]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/txg.c
Call gethrtime() only once per new txg creation
[mirror_zfs.git] / module / zfs / txg.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Portions Copyright 2011 Martin Matuska
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/txg_impl.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dsl_pool.h>
33 #include <sys/dsl_scan.h>
34 #include <sys/callb.h>
35
36 /*
37 * ZFS Transaction Groups
38 * ----------------------
39 *
40 * ZFS transaction groups are, as the name implies, groups of transactions
41 * that act on persistent state. ZFS asserts consistency at the granularity of
42 * these transaction groups. Each successive transaction group (txg) is
43 * assigned a 64-bit consecutive identifier. There are three active
44 * transaction group states: open, quiescing, or syncing. At any given time,
45 * there may be an active txg associated with each state; each active txg may
46 * either be processing, or blocked waiting to enter the next state. There may
47 * be up to three active txgs, and there is always a txg in the open state
48 * (though it may be blocked waiting to enter the quiescing state). In broad
49 * strokes, transactions -- operations that change in-memory structures -- are
50 * accepted into the txg in the open state, and are completed while the txg is
51 * in the open or quiescing states. The accumulated changes are written to
52 * disk in the syncing state.
53 *
54 * Open
55 *
56 * When a new txg becomes active, it first enters the open state. New
57 * transactions -- updates to in-memory structures -- are assigned to the
58 * currently open txg. There is always a txg in the open state so that ZFS can
59 * accept new changes (though the txg may refuse new changes if it has hit
60 * some limit). ZFS advances the open txg to the next state for a variety of
61 * reasons such as it hitting a time or size threshold, or the execution of an
62 * administrative action that must be completed in the syncing state.
63 *
64 * Quiescing
65 *
66 * After a txg exits the open state, it enters the quiescing state. The
67 * quiescing state is intended to provide a buffer between accepting new
68 * transactions in the open state and writing them out to stable storage in
69 * the syncing state. While quiescing, transactions can continue their
70 * operation without delaying either of the other states. Typically, a txg is
71 * in the quiescing state very briefly since the operations are bounded by
72 * software latencies rather than, say, slower I/O latencies. After all
73 * transactions complete, the txg is ready to enter the next state.
74 *
75 * Syncing
76 *
77 * In the syncing state, the in-memory state built up during the open and (to
78 * a lesser degree) the quiescing states is written to stable storage. The
79 * process of writing out modified data can, in turn modify more data. For
80 * example when we write new blocks, we need to allocate space for them; those
81 * allocations modify metadata (space maps)... which themselves must be
82 * written to stable storage. During the sync state, ZFS iterates, writing out
83 * data until it converges and all in-memory changes have been written out.
84 * The first such pass is the largest as it encompasses all the modified user
85 * data (as opposed to filesystem metadata). Subsequent passes typically have
86 * far less data to write as they consist exclusively of filesystem metadata.
87 *
88 * To ensure convergence, after a certain number of passes ZFS begins
89 * overwriting locations on stable storage that had been allocated earlier in
90 * the syncing state (and subsequently freed). ZFS usually allocates new
91 * blocks to optimize for large, continuous, writes. For the syncing state to
92 * converge however it must complete a pass where no new blocks are allocated
93 * since each allocation requires a modification of persistent metadata.
94 * Further, to hasten convergence, after a prescribed number of passes, ZFS
95 * also defers frees, and stops compressing.
96 *
97 * In addition to writing out user data, we must also execute synctasks during
98 * the syncing context. A synctask is the mechanism by which some
99 * administrative activities work such as creating and destroying snapshots or
100 * datasets. Note that when a synctask is initiated it enters the open txg,
101 * and ZFS then pushes that txg as quickly as possible to completion of the
102 * syncing state in order to reduce the latency of the administrative
103 * activity. To complete the syncing state, ZFS writes out a new uberblock,
104 * the root of the tree of blocks that comprise all state stored on the ZFS
105 * pool. Finally, if there is a quiesced txg waiting, we signal that it can
106 * now transition to the syncing state.
107 */
108
109 static void txg_sync_thread(dsl_pool_t *dp);
110 static void txg_quiesce_thread(dsl_pool_t *dp);
111
112 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */
113
114 /*
115 * Prepare the txg subsystem.
116 */
117 void
118 txg_init(dsl_pool_t *dp, uint64_t txg)
119 {
120 tx_state_t *tx = &dp->dp_tx;
121 int c;
122 bzero(tx, sizeof (tx_state_t));
123
124 tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
125
126 for (c = 0; c < max_ncpus; c++) {
127 int i;
128
129 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
130 mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_DEFAULT,
131 NULL);
132 for (i = 0; i < TXG_SIZE; i++) {
133 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
134 NULL);
135 list_create(&tx->tx_cpu[c].tc_callbacks[i],
136 sizeof (dmu_tx_callback_t),
137 offsetof(dmu_tx_callback_t, dcb_node));
138 }
139 }
140
141 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
142
143 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
144 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
145 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
146 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
147 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
148
149 tx->tx_open_txg = txg;
150 }
151
152 /*
153 * Close down the txg subsystem.
154 */
155 void
156 txg_fini(dsl_pool_t *dp)
157 {
158 tx_state_t *tx = &dp->dp_tx;
159 int c;
160
161 ASSERT(tx->tx_threads == 0);
162
163 mutex_destroy(&tx->tx_sync_lock);
164
165 cv_destroy(&tx->tx_sync_more_cv);
166 cv_destroy(&tx->tx_sync_done_cv);
167 cv_destroy(&tx->tx_quiesce_more_cv);
168 cv_destroy(&tx->tx_quiesce_done_cv);
169 cv_destroy(&tx->tx_exit_cv);
170
171 for (c = 0; c < max_ncpus; c++) {
172 int i;
173
174 mutex_destroy(&tx->tx_cpu[c].tc_open_lock);
175 mutex_destroy(&tx->tx_cpu[c].tc_lock);
176 for (i = 0; i < TXG_SIZE; i++) {
177 cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
178 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
179 }
180 }
181
182 if (tx->tx_commit_cb_taskq != NULL)
183 taskq_destroy(tx->tx_commit_cb_taskq);
184
185 vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
186
187 bzero(tx, sizeof (tx_state_t));
188 }
189
190 /*
191 * Start syncing transaction groups.
192 */
193 void
194 txg_sync_start(dsl_pool_t *dp)
195 {
196 tx_state_t *tx = &dp->dp_tx;
197
198 mutex_enter(&tx->tx_sync_lock);
199
200 dprintf("pool %p\n", dp);
201
202 ASSERT(tx->tx_threads == 0);
203
204 tx->tx_threads = 2;
205
206 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
207 dp, 0, &p0, TS_RUN, minclsyspri);
208
209 /*
210 * The sync thread can need a larger-than-default stack size on
211 * 32-bit x86. This is due in part to nested pools and
212 * scrub_visitbp() recursion.
213 */
214 tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread,
215 dp, 0, &p0, TS_RUN, minclsyspri);
216
217 mutex_exit(&tx->tx_sync_lock);
218 }
219
220 static void
221 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
222 {
223 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
224 mutex_enter(&tx->tx_sync_lock);
225 }
226
227 static void
228 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
229 {
230 ASSERT(*tpp != NULL);
231 *tpp = NULL;
232 tx->tx_threads--;
233 cv_broadcast(&tx->tx_exit_cv);
234 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */
235 thread_exit();
236 }
237
238 static void
239 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time)
240 {
241 CALLB_CPR_SAFE_BEGIN(cpr);
242
243 if (time)
244 (void) cv_timedwait_interruptible(cv, &tx->tx_sync_lock,
245 ddi_get_lbolt() + time);
246 else
247 cv_wait_interruptible(cv, &tx->tx_sync_lock);
248
249 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
250 }
251
252 /*
253 * Stop syncing transaction groups.
254 */
255 void
256 txg_sync_stop(dsl_pool_t *dp)
257 {
258 tx_state_t *tx = &dp->dp_tx;
259
260 dprintf("pool %p\n", dp);
261 /*
262 * Finish off any work in progress.
263 */
264 ASSERT(tx->tx_threads == 2);
265
266 /*
267 * We need to ensure that we've vacated the deferred space_maps.
268 */
269 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
270
271 /*
272 * Wake all sync threads and wait for them to die.
273 */
274 mutex_enter(&tx->tx_sync_lock);
275
276 ASSERT(tx->tx_threads == 2);
277
278 tx->tx_exiting = 1;
279
280 cv_broadcast(&tx->tx_quiesce_more_cv);
281 cv_broadcast(&tx->tx_quiesce_done_cv);
282 cv_broadcast(&tx->tx_sync_more_cv);
283
284 while (tx->tx_threads != 0)
285 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
286
287 tx->tx_exiting = 0;
288
289 mutex_exit(&tx->tx_sync_lock);
290 }
291
292 uint64_t
293 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
294 {
295 tx_state_t *tx = &dp->dp_tx;
296 tx_cpu_t *tc;
297 uint64_t txg;
298
299 /*
300 * It appears the processor id is simply used as a "random"
301 * number to index into the array, and there isn't any other
302 * significance to the chosen tx_cpu. Because.. Why not use
303 * the current cpu to index into the array?
304 */
305 kpreempt_disable();
306 tc = &tx->tx_cpu[CPU_SEQID];
307 kpreempt_enable();
308
309 mutex_enter(&tc->tc_open_lock);
310 txg = tx->tx_open_txg;
311
312 mutex_enter(&tc->tc_lock);
313 tc->tc_count[txg & TXG_MASK]++;
314 mutex_exit(&tc->tc_lock);
315
316 th->th_cpu = tc;
317 th->th_txg = txg;
318
319 return (txg);
320 }
321
322 void
323 txg_rele_to_quiesce(txg_handle_t *th)
324 {
325 tx_cpu_t *tc = th->th_cpu;
326
327 ASSERT(!MUTEX_HELD(&tc->tc_lock));
328 mutex_exit(&tc->tc_open_lock);
329 }
330
331 void
332 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
333 {
334 tx_cpu_t *tc = th->th_cpu;
335 int g = th->th_txg & TXG_MASK;
336
337 mutex_enter(&tc->tc_lock);
338 list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
339 mutex_exit(&tc->tc_lock);
340 }
341
342 void
343 txg_rele_to_sync(txg_handle_t *th)
344 {
345 tx_cpu_t *tc = th->th_cpu;
346 int g = th->th_txg & TXG_MASK;
347
348 mutex_enter(&tc->tc_lock);
349 ASSERT(tc->tc_count[g] != 0);
350 if (--tc->tc_count[g] == 0)
351 cv_broadcast(&tc->tc_cv[g]);
352 mutex_exit(&tc->tc_lock);
353
354 th->th_cpu = NULL; /* defensive */
355 }
356
357 /*
358 * Blocks until all transactions in the group are committed.
359 *
360 * On return, the transaction group has reached a stable state in which it can
361 * then be passed off to the syncing context.
362 */
363 static void
364 txg_quiesce(dsl_pool_t *dp, uint64_t txg)
365 {
366 tx_state_t *tx = &dp->dp_tx;
367 int g = txg & TXG_MASK;
368 int c;
369
370 /*
371 * Grab all tc_open_locks so nobody else can get into this txg.
372 */
373 for (c = 0; c < max_ncpus; c++)
374 mutex_enter(&tx->tx_cpu[c].tc_open_lock);
375
376 ASSERT(txg == tx->tx_open_txg);
377 tx->tx_open_txg++;
378 tx->tx_open_time = gethrtime();
379
380 spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_OPEN, tx->tx_open_time);
381 spa_txg_history_add(dp->dp_spa, tx->tx_open_txg, tx->tx_open_time);
382
383 DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg);
384 DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg);
385
386 /*
387 * Now that we've incremented tx_open_txg, we can let threads
388 * enter the next transaction group.
389 */
390 for (c = 0; c < max_ncpus; c++)
391 mutex_exit(&tx->tx_cpu[c].tc_open_lock);
392
393 /*
394 * Quiesce the transaction group by waiting for everyone to txg_exit().
395 */
396 for (c = 0; c < max_ncpus; c++) {
397 tx_cpu_t *tc = &tx->tx_cpu[c];
398 mutex_enter(&tc->tc_lock);
399 while (tc->tc_count[g] != 0)
400 cv_wait(&tc->tc_cv[g], &tc->tc_lock);
401 mutex_exit(&tc->tc_lock);
402 }
403
404 spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_QUIESCED, gethrtime());
405 }
406
407 static void
408 txg_do_callbacks(list_t *cb_list)
409 {
410 dmu_tx_do_callbacks(cb_list, 0);
411
412 list_destroy(cb_list);
413
414 kmem_free(cb_list, sizeof (list_t));
415 }
416
417 /*
418 * Dispatch the commit callbacks registered on this txg to worker threads.
419 *
420 * If no callbacks are registered for a given TXG, nothing happens.
421 * This function creates a taskq for the associated pool, if needed.
422 */
423 static void
424 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
425 {
426 int c;
427 tx_state_t *tx = &dp->dp_tx;
428 list_t *cb_list;
429
430 for (c = 0; c < max_ncpus; c++) {
431 tx_cpu_t *tc = &tx->tx_cpu[c];
432 /*
433 * No need to lock tx_cpu_t at this point, since this can
434 * only be called once a txg has been synced.
435 */
436
437 int g = txg & TXG_MASK;
438
439 if (list_is_empty(&tc->tc_callbacks[g]))
440 continue;
441
442 if (tx->tx_commit_cb_taskq == NULL) {
443 /*
444 * Commit callback taskq hasn't been created yet.
445 */
446 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
447 100, minclsyspri, max_ncpus, INT_MAX,
448 TASKQ_THREADS_CPU_PCT | TASKQ_PREPOPULATE);
449 }
450
451 cb_list = kmem_alloc(sizeof (list_t), KM_PUSHPAGE);
452 list_create(cb_list, sizeof (dmu_tx_callback_t),
453 offsetof(dmu_tx_callback_t, dcb_node));
454
455 list_move_tail(cb_list, &tc->tc_callbacks[g]);
456
457 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
458 txg_do_callbacks, cb_list, TQ_SLEEP);
459 }
460 }
461
462 /*
463 * Wait for pending commit callbacks of already-synced transactions to finish
464 * processing.
465 * Calling this function from within a commit callback will deadlock.
466 */
467 void
468 txg_wait_callbacks(dsl_pool_t *dp)
469 {
470 tx_state_t *tx = &dp->dp_tx;
471
472 if (tx->tx_commit_cb_taskq != NULL)
473 taskq_wait(tx->tx_commit_cb_taskq);
474 }
475
476 static void
477 txg_sync_thread(dsl_pool_t *dp)
478 {
479 spa_t *spa = dp->dp_spa;
480 tx_state_t *tx = &dp->dp_tx;
481 callb_cpr_t cpr;
482 vdev_stat_t *vs1, *vs2;
483 uint64_t start, delta;
484
485 #ifdef _KERNEL
486 /*
487 * Annotate this process with a flag that indicates that it is
488 * unsafe to use KM_SLEEP during memory allocations due to the
489 * potential for a deadlock. KM_PUSHPAGE should be used instead.
490 */
491 current->flags |= PF_NOFS;
492 #endif /* _KERNEL */
493
494 txg_thread_enter(tx, &cpr);
495
496 vs1 = kmem_alloc(sizeof (vdev_stat_t), KM_PUSHPAGE);
497 vs2 = kmem_alloc(sizeof (vdev_stat_t), KM_PUSHPAGE);
498
499 start = delta = 0;
500 for (;;) {
501 uint64_t timer, timeout;
502 uint64_t txg;
503
504 timeout = zfs_txg_timeout * hz;
505
506 /*
507 * We sync when we're scanning, there's someone waiting
508 * on us, or the quiesce thread has handed off a txg to
509 * us, or we have reached our timeout.
510 */
511 timer = (delta >= timeout ? 0 : timeout - delta);
512 while (!dsl_scan_active(dp->dp_scan) &&
513 !tx->tx_exiting && timer > 0 &&
514 tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
515 tx->tx_quiesced_txg == 0 &&
516 dp->dp_dirty_total < zfs_dirty_data_sync) {
517 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
518 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
519 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
520 delta = ddi_get_lbolt() - start;
521 timer = (delta > timeout ? 0 : timeout - delta);
522 }
523
524 /*
525 * Wait until the quiesce thread hands off a txg to us,
526 * prompting it to do so if necessary.
527 */
528 while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) {
529 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
530 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
531 cv_broadcast(&tx->tx_quiesce_more_cv);
532 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
533 }
534
535 if (tx->tx_exiting) {
536 kmem_free(vs2, sizeof (vdev_stat_t));
537 kmem_free(vs1, sizeof (vdev_stat_t));
538 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
539 }
540
541 vdev_get_stats(spa->spa_root_vdev, vs1);
542
543 /*
544 * Consume the quiesced txg which has been handed off to
545 * us. This may cause the quiescing thread to now be
546 * able to quiesce another txg, so we must signal it.
547 */
548 txg = tx->tx_quiesced_txg;
549 tx->tx_quiesced_txg = 0;
550 tx->tx_syncing_txg = txg;
551 DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg);
552 cv_broadcast(&tx->tx_quiesce_more_cv);
553
554 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
555 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
556 mutex_exit(&tx->tx_sync_lock);
557
558 spa_txg_history_set(spa, txg, TXG_STATE_WAIT_FOR_SYNC,
559 gethrtime());
560
561 start = ddi_get_lbolt();
562 spa_sync(spa, txg);
563 delta = ddi_get_lbolt() - start;
564
565 mutex_enter(&tx->tx_sync_lock);
566 tx->tx_synced_txg = txg;
567 tx->tx_syncing_txg = 0;
568 DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg);
569 cv_broadcast(&tx->tx_sync_done_cv);
570
571 /*
572 * Dispatch commit callbacks to worker threads.
573 */
574 txg_dispatch_callbacks(dp, txg);
575
576 vdev_get_stats(spa->spa_root_vdev, vs2);
577 spa_txg_history_set_io(spa, txg,
578 vs2->vs_bytes[ZIO_TYPE_READ]-vs1->vs_bytes[ZIO_TYPE_READ],
579 vs2->vs_bytes[ZIO_TYPE_WRITE]-vs1->vs_bytes[ZIO_TYPE_WRITE],
580 vs2->vs_ops[ZIO_TYPE_READ]-vs1->vs_ops[ZIO_TYPE_READ],
581 vs2->vs_ops[ZIO_TYPE_WRITE]-vs1->vs_ops[ZIO_TYPE_WRITE],
582 dp->dp_dirty_pertxg[txg & TXG_MASK]);
583 spa_txg_history_set(spa, txg, TXG_STATE_SYNCED, gethrtime());
584 }
585 }
586
587 static void
588 txg_quiesce_thread(dsl_pool_t *dp)
589 {
590 tx_state_t *tx = &dp->dp_tx;
591 callb_cpr_t cpr;
592
593 txg_thread_enter(tx, &cpr);
594
595 for (;;) {
596 uint64_t txg;
597
598 /*
599 * We quiesce when there's someone waiting on us.
600 * However, we can only have one txg in "quiescing" or
601 * "quiesced, waiting to sync" state. So we wait until
602 * the "quiesced, waiting to sync" txg has been consumed
603 * by the sync thread.
604 */
605 while (!tx->tx_exiting &&
606 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
607 tx->tx_quiesced_txg != 0))
608 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
609
610 if (tx->tx_exiting)
611 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
612
613 txg = tx->tx_open_txg;
614 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
615 txg, tx->tx_quiesce_txg_waiting,
616 tx->tx_sync_txg_waiting);
617 mutex_exit(&tx->tx_sync_lock);
618 txg_quiesce(dp, txg);
619 mutex_enter(&tx->tx_sync_lock);
620
621 /*
622 * Hand this txg off to the sync thread.
623 */
624 dprintf("quiesce done, handing off txg %llu\n", txg);
625 tx->tx_quiesced_txg = txg;
626 DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg);
627 cv_broadcast(&tx->tx_sync_more_cv);
628 cv_broadcast(&tx->tx_quiesce_done_cv);
629 }
630 }
631
632 /*
633 * Delay this thread by delay nanoseconds if we are still in the open
634 * transaction group and there is already a waiting txg quiesing or quiesced.
635 * Abort the delay if this txg stalls or enters the quiesing state.
636 */
637 void
638 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution)
639 {
640 tx_state_t *tx = &dp->dp_tx;
641 hrtime_t start = gethrtime();
642
643 /* don't delay if this txg could transition to quiescing immediately */
644 if (tx->tx_open_txg > txg ||
645 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
646 return;
647
648 mutex_enter(&tx->tx_sync_lock);
649 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
650 mutex_exit(&tx->tx_sync_lock);
651 return;
652 }
653
654 while (gethrtime() - start < delay &&
655 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) {
656 (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv,
657 &tx->tx_sync_lock, delay, resolution, 0);
658 }
659
660 DMU_TX_STAT_BUMP(dmu_tx_delay);
661
662 mutex_exit(&tx->tx_sync_lock);
663 }
664
665 void
666 txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
667 {
668 tx_state_t *tx = &dp->dp_tx;
669
670 ASSERT(!dsl_pool_config_held(dp));
671
672 mutex_enter(&tx->tx_sync_lock);
673 ASSERT(tx->tx_threads == 2);
674 if (txg == 0)
675 txg = tx->tx_open_txg + TXG_DEFER_SIZE;
676 if (tx->tx_sync_txg_waiting < txg)
677 tx->tx_sync_txg_waiting = txg;
678 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
679 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
680 while (tx->tx_synced_txg < txg) {
681 dprintf("broadcasting sync more "
682 "tx_synced=%llu waiting=%llu dp=%p\n",
683 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
684 cv_broadcast(&tx->tx_sync_more_cv);
685 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
686 }
687 mutex_exit(&tx->tx_sync_lock);
688 }
689
690 void
691 txg_wait_open(dsl_pool_t *dp, uint64_t txg)
692 {
693 tx_state_t *tx = &dp->dp_tx;
694
695 ASSERT(!dsl_pool_config_held(dp));
696
697 mutex_enter(&tx->tx_sync_lock);
698 ASSERT(tx->tx_threads == 2);
699 if (txg == 0)
700 txg = tx->tx_open_txg + 1;
701 if (tx->tx_quiesce_txg_waiting < txg)
702 tx->tx_quiesce_txg_waiting = txg;
703 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
704 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
705 while (tx->tx_open_txg < txg) {
706 cv_broadcast(&tx->tx_quiesce_more_cv);
707 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
708 }
709 mutex_exit(&tx->tx_sync_lock);
710 }
711
712 /*
713 * If there isn't a txg syncing or in the pipeline, push another txg through
714 * the pipeline by queiscing the open txg.
715 */
716 void
717 txg_kick(dsl_pool_t *dp)
718 {
719 tx_state_t *tx = &dp->dp_tx;
720
721 ASSERT(!dsl_pool_config_held(dp));
722
723 mutex_enter(&tx->tx_sync_lock);
724 if (tx->tx_syncing_txg == 0 &&
725 tx->tx_quiesce_txg_waiting <= tx->tx_open_txg &&
726 tx->tx_sync_txg_waiting <= tx->tx_synced_txg &&
727 tx->tx_quiesced_txg <= tx->tx_synced_txg) {
728 tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1;
729 cv_broadcast(&tx->tx_quiesce_more_cv);
730 }
731 mutex_exit(&tx->tx_sync_lock);
732 }
733
734 boolean_t
735 txg_stalled(dsl_pool_t *dp)
736 {
737 tx_state_t *tx = &dp->dp_tx;
738 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
739 }
740
741 boolean_t
742 txg_sync_waiting(dsl_pool_t *dp)
743 {
744 tx_state_t *tx = &dp->dp_tx;
745
746 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
747 tx->tx_quiesced_txg != 0);
748 }
749
750 /*
751 * Per-txg object lists.
752 */
753 void
754 txg_list_create(txg_list_t *tl, size_t offset)
755 {
756 int t;
757
758 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
759
760 tl->tl_offset = offset;
761
762 for (t = 0; t < TXG_SIZE; t++)
763 tl->tl_head[t] = NULL;
764 }
765
766 void
767 txg_list_destroy(txg_list_t *tl)
768 {
769 int t;
770
771 for (t = 0; t < TXG_SIZE; t++)
772 ASSERT(txg_list_empty(tl, t));
773
774 mutex_destroy(&tl->tl_lock);
775 }
776
777 boolean_t
778 txg_list_empty(txg_list_t *tl, uint64_t txg)
779 {
780 return (tl->tl_head[txg & TXG_MASK] == NULL);
781 }
782
783 /*
784 * Add an entry to the list (unless it's already on the list).
785 * Returns B_TRUE if it was actually added.
786 */
787 boolean_t
788 txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
789 {
790 int t = txg & TXG_MASK;
791 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
792 boolean_t add;
793
794 mutex_enter(&tl->tl_lock);
795 add = (tn->tn_member[t] == 0);
796 if (add) {
797 tn->tn_member[t] = 1;
798 tn->tn_next[t] = tl->tl_head[t];
799 tl->tl_head[t] = tn;
800 }
801 mutex_exit(&tl->tl_lock);
802
803 return (add);
804 }
805
806 /*
807 * Add an entry to the end of the list, unless it's already on the list.
808 * (walks list to find end)
809 * Returns B_TRUE if it was actually added.
810 */
811 boolean_t
812 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
813 {
814 int t = txg & TXG_MASK;
815 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
816 boolean_t add;
817
818 mutex_enter(&tl->tl_lock);
819 add = (tn->tn_member[t] == 0);
820 if (add) {
821 txg_node_t **tp;
822
823 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
824 continue;
825
826 tn->tn_member[t] = 1;
827 tn->tn_next[t] = NULL;
828 *tp = tn;
829 }
830 mutex_exit(&tl->tl_lock);
831
832 return (add);
833 }
834
835 /*
836 * Remove the head of the list and return it.
837 */
838 void *
839 txg_list_remove(txg_list_t *tl, uint64_t txg)
840 {
841 int t = txg & TXG_MASK;
842 txg_node_t *tn;
843 void *p = NULL;
844
845 mutex_enter(&tl->tl_lock);
846 if ((tn = tl->tl_head[t]) != NULL) {
847 p = (char *)tn - tl->tl_offset;
848 tl->tl_head[t] = tn->tn_next[t];
849 tn->tn_next[t] = NULL;
850 tn->tn_member[t] = 0;
851 }
852 mutex_exit(&tl->tl_lock);
853
854 return (p);
855 }
856
857 /*
858 * Remove a specific item from the list and return it.
859 */
860 void *
861 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
862 {
863 int t = txg & TXG_MASK;
864 txg_node_t *tn, **tp;
865
866 mutex_enter(&tl->tl_lock);
867
868 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
869 if ((char *)tn - tl->tl_offset == p) {
870 *tp = tn->tn_next[t];
871 tn->tn_next[t] = NULL;
872 tn->tn_member[t] = 0;
873 mutex_exit(&tl->tl_lock);
874 return (p);
875 }
876 }
877
878 mutex_exit(&tl->tl_lock);
879
880 return (NULL);
881 }
882
883 boolean_t
884 txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
885 {
886 int t = txg & TXG_MASK;
887 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
888
889 return (tn->tn_member[t] != 0);
890 }
891
892 /*
893 * Walk a txg list -- only safe if you know it's not changing.
894 */
895 void *
896 txg_list_head(txg_list_t *tl, uint64_t txg)
897 {
898 int t = txg & TXG_MASK;
899 txg_node_t *tn = tl->tl_head[t];
900
901 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
902 }
903
904 void *
905 txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
906 {
907 int t = txg & TXG_MASK;
908 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
909
910 tn = tn->tn_next[t];
911
912 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
913 }
914
915 #if defined(_KERNEL) && defined(HAVE_SPL)
916 EXPORT_SYMBOL(txg_init);
917 EXPORT_SYMBOL(txg_fini);
918 EXPORT_SYMBOL(txg_sync_start);
919 EXPORT_SYMBOL(txg_sync_stop);
920 EXPORT_SYMBOL(txg_hold_open);
921 EXPORT_SYMBOL(txg_rele_to_quiesce);
922 EXPORT_SYMBOL(txg_rele_to_sync);
923 EXPORT_SYMBOL(txg_register_callbacks);
924 EXPORT_SYMBOL(txg_delay);
925 EXPORT_SYMBOL(txg_wait_synced);
926 EXPORT_SYMBOL(txg_wait_open);
927 EXPORT_SYMBOL(txg_wait_callbacks);
928 EXPORT_SYMBOL(txg_stalled);
929 EXPORT_SYMBOL(txg_sync_waiting);
930
931 module_param(zfs_txg_timeout, int, 0644);
932 MODULE_PARM_DESC(zfs_txg_timeout, "Max seconds worth of delta per txg");
933 #endif