]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/txg.c
Fix a potential use-after-free in zfs_setsecattr()
[mirror_zfs.git] / module / zfs / txg.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Portions Copyright 2011 Martin Matuska
24 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/txg_impl.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dsl_pool.h>
33 #include <sys/dsl_scan.h>
34 #include <sys/zil.h>
35 #include <sys/callb.h>
36 #include <sys/trace_zfs.h>
37
38 /*
39 * ZFS Transaction Groups
40 * ----------------------
41 *
42 * ZFS transaction groups are, as the name implies, groups of transactions
43 * that act on persistent state. ZFS asserts consistency at the granularity of
44 * these transaction groups. Each successive transaction group (txg) is
45 * assigned a 64-bit consecutive identifier. There are three active
46 * transaction group states: open, quiescing, or syncing. At any given time,
47 * there may be an active txg associated with each state; each active txg may
48 * either be processing, or blocked waiting to enter the next state. There may
49 * be up to three active txgs, and there is always a txg in the open state
50 * (though it may be blocked waiting to enter the quiescing state). In broad
51 * strokes, transactions -- operations that change in-memory structures -- are
52 * accepted into the txg in the open state, and are completed while the txg is
53 * in the open or quiescing states. The accumulated changes are written to
54 * disk in the syncing state.
55 *
56 * Open
57 *
58 * When a new txg becomes active, it first enters the open state. New
59 * transactions -- updates to in-memory structures -- are assigned to the
60 * currently open txg. There is always a txg in the open state so that ZFS can
61 * accept new changes (though the txg may refuse new changes if it has hit
62 * some limit). ZFS advances the open txg to the next state for a variety of
63 * reasons such as it hitting a time or size threshold, or the execution of an
64 * administrative action that must be completed in the syncing state.
65 *
66 * Quiescing
67 *
68 * After a txg exits the open state, it enters the quiescing state. The
69 * quiescing state is intended to provide a buffer between accepting new
70 * transactions in the open state and writing them out to stable storage in
71 * the syncing state. While quiescing, transactions can continue their
72 * operation without delaying either of the other states. Typically, a txg is
73 * in the quiescing state very briefly since the operations are bounded by
74 * software latencies rather than, say, slower I/O latencies. After all
75 * transactions complete, the txg is ready to enter the next state.
76 *
77 * Syncing
78 *
79 * In the syncing state, the in-memory state built up during the open and (to
80 * a lesser degree) the quiescing states is written to stable storage. The
81 * process of writing out modified data can, in turn modify more data. For
82 * example when we write new blocks, we need to allocate space for them; those
83 * allocations modify metadata (space maps)... which themselves must be
84 * written to stable storage. During the sync state, ZFS iterates, writing out
85 * data until it converges and all in-memory changes have been written out.
86 * The first such pass is the largest as it encompasses all the modified user
87 * data (as opposed to filesystem metadata). Subsequent passes typically have
88 * far less data to write as they consist exclusively of filesystem metadata.
89 *
90 * To ensure convergence, after a certain number of passes ZFS begins
91 * overwriting locations on stable storage that had been allocated earlier in
92 * the syncing state (and subsequently freed). ZFS usually allocates new
93 * blocks to optimize for large, continuous, writes. For the syncing state to
94 * converge however it must complete a pass where no new blocks are allocated
95 * since each allocation requires a modification of persistent metadata.
96 * Further, to hasten convergence, after a prescribed number of passes, ZFS
97 * also defers frees, and stops compressing.
98 *
99 * In addition to writing out user data, we must also execute synctasks during
100 * the syncing context. A synctask is the mechanism by which some
101 * administrative activities work such as creating and destroying snapshots or
102 * datasets. Note that when a synctask is initiated it enters the open txg,
103 * and ZFS then pushes that txg as quickly as possible to completion of the
104 * syncing state in order to reduce the latency of the administrative
105 * activity. To complete the syncing state, ZFS writes out a new uberblock,
106 * the root of the tree of blocks that comprise all state stored on the ZFS
107 * pool. Finally, if there is a quiesced txg waiting, we signal that it can
108 * now transition to the syncing state.
109 */
110
111 static __attribute__((noreturn)) void txg_sync_thread(void *arg);
112 static __attribute__((noreturn)) void txg_quiesce_thread(void *arg);
113
114 uint_t zfs_txg_timeout = 5; /* max seconds worth of delta per txg */
115
116 /*
117 * Prepare the txg subsystem.
118 */
119 void
120 txg_init(dsl_pool_t *dp, uint64_t txg)
121 {
122 tx_state_t *tx = &dp->dp_tx;
123 int c;
124 memset(tx, 0, sizeof (tx_state_t));
125
126 tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
127
128 for (c = 0; c < max_ncpus; c++) {
129 int i;
130
131 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
132 mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_NOLOCKDEP,
133 NULL);
134 for (i = 0; i < TXG_SIZE; i++) {
135 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
136 NULL);
137 list_create(&tx->tx_cpu[c].tc_callbacks[i],
138 sizeof (dmu_tx_callback_t),
139 offsetof(dmu_tx_callback_t, dcb_node));
140 }
141 }
142
143 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
144
145 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
146 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
147 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
148 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
149 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
150
151 tx->tx_open_txg = txg;
152 }
153
154 /*
155 * Close down the txg subsystem.
156 */
157 void
158 txg_fini(dsl_pool_t *dp)
159 {
160 tx_state_t *tx = &dp->dp_tx;
161 int c;
162
163 ASSERT0(tx->tx_threads);
164
165 mutex_destroy(&tx->tx_sync_lock);
166
167 cv_destroy(&tx->tx_sync_more_cv);
168 cv_destroy(&tx->tx_sync_done_cv);
169 cv_destroy(&tx->tx_quiesce_more_cv);
170 cv_destroy(&tx->tx_quiesce_done_cv);
171 cv_destroy(&tx->tx_exit_cv);
172
173 for (c = 0; c < max_ncpus; c++) {
174 int i;
175
176 mutex_destroy(&tx->tx_cpu[c].tc_open_lock);
177 mutex_destroy(&tx->tx_cpu[c].tc_lock);
178 for (i = 0; i < TXG_SIZE; i++) {
179 cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
180 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
181 }
182 }
183
184 if (tx->tx_commit_cb_taskq != NULL)
185 taskq_destroy(tx->tx_commit_cb_taskq);
186
187 vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
188
189 memset(tx, 0, sizeof (tx_state_t));
190 }
191
192 /*
193 * Start syncing transaction groups.
194 */
195 void
196 txg_sync_start(dsl_pool_t *dp)
197 {
198 tx_state_t *tx = &dp->dp_tx;
199
200 mutex_enter(&tx->tx_sync_lock);
201
202 dprintf("pool %p\n", dp);
203
204 ASSERT0(tx->tx_threads);
205
206 tx->tx_threads = 2;
207
208 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
209 dp, 0, &p0, TS_RUN, defclsyspri);
210
211 /*
212 * The sync thread can need a larger-than-default stack size on
213 * 32-bit x86. This is due in part to nested pools and
214 * scrub_visitbp() recursion.
215 */
216 tx->tx_sync_thread = thread_create(NULL, 0, txg_sync_thread,
217 dp, 0, &p0, TS_RUN, defclsyspri);
218
219 mutex_exit(&tx->tx_sync_lock);
220 }
221
222 static void
223 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
224 {
225 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
226 mutex_enter(&tx->tx_sync_lock);
227 }
228
229 static void
230 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
231 {
232 ASSERT(*tpp != NULL);
233 *tpp = NULL;
234 tx->tx_threads--;
235 cv_broadcast(&tx->tx_exit_cv);
236 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */
237 thread_exit();
238 }
239
240 static void
241 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time)
242 {
243 CALLB_CPR_SAFE_BEGIN(cpr);
244
245 if (time) {
246 (void) cv_timedwait_idle(cv, &tx->tx_sync_lock,
247 ddi_get_lbolt() + time);
248 } else {
249 cv_wait_idle(cv, &tx->tx_sync_lock);
250 }
251
252 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
253 }
254
255 /*
256 * Stop syncing transaction groups.
257 */
258 void
259 txg_sync_stop(dsl_pool_t *dp)
260 {
261 tx_state_t *tx = &dp->dp_tx;
262
263 dprintf("pool %p\n", dp);
264 /*
265 * Finish off any work in progress.
266 */
267 ASSERT3U(tx->tx_threads, ==, 2);
268
269 /*
270 * We need to ensure that we've vacated the deferred metaslab trees.
271 */
272 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
273
274 /*
275 * Wake all sync threads and wait for them to die.
276 */
277 mutex_enter(&tx->tx_sync_lock);
278
279 ASSERT3U(tx->tx_threads, ==, 2);
280
281 tx->tx_exiting = 1;
282
283 cv_broadcast(&tx->tx_quiesce_more_cv);
284 cv_broadcast(&tx->tx_quiesce_done_cv);
285 cv_broadcast(&tx->tx_sync_more_cv);
286
287 while (tx->tx_threads != 0)
288 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
289
290 tx->tx_exiting = 0;
291
292 mutex_exit(&tx->tx_sync_lock);
293 }
294
295 /*
296 * Get a handle on the currently open txg and keep it open.
297 *
298 * The txg is guaranteed to stay open until txg_rele_to_quiesce() is called for
299 * the handle. Once txg_rele_to_quiesce() has been called, the txg stays
300 * in quiescing state until txg_rele_to_sync() is called for the handle.
301 *
302 * It is guaranteed that subsequent calls return monotonically increasing
303 * txgs for the same dsl_pool_t. Of course this is not strong monotonicity,
304 * because the same txg can be returned multiple times in a row. This
305 * guarantee holds both for subsequent calls from one thread and for multiple
306 * threads. For example, it is impossible to observe the following sequence
307 * of events:
308 *
309 * Thread 1 Thread 2
310 *
311 * 1 <- txg_hold_open(P, ...)
312 * 2 <- txg_hold_open(P, ...)
313 * 1 <- txg_hold_open(P, ...)
314 *
315 */
316 uint64_t
317 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
318 {
319 tx_state_t *tx = &dp->dp_tx;
320 tx_cpu_t *tc;
321 uint64_t txg;
322
323 /*
324 * It appears the processor id is simply used as a "random"
325 * number to index into the array, and there isn't any other
326 * significance to the chosen tx_cpu. Because.. Why not use
327 * the current cpu to index into the array?
328 */
329 tc = &tx->tx_cpu[CPU_SEQID_UNSTABLE];
330
331 mutex_enter(&tc->tc_open_lock);
332 txg = tx->tx_open_txg;
333
334 mutex_enter(&tc->tc_lock);
335 tc->tc_count[txg & TXG_MASK]++;
336 mutex_exit(&tc->tc_lock);
337
338 th->th_cpu = tc;
339 th->th_txg = txg;
340
341 return (txg);
342 }
343
344 void
345 txg_rele_to_quiesce(txg_handle_t *th)
346 {
347 tx_cpu_t *tc = th->th_cpu;
348
349 ASSERT(!MUTEX_HELD(&tc->tc_lock));
350 mutex_exit(&tc->tc_open_lock);
351 }
352
353 void
354 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
355 {
356 tx_cpu_t *tc = th->th_cpu;
357 int g = th->th_txg & TXG_MASK;
358
359 mutex_enter(&tc->tc_lock);
360 list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
361 mutex_exit(&tc->tc_lock);
362 }
363
364 void
365 txg_rele_to_sync(txg_handle_t *th)
366 {
367 tx_cpu_t *tc = th->th_cpu;
368 int g = th->th_txg & TXG_MASK;
369
370 mutex_enter(&tc->tc_lock);
371 ASSERT(tc->tc_count[g] != 0);
372 if (--tc->tc_count[g] == 0)
373 cv_broadcast(&tc->tc_cv[g]);
374 mutex_exit(&tc->tc_lock);
375
376 th->th_cpu = NULL; /* defensive */
377 }
378
379 /*
380 * Blocks until all transactions in the group are committed.
381 *
382 * On return, the transaction group has reached a stable state in which it can
383 * then be passed off to the syncing context.
384 */
385 static void
386 txg_quiesce(dsl_pool_t *dp, uint64_t txg)
387 {
388 tx_state_t *tx = &dp->dp_tx;
389 uint64_t tx_open_time;
390 int g = txg & TXG_MASK;
391 int c;
392
393 /*
394 * Grab all tc_open_locks so nobody else can get into this txg.
395 */
396 for (c = 0; c < max_ncpus; c++)
397 mutex_enter(&tx->tx_cpu[c].tc_open_lock);
398
399 ASSERT(txg == tx->tx_open_txg);
400 tx->tx_open_txg++;
401 tx->tx_open_time = tx_open_time = gethrtime();
402
403 DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg);
404 DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg);
405
406 /*
407 * Now that we've incremented tx_open_txg, we can let threads
408 * enter the next transaction group.
409 */
410 for (c = 0; c < max_ncpus; c++)
411 mutex_exit(&tx->tx_cpu[c].tc_open_lock);
412
413 spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_OPEN, tx_open_time);
414 spa_txg_history_add(dp->dp_spa, txg + 1, tx_open_time);
415
416 /*
417 * Quiesce the transaction group by waiting for everyone to
418 * call txg_rele_to_sync() for their open transaction handles.
419 */
420 for (c = 0; c < max_ncpus; c++) {
421 tx_cpu_t *tc = &tx->tx_cpu[c];
422 mutex_enter(&tc->tc_lock);
423 while (tc->tc_count[g] != 0)
424 cv_wait(&tc->tc_cv[g], &tc->tc_lock);
425 mutex_exit(&tc->tc_lock);
426 }
427
428 spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_QUIESCED, gethrtime());
429 }
430
431 static void
432 txg_do_callbacks(void *cb_list)
433 {
434 dmu_tx_do_callbacks(cb_list, 0);
435
436 list_destroy(cb_list);
437
438 kmem_free(cb_list, sizeof (list_t));
439 }
440
441 /*
442 * Dispatch the commit callbacks registered on this txg to worker threads.
443 *
444 * If no callbacks are registered for a given TXG, nothing happens.
445 * This function creates a taskq for the associated pool, if needed.
446 */
447 static void
448 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
449 {
450 int c;
451 tx_state_t *tx = &dp->dp_tx;
452 list_t *cb_list;
453
454 for (c = 0; c < max_ncpus; c++) {
455 tx_cpu_t *tc = &tx->tx_cpu[c];
456 /*
457 * No need to lock tx_cpu_t at this point, since this can
458 * only be called once a txg has been synced.
459 */
460
461 int g = txg & TXG_MASK;
462
463 if (list_is_empty(&tc->tc_callbacks[g]))
464 continue;
465
466 if (tx->tx_commit_cb_taskq == NULL) {
467 /*
468 * Commit callback taskq hasn't been created yet.
469 */
470 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
471 100, defclsyspri, boot_ncpus, boot_ncpus * 2,
472 TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
473 TASKQ_THREADS_CPU_PCT);
474 }
475
476 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
477 list_create(cb_list, sizeof (dmu_tx_callback_t),
478 offsetof(dmu_tx_callback_t, dcb_node));
479
480 list_move_tail(cb_list, &tc->tc_callbacks[g]);
481
482 (void) taskq_dispatch(tx->tx_commit_cb_taskq,
483 txg_do_callbacks, cb_list, TQ_SLEEP);
484 }
485 }
486
487 /*
488 * Wait for pending commit callbacks of already-synced transactions to finish
489 * processing.
490 * Calling this function from within a commit callback will deadlock.
491 */
492 void
493 txg_wait_callbacks(dsl_pool_t *dp)
494 {
495 tx_state_t *tx = &dp->dp_tx;
496
497 if (tx->tx_commit_cb_taskq != NULL)
498 taskq_wait_outstanding(tx->tx_commit_cb_taskq, 0);
499 }
500
501 static boolean_t
502 txg_is_quiescing(dsl_pool_t *dp)
503 {
504 tx_state_t *tx = &dp->dp_tx;
505 ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
506 return (tx->tx_quiescing_txg != 0);
507 }
508
509 static boolean_t
510 txg_has_quiesced_to_sync(dsl_pool_t *dp)
511 {
512 tx_state_t *tx = &dp->dp_tx;
513 ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
514 return (tx->tx_quiesced_txg != 0);
515 }
516
517 static __attribute__((noreturn)) void
518 txg_sync_thread(void *arg)
519 {
520 dsl_pool_t *dp = arg;
521 spa_t *spa = dp->dp_spa;
522 tx_state_t *tx = &dp->dp_tx;
523 callb_cpr_t cpr;
524 clock_t start, delta;
525
526 (void) spl_fstrans_mark();
527 txg_thread_enter(tx, &cpr);
528
529 start = delta = 0;
530 for (;;) {
531 clock_t timeout = zfs_txg_timeout * hz;
532 clock_t timer;
533 uint64_t txg;
534
535 /*
536 * We sync when we're scanning, there's someone waiting
537 * on us, or the quiesce thread has handed off a txg to
538 * us, or we have reached our timeout.
539 */
540 timer = (delta >= timeout ? 0 : timeout - delta);
541 while (!dsl_scan_active(dp->dp_scan) &&
542 !tx->tx_exiting && timer > 0 &&
543 tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
544 !txg_has_quiesced_to_sync(dp)) {
545 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
546 (u_longlong_t)tx->tx_synced_txg,
547 (u_longlong_t)tx->tx_sync_txg_waiting, dp);
548 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
549 delta = ddi_get_lbolt() - start;
550 timer = (delta > timeout ? 0 : timeout - delta);
551 }
552
553 /*
554 * Wait until the quiesce thread hands off a txg to us,
555 * prompting it to do so if necessary.
556 */
557 while (!tx->tx_exiting && !txg_has_quiesced_to_sync(dp)) {
558 if (txg_is_quiescing(dp)) {
559 txg_thread_wait(tx, &cpr,
560 &tx->tx_quiesce_done_cv, 0);
561 continue;
562 }
563 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
564 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
565 cv_broadcast(&tx->tx_quiesce_more_cv);
566 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
567 }
568
569 if (tx->tx_exiting)
570 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
571
572 /*
573 * Consume the quiesced txg which has been handed off to
574 * us. This may cause the quiescing thread to now be
575 * able to quiesce another txg, so we must signal it.
576 */
577 ASSERT(tx->tx_quiesced_txg != 0);
578 txg = tx->tx_quiesced_txg;
579 tx->tx_quiesced_txg = 0;
580 tx->tx_syncing_txg = txg;
581 DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg);
582 cv_broadcast(&tx->tx_quiesce_more_cv);
583
584 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
585 (u_longlong_t)txg, (u_longlong_t)tx->tx_quiesce_txg_waiting,
586 (u_longlong_t)tx->tx_sync_txg_waiting);
587 mutex_exit(&tx->tx_sync_lock);
588
589 txg_stat_t *ts = spa_txg_history_init_io(spa, txg, dp);
590 start = ddi_get_lbolt();
591 spa_sync(spa, txg);
592 delta = ddi_get_lbolt() - start;
593 spa_txg_history_fini_io(spa, ts);
594
595 mutex_enter(&tx->tx_sync_lock);
596 tx->tx_synced_txg = txg;
597 tx->tx_syncing_txg = 0;
598 DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg);
599 cv_broadcast(&tx->tx_sync_done_cv);
600
601 /*
602 * Dispatch commit callbacks to worker threads.
603 */
604 txg_dispatch_callbacks(dp, txg);
605 }
606 }
607
608 static __attribute__((noreturn)) void
609 txg_quiesce_thread(void *arg)
610 {
611 dsl_pool_t *dp = arg;
612 tx_state_t *tx = &dp->dp_tx;
613 callb_cpr_t cpr;
614
615 txg_thread_enter(tx, &cpr);
616
617 for (;;) {
618 uint64_t txg;
619
620 /*
621 * We quiesce when there's someone waiting on us.
622 * However, we can only have one txg in "quiescing" or
623 * "quiesced, waiting to sync" state. So we wait until
624 * the "quiesced, waiting to sync" txg has been consumed
625 * by the sync thread.
626 */
627 while (!tx->tx_exiting &&
628 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
629 txg_has_quiesced_to_sync(dp)))
630 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
631
632 if (tx->tx_exiting)
633 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
634
635 txg = tx->tx_open_txg;
636 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
637 (u_longlong_t)txg,
638 (u_longlong_t)tx->tx_quiesce_txg_waiting,
639 (u_longlong_t)tx->tx_sync_txg_waiting);
640 tx->tx_quiescing_txg = txg;
641
642 mutex_exit(&tx->tx_sync_lock);
643 txg_quiesce(dp, txg);
644 mutex_enter(&tx->tx_sync_lock);
645
646 /*
647 * Hand this txg off to the sync thread.
648 */
649 dprintf("quiesce done, handing off txg %llu\n",
650 (u_longlong_t)txg);
651 tx->tx_quiescing_txg = 0;
652 tx->tx_quiesced_txg = txg;
653 DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg);
654 cv_broadcast(&tx->tx_sync_more_cv);
655 cv_broadcast(&tx->tx_quiesce_done_cv);
656 }
657 }
658
659 /*
660 * Delay this thread by delay nanoseconds if we are still in the open
661 * transaction group and there is already a waiting txg quiescing or quiesced.
662 * Abort the delay if this txg stalls or enters the quiescing state.
663 */
664 void
665 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution)
666 {
667 tx_state_t *tx = &dp->dp_tx;
668 hrtime_t start = gethrtime();
669
670 /* don't delay if this txg could transition to quiescing immediately */
671 if (tx->tx_open_txg > txg ||
672 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
673 return;
674
675 mutex_enter(&tx->tx_sync_lock);
676 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
677 mutex_exit(&tx->tx_sync_lock);
678 return;
679 }
680
681 while (gethrtime() - start < delay &&
682 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) {
683 (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv,
684 &tx->tx_sync_lock, delay, resolution, 0);
685 }
686
687 DMU_TX_STAT_BUMP(dmu_tx_delay);
688
689 mutex_exit(&tx->tx_sync_lock);
690 }
691
692 static boolean_t
693 txg_wait_synced_impl(dsl_pool_t *dp, uint64_t txg, boolean_t wait_sig)
694 {
695 tx_state_t *tx = &dp->dp_tx;
696
697 ASSERT(!dsl_pool_config_held(dp));
698
699 mutex_enter(&tx->tx_sync_lock);
700 ASSERT3U(tx->tx_threads, ==, 2);
701 if (txg == 0)
702 txg = tx->tx_open_txg + TXG_DEFER_SIZE;
703 if (tx->tx_sync_txg_waiting < txg)
704 tx->tx_sync_txg_waiting = txg;
705 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
706 (u_longlong_t)txg, (u_longlong_t)tx->tx_quiesce_txg_waiting,
707 (u_longlong_t)tx->tx_sync_txg_waiting);
708 while (tx->tx_synced_txg < txg) {
709 dprintf("broadcasting sync more "
710 "tx_synced=%llu waiting=%llu dp=%px\n",
711 (u_longlong_t)tx->tx_synced_txg,
712 (u_longlong_t)tx->tx_sync_txg_waiting, dp);
713 cv_broadcast(&tx->tx_sync_more_cv);
714 if (wait_sig) {
715 /*
716 * Condition wait here but stop if the thread receives a
717 * signal. The caller may call txg_wait_synced*() again
718 * to resume waiting for this txg.
719 */
720 if (cv_wait_io_sig(&tx->tx_sync_done_cv,
721 &tx->tx_sync_lock) == 0) {
722 mutex_exit(&tx->tx_sync_lock);
723 return (B_TRUE);
724 }
725 } else {
726 cv_wait_io(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
727 }
728 }
729 mutex_exit(&tx->tx_sync_lock);
730 return (B_FALSE);
731 }
732
733 void
734 txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
735 {
736 VERIFY0(txg_wait_synced_impl(dp, txg, B_FALSE));
737 }
738
739 /*
740 * Similar to a txg_wait_synced but it can be interrupted from a signal.
741 * Returns B_TRUE if the thread was signaled while waiting.
742 */
743 boolean_t
744 txg_wait_synced_sig(dsl_pool_t *dp, uint64_t txg)
745 {
746 return (txg_wait_synced_impl(dp, txg, B_TRUE));
747 }
748
749 /*
750 * Wait for the specified open transaction group. Set should_quiesce
751 * when the current open txg should be quiesced immediately.
752 */
753 void
754 txg_wait_open(dsl_pool_t *dp, uint64_t txg, boolean_t should_quiesce)
755 {
756 tx_state_t *tx = &dp->dp_tx;
757
758 ASSERT(!dsl_pool_config_held(dp));
759
760 mutex_enter(&tx->tx_sync_lock);
761 ASSERT3U(tx->tx_threads, ==, 2);
762 if (txg == 0)
763 txg = tx->tx_open_txg + 1;
764 if (tx->tx_quiesce_txg_waiting < txg && should_quiesce)
765 tx->tx_quiesce_txg_waiting = txg;
766 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
767 (u_longlong_t)txg, (u_longlong_t)tx->tx_quiesce_txg_waiting,
768 (u_longlong_t)tx->tx_sync_txg_waiting);
769 while (tx->tx_open_txg < txg) {
770 cv_broadcast(&tx->tx_quiesce_more_cv);
771 /*
772 * Callers setting should_quiesce will use cv_wait_io() and
773 * be accounted for as iowait time. Otherwise, the caller is
774 * understood to be idle and cv_wait_sig() is used to prevent
775 * incorrectly inflating the system load average.
776 */
777 if (should_quiesce == B_TRUE) {
778 cv_wait_io(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
779 } else {
780 cv_wait_idle(&tx->tx_quiesce_done_cv,
781 &tx->tx_sync_lock);
782 }
783 }
784 mutex_exit(&tx->tx_sync_lock);
785 }
786
787 /*
788 * Pass in the txg number that should be synced.
789 */
790 void
791 txg_kick(dsl_pool_t *dp, uint64_t txg)
792 {
793 tx_state_t *tx = &dp->dp_tx;
794
795 ASSERT(!dsl_pool_config_held(dp));
796
797 if (tx->tx_sync_txg_waiting >= txg)
798 return;
799
800 mutex_enter(&tx->tx_sync_lock);
801 if (tx->tx_sync_txg_waiting < txg) {
802 tx->tx_sync_txg_waiting = txg;
803 cv_broadcast(&tx->tx_sync_more_cv);
804 }
805 mutex_exit(&tx->tx_sync_lock);
806 }
807
808 boolean_t
809 txg_stalled(dsl_pool_t *dp)
810 {
811 tx_state_t *tx = &dp->dp_tx;
812 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
813 }
814
815 boolean_t
816 txg_sync_waiting(dsl_pool_t *dp)
817 {
818 tx_state_t *tx = &dp->dp_tx;
819
820 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
821 tx->tx_quiesced_txg != 0);
822 }
823
824 /*
825 * Verify that this txg is active (open, quiescing, syncing). Non-active
826 * txg's should not be manipulated.
827 */
828 #ifdef ZFS_DEBUG
829 void
830 txg_verify(spa_t *spa, uint64_t txg)
831 {
832 dsl_pool_t *dp __maybe_unused = spa_get_dsl(spa);
833 if (txg <= TXG_INITIAL || txg == ZILTEST_TXG)
834 return;
835 ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
836 ASSERT3U(txg, >=, dp->dp_tx.tx_synced_txg);
837 ASSERT3U(txg, >=, dp->dp_tx.tx_open_txg - TXG_CONCURRENT_STATES);
838 }
839 #endif
840
841 /*
842 * Per-txg object lists.
843 */
844 void
845 txg_list_create(txg_list_t *tl, spa_t *spa, size_t offset)
846 {
847 int t;
848
849 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
850
851 tl->tl_offset = offset;
852 tl->tl_spa = spa;
853
854 for (t = 0; t < TXG_SIZE; t++)
855 tl->tl_head[t] = NULL;
856 }
857
858 static boolean_t
859 txg_list_empty_impl(txg_list_t *tl, uint64_t txg)
860 {
861 ASSERT(MUTEX_HELD(&tl->tl_lock));
862 TXG_VERIFY(tl->tl_spa, txg);
863 return (tl->tl_head[txg & TXG_MASK] == NULL);
864 }
865
866 boolean_t
867 txg_list_empty(txg_list_t *tl, uint64_t txg)
868 {
869 mutex_enter(&tl->tl_lock);
870 boolean_t ret = txg_list_empty_impl(tl, txg);
871 mutex_exit(&tl->tl_lock);
872
873 return (ret);
874 }
875
876 void
877 txg_list_destroy(txg_list_t *tl)
878 {
879 int t;
880
881 mutex_enter(&tl->tl_lock);
882 for (t = 0; t < TXG_SIZE; t++)
883 ASSERT(txg_list_empty_impl(tl, t));
884 mutex_exit(&tl->tl_lock);
885
886 mutex_destroy(&tl->tl_lock);
887 }
888
889 /*
890 * Returns true if all txg lists are empty.
891 *
892 * Warning: this is inherently racy (an item could be added immediately
893 * after this function returns).
894 */
895 boolean_t
896 txg_all_lists_empty(txg_list_t *tl)
897 {
898 boolean_t res = B_TRUE;
899 for (int i = 0; i < TXG_SIZE; i++)
900 res &= (tl->tl_head[i] == NULL);
901 return (res);
902 }
903
904 /*
905 * Add an entry to the list (unless it's already on the list).
906 * Returns B_TRUE if it was actually added.
907 */
908 boolean_t
909 txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
910 {
911 int t = txg & TXG_MASK;
912 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
913 boolean_t add;
914
915 TXG_VERIFY(tl->tl_spa, txg);
916 mutex_enter(&tl->tl_lock);
917 add = (tn->tn_member[t] == 0);
918 if (add) {
919 tn->tn_member[t] = 1;
920 tn->tn_next[t] = tl->tl_head[t];
921 tl->tl_head[t] = tn;
922 }
923 mutex_exit(&tl->tl_lock);
924
925 return (add);
926 }
927
928 /*
929 * Add an entry to the end of the list, unless it's already on the list.
930 * (walks list to find end)
931 * Returns B_TRUE if it was actually added.
932 */
933 boolean_t
934 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
935 {
936 int t = txg & TXG_MASK;
937 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
938 boolean_t add;
939
940 TXG_VERIFY(tl->tl_spa, txg);
941 mutex_enter(&tl->tl_lock);
942 add = (tn->tn_member[t] == 0);
943 if (add) {
944 txg_node_t **tp;
945
946 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
947 continue;
948
949 tn->tn_member[t] = 1;
950 tn->tn_next[t] = NULL;
951 *tp = tn;
952 }
953 mutex_exit(&tl->tl_lock);
954
955 return (add);
956 }
957
958 /*
959 * Remove the head of the list and return it.
960 */
961 void *
962 txg_list_remove(txg_list_t *tl, uint64_t txg)
963 {
964 int t = txg & TXG_MASK;
965 txg_node_t *tn;
966 void *p = NULL;
967
968 TXG_VERIFY(tl->tl_spa, txg);
969 mutex_enter(&tl->tl_lock);
970 if ((tn = tl->tl_head[t]) != NULL) {
971 ASSERT(tn->tn_member[t]);
972 ASSERT(tn->tn_next[t] == NULL || tn->tn_next[t]->tn_member[t]);
973 p = (char *)tn - tl->tl_offset;
974 tl->tl_head[t] = tn->tn_next[t];
975 tn->tn_next[t] = NULL;
976 tn->tn_member[t] = 0;
977 }
978 mutex_exit(&tl->tl_lock);
979
980 return (p);
981 }
982
983 /*
984 * Remove a specific item from the list and return it.
985 */
986 void *
987 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
988 {
989 int t = txg & TXG_MASK;
990 txg_node_t *tn, **tp;
991
992 TXG_VERIFY(tl->tl_spa, txg);
993 mutex_enter(&tl->tl_lock);
994
995 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
996 if ((char *)tn - tl->tl_offset == p) {
997 *tp = tn->tn_next[t];
998 tn->tn_next[t] = NULL;
999 tn->tn_member[t] = 0;
1000 mutex_exit(&tl->tl_lock);
1001 return (p);
1002 }
1003 }
1004
1005 mutex_exit(&tl->tl_lock);
1006
1007 return (NULL);
1008 }
1009
1010 boolean_t
1011 txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
1012 {
1013 int t = txg & TXG_MASK;
1014 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
1015
1016 TXG_VERIFY(tl->tl_spa, txg);
1017 return (tn->tn_member[t] != 0);
1018 }
1019
1020 /*
1021 * Walk a txg list
1022 */
1023 void *
1024 txg_list_head(txg_list_t *tl, uint64_t txg)
1025 {
1026 int t = txg & TXG_MASK;
1027 txg_node_t *tn;
1028
1029 mutex_enter(&tl->tl_lock);
1030 tn = tl->tl_head[t];
1031 mutex_exit(&tl->tl_lock);
1032
1033 TXG_VERIFY(tl->tl_spa, txg);
1034 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
1035 }
1036
1037 void *
1038 txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
1039 {
1040 int t = txg & TXG_MASK;
1041 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
1042
1043 TXG_VERIFY(tl->tl_spa, txg);
1044
1045 mutex_enter(&tl->tl_lock);
1046 tn = tn->tn_next[t];
1047 mutex_exit(&tl->tl_lock);
1048
1049 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
1050 }
1051
1052 EXPORT_SYMBOL(txg_init);
1053 EXPORT_SYMBOL(txg_fini);
1054 EXPORT_SYMBOL(txg_sync_start);
1055 EXPORT_SYMBOL(txg_sync_stop);
1056 EXPORT_SYMBOL(txg_hold_open);
1057 EXPORT_SYMBOL(txg_rele_to_quiesce);
1058 EXPORT_SYMBOL(txg_rele_to_sync);
1059 EXPORT_SYMBOL(txg_register_callbacks);
1060 EXPORT_SYMBOL(txg_delay);
1061 EXPORT_SYMBOL(txg_wait_synced);
1062 EXPORT_SYMBOL(txg_wait_open);
1063 EXPORT_SYMBOL(txg_wait_callbacks);
1064 EXPORT_SYMBOL(txg_stalled);
1065 EXPORT_SYMBOL(txg_sync_waiting);
1066
1067 ZFS_MODULE_PARAM(zfs_txg, zfs_txg_, timeout, UINT, ZMOD_RW,
1068 "Max seconds worth of delta per txg");