]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa_misc.c
OpenZFS 9465 - ARC check for 'anon_size > arc_c/2' can stall the system
[mirror_zfs.git] / module / zfs / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2017 Datto Inc.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/spa_impl.h>
32 #include <sys/zio.h>
33 #include <sys/zio_checksum.h>
34 #include <sys/zio_compress.h>
35 #include <sys/dmu.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/zap.h>
38 #include <sys/zil.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/vdev_file.h>
41 #include <sys/vdev_raidz.h>
42 #include <sys/metaslab.h>
43 #include <sys/uberblock_impl.h>
44 #include <sys/txg.h>
45 #include <sys/avl.h>
46 #include <sys/unique.h>
47 #include <sys/dsl_pool.h>
48 #include <sys/dsl_dir.h>
49 #include <sys/dsl_prop.h>
50 #include <sys/fm/util.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/fs/zfs.h>
53 #include <sys/metaslab_impl.h>
54 #include <sys/arc.h>
55 #include <sys/ddt.h>
56 #include <sys/kstat.h>
57 #include "zfs_prop.h"
58 #include <sys/zfeature.h>
59 #include "qat.h"
60
61 /*
62 * SPA locking
63 *
64 * There are four basic locks for managing spa_t structures:
65 *
66 * spa_namespace_lock (global mutex)
67 *
68 * This lock must be acquired to do any of the following:
69 *
70 * - Lookup a spa_t by name
71 * - Add or remove a spa_t from the namespace
72 * - Increase spa_refcount from non-zero
73 * - Check if spa_refcount is zero
74 * - Rename a spa_t
75 * - add/remove/attach/detach devices
76 * - Held for the duration of create/destroy/import/export
77 *
78 * It does not need to handle recursion. A create or destroy may
79 * reference objects (files or zvols) in other pools, but by
80 * definition they must have an existing reference, and will never need
81 * to lookup a spa_t by name.
82 *
83 * spa_refcount (per-spa refcount_t protected by mutex)
84 *
85 * This reference count keep track of any active users of the spa_t. The
86 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
87 * the refcount is never really 'zero' - opening a pool implicitly keeps
88 * some references in the DMU. Internally we check against spa_minref, but
89 * present the image of a zero/non-zero value to consumers.
90 *
91 * spa_config_lock[] (per-spa array of rwlocks)
92 *
93 * This protects the spa_t from config changes, and must be held in
94 * the following circumstances:
95 *
96 * - RW_READER to perform I/O to the spa
97 * - RW_WRITER to change the vdev config
98 *
99 * The locking order is fairly straightforward:
100 *
101 * spa_namespace_lock -> spa_refcount
102 *
103 * The namespace lock must be acquired to increase the refcount from 0
104 * or to check if it is zero.
105 *
106 * spa_refcount -> spa_config_lock[]
107 *
108 * There must be at least one valid reference on the spa_t to acquire
109 * the config lock.
110 *
111 * spa_namespace_lock -> spa_config_lock[]
112 *
113 * The namespace lock must always be taken before the config lock.
114 *
115 *
116 * The spa_namespace_lock can be acquired directly and is globally visible.
117 *
118 * The namespace is manipulated using the following functions, all of which
119 * require the spa_namespace_lock to be held.
120 *
121 * spa_lookup() Lookup a spa_t by name.
122 *
123 * spa_add() Create a new spa_t in the namespace.
124 *
125 * spa_remove() Remove a spa_t from the namespace. This also
126 * frees up any memory associated with the spa_t.
127 *
128 * spa_next() Returns the next spa_t in the system, or the
129 * first if NULL is passed.
130 *
131 * spa_evict_all() Shutdown and remove all spa_t structures in
132 * the system.
133 *
134 * spa_guid_exists() Determine whether a pool/device guid exists.
135 *
136 * The spa_refcount is manipulated using the following functions:
137 *
138 * spa_open_ref() Adds a reference to the given spa_t. Must be
139 * called with spa_namespace_lock held if the
140 * refcount is currently zero.
141 *
142 * spa_close() Remove a reference from the spa_t. This will
143 * not free the spa_t or remove it from the
144 * namespace. No locking is required.
145 *
146 * spa_refcount_zero() Returns true if the refcount is currently
147 * zero. Must be called with spa_namespace_lock
148 * held.
149 *
150 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
151 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
152 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
153 *
154 * To read the configuration, it suffices to hold one of these locks as reader.
155 * To modify the configuration, you must hold all locks as writer. To modify
156 * vdev state without altering the vdev tree's topology (e.g. online/offline),
157 * you must hold SCL_STATE and SCL_ZIO as writer.
158 *
159 * We use these distinct config locks to avoid recursive lock entry.
160 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
161 * block allocations (SCL_ALLOC), which may require reading space maps
162 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
163 *
164 * The spa config locks cannot be normal rwlocks because we need the
165 * ability to hand off ownership. For example, SCL_ZIO is acquired
166 * by the issuing thread and later released by an interrupt thread.
167 * They do, however, obey the usual write-wanted semantics to prevent
168 * writer (i.e. system administrator) starvation.
169 *
170 * The lock acquisition rules are as follows:
171 *
172 * SCL_CONFIG
173 * Protects changes to the vdev tree topology, such as vdev
174 * add/remove/attach/detach. Protects the dirty config list
175 * (spa_config_dirty_list) and the set of spares and l2arc devices.
176 *
177 * SCL_STATE
178 * Protects changes to pool state and vdev state, such as vdev
179 * online/offline/fault/degrade/clear. Protects the dirty state list
180 * (spa_state_dirty_list) and global pool state (spa_state).
181 *
182 * SCL_ALLOC
183 * Protects changes to metaslab groups and classes.
184 * Held as reader by metaslab_alloc() and metaslab_claim().
185 *
186 * SCL_ZIO
187 * Held by bp-level zios (those which have no io_vd upon entry)
188 * to prevent changes to the vdev tree. The bp-level zio implicitly
189 * protects all of its vdev child zios, which do not hold SCL_ZIO.
190 *
191 * SCL_FREE
192 * Protects changes to metaslab groups and classes.
193 * Held as reader by metaslab_free(). SCL_FREE is distinct from
194 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
195 * blocks in zio_done() while another i/o that holds either
196 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
197 *
198 * SCL_VDEV
199 * Held as reader to prevent changes to the vdev tree during trivial
200 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
201 * other locks, and lower than all of them, to ensure that it's safe
202 * to acquire regardless of caller context.
203 *
204 * In addition, the following rules apply:
205 *
206 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
207 * The lock ordering is SCL_CONFIG > spa_props_lock.
208 *
209 * (b) I/O operations on leaf vdevs. For any zio operation that takes
210 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
211 * or zio_write_phys() -- the caller must ensure that the config cannot
212 * cannot change in the interim, and that the vdev cannot be reopened.
213 * SCL_STATE as reader suffices for both.
214 *
215 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
216 *
217 * spa_vdev_enter() Acquire the namespace lock and the config lock
218 * for writing.
219 *
220 * spa_vdev_exit() Release the config lock, wait for all I/O
221 * to complete, sync the updated configs to the
222 * cache, and release the namespace lock.
223 *
224 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
225 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
226 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
227 *
228 * spa_rename() is also implemented within this file since it requires
229 * manipulation of the namespace.
230 */
231
232 static avl_tree_t spa_namespace_avl;
233 kmutex_t spa_namespace_lock;
234 static kcondvar_t spa_namespace_cv;
235 int spa_max_replication_override = SPA_DVAS_PER_BP;
236
237 static kmutex_t spa_spare_lock;
238 static avl_tree_t spa_spare_avl;
239 static kmutex_t spa_l2cache_lock;
240 static avl_tree_t spa_l2cache_avl;
241
242 kmem_cache_t *spa_buffer_pool;
243 int spa_mode_global;
244
245 #ifdef ZFS_DEBUG
246 /*
247 * Everything except dprintf, set_error, spa, and indirect_remap is on
248 * by default in debug builds.
249 */
250 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
251 ZFS_DEBUG_INDIRECT_REMAP);
252 #else
253 int zfs_flags = 0;
254 #endif
255
256 /*
257 * zfs_recover can be set to nonzero to attempt to recover from
258 * otherwise-fatal errors, typically caused by on-disk corruption. When
259 * set, calls to zfs_panic_recover() will turn into warning messages.
260 * This should only be used as a last resort, as it typically results
261 * in leaked space, or worse.
262 */
263 int zfs_recover = B_FALSE;
264
265 /*
266 * If destroy encounters an EIO while reading metadata (e.g. indirect
267 * blocks), space referenced by the missing metadata can not be freed.
268 * Normally this causes the background destroy to become "stalled", as
269 * it is unable to make forward progress. While in this stalled state,
270 * all remaining space to free from the error-encountering filesystem is
271 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
272 * permanently leak the space from indirect blocks that can not be read,
273 * and continue to free everything else that it can.
274 *
275 * The default, "stalling" behavior is useful if the storage partially
276 * fails (i.e. some but not all i/os fail), and then later recovers. In
277 * this case, we will be able to continue pool operations while it is
278 * partially failed, and when it recovers, we can continue to free the
279 * space, with no leaks. However, note that this case is actually
280 * fairly rare.
281 *
282 * Typically pools either (a) fail completely (but perhaps temporarily,
283 * e.g. a top-level vdev going offline), or (b) have localized,
284 * permanent errors (e.g. disk returns the wrong data due to bit flip or
285 * firmware bug). In case (a), this setting does not matter because the
286 * pool will be suspended and the sync thread will not be able to make
287 * forward progress regardless. In case (b), because the error is
288 * permanent, the best we can do is leak the minimum amount of space,
289 * which is what setting this flag will do. Therefore, it is reasonable
290 * for this flag to normally be set, but we chose the more conservative
291 * approach of not setting it, so that there is no possibility of
292 * leaking space in the "partial temporary" failure case.
293 */
294 int zfs_free_leak_on_eio = B_FALSE;
295
296 /*
297 * Expiration time in milliseconds. This value has two meanings. First it is
298 * used to determine when the spa_deadman() logic should fire. By default the
299 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
300 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
301 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
302 * in one of three behaviors controlled by zfs_deadman_failmode.
303 */
304 unsigned long zfs_deadman_synctime_ms = 600000ULL;
305
306 /*
307 * This value controls the maximum amount of time zio_wait() will block for an
308 * outstanding IO. By default this is 300 seconds at which point the "hung"
309 * behavior will be applied as described for zfs_deadman_synctime_ms.
310 */
311 unsigned long zfs_deadman_ziotime_ms = 300000ULL;
312
313 /*
314 * Check time in milliseconds. This defines the frequency at which we check
315 * for hung I/O.
316 */
317 unsigned long zfs_deadman_checktime_ms = 60000ULL;
318
319 /*
320 * By default the deadman is enabled.
321 */
322 int zfs_deadman_enabled = 1;
323
324 /*
325 * Controls the behavior of the deadman when it detects a "hung" I/O.
326 * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
327 *
328 * wait - Wait for the "hung" I/O (default)
329 * continue - Attempt to recover from a "hung" I/O
330 * panic - Panic the system
331 */
332 char *zfs_deadman_failmode = "wait";
333
334 /*
335 * The worst case is single-sector max-parity RAID-Z blocks, in which
336 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
337 * times the size; so just assume that. Add to this the fact that
338 * we can have up to 3 DVAs per bp, and one more factor of 2 because
339 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
340 * the worst case is:
341 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
342 */
343 int spa_asize_inflation = 24;
344
345 /*
346 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
347 * the pool to be consumed. This ensures that we don't run the pool
348 * completely out of space, due to unaccounted changes (e.g. to the MOS).
349 * It also limits the worst-case time to allocate space. If we have
350 * less than this amount of free space, most ZPL operations (e.g. write,
351 * create) will return ENOSPC.
352 *
353 * Certain operations (e.g. file removal, most administrative actions) can
354 * use half the slop space. They will only return ENOSPC if less than half
355 * the slop space is free. Typically, once the pool has less than the slop
356 * space free, the user will use these operations to free up space in the pool.
357 * These are the operations that call dsl_pool_adjustedsize() with the netfree
358 * argument set to TRUE.
359 *
360 * Operations that are almost guaranteed to free up space in the absence of
361 * a pool checkpoint can use up to three quarters of the slop space
362 * (e.g zfs destroy).
363 *
364 * A very restricted set of operations are always permitted, regardless of
365 * the amount of free space. These are the operations that call
366 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
367 * increase in the amount of space used, it is possible to run the pool
368 * completely out of space, causing it to be permanently read-only.
369 *
370 * Note that on very small pools, the slop space will be larger than
371 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
372 * but we never allow it to be more than half the pool size.
373 *
374 * See also the comments in zfs_space_check_t.
375 */
376 int spa_slop_shift = 5;
377 uint64_t spa_min_slop = 128 * 1024 * 1024;
378
379 /*PRINTFLIKE2*/
380 void
381 spa_load_failed(spa_t *spa, const char *fmt, ...)
382 {
383 va_list adx;
384 char buf[256];
385
386 va_start(adx, fmt);
387 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
388 va_end(adx);
389
390 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
391 spa->spa_trust_config ? "trusted" : "untrusted", buf);
392 }
393
394 /*PRINTFLIKE2*/
395 void
396 spa_load_note(spa_t *spa, const char *fmt, ...)
397 {
398 va_list adx;
399 char buf[256];
400
401 va_start(adx, fmt);
402 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
403 va_end(adx);
404
405 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
406 spa->spa_trust_config ? "trusted" : "untrusted", buf);
407 }
408
409 /*
410 * ==========================================================================
411 * SPA config locking
412 * ==========================================================================
413 */
414 static void
415 spa_config_lock_init(spa_t *spa)
416 {
417 for (int i = 0; i < SCL_LOCKS; i++) {
418 spa_config_lock_t *scl = &spa->spa_config_lock[i];
419 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
420 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
421 refcount_create_untracked(&scl->scl_count);
422 scl->scl_writer = NULL;
423 scl->scl_write_wanted = 0;
424 }
425 }
426
427 static void
428 spa_config_lock_destroy(spa_t *spa)
429 {
430 for (int i = 0; i < SCL_LOCKS; i++) {
431 spa_config_lock_t *scl = &spa->spa_config_lock[i];
432 mutex_destroy(&scl->scl_lock);
433 cv_destroy(&scl->scl_cv);
434 refcount_destroy(&scl->scl_count);
435 ASSERT(scl->scl_writer == NULL);
436 ASSERT(scl->scl_write_wanted == 0);
437 }
438 }
439
440 int
441 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
442 {
443 for (int i = 0; i < SCL_LOCKS; i++) {
444 spa_config_lock_t *scl = &spa->spa_config_lock[i];
445 if (!(locks & (1 << i)))
446 continue;
447 mutex_enter(&scl->scl_lock);
448 if (rw == RW_READER) {
449 if (scl->scl_writer || scl->scl_write_wanted) {
450 mutex_exit(&scl->scl_lock);
451 spa_config_exit(spa, locks & ((1 << i) - 1),
452 tag);
453 return (0);
454 }
455 } else {
456 ASSERT(scl->scl_writer != curthread);
457 if (!refcount_is_zero(&scl->scl_count)) {
458 mutex_exit(&scl->scl_lock);
459 spa_config_exit(spa, locks & ((1 << i) - 1),
460 tag);
461 return (0);
462 }
463 scl->scl_writer = curthread;
464 }
465 (void) refcount_add(&scl->scl_count, tag);
466 mutex_exit(&scl->scl_lock);
467 }
468 return (1);
469 }
470
471 void
472 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
473 {
474 int wlocks_held = 0;
475
476 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
477
478 for (int i = 0; i < SCL_LOCKS; i++) {
479 spa_config_lock_t *scl = &spa->spa_config_lock[i];
480 if (scl->scl_writer == curthread)
481 wlocks_held |= (1 << i);
482 if (!(locks & (1 << i)))
483 continue;
484 mutex_enter(&scl->scl_lock);
485 if (rw == RW_READER) {
486 while (scl->scl_writer || scl->scl_write_wanted) {
487 cv_wait(&scl->scl_cv, &scl->scl_lock);
488 }
489 } else {
490 ASSERT(scl->scl_writer != curthread);
491 while (!refcount_is_zero(&scl->scl_count)) {
492 scl->scl_write_wanted++;
493 cv_wait(&scl->scl_cv, &scl->scl_lock);
494 scl->scl_write_wanted--;
495 }
496 scl->scl_writer = curthread;
497 }
498 (void) refcount_add(&scl->scl_count, tag);
499 mutex_exit(&scl->scl_lock);
500 }
501 ASSERT3U(wlocks_held, <=, locks);
502 }
503
504 void
505 spa_config_exit(spa_t *spa, int locks, void *tag)
506 {
507 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
508 spa_config_lock_t *scl = &spa->spa_config_lock[i];
509 if (!(locks & (1 << i)))
510 continue;
511 mutex_enter(&scl->scl_lock);
512 ASSERT(!refcount_is_zero(&scl->scl_count));
513 if (refcount_remove(&scl->scl_count, tag) == 0) {
514 ASSERT(scl->scl_writer == NULL ||
515 scl->scl_writer == curthread);
516 scl->scl_writer = NULL; /* OK in either case */
517 cv_broadcast(&scl->scl_cv);
518 }
519 mutex_exit(&scl->scl_lock);
520 }
521 }
522
523 int
524 spa_config_held(spa_t *spa, int locks, krw_t rw)
525 {
526 int locks_held = 0;
527
528 for (int i = 0; i < SCL_LOCKS; i++) {
529 spa_config_lock_t *scl = &spa->spa_config_lock[i];
530 if (!(locks & (1 << i)))
531 continue;
532 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
533 (rw == RW_WRITER && scl->scl_writer == curthread))
534 locks_held |= 1 << i;
535 }
536
537 return (locks_held);
538 }
539
540 /*
541 * ==========================================================================
542 * SPA namespace functions
543 * ==========================================================================
544 */
545
546 /*
547 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
548 * Returns NULL if no matching spa_t is found.
549 */
550 spa_t *
551 spa_lookup(const char *name)
552 {
553 static spa_t search; /* spa_t is large; don't allocate on stack */
554 spa_t *spa;
555 avl_index_t where;
556 char *cp;
557
558 ASSERT(MUTEX_HELD(&spa_namespace_lock));
559
560 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
561
562 /*
563 * If it's a full dataset name, figure out the pool name and
564 * just use that.
565 */
566 cp = strpbrk(search.spa_name, "/@#");
567 if (cp != NULL)
568 *cp = '\0';
569
570 spa = avl_find(&spa_namespace_avl, &search, &where);
571
572 return (spa);
573 }
574
575 /*
576 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
577 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
578 * looking for potentially hung I/Os.
579 */
580 void
581 spa_deadman(void *arg)
582 {
583 spa_t *spa = arg;
584
585 /* Disable the deadman if the pool is suspended. */
586 if (spa_suspended(spa))
587 return;
588
589 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
590 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
591 ++spa->spa_deadman_calls);
592 if (zfs_deadman_enabled)
593 vdev_deadman(spa->spa_root_vdev, FTAG);
594
595 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
596 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
597 MSEC_TO_TICK(zfs_deadman_checktime_ms));
598 }
599
600 /*
601 * Create an uninitialized spa_t with the given name. Requires
602 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
603 * exist by calling spa_lookup() first.
604 */
605 spa_t *
606 spa_add(const char *name, nvlist_t *config, const char *altroot)
607 {
608 spa_t *spa;
609 spa_config_dirent_t *dp;
610
611 ASSERT(MUTEX_HELD(&spa_namespace_lock));
612
613 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
614
615 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
616 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
617 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
618 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
619 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
620 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
621 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
622 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
623 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
624 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
625 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
626 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
627 mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL);
628
629 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
630 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
631 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
632 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
633 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
634
635 for (int t = 0; t < TXG_SIZE; t++)
636 bplist_create(&spa->spa_free_bplist[t]);
637
638 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
639 spa->spa_state = POOL_STATE_UNINITIALIZED;
640 spa->spa_freeze_txg = UINT64_MAX;
641 spa->spa_final_txg = UINT64_MAX;
642 spa->spa_load_max_txg = UINT64_MAX;
643 spa->spa_proc = &p0;
644 spa->spa_proc_state = SPA_PROC_NONE;
645 spa->spa_trust_config = B_TRUE;
646
647 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
648 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
649 spa_set_deadman_failmode(spa, zfs_deadman_failmode);
650
651 refcount_create(&spa->spa_refcount);
652 spa_config_lock_init(spa);
653 spa_stats_init(spa);
654
655 avl_add(&spa_namespace_avl, spa);
656
657 /*
658 * Set the alternate root, if there is one.
659 */
660 if (altroot)
661 spa->spa_root = spa_strdup(altroot);
662
663 avl_create(&spa->spa_alloc_tree, zio_bookmark_compare,
664 sizeof (zio_t), offsetof(zio_t, io_alloc_node));
665
666 /*
667 * Every pool starts with the default cachefile
668 */
669 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
670 offsetof(spa_config_dirent_t, scd_link));
671
672 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
673 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
674 list_insert_head(&spa->spa_config_list, dp);
675
676 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
677 KM_SLEEP) == 0);
678
679 if (config != NULL) {
680 nvlist_t *features;
681
682 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
683 &features) == 0) {
684 VERIFY(nvlist_dup(features, &spa->spa_label_features,
685 0) == 0);
686 }
687
688 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
689 }
690
691 if (spa->spa_label_features == NULL) {
692 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
693 KM_SLEEP) == 0);
694 }
695
696 spa->spa_min_ashift = INT_MAX;
697 spa->spa_max_ashift = 0;
698
699 /* Reset cached value */
700 spa->spa_dedup_dspace = ~0ULL;
701
702 /*
703 * As a pool is being created, treat all features as disabled by
704 * setting SPA_FEATURE_DISABLED for all entries in the feature
705 * refcount cache.
706 */
707 for (int i = 0; i < SPA_FEATURES; i++) {
708 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
709 }
710
711 return (spa);
712 }
713
714 /*
715 * Removes a spa_t from the namespace, freeing up any memory used. Requires
716 * spa_namespace_lock. This is called only after the spa_t has been closed and
717 * deactivated.
718 */
719 void
720 spa_remove(spa_t *spa)
721 {
722 spa_config_dirent_t *dp;
723
724 ASSERT(MUTEX_HELD(&spa_namespace_lock));
725 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
726 ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
727
728 nvlist_free(spa->spa_config_splitting);
729
730 avl_remove(&spa_namespace_avl, spa);
731 cv_broadcast(&spa_namespace_cv);
732
733 if (spa->spa_root)
734 spa_strfree(spa->spa_root);
735
736 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
737 list_remove(&spa->spa_config_list, dp);
738 if (dp->scd_path != NULL)
739 spa_strfree(dp->scd_path);
740 kmem_free(dp, sizeof (spa_config_dirent_t));
741 }
742
743 avl_destroy(&spa->spa_alloc_tree);
744 list_destroy(&spa->spa_config_list);
745
746 nvlist_free(spa->spa_label_features);
747 nvlist_free(spa->spa_load_info);
748 nvlist_free(spa->spa_feat_stats);
749 spa_config_set(spa, NULL);
750
751 refcount_destroy(&spa->spa_refcount);
752
753 spa_stats_destroy(spa);
754 spa_config_lock_destroy(spa);
755
756 for (int t = 0; t < TXG_SIZE; t++)
757 bplist_destroy(&spa->spa_free_bplist[t]);
758
759 zio_checksum_templates_free(spa);
760
761 cv_destroy(&spa->spa_async_cv);
762 cv_destroy(&spa->spa_evicting_os_cv);
763 cv_destroy(&spa->spa_proc_cv);
764 cv_destroy(&spa->spa_scrub_io_cv);
765 cv_destroy(&spa->spa_suspend_cv);
766
767 mutex_destroy(&spa->spa_alloc_lock);
768 mutex_destroy(&spa->spa_async_lock);
769 mutex_destroy(&spa->spa_errlist_lock);
770 mutex_destroy(&spa->spa_errlog_lock);
771 mutex_destroy(&spa->spa_evicting_os_lock);
772 mutex_destroy(&spa->spa_history_lock);
773 mutex_destroy(&spa->spa_proc_lock);
774 mutex_destroy(&spa->spa_props_lock);
775 mutex_destroy(&spa->spa_cksum_tmpls_lock);
776 mutex_destroy(&spa->spa_scrub_lock);
777 mutex_destroy(&spa->spa_suspend_lock);
778 mutex_destroy(&spa->spa_vdev_top_lock);
779 mutex_destroy(&spa->spa_feat_stats_lock);
780
781 kmem_free(spa, sizeof (spa_t));
782 }
783
784 /*
785 * Given a pool, return the next pool in the namespace, or NULL if there is
786 * none. If 'prev' is NULL, return the first pool.
787 */
788 spa_t *
789 spa_next(spa_t *prev)
790 {
791 ASSERT(MUTEX_HELD(&spa_namespace_lock));
792
793 if (prev)
794 return (AVL_NEXT(&spa_namespace_avl, prev));
795 else
796 return (avl_first(&spa_namespace_avl));
797 }
798
799 /*
800 * ==========================================================================
801 * SPA refcount functions
802 * ==========================================================================
803 */
804
805 /*
806 * Add a reference to the given spa_t. Must have at least one reference, or
807 * have the namespace lock held.
808 */
809 void
810 spa_open_ref(spa_t *spa, void *tag)
811 {
812 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
813 MUTEX_HELD(&spa_namespace_lock));
814 (void) refcount_add(&spa->spa_refcount, tag);
815 }
816
817 /*
818 * Remove a reference to the given spa_t. Must have at least one reference, or
819 * have the namespace lock held.
820 */
821 void
822 spa_close(spa_t *spa, void *tag)
823 {
824 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
825 MUTEX_HELD(&spa_namespace_lock));
826 (void) refcount_remove(&spa->spa_refcount, tag);
827 }
828
829 /*
830 * Remove a reference to the given spa_t held by a dsl dir that is
831 * being asynchronously released. Async releases occur from a taskq
832 * performing eviction of dsl datasets and dirs. The namespace lock
833 * isn't held and the hold by the object being evicted may contribute to
834 * spa_minref (e.g. dataset or directory released during pool export),
835 * so the asserts in spa_close() do not apply.
836 */
837 void
838 spa_async_close(spa_t *spa, void *tag)
839 {
840 (void) refcount_remove(&spa->spa_refcount, tag);
841 }
842
843 /*
844 * Check to see if the spa refcount is zero. Must be called with
845 * spa_namespace_lock held. We really compare against spa_minref, which is the
846 * number of references acquired when opening a pool
847 */
848 boolean_t
849 spa_refcount_zero(spa_t *spa)
850 {
851 ASSERT(MUTEX_HELD(&spa_namespace_lock));
852
853 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
854 }
855
856 /*
857 * ==========================================================================
858 * SPA spare and l2cache tracking
859 * ==========================================================================
860 */
861
862 /*
863 * Hot spares and cache devices are tracked using the same code below,
864 * for 'auxiliary' devices.
865 */
866
867 typedef struct spa_aux {
868 uint64_t aux_guid;
869 uint64_t aux_pool;
870 avl_node_t aux_avl;
871 int aux_count;
872 } spa_aux_t;
873
874 static inline int
875 spa_aux_compare(const void *a, const void *b)
876 {
877 const spa_aux_t *sa = (const spa_aux_t *)a;
878 const spa_aux_t *sb = (const spa_aux_t *)b;
879
880 return (AVL_CMP(sa->aux_guid, sb->aux_guid));
881 }
882
883 void
884 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
885 {
886 avl_index_t where;
887 spa_aux_t search;
888 spa_aux_t *aux;
889
890 search.aux_guid = vd->vdev_guid;
891 if ((aux = avl_find(avl, &search, &where)) != NULL) {
892 aux->aux_count++;
893 } else {
894 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
895 aux->aux_guid = vd->vdev_guid;
896 aux->aux_count = 1;
897 avl_insert(avl, aux, where);
898 }
899 }
900
901 void
902 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
903 {
904 spa_aux_t search;
905 spa_aux_t *aux;
906 avl_index_t where;
907
908 search.aux_guid = vd->vdev_guid;
909 aux = avl_find(avl, &search, &where);
910
911 ASSERT(aux != NULL);
912
913 if (--aux->aux_count == 0) {
914 avl_remove(avl, aux);
915 kmem_free(aux, sizeof (spa_aux_t));
916 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
917 aux->aux_pool = 0ULL;
918 }
919 }
920
921 boolean_t
922 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
923 {
924 spa_aux_t search, *found;
925
926 search.aux_guid = guid;
927 found = avl_find(avl, &search, NULL);
928
929 if (pool) {
930 if (found)
931 *pool = found->aux_pool;
932 else
933 *pool = 0ULL;
934 }
935
936 if (refcnt) {
937 if (found)
938 *refcnt = found->aux_count;
939 else
940 *refcnt = 0;
941 }
942
943 return (found != NULL);
944 }
945
946 void
947 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
948 {
949 spa_aux_t search, *found;
950 avl_index_t where;
951
952 search.aux_guid = vd->vdev_guid;
953 found = avl_find(avl, &search, &where);
954 ASSERT(found != NULL);
955 ASSERT(found->aux_pool == 0ULL);
956
957 found->aux_pool = spa_guid(vd->vdev_spa);
958 }
959
960 /*
961 * Spares are tracked globally due to the following constraints:
962 *
963 * - A spare may be part of multiple pools.
964 * - A spare may be added to a pool even if it's actively in use within
965 * another pool.
966 * - A spare in use in any pool can only be the source of a replacement if
967 * the target is a spare in the same pool.
968 *
969 * We keep track of all spares on the system through the use of a reference
970 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
971 * spare, then we bump the reference count in the AVL tree. In addition, we set
972 * the 'vdev_isspare' member to indicate that the device is a spare (active or
973 * inactive). When a spare is made active (used to replace a device in the
974 * pool), we also keep track of which pool its been made a part of.
975 *
976 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
977 * called under the spa_namespace lock as part of vdev reconfiguration. The
978 * separate spare lock exists for the status query path, which does not need to
979 * be completely consistent with respect to other vdev configuration changes.
980 */
981
982 static int
983 spa_spare_compare(const void *a, const void *b)
984 {
985 return (spa_aux_compare(a, b));
986 }
987
988 void
989 spa_spare_add(vdev_t *vd)
990 {
991 mutex_enter(&spa_spare_lock);
992 ASSERT(!vd->vdev_isspare);
993 spa_aux_add(vd, &spa_spare_avl);
994 vd->vdev_isspare = B_TRUE;
995 mutex_exit(&spa_spare_lock);
996 }
997
998 void
999 spa_spare_remove(vdev_t *vd)
1000 {
1001 mutex_enter(&spa_spare_lock);
1002 ASSERT(vd->vdev_isspare);
1003 spa_aux_remove(vd, &spa_spare_avl);
1004 vd->vdev_isspare = B_FALSE;
1005 mutex_exit(&spa_spare_lock);
1006 }
1007
1008 boolean_t
1009 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1010 {
1011 boolean_t found;
1012
1013 mutex_enter(&spa_spare_lock);
1014 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1015 mutex_exit(&spa_spare_lock);
1016
1017 return (found);
1018 }
1019
1020 void
1021 spa_spare_activate(vdev_t *vd)
1022 {
1023 mutex_enter(&spa_spare_lock);
1024 ASSERT(vd->vdev_isspare);
1025 spa_aux_activate(vd, &spa_spare_avl);
1026 mutex_exit(&spa_spare_lock);
1027 }
1028
1029 /*
1030 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1031 * Cache devices currently only support one pool per cache device, and so
1032 * for these devices the aux reference count is currently unused beyond 1.
1033 */
1034
1035 static int
1036 spa_l2cache_compare(const void *a, const void *b)
1037 {
1038 return (spa_aux_compare(a, b));
1039 }
1040
1041 void
1042 spa_l2cache_add(vdev_t *vd)
1043 {
1044 mutex_enter(&spa_l2cache_lock);
1045 ASSERT(!vd->vdev_isl2cache);
1046 spa_aux_add(vd, &spa_l2cache_avl);
1047 vd->vdev_isl2cache = B_TRUE;
1048 mutex_exit(&spa_l2cache_lock);
1049 }
1050
1051 void
1052 spa_l2cache_remove(vdev_t *vd)
1053 {
1054 mutex_enter(&spa_l2cache_lock);
1055 ASSERT(vd->vdev_isl2cache);
1056 spa_aux_remove(vd, &spa_l2cache_avl);
1057 vd->vdev_isl2cache = B_FALSE;
1058 mutex_exit(&spa_l2cache_lock);
1059 }
1060
1061 boolean_t
1062 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1063 {
1064 boolean_t found;
1065
1066 mutex_enter(&spa_l2cache_lock);
1067 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1068 mutex_exit(&spa_l2cache_lock);
1069
1070 return (found);
1071 }
1072
1073 void
1074 spa_l2cache_activate(vdev_t *vd)
1075 {
1076 mutex_enter(&spa_l2cache_lock);
1077 ASSERT(vd->vdev_isl2cache);
1078 spa_aux_activate(vd, &spa_l2cache_avl);
1079 mutex_exit(&spa_l2cache_lock);
1080 }
1081
1082 /*
1083 * ==========================================================================
1084 * SPA vdev locking
1085 * ==========================================================================
1086 */
1087
1088 /*
1089 * Lock the given spa_t for the purpose of adding or removing a vdev.
1090 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1091 * It returns the next transaction group for the spa_t.
1092 */
1093 uint64_t
1094 spa_vdev_enter(spa_t *spa)
1095 {
1096 mutex_enter(&spa->spa_vdev_top_lock);
1097 mutex_enter(&spa_namespace_lock);
1098 return (spa_vdev_config_enter(spa));
1099 }
1100
1101 /*
1102 * Internal implementation for spa_vdev_enter(). Used when a vdev
1103 * operation requires multiple syncs (i.e. removing a device) while
1104 * keeping the spa_namespace_lock held.
1105 */
1106 uint64_t
1107 spa_vdev_config_enter(spa_t *spa)
1108 {
1109 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1110
1111 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1112
1113 return (spa_last_synced_txg(spa) + 1);
1114 }
1115
1116 /*
1117 * Used in combination with spa_vdev_config_enter() to allow the syncing
1118 * of multiple transactions without releasing the spa_namespace_lock.
1119 */
1120 void
1121 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1122 {
1123 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1124
1125 int config_changed = B_FALSE;
1126
1127 ASSERT(txg > spa_last_synced_txg(spa));
1128
1129 spa->spa_pending_vdev = NULL;
1130
1131 /*
1132 * Reassess the DTLs.
1133 */
1134 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1135
1136 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1137 config_changed = B_TRUE;
1138 spa->spa_config_generation++;
1139 }
1140
1141 /*
1142 * Verify the metaslab classes.
1143 */
1144 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1145 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1146
1147 spa_config_exit(spa, SCL_ALL, spa);
1148
1149 /*
1150 * Panic the system if the specified tag requires it. This
1151 * is useful for ensuring that configurations are updated
1152 * transactionally.
1153 */
1154 if (zio_injection_enabled)
1155 zio_handle_panic_injection(spa, tag, 0);
1156
1157 /*
1158 * Note: this txg_wait_synced() is important because it ensures
1159 * that there won't be more than one config change per txg.
1160 * This allows us to use the txg as the generation number.
1161 */
1162 if (error == 0)
1163 txg_wait_synced(spa->spa_dsl_pool, txg);
1164
1165 if (vd != NULL) {
1166 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1167 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1168 vdev_free(vd);
1169 spa_config_exit(spa, SCL_ALL, spa);
1170 }
1171
1172 /*
1173 * If the config changed, update the config cache.
1174 */
1175 if (config_changed)
1176 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1177 }
1178
1179 /*
1180 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1181 * locking of spa_vdev_enter(), we also want make sure the transactions have
1182 * synced to disk, and then update the global configuration cache with the new
1183 * information.
1184 */
1185 int
1186 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1187 {
1188 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1189 mutex_exit(&spa_namespace_lock);
1190 mutex_exit(&spa->spa_vdev_top_lock);
1191
1192 return (error);
1193 }
1194
1195 /*
1196 * Lock the given spa_t for the purpose of changing vdev state.
1197 */
1198 void
1199 spa_vdev_state_enter(spa_t *spa, int oplocks)
1200 {
1201 int locks = SCL_STATE_ALL | oplocks;
1202
1203 /*
1204 * Root pools may need to read of the underlying devfs filesystem
1205 * when opening up a vdev. Unfortunately if we're holding the
1206 * SCL_ZIO lock it will result in a deadlock when we try to issue
1207 * the read from the root filesystem. Instead we "prefetch"
1208 * the associated vnodes that we need prior to opening the
1209 * underlying devices and cache them so that we can prevent
1210 * any I/O when we are doing the actual open.
1211 */
1212 if (spa_is_root(spa)) {
1213 int low = locks & ~(SCL_ZIO - 1);
1214 int high = locks & ~low;
1215
1216 spa_config_enter(spa, high, spa, RW_WRITER);
1217 vdev_hold(spa->spa_root_vdev);
1218 spa_config_enter(spa, low, spa, RW_WRITER);
1219 } else {
1220 spa_config_enter(spa, locks, spa, RW_WRITER);
1221 }
1222 spa->spa_vdev_locks = locks;
1223 }
1224
1225 int
1226 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1227 {
1228 boolean_t config_changed = B_FALSE;
1229 vdev_t *vdev_top;
1230
1231 if (vd == NULL || vd == spa->spa_root_vdev) {
1232 vdev_top = spa->spa_root_vdev;
1233 } else {
1234 vdev_top = vd->vdev_top;
1235 }
1236
1237 if (vd != NULL || error == 0)
1238 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE);
1239
1240 if (vd != NULL) {
1241 if (vd != spa->spa_root_vdev)
1242 vdev_state_dirty(vdev_top);
1243
1244 config_changed = B_TRUE;
1245 spa->spa_config_generation++;
1246 }
1247
1248 if (spa_is_root(spa))
1249 vdev_rele(spa->spa_root_vdev);
1250
1251 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1252 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1253
1254 /*
1255 * If anything changed, wait for it to sync. This ensures that,
1256 * from the system administrator's perspective, zpool(1M) commands
1257 * are synchronous. This is important for things like zpool offline:
1258 * when the command completes, you expect no further I/O from ZFS.
1259 */
1260 if (vd != NULL)
1261 txg_wait_synced(spa->spa_dsl_pool, 0);
1262
1263 /*
1264 * If the config changed, update the config cache.
1265 */
1266 if (config_changed) {
1267 mutex_enter(&spa_namespace_lock);
1268 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1269 mutex_exit(&spa_namespace_lock);
1270 }
1271
1272 return (error);
1273 }
1274
1275 /*
1276 * ==========================================================================
1277 * Miscellaneous functions
1278 * ==========================================================================
1279 */
1280
1281 void
1282 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1283 {
1284 if (!nvlist_exists(spa->spa_label_features, feature)) {
1285 fnvlist_add_boolean(spa->spa_label_features, feature);
1286 /*
1287 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1288 * dirty the vdev config because lock SCL_CONFIG is not held.
1289 * Thankfully, in this case we don't need to dirty the config
1290 * because it will be written out anyway when we finish
1291 * creating the pool.
1292 */
1293 if (tx->tx_txg != TXG_INITIAL)
1294 vdev_config_dirty(spa->spa_root_vdev);
1295 }
1296 }
1297
1298 void
1299 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1300 {
1301 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1302 vdev_config_dirty(spa->spa_root_vdev);
1303 }
1304
1305 /*
1306 * Rename a spa_t.
1307 */
1308 int
1309 spa_rename(const char *name, const char *newname)
1310 {
1311 spa_t *spa;
1312 int err;
1313
1314 /*
1315 * Lookup the spa_t and grab the config lock for writing. We need to
1316 * actually open the pool so that we can sync out the necessary labels.
1317 * It's OK to call spa_open() with the namespace lock held because we
1318 * allow recursive calls for other reasons.
1319 */
1320 mutex_enter(&spa_namespace_lock);
1321 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1322 mutex_exit(&spa_namespace_lock);
1323 return (err);
1324 }
1325
1326 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1327
1328 avl_remove(&spa_namespace_avl, spa);
1329 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1330 avl_add(&spa_namespace_avl, spa);
1331
1332 /*
1333 * Sync all labels to disk with the new names by marking the root vdev
1334 * dirty and waiting for it to sync. It will pick up the new pool name
1335 * during the sync.
1336 */
1337 vdev_config_dirty(spa->spa_root_vdev);
1338
1339 spa_config_exit(spa, SCL_ALL, FTAG);
1340
1341 txg_wait_synced(spa->spa_dsl_pool, 0);
1342
1343 /*
1344 * Sync the updated config cache.
1345 */
1346 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1347
1348 spa_close(spa, FTAG);
1349
1350 mutex_exit(&spa_namespace_lock);
1351
1352 return (0);
1353 }
1354
1355 /*
1356 * Return the spa_t associated with given pool_guid, if it exists. If
1357 * device_guid is non-zero, determine whether the pool exists *and* contains
1358 * a device with the specified device_guid.
1359 */
1360 spa_t *
1361 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1362 {
1363 spa_t *spa;
1364 avl_tree_t *t = &spa_namespace_avl;
1365
1366 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1367
1368 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1369 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1370 continue;
1371 if (spa->spa_root_vdev == NULL)
1372 continue;
1373 if (spa_guid(spa) == pool_guid) {
1374 if (device_guid == 0)
1375 break;
1376
1377 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1378 device_guid) != NULL)
1379 break;
1380
1381 /*
1382 * Check any devices we may be in the process of adding.
1383 */
1384 if (spa->spa_pending_vdev) {
1385 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1386 device_guid) != NULL)
1387 break;
1388 }
1389 }
1390 }
1391
1392 return (spa);
1393 }
1394
1395 /*
1396 * Determine whether a pool with the given pool_guid exists.
1397 */
1398 boolean_t
1399 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1400 {
1401 return (spa_by_guid(pool_guid, device_guid) != NULL);
1402 }
1403
1404 char *
1405 spa_strdup(const char *s)
1406 {
1407 size_t len;
1408 char *new;
1409
1410 len = strlen(s);
1411 new = kmem_alloc(len + 1, KM_SLEEP);
1412 bcopy(s, new, len);
1413 new[len] = '\0';
1414
1415 return (new);
1416 }
1417
1418 void
1419 spa_strfree(char *s)
1420 {
1421 kmem_free(s, strlen(s) + 1);
1422 }
1423
1424 uint64_t
1425 spa_get_random(uint64_t range)
1426 {
1427 uint64_t r;
1428
1429 ASSERT(range != 0);
1430
1431 if (range == 1)
1432 return (0);
1433
1434 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1435
1436 return (r % range);
1437 }
1438
1439 uint64_t
1440 spa_generate_guid(spa_t *spa)
1441 {
1442 uint64_t guid = spa_get_random(-1ULL);
1443
1444 if (spa != NULL) {
1445 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1446 guid = spa_get_random(-1ULL);
1447 } else {
1448 while (guid == 0 || spa_guid_exists(guid, 0))
1449 guid = spa_get_random(-1ULL);
1450 }
1451
1452 return (guid);
1453 }
1454
1455 void
1456 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1457 {
1458 char type[256];
1459 char *checksum = NULL;
1460 char *compress = NULL;
1461
1462 if (bp != NULL) {
1463 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1464 dmu_object_byteswap_t bswap =
1465 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1466 (void) snprintf(type, sizeof (type), "bswap %s %s",
1467 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1468 "metadata" : "data",
1469 dmu_ot_byteswap[bswap].ob_name);
1470 } else {
1471 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1472 sizeof (type));
1473 }
1474 if (!BP_IS_EMBEDDED(bp)) {
1475 checksum =
1476 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1477 }
1478 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1479 }
1480
1481 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1482 compress);
1483 }
1484
1485 void
1486 spa_freeze(spa_t *spa)
1487 {
1488 uint64_t freeze_txg = 0;
1489
1490 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1491 if (spa->spa_freeze_txg == UINT64_MAX) {
1492 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1493 spa->spa_freeze_txg = freeze_txg;
1494 }
1495 spa_config_exit(spa, SCL_ALL, FTAG);
1496 if (freeze_txg != 0)
1497 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1498 }
1499
1500 void
1501 zfs_panic_recover(const char *fmt, ...)
1502 {
1503 va_list adx;
1504
1505 va_start(adx, fmt);
1506 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1507 va_end(adx);
1508 }
1509
1510 /*
1511 * This is a stripped-down version of strtoull, suitable only for converting
1512 * lowercase hexadecimal numbers that don't overflow.
1513 */
1514 uint64_t
1515 zfs_strtonum(const char *str, char **nptr)
1516 {
1517 uint64_t val = 0;
1518 char c;
1519 int digit;
1520
1521 while ((c = *str) != '\0') {
1522 if (c >= '0' && c <= '9')
1523 digit = c - '0';
1524 else if (c >= 'a' && c <= 'f')
1525 digit = 10 + c - 'a';
1526 else
1527 break;
1528
1529 val *= 16;
1530 val += digit;
1531
1532 str++;
1533 }
1534
1535 if (nptr)
1536 *nptr = (char *)str;
1537
1538 return (val);
1539 }
1540
1541 /*
1542 * ==========================================================================
1543 * Accessor functions
1544 * ==========================================================================
1545 */
1546
1547 boolean_t
1548 spa_shutting_down(spa_t *spa)
1549 {
1550 return (spa->spa_async_suspended);
1551 }
1552
1553 dsl_pool_t *
1554 spa_get_dsl(spa_t *spa)
1555 {
1556 return (spa->spa_dsl_pool);
1557 }
1558
1559 boolean_t
1560 spa_is_initializing(spa_t *spa)
1561 {
1562 return (spa->spa_is_initializing);
1563 }
1564
1565 boolean_t
1566 spa_indirect_vdevs_loaded(spa_t *spa)
1567 {
1568 return (spa->spa_indirect_vdevs_loaded);
1569 }
1570
1571 blkptr_t *
1572 spa_get_rootblkptr(spa_t *spa)
1573 {
1574 return (&spa->spa_ubsync.ub_rootbp);
1575 }
1576
1577 void
1578 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1579 {
1580 spa->spa_uberblock.ub_rootbp = *bp;
1581 }
1582
1583 void
1584 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1585 {
1586 if (spa->spa_root == NULL)
1587 buf[0] = '\0';
1588 else
1589 (void) strncpy(buf, spa->spa_root, buflen);
1590 }
1591
1592 int
1593 spa_sync_pass(spa_t *spa)
1594 {
1595 return (spa->spa_sync_pass);
1596 }
1597
1598 char *
1599 spa_name(spa_t *spa)
1600 {
1601 return (spa->spa_name);
1602 }
1603
1604 uint64_t
1605 spa_guid(spa_t *spa)
1606 {
1607 dsl_pool_t *dp = spa_get_dsl(spa);
1608 uint64_t guid;
1609
1610 /*
1611 * If we fail to parse the config during spa_load(), we can go through
1612 * the error path (which posts an ereport) and end up here with no root
1613 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1614 * this case.
1615 */
1616 if (spa->spa_root_vdev == NULL)
1617 return (spa->spa_config_guid);
1618
1619 guid = spa->spa_last_synced_guid != 0 ?
1620 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1621
1622 /*
1623 * Return the most recently synced out guid unless we're
1624 * in syncing context.
1625 */
1626 if (dp && dsl_pool_sync_context(dp))
1627 return (spa->spa_root_vdev->vdev_guid);
1628 else
1629 return (guid);
1630 }
1631
1632 uint64_t
1633 spa_load_guid(spa_t *spa)
1634 {
1635 /*
1636 * This is a GUID that exists solely as a reference for the
1637 * purposes of the arc. It is generated at load time, and
1638 * is never written to persistent storage.
1639 */
1640 return (spa->spa_load_guid);
1641 }
1642
1643 uint64_t
1644 spa_last_synced_txg(spa_t *spa)
1645 {
1646 return (spa->spa_ubsync.ub_txg);
1647 }
1648
1649 uint64_t
1650 spa_first_txg(spa_t *spa)
1651 {
1652 return (spa->spa_first_txg);
1653 }
1654
1655 uint64_t
1656 spa_syncing_txg(spa_t *spa)
1657 {
1658 return (spa->spa_syncing_txg);
1659 }
1660
1661 /*
1662 * Return the last txg where data can be dirtied. The final txgs
1663 * will be used to just clear out any deferred frees that remain.
1664 */
1665 uint64_t
1666 spa_final_dirty_txg(spa_t *spa)
1667 {
1668 return (spa->spa_final_txg - TXG_DEFER_SIZE);
1669 }
1670
1671 pool_state_t
1672 spa_state(spa_t *spa)
1673 {
1674 return (spa->spa_state);
1675 }
1676
1677 spa_load_state_t
1678 spa_load_state(spa_t *spa)
1679 {
1680 return (spa->spa_load_state);
1681 }
1682
1683 uint64_t
1684 spa_freeze_txg(spa_t *spa)
1685 {
1686 return (spa->spa_freeze_txg);
1687 }
1688
1689 /*
1690 * Return the inflated asize for a logical write in bytes. This is used by the
1691 * DMU to calculate the space a logical write will require on disk.
1692 * If lsize is smaller than the largest physical block size allocatable on this
1693 * pool we use its value instead, since the write will end up using the whole
1694 * block anyway.
1695 */
1696 uint64_t
1697 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1698 {
1699 if (lsize == 0)
1700 return (0); /* No inflation needed */
1701 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1702 }
1703
1704 /*
1705 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%),
1706 * or at least 128MB, unless that would cause it to be more than half the
1707 * pool size.
1708 *
1709 * See the comment above spa_slop_shift for details.
1710 */
1711 uint64_t
1712 spa_get_slop_space(spa_t *spa)
1713 {
1714 uint64_t space = spa_get_dspace(spa);
1715 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1716 }
1717
1718 uint64_t
1719 spa_get_dspace(spa_t *spa)
1720 {
1721 return (spa->spa_dspace);
1722 }
1723
1724 uint64_t
1725 spa_get_checkpoint_space(spa_t *spa)
1726 {
1727 return (spa->spa_checkpoint_info.sci_dspace);
1728 }
1729
1730 void
1731 spa_update_dspace(spa_t *spa)
1732 {
1733 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1734 ddt_get_dedup_dspace(spa);
1735 if (spa->spa_vdev_removal != NULL) {
1736 /*
1737 * We can't allocate from the removing device, so
1738 * subtract its size. This prevents the DMU/DSL from
1739 * filling up the (now smaller) pool while we are in the
1740 * middle of removing the device.
1741 *
1742 * Note that the DMU/DSL doesn't actually know or care
1743 * how much space is allocated (it does its own tracking
1744 * of how much space has been logically used). So it
1745 * doesn't matter that the data we are moving may be
1746 * allocated twice (on the old device and the new
1747 * device).
1748 */
1749 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1750 vdev_t *vd =
1751 vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1752 spa->spa_dspace -= spa_deflate(spa) ?
1753 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1754 spa_config_exit(spa, SCL_VDEV, FTAG);
1755 }
1756 }
1757
1758 /*
1759 * Return the failure mode that has been set to this pool. The default
1760 * behavior will be to block all I/Os when a complete failure occurs.
1761 */
1762 uint64_t
1763 spa_get_failmode(spa_t *spa)
1764 {
1765 return (spa->spa_failmode);
1766 }
1767
1768 boolean_t
1769 spa_suspended(spa_t *spa)
1770 {
1771 return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1772 }
1773
1774 uint64_t
1775 spa_version(spa_t *spa)
1776 {
1777 return (spa->spa_ubsync.ub_version);
1778 }
1779
1780 boolean_t
1781 spa_deflate(spa_t *spa)
1782 {
1783 return (spa->spa_deflate);
1784 }
1785
1786 metaslab_class_t *
1787 spa_normal_class(spa_t *spa)
1788 {
1789 return (spa->spa_normal_class);
1790 }
1791
1792 metaslab_class_t *
1793 spa_log_class(spa_t *spa)
1794 {
1795 return (spa->spa_log_class);
1796 }
1797
1798 void
1799 spa_evicting_os_register(spa_t *spa, objset_t *os)
1800 {
1801 mutex_enter(&spa->spa_evicting_os_lock);
1802 list_insert_head(&spa->spa_evicting_os_list, os);
1803 mutex_exit(&spa->spa_evicting_os_lock);
1804 }
1805
1806 void
1807 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1808 {
1809 mutex_enter(&spa->spa_evicting_os_lock);
1810 list_remove(&spa->spa_evicting_os_list, os);
1811 cv_broadcast(&spa->spa_evicting_os_cv);
1812 mutex_exit(&spa->spa_evicting_os_lock);
1813 }
1814
1815 void
1816 spa_evicting_os_wait(spa_t *spa)
1817 {
1818 mutex_enter(&spa->spa_evicting_os_lock);
1819 while (!list_is_empty(&spa->spa_evicting_os_list))
1820 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1821 mutex_exit(&spa->spa_evicting_os_lock);
1822
1823 dmu_buf_user_evict_wait();
1824 }
1825
1826 int
1827 spa_max_replication(spa_t *spa)
1828 {
1829 /*
1830 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1831 * handle BPs with more than one DVA allocated. Set our max
1832 * replication level accordingly.
1833 */
1834 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1835 return (1);
1836 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1837 }
1838
1839 int
1840 spa_prev_software_version(spa_t *spa)
1841 {
1842 return (spa->spa_prev_software_version);
1843 }
1844
1845 uint64_t
1846 spa_deadman_synctime(spa_t *spa)
1847 {
1848 return (spa->spa_deadman_synctime);
1849 }
1850
1851 uint64_t
1852 spa_deadman_ziotime(spa_t *spa)
1853 {
1854 return (spa->spa_deadman_ziotime);
1855 }
1856
1857 uint64_t
1858 spa_get_deadman_failmode(spa_t *spa)
1859 {
1860 return (spa->spa_deadman_failmode);
1861 }
1862
1863 void
1864 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
1865 {
1866 if (strcmp(failmode, "wait") == 0)
1867 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
1868 else if (strcmp(failmode, "continue") == 0)
1869 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
1870 else if (strcmp(failmode, "panic") == 0)
1871 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
1872 else
1873 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
1874 }
1875
1876 uint64_t
1877 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1878 {
1879 uint64_t asize = DVA_GET_ASIZE(dva);
1880 uint64_t dsize = asize;
1881
1882 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1883
1884 if (asize != 0 && spa->spa_deflate) {
1885 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1886 if (vd != NULL)
1887 dsize = (asize >> SPA_MINBLOCKSHIFT) *
1888 vd->vdev_deflate_ratio;
1889 }
1890
1891 return (dsize);
1892 }
1893
1894 uint64_t
1895 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1896 {
1897 uint64_t dsize = 0;
1898
1899 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1900 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1901
1902 return (dsize);
1903 }
1904
1905 uint64_t
1906 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1907 {
1908 uint64_t dsize = 0;
1909
1910 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1911
1912 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1913 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1914
1915 spa_config_exit(spa, SCL_VDEV, FTAG);
1916
1917 return (dsize);
1918 }
1919
1920 uint64_t
1921 spa_dirty_data(spa_t *spa)
1922 {
1923 return (spa->spa_dsl_pool->dp_dirty_total);
1924 }
1925
1926 /*
1927 * ==========================================================================
1928 * Initialization and Termination
1929 * ==========================================================================
1930 */
1931
1932 static int
1933 spa_name_compare(const void *a1, const void *a2)
1934 {
1935 const spa_t *s1 = a1;
1936 const spa_t *s2 = a2;
1937 int s;
1938
1939 s = strcmp(s1->spa_name, s2->spa_name);
1940
1941 return (AVL_ISIGN(s));
1942 }
1943
1944 void
1945 spa_boot_init(void)
1946 {
1947 spa_config_load();
1948 }
1949
1950 void
1951 spa_init(int mode)
1952 {
1953 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1954 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1955 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1956 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1957
1958 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1959 offsetof(spa_t, spa_avl));
1960
1961 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1962 offsetof(spa_aux_t, aux_avl));
1963
1964 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1965 offsetof(spa_aux_t, aux_avl));
1966
1967 spa_mode_global = mode;
1968
1969 #ifndef _KERNEL
1970 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1971 struct sigaction sa;
1972
1973 sa.sa_flags = SA_SIGINFO;
1974 sigemptyset(&sa.sa_mask);
1975 sa.sa_sigaction = arc_buf_sigsegv;
1976
1977 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
1978 perror("could not enable watchpoints: "
1979 "sigaction(SIGSEGV, ...) = ");
1980 } else {
1981 arc_watch = B_TRUE;
1982 }
1983 }
1984 #endif
1985
1986 fm_init();
1987 refcount_init();
1988 unique_init();
1989 range_tree_init();
1990 metaslab_alloc_trace_init();
1991 ddt_init();
1992 zio_init();
1993 dmu_init();
1994 zil_init();
1995 vdev_cache_stat_init();
1996 vdev_mirror_stat_init();
1997 vdev_raidz_math_init();
1998 vdev_file_init();
1999 zfs_prop_init();
2000 zpool_prop_init();
2001 zpool_feature_init();
2002 spa_config_load();
2003 l2arc_start();
2004 scan_init();
2005 qat_init();
2006 }
2007
2008 void
2009 spa_fini(void)
2010 {
2011 l2arc_stop();
2012
2013 spa_evict_all();
2014
2015 vdev_file_fini();
2016 vdev_cache_stat_fini();
2017 vdev_mirror_stat_fini();
2018 vdev_raidz_math_fini();
2019 zil_fini();
2020 dmu_fini();
2021 zio_fini();
2022 ddt_fini();
2023 metaslab_alloc_trace_fini();
2024 range_tree_fini();
2025 unique_fini();
2026 refcount_fini();
2027 fm_fini();
2028 scan_fini();
2029 qat_fini();
2030
2031 avl_destroy(&spa_namespace_avl);
2032 avl_destroy(&spa_spare_avl);
2033 avl_destroy(&spa_l2cache_avl);
2034
2035 cv_destroy(&spa_namespace_cv);
2036 mutex_destroy(&spa_namespace_lock);
2037 mutex_destroy(&spa_spare_lock);
2038 mutex_destroy(&spa_l2cache_lock);
2039 }
2040
2041 /*
2042 * Return whether this pool has slogs. No locking needed.
2043 * It's not a problem if the wrong answer is returned as it's only for
2044 * performance and not correctness
2045 */
2046 boolean_t
2047 spa_has_slogs(spa_t *spa)
2048 {
2049 return (spa->spa_log_class->mc_rotor != NULL);
2050 }
2051
2052 spa_log_state_t
2053 spa_get_log_state(spa_t *spa)
2054 {
2055 return (spa->spa_log_state);
2056 }
2057
2058 void
2059 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2060 {
2061 spa->spa_log_state = state;
2062 }
2063
2064 boolean_t
2065 spa_is_root(spa_t *spa)
2066 {
2067 return (spa->spa_is_root);
2068 }
2069
2070 boolean_t
2071 spa_writeable(spa_t *spa)
2072 {
2073 return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config);
2074 }
2075
2076 /*
2077 * Returns true if there is a pending sync task in any of the current
2078 * syncing txg, the current quiescing txg, or the current open txg.
2079 */
2080 boolean_t
2081 spa_has_pending_synctask(spa_t *spa)
2082 {
2083 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2084 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2085 }
2086
2087 int
2088 spa_mode(spa_t *spa)
2089 {
2090 return (spa->spa_mode);
2091 }
2092
2093 uint64_t
2094 spa_bootfs(spa_t *spa)
2095 {
2096 return (spa->spa_bootfs);
2097 }
2098
2099 uint64_t
2100 spa_delegation(spa_t *spa)
2101 {
2102 return (spa->spa_delegation);
2103 }
2104
2105 objset_t *
2106 spa_meta_objset(spa_t *spa)
2107 {
2108 return (spa->spa_meta_objset);
2109 }
2110
2111 enum zio_checksum
2112 spa_dedup_checksum(spa_t *spa)
2113 {
2114 return (spa->spa_dedup_checksum);
2115 }
2116
2117 /*
2118 * Reset pool scan stat per scan pass (or reboot).
2119 */
2120 void
2121 spa_scan_stat_init(spa_t *spa)
2122 {
2123 /* data not stored on disk */
2124 spa->spa_scan_pass_start = gethrestime_sec();
2125 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2126 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2127 else
2128 spa->spa_scan_pass_scrub_pause = 0;
2129 spa->spa_scan_pass_scrub_spent_paused = 0;
2130 spa->spa_scan_pass_exam = 0;
2131 spa->spa_scan_pass_issued = 0;
2132 vdev_scan_stat_init(spa->spa_root_vdev);
2133 }
2134
2135 /*
2136 * Get scan stats for zpool status reports
2137 */
2138 int
2139 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2140 {
2141 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2142
2143 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2144 return (SET_ERROR(ENOENT));
2145 bzero(ps, sizeof (pool_scan_stat_t));
2146
2147 /* data stored on disk */
2148 ps->pss_func = scn->scn_phys.scn_func;
2149 ps->pss_state = scn->scn_phys.scn_state;
2150 ps->pss_start_time = scn->scn_phys.scn_start_time;
2151 ps->pss_end_time = scn->scn_phys.scn_end_time;
2152 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2153 ps->pss_examined = scn->scn_phys.scn_examined;
2154 ps->pss_to_process = scn->scn_phys.scn_to_process;
2155 ps->pss_processed = scn->scn_phys.scn_processed;
2156 ps->pss_errors = scn->scn_phys.scn_errors;
2157
2158 /* data not stored on disk */
2159 ps->pss_pass_exam = spa->spa_scan_pass_exam;
2160 ps->pss_pass_start = spa->spa_scan_pass_start;
2161 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2162 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2163 ps->pss_pass_issued = spa->spa_scan_pass_issued;
2164 ps->pss_issued =
2165 scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2166
2167 return (0);
2168 }
2169
2170 int
2171 spa_maxblocksize(spa_t *spa)
2172 {
2173 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2174 return (SPA_MAXBLOCKSIZE);
2175 else
2176 return (SPA_OLD_MAXBLOCKSIZE);
2177 }
2178
2179
2180 /*
2181 * Returns the txg that the last device removal completed. No indirect mappings
2182 * have been added since this txg.
2183 */
2184 uint64_t
2185 spa_get_last_removal_txg(spa_t *spa)
2186 {
2187 uint64_t vdevid;
2188 uint64_t ret = -1ULL;
2189
2190 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2191 /*
2192 * sr_prev_indirect_vdev is only modified while holding all the
2193 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2194 * examining it.
2195 */
2196 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2197
2198 while (vdevid != -1ULL) {
2199 vdev_t *vd = vdev_lookup_top(spa, vdevid);
2200 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2201
2202 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2203
2204 /*
2205 * If the removal did not remap any data, we don't care.
2206 */
2207 if (vdev_indirect_births_count(vib) != 0) {
2208 ret = vdev_indirect_births_last_entry_txg(vib);
2209 break;
2210 }
2211
2212 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2213 }
2214 spa_config_exit(spa, SCL_VDEV, FTAG);
2215
2216 IMPLY(ret != -1ULL,
2217 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2218
2219 return (ret);
2220 }
2221
2222 int
2223 spa_maxdnodesize(spa_t *spa)
2224 {
2225 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2226 return (DNODE_MAX_SIZE);
2227 else
2228 return (DNODE_MIN_SIZE);
2229 }
2230
2231 boolean_t
2232 spa_multihost(spa_t *spa)
2233 {
2234 return (spa->spa_multihost ? B_TRUE : B_FALSE);
2235 }
2236
2237 unsigned long
2238 spa_get_hostid(void)
2239 {
2240 unsigned long myhostid;
2241
2242 #ifdef _KERNEL
2243 myhostid = zone_get_hostid(NULL);
2244 #else /* _KERNEL */
2245 /*
2246 * We're emulating the system's hostid in userland, so
2247 * we can't use zone_get_hostid().
2248 */
2249 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2250 #endif /* _KERNEL */
2251
2252 return (myhostid);
2253 }
2254
2255 boolean_t
2256 spa_trust_config(spa_t *spa)
2257 {
2258 return (spa->spa_trust_config);
2259 }
2260
2261 uint64_t
2262 spa_missing_tvds_allowed(spa_t *spa)
2263 {
2264 return (spa->spa_missing_tvds_allowed);
2265 }
2266
2267 void
2268 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2269 {
2270 spa->spa_missing_tvds = missing;
2271 }
2272
2273 /*
2274 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2275 */
2276 const char *
2277 spa_state_to_name(spa_t *spa)
2278 {
2279 vdev_state_t state = spa->spa_root_vdev->vdev_state;
2280 vdev_aux_t aux = spa->spa_root_vdev->vdev_stat.vs_aux;
2281
2282 if (spa_suspended(spa) &&
2283 (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE))
2284 return ("SUSPENDED");
2285
2286 switch (state) {
2287 case VDEV_STATE_CLOSED:
2288 case VDEV_STATE_OFFLINE:
2289 return ("OFFLINE");
2290 case VDEV_STATE_REMOVED:
2291 return ("REMOVED");
2292 case VDEV_STATE_CANT_OPEN:
2293 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2294 return ("FAULTED");
2295 else if (aux == VDEV_AUX_SPLIT_POOL)
2296 return ("SPLIT");
2297 else
2298 return ("UNAVAIL");
2299 case VDEV_STATE_FAULTED:
2300 return ("FAULTED");
2301 case VDEV_STATE_DEGRADED:
2302 return ("DEGRADED");
2303 case VDEV_STATE_HEALTHY:
2304 return ("ONLINE");
2305 default:
2306 break;
2307 }
2308
2309 return ("UNKNOWN");
2310 }
2311
2312 boolean_t
2313 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2314 {
2315 vdev_t *rvd = spa->spa_root_vdev;
2316 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2317 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2318 return (B_FALSE);
2319 }
2320 return (B_TRUE);
2321 }
2322
2323 boolean_t
2324 spa_has_checkpoint(spa_t *spa)
2325 {
2326 return (spa->spa_checkpoint_txg != 0);
2327 }
2328
2329 boolean_t
2330 spa_importing_readonly_checkpoint(spa_t *spa)
2331 {
2332 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2333 spa->spa_mode == FREAD);
2334 }
2335
2336 uint64_t
2337 spa_min_claim_txg(spa_t *spa)
2338 {
2339 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2340
2341 if (checkpoint_txg != 0)
2342 return (checkpoint_txg + 1);
2343
2344 return (spa->spa_first_txg);
2345 }
2346
2347 /*
2348 * If there is a checkpoint, async destroys may consume more space from
2349 * the pool instead of freeing it. In an attempt to save the pool from
2350 * getting suspended when it is about to run out of space, we stop
2351 * processing async destroys.
2352 */
2353 boolean_t
2354 spa_suspend_async_destroy(spa_t *spa)
2355 {
2356 dsl_pool_t *dp = spa_get_dsl(spa);
2357
2358 uint64_t unreserved = dsl_pool_unreserved_space(dp,
2359 ZFS_SPACE_CHECK_EXTRA_RESERVED);
2360 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2361 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2362
2363 if (spa_has_checkpoint(spa) && avail == 0)
2364 return (B_TRUE);
2365
2366 return (B_FALSE);
2367 }
2368
2369 #if defined(_KERNEL)
2370
2371 #include <linux/mod_compat.h>
2372
2373 static int
2374 param_set_deadman_failmode(const char *val, zfs_kernel_param_t *kp)
2375 {
2376 spa_t *spa = NULL;
2377 char *p;
2378
2379 if (val == NULL)
2380 return (SET_ERROR(-EINVAL));
2381
2382 if ((p = strchr(val, '\n')) != NULL)
2383 *p = '\0';
2384
2385 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
2386 strcmp(val, "panic"))
2387 return (SET_ERROR(-EINVAL));
2388
2389 if (spa_mode_global != 0) {
2390 mutex_enter(&spa_namespace_lock);
2391 while ((spa = spa_next(spa)) != NULL)
2392 spa_set_deadman_failmode(spa, val);
2393 mutex_exit(&spa_namespace_lock);
2394 }
2395
2396 return (param_set_charp(val, kp));
2397 }
2398
2399 static int
2400 param_set_deadman_ziotime(const char *val, zfs_kernel_param_t *kp)
2401 {
2402 spa_t *spa = NULL;
2403 int error;
2404
2405 error = param_set_ulong(val, kp);
2406 if (error < 0)
2407 return (SET_ERROR(error));
2408
2409 if (spa_mode_global != 0) {
2410 mutex_enter(&spa_namespace_lock);
2411 while ((spa = spa_next(spa)) != NULL)
2412 spa->spa_deadman_ziotime =
2413 MSEC2NSEC(zfs_deadman_ziotime_ms);
2414 mutex_exit(&spa_namespace_lock);
2415 }
2416
2417 return (0);
2418 }
2419
2420 static int
2421 param_set_deadman_synctime(const char *val, zfs_kernel_param_t *kp)
2422 {
2423 spa_t *spa = NULL;
2424 int error;
2425
2426 error = param_set_ulong(val, kp);
2427 if (error < 0)
2428 return (SET_ERROR(error));
2429
2430 if (spa_mode_global != 0) {
2431 mutex_enter(&spa_namespace_lock);
2432 while ((spa = spa_next(spa)) != NULL)
2433 spa->spa_deadman_synctime =
2434 MSEC2NSEC(zfs_deadman_synctime_ms);
2435 mutex_exit(&spa_namespace_lock);
2436 }
2437
2438 return (0);
2439 }
2440
2441 /* Namespace manipulation */
2442 EXPORT_SYMBOL(spa_lookup);
2443 EXPORT_SYMBOL(spa_add);
2444 EXPORT_SYMBOL(spa_remove);
2445 EXPORT_SYMBOL(spa_next);
2446
2447 /* Refcount functions */
2448 EXPORT_SYMBOL(spa_open_ref);
2449 EXPORT_SYMBOL(spa_close);
2450 EXPORT_SYMBOL(spa_refcount_zero);
2451
2452 /* Pool configuration lock */
2453 EXPORT_SYMBOL(spa_config_tryenter);
2454 EXPORT_SYMBOL(spa_config_enter);
2455 EXPORT_SYMBOL(spa_config_exit);
2456 EXPORT_SYMBOL(spa_config_held);
2457
2458 /* Pool vdev add/remove lock */
2459 EXPORT_SYMBOL(spa_vdev_enter);
2460 EXPORT_SYMBOL(spa_vdev_exit);
2461
2462 /* Pool vdev state change lock */
2463 EXPORT_SYMBOL(spa_vdev_state_enter);
2464 EXPORT_SYMBOL(spa_vdev_state_exit);
2465
2466 /* Accessor functions */
2467 EXPORT_SYMBOL(spa_shutting_down);
2468 EXPORT_SYMBOL(spa_get_dsl);
2469 EXPORT_SYMBOL(spa_get_rootblkptr);
2470 EXPORT_SYMBOL(spa_set_rootblkptr);
2471 EXPORT_SYMBOL(spa_altroot);
2472 EXPORT_SYMBOL(spa_sync_pass);
2473 EXPORT_SYMBOL(spa_name);
2474 EXPORT_SYMBOL(spa_guid);
2475 EXPORT_SYMBOL(spa_last_synced_txg);
2476 EXPORT_SYMBOL(spa_first_txg);
2477 EXPORT_SYMBOL(spa_syncing_txg);
2478 EXPORT_SYMBOL(spa_version);
2479 EXPORT_SYMBOL(spa_state);
2480 EXPORT_SYMBOL(spa_load_state);
2481 EXPORT_SYMBOL(spa_freeze_txg);
2482 EXPORT_SYMBOL(spa_get_dspace);
2483 EXPORT_SYMBOL(spa_update_dspace);
2484 EXPORT_SYMBOL(spa_deflate);
2485 EXPORT_SYMBOL(spa_normal_class);
2486 EXPORT_SYMBOL(spa_log_class);
2487 EXPORT_SYMBOL(spa_max_replication);
2488 EXPORT_SYMBOL(spa_prev_software_version);
2489 EXPORT_SYMBOL(spa_get_failmode);
2490 EXPORT_SYMBOL(spa_suspended);
2491 EXPORT_SYMBOL(spa_bootfs);
2492 EXPORT_SYMBOL(spa_delegation);
2493 EXPORT_SYMBOL(spa_meta_objset);
2494 EXPORT_SYMBOL(spa_maxblocksize);
2495 EXPORT_SYMBOL(spa_maxdnodesize);
2496
2497 /* Miscellaneous support routines */
2498 EXPORT_SYMBOL(spa_rename);
2499 EXPORT_SYMBOL(spa_guid_exists);
2500 EXPORT_SYMBOL(spa_strdup);
2501 EXPORT_SYMBOL(spa_strfree);
2502 EXPORT_SYMBOL(spa_get_random);
2503 EXPORT_SYMBOL(spa_generate_guid);
2504 EXPORT_SYMBOL(snprintf_blkptr);
2505 EXPORT_SYMBOL(spa_freeze);
2506 EXPORT_SYMBOL(spa_upgrade);
2507 EXPORT_SYMBOL(spa_evict_all);
2508 EXPORT_SYMBOL(spa_lookup_by_guid);
2509 EXPORT_SYMBOL(spa_has_spare);
2510 EXPORT_SYMBOL(dva_get_dsize_sync);
2511 EXPORT_SYMBOL(bp_get_dsize_sync);
2512 EXPORT_SYMBOL(bp_get_dsize);
2513 EXPORT_SYMBOL(spa_has_slogs);
2514 EXPORT_SYMBOL(spa_is_root);
2515 EXPORT_SYMBOL(spa_writeable);
2516 EXPORT_SYMBOL(spa_mode);
2517 EXPORT_SYMBOL(spa_namespace_lock);
2518 EXPORT_SYMBOL(spa_trust_config);
2519 EXPORT_SYMBOL(spa_missing_tvds_allowed);
2520 EXPORT_SYMBOL(spa_set_missing_tvds);
2521 EXPORT_SYMBOL(spa_state_to_name);
2522 EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
2523 EXPORT_SYMBOL(spa_min_claim_txg);
2524 EXPORT_SYMBOL(spa_suspend_async_destroy);
2525 EXPORT_SYMBOL(spa_has_checkpoint);
2526 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
2527
2528 /* BEGIN CSTYLED */
2529 module_param(zfs_flags, uint, 0644);
2530 MODULE_PARM_DESC(zfs_flags, "Set additional debugging flags");
2531
2532 module_param(zfs_recover, int, 0644);
2533 MODULE_PARM_DESC(zfs_recover, "Set to attempt to recover from fatal errors");
2534
2535 module_param(zfs_free_leak_on_eio, int, 0644);
2536 MODULE_PARM_DESC(zfs_free_leak_on_eio,
2537 "Set to ignore IO errors during free and permanently leak the space");
2538
2539 module_param_call(zfs_deadman_synctime_ms, param_set_deadman_synctime,
2540 param_get_ulong, &zfs_deadman_synctime_ms, 0644);
2541 MODULE_PARM_DESC(zfs_deadman_synctime_ms,
2542 "Pool sync expiration time in milliseconds");
2543
2544 module_param_call(zfs_deadman_ziotime_ms, param_set_deadman_ziotime,
2545 param_get_ulong, &zfs_deadman_ziotime_ms, 0644);
2546 MODULE_PARM_DESC(zfs_deadman_ziotime_ms,
2547 "IO expiration time in milliseconds");
2548
2549 module_param(zfs_deadman_checktime_ms, ulong, 0644);
2550 MODULE_PARM_DESC(zfs_deadman_checktime_ms,
2551 "Dead I/O check interval in milliseconds");
2552
2553 module_param(zfs_deadman_enabled, int, 0644);
2554 MODULE_PARM_DESC(zfs_deadman_enabled, "Enable deadman timer");
2555
2556 module_param_call(zfs_deadman_failmode, param_set_deadman_failmode,
2557 param_get_charp, &zfs_deadman_failmode, 0644);
2558 MODULE_PARM_DESC(zfs_deadman_failmode, "Failmode for deadman timer");
2559
2560 module_param(spa_asize_inflation, int, 0644);
2561 MODULE_PARM_DESC(spa_asize_inflation,
2562 "SPA size estimate multiplication factor");
2563
2564 module_param(spa_slop_shift, int, 0644);
2565 MODULE_PARM_DESC(spa_slop_shift, "Reserved free space in pool");
2566 /* END CSTYLED */
2567 #endif