]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/txg.c
ABD changes for vectorized RAIDZ
[mirror_zfs.git] / module / zfs / txg.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Portions Copyright 2011 Martin Matuska
24 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/txg_impl.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dsl_pool.h>
33 #include <sys/dsl_scan.h>
34 #include <sys/callb.h>
35 #include <sys/trace_txg.h>
36
37 /*
38 * ZFS Transaction Groups
39 * ----------------------
40 *
41 * ZFS transaction groups are, as the name implies, groups of transactions
42 * that act on persistent state. ZFS asserts consistency at the granularity of
43 * these transaction groups. Each successive transaction group (txg) is
44 * assigned a 64-bit consecutive identifier. There are three active
45 * transaction group states: open, quiescing, or syncing. At any given time,
46 * there may be an active txg associated with each state; each active txg may
47 * either be processing, or blocked waiting to enter the next state. There may
48 * be up to three active txgs, and there is always a txg in the open state
49 * (though it may be blocked waiting to enter the quiescing state). In broad
50 * strokes, transactions -- operations that change in-memory structures -- are
51 * accepted into the txg in the open state, and are completed while the txg is
52 * in the open or quiescing states. The accumulated changes are written to
53 * disk in the syncing state.
54 *
55 * Open
56 *
57 * When a new txg becomes active, it first enters the open state. New
58 * transactions -- updates to in-memory structures -- are assigned to the
59 * currently open txg. There is always a txg in the open state so that ZFS can
60 * accept new changes (though the txg may refuse new changes if it has hit
61 * some limit). ZFS advances the open txg to the next state for a variety of
62 * reasons such as it hitting a time or size threshold, or the execution of an
63 * administrative action that must be completed in the syncing state.
64 *
65 * Quiescing
66 *
67 * After a txg exits the open state, it enters the quiescing state. The
68 * quiescing state is intended to provide a buffer between accepting new
69 * transactions in the open state and writing them out to stable storage in
70 * the syncing state. While quiescing, transactions can continue their
71 * operation without delaying either of the other states. Typically, a txg is
72 * in the quiescing state very briefly since the operations are bounded by
73 * software latencies rather than, say, slower I/O latencies. After all
74 * transactions complete, the txg is ready to enter the next state.
75 *
76 * Syncing
77 *
78 * In the syncing state, the in-memory state built up during the open and (to
79 * a lesser degree) the quiescing states is written to stable storage. The
80 * process of writing out modified data can, in turn modify more data. For
81 * example when we write new blocks, we need to allocate space for them; those
82 * allocations modify metadata (space maps)... which themselves must be
83 * written to stable storage. During the sync state, ZFS iterates, writing out
84 * data until it converges and all in-memory changes have been written out.
85 * The first such pass is the largest as it encompasses all the modified user
86 * data (as opposed to filesystem metadata). Subsequent passes typically have
87 * far less data to write as they consist exclusively of filesystem metadata.
88 *
89 * To ensure convergence, after a certain number of passes ZFS begins
90 * overwriting locations on stable storage that had been allocated earlier in
91 * the syncing state (and subsequently freed). ZFS usually allocates new
92 * blocks to optimize for large, continuous, writes. For the syncing state to
93 * converge however it must complete a pass where no new blocks are allocated
94 * since each allocation requires a modification of persistent metadata.
95 * Further, to hasten convergence, after a prescribed number of passes, ZFS
96 * also defers frees, and stops compressing.
97 *
98 * In addition to writing out user data, we must also execute synctasks during
99 * the syncing context. A synctask is the mechanism by which some
100 * administrative activities work such as creating and destroying snapshots or
101 * datasets. Note that when a synctask is initiated it enters the open txg,
102 * and ZFS then pushes that txg as quickly as possible to completion of the
103 * syncing state in order to reduce the latency of the administrative
104 * activity. To complete the syncing state, ZFS writes out a new uberblock,
105 * the root of the tree of blocks that comprise all state stored on the ZFS
106 * pool. Finally, if there is a quiesced txg waiting, we signal that it can
107 * now transition to the syncing state.
108 */
109
110 static void txg_sync_thread(dsl_pool_t *dp);
111 static void txg_quiesce_thread(dsl_pool_t *dp);
112
113 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */
114
115 /*
116 * Prepare the txg subsystem.
117 */
118 void
119 txg_init(dsl_pool_t *dp, uint64_t txg)
120 {
121 tx_state_t *tx = &dp->dp_tx;
122 int c;
123 bzero(tx, sizeof (tx_state_t));
124
125 tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
126
127 for (c = 0; c < max_ncpus; c++) {
128 int i;
129
130 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
131 mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_NOLOCKDEP,
132 NULL);
133 for (i = 0; i < TXG_SIZE; i++) {
134 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
135 NULL);
136 list_create(&tx->tx_cpu[c].tc_callbacks[i],
137 sizeof (dmu_tx_callback_t),
138 offsetof(dmu_tx_callback_t, dcb_node));
139 }
140 }
141
142 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
143
144 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
145 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
146 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
147 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
148 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
149
150 tx->tx_open_txg = txg;
151 }
152
153 /*
154 * Close down the txg subsystem.
155 */
156 void
157 txg_fini(dsl_pool_t *dp)
158 {
159 tx_state_t *tx = &dp->dp_tx;
160 int c;
161
162 ASSERT(tx->tx_threads == 0);
163
164 mutex_destroy(&tx->tx_sync_lock);
165
166 cv_destroy(&tx->tx_sync_more_cv);
167 cv_destroy(&tx->tx_sync_done_cv);
168 cv_destroy(&tx->tx_quiesce_more_cv);
169 cv_destroy(&tx->tx_quiesce_done_cv);
170 cv_destroy(&tx->tx_exit_cv);
171
172 for (c = 0; c < max_ncpus; c++) {
173 int i;
174
175 mutex_destroy(&tx->tx_cpu[c].tc_open_lock);
176 mutex_destroy(&tx->tx_cpu[c].tc_lock);
177 for (i = 0; i < TXG_SIZE; i++) {
178 cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
179 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
180 }
181 }
182
183 if (tx->tx_commit_cb_taskq != NULL)
184 taskq_destroy(tx->tx_commit_cb_taskq);
185
186 vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
187
188 bzero(tx, sizeof (tx_state_t));
189 }
190
191 /*
192 * Start syncing transaction groups.
193 */
194 void
195 txg_sync_start(dsl_pool_t *dp)
196 {
197 tx_state_t *tx = &dp->dp_tx;
198
199 mutex_enter(&tx->tx_sync_lock);
200
201 dprintf("pool %p\n", dp);
202
203 ASSERT(tx->tx_threads == 0);
204
205 tx->tx_threads = 2;
206
207 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
208 dp, 0, &p0, TS_RUN, defclsyspri);
209
210 /*
211 * The sync thread can need a larger-than-default stack size on
212 * 32-bit x86. This is due in part to nested pools and
213 * scrub_visitbp() recursion.
214 */
215 tx->tx_sync_thread = thread_create(NULL, 0, txg_sync_thread,
216 dp, 0, &p0, TS_RUN, defclsyspri);
217
218 mutex_exit(&tx->tx_sync_lock);
219 }
220
221 static void
222 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
223 {
224 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
225 mutex_enter(&tx->tx_sync_lock);
226 }
227
228 static void
229 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
230 {
231 ASSERT(*tpp != NULL);
232 *tpp = NULL;
233 tx->tx_threads--;
234 cv_broadcast(&tx->tx_exit_cv);
235 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */
236 thread_exit();
237 }
238
239 static void
240 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time)
241 {
242 CALLB_CPR_SAFE_BEGIN(cpr);
243
244 if (time)
245 (void) cv_timedwait_sig(cv, &tx->tx_sync_lock,
246 ddi_get_lbolt() + time);
247 else
248 cv_wait_sig(cv, &tx->tx_sync_lock);
249
250 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
251 }
252
253 /*
254 * Stop syncing transaction groups.
255 */
256 void
257 txg_sync_stop(dsl_pool_t *dp)
258 {
259 tx_state_t *tx = &dp->dp_tx;
260
261 dprintf("pool %p\n", dp);
262 /*
263 * Finish off any work in progress.
264 */
265 ASSERT(tx->tx_threads == 2);
266
267 /*
268 * We need to ensure that we've vacated the deferred space_maps.
269 */
270 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
271
272 /*
273 * Wake all sync threads and wait for them to die.
274 */
275 mutex_enter(&tx->tx_sync_lock);
276
277 ASSERT(tx->tx_threads == 2);
278
279 tx->tx_exiting = 1;
280
281 cv_broadcast(&tx->tx_quiesce_more_cv);
282 cv_broadcast(&tx->tx_quiesce_done_cv);
283 cv_broadcast(&tx->tx_sync_more_cv);
284
285 while (tx->tx_threads != 0)
286 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
287
288 tx->tx_exiting = 0;
289
290 mutex_exit(&tx->tx_sync_lock);
291 }
292
293 uint64_t
294 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
295 {
296 tx_state_t *tx = &dp->dp_tx;
297 tx_cpu_t *tc;
298 uint64_t txg;
299
300 /*
301 * It appears the processor id is simply used as a "random"
302 * number to index into the array, and there isn't any other
303 * significance to the chosen tx_cpu. Because.. Why not use
304 * the current cpu to index into the array?
305 */
306 kpreempt_disable();
307 tc = &tx->tx_cpu[CPU_SEQID];
308 kpreempt_enable();
309
310 mutex_enter(&tc->tc_open_lock);
311 txg = tx->tx_open_txg;
312
313 mutex_enter(&tc->tc_lock);
314 tc->tc_count[txg & TXG_MASK]++;
315 mutex_exit(&tc->tc_lock);
316
317 th->th_cpu = tc;
318 th->th_txg = txg;
319
320 return (txg);
321 }
322
323 void
324 txg_rele_to_quiesce(txg_handle_t *th)
325 {
326 tx_cpu_t *tc = th->th_cpu;
327
328 ASSERT(!MUTEX_HELD(&tc->tc_lock));
329 mutex_exit(&tc->tc_open_lock);
330 }
331
332 void
333 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
334 {
335 tx_cpu_t *tc = th->th_cpu;
336 int g = th->th_txg & TXG_MASK;
337
338 mutex_enter(&tc->tc_lock);
339 list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
340 mutex_exit(&tc->tc_lock);
341 }
342
343 void
344 txg_rele_to_sync(txg_handle_t *th)
345 {
346 tx_cpu_t *tc = th->th_cpu;
347 int g = th->th_txg & TXG_MASK;
348
349 mutex_enter(&tc->tc_lock);
350 ASSERT(tc->tc_count[g] != 0);
351 if (--tc->tc_count[g] == 0)
352 cv_broadcast(&tc->tc_cv[g]);
353 mutex_exit(&tc->tc_lock);
354
355 th->th_cpu = NULL; /* defensive */
356 }
357
358 /*
359 * Blocks until all transactions in the group are committed.
360 *
361 * On return, the transaction group has reached a stable state in which it can
362 * then be passed off to the syncing context.
363 */
364 static void
365 txg_quiesce(dsl_pool_t *dp, uint64_t txg)
366 {
367 tx_state_t *tx = &dp->dp_tx;
368 uint64_t tx_open_time;
369 int g = txg & TXG_MASK;
370 int c;
371
372 /*
373 * Grab all tc_open_locks so nobody else can get into this txg.
374 */
375 for (c = 0; c < max_ncpus; c++)
376 mutex_enter(&tx->tx_cpu[c].tc_open_lock);
377
378 ASSERT(txg == tx->tx_open_txg);
379 tx->tx_open_txg++;
380 tx->tx_open_time = tx_open_time = gethrtime();
381
382 DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg);
383 DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg);
384
385 /*
386 * Now that we've incremented tx_open_txg, we can let threads
387 * enter the next transaction group.
388 */
389 for (c = 0; c < max_ncpus; c++)
390 mutex_exit(&tx->tx_cpu[c].tc_open_lock);
391
392 spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_OPEN, tx_open_time);
393 spa_txg_history_add(dp->dp_spa, txg + 1, tx_open_time);
394
395 /*
396 * Quiesce the transaction group by waiting for everyone to txg_exit().
397 */
398 for (c = 0; c < max_ncpus; c++) {
399 tx_cpu_t *tc = &tx->tx_cpu[c];
400 mutex_enter(&tc->tc_lock);
401 while (tc->tc_count[g] != 0)
402 cv_wait(&tc->tc_cv[g], &tc->tc_lock);
403 mutex_exit(&tc->tc_lock);
404 }
405
406 spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_QUIESCED, gethrtime());
407 }
408
409 static void
410 txg_do_callbacks(list_t *cb_list)
411 {
412 dmu_tx_do_callbacks(cb_list, 0);
413
414 list_destroy(cb_list);
415
416 kmem_free(cb_list, sizeof (list_t));
417 }
418
419 /*
420 * Dispatch the commit callbacks registered on this txg to worker threads.
421 *
422 * If no callbacks are registered for a given TXG, nothing happens.
423 * This function creates a taskq for the associated pool, if needed.
424 */
425 static void
426 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
427 {
428 int c;
429 tx_state_t *tx = &dp->dp_tx;
430 list_t *cb_list;
431
432 for (c = 0; c < max_ncpus; c++) {
433 tx_cpu_t *tc = &tx->tx_cpu[c];
434 /*
435 * No need to lock tx_cpu_t at this point, since this can
436 * only be called once a txg has been synced.
437 */
438
439 int g = txg & TXG_MASK;
440
441 if (list_is_empty(&tc->tc_callbacks[g]))
442 continue;
443
444 if (tx->tx_commit_cb_taskq == NULL) {
445 /*
446 * Commit callback taskq hasn't been created yet.
447 */
448 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
449 max_ncpus, defclsyspri, max_ncpus, max_ncpus * 2,
450 TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
451 }
452
453 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
454 list_create(cb_list, sizeof (dmu_tx_callback_t),
455 offsetof(dmu_tx_callback_t, dcb_node));
456
457 list_move_tail(cb_list, &tc->tc_callbacks[g]);
458
459 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
460 txg_do_callbacks, cb_list, TQ_SLEEP);
461 }
462 }
463
464 /*
465 * Wait for pending commit callbacks of already-synced transactions to finish
466 * processing.
467 * Calling this function from within a commit callback will deadlock.
468 */
469 void
470 txg_wait_callbacks(dsl_pool_t *dp)
471 {
472 tx_state_t *tx = &dp->dp_tx;
473
474 if (tx->tx_commit_cb_taskq != NULL)
475 taskq_wait_outstanding(tx->tx_commit_cb_taskq, 0);
476 }
477
478 static void
479 txg_sync_thread(dsl_pool_t *dp)
480 {
481 spa_t *spa = dp->dp_spa;
482 tx_state_t *tx = &dp->dp_tx;
483 callb_cpr_t cpr;
484 vdev_stat_t *vs1, *vs2;
485 clock_t start, delta;
486
487 (void) spl_fstrans_mark();
488 txg_thread_enter(tx, &cpr);
489
490 vs1 = kmem_alloc(sizeof (vdev_stat_t), KM_SLEEP);
491 vs2 = kmem_alloc(sizeof (vdev_stat_t), KM_SLEEP);
492
493 start = delta = 0;
494 for (;;) {
495 clock_t timer, timeout;
496 uint64_t txg;
497 uint64_t ndirty;
498
499 timeout = zfs_txg_timeout * hz;
500
501 /*
502 * We sync when we're scanning, there's someone waiting
503 * on us, or the quiesce thread has handed off a txg to
504 * us, or we have reached our timeout.
505 */
506 timer = (delta >= timeout ? 0 : timeout - delta);
507 while (!dsl_scan_active(dp->dp_scan) &&
508 !tx->tx_exiting && timer > 0 &&
509 tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
510 tx->tx_quiesced_txg == 0 &&
511 dp->dp_dirty_total < zfs_dirty_data_sync) {
512 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
513 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
514 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
515 delta = ddi_get_lbolt() - start;
516 timer = (delta > timeout ? 0 : timeout - delta);
517 }
518
519 /*
520 * Wait until the quiesce thread hands off a txg to us,
521 * prompting it to do so if necessary.
522 */
523 while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) {
524 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
525 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
526 cv_broadcast(&tx->tx_quiesce_more_cv);
527 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
528 }
529
530 if (tx->tx_exiting) {
531 kmem_free(vs2, sizeof (vdev_stat_t));
532 kmem_free(vs1, sizeof (vdev_stat_t));
533 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
534 }
535
536 spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
537 vdev_get_stats(spa->spa_root_vdev, vs1);
538 spa_config_exit(spa, SCL_ALL, FTAG);
539
540 /*
541 * Consume the quiesced txg which has been handed off to
542 * us. This may cause the quiescing thread to now be
543 * able to quiesce another txg, so we must signal it.
544 */
545 txg = tx->tx_quiesced_txg;
546 tx->tx_quiesced_txg = 0;
547 tx->tx_syncing_txg = txg;
548 DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg);
549 cv_broadcast(&tx->tx_quiesce_more_cv);
550
551 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
552 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
553 mutex_exit(&tx->tx_sync_lock);
554
555 spa_txg_history_set(spa, txg, TXG_STATE_WAIT_FOR_SYNC,
556 gethrtime());
557 ndirty = dp->dp_dirty_pertxg[txg & TXG_MASK];
558
559 start = ddi_get_lbolt();
560 spa_sync(spa, txg);
561 delta = ddi_get_lbolt() - start;
562
563 mutex_enter(&tx->tx_sync_lock);
564 tx->tx_synced_txg = txg;
565 tx->tx_syncing_txg = 0;
566 DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg);
567 cv_broadcast(&tx->tx_sync_done_cv);
568
569 /*
570 * Dispatch commit callbacks to worker threads.
571 */
572 txg_dispatch_callbacks(dp, txg);
573
574 spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
575 vdev_get_stats(spa->spa_root_vdev, vs2);
576 spa_config_exit(spa, SCL_ALL, FTAG);
577 spa_txg_history_set_io(spa, txg,
578 vs2->vs_bytes[ZIO_TYPE_READ]-vs1->vs_bytes[ZIO_TYPE_READ],
579 vs2->vs_bytes[ZIO_TYPE_WRITE]-vs1->vs_bytes[ZIO_TYPE_WRITE],
580 vs2->vs_ops[ZIO_TYPE_READ]-vs1->vs_ops[ZIO_TYPE_READ],
581 vs2->vs_ops[ZIO_TYPE_WRITE]-vs1->vs_ops[ZIO_TYPE_WRITE],
582 ndirty);
583 spa_txg_history_set(spa, txg, TXG_STATE_SYNCED, gethrtime());
584 }
585 }
586
587 static void
588 txg_quiesce_thread(dsl_pool_t *dp)
589 {
590 tx_state_t *tx = &dp->dp_tx;
591 callb_cpr_t cpr;
592
593 txg_thread_enter(tx, &cpr);
594
595 for (;;) {
596 uint64_t txg;
597
598 /*
599 * We quiesce when there's someone waiting on us.
600 * However, we can only have one txg in "quiescing" or
601 * "quiesced, waiting to sync" state. So we wait until
602 * the "quiesced, waiting to sync" txg has been consumed
603 * by the sync thread.
604 */
605 while (!tx->tx_exiting &&
606 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
607 tx->tx_quiesced_txg != 0))
608 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
609
610 if (tx->tx_exiting)
611 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
612
613 txg = tx->tx_open_txg;
614 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
615 txg, tx->tx_quiesce_txg_waiting,
616 tx->tx_sync_txg_waiting);
617 mutex_exit(&tx->tx_sync_lock);
618 txg_quiesce(dp, txg);
619 mutex_enter(&tx->tx_sync_lock);
620
621 /*
622 * Hand this txg off to the sync thread.
623 */
624 dprintf("quiesce done, handing off txg %llu\n", txg);
625 tx->tx_quiesced_txg = txg;
626 DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg);
627 cv_broadcast(&tx->tx_sync_more_cv);
628 cv_broadcast(&tx->tx_quiesce_done_cv);
629 }
630 }
631
632 /*
633 * Delay this thread by delay nanoseconds if we are still in the open
634 * transaction group and there is already a waiting txg quiesing or quiesced.
635 * Abort the delay if this txg stalls or enters the quiesing state.
636 */
637 void
638 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution)
639 {
640 tx_state_t *tx = &dp->dp_tx;
641 hrtime_t start = gethrtime();
642
643 /* don't delay if this txg could transition to quiescing immediately */
644 if (tx->tx_open_txg > txg ||
645 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
646 return;
647
648 mutex_enter(&tx->tx_sync_lock);
649 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
650 mutex_exit(&tx->tx_sync_lock);
651 return;
652 }
653
654 while (gethrtime() - start < delay &&
655 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) {
656 (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv,
657 &tx->tx_sync_lock, delay, resolution, 0);
658 }
659
660 DMU_TX_STAT_BUMP(dmu_tx_delay);
661
662 mutex_exit(&tx->tx_sync_lock);
663 }
664
665 void
666 txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
667 {
668 tx_state_t *tx = &dp->dp_tx;
669
670 ASSERT(!dsl_pool_config_held(dp));
671
672 mutex_enter(&tx->tx_sync_lock);
673 ASSERT(tx->tx_threads == 2);
674 if (txg == 0)
675 txg = tx->tx_open_txg + TXG_DEFER_SIZE;
676 if (tx->tx_sync_txg_waiting < txg)
677 tx->tx_sync_txg_waiting = txg;
678 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
679 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
680 while (tx->tx_synced_txg < txg) {
681 dprintf("broadcasting sync more "
682 "tx_synced=%llu waiting=%llu dp=%p\n",
683 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
684 cv_broadcast(&tx->tx_sync_more_cv);
685 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
686 }
687 mutex_exit(&tx->tx_sync_lock);
688 }
689
690 void
691 txg_wait_open(dsl_pool_t *dp, uint64_t txg)
692 {
693 tx_state_t *tx = &dp->dp_tx;
694
695 ASSERT(!dsl_pool_config_held(dp));
696
697 mutex_enter(&tx->tx_sync_lock);
698 ASSERT(tx->tx_threads == 2);
699 if (txg == 0)
700 txg = tx->tx_open_txg + 1;
701 if (tx->tx_quiesce_txg_waiting < txg)
702 tx->tx_quiesce_txg_waiting = txg;
703 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
704 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
705 while (tx->tx_open_txg < txg) {
706 cv_broadcast(&tx->tx_quiesce_more_cv);
707 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
708 }
709 mutex_exit(&tx->tx_sync_lock);
710 }
711
712 /*
713 * If there isn't a txg syncing or in the pipeline, push another txg through
714 * the pipeline by queiscing the open txg.
715 */
716 void
717 txg_kick(dsl_pool_t *dp)
718 {
719 tx_state_t *tx = &dp->dp_tx;
720
721 ASSERT(!dsl_pool_config_held(dp));
722
723 mutex_enter(&tx->tx_sync_lock);
724 if (tx->tx_syncing_txg == 0 &&
725 tx->tx_quiesce_txg_waiting <= tx->tx_open_txg &&
726 tx->tx_sync_txg_waiting <= tx->tx_synced_txg &&
727 tx->tx_quiesced_txg <= tx->tx_synced_txg) {
728 tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1;
729 cv_broadcast(&tx->tx_quiesce_more_cv);
730 }
731 mutex_exit(&tx->tx_sync_lock);
732 }
733
734 boolean_t
735 txg_stalled(dsl_pool_t *dp)
736 {
737 tx_state_t *tx = &dp->dp_tx;
738 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
739 }
740
741 boolean_t
742 txg_sync_waiting(dsl_pool_t *dp)
743 {
744 tx_state_t *tx = &dp->dp_tx;
745
746 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
747 tx->tx_quiesced_txg != 0);
748 }
749
750 /*
751 * Per-txg object lists.
752 */
753 void
754 txg_list_create(txg_list_t *tl, size_t offset)
755 {
756 int t;
757
758 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
759
760 tl->tl_offset = offset;
761
762 for (t = 0; t < TXG_SIZE; t++)
763 tl->tl_head[t] = NULL;
764 }
765
766 void
767 txg_list_destroy(txg_list_t *tl)
768 {
769 int t;
770
771 for (t = 0; t < TXG_SIZE; t++)
772 ASSERT(txg_list_empty(tl, t));
773
774 mutex_destroy(&tl->tl_lock);
775 }
776
777 boolean_t
778 txg_list_empty(txg_list_t *tl, uint64_t txg)
779 {
780 return (tl->tl_head[txg & TXG_MASK] == NULL);
781 }
782
783 /*
784 * Returns true if all txg lists are empty.
785 *
786 * Warning: this is inherently racy (an item could be added immediately
787 * after this function returns). We don't bother with the lock because
788 * it wouldn't change the semantics.
789 */
790 boolean_t
791 txg_all_lists_empty(txg_list_t *tl)
792 {
793 int i;
794
795 for (i = 0; i < TXG_SIZE; i++) {
796 if (!txg_list_empty(tl, i)) {
797 return (B_FALSE);
798 }
799 }
800 return (B_TRUE);
801 }
802
803 /*
804 * Add an entry to the list (unless it's already on the list).
805 * Returns B_TRUE if it was actually added.
806 */
807 boolean_t
808 txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
809 {
810 int t = txg & TXG_MASK;
811 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
812 boolean_t add;
813
814 mutex_enter(&tl->tl_lock);
815 add = (tn->tn_member[t] == 0);
816 if (add) {
817 tn->tn_member[t] = 1;
818 tn->tn_next[t] = tl->tl_head[t];
819 tl->tl_head[t] = tn;
820 }
821 mutex_exit(&tl->tl_lock);
822
823 return (add);
824 }
825
826 /*
827 * Add an entry to the end of the list, unless it's already on the list.
828 * (walks list to find end)
829 * Returns B_TRUE if it was actually added.
830 */
831 boolean_t
832 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
833 {
834 int t = txg & TXG_MASK;
835 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
836 boolean_t add;
837
838 mutex_enter(&tl->tl_lock);
839 add = (tn->tn_member[t] == 0);
840 if (add) {
841 txg_node_t **tp;
842
843 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
844 continue;
845
846 tn->tn_member[t] = 1;
847 tn->tn_next[t] = NULL;
848 *tp = tn;
849 }
850 mutex_exit(&tl->tl_lock);
851
852 return (add);
853 }
854
855 /*
856 * Remove the head of the list and return it.
857 */
858 void *
859 txg_list_remove(txg_list_t *tl, uint64_t txg)
860 {
861 int t = txg & TXG_MASK;
862 txg_node_t *tn;
863 void *p = NULL;
864
865 mutex_enter(&tl->tl_lock);
866 if ((tn = tl->tl_head[t]) != NULL) {
867 p = (char *)tn - tl->tl_offset;
868 tl->tl_head[t] = tn->tn_next[t];
869 tn->tn_next[t] = NULL;
870 tn->tn_member[t] = 0;
871 }
872 mutex_exit(&tl->tl_lock);
873
874 return (p);
875 }
876
877 /*
878 * Remove a specific item from the list and return it.
879 */
880 void *
881 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
882 {
883 int t = txg & TXG_MASK;
884 txg_node_t *tn, **tp;
885
886 mutex_enter(&tl->tl_lock);
887
888 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
889 if ((char *)tn - tl->tl_offset == p) {
890 *tp = tn->tn_next[t];
891 tn->tn_next[t] = NULL;
892 tn->tn_member[t] = 0;
893 mutex_exit(&tl->tl_lock);
894 return (p);
895 }
896 }
897
898 mutex_exit(&tl->tl_lock);
899
900 return (NULL);
901 }
902
903 boolean_t
904 txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
905 {
906 int t = txg & TXG_MASK;
907 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
908
909 return (tn->tn_member[t] != 0);
910 }
911
912 /*
913 * Walk a txg list -- only safe if you know it's not changing.
914 */
915 void *
916 txg_list_head(txg_list_t *tl, uint64_t txg)
917 {
918 int t = txg & TXG_MASK;
919 txg_node_t *tn = tl->tl_head[t];
920
921 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
922 }
923
924 void *
925 txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
926 {
927 int t = txg & TXG_MASK;
928 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
929
930 tn = tn->tn_next[t];
931
932 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
933 }
934
935 #if defined(_KERNEL) && defined(HAVE_SPL)
936 EXPORT_SYMBOL(txg_init);
937 EXPORT_SYMBOL(txg_fini);
938 EXPORT_SYMBOL(txg_sync_start);
939 EXPORT_SYMBOL(txg_sync_stop);
940 EXPORT_SYMBOL(txg_hold_open);
941 EXPORT_SYMBOL(txg_rele_to_quiesce);
942 EXPORT_SYMBOL(txg_rele_to_sync);
943 EXPORT_SYMBOL(txg_register_callbacks);
944 EXPORT_SYMBOL(txg_delay);
945 EXPORT_SYMBOL(txg_wait_synced);
946 EXPORT_SYMBOL(txg_wait_open);
947 EXPORT_SYMBOL(txg_wait_callbacks);
948 EXPORT_SYMBOL(txg_stalled);
949 EXPORT_SYMBOL(txg_sync_waiting);
950
951 module_param(zfs_txg_timeout, int, 0644);
952 MODULE_PARM_DESC(zfs_txg_timeout, "Max seconds worth of delta per txg");
953 #endif