
350 spa_config_exit(spa_t *spa, int locks, void *tag)
351 {
352 int i;
353
354 for (i = SCL_LOCKS - 1; i >= 0; i--) {
355 spa_config_lock_t *scl = &spa->spa_config_lock[i];
356 if (!(locks & (1 << i)))
357 continue;
358 mutex_enter(&scl->scl_lock);
359 ASSERT(!refcount_is_zero(&scl->scl_count));
360 if (refcount_remove(&scl->scl_count, tag) == 0) {
361 ASSERT(scl->scl_writer == NULL ||
362 scl->scl_writer == curthread);
363 scl->scl_writer = NULL; /* OK in either case */
364 cv_broadcast(&scl->scl_cv);
365 }
366 mutex_exit(&scl->scl_lock);
367 }
368 }
369
370 int
371 spa_config_held(spa_t *spa, int locks, krw_t rw)
372 {
373 int i, locks_held = 0;
374
375 for (i = 0; i < SCL_LOCKS; i++) {
376 spa_config_lock_t *scl = &spa->spa_config_lock[i];
377 if (!(locks & (1 << i)))
378 continue;
379 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
380 (rw == RW_WRITER && scl->scl_writer == curthread))
381 locks_held |= 1 << i;
382 }
383
384 return (locks_held);
385 }
386
387 /*
388 * ==========================================================================
389 * SPA namespace functions
390 * ==========================================================================
391 */
392
393 /*
394 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
395 * Returns NULL if no matching spa_t is found.
396 */
397 spa_t *
398 spa_lookup(const char *name)
399 {
400 static spa_t search; /* spa_t is large; don't allocate on stack */
401 spa_t *spa;
402 avl_index_t where;
403 char c = 0;
404 char *cp;
405
406 ASSERT(MUTEX_HELD(&spa_namespace_lock));
407
408 /*
409 * If it's a full dataset name, figure out the pool name and
410 * just use that.
411 */
412 cp = strpbrk(name, "/@");
413 if (cp) {
414 c = *cp;
415 *cp = '\0';
416 }
417
418 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
419 spa = avl_find(&spa_namespace_avl, &search, &where);
420
421 if (cp)
422 *cp = c;
423
424 return (spa);
425 }
426
427 /*
428 * Create an uninitialized spa_t with the given name. Requires
429 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
430 * exist by calling spa_lookup() first.
431 */
432 spa_t *
433 spa_add(const char *name, nvlist_t *config, const char *altroot)
434 {
435 spa_t *spa;
436 spa_config_dirent_t *dp;
437 int t;
438
439 ASSERT(MUTEX_HELD(&spa_namespace_lock));
440
441 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP | KM_NODEBUG);
442
443 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
444 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
445 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
446 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
447 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
448 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
449 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
450 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
451 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
452
453 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
454 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
455 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
456 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
457
458 for (t = 0; t < TXG_SIZE; t++)
459 bplist_create(&spa->spa_free_bplist[t]);
460
461 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
462 spa->spa_state = POOL_STATE_UNINITIALIZED;
463 spa->spa_freeze_txg = UINT64_MAX;
464 spa->spa_final_txg = UINT64_MAX;
465 spa->spa_load_max_txg = UINT64_MAX;
466 spa->spa_proc = &p0;
467 spa->spa_proc_state = SPA_PROC_NONE;
468
469 refcount_create(&spa->spa_refcount);
470 spa_config_lock_init(spa);
471
472 avl_add(&spa_namespace_avl, spa);
473
474 /*
475 * Set the alternate root, if there is one.
476 */
477 if (altroot) {
478 spa->spa_root = spa_strdup(altroot);
479 spa_active_count++;
480 }
481
482 /*
483 * Every pool starts with the default cachefile
484 */
485 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
486 offsetof(spa_config_dirent_t, scd_link));
487
488 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
489 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
490 list_insert_head(&spa->spa_config_list, dp);
491
492 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
493 KM_SLEEP) == 0);
494
495 if (config != NULL)
496 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
497
498 return (spa);
499 }
500
501 /*
502 * Removes a spa_t from the namespace, freeing up any memory used. Requires
503 * spa_namespace_lock. This is called only after the spa_t has been closed and
504 * deactivated.
505 */
506 void
507 spa_remove(spa_t *spa)
508 {
509 spa_config_dirent_t *dp;
510 int t;
511
512 ASSERT(MUTEX_HELD(&spa_namespace_lock));
513 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
514
515 nvlist_free(spa->spa_config_splitting);
516
517 avl_remove(&spa_namespace_avl, spa);
518 cv_broadcast(&spa_namespace_cv);
519
520 if (spa->spa_root) {
521 spa_strfree(spa->spa_root);
522 spa_active_count--;
523 }
524
525 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
526 list_remove(&spa->spa_config_list, dp);
527 if (dp->scd_path != NULL)
528 spa_strfree(dp->scd_path);
529 kmem_free(dp, sizeof (spa_config_dirent_t));
530 }
531
532 list_destroy(&spa->spa_config_list);
533
534 nvlist_free(spa->spa_load_info);
535 spa_config_set(spa, NULL);
536
537 refcount_destroy(&spa->spa_refcount);
538
539 spa_config_lock_destroy(spa);
540
541 for (t = 0; t < TXG_SIZE; t++)
542 bplist_destroy(&spa->spa_free_bplist[t]);
543
544 cv_destroy(&spa->spa_async_cv);
545 cv_destroy(&spa->spa_proc_cv);
546 cv_destroy(&spa->spa_scrub_io_cv);
547 cv_destroy(&spa->spa_suspend_cv);
548
549 mutex_destroy(&spa->spa_async_lock);
550 mutex_destroy(&spa->spa_errlist_lock);
551 mutex_destroy(&spa->spa_errlog_lock);
552 mutex_destroy(&spa->spa_history_lock);
553 mutex_destroy(&spa->spa_proc_lock);
554 mutex_destroy(&spa->spa_props_lock);
555 mutex_destroy(&spa->spa_scrub_lock);
556 mutex_destroy(&spa->spa_suspend_lock);
557 mutex_destroy(&spa->spa_vdev_top_lock);
558
559 kmem_free(spa, sizeof (spa_t));
560 }
561
562 /*
563 * Given a pool, return the next pool in the namespace, or NULL if there is
564 * none. If 'prev' is NULL, return the first pool.
565 */
566 spa_t *
567 spa_next(spa_t *prev)
568 {
569 ASSERT(MUTEX_HELD(&spa_namespace_lock));
570
571 if (prev)
572 return (AVL_NEXT(&spa_namespace_avl, prev));
573 else
574 return (avl_first(&spa_namespace_avl));
575 }
576
577 /*
578 * ==========================================================================
579 * SPA refcount functions
580 * ==========================================================================
581 */
582
583 /*
584 * Add a reference to the given spa_t. Must have at least one reference, or
585 * have the namespace lock held.
586 */
587 void
588 spa_open_ref(spa_t *spa, void *tag)
589 {
590 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
591 MUTEX_HELD(&spa_namespace_lock));
592 (void) refcount_add(&spa->spa_refcount, tag);
593 }
594
595 /*
596 * Remove a reference to the given spa_t. Must have at least one reference, or
597 * have the namespace lock held.
598 */
599 void
600 spa_close(spa_t *spa, void *tag)
601 {
602 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
603 MUTEX_HELD(&spa_namespace_lock));
604 (void) refcount_remove(&spa->spa_refcount, tag);
605 }
606
607 /*
608 * Check to see if the spa refcount is zero. Must be called with
609 * spa_namespace_lock held. We really compare against spa_minref, which is the
610 * number of references acquired when opening a pool
611 */
612 boolean_t
613 spa_refcount_zero(spa_t *spa)
614 {
615 ASSERT(MUTEX_HELD(&spa_namespace_lock));
616
617 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
618 }
619
620 /*
621 * ==========================================================================
622 * SPA spare and l2cache tracking
623 * ==========================================================================
624 */
625
626 /*
627 * Hot spares and cache devices are tracked using the same code below,
628 * for 'auxiliary' devices.
629 */
630
631 typedef struct spa_aux {
632 uint64_t aux_guid;
633 uint64_t aux_pool;
634 avl_node_t aux_avl;
635 int aux_count;
636 } spa_aux_t;
637
638 static int
639 spa_aux_compare(const void *a, const void *b)
640 {
641 const spa_aux_t *sa = a;
642 const spa_aux_t *sb = b;
643
644 if (sa->aux_guid < sb->aux_guid)
645 return (-1);
646 else if (sa->aux_guid > sb->aux_guid)
647 return (1);
648 else
649 return (0);
650 }
651
652 void
653 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
654 {
655 avl_index_t where;
656 spa_aux_t search;
657 spa_aux_t *aux;
658
659 search.aux_guid = vd->vdev_guid;
660 if ((aux = avl_find(avl, &search, &where)) != NULL) {
661 aux->aux_count++;
662 } else {
663 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
664 aux->aux_guid = vd->vdev_guid;
665 aux->aux_count = 1;
666 avl_insert(avl, aux, where);
667 }
668 }
669
670 void
671 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
672 {
673 spa_aux_t search;
674 spa_aux_t *aux;
675 avl_index_t where;
676
677 search.aux_guid = vd->vdev_guid;
678 aux = avl_find(avl, &search, &where);
679
680 ASSERT(aux != NULL);
681
682 if (--aux->aux_count == 0) {
683 avl_remove(avl, aux);
684 kmem_free(aux, sizeof (spa_aux_t));
685 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
686 aux->aux_pool = 0ULL;
687 }
688 }
689
690 boolean_t
691 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
692 {
693 spa_aux_t search, *found;
694
695 search.aux_guid = guid;
696 found = avl_find(avl, &search, NULL);
697
698 if (pool) {
699 if (found)
700 *pool = found->aux_pool;
701 else
702 *pool = 0ULL;
703 }
704
705 if (refcnt) {
706 if (found)
707 *refcnt = found->aux_count;
708 else
709 *refcnt = 0;
710 }
711
712 return (found != NULL);
713 }
714
715 void
716 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
717 {
718 spa_aux_t search, *found;
719 avl_index_t where;
720
721 search.aux_guid = vd->vdev_guid;
722 found = avl_find(avl, &search, &where);
723 ASSERT(found != NULL);
724 ASSERT(found->aux_pool == 0ULL);
725
726 found->aux_pool = spa_guid(vd->vdev_spa);
727 }
728
729 /*
730 * Spares are tracked globally due to the following constraints:
731 *
732 * - A spare may be part of multiple pools.
733 * - A spare may be added to a pool even if it's actively in use within
734 * another pool.
735 * - A spare in use in any pool can only be the source of a replacement if
736 * the target is a spare in the same pool.
737 *
738 * We keep track of all spares on the system through the use of a reference
739 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
740 * spare, then we bump the reference count in the AVL tree. In addition, we set
741 * the 'vdev_isspare' member to indicate that the device is a spare (active or
742 * inactive). When a spare is made active (used to replace a device in the
743 * pool), we also keep track of which pool its been made a part of.
744 *
745 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
746 * called under the spa_namespace lock as part of vdev reconfiguration. The
747 * separate spare lock exists for the status query path, which does not need to
748 * be completely consistent with respect to other vdev configuration changes.
749 */
750
751 static int
752 spa_spare_compare(const void *a, const void *b)
753 {
754 return (spa_aux_compare(a, b));
755 }
756
757 void
758 spa_spare_add(vdev_t *vd)
759 {
760 mutex_enter(&spa_spare_lock);
761 ASSERT(!vd->vdev_isspare);
762 spa_aux_add(vd, &spa_spare_avl);
763 vd->vdev_isspare = B_TRUE;
764 mutex_exit(&spa_spare_lock);
765 }
766
767 void
768 spa_spare_remove(vdev_t *vd)
769 {
770 mutex_enter(&spa_spare_lock);
771 ASSERT(vd->vdev_isspare);
772 spa_aux_remove(vd, &spa_spare_avl);
773 vd->vdev_isspare = B_FALSE;
774 mutex_exit(&spa_spare_lock);
775 }
776
777 boolean_t
778 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
779 {
780 boolean_t found;
781
782 mutex_enter(&spa_spare_lock);
783 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
784 mutex_exit(&spa_spare_lock);
785
786 return (found);
787 }
788
789 void
790 spa_spare_activate(vdev_t *vd)
791 {
792 mutex_enter(&spa_spare_lock);
793 ASSERT(vd->vdev_isspare);
794 spa_aux_activate(vd, &spa_spare_avl);
795 mutex_exit(&spa_spare_lock);
796 }
797
798 /*
799 * Level 2 ARC devices are tracked globally for the same reasons as spares.
800 * Cache devices currently only support one pool per cache device, and so
801 * for these devices the aux reference count is currently unused beyond 1.
802 */
803
804 static int
805 spa_l2cache_compare(const void *a, const void *b)
806 {
807 return (spa_aux_compare(a, b));
808 }
809
810 void
811 spa_l2cache_add(vdev_t *vd)
812 {
813 mutex_enter(&spa_l2cache_lock);
814 ASSERT(!vd->vdev_isl2cache);
815 spa_aux_add(vd, &spa_l2cache_avl);
816 vd->vdev_isl2cache = B_TRUE;
817 mutex_exit(&spa_l2cache_lock);
818 }
819
820 void
821 spa_l2cache_remove(vdev_t *vd)
822 {
823 mutex_enter(&spa_l2cache_lock);
824 ASSERT(vd->vdev_isl2cache);
825 spa_aux_remove(vd, &spa_l2cache_avl);
826 vd->vdev_isl2cache = B_FALSE;
827 mutex_exit(&spa_l2cache_lock);
828 }
829
830 boolean_t
831 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
832 {
833 boolean_t found;
834
835 mutex_enter(&spa_l2cache_lock);
836 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
837 mutex_exit(&spa_l2cache_lock);
838
839 return (found);
840 }
841
842 void
843 spa_l2cache_activate(vdev_t *vd)
844 {
845 mutex_enter(&spa_l2cache_lock);
846 ASSERT(vd->vdev_isl2cache);
847 spa_aux_activate(vd, &spa_l2cache_avl);
848 mutex_exit(&spa_l2cache_lock);
849 }
850
851 /*
852 * ==========================================================================
853 * SPA vdev locking
854 * ==========================================================================
855 */
856
857 /*
858 * Lock the given spa_t for the purpose of adding or removing a vdev.
859 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
860 * It returns the next transaction group for the spa_t.
861 */
862 uint64_t
863 spa_vdev_enter(spa_t *spa)
864 {
865 mutex_enter(&spa->spa_vdev_top_lock);
866 mutex_enter(&spa_namespace_lock);
867 return (spa_vdev_config_enter(spa));
868 }
869
870 /*
871 * Internal implementation for spa_vdev_enter(). Used when a vdev
872 * operation requires multiple syncs (i.e. removing a device) while
873 * keeping the spa_namespace_lock held.
874 */
875 uint64_t
876 spa_vdev_config_enter(spa_t *spa)
877 {
878 ASSERT(MUTEX_HELD(&spa_namespace_lock));
879
880 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
881
882 return (spa_last_synced_txg(spa) + 1);
883 }
884
885 /*
886 * Used in combination with spa_vdev_config_enter() to allow the syncing
887 * of multiple transactions without releasing the spa_namespace_lock.
888 */
889 void
890 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
891 {
892 int config_changed = B_FALSE;
893
894 ASSERT(MUTEX_HELD(&spa_namespace_lock));
895 ASSERT(txg > spa_last_synced_txg(spa));
896
897 spa->spa_pending_vdev = NULL;
898
899 /*
900 * Reassess the DTLs.
901 */
902 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
903
904 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
905 config_changed = B_TRUE;
906 spa->spa_config_generation++;
907 }
908
909 /*
910 * Verify the metaslab classes.
911 */
912 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
913 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
914
915 spa_config_exit(spa, SCL_ALL, spa);
916
917 /*
918 * Panic the system if the specified tag requires it. This
919 * is useful for ensuring that configurations are updated
920 * transactionally.
921 */
922 if (zio_injection_enabled)
923 zio_handle_panic_injection(spa, tag, 0);
924
925 /*
926 * Note: this txg_wait_synced() is important because it ensures
927 * that there won't be more than one config change per txg.
928 * This allows us to use the txg as the generation number.
929 */
930 if (error == 0)
931 txg_wait_synced(spa->spa_dsl_pool, txg);
932
933 if (vd != NULL) {
934 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
935 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
936 vdev_free(vd);
937 spa_config_exit(spa, SCL_ALL, spa);
938 }
939
940 /*
941 * If the config changed, update the config cache.
942 */
943 if (config_changed)
944 spa_config_sync(spa, B_FALSE, B_TRUE);
945 }
946
947 /*
948 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
949 * locking of spa_vdev_enter(), we also want make sure the transactions have
950 * synced to disk, and then update the global configuration cache with the new
951 * information.
952 */
953 int
954 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
955 {
956 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
957 mutex_exit(&spa_namespace_lock);
958 mutex_exit(&spa->spa_vdev_top_lock);
959
960 return (error);
961 }
962
963 /*
964 * Lock the given spa_t for the purpose of changing vdev state.
965 */
966 void
967 spa_vdev_state_enter(spa_t *spa, int oplocks)
968 {
969 int locks = SCL_STATE_ALL | oplocks;
970
971 /*
972 * Root pools may need to read of the underlying devfs filesystem
973 * when opening up a vdev. Unfortunately if we're holding the
974 * SCL_ZIO lock it will result in a deadlock when we try to issue
975 * the read from the root filesystem. Instead we "prefetch"
976 * the associated vnodes that we need prior to opening the
977 * underlying devices and cache them so that we can prevent
978 * any I/O when we are doing the actual open.
979 */
980 if (spa_is_root(spa)) {
981 int low = locks & ~(SCL_ZIO - 1);
982 int high = locks & ~low;
983
984 spa_config_enter(spa, high, spa, RW_WRITER);
985 vdev_hold(spa->spa_root_vdev);
986 spa_config_enter(spa, low, spa, RW_WRITER);
987 } else {
988 spa_config_enter(spa, locks, spa, RW_WRITER);
989 }
990 spa->spa_vdev_locks = locks;
991 }
992
993 int
994 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
995 {
996 boolean_t config_changed = B_FALSE;
997
998 if (vd != NULL || error == 0)
999 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1000 0, 0, B_FALSE);
1001
1002 if (vd != NULL) {
1003 vdev_state_dirty(vd->vdev_top);
1004 config_changed = B_TRUE;
1005 spa->spa_config_generation++;
1006 }
1007
1008 if (spa_is_root(spa))
1009 vdev_rele(spa->spa_root_vdev);
1010
1011 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1012 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1013
1014 /*
1015 * If anything changed, wait for it to sync. This ensures that,
1016 * from the system administrator's perspective, zpool(1M) commands
1017 * are synchronous. This is important for things like zpool offline:
1018 * when the command completes, you expect no further I/O from ZFS.
1019 */
1020 if (vd != NULL)
1021 txg_wait_synced(spa->spa_dsl_pool, 0);
1022
1023 /*
1024 * If the config changed, update the config cache.
1025 */
1026 if (config_changed) {
1027 mutex_enter(&spa_namespace_lock);
1028 spa_config_sync(spa, B_FALSE, B_TRUE);
1029 mutex_exit(&spa_namespace_lock);
1030 }
1031
1032 return (error);
1033 }
1034
1035 /*
1036 * ==========================================================================
1037 * Miscellaneous functions
1038 * ==========================================================================
1039 */
1040
1041 /*
1042 * Rename a spa_t.
1043 */
1044 int
1045 spa_rename(const char *name, const char *newname)
1046 {
1047 spa_t *spa;
1048 int err;
1049
1050 /*
1051 * Lookup the spa_t and grab the config lock for writing. We need to
1052 * actually open the pool so that we can sync out the necessary labels.
1053 * It's OK to call spa_open() with the namespace lock held because we
1054 * allow recursive calls for other reasons.
1055 */
1056 mutex_enter(&spa_namespace_lock);
1057 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1058 mutex_exit(&spa_namespace_lock);
1059 return (err);
1060 }
1061
1062 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1063
1064 avl_remove(&spa_namespace_avl, spa);
1065 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1066 avl_add(&spa_namespace_avl, spa);
1067
1068 /*
1069 * Sync all labels to disk with the new names by marking the root vdev
1070 * dirty and waiting for it to sync. It will pick up the new pool name
1071 * during the sync.
1072 */
1073 vdev_config_dirty(spa->spa_root_vdev);
1074
1075 spa_config_exit(spa, SCL_ALL, FTAG);
1076
1077 txg_wait_synced(spa->spa_dsl_pool, 0);
1078
1079 /*
1080 * Sync the updated config cache.
1081 */
1082 spa_config_sync(spa, B_FALSE, B_TRUE);
1083
1084 spa_close(spa, FTAG);
1085
1086 mutex_exit(&spa_namespace_lock);
1087
1088 return (0);
1089 }
1090
1091 /*
1092 * Return the spa_t associated with given pool_guid, if it exists. If
1093 * device_guid is non-zero, determine whether the pool exists *and* contains
1094 * a device with the specified device_guid.
1095 */
1096 spa_t *
1097 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1098 {
1099 spa_t *spa;
1100 avl_tree_t *t = &spa_namespace_avl;
1101
1102 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1103
1104 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1105 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1106 continue;
1107 if (spa->spa_root_vdev == NULL)
1108 continue;
1109 if (spa_guid(spa) == pool_guid) {
1110 if (device_guid == 0)
1111 break;
1112
1113 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1114 device_guid) != NULL)
1115 break;
1116
1117 /*
1118 * Check any devices we may be in the process of adding.
1119 */
1120 if (spa->spa_pending_vdev) {
1121 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1122 device_guid) != NULL)
1123 break;
1124 }
1125 }
1126 }
1127
1128 return (spa);
1129 }
1130
1131 /*
1132 * Determine whether a pool with the given pool_guid exists.
1133 */
1134 boolean_t
1135 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1136 {
1137 return (spa_by_guid(pool_guid, device_guid) != NULL);
1138 }
1139
1140 char *
1141 spa_strdup(const char *s)
1142 {
1143 size_t len;
1144 char *new;
1145
1146 len = strlen(s);
1147 new = kmem_alloc(len + 1, KM_SLEEP);
1148 bcopy(s, new, len);
1149 new[len] = '\0';
1150
1151 return (new);
1152 }
1153
1154 void
1155 spa_strfree(char *s)
1156 {
1157 kmem_free(s, strlen(s) + 1);
1158 }
1159
1160 uint64_t
1161 spa_get_random(uint64_t range)
1162 {
1163 uint64_t r;
1164
1165 ASSERT(range != 0);
1166
1167 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1168
1169 return (r % range);
1170 }
1171
1172 uint64_t
1173 spa_generate_guid(spa_t *spa)
1174 {
1175 uint64_t guid = spa_get_random(-1ULL);
1176
1177 if (spa != NULL) {
1178 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1179 guid = spa_get_random(-1ULL);
1180 } else {
1181 while (guid == 0 || spa_guid_exists(guid, 0))
1182 guid = spa_get_random(-1ULL);
1183 }
1184
1185 return (guid);
1186 }
1187
1188 void
1189 sprintf_blkptr(char *buf, const blkptr_t *bp)
1190 {
1191 char *type = NULL;
1192 char *checksum = NULL;
1193 char *compress = NULL;
1194
1195 if (bp != NULL) {
1196 type = dmu_ot[BP_GET_TYPE(bp)].ot_name;
1197 checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1198 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1199 }
1200
1201 SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1202 }
1203
1204 void
1205 spa_freeze(spa_t *spa)
1206 {
1207 uint64_t freeze_txg = 0;
1208
1209 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1210 if (spa->spa_freeze_txg == UINT64_MAX) {
1211 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1212 spa->spa_freeze_txg = freeze_txg;
1213 }
1214 spa_config_exit(spa, SCL_ALL, FTAG);
1215 if (freeze_txg != 0)
1216 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1217 }
1218
1219 void
1220 zfs_panic_recover(const char *fmt, ...)
1221 {
1222 va_list adx;
1223
1224 va_start(adx, fmt);
1225 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1226 va_end(adx);
1227 }
1228
1229 /*
1230 * This is a stripped-down version of strtoull, suitable only for converting
1231 * lowercase hexidecimal numbers that don't overflow.
1232 */
1233 uint64_t
1234 strtonum(const char *str, char **nptr)
1235 {
1236 uint64_t val = 0;
1237 char c;
1238 int digit;
1239
1240 while ((c = *str) != '\0') {
1241 if (c >= '0' && c <= '9')
1242 digit = c - '0';
1243 else if (c >= 'a' && c <= 'f')
1244 digit = 10 + c - 'a';
1245 else
1246 break;
1247
1248 val *= 16;
1249 val += digit;
1250
1251 str++;
1252 }
1253
1254 if (nptr)
1255 *nptr = (char *)str;
1256
1257 return (val);
1258 }
1259
1260 /*
1261 * ==========================================================================
1262 * Accessor functions
1263 * ==========================================================================
1264 */
1265
1266 boolean_t
1267 spa_shutting_down(spa_t *spa)
1268 {
1269 return (spa->spa_async_suspended);
1270 }
1271
1272 dsl_pool_t *
1273 spa_get_dsl(spa_t *spa)
1274 {
1275 return (spa->spa_dsl_pool);
1276 }
1277
1278 blkptr_t *
1279 spa_get_rootblkptr(spa_t *spa)
1280 {
1281 return (&spa->spa_ubsync.ub_rootbp);
1282 }
1283
1284 void
1285 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1286 {
1287 spa->spa_uberblock.ub_rootbp = *bp;
1288 }
1289
1290 void
1291 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1292 {
1293 if (spa->spa_root == NULL)
1294 buf[0] = '\0';
1295 else
1296 (void) strncpy(buf, spa->spa_root, buflen);
1297 }
1298
1299 int
1300 spa_sync_pass(spa_t *spa)
1301 {
1302 return (spa->spa_sync_pass);
1303 }
1304
1305 char *
1306 spa_name(spa_t *spa)
1307 {
1308 return (spa->spa_name);
1309 }
1310
1311 uint64_t
1312 spa_guid(spa_t *spa)
1313 {
1314 /*
1315 * If we fail to parse the config during spa_load(), we can go through
1316 * the error path (which posts an ereport) and end up here with no root
1317 * vdev. We stash the original pool guid in 'spa_load_guid' to handle
1318 * this case.
1319 */
1320 if (spa->spa_root_vdev != NULL)
1321 return (spa->spa_root_vdev->vdev_guid);
1322 else
1323 return (spa->spa_load_guid);
1324 }
1325
1326 uint64_t
1327 spa_last_synced_txg(spa_t *spa)
1328 {
1329 return (spa->spa_ubsync.ub_txg);
1330 }
1331
1332 uint64_t
1333 spa_first_txg(spa_t *spa)
1334 {
1335 return (spa->spa_first_txg);
1336 }
1337
1338 uint64_t
1339 spa_syncing_txg(spa_t *spa)
1340 {
1341 return (spa->spa_syncing_txg);
1342 }
1343
1344 pool_state_t
1345 spa_state(spa_t *spa)
1346 {
1347 return (spa->spa_state);
1348 }
1349
1350 spa_load_state_t
1351 spa_load_state(spa_t *spa)
1352 {
1353 return (spa->spa_load_state);
1354 }
1355
1356 uint64_t
1357 spa_freeze_txg(spa_t *spa)
1358 {
1359 return (spa->spa_freeze_txg);
1360 }
1361
1362 /* ARGSUSED */
1363 uint64_t
1364 spa_get_asize(spa_t *spa, uint64_t lsize)
1365 {
1366 /*
1367 * The worst case is single-sector max-parity RAID-Z blocks, in which
1368 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
1369 * times the size; so just assume that. Add to this the fact that
1370 * we can have up to 3 DVAs per bp, and one more factor of 2 because
1371 * the block may be dittoed with up to 3 DVAs by ddt_sync().
1372 */
1373 return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
1374 }
1375
1376 uint64_t
1377 spa_get_dspace(spa_t *spa)
1378 {
1379 return (spa->spa_dspace);
1380 }
1381
1382 void
1383 spa_update_dspace(spa_t *spa)
1384 {
1385 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1386 ddt_get_dedup_dspace(spa);
1387 }
1388
1389 /*
1390 * Return the failure mode that has been set to this pool. The default
1391 * behavior will be to block all I/Os when a complete failure occurs.
1392 */
1393 uint8_t
1394 spa_get_failmode(spa_t *spa)
1395 {
1396 return (spa->spa_failmode);
1397 }
1398
1399 boolean_t
1400 spa_suspended(spa_t *spa)
1401 {
1402 return (spa->spa_suspended);
1403 }
1404
1405 uint64_t
1406 spa_version(spa_t *spa)
1407 {
1408 return (spa->spa_ubsync.ub_version);
1409 }
1410
1411 boolean_t
1412 spa_deflate(spa_t *spa)
1413 {
1414 return (spa->spa_deflate);
1415 }
1416
1417 metaslab_class_t *
1418 spa_normal_class(spa_t *spa)
1419 {
1420 return (spa->spa_normal_class);
1421 }
1422
1423 metaslab_class_t *
1424 spa_log_class(spa_t *spa)
1425 {
1426 return (spa->spa_log_class);
1427 }
1428
1429 int
1430 spa_max_replication(spa_t *spa)
1431 {
1432 /*
1433 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1434 * handle BPs with more than one DVA allocated. Set our max
1435 * replication level accordingly.
1436 */
1437 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1438 return (1);
1439 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1440 }
1441
1442 int
1443 spa_prev_software_version(spa_t *spa)
1444 {
1445 return (spa->spa_prev_software_version);
1446 }
1447
1448 uint64_t
1449 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1450 {
1451 uint64_t asize = DVA_GET_ASIZE(dva);
1452 uint64_t dsize = asize;
1453
1454 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1455
1456 if (asize != 0 && spa->spa_deflate) {
1457 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1458 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1459 }
1460
1461 return (dsize);
1462 }
1463
1464 uint64_t
1465 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1466 {
1467 uint64_t dsize = 0;
1468 int d;
1469
1470 for (d = 0; d < SPA_DVAS_PER_BP; d++)
1471 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1472
1473 return (dsize);
1474 }
1475
1476 uint64_t
1477 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1478 {
1479 uint64_t dsize = 0;
1480 int d;
1481
1482 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1483
1484 for (d = 0; d < SPA_DVAS_PER_BP; d++)
1485 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1486
1487 spa_config_exit(spa, SCL_VDEV, FTAG);
1488
1489 return (dsize);
1490 }
1491
1492 /*
1493 * ==========================================================================
1494 * Initialization and Termination
1495 * ==========================================================================
1496 */
1497
1498 static int
1499 spa_name_compare(const void *a1, const void *a2)
1500 {
1501 const spa_t *s1 = a1;
1502 const spa_t *s2 = a2;
1503 int s;
1504
1505 s = strcmp(s1->spa_name, s2->spa_name);
1506 if (s > 0)
1507 return (1);
1508 if (s < 0)
1509 return (-1);
1510 return (0);
1511 }
1512
1513 void
1514 spa_boot_init(void)
1515 {
1516 spa_config_load();
1517 }
1518
1519 void
1520 spa_init(int mode)
1521 {
1522 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1523 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1524 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1525 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1526
1527 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1528 offsetof(spa_t, spa_avl));
1529
1530 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1531 offsetof(spa_aux_t, aux_avl));
1532
1533 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1534 offsetof(spa_aux_t, aux_avl));
1535
1536 spa_mode_global = mode;
1537
1538 fm_init();
1539 refcount_init();
1540 unique_init();
1541 zio_init();
1542 dmu_init();
1543 zil_init();
1544 vdev_cache_stat_init();
1545 zfs_prop_init();
1546 zpool_prop_init();
1547 spa_config_load();
1548 l2arc_start();
1549 }
1550
1551 void
1552 spa_fini(void)
1553 {
1554 l2arc_stop();
1555
1556 spa_evict_all();
1557
1558 vdev_cache_stat_fini();
1559 zil_fini();
1560 dmu_fini();
1561 zio_fini();
1562 unique_fini();
1563 refcount_fini();
1564 fm_fini();
1565
1566 avl_destroy(&spa_namespace_avl);
1567 avl_destroy(&spa_spare_avl);
1568 avl_destroy(&spa_l2cache_avl);
1569
1570 cv_destroy(&spa_namespace_cv);
1571 mutex_destroy(&spa_namespace_lock);
1572 mutex_destroy(&spa_spare_lock);
1573 mutex_destroy(&spa_l2cache_lock);
1574 }
1575
1576 /*
1577 * Return whether this pool has slogs. No locking needed.
1578 * It's not a problem if the wrong answer is returned as it's only for
1579 * performance and not correctness
1580 */
1581 boolean_t
1582 spa_has_slogs(spa_t *spa)
1583 {
1584 return (spa->spa_log_class->mc_rotor != NULL);
1585 }
1586
1587 spa_log_state_t
1588 spa_get_log_state(spa_t *spa)
1589 {
1590 return (spa->spa_log_state);
1591 }
1592
1593 void
1594 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1595 {
1596 spa->spa_log_state = state;
1597 }
1598
1599 boolean_t
1600 spa_is_root(spa_t *spa)
1601 {
1602 return (spa->spa_is_root);
1603 }
1604
1605 boolean_t
1606 spa_writeable(spa_t *spa)
1607 {
1608 return (!!(spa->spa_mode & FWRITE));
1609 }
1610
1611 int
1612 spa_mode(spa_t *spa)
1613 {
1614 return (spa->spa_mode);
1615 }
1616
1617 uint64_t
1618 spa_bootfs(spa_t *spa)
1619 {
1620 return (spa->spa_bootfs);
1621 }
1622
1623 uint64_t
1624 spa_delegation(spa_t *spa)
1625 {
1626 return (spa->spa_delegation);
1627 }
1628
1629 objset_t *
1630 spa_meta_objset(spa_t *spa)
1631 {
1632 return (spa->spa_meta_objset);
1633 }
1634
1635 enum zio_checksum
1636 spa_dedup_checksum(spa_t *spa)
1637 {
1638 return (spa->spa_dedup_checksum);
1639 }
1640
1641 /*
1642 * Reset pool scan stat per scan pass (or reboot).
1643 */
1644 void
1645 spa_scan_stat_init(spa_t *spa)
1646 {
1647 /* data not stored on disk */
1648 spa->spa_scan_pass_start = gethrestime_sec();
1649 spa->spa_scan_pass_exam = 0;
1650 vdev_scan_stat_init(spa->spa_root_vdev);
1651 }
1652
1653 /*
1654 * Get scan stats for zpool status reports
1655 */
1656 int
1657 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1658 {
1659 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1660
1661 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1662 return (ENOENT);
1663 bzero(ps, sizeof (pool_scan_stat_t));
1664
1665 /* data stored on disk */
1666 ps->pss_func = scn->scn_phys.scn_func;
1667 ps->pss_start_time = scn->scn_phys.scn_start_time;
1668 ps->pss_end_time = scn->scn_phys.scn_end_time;
1669 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1670 ps->pss_examined = scn->scn_phys.scn_examined;
1671 ps->pss_to_process = scn->scn_phys.scn_to_process;
1672 ps->pss_processed = scn->scn_phys.scn_processed;
1673 ps->pss_errors = scn->scn_phys.scn_errors;
1674 ps->pss_state = scn->scn_phys.scn_state;
1675
1676 /* data not stored on disk */
1677 ps->pss_pass_start = spa->spa_scan_pass_start;
1678 ps->pss_pass_exam = spa->spa_scan_pass_exam;
1679
1680 return (0);
1681 }
1682
1683 #if defined(_KERNEL) && defined(HAVE_SPL)
1684 /* Namespace manipulation */
1685 EXPORT_SYMBOL(spa_lookup);
1686 EXPORT_SYMBOL(spa_add);
1687 EXPORT_SYMBOL(spa_remove);
1688 EXPORT_SYMBOL(spa_next);
1689
1690 /* Refcount functions */
1691 EXPORT_SYMBOL(spa_open_ref);
1692 EXPORT_SYMBOL(spa_close);
1693 EXPORT_SYMBOL(spa_refcount_zero);
1694
1695 /* Pool configuration lock */
1696 EXPORT_SYMBOL(spa_config_tryenter);
1697 EXPORT_SYMBOL(spa_config_enter);
1698 EXPORT_SYMBOL(spa_config_exit);
1699 EXPORT_SYMBOL(spa_config_held);
1700
1701 /* Pool vdev add/remove lock */
1702 EXPORT_SYMBOL(spa_vdev_enter);
1703 EXPORT_SYMBOL(spa_vdev_exit);
1704
1705 /* Pool vdev state change lock */
1706 EXPORT_SYMBOL(spa_vdev_state_enter);
1707 EXPORT_SYMBOL(spa_vdev_state_exit);
1708
1709 /* Accessor functions */
1710 EXPORT_SYMBOL(spa_shutting_down);
1711 EXPORT_SYMBOL(spa_get_dsl);
1712 EXPORT_SYMBOL(spa_get_rootblkptr);
1713 EXPORT_SYMBOL(spa_set_rootblkptr);
1714 EXPORT_SYMBOL(spa_altroot);
1715 EXPORT_SYMBOL(spa_sync_pass);
1716 EXPORT_SYMBOL(spa_name);
1717 EXPORT_SYMBOL(spa_guid);
1718 EXPORT_SYMBOL(spa_last_synced_txg);
1719 EXPORT_SYMBOL(spa_first_txg);
1720 EXPORT_SYMBOL(spa_syncing_txg);
1721 EXPORT_SYMBOL(spa_version);
1722 EXPORT_SYMBOL(spa_state);
1723 EXPORT_SYMBOL(spa_load_state);
1724 EXPORT_SYMBOL(spa_freeze_txg);
1725 EXPORT_SYMBOL(spa_get_asize);
1726 EXPORT_SYMBOL(spa_get_dspace);
1727 EXPORT_SYMBOL(spa_update_dspace);
1728 EXPORT_SYMBOL(spa_deflate);
1729 EXPORT_SYMBOL(spa_normal_class);
1730 EXPORT_SYMBOL(spa_log_class);
1731 EXPORT_SYMBOL(spa_max_replication);
1732 EXPORT_SYMBOL(spa_prev_software_version);
1733 EXPORT_SYMBOL(spa_get_failmode);
1734 EXPORT_SYMBOL(spa_suspended);
1735 EXPORT_SYMBOL(spa_bootfs);
1736 EXPORT_SYMBOL(spa_delegation);
1737 EXPORT_SYMBOL(spa_meta_objset);
1738
1739 /* Miscellaneous support routines */
1740 EXPORT_SYMBOL(spa_rename);
1741 EXPORT_SYMBOL(spa_guid_exists);
1742 EXPORT_SYMBOL(spa_strdup);
1743 EXPORT_SYMBOL(spa_strfree);
1744 EXPORT_SYMBOL(spa_get_random);
1745 EXPORT_SYMBOL(spa_generate_guid);
1746 EXPORT_SYMBOL(sprintf_blkptr);
1747 EXPORT_SYMBOL(spa_freeze);
1748 EXPORT_SYMBOL(spa_upgrade);
1749 EXPORT_SYMBOL(spa_evict_all);
1750 EXPORT_SYMBOL(spa_lookup_by_guid);
1751 EXPORT_SYMBOL(spa_has_spare);
1752 EXPORT_SYMBOL(dva_get_dsize_sync);
1753 EXPORT_SYMBOL(bp_get_dsize_sync);
1754 EXPORT_SYMBOL(bp_get_dsize);
1755 EXPORT_SYMBOL(spa_has_slogs);
1756 EXPORT_SYMBOL(spa_is_root);
1757 EXPORT_SYMBOL(spa_writeable);
1758 EXPORT_SYMBOL(spa_mode);
1759
1760 EXPORT_SYMBOL(spa_namespace_lock);
1761 #endif