]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/txg.c
Small rework of txg_list code
[mirror_zfs.git] / module / zfs / txg.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Portions Copyright 2011 Martin Matuska
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/txg_impl.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dsl_pool.h>
33 #include <sys/dsl_scan.h>
34 #include <sys/zil.h>
35 #include <sys/callb.h>
36 #include <sys/trace_txg.h>
37
38 /*
39 * ZFS Transaction Groups
40 * ----------------------
41 *
42 * ZFS transaction groups are, as the name implies, groups of transactions
43 * that act on persistent state. ZFS asserts consistency at the granularity of
44 * these transaction groups. Each successive transaction group (txg) is
45 * assigned a 64-bit consecutive identifier. There are three active
46 * transaction group states: open, quiescing, or syncing. At any given time,
47 * there may be an active txg associated with each state; each active txg may
48 * either be processing, or blocked waiting to enter the next state. There may
49 * be up to three active txgs, and there is always a txg in the open state
50 * (though it may be blocked waiting to enter the quiescing state). In broad
51 * strokes, transactions -- operations that change in-memory structures -- are
52 * accepted into the txg in the open state, and are completed while the txg is
53 * in the open or quiescing states. The accumulated changes are written to
54 * disk in the syncing state.
55 *
56 * Open
57 *
58 * When a new txg becomes active, it first enters the open state. New
59 * transactions -- updates to in-memory structures -- are assigned to the
60 * currently open txg. There is always a txg in the open state so that ZFS can
61 * accept new changes (though the txg may refuse new changes if it has hit
62 * some limit). ZFS advances the open txg to the next state for a variety of
63 * reasons such as it hitting a time or size threshold, or the execution of an
64 * administrative action that must be completed in the syncing state.
65 *
66 * Quiescing
67 *
68 * After a txg exits the open state, it enters the quiescing state. The
69 * quiescing state is intended to provide a buffer between accepting new
70 * transactions in the open state and writing them out to stable storage in
71 * the syncing state. While quiescing, transactions can continue their
72 * operation without delaying either of the other states. Typically, a txg is
73 * in the quiescing state very briefly since the operations are bounded by
74 * software latencies rather than, say, slower I/O latencies. After all
75 * transactions complete, the txg is ready to enter the next state.
76 *
77 * Syncing
78 *
79 * In the syncing state, the in-memory state built up during the open and (to
80 * a lesser degree) the quiescing states is written to stable storage. The
81 * process of writing out modified data can, in turn modify more data. For
82 * example when we write new blocks, we need to allocate space for them; those
83 * allocations modify metadata (space maps)... which themselves must be
84 * written to stable storage. During the sync state, ZFS iterates, writing out
85 * data until it converges and all in-memory changes have been written out.
86 * The first such pass is the largest as it encompasses all the modified user
87 * data (as opposed to filesystem metadata). Subsequent passes typically have
88 * far less data to write as they consist exclusively of filesystem metadata.
89 *
90 * To ensure convergence, after a certain number of passes ZFS begins
91 * overwriting locations on stable storage that had been allocated earlier in
92 * the syncing state (and subsequently freed). ZFS usually allocates new
93 * blocks to optimize for large, continuous, writes. For the syncing state to
94 * converge however it must complete a pass where no new blocks are allocated
95 * since each allocation requires a modification of persistent metadata.
96 * Further, to hasten convergence, after a prescribed number of passes, ZFS
97 * also defers frees, and stops compressing.
98 *
99 * In addition to writing out user data, we must also execute synctasks during
100 * the syncing context. A synctask is the mechanism by which some
101 * administrative activities work such as creating and destroying snapshots or
102 * datasets. Note that when a synctask is initiated it enters the open txg,
103 * and ZFS then pushes that txg as quickly as possible to completion of the
104 * syncing state in order to reduce the latency of the administrative
105 * activity. To complete the syncing state, ZFS writes out a new uberblock,
106 * the root of the tree of blocks that comprise all state stored on the ZFS
107 * pool. Finally, if there is a quiesced txg waiting, we signal that it can
108 * now transition to the syncing state.
109 */
110
111 static void txg_sync_thread(void *arg);
112 static void txg_quiesce_thread(void *arg);
113
114 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */
115
116 /*
117 * Prepare the txg subsystem.
118 */
119 void
120 txg_init(dsl_pool_t *dp, uint64_t txg)
121 {
122 tx_state_t *tx = &dp->dp_tx;
123 int c;
124 bzero(tx, sizeof (tx_state_t));
125
126 tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
127
128 for (c = 0; c < max_ncpus; c++) {
129 int i;
130
131 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
132 mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_NOLOCKDEP,
133 NULL);
134 for (i = 0; i < TXG_SIZE; i++) {
135 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
136 NULL);
137 list_create(&tx->tx_cpu[c].tc_callbacks[i],
138 sizeof (dmu_tx_callback_t),
139 offsetof(dmu_tx_callback_t, dcb_node));
140 }
141 }
142
143 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
144
145 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
146 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
147 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
148 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
149 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
150
151 tx->tx_open_txg = txg;
152 }
153
154 /*
155 * Close down the txg subsystem.
156 */
157 void
158 txg_fini(dsl_pool_t *dp)
159 {
160 tx_state_t *tx = &dp->dp_tx;
161 int c;
162
163 ASSERT0(tx->tx_threads);
164
165 mutex_destroy(&tx->tx_sync_lock);
166
167 cv_destroy(&tx->tx_sync_more_cv);
168 cv_destroy(&tx->tx_sync_done_cv);
169 cv_destroy(&tx->tx_quiesce_more_cv);
170 cv_destroy(&tx->tx_quiesce_done_cv);
171 cv_destroy(&tx->tx_exit_cv);
172
173 for (c = 0; c < max_ncpus; c++) {
174 int i;
175
176 mutex_destroy(&tx->tx_cpu[c].tc_open_lock);
177 mutex_destroy(&tx->tx_cpu[c].tc_lock);
178 for (i = 0; i < TXG_SIZE; i++) {
179 cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
180 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
181 }
182 }
183
184 if (tx->tx_commit_cb_taskq != NULL)
185 taskq_destroy(tx->tx_commit_cb_taskq);
186
187 vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
188
189 bzero(tx, sizeof (tx_state_t));
190 }
191
192 /*
193 * Start syncing transaction groups.
194 */
195 void
196 txg_sync_start(dsl_pool_t *dp)
197 {
198 tx_state_t *tx = &dp->dp_tx;
199
200 mutex_enter(&tx->tx_sync_lock);
201
202 dprintf("pool %p\n", dp);
203
204 ASSERT0(tx->tx_threads);
205
206 tx->tx_threads = 2;
207
208 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
209 dp, 0, &p0, TS_RUN, defclsyspri);
210
211 /*
212 * The sync thread can need a larger-than-default stack size on
213 * 32-bit x86. This is due in part to nested pools and
214 * scrub_visitbp() recursion.
215 */
216 tx->tx_sync_thread = thread_create(NULL, 0, txg_sync_thread,
217 dp, 0, &p0, TS_RUN, defclsyspri);
218
219 mutex_exit(&tx->tx_sync_lock);
220 }
221
222 static void
223 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
224 {
225 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
226 mutex_enter(&tx->tx_sync_lock);
227 }
228
229 static void
230 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
231 {
232 ASSERT(*tpp != NULL);
233 *tpp = NULL;
234 tx->tx_threads--;
235 cv_broadcast(&tx->tx_exit_cv);
236 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */
237 thread_exit();
238 }
239
240 static void
241 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time)
242 {
243 CALLB_CPR_SAFE_BEGIN(cpr);
244
245 if (time)
246 (void) cv_timedwait_sig(cv, &tx->tx_sync_lock,
247 ddi_get_lbolt() + time);
248 else
249 cv_wait_sig(cv, &tx->tx_sync_lock);
250
251 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
252 }
253
254 /*
255 * Stop syncing transaction groups.
256 */
257 void
258 txg_sync_stop(dsl_pool_t *dp)
259 {
260 tx_state_t *tx = &dp->dp_tx;
261
262 dprintf("pool %p\n", dp);
263 /*
264 * Finish off any work in progress.
265 */
266 ASSERT3U(tx->tx_threads, ==, 2);
267
268 /*
269 * We need to ensure that we've vacated the deferred space_maps.
270 */
271 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
272
273 /*
274 * Wake all sync threads and wait for them to die.
275 */
276 mutex_enter(&tx->tx_sync_lock);
277
278 ASSERT3U(tx->tx_threads, ==, 2);
279
280 tx->tx_exiting = 1;
281
282 cv_broadcast(&tx->tx_quiesce_more_cv);
283 cv_broadcast(&tx->tx_quiesce_done_cv);
284 cv_broadcast(&tx->tx_sync_more_cv);
285
286 while (tx->tx_threads != 0)
287 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
288
289 tx->tx_exiting = 0;
290
291 mutex_exit(&tx->tx_sync_lock);
292 }
293
294 uint64_t
295 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
296 {
297 tx_state_t *tx = &dp->dp_tx;
298 tx_cpu_t *tc;
299 uint64_t txg;
300
301 /*
302 * It appears the processor id is simply used as a "random"
303 * number to index into the array, and there isn't any other
304 * significance to the chosen tx_cpu. Because.. Why not use
305 * the current cpu to index into the array?
306 */
307 kpreempt_disable();
308 tc = &tx->tx_cpu[CPU_SEQID];
309 kpreempt_enable();
310
311 mutex_enter(&tc->tc_open_lock);
312 txg = tx->tx_open_txg;
313
314 mutex_enter(&tc->tc_lock);
315 tc->tc_count[txg & TXG_MASK]++;
316 mutex_exit(&tc->tc_lock);
317
318 th->th_cpu = tc;
319 th->th_txg = txg;
320
321 return (txg);
322 }
323
324 void
325 txg_rele_to_quiesce(txg_handle_t *th)
326 {
327 tx_cpu_t *tc = th->th_cpu;
328
329 ASSERT(!MUTEX_HELD(&tc->tc_lock));
330 mutex_exit(&tc->tc_open_lock);
331 }
332
333 void
334 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
335 {
336 tx_cpu_t *tc = th->th_cpu;
337 int g = th->th_txg & TXG_MASK;
338
339 mutex_enter(&tc->tc_lock);
340 list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
341 mutex_exit(&tc->tc_lock);
342 }
343
344 void
345 txg_rele_to_sync(txg_handle_t *th)
346 {
347 tx_cpu_t *tc = th->th_cpu;
348 int g = th->th_txg & TXG_MASK;
349
350 mutex_enter(&tc->tc_lock);
351 ASSERT(tc->tc_count[g] != 0);
352 if (--tc->tc_count[g] == 0)
353 cv_broadcast(&tc->tc_cv[g]);
354 mutex_exit(&tc->tc_lock);
355
356 th->th_cpu = NULL; /* defensive */
357 }
358
359 /*
360 * Blocks until all transactions in the group are committed.
361 *
362 * On return, the transaction group has reached a stable state in which it can
363 * then be passed off to the syncing context.
364 */
365 static void
366 txg_quiesce(dsl_pool_t *dp, uint64_t txg)
367 {
368 tx_state_t *tx = &dp->dp_tx;
369 uint64_t tx_open_time;
370 int g = txg & TXG_MASK;
371 int c;
372
373 /*
374 * Grab all tc_open_locks so nobody else can get into this txg.
375 */
376 for (c = 0; c < max_ncpus; c++)
377 mutex_enter(&tx->tx_cpu[c].tc_open_lock);
378
379 ASSERT(txg == tx->tx_open_txg);
380 tx->tx_open_txg++;
381 tx->tx_open_time = tx_open_time = gethrtime();
382
383 DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg);
384 DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg);
385
386 /*
387 * Now that we've incremented tx_open_txg, we can let threads
388 * enter the next transaction group.
389 */
390 for (c = 0; c < max_ncpus; c++)
391 mutex_exit(&tx->tx_cpu[c].tc_open_lock);
392
393 spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_OPEN, tx_open_time);
394 spa_txg_history_add(dp->dp_spa, txg + 1, tx_open_time);
395
396 /*
397 * Quiesce the transaction group by waiting for everyone to txg_exit().
398 */
399 for (c = 0; c < max_ncpus; c++) {
400 tx_cpu_t *tc = &tx->tx_cpu[c];
401 mutex_enter(&tc->tc_lock);
402 while (tc->tc_count[g] != 0)
403 cv_wait(&tc->tc_cv[g], &tc->tc_lock);
404 mutex_exit(&tc->tc_lock);
405 }
406
407 spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_QUIESCED, gethrtime());
408 }
409
410 static void
411 txg_do_callbacks(list_t *cb_list)
412 {
413 dmu_tx_do_callbacks(cb_list, 0);
414
415 list_destroy(cb_list);
416
417 kmem_free(cb_list, sizeof (list_t));
418 }
419
420 /*
421 * Dispatch the commit callbacks registered on this txg to worker threads.
422 *
423 * If no callbacks are registered for a given TXG, nothing happens.
424 * This function creates a taskq for the associated pool, if needed.
425 */
426 static void
427 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
428 {
429 int c;
430 tx_state_t *tx = &dp->dp_tx;
431 list_t *cb_list;
432
433 for (c = 0; c < max_ncpus; c++) {
434 tx_cpu_t *tc = &tx->tx_cpu[c];
435 /*
436 * No need to lock tx_cpu_t at this point, since this can
437 * only be called once a txg has been synced.
438 */
439
440 int g = txg & TXG_MASK;
441
442 if (list_is_empty(&tc->tc_callbacks[g]))
443 continue;
444
445 if (tx->tx_commit_cb_taskq == NULL) {
446 /*
447 * Commit callback taskq hasn't been created yet.
448 */
449 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
450 max_ncpus, defclsyspri, max_ncpus, max_ncpus * 2,
451 TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
452 }
453
454 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
455 list_create(cb_list, sizeof (dmu_tx_callback_t),
456 offsetof(dmu_tx_callback_t, dcb_node));
457
458 list_move_tail(cb_list, &tc->tc_callbacks[g]);
459
460 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
461 txg_do_callbacks, cb_list, TQ_SLEEP);
462 }
463 }
464
465 /*
466 * Wait for pending commit callbacks of already-synced transactions to finish
467 * processing.
468 * Calling this function from within a commit callback will deadlock.
469 */
470 void
471 txg_wait_callbacks(dsl_pool_t *dp)
472 {
473 tx_state_t *tx = &dp->dp_tx;
474
475 if (tx->tx_commit_cb_taskq != NULL)
476 taskq_wait_outstanding(tx->tx_commit_cb_taskq, 0);
477 }
478
479 static boolean_t
480 txg_is_syncing(dsl_pool_t *dp)
481 {
482 tx_state_t *tx = &dp->dp_tx;
483 ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
484 return (tx->tx_syncing_txg != 0);
485 }
486
487 static boolean_t
488 txg_is_quiescing(dsl_pool_t *dp)
489 {
490 tx_state_t *tx = &dp->dp_tx;
491 ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
492 return (tx->tx_quiescing_txg != 0);
493 }
494
495 static boolean_t
496 txg_has_quiesced_to_sync(dsl_pool_t *dp)
497 {
498 tx_state_t *tx = &dp->dp_tx;
499 ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
500 return (tx->tx_quiesced_txg != 0);
501 }
502
503 static void
504 txg_sync_thread(void *arg)
505 {
506 dsl_pool_t *dp = arg;
507 spa_t *spa = dp->dp_spa;
508 tx_state_t *tx = &dp->dp_tx;
509 callb_cpr_t cpr;
510 clock_t start, delta;
511
512 (void) spl_fstrans_mark();
513 txg_thread_enter(tx, &cpr);
514
515 start = delta = 0;
516 for (;;) {
517 clock_t timeout = zfs_txg_timeout * hz;
518 clock_t timer;
519 uint64_t txg;
520 txg_stat_t *ts;
521
522 /*
523 * We sync when we're scanning, there's someone waiting
524 * on us, or the quiesce thread has handed off a txg to
525 * us, or we have reached our timeout.
526 */
527 timer = (delta >= timeout ? 0 : timeout - delta);
528 while (!dsl_scan_active(dp->dp_scan) &&
529 !tx->tx_exiting && timer > 0 &&
530 tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
531 !txg_has_quiesced_to_sync(dp) &&
532 dp->dp_dirty_total < zfs_dirty_data_sync) {
533 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
534 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
535 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
536 delta = ddi_get_lbolt() - start;
537 timer = (delta > timeout ? 0 : timeout - delta);
538 }
539
540 /*
541 * Wait until the quiesce thread hands off a txg to us,
542 * prompting it to do so if necessary.
543 */
544 while (!tx->tx_exiting && !txg_has_quiesced_to_sync(dp)) {
545 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
546 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
547 cv_broadcast(&tx->tx_quiesce_more_cv);
548 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
549 }
550
551 if (tx->tx_exiting)
552 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
553
554 /*
555 * Consume the quiesced txg which has been handed off to
556 * us. This may cause the quiescing thread to now be
557 * able to quiesce another txg, so we must signal it.
558 */
559 ASSERT(tx->tx_quiesced_txg != 0);
560 txg = tx->tx_quiesced_txg;
561 tx->tx_quiesced_txg = 0;
562 tx->tx_syncing_txg = txg;
563 DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg);
564 ts = spa_txg_history_init_io(spa, txg, dp);
565 cv_broadcast(&tx->tx_quiesce_more_cv);
566
567 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
568 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
569 mutex_exit(&tx->tx_sync_lock);
570
571 start = ddi_get_lbolt();
572 spa_sync(spa, txg);
573 delta = ddi_get_lbolt() - start;
574
575 mutex_enter(&tx->tx_sync_lock);
576 tx->tx_synced_txg = txg;
577 tx->tx_syncing_txg = 0;
578 DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg);
579 spa_txg_history_fini_io(spa, ts);
580 cv_broadcast(&tx->tx_sync_done_cv);
581
582 /*
583 * Dispatch commit callbacks to worker threads.
584 */
585 txg_dispatch_callbacks(dp, txg);
586 }
587 }
588
589 static void
590 txg_quiesce_thread(void *arg)
591 {
592 dsl_pool_t *dp = arg;
593 tx_state_t *tx = &dp->dp_tx;
594 callb_cpr_t cpr;
595
596 txg_thread_enter(tx, &cpr);
597
598 for (;;) {
599 uint64_t txg;
600
601 /*
602 * We quiesce when there's someone waiting on us.
603 * However, we can only have one txg in "quiescing" or
604 * "quiesced, waiting to sync" state. So we wait until
605 * the "quiesced, waiting to sync" txg has been consumed
606 * by the sync thread.
607 */
608 while (!tx->tx_exiting &&
609 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
610 txg_has_quiesced_to_sync(dp)))
611 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
612
613 if (tx->tx_exiting)
614 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
615
616 txg = tx->tx_open_txg;
617 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
618 txg, tx->tx_quiesce_txg_waiting,
619 tx->tx_sync_txg_waiting);
620 tx->tx_quiescing_txg = txg;
621
622 mutex_exit(&tx->tx_sync_lock);
623 txg_quiesce(dp, txg);
624 mutex_enter(&tx->tx_sync_lock);
625
626 /*
627 * Hand this txg off to the sync thread.
628 */
629 dprintf("quiesce done, handing off txg %llu\n", txg);
630 tx->tx_quiescing_txg = 0;
631 tx->tx_quiesced_txg = txg;
632 DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg);
633 cv_broadcast(&tx->tx_sync_more_cv);
634 cv_broadcast(&tx->tx_quiesce_done_cv);
635 }
636 }
637
638 /*
639 * Delay this thread by delay nanoseconds if we are still in the open
640 * transaction group and there is already a waiting txg quiesing or quiesced.
641 * Abort the delay if this txg stalls or enters the quiesing state.
642 */
643 void
644 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution)
645 {
646 tx_state_t *tx = &dp->dp_tx;
647 hrtime_t start = gethrtime();
648
649 /* don't delay if this txg could transition to quiescing immediately */
650 if (tx->tx_open_txg > txg ||
651 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
652 return;
653
654 mutex_enter(&tx->tx_sync_lock);
655 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
656 mutex_exit(&tx->tx_sync_lock);
657 return;
658 }
659
660 while (gethrtime() - start < delay &&
661 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) {
662 (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv,
663 &tx->tx_sync_lock, delay, resolution, 0);
664 }
665
666 DMU_TX_STAT_BUMP(dmu_tx_delay);
667
668 mutex_exit(&tx->tx_sync_lock);
669 }
670
671 void
672 txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
673 {
674 tx_state_t *tx = &dp->dp_tx;
675
676 ASSERT(!dsl_pool_config_held(dp));
677
678 mutex_enter(&tx->tx_sync_lock);
679 ASSERT3U(tx->tx_threads, ==, 2);
680 if (txg == 0)
681 txg = tx->tx_open_txg + TXG_DEFER_SIZE;
682 if (tx->tx_sync_txg_waiting < txg)
683 tx->tx_sync_txg_waiting = txg;
684 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
685 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
686 while (tx->tx_synced_txg < txg) {
687 dprintf("broadcasting sync more "
688 "tx_synced=%llu waiting=%llu dp=%p\n",
689 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
690 cv_broadcast(&tx->tx_sync_more_cv);
691 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
692 }
693 mutex_exit(&tx->tx_sync_lock);
694 }
695
696 void
697 txg_wait_open(dsl_pool_t *dp, uint64_t txg)
698 {
699 tx_state_t *tx = &dp->dp_tx;
700
701 ASSERT(!dsl_pool_config_held(dp));
702
703 mutex_enter(&tx->tx_sync_lock);
704 ASSERT3U(tx->tx_threads, ==, 2);
705 if (txg == 0)
706 txg = tx->tx_open_txg + 1;
707 if (tx->tx_quiesce_txg_waiting < txg)
708 tx->tx_quiesce_txg_waiting = txg;
709 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
710 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
711 while (tx->tx_open_txg < txg) {
712 cv_broadcast(&tx->tx_quiesce_more_cv);
713 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
714 }
715 mutex_exit(&tx->tx_sync_lock);
716 }
717
718 /*
719 * If there isn't a txg syncing or in the pipeline, push another txg through
720 * the pipeline by queiscing the open txg.
721 */
722 void
723 txg_kick(dsl_pool_t *dp)
724 {
725 tx_state_t *tx = &dp->dp_tx;
726
727 ASSERT(!dsl_pool_config_held(dp));
728
729 mutex_enter(&tx->tx_sync_lock);
730 if (!txg_is_syncing(dp) &&
731 !txg_is_quiescing(dp) &&
732 tx->tx_quiesce_txg_waiting <= tx->tx_open_txg &&
733 tx->tx_sync_txg_waiting <= tx->tx_synced_txg &&
734 tx->tx_quiesced_txg <= tx->tx_synced_txg) {
735 tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1;
736 cv_broadcast(&tx->tx_quiesce_more_cv);
737 }
738 mutex_exit(&tx->tx_sync_lock);
739 }
740
741 boolean_t
742 txg_stalled(dsl_pool_t *dp)
743 {
744 tx_state_t *tx = &dp->dp_tx;
745 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
746 }
747
748 boolean_t
749 txg_sync_waiting(dsl_pool_t *dp)
750 {
751 tx_state_t *tx = &dp->dp_tx;
752
753 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
754 tx->tx_quiesced_txg != 0);
755 }
756
757 /*
758 * Verify that this txg is active (open, quiescing, syncing). Non-active
759 * txg's should not be manipulated.
760 */
761 #ifdef ZFS_DEBUG
762 void
763 txg_verify(spa_t *spa, uint64_t txg)
764 {
765 ASSERTV(dsl_pool_t *dp = spa_get_dsl(spa));
766 if (txg <= TXG_INITIAL || txg == ZILTEST_TXG)
767 return;
768 ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
769 ASSERT3U(txg, >=, dp->dp_tx.tx_synced_txg);
770 ASSERT3U(txg, >=, dp->dp_tx.tx_open_txg - TXG_CONCURRENT_STATES);
771 }
772 #endif
773
774 /*
775 * Per-txg object lists.
776 */
777 void
778 txg_list_create(txg_list_t *tl, spa_t *spa, size_t offset)
779 {
780 int t;
781
782 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
783
784 tl->tl_offset = offset;
785 tl->tl_spa = spa;
786
787 for (t = 0; t < TXG_SIZE; t++)
788 tl->tl_head[t] = NULL;
789 }
790
791 static boolean_t
792 txg_list_empty_impl(txg_list_t *tl, uint64_t txg)
793 {
794 ASSERT(MUTEX_HELD(&tl->tl_lock));
795 TXG_VERIFY(tl->tl_spa, txg);
796 return (tl->tl_head[txg & TXG_MASK] == NULL);
797 }
798
799 boolean_t
800 txg_list_empty(txg_list_t *tl, uint64_t txg)
801 {
802 mutex_enter(&tl->tl_lock);
803 boolean_t ret = txg_list_empty_impl(tl, txg);
804 mutex_exit(&tl->tl_lock);
805
806 return (ret);
807 }
808
809 void
810 txg_list_destroy(txg_list_t *tl)
811 {
812 int t;
813
814 mutex_enter(&tl->tl_lock);
815 for (t = 0; t < TXG_SIZE; t++)
816 ASSERT(txg_list_empty_impl(tl, t));
817 mutex_exit(&tl->tl_lock);
818
819 mutex_destroy(&tl->tl_lock);
820 }
821
822 /*
823 * Returns true if all txg lists are empty.
824 *
825 * Warning: this is inherently racy (an item could be added immediately
826 * after this function returns).
827 */
828 boolean_t
829 txg_all_lists_empty(txg_list_t *tl)
830 {
831 mutex_enter(&tl->tl_lock);
832 for (int i = 0; i < TXG_SIZE; i++) {
833 if (!txg_list_empty_impl(tl, i)) {
834 mutex_exit(&tl->tl_lock);
835 return (B_FALSE);
836 }
837 }
838 mutex_exit(&tl->tl_lock);
839 return (B_TRUE);
840 }
841
842 /*
843 * Add an entry to the list (unless it's already on the list).
844 * Returns B_TRUE if it was actually added.
845 */
846 boolean_t
847 txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
848 {
849 int t = txg & TXG_MASK;
850 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
851 boolean_t add;
852
853 TXG_VERIFY(tl->tl_spa, txg);
854 mutex_enter(&tl->tl_lock);
855 add = (tn->tn_member[t] == 0);
856 if (add) {
857 tn->tn_member[t] = 1;
858 tn->tn_next[t] = tl->tl_head[t];
859 tl->tl_head[t] = tn;
860 }
861 mutex_exit(&tl->tl_lock);
862
863 return (add);
864 }
865
866 /*
867 * Add an entry to the end of the list, unless it's already on the list.
868 * (walks list to find end)
869 * Returns B_TRUE if it was actually added.
870 */
871 boolean_t
872 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
873 {
874 int t = txg & TXG_MASK;
875 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
876 boolean_t add;
877
878 TXG_VERIFY(tl->tl_spa, txg);
879 mutex_enter(&tl->tl_lock);
880 add = (tn->tn_member[t] == 0);
881 if (add) {
882 txg_node_t **tp;
883
884 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
885 continue;
886
887 tn->tn_member[t] = 1;
888 tn->tn_next[t] = NULL;
889 *tp = tn;
890 }
891 mutex_exit(&tl->tl_lock);
892
893 return (add);
894 }
895
896 /*
897 * Remove the head of the list and return it.
898 */
899 void *
900 txg_list_remove(txg_list_t *tl, uint64_t txg)
901 {
902 int t = txg & TXG_MASK;
903 txg_node_t *tn;
904 void *p = NULL;
905
906 TXG_VERIFY(tl->tl_spa, txg);
907 mutex_enter(&tl->tl_lock);
908 if ((tn = tl->tl_head[t]) != NULL) {
909 ASSERT(tn->tn_member[t]);
910 ASSERT(tn->tn_next[t] == NULL || tn->tn_next[t]->tn_member[t]);
911 p = (char *)tn - tl->tl_offset;
912 tl->tl_head[t] = tn->tn_next[t];
913 tn->tn_next[t] = NULL;
914 tn->tn_member[t] = 0;
915 }
916 mutex_exit(&tl->tl_lock);
917
918 return (p);
919 }
920
921 /*
922 * Remove a specific item from the list and return it.
923 */
924 void *
925 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
926 {
927 int t = txg & TXG_MASK;
928 txg_node_t *tn, **tp;
929
930 TXG_VERIFY(tl->tl_spa, txg);
931 mutex_enter(&tl->tl_lock);
932
933 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
934 if ((char *)tn - tl->tl_offset == p) {
935 *tp = tn->tn_next[t];
936 tn->tn_next[t] = NULL;
937 tn->tn_member[t] = 0;
938 mutex_exit(&tl->tl_lock);
939 return (p);
940 }
941 }
942
943 mutex_exit(&tl->tl_lock);
944
945 return (NULL);
946 }
947
948 boolean_t
949 txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
950 {
951 int t = txg & TXG_MASK;
952 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
953
954 TXG_VERIFY(tl->tl_spa, txg);
955 return (tn->tn_member[t] != 0);
956 }
957
958 /*
959 * Walk a txg list
960 */
961 void *
962 txg_list_head(txg_list_t *tl, uint64_t txg)
963 {
964 int t = txg & TXG_MASK;
965 txg_node_t *tn;
966
967 mutex_enter(&tl->tl_lock);
968 tn = tl->tl_head[t];
969 mutex_exit(&tl->tl_lock);
970
971 TXG_VERIFY(tl->tl_spa, txg);
972 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
973 }
974
975 void *
976 txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
977 {
978 int t = txg & TXG_MASK;
979 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
980
981 TXG_VERIFY(tl->tl_spa, txg);
982
983 mutex_enter(&tl->tl_lock);
984 tn = tn->tn_next[t];
985 mutex_exit(&tl->tl_lock);
986
987 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
988 }
989
990 #if defined(_KERNEL)
991 EXPORT_SYMBOL(txg_init);
992 EXPORT_SYMBOL(txg_fini);
993 EXPORT_SYMBOL(txg_sync_start);
994 EXPORT_SYMBOL(txg_sync_stop);
995 EXPORT_SYMBOL(txg_hold_open);
996 EXPORT_SYMBOL(txg_rele_to_quiesce);
997 EXPORT_SYMBOL(txg_rele_to_sync);
998 EXPORT_SYMBOL(txg_register_callbacks);
999 EXPORT_SYMBOL(txg_delay);
1000 EXPORT_SYMBOL(txg_wait_synced);
1001 EXPORT_SYMBOL(txg_wait_open);
1002 EXPORT_SYMBOL(txg_wait_callbacks);
1003 EXPORT_SYMBOL(txg_stalled);
1004 EXPORT_SYMBOL(txg_sync_waiting);
1005
1006 module_param(zfs_txg_timeout, int, 0644);
1007 MODULE_PARM_DESC(zfs_txg_timeout, "Max seconds worth of delta per txg");
1008 #endif