]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/txg.c
Merge branch 'illumos'
[mirror_zfs.git] / module / zfs / txg.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <sys/zfs_context.h>
26 #include <sys/txg_impl.h>
27 #include <sys/dmu_impl.h>
28 #include <sys/dmu_tx.h>
29 #include <sys/dsl_pool.h>
30 #include <sys/dsl_scan.h>
31 #include <sys/callb.h>
32
33 /*
34 * Pool-wide transaction groups.
35 */
36
37 static void txg_sync_thread(dsl_pool_t *dp);
38 static void txg_quiesce_thread(dsl_pool_t *dp);
39
40 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */
41
42 /*
43 * Prepare the txg subsystem.
44 */
45 void
46 txg_init(dsl_pool_t *dp, uint64_t txg)
47 {
48 tx_state_t *tx = &dp->dp_tx;
49 int c;
50 bzero(tx, sizeof (tx_state_t));
51
52 tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
53
54 for (c = 0; c < max_ncpus; c++) {
55 int i;
56
57 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
58 for (i = 0; i < TXG_SIZE; i++) {
59 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
60 NULL);
61 list_create(&tx->tx_cpu[c].tc_callbacks[i],
62 sizeof (dmu_tx_callback_t),
63 offsetof(dmu_tx_callback_t, dcb_node));
64 }
65 }
66
67 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
68
69 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
70 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
71 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
72 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
73 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
74
75 tx->tx_open_txg = txg;
76 }
77
78 /*
79 * Close down the txg subsystem.
80 */
81 void
82 txg_fini(dsl_pool_t *dp)
83 {
84 tx_state_t *tx = &dp->dp_tx;
85 int c;
86
87 ASSERT(tx->tx_threads == 0);
88
89 mutex_destroy(&tx->tx_sync_lock);
90
91 cv_destroy(&tx->tx_sync_more_cv);
92 cv_destroy(&tx->tx_sync_done_cv);
93 cv_destroy(&tx->tx_quiesce_more_cv);
94 cv_destroy(&tx->tx_quiesce_done_cv);
95 cv_destroy(&tx->tx_exit_cv);
96
97 for (c = 0; c < max_ncpus; c++) {
98 int i;
99
100 mutex_destroy(&tx->tx_cpu[c].tc_lock);
101 for (i = 0; i < TXG_SIZE; i++) {
102 cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
103 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
104 }
105 }
106
107 if (tx->tx_commit_cb_taskq != NULL)
108 taskq_destroy(tx->tx_commit_cb_taskq);
109
110 vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
111
112 bzero(tx, sizeof (tx_state_t));
113 }
114
115 /*
116 * Start syncing transaction groups.
117 */
118 void
119 txg_sync_start(dsl_pool_t *dp)
120 {
121 tx_state_t *tx = &dp->dp_tx;
122
123 mutex_enter(&tx->tx_sync_lock);
124
125 dprintf("pool %p\n", dp);
126
127 ASSERT(tx->tx_threads == 0);
128
129 tx->tx_threads = 2;
130
131 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
132 dp, 0, &p0, TS_RUN, minclsyspri);
133
134 /*
135 * The sync thread can need a larger-than-default stack size on
136 * 32-bit x86. This is due in part to nested pools and
137 * scrub_visitbp() recursion.
138 */
139 tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread,
140 dp, 0, &p0, TS_RUN, minclsyspri);
141
142 mutex_exit(&tx->tx_sync_lock);
143 }
144
145 static void
146 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
147 {
148 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
149 mutex_enter(&tx->tx_sync_lock);
150 }
151
152 static void
153 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
154 {
155 ASSERT(*tpp != NULL);
156 *tpp = NULL;
157 tx->tx_threads--;
158 cv_broadcast(&tx->tx_exit_cv);
159 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */
160 thread_exit();
161 }
162
163 static void
164 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, uint64_t time)
165 {
166 CALLB_CPR_SAFE_BEGIN(cpr);
167
168 if (time)
169 (void) cv_timedwait_interruptible(cv, &tx->tx_sync_lock,
170 ddi_get_lbolt() + time);
171 else
172 cv_wait_interruptible(cv, &tx->tx_sync_lock);
173
174 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
175 }
176
177 /*
178 * Stop syncing transaction groups.
179 */
180 void
181 txg_sync_stop(dsl_pool_t *dp)
182 {
183 tx_state_t *tx = &dp->dp_tx;
184
185 dprintf("pool %p\n", dp);
186 /*
187 * Finish off any work in progress.
188 */
189 ASSERT(tx->tx_threads == 2);
190
191 /*
192 * We need to ensure that we've vacated the deferred space_maps.
193 */
194 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
195
196 /*
197 * Wake all sync threads and wait for them to die.
198 */
199 mutex_enter(&tx->tx_sync_lock);
200
201 ASSERT(tx->tx_threads == 2);
202
203 tx->tx_exiting = 1;
204
205 cv_broadcast(&tx->tx_quiesce_more_cv);
206 cv_broadcast(&tx->tx_quiesce_done_cv);
207 cv_broadcast(&tx->tx_sync_more_cv);
208
209 while (tx->tx_threads != 0)
210 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
211
212 tx->tx_exiting = 0;
213
214 mutex_exit(&tx->tx_sync_lock);
215 }
216
217 uint64_t
218 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
219 {
220 tx_state_t *tx = &dp->dp_tx;
221 tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID];
222 uint64_t txg;
223
224 mutex_enter(&tc->tc_lock);
225
226 txg = tx->tx_open_txg;
227 tc->tc_count[txg & TXG_MASK]++;
228
229 th->th_cpu = tc;
230 th->th_txg = txg;
231
232 return (txg);
233 }
234
235 void
236 txg_rele_to_quiesce(txg_handle_t *th)
237 {
238 tx_cpu_t *tc = th->th_cpu;
239
240 mutex_exit(&tc->tc_lock);
241 }
242
243 void
244 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
245 {
246 tx_cpu_t *tc = th->th_cpu;
247 int g = th->th_txg & TXG_MASK;
248
249 mutex_enter(&tc->tc_lock);
250 list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
251 mutex_exit(&tc->tc_lock);
252 }
253
254 void
255 txg_rele_to_sync(txg_handle_t *th)
256 {
257 tx_cpu_t *tc = th->th_cpu;
258 int g = th->th_txg & TXG_MASK;
259
260 mutex_enter(&tc->tc_lock);
261 ASSERT(tc->tc_count[g] != 0);
262 if (--tc->tc_count[g] == 0)
263 cv_broadcast(&tc->tc_cv[g]);
264 mutex_exit(&tc->tc_lock);
265
266 th->th_cpu = NULL; /* defensive */
267 }
268
269 static void
270 txg_quiesce(dsl_pool_t *dp, uint64_t txg)
271 {
272 tx_state_t *tx = &dp->dp_tx;
273 int g = txg & TXG_MASK;
274 int c;
275
276 /*
277 * Grab all tx_cpu locks so nobody else can get into this txg.
278 */
279 for (c = 0; c < max_ncpus; c++)
280 mutex_enter(&tx->tx_cpu[c].tc_lock);
281
282 ASSERT(txg == tx->tx_open_txg);
283 tx->tx_open_txg++;
284
285 /*
286 * Now that we've incremented tx_open_txg, we can let threads
287 * enter the next transaction group.
288 */
289 for (c = 0; c < max_ncpus; c++)
290 mutex_exit(&tx->tx_cpu[c].tc_lock);
291
292 /*
293 * Quiesce the transaction group by waiting for everyone to txg_exit().
294 */
295 for (c = 0; c < max_ncpus; c++) {
296 tx_cpu_t *tc = &tx->tx_cpu[c];
297 mutex_enter(&tc->tc_lock);
298 while (tc->tc_count[g] != 0)
299 cv_wait(&tc->tc_cv[g], &tc->tc_lock);
300 mutex_exit(&tc->tc_lock);
301 }
302 }
303
304 static void
305 txg_do_callbacks(list_t *cb_list)
306 {
307 dmu_tx_do_callbacks(cb_list, 0);
308
309 list_destroy(cb_list);
310
311 kmem_free(cb_list, sizeof (list_t));
312 }
313
314 /*
315 * Dispatch the commit callbacks registered on this txg to worker threads.
316 */
317 static void
318 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
319 {
320 int c;
321 tx_state_t *tx = &dp->dp_tx;
322 list_t *cb_list;
323
324 for (c = 0; c < max_ncpus; c++) {
325 tx_cpu_t *tc = &tx->tx_cpu[c];
326 /* No need to lock tx_cpu_t at this point */
327
328 int g = txg & TXG_MASK;
329
330 if (list_is_empty(&tc->tc_callbacks[g]))
331 continue;
332
333 if (tx->tx_commit_cb_taskq == NULL) {
334 /*
335 * Commit callback taskq hasn't been created yet.
336 */
337 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
338 100, minclsyspri, max_ncpus, INT_MAX,
339 TASKQ_THREADS_CPU_PCT | TASKQ_PREPOPULATE);
340 }
341
342 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
343 list_create(cb_list, sizeof (dmu_tx_callback_t),
344 offsetof(dmu_tx_callback_t, dcb_node));
345
346 list_move_tail(cb_list, &tc->tc_callbacks[g]);
347
348 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
349 txg_do_callbacks, cb_list, TQ_SLEEP);
350 }
351 }
352
353 /*
354 * Wait for pending commit callbacks of already-synced transactions to finish
355 * processing.
356 * Calling this function from within a commit callback will deadlock.
357 */
358 void
359 txg_wait_callbacks(dsl_pool_t *dp)
360 {
361 tx_state_t *tx = &dp->dp_tx;
362
363 if (tx->tx_commit_cb_taskq != NULL)
364 taskq_wait(tx->tx_commit_cb_taskq);
365 }
366
367 static void
368 txg_sync_thread(dsl_pool_t *dp)
369 {
370 spa_t *spa = dp->dp_spa;
371 tx_state_t *tx = &dp->dp_tx;
372 callb_cpr_t cpr;
373 uint64_t start, delta;
374
375 #ifdef _KERNEL
376 /*
377 * Disable the normal reclaim path for the txg_sync thread. This
378 * ensures the thread will never enter dmu_tx_assign() which can
379 * otherwise occur due to direct reclaim. If this is allowed to
380 * happen the system can deadlock. Direct reclaim call path:
381 *
382 * ->shrink_icache_memory->prune_icache->dispose_list->
383 * clear_inode->zpl_clear_inode->zfs_inactive->dmu_tx_assign
384 */
385 current->flags |= PF_MEMALLOC;
386 #endif /* _KERNEL */
387
388 txg_thread_enter(tx, &cpr);
389
390 start = delta = 0;
391 for (;;) {
392 uint64_t timer, timeout = zfs_txg_timeout * hz;
393 uint64_t txg;
394
395 /*
396 * We sync when we're scanning, there's someone waiting
397 * on us, or the quiesce thread has handed off a txg to
398 * us, or we have reached our timeout.
399 */
400 timer = (delta >= timeout ? 0 : timeout - delta);
401 while (!dsl_scan_active(dp->dp_scan) &&
402 !tx->tx_exiting && timer > 0 &&
403 tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
404 tx->tx_quiesced_txg == 0) {
405 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
406 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
407 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
408 delta = ddi_get_lbolt() - start;
409 timer = (delta > timeout ? 0 : timeout - delta);
410 }
411
412 /*
413 * Wait until the quiesce thread hands off a txg to us,
414 * prompting it to do so if necessary.
415 */
416 while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) {
417 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
418 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
419 cv_broadcast(&tx->tx_quiesce_more_cv);
420 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
421 }
422
423 if (tx->tx_exiting)
424 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
425
426 /*
427 * Consume the quiesced txg which has been handed off to
428 * us. This may cause the quiescing thread to now be
429 * able to quiesce another txg, so we must signal it.
430 */
431 txg = tx->tx_quiesced_txg;
432 tx->tx_quiesced_txg = 0;
433 tx->tx_syncing_txg = txg;
434 cv_broadcast(&tx->tx_quiesce_more_cv);
435
436 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
437 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
438 mutex_exit(&tx->tx_sync_lock);
439
440 start = ddi_get_lbolt();
441 spa_sync(spa, txg);
442 delta = ddi_get_lbolt() - start;
443
444 mutex_enter(&tx->tx_sync_lock);
445 tx->tx_synced_txg = txg;
446 tx->tx_syncing_txg = 0;
447 cv_broadcast(&tx->tx_sync_done_cv);
448
449 /*
450 * Dispatch commit callbacks to worker threads.
451 */
452 txg_dispatch_callbacks(dp, txg);
453 }
454 }
455
456 static void
457 txg_quiesce_thread(dsl_pool_t *dp)
458 {
459 tx_state_t *tx = &dp->dp_tx;
460 callb_cpr_t cpr;
461
462 txg_thread_enter(tx, &cpr);
463
464 for (;;) {
465 uint64_t txg;
466
467 /*
468 * We quiesce when there's someone waiting on us.
469 * However, we can only have one txg in "quiescing" or
470 * "quiesced, waiting to sync" state. So we wait until
471 * the "quiesced, waiting to sync" txg has been consumed
472 * by the sync thread.
473 */
474 while (!tx->tx_exiting &&
475 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
476 tx->tx_quiesced_txg != 0))
477 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
478
479 if (tx->tx_exiting)
480 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
481
482 txg = tx->tx_open_txg;
483 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
484 txg, tx->tx_quiesce_txg_waiting,
485 tx->tx_sync_txg_waiting);
486 mutex_exit(&tx->tx_sync_lock);
487 txg_quiesce(dp, txg);
488 mutex_enter(&tx->tx_sync_lock);
489
490 /*
491 * Hand this txg off to the sync thread.
492 */
493 dprintf("quiesce done, handing off txg %llu\n", txg);
494 tx->tx_quiesced_txg = txg;
495 cv_broadcast(&tx->tx_sync_more_cv);
496 cv_broadcast(&tx->tx_quiesce_done_cv);
497 }
498 }
499
500 /*
501 * Delay this thread by 'ticks' if we are still in the open transaction
502 * group and there is already a waiting txg quiesing or quiesced. Abort
503 * the delay if this txg stalls or enters the quiesing state.
504 */
505 void
506 txg_delay(dsl_pool_t *dp, uint64_t txg, int ticks)
507 {
508 tx_state_t *tx = &dp->dp_tx;
509 clock_t timeout = ddi_get_lbolt() + ticks;
510
511 /* don't delay if this txg could transition to quiesing immediately */
512 if (tx->tx_open_txg > txg ||
513 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
514 return;
515
516 mutex_enter(&tx->tx_sync_lock);
517 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
518 mutex_exit(&tx->tx_sync_lock);
519 return;
520 }
521
522 while (ddi_get_lbolt() < timeout &&
523 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp))
524 (void) cv_timedwait(&tx->tx_quiesce_more_cv, &tx->tx_sync_lock,
525 timeout);
526
527 mutex_exit(&tx->tx_sync_lock);
528 }
529
530 void
531 txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
532 {
533 tx_state_t *tx = &dp->dp_tx;
534
535 mutex_enter(&tx->tx_sync_lock);
536 ASSERT(tx->tx_threads == 2);
537 if (txg == 0)
538 txg = tx->tx_open_txg + TXG_DEFER_SIZE;
539 if (tx->tx_sync_txg_waiting < txg)
540 tx->tx_sync_txg_waiting = txg;
541 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
542 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
543 while (tx->tx_synced_txg < txg) {
544 dprintf("broadcasting sync more "
545 "tx_synced=%llu waiting=%llu dp=%p\n",
546 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
547 cv_broadcast(&tx->tx_sync_more_cv);
548 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
549 }
550 mutex_exit(&tx->tx_sync_lock);
551 }
552
553 void
554 txg_wait_open(dsl_pool_t *dp, uint64_t txg)
555 {
556 tx_state_t *tx = &dp->dp_tx;
557
558 mutex_enter(&tx->tx_sync_lock);
559 ASSERT(tx->tx_threads == 2);
560 if (txg == 0)
561 txg = tx->tx_open_txg + 1;
562 if (tx->tx_quiesce_txg_waiting < txg)
563 tx->tx_quiesce_txg_waiting = txg;
564 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
565 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
566 while (tx->tx_open_txg < txg) {
567 cv_broadcast(&tx->tx_quiesce_more_cv);
568 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
569 }
570 mutex_exit(&tx->tx_sync_lock);
571 }
572
573 boolean_t
574 txg_stalled(dsl_pool_t *dp)
575 {
576 tx_state_t *tx = &dp->dp_tx;
577 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
578 }
579
580 boolean_t
581 txg_sync_waiting(dsl_pool_t *dp)
582 {
583 tx_state_t *tx = &dp->dp_tx;
584
585 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
586 tx->tx_quiesced_txg != 0);
587 }
588
589 /*
590 * Per-txg object lists.
591 */
592 void
593 txg_list_create(txg_list_t *tl, size_t offset)
594 {
595 int t;
596
597 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
598
599 tl->tl_offset = offset;
600
601 for (t = 0; t < TXG_SIZE; t++)
602 tl->tl_head[t] = NULL;
603 }
604
605 void
606 txg_list_destroy(txg_list_t *tl)
607 {
608 int t;
609
610 for (t = 0; t < TXG_SIZE; t++)
611 ASSERT(txg_list_empty(tl, t));
612
613 mutex_destroy(&tl->tl_lock);
614 }
615
616 int
617 txg_list_empty(txg_list_t *tl, uint64_t txg)
618 {
619 return (tl->tl_head[txg & TXG_MASK] == NULL);
620 }
621
622 /*
623 * Add an entry to the list.
624 * Returns 0 if it's a new entry, 1 if it's already there.
625 */
626 int
627 txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
628 {
629 int t = txg & TXG_MASK;
630 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
631 int already_on_list;
632
633 mutex_enter(&tl->tl_lock);
634 already_on_list = tn->tn_member[t];
635 if (!already_on_list) {
636 tn->tn_member[t] = 1;
637 tn->tn_next[t] = tl->tl_head[t];
638 tl->tl_head[t] = tn;
639 }
640 mutex_exit(&tl->tl_lock);
641
642 return (already_on_list);
643 }
644
645 /*
646 * Add an entry to the end of the list (walks list to find end).
647 * Returns 0 if it's a new entry, 1 if it's already there.
648 */
649 int
650 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
651 {
652 int t = txg & TXG_MASK;
653 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
654 int already_on_list;
655
656 mutex_enter(&tl->tl_lock);
657 already_on_list = tn->tn_member[t];
658 if (!already_on_list) {
659 txg_node_t **tp;
660
661 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
662 continue;
663
664 tn->tn_member[t] = 1;
665 tn->tn_next[t] = NULL;
666 *tp = tn;
667 }
668 mutex_exit(&tl->tl_lock);
669
670 return (already_on_list);
671 }
672
673 /*
674 * Remove the head of the list and return it.
675 */
676 void *
677 txg_list_remove(txg_list_t *tl, uint64_t txg)
678 {
679 int t = txg & TXG_MASK;
680 txg_node_t *tn;
681 void *p = NULL;
682
683 mutex_enter(&tl->tl_lock);
684 if ((tn = tl->tl_head[t]) != NULL) {
685 p = (char *)tn - tl->tl_offset;
686 tl->tl_head[t] = tn->tn_next[t];
687 tn->tn_next[t] = NULL;
688 tn->tn_member[t] = 0;
689 }
690 mutex_exit(&tl->tl_lock);
691
692 return (p);
693 }
694
695 /*
696 * Remove a specific item from the list and return it.
697 */
698 void *
699 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
700 {
701 int t = txg & TXG_MASK;
702 txg_node_t *tn, **tp;
703
704 mutex_enter(&tl->tl_lock);
705
706 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
707 if ((char *)tn - tl->tl_offset == p) {
708 *tp = tn->tn_next[t];
709 tn->tn_next[t] = NULL;
710 tn->tn_member[t] = 0;
711 mutex_exit(&tl->tl_lock);
712 return (p);
713 }
714 }
715
716 mutex_exit(&tl->tl_lock);
717
718 return (NULL);
719 }
720
721 int
722 txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
723 {
724 int t = txg & TXG_MASK;
725 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
726
727 return (tn->tn_member[t]);
728 }
729
730 /*
731 * Walk a txg list -- only safe if you know it's not changing.
732 */
733 void *
734 txg_list_head(txg_list_t *tl, uint64_t txg)
735 {
736 int t = txg & TXG_MASK;
737 txg_node_t *tn = tl->tl_head[t];
738
739 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
740 }
741
742 void *
743 txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
744 {
745 int t = txg & TXG_MASK;
746 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
747
748 tn = tn->tn_next[t];
749
750 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
751 }
752
753 #if defined(_KERNEL) && defined(HAVE_SPL)
754 EXPORT_SYMBOL(txg_init);
755 EXPORT_SYMBOL(txg_fini);
756 EXPORT_SYMBOL(txg_sync_start);
757 EXPORT_SYMBOL(txg_sync_stop);
758 EXPORT_SYMBOL(txg_hold_open);
759 EXPORT_SYMBOL(txg_rele_to_quiesce);
760 EXPORT_SYMBOL(txg_rele_to_sync);
761 EXPORT_SYMBOL(txg_register_callbacks);
762 EXPORT_SYMBOL(txg_delay);
763 EXPORT_SYMBOL(txg_wait_synced);
764 EXPORT_SYMBOL(txg_wait_open);
765 EXPORT_SYMBOL(txg_wait_callbacks);
766 EXPORT_SYMBOL(txg_stalled);
767 EXPORT_SYMBOL(txg_sync_waiting);
768 #endif