]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/txg.c
Illumos #3086: unnecessarily setting DS_FLAG_INCONSISTENT on async
[mirror_zfs.git] / module / zfs / txg.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Portions Copyright 2011 Martin Matuska
24 * Copyright (c) 2012 by Delphix. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/txg_impl.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_scan.h>
33 #include <sys/callb.h>
34 #include <sys/spa_impl.h>
35
36 /*
37 * Pool-wide transaction groups.
38 */
39
40 static void txg_sync_thread(dsl_pool_t *dp);
41 static void txg_quiesce_thread(dsl_pool_t *dp);
42
43 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */
44
45 /*
46 * Prepare the txg subsystem.
47 */
48 void
49 txg_init(dsl_pool_t *dp, uint64_t txg)
50 {
51 tx_state_t *tx = &dp->dp_tx;
52 int c;
53 bzero(tx, sizeof (tx_state_t));
54
55 tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
56
57 for (c = 0; c < max_ncpus; c++) {
58 int i;
59
60 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
61 for (i = 0; i < TXG_SIZE; i++) {
62 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
63 NULL);
64 list_create(&tx->tx_cpu[c].tc_callbacks[i],
65 sizeof (dmu_tx_callback_t),
66 offsetof(dmu_tx_callback_t, dcb_node));
67 }
68 }
69
70 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
71
72 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
73 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
74 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
75 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
76 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
77
78 tx->tx_open_txg = txg;
79 }
80
81 /*
82 * Close down the txg subsystem.
83 */
84 void
85 txg_fini(dsl_pool_t *dp)
86 {
87 tx_state_t *tx = &dp->dp_tx;
88 int c;
89
90 ASSERT(tx->tx_threads == 0);
91
92 mutex_destroy(&tx->tx_sync_lock);
93
94 cv_destroy(&tx->tx_sync_more_cv);
95 cv_destroy(&tx->tx_sync_done_cv);
96 cv_destroy(&tx->tx_quiesce_more_cv);
97 cv_destroy(&tx->tx_quiesce_done_cv);
98 cv_destroy(&tx->tx_exit_cv);
99
100 for (c = 0; c < max_ncpus; c++) {
101 int i;
102
103 mutex_destroy(&tx->tx_cpu[c].tc_lock);
104 for (i = 0; i < TXG_SIZE; i++) {
105 cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
106 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
107 }
108 }
109
110 if (tx->tx_commit_cb_taskq != NULL)
111 taskq_destroy(tx->tx_commit_cb_taskq);
112
113 vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
114
115 bzero(tx, sizeof (tx_state_t));
116 }
117
118 /*
119 * Start syncing transaction groups.
120 */
121 void
122 txg_sync_start(dsl_pool_t *dp)
123 {
124 tx_state_t *tx = &dp->dp_tx;
125
126 mutex_enter(&tx->tx_sync_lock);
127
128 dprintf("pool %p\n", dp);
129
130 ASSERT(tx->tx_threads == 0);
131
132 tx->tx_threads = 2;
133
134 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
135 dp, 0, &p0, TS_RUN, minclsyspri);
136
137 /*
138 * The sync thread can need a larger-than-default stack size on
139 * 32-bit x86. This is due in part to nested pools and
140 * scrub_visitbp() recursion.
141 */
142 tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread,
143 dp, 0, &p0, TS_RUN, minclsyspri);
144
145 mutex_exit(&tx->tx_sync_lock);
146 }
147
148 static void
149 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
150 {
151 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
152 mutex_enter(&tx->tx_sync_lock);
153 }
154
155 static void
156 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
157 {
158 ASSERT(*tpp != NULL);
159 *tpp = NULL;
160 tx->tx_threads--;
161 cv_broadcast(&tx->tx_exit_cv);
162 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */
163 thread_exit();
164 }
165
166 static void
167 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, uint64_t time)
168 {
169 CALLB_CPR_SAFE_BEGIN(cpr);
170
171 if (time)
172 (void) cv_timedwait_interruptible(cv, &tx->tx_sync_lock,
173 ddi_get_lbolt() + time);
174 else
175 cv_wait_interruptible(cv, &tx->tx_sync_lock);
176
177 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
178 }
179
180 /*
181 * Stop syncing transaction groups.
182 */
183 void
184 txg_sync_stop(dsl_pool_t *dp)
185 {
186 tx_state_t *tx = &dp->dp_tx;
187
188 dprintf("pool %p\n", dp);
189 /*
190 * Finish off any work in progress.
191 */
192 ASSERT(tx->tx_threads == 2);
193
194 /*
195 * We need to ensure that we've vacated the deferred space_maps.
196 */
197 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
198
199 /*
200 * Wake all sync threads and wait for them to die.
201 */
202 mutex_enter(&tx->tx_sync_lock);
203
204 ASSERT(tx->tx_threads == 2);
205
206 tx->tx_exiting = 1;
207
208 cv_broadcast(&tx->tx_quiesce_more_cv);
209 cv_broadcast(&tx->tx_quiesce_done_cv);
210 cv_broadcast(&tx->tx_sync_more_cv);
211
212 while (tx->tx_threads != 0)
213 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
214
215 tx->tx_exiting = 0;
216
217 mutex_exit(&tx->tx_sync_lock);
218 }
219
220 uint64_t
221 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
222 {
223 tx_state_t *tx = &dp->dp_tx;
224 tx_cpu_t *tc;
225 uint64_t txg;
226
227 /*
228 * It appears the processor id is simply used as a "random"
229 * number to index into the array, and there isn't any other
230 * significance to the chosen tx_cpu. Because.. Why not use
231 * the current cpu to index into the array?
232 */
233 kpreempt_disable();
234 tc = &tx->tx_cpu[CPU_SEQID];
235 kpreempt_enable();
236
237 mutex_enter(&tc->tc_lock);
238
239 txg = tx->tx_open_txg;
240 tc->tc_count[txg & TXG_MASK]++;
241
242 th->th_cpu = tc;
243 th->th_txg = txg;
244
245 return (txg);
246 }
247
248 void
249 txg_rele_to_quiesce(txg_handle_t *th)
250 {
251 tx_cpu_t *tc = th->th_cpu;
252
253 mutex_exit(&tc->tc_lock);
254 }
255
256 void
257 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
258 {
259 tx_cpu_t *tc = th->th_cpu;
260 int g = th->th_txg & TXG_MASK;
261
262 mutex_enter(&tc->tc_lock);
263 list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
264 mutex_exit(&tc->tc_lock);
265 }
266
267 void
268 txg_rele_to_sync(txg_handle_t *th)
269 {
270 tx_cpu_t *tc = th->th_cpu;
271 int g = th->th_txg & TXG_MASK;
272
273 mutex_enter(&tc->tc_lock);
274 ASSERT(tc->tc_count[g] != 0);
275 if (--tc->tc_count[g] == 0)
276 cv_broadcast(&tc->tc_cv[g]);
277 mutex_exit(&tc->tc_lock);
278
279 th->th_cpu = NULL; /* defensive */
280 }
281
282 static void
283 txg_quiesce(dsl_pool_t *dp, uint64_t txg)
284 {
285 hrtime_t start;
286 txg_history_t *th;
287 tx_state_t *tx = &dp->dp_tx;
288 int g = txg & TXG_MASK;
289 int c;
290
291 /*
292 * Grab all tx_cpu locks so nobody else can get into this txg.
293 */
294 for (c = 0; c < max_ncpus; c++)
295 mutex_enter(&tx->tx_cpu[c].tc_lock);
296
297 ASSERT(txg == tx->tx_open_txg);
298 tx->tx_open_txg++;
299
300 /*
301 * Measure how long the txg was open and replace the kstat.
302 */
303 th = dsl_pool_txg_history_get(dp, txg);
304 th->th_kstat.open_time = gethrtime() - th->th_kstat.birth;
305 th->th_kstat.state = TXG_STATE_QUIESCING;
306 dsl_pool_txg_history_put(th);
307 dsl_pool_txg_history_add(dp, tx->tx_open_txg);
308
309 /*
310 * Now that we've incremented tx_open_txg, we can let threads
311 * enter the next transaction group.
312 */
313 for (c = 0; c < max_ncpus; c++)
314 mutex_exit(&tx->tx_cpu[c].tc_lock);
315
316 /*
317 * Quiesce the transaction group by waiting for everyone to txg_exit().
318 */
319 start = gethrtime();
320
321 for (c = 0; c < max_ncpus; c++) {
322 tx_cpu_t *tc = &tx->tx_cpu[c];
323 mutex_enter(&tc->tc_lock);
324 while (tc->tc_count[g] != 0)
325 cv_wait(&tc->tc_cv[g], &tc->tc_lock);
326 mutex_exit(&tc->tc_lock);
327 }
328
329 /*
330 * Measure how long the txg took to quiesce.
331 */
332 th = dsl_pool_txg_history_get(dp, txg);
333 th->th_kstat.quiesce_time = gethrtime() - start;
334 dsl_pool_txg_history_put(th);
335 }
336
337 static void
338 txg_do_callbacks(list_t *cb_list)
339 {
340 dmu_tx_do_callbacks(cb_list, 0);
341
342 list_destroy(cb_list);
343
344 kmem_free(cb_list, sizeof (list_t));
345 }
346
347 /*
348 * Dispatch the commit callbacks registered on this txg to worker threads.
349 */
350 static void
351 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
352 {
353 int c;
354 tx_state_t *tx = &dp->dp_tx;
355 list_t *cb_list;
356
357 for (c = 0; c < max_ncpus; c++) {
358 tx_cpu_t *tc = &tx->tx_cpu[c];
359 /* No need to lock tx_cpu_t at this point */
360
361 int g = txg & TXG_MASK;
362
363 if (list_is_empty(&tc->tc_callbacks[g]))
364 continue;
365
366 if (tx->tx_commit_cb_taskq == NULL) {
367 /*
368 * Commit callback taskq hasn't been created yet.
369 */
370 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
371 100, minclsyspri, max_ncpus, INT_MAX,
372 TASKQ_THREADS_CPU_PCT | TASKQ_PREPOPULATE);
373 }
374
375 cb_list = kmem_alloc(sizeof (list_t), KM_PUSHPAGE);
376 list_create(cb_list, sizeof (dmu_tx_callback_t),
377 offsetof(dmu_tx_callback_t, dcb_node));
378
379 list_move_tail(cb_list, &tc->tc_callbacks[g]);
380
381 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
382 txg_do_callbacks, cb_list, TQ_SLEEP);
383 }
384 }
385
386 /*
387 * Wait for pending commit callbacks of already-synced transactions to finish
388 * processing.
389 * Calling this function from within a commit callback will deadlock.
390 */
391 void
392 txg_wait_callbacks(dsl_pool_t *dp)
393 {
394 tx_state_t *tx = &dp->dp_tx;
395
396 if (tx->tx_commit_cb_taskq != NULL)
397 taskq_wait(tx->tx_commit_cb_taskq);
398 }
399
400 static void
401 txg_sync_thread(dsl_pool_t *dp)
402 {
403 spa_t *spa = dp->dp_spa;
404 tx_state_t *tx = &dp->dp_tx;
405 callb_cpr_t cpr;
406 uint64_t start, delta;
407
408 #ifdef _KERNEL
409 /*
410 * Annotate this process with a flag that indicates that it is
411 * unsafe to use KM_SLEEP during memory allocations due to the
412 * potential for a deadlock. KM_PUSHPAGE should be used instead.
413 */
414 current->flags |= PF_NOFS;
415 #endif /* _KERNEL */
416
417 txg_thread_enter(tx, &cpr);
418
419 start = delta = 0;
420 for (;;) {
421 hrtime_t hrstart;
422 txg_history_t *th;
423 uint64_t timer, timeout;
424 uint64_t txg;
425
426 timeout = zfs_txg_timeout * hz;
427
428 /*
429 * We sync when we're scanning, there's someone waiting
430 * on us, or the quiesce thread has handed off a txg to
431 * us, or we have reached our timeout.
432 */
433 timer = (delta >= timeout ? 0 : timeout - delta);
434 while (!dsl_scan_active(dp->dp_scan) &&
435 !tx->tx_exiting && timer > 0 &&
436 tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
437 tx->tx_quiesced_txg == 0) {
438 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
439 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
440 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
441 delta = ddi_get_lbolt() - start;
442 timer = (delta > timeout ? 0 : timeout - delta);
443 }
444
445 /*
446 * Wait until the quiesce thread hands off a txg to us,
447 * prompting it to do so if necessary.
448 */
449 while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) {
450 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
451 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
452 cv_broadcast(&tx->tx_quiesce_more_cv);
453 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
454 }
455
456 if (tx->tx_exiting)
457 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
458
459 /*
460 * Consume the quiesced txg which has been handed off to
461 * us. This may cause the quiescing thread to now be
462 * able to quiesce another txg, so we must signal it.
463 */
464 txg = tx->tx_quiesced_txg;
465 tx->tx_quiesced_txg = 0;
466 tx->tx_syncing_txg = txg;
467 cv_broadcast(&tx->tx_quiesce_more_cv);
468
469 th = dsl_pool_txg_history_get(dp, txg);
470 th->th_kstat.state = TXG_STATE_SYNCING;
471 vdev_get_stats(spa->spa_root_vdev, &th->th_vs1);
472 dsl_pool_txg_history_put(th);
473
474 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
475 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
476 mutex_exit(&tx->tx_sync_lock);
477
478 start = ddi_get_lbolt();
479 hrstart = gethrtime();
480 spa_sync(spa, txg);
481 delta = ddi_get_lbolt() - start;
482
483 mutex_enter(&tx->tx_sync_lock);
484 tx->tx_synced_txg = txg;
485 tx->tx_syncing_txg = 0;
486 cv_broadcast(&tx->tx_sync_done_cv);
487
488 /*
489 * Dispatch commit callbacks to worker threads.
490 */
491 txg_dispatch_callbacks(dp, txg);
492
493 /*
494 * Measure the txg sync time determine the amount of I/O done.
495 */
496 th = dsl_pool_txg_history_get(dp, txg);
497 vdev_get_stats(spa->spa_root_vdev, &th->th_vs2);
498 th->th_kstat.sync_time = gethrtime() - hrstart;
499 th->th_kstat.nread = th->th_vs2.vs_bytes[ZIO_TYPE_READ] -
500 th->th_vs1.vs_bytes[ZIO_TYPE_READ];
501 th->th_kstat.nwritten = th->th_vs2.vs_bytes[ZIO_TYPE_WRITE] -
502 th->th_vs1.vs_bytes[ZIO_TYPE_WRITE];
503 th->th_kstat.reads = th->th_vs2.vs_ops[ZIO_TYPE_READ] -
504 th->th_vs1.vs_ops[ZIO_TYPE_READ];
505 th->th_kstat.writes = th->th_vs2.vs_ops[ZIO_TYPE_WRITE] -
506 th->th_vs1.vs_ops[ZIO_TYPE_WRITE];
507 th->th_kstat.state = TXG_STATE_COMMITTED;
508 dsl_pool_txg_history_put(th);
509 }
510 }
511
512 static void
513 txg_quiesce_thread(dsl_pool_t *dp)
514 {
515 tx_state_t *tx = &dp->dp_tx;
516 callb_cpr_t cpr;
517
518 txg_thread_enter(tx, &cpr);
519
520 for (;;) {
521 uint64_t txg;
522
523 /*
524 * We quiesce when there's someone waiting on us.
525 * However, we can only have one txg in "quiescing" or
526 * "quiesced, waiting to sync" state. So we wait until
527 * the "quiesced, waiting to sync" txg has been consumed
528 * by the sync thread.
529 */
530 while (!tx->tx_exiting &&
531 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
532 tx->tx_quiesced_txg != 0))
533 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
534
535 if (tx->tx_exiting)
536 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
537
538 txg = tx->tx_open_txg;
539 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
540 txg, tx->tx_quiesce_txg_waiting,
541 tx->tx_sync_txg_waiting);
542 mutex_exit(&tx->tx_sync_lock);
543 txg_quiesce(dp, txg);
544 mutex_enter(&tx->tx_sync_lock);
545
546 /*
547 * Hand this txg off to the sync thread.
548 */
549 dprintf("quiesce done, handing off txg %llu\n", txg);
550 tx->tx_quiesced_txg = txg;
551 cv_broadcast(&tx->tx_sync_more_cv);
552 cv_broadcast(&tx->tx_quiesce_done_cv);
553 }
554 }
555
556 /*
557 * Delay this thread by 'ticks' if we are still in the open transaction
558 * group and there is already a waiting txg quiesing or quiesced. Abort
559 * the delay if this txg stalls or enters the quiesing state.
560 */
561 void
562 txg_delay(dsl_pool_t *dp, uint64_t txg, int ticks)
563 {
564 tx_state_t *tx = &dp->dp_tx;
565 clock_t timeout = ddi_get_lbolt() + ticks;
566
567 /* don't delay if this txg could transition to quiesing immediately */
568 if (tx->tx_open_txg > txg ||
569 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
570 return;
571
572 mutex_enter(&tx->tx_sync_lock);
573 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
574 mutex_exit(&tx->tx_sync_lock);
575 return;
576 }
577
578 while (ddi_get_lbolt() < timeout &&
579 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp))
580 (void) cv_timedwait(&tx->tx_quiesce_more_cv, &tx->tx_sync_lock,
581 timeout);
582
583 DMU_TX_STAT_BUMP(dmu_tx_delay);
584
585 mutex_exit(&tx->tx_sync_lock);
586 }
587
588 void
589 txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
590 {
591 tx_state_t *tx = &dp->dp_tx;
592
593 mutex_enter(&tx->tx_sync_lock);
594 ASSERT(tx->tx_threads == 2);
595 if (txg == 0)
596 txg = tx->tx_open_txg + TXG_DEFER_SIZE;
597 if (tx->tx_sync_txg_waiting < txg)
598 tx->tx_sync_txg_waiting = txg;
599 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
600 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
601 while (tx->tx_synced_txg < txg) {
602 dprintf("broadcasting sync more "
603 "tx_synced=%llu waiting=%llu dp=%p\n",
604 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
605 cv_broadcast(&tx->tx_sync_more_cv);
606 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
607 }
608 mutex_exit(&tx->tx_sync_lock);
609 }
610
611 void
612 txg_wait_open(dsl_pool_t *dp, uint64_t txg)
613 {
614 tx_state_t *tx = &dp->dp_tx;
615
616 mutex_enter(&tx->tx_sync_lock);
617 ASSERT(tx->tx_threads == 2);
618 if (txg == 0)
619 txg = tx->tx_open_txg + 1;
620 if (tx->tx_quiesce_txg_waiting < txg)
621 tx->tx_quiesce_txg_waiting = txg;
622 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
623 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
624 while (tx->tx_open_txg < txg) {
625 cv_broadcast(&tx->tx_quiesce_more_cv);
626 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
627 }
628 mutex_exit(&tx->tx_sync_lock);
629 }
630
631 boolean_t
632 txg_stalled(dsl_pool_t *dp)
633 {
634 tx_state_t *tx = &dp->dp_tx;
635 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
636 }
637
638 boolean_t
639 txg_sync_waiting(dsl_pool_t *dp)
640 {
641 tx_state_t *tx = &dp->dp_tx;
642
643 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
644 tx->tx_quiesced_txg != 0);
645 }
646
647 /*
648 * Per-txg object lists.
649 */
650 void
651 txg_list_create(txg_list_t *tl, size_t offset)
652 {
653 int t;
654
655 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
656
657 tl->tl_offset = offset;
658
659 for (t = 0; t < TXG_SIZE; t++)
660 tl->tl_head[t] = NULL;
661 }
662
663 void
664 txg_list_destroy(txg_list_t *tl)
665 {
666 int t;
667
668 for (t = 0; t < TXG_SIZE; t++)
669 ASSERT(txg_list_empty(tl, t));
670
671 mutex_destroy(&tl->tl_lock);
672 }
673
674 boolean_t
675 txg_list_empty(txg_list_t *tl, uint64_t txg)
676 {
677 return (tl->tl_head[txg & TXG_MASK] == NULL);
678 }
679
680 /*
681 * Add an entry to the list.
682 * Returns 0 if it's a new entry, 1 if it's already there.
683 */
684 int
685 txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
686 {
687 int t = txg & TXG_MASK;
688 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
689 int already_on_list;
690
691 mutex_enter(&tl->tl_lock);
692 already_on_list = tn->tn_member[t];
693 if (!already_on_list) {
694 tn->tn_member[t] = 1;
695 tn->tn_next[t] = tl->tl_head[t];
696 tl->tl_head[t] = tn;
697 }
698 mutex_exit(&tl->tl_lock);
699
700 return (already_on_list);
701 }
702
703 /*
704 * Add an entry to the end of the list (walks list to find end).
705 * Returns 0 if it's a new entry, 1 if it's already there.
706 */
707 int
708 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
709 {
710 int t = txg & TXG_MASK;
711 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
712 int already_on_list;
713
714 mutex_enter(&tl->tl_lock);
715 already_on_list = tn->tn_member[t];
716 if (!already_on_list) {
717 txg_node_t **tp;
718
719 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
720 continue;
721
722 tn->tn_member[t] = 1;
723 tn->tn_next[t] = NULL;
724 *tp = tn;
725 }
726 mutex_exit(&tl->tl_lock);
727
728 return (already_on_list);
729 }
730
731 /*
732 * Remove the head of the list and return it.
733 */
734 void *
735 txg_list_remove(txg_list_t *tl, uint64_t txg)
736 {
737 int t = txg & TXG_MASK;
738 txg_node_t *tn;
739 void *p = NULL;
740
741 mutex_enter(&tl->tl_lock);
742 if ((tn = tl->tl_head[t]) != NULL) {
743 p = (char *)tn - tl->tl_offset;
744 tl->tl_head[t] = tn->tn_next[t];
745 tn->tn_next[t] = NULL;
746 tn->tn_member[t] = 0;
747 }
748 mutex_exit(&tl->tl_lock);
749
750 return (p);
751 }
752
753 /*
754 * Remove a specific item from the list and return it.
755 */
756 void *
757 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
758 {
759 int t = txg & TXG_MASK;
760 txg_node_t *tn, **tp;
761
762 mutex_enter(&tl->tl_lock);
763
764 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
765 if ((char *)tn - tl->tl_offset == p) {
766 *tp = tn->tn_next[t];
767 tn->tn_next[t] = NULL;
768 tn->tn_member[t] = 0;
769 mutex_exit(&tl->tl_lock);
770 return (p);
771 }
772 }
773
774 mutex_exit(&tl->tl_lock);
775
776 return (NULL);
777 }
778
779 int
780 txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
781 {
782 int t = txg & TXG_MASK;
783 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
784
785 return (tn->tn_member[t]);
786 }
787
788 /*
789 * Walk a txg list -- only safe if you know it's not changing.
790 */
791 void *
792 txg_list_head(txg_list_t *tl, uint64_t txg)
793 {
794 int t = txg & TXG_MASK;
795 txg_node_t *tn = tl->tl_head[t];
796
797 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
798 }
799
800 void *
801 txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
802 {
803 int t = txg & TXG_MASK;
804 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
805
806 tn = tn->tn_next[t];
807
808 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
809 }
810
811 #if defined(_KERNEL) && defined(HAVE_SPL)
812 EXPORT_SYMBOL(txg_init);
813 EXPORT_SYMBOL(txg_fini);
814 EXPORT_SYMBOL(txg_sync_start);
815 EXPORT_SYMBOL(txg_sync_stop);
816 EXPORT_SYMBOL(txg_hold_open);
817 EXPORT_SYMBOL(txg_rele_to_quiesce);
818 EXPORT_SYMBOL(txg_rele_to_sync);
819 EXPORT_SYMBOL(txg_register_callbacks);
820 EXPORT_SYMBOL(txg_delay);
821 EXPORT_SYMBOL(txg_wait_synced);
822 EXPORT_SYMBOL(txg_wait_open);
823 EXPORT_SYMBOL(txg_wait_callbacks);
824 EXPORT_SYMBOL(txg_stalled);
825 EXPORT_SYMBOL(txg_sync_waiting);
826
827 module_param(zfs_txg_timeout, int, 0644);
828 MODULE_PARM_DESC(zfs_txg_timeout, "Max seconds worth of delta per txg");
829 #endif