]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/txg.c
Add visibility in to txg sync behavior
[mirror_zfs.git] / module / zfs / txg.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Portions Copyright 2011 Martin Matuska
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/txg_impl.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dsl_pool.h>
33 #include <sys/dsl_scan.h>
34 #include <sys/callb.h>
35
36 /*
37 * ZFS Transaction Groups
38 * ----------------------
39 *
40 * ZFS transaction groups are, as the name implies, groups of transactions
41 * that act on persistent state. ZFS asserts consistency at the granularity of
42 * these transaction groups. Each successive transaction group (txg) is
43 * assigned a 64-bit consecutive identifier. There are three active
44 * transaction group states: open, quiescing, or syncing. At any given time,
45 * there may be an active txg associated with each state; each active txg may
46 * either be processing, or blocked waiting to enter the next state. There may
47 * be up to three active txgs, and there is always a txg in the open state
48 * (though it may be blocked waiting to enter the quiescing state). In broad
49 * strokes, transactions — operations that change in-memory structures — are
50 * accepted into the txg in the open state, and are completed while the txg is
51 * in the open or quiescing states. The accumulated changes are written to
52 * disk in the syncing state.
53 *
54 * Open
55 *
56 * When a new txg becomes active, it first enters the open state. New
57 * transactions — updates to in-memory structures — are assigned to the
58 * currently open txg. There is always a txg in the open state so that ZFS can
59 * accept new changes (though the txg may refuse new changes if it has hit
60 * some limit). ZFS advances the open txg to the next state for a variety of
61 * reasons such as it hitting a time or size threshold, or the execution of an
62 * administrative action that must be completed in the syncing state.
63 *
64 * Quiescing
65 *
66 * After a txg exits the open state, it enters the quiescing state. The
67 * quiescing state is intended to provide a buffer between accepting new
68 * transactions in the open state and writing them out to stable storage in
69 * the syncing state. While quiescing, transactions can continue their
70 * operation without delaying either of the other states. Typically, a txg is
71 * in the quiescing state very briefly since the operations are bounded by
72 * software latencies rather than, say, slower I/O latencies. After all
73 * transactions complete, the txg is ready to enter the next state.
74 *
75 * Syncing
76 *
77 * In the syncing state, the in-memory state built up during the open and (to
78 * a lesser degree) the quiescing states is written to stable storage. The
79 * process of writing out modified data can, in turn modify more data. For
80 * example when we write new blocks, we need to allocate space for them; those
81 * allocations modify metadata (space maps)... which themselves must be
82 * written to stable storage. During the sync state, ZFS iterates, writing out
83 * data until it converges and all in-memory changes have been written out.
84 * The first such pass is the largest as it encompasses all the modified user
85 * data (as opposed to filesystem metadata). Subsequent passes typically have
86 * far less data to write as they consist exclusively of filesystem metadata.
87 *
88 * To ensure convergence, after a certain number of passes ZFS begins
89 * overwriting locations on stable storage that had been allocated earlier in
90 * the syncing state (and subsequently freed). ZFS usually allocates new
91 * blocks to optimize for large, continuous, writes. For the syncing state to
92 * converge however it must complete a pass where no new blocks are allocated
93 * since each allocation requires a modification of persistent metadata.
94 * Further, to hasten convergence, after a prescribed number of passes, ZFS
95 * also defers frees, and stops compressing.
96 *
97 * In addition to writing out user data, we must also execute synctasks during
98 * the syncing context. A synctask is the mechanism by which some
99 * administrative activities work such as creating and destroying snapshots or
100 * datasets. Note that when a synctask is initiated it enters the open txg,
101 * and ZFS then pushes that txg as quickly as possible to completion of the
102 * syncing state in order to reduce the latency of the administrative
103 * activity. To complete the syncing state, ZFS writes out a new uberblock,
104 * the root of the tree of blocks that comprise all state stored on the ZFS
105 * pool. Finally, if there is a quiesced txg waiting, we signal that it can
106 * now transition to the syncing state.
107 */
108
109 static void txg_sync_thread(dsl_pool_t *dp);
110 static void txg_quiesce_thread(dsl_pool_t *dp);
111
112 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */
113
114 /*
115 * Prepare the txg subsystem.
116 */
117 void
118 txg_init(dsl_pool_t *dp, uint64_t txg)
119 {
120 tx_state_t *tx = &dp->dp_tx;
121 int c;
122 bzero(tx, sizeof (tx_state_t));
123
124 tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
125
126 for (c = 0; c < max_ncpus; c++) {
127 int i;
128
129 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
130 for (i = 0; i < TXG_SIZE; i++) {
131 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
132 NULL);
133 list_create(&tx->tx_cpu[c].tc_callbacks[i],
134 sizeof (dmu_tx_callback_t),
135 offsetof(dmu_tx_callback_t, dcb_node));
136 }
137 }
138
139 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
140
141 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
142 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
143 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
144 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
145 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
146
147 tx->tx_open_txg = txg;
148 }
149
150 /*
151 * Close down the txg subsystem.
152 */
153 void
154 txg_fini(dsl_pool_t *dp)
155 {
156 tx_state_t *tx = &dp->dp_tx;
157 int c;
158
159 ASSERT(tx->tx_threads == 0);
160
161 mutex_destroy(&tx->tx_sync_lock);
162
163 cv_destroy(&tx->tx_sync_more_cv);
164 cv_destroy(&tx->tx_sync_done_cv);
165 cv_destroy(&tx->tx_quiesce_more_cv);
166 cv_destroy(&tx->tx_quiesce_done_cv);
167 cv_destroy(&tx->tx_exit_cv);
168
169 for (c = 0; c < max_ncpus; c++) {
170 int i;
171
172 mutex_destroy(&tx->tx_cpu[c].tc_lock);
173 for (i = 0; i < TXG_SIZE; i++) {
174 cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
175 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
176 }
177 }
178
179 if (tx->tx_commit_cb_taskq != NULL)
180 taskq_destroy(tx->tx_commit_cb_taskq);
181
182 vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
183
184 bzero(tx, sizeof (tx_state_t));
185 }
186
187 /*
188 * Start syncing transaction groups.
189 */
190 void
191 txg_sync_start(dsl_pool_t *dp)
192 {
193 tx_state_t *tx = &dp->dp_tx;
194
195 mutex_enter(&tx->tx_sync_lock);
196
197 dprintf("pool %p\n", dp);
198
199 ASSERT(tx->tx_threads == 0);
200
201 tx->tx_threads = 2;
202
203 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
204 dp, 0, &p0, TS_RUN, minclsyspri);
205
206 /*
207 * The sync thread can need a larger-than-default stack size on
208 * 32-bit x86. This is due in part to nested pools and
209 * scrub_visitbp() recursion.
210 */
211 tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread,
212 dp, 0, &p0, TS_RUN, minclsyspri);
213
214 mutex_exit(&tx->tx_sync_lock);
215 }
216
217 static void
218 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
219 {
220 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
221 mutex_enter(&tx->tx_sync_lock);
222 }
223
224 static void
225 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
226 {
227 ASSERT(*tpp != NULL);
228 *tpp = NULL;
229 tx->tx_threads--;
230 cv_broadcast(&tx->tx_exit_cv);
231 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */
232 thread_exit();
233 }
234
235 static void
236 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, uint64_t time)
237 {
238 CALLB_CPR_SAFE_BEGIN(cpr);
239
240 if (time)
241 (void) cv_timedwait_interruptible(cv, &tx->tx_sync_lock,
242 ddi_get_lbolt() + time);
243 else
244 cv_wait_interruptible(cv, &tx->tx_sync_lock);
245
246 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
247 }
248
249 /*
250 * Stop syncing transaction groups.
251 */
252 void
253 txg_sync_stop(dsl_pool_t *dp)
254 {
255 tx_state_t *tx = &dp->dp_tx;
256
257 dprintf("pool %p\n", dp);
258 /*
259 * Finish off any work in progress.
260 */
261 ASSERT(tx->tx_threads == 2);
262
263 /*
264 * We need to ensure that we've vacated the deferred space_maps.
265 */
266 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
267
268 /*
269 * Wake all sync threads and wait for them to die.
270 */
271 mutex_enter(&tx->tx_sync_lock);
272
273 ASSERT(tx->tx_threads == 2);
274
275 tx->tx_exiting = 1;
276
277 cv_broadcast(&tx->tx_quiesce_more_cv);
278 cv_broadcast(&tx->tx_quiesce_done_cv);
279 cv_broadcast(&tx->tx_sync_more_cv);
280
281 while (tx->tx_threads != 0)
282 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
283
284 tx->tx_exiting = 0;
285
286 mutex_exit(&tx->tx_sync_lock);
287 }
288
289 uint64_t
290 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
291 {
292 tx_state_t *tx = &dp->dp_tx;
293 tx_cpu_t *tc;
294 uint64_t txg;
295
296 /*
297 * It appears the processor id is simply used as a "random"
298 * number to index into the array, and there isn't any other
299 * significance to the chosen tx_cpu. Because.. Why not use
300 * the current cpu to index into the array?
301 */
302 kpreempt_disable();
303 tc = &tx->tx_cpu[CPU_SEQID];
304 kpreempt_enable();
305
306 mutex_enter(&tc->tc_lock);
307
308 txg = tx->tx_open_txg;
309 tc->tc_count[txg & TXG_MASK]++;
310
311 th->th_cpu = tc;
312 th->th_txg = txg;
313
314 return (txg);
315 }
316
317 void
318 txg_rele_to_quiesce(txg_handle_t *th)
319 {
320 tx_cpu_t *tc = th->th_cpu;
321
322 mutex_exit(&tc->tc_lock);
323 }
324
325 void
326 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
327 {
328 tx_cpu_t *tc = th->th_cpu;
329 int g = th->th_txg & TXG_MASK;
330
331 mutex_enter(&tc->tc_lock);
332 list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
333 mutex_exit(&tc->tc_lock);
334 }
335
336 void
337 txg_rele_to_sync(txg_handle_t *th)
338 {
339 tx_cpu_t *tc = th->th_cpu;
340 int g = th->th_txg & TXG_MASK;
341
342 mutex_enter(&tc->tc_lock);
343 ASSERT(tc->tc_count[g] != 0);
344 if (--tc->tc_count[g] == 0)
345 cv_broadcast(&tc->tc_cv[g]);
346 mutex_exit(&tc->tc_lock);
347
348 th->th_cpu = NULL; /* defensive */
349 }
350
351 static void
352 txg_quiesce(dsl_pool_t *dp, uint64_t txg)
353 {
354 tx_state_t *tx = &dp->dp_tx;
355 int g = txg & TXG_MASK;
356 int c;
357
358 /*
359 * Grab all tx_cpu locks so nobody else can get into this txg.
360 */
361 for (c = 0; c < max_ncpus; c++)
362 mutex_enter(&tx->tx_cpu[c].tc_lock);
363
364 ASSERT(txg == tx->tx_open_txg);
365 tx->tx_open_txg++;
366
367 spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_OPEN, gethrtime());
368 spa_txg_history_add(dp->dp_spa, tx->tx_open_txg);
369
370 /*
371 * Now that we've incremented tx_open_txg, we can let threads
372 * enter the next transaction group.
373 */
374 for (c = 0; c < max_ncpus; c++)
375 mutex_exit(&tx->tx_cpu[c].tc_lock);
376
377 /*
378 * Quiesce the transaction group by waiting for everyone to txg_exit().
379 */
380 for (c = 0; c < max_ncpus; c++) {
381 tx_cpu_t *tc = &tx->tx_cpu[c];
382 mutex_enter(&tc->tc_lock);
383 while (tc->tc_count[g] != 0)
384 cv_wait(&tc->tc_cv[g], &tc->tc_lock);
385 mutex_exit(&tc->tc_lock);
386 }
387
388 spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_QUIESCED, gethrtime());
389 }
390
391 static void
392 txg_do_callbacks(list_t *cb_list)
393 {
394 dmu_tx_do_callbacks(cb_list, 0);
395
396 list_destroy(cb_list);
397
398 kmem_free(cb_list, sizeof (list_t));
399 }
400
401 /*
402 * Dispatch the commit callbacks registered on this txg to worker threads.
403 */
404 static void
405 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
406 {
407 int c;
408 tx_state_t *tx = &dp->dp_tx;
409 list_t *cb_list;
410
411 for (c = 0; c < max_ncpus; c++) {
412 tx_cpu_t *tc = &tx->tx_cpu[c];
413 /* No need to lock tx_cpu_t at this point */
414
415 int g = txg & TXG_MASK;
416
417 if (list_is_empty(&tc->tc_callbacks[g]))
418 continue;
419
420 if (tx->tx_commit_cb_taskq == NULL) {
421 /*
422 * Commit callback taskq hasn't been created yet.
423 */
424 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
425 100, minclsyspri, max_ncpus, INT_MAX,
426 TASKQ_THREADS_CPU_PCT | TASKQ_PREPOPULATE);
427 }
428
429 cb_list = kmem_alloc(sizeof (list_t), KM_PUSHPAGE);
430 list_create(cb_list, sizeof (dmu_tx_callback_t),
431 offsetof(dmu_tx_callback_t, dcb_node));
432
433 list_move_tail(cb_list, &tc->tc_callbacks[g]);
434
435 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
436 txg_do_callbacks, cb_list, TQ_SLEEP);
437 }
438 }
439
440 /*
441 * Wait for pending commit callbacks of already-synced transactions to finish
442 * processing.
443 * Calling this function from within a commit callback will deadlock.
444 */
445 void
446 txg_wait_callbacks(dsl_pool_t *dp)
447 {
448 tx_state_t *tx = &dp->dp_tx;
449
450 if (tx->tx_commit_cb_taskq != NULL)
451 taskq_wait(tx->tx_commit_cb_taskq);
452 }
453
454 static void
455 txg_sync_thread(dsl_pool_t *dp)
456 {
457 spa_t *spa = dp->dp_spa;
458 tx_state_t *tx = &dp->dp_tx;
459 callb_cpr_t cpr;
460 vdev_stat_t *vs1, *vs2;
461 uint64_t start, delta;
462
463 #ifdef _KERNEL
464 /*
465 * Annotate this process with a flag that indicates that it is
466 * unsafe to use KM_SLEEP during memory allocations due to the
467 * potential for a deadlock. KM_PUSHPAGE should be used instead.
468 */
469 current->flags |= PF_NOFS;
470 #endif /* _KERNEL */
471
472 txg_thread_enter(tx, &cpr);
473
474 vs1 = kmem_alloc(sizeof(vdev_stat_t), KM_PUSHPAGE);
475 vs2 = kmem_alloc(sizeof(vdev_stat_t), KM_PUSHPAGE);
476
477 start = delta = 0;
478 for (;;) {
479 uint64_t timer, timeout;
480 uint64_t txg;
481
482 timeout = zfs_txg_timeout * hz;
483
484 /*
485 * We sync when we're scanning, there's someone waiting
486 * on us, or the quiesce thread has handed off a txg to
487 * us, or we have reached our timeout.
488 */
489 timer = (delta >= timeout ? 0 : timeout - delta);
490 while (!dsl_scan_active(dp->dp_scan) &&
491 !tx->tx_exiting && timer > 0 &&
492 tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
493 tx->tx_quiesced_txg == 0) {
494 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
495 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
496 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
497 delta = ddi_get_lbolt() - start;
498 timer = (delta > timeout ? 0 : timeout - delta);
499 }
500
501 /*
502 * Wait until the quiesce thread hands off a txg to us,
503 * prompting it to do so if necessary.
504 */
505 while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) {
506 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
507 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
508 cv_broadcast(&tx->tx_quiesce_more_cv);
509 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
510 }
511
512 if (tx->tx_exiting) {
513 kmem_free(vs2, sizeof(vdev_stat_t));
514 kmem_free(vs1, sizeof(vdev_stat_t));
515 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
516 }
517
518 vdev_get_stats(spa->spa_root_vdev, vs1);
519
520 /*
521 * Consume the quiesced txg which has been handed off to
522 * us. This may cause the quiescing thread to now be
523 * able to quiesce another txg, so we must signal it.
524 */
525 txg = tx->tx_quiesced_txg;
526 tx->tx_quiesced_txg = 0;
527 tx->tx_syncing_txg = txg;
528 cv_broadcast(&tx->tx_quiesce_more_cv);
529
530 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
531 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
532 mutex_exit(&tx->tx_sync_lock);
533
534 start = ddi_get_lbolt();
535 spa_sync(spa, txg);
536 delta = ddi_get_lbolt() - start;
537
538 mutex_enter(&tx->tx_sync_lock);
539 tx->tx_synced_txg = txg;
540 tx->tx_syncing_txg = 0;
541 cv_broadcast(&tx->tx_sync_done_cv);
542
543 /*
544 * Dispatch commit callbacks to worker threads.
545 */
546 txg_dispatch_callbacks(dp, txg);
547
548 vdev_get_stats(spa->spa_root_vdev, vs2);
549 spa_txg_history_set_io(spa, txg,
550 vs2->vs_bytes[ZIO_TYPE_READ]-vs1->vs_bytes[ZIO_TYPE_READ],
551 vs2->vs_bytes[ZIO_TYPE_WRITE]-vs1->vs_bytes[ZIO_TYPE_WRITE],
552 vs2->vs_ops[ZIO_TYPE_READ]-vs1->vs_ops[ZIO_TYPE_READ],
553 vs2->vs_ops[ZIO_TYPE_WRITE]-vs1->vs_ops[ZIO_TYPE_WRITE],
554 dp->dp_space_towrite[txg & TXG_MASK] +
555 dp->dp_tempreserved[txg & TXG_MASK] / 2);
556 spa_txg_history_set(spa, txg, TXG_STATE_SYNCED, gethrtime());
557 }
558 }
559
560 static void
561 txg_quiesce_thread(dsl_pool_t *dp)
562 {
563 tx_state_t *tx = &dp->dp_tx;
564 callb_cpr_t cpr;
565
566 txg_thread_enter(tx, &cpr);
567
568 for (;;) {
569 uint64_t txg;
570
571 /*
572 * We quiesce when there's someone waiting on us.
573 * However, we can only have one txg in "quiescing" or
574 * "quiesced, waiting to sync" state. So we wait until
575 * the "quiesced, waiting to sync" txg has been consumed
576 * by the sync thread.
577 */
578 while (!tx->tx_exiting &&
579 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
580 tx->tx_quiesced_txg != 0))
581 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
582
583 if (tx->tx_exiting)
584 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
585
586 txg = tx->tx_open_txg;
587 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
588 txg, tx->tx_quiesce_txg_waiting,
589 tx->tx_sync_txg_waiting);
590 mutex_exit(&tx->tx_sync_lock);
591 txg_quiesce(dp, txg);
592 mutex_enter(&tx->tx_sync_lock);
593
594 /*
595 * Hand this txg off to the sync thread.
596 */
597 dprintf("quiesce done, handing off txg %llu\n", txg);
598 tx->tx_quiesced_txg = txg;
599 cv_broadcast(&tx->tx_sync_more_cv);
600 cv_broadcast(&tx->tx_quiesce_done_cv);
601 }
602 }
603
604 /*
605 * Delay this thread by 'ticks' if we are still in the open transaction
606 * group and there is already a waiting txg quiesing or quiesced. Abort
607 * the delay if this txg stalls or enters the quiesing state.
608 */
609 void
610 txg_delay(dsl_pool_t *dp, uint64_t txg, int ticks)
611 {
612 tx_state_t *tx = &dp->dp_tx;
613 clock_t timeout = ddi_get_lbolt() + ticks;
614
615 /* don't delay if this txg could transition to quiesing immediately */
616 if (tx->tx_open_txg > txg ||
617 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
618 return;
619
620 mutex_enter(&tx->tx_sync_lock);
621 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
622 mutex_exit(&tx->tx_sync_lock);
623 return;
624 }
625
626 while (ddi_get_lbolt() < timeout &&
627 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp))
628 (void) cv_timedwait(&tx->tx_quiesce_more_cv, &tx->tx_sync_lock,
629 timeout);
630
631 DMU_TX_STAT_BUMP(dmu_tx_delay);
632
633 mutex_exit(&tx->tx_sync_lock);
634 }
635
636 void
637 txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
638 {
639 tx_state_t *tx = &dp->dp_tx;
640
641 ASSERT(!dsl_pool_config_held(dp));
642
643 mutex_enter(&tx->tx_sync_lock);
644 ASSERT(tx->tx_threads == 2);
645 if (txg == 0)
646 txg = tx->tx_open_txg + TXG_DEFER_SIZE;
647 if (tx->tx_sync_txg_waiting < txg)
648 tx->tx_sync_txg_waiting = txg;
649 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
650 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
651 while (tx->tx_synced_txg < txg) {
652 dprintf("broadcasting sync more "
653 "tx_synced=%llu waiting=%llu dp=%p\n",
654 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
655 cv_broadcast(&tx->tx_sync_more_cv);
656 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
657 }
658 mutex_exit(&tx->tx_sync_lock);
659 }
660
661 void
662 txg_wait_open(dsl_pool_t *dp, uint64_t txg)
663 {
664 tx_state_t *tx = &dp->dp_tx;
665
666 ASSERT(!dsl_pool_config_held(dp));
667
668 mutex_enter(&tx->tx_sync_lock);
669 ASSERT(tx->tx_threads == 2);
670 if (txg == 0)
671 txg = tx->tx_open_txg + 1;
672 if (tx->tx_quiesce_txg_waiting < txg)
673 tx->tx_quiesce_txg_waiting = txg;
674 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
675 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
676 while (tx->tx_open_txg < txg) {
677 cv_broadcast(&tx->tx_quiesce_more_cv);
678 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
679 }
680 mutex_exit(&tx->tx_sync_lock);
681 }
682
683 boolean_t
684 txg_stalled(dsl_pool_t *dp)
685 {
686 tx_state_t *tx = &dp->dp_tx;
687 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
688 }
689
690 boolean_t
691 txg_sync_waiting(dsl_pool_t *dp)
692 {
693 tx_state_t *tx = &dp->dp_tx;
694
695 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
696 tx->tx_quiesced_txg != 0);
697 }
698
699 /*
700 * Per-txg object lists.
701 */
702 void
703 txg_list_create(txg_list_t *tl, size_t offset)
704 {
705 int t;
706
707 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
708
709 tl->tl_offset = offset;
710
711 for (t = 0; t < TXG_SIZE; t++)
712 tl->tl_head[t] = NULL;
713 }
714
715 void
716 txg_list_destroy(txg_list_t *tl)
717 {
718 int t;
719
720 for (t = 0; t < TXG_SIZE; t++)
721 ASSERT(txg_list_empty(tl, t));
722
723 mutex_destroy(&tl->tl_lock);
724 }
725
726 boolean_t
727 txg_list_empty(txg_list_t *tl, uint64_t txg)
728 {
729 return (tl->tl_head[txg & TXG_MASK] == NULL);
730 }
731
732 /*
733 * Add an entry to the list (unless it's already on the list).
734 * Returns B_TRUE if it was actually added.
735 */
736 boolean_t
737 txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
738 {
739 int t = txg & TXG_MASK;
740 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
741 boolean_t add;
742
743 mutex_enter(&tl->tl_lock);
744 add = (tn->tn_member[t] == 0);
745 if (add) {
746 tn->tn_member[t] = 1;
747 tn->tn_next[t] = tl->tl_head[t];
748 tl->tl_head[t] = tn;
749 }
750 mutex_exit(&tl->tl_lock);
751
752 return (add);
753 }
754
755 /*
756 * Add an entry to the end of the list, unless it's already on the list.
757 * (walks list to find end)
758 * Returns B_TRUE if it was actually added.
759 */
760 boolean_t
761 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
762 {
763 int t = txg & TXG_MASK;
764 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
765 boolean_t add;
766
767 mutex_enter(&tl->tl_lock);
768 add = (tn->tn_member[t] == 0);
769 if (add) {
770 txg_node_t **tp;
771
772 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
773 continue;
774
775 tn->tn_member[t] = 1;
776 tn->tn_next[t] = NULL;
777 *tp = tn;
778 }
779 mutex_exit(&tl->tl_lock);
780
781 return (add);
782 }
783
784 /*
785 * Remove the head of the list and return it.
786 */
787 void *
788 txg_list_remove(txg_list_t *tl, uint64_t txg)
789 {
790 int t = txg & TXG_MASK;
791 txg_node_t *tn;
792 void *p = NULL;
793
794 mutex_enter(&tl->tl_lock);
795 if ((tn = tl->tl_head[t]) != NULL) {
796 p = (char *)tn - tl->tl_offset;
797 tl->tl_head[t] = tn->tn_next[t];
798 tn->tn_next[t] = NULL;
799 tn->tn_member[t] = 0;
800 }
801 mutex_exit(&tl->tl_lock);
802
803 return (p);
804 }
805
806 /*
807 * Remove a specific item from the list and return it.
808 */
809 void *
810 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
811 {
812 int t = txg & TXG_MASK;
813 txg_node_t *tn, **tp;
814
815 mutex_enter(&tl->tl_lock);
816
817 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
818 if ((char *)tn - tl->tl_offset == p) {
819 *tp = tn->tn_next[t];
820 tn->tn_next[t] = NULL;
821 tn->tn_member[t] = 0;
822 mutex_exit(&tl->tl_lock);
823 return (p);
824 }
825 }
826
827 mutex_exit(&tl->tl_lock);
828
829 return (NULL);
830 }
831
832 boolean_t
833 txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
834 {
835 int t = txg & TXG_MASK;
836 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
837
838 return (tn->tn_member[t] != 0);
839 }
840
841 /*
842 * Walk a txg list -- only safe if you know it's not changing.
843 */
844 void *
845 txg_list_head(txg_list_t *tl, uint64_t txg)
846 {
847 int t = txg & TXG_MASK;
848 txg_node_t *tn = tl->tl_head[t];
849
850 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
851 }
852
853 void *
854 txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
855 {
856 int t = txg & TXG_MASK;
857 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
858
859 tn = tn->tn_next[t];
860
861 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
862 }
863
864 #if defined(_KERNEL) && defined(HAVE_SPL)
865 EXPORT_SYMBOL(txg_init);
866 EXPORT_SYMBOL(txg_fini);
867 EXPORT_SYMBOL(txg_sync_start);
868 EXPORT_SYMBOL(txg_sync_stop);
869 EXPORT_SYMBOL(txg_hold_open);
870 EXPORT_SYMBOL(txg_rele_to_quiesce);
871 EXPORT_SYMBOL(txg_rele_to_sync);
872 EXPORT_SYMBOL(txg_register_callbacks);
873 EXPORT_SYMBOL(txg_delay);
874 EXPORT_SYMBOL(txg_wait_synced);
875 EXPORT_SYMBOL(txg_wait_open);
876 EXPORT_SYMBOL(txg_wait_callbacks);
877 EXPORT_SYMBOL(txg_stalled);
878 EXPORT_SYMBOL(txg_sync_waiting);
879
880 module_param(zfs_txg_timeout, int, 0644);
881 MODULE_PARM_DESC(zfs_txg_timeout, "Max seconds worth of delta per txg");
882 #endif