]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/txg.c
Illumos #3742
[mirror_zfs.git] / module / zfs / txg.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Portions Copyright 2011 Martin Matuska
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/txg_impl.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dsl_pool.h>
33 #include <sys/dsl_scan.h>
34 #include <sys/callb.h>
35
36 /*
37 * ZFS Transaction Groups
38 * ----------------------
39 *
40 * ZFS transaction groups are, as the name implies, groups of transactions
41 * that act on persistent state. ZFS asserts consistency at the granularity of
42 * these transaction groups. Each successive transaction group (txg) is
43 * assigned a 64-bit consecutive identifier. There are three active
44 * transaction group states: open, quiescing, or syncing. At any given time,
45 * there may be an active txg associated with each state; each active txg may
46 * either be processing, or blocked waiting to enter the next state. There may
47 * be up to three active txgs, and there is always a txg in the open state
48 * (though it may be blocked waiting to enter the quiescing state). In broad
49 * strokes, transactions — operations that change in-memory structures — are
50 * accepted into the txg in the open state, and are completed while the txg is
51 * in the open or quiescing states. The accumulated changes are written to
52 * disk in the syncing state.
53 *
54 * Open
55 *
56 * When a new txg becomes active, it first enters the open state. New
57 * transactions — updates to in-memory structures — are assigned to the
58 * currently open txg. There is always a txg in the open state so that ZFS can
59 * accept new changes (though the txg may refuse new changes if it has hit
60 * some limit). ZFS advances the open txg to the next state for a variety of
61 * reasons such as it hitting a time or size threshold, or the execution of an
62 * administrative action that must be completed in the syncing state.
63 *
64 * Quiescing
65 *
66 * After a txg exits the open state, it enters the quiescing state. The
67 * quiescing state is intended to provide a buffer between accepting new
68 * transactions in the open state and writing them out to stable storage in
69 * the syncing state. While quiescing, transactions can continue their
70 * operation without delaying either of the other states. Typically, a txg is
71 * in the quiescing state very briefly since the operations are bounded by
72 * software latencies rather than, say, slower I/O latencies. After all
73 * transactions complete, the txg is ready to enter the next state.
74 *
75 * Syncing
76 *
77 * In the syncing state, the in-memory state built up during the open and (to
78 * a lesser degree) the quiescing states is written to stable storage. The
79 * process of writing out modified data can, in turn modify more data. For
80 * example when we write new blocks, we need to allocate space for them; those
81 * allocations modify metadata (space maps)... which themselves must be
82 * written to stable storage. During the sync state, ZFS iterates, writing out
83 * data until it converges and all in-memory changes have been written out.
84 * The first such pass is the largest as it encompasses all the modified user
85 * data (as opposed to filesystem metadata). Subsequent passes typically have
86 * far less data to write as they consist exclusively of filesystem metadata.
87 *
88 * To ensure convergence, after a certain number of passes ZFS begins
89 * overwriting locations on stable storage that had been allocated earlier in
90 * the syncing state (and subsequently freed). ZFS usually allocates new
91 * blocks to optimize for large, continuous, writes. For the syncing state to
92 * converge however it must complete a pass where no new blocks are allocated
93 * since each allocation requires a modification of persistent metadata.
94 * Further, to hasten convergence, after a prescribed number of passes, ZFS
95 * also defers frees, and stops compressing.
96 *
97 * In addition to writing out user data, we must also execute synctasks during
98 * the syncing context. A synctask is the mechanism by which some
99 * administrative activities work such as creating and destroying snapshots or
100 * datasets. Note that when a synctask is initiated it enters the open txg,
101 * and ZFS then pushes that txg as quickly as possible to completion of the
102 * syncing state in order to reduce the latency of the administrative
103 * activity. To complete the syncing state, ZFS writes out a new uberblock,
104 * the root of the tree of blocks that comprise all state stored on the ZFS
105 * pool. Finally, if there is a quiesced txg waiting, we signal that it can
106 * now transition to the syncing state.
107 */
108
109 static void txg_sync_thread(dsl_pool_t *dp);
110 static void txg_quiesce_thread(dsl_pool_t *dp);
111
112 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */
113
114 /*
115 * Prepare the txg subsystem.
116 */
117 void
118 txg_init(dsl_pool_t *dp, uint64_t txg)
119 {
120 tx_state_t *tx = &dp->dp_tx;
121 int c;
122 bzero(tx, sizeof (tx_state_t));
123
124 tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
125
126 for (c = 0; c < max_ncpus; c++) {
127 int i;
128
129 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
130 mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_DEFAULT,
131 NULL);
132 for (i = 0; i < TXG_SIZE; i++) {
133 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
134 NULL);
135 list_create(&tx->tx_cpu[c].tc_callbacks[i],
136 sizeof (dmu_tx_callback_t),
137 offsetof(dmu_tx_callback_t, dcb_node));
138 }
139 }
140
141 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
142
143 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
144 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
145 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
146 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
147 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
148
149 tx->tx_open_txg = txg;
150 }
151
152 /*
153 * Close down the txg subsystem.
154 */
155 void
156 txg_fini(dsl_pool_t *dp)
157 {
158 tx_state_t *tx = &dp->dp_tx;
159 int c;
160
161 ASSERT(tx->tx_threads == 0);
162
163 mutex_destroy(&tx->tx_sync_lock);
164
165 cv_destroy(&tx->tx_sync_more_cv);
166 cv_destroy(&tx->tx_sync_done_cv);
167 cv_destroy(&tx->tx_quiesce_more_cv);
168 cv_destroy(&tx->tx_quiesce_done_cv);
169 cv_destroy(&tx->tx_exit_cv);
170
171 for (c = 0; c < max_ncpus; c++) {
172 int i;
173
174 mutex_destroy(&tx->tx_cpu[c].tc_open_lock);
175 mutex_destroy(&tx->tx_cpu[c].tc_lock);
176 for (i = 0; i < TXG_SIZE; i++) {
177 cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
178 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
179 }
180 }
181
182 if (tx->tx_commit_cb_taskq != NULL)
183 taskq_destroy(tx->tx_commit_cb_taskq);
184
185 vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
186
187 bzero(tx, sizeof (tx_state_t));
188 }
189
190 /*
191 * Start syncing transaction groups.
192 */
193 void
194 txg_sync_start(dsl_pool_t *dp)
195 {
196 tx_state_t *tx = &dp->dp_tx;
197
198 mutex_enter(&tx->tx_sync_lock);
199
200 dprintf("pool %p\n", dp);
201
202 ASSERT(tx->tx_threads == 0);
203
204 tx->tx_threads = 2;
205
206 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
207 dp, 0, &p0, TS_RUN, minclsyspri);
208
209 /*
210 * The sync thread can need a larger-than-default stack size on
211 * 32-bit x86. This is due in part to nested pools and
212 * scrub_visitbp() recursion.
213 */
214 tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread,
215 dp, 0, &p0, TS_RUN, minclsyspri);
216
217 mutex_exit(&tx->tx_sync_lock);
218 }
219
220 static void
221 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
222 {
223 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
224 mutex_enter(&tx->tx_sync_lock);
225 }
226
227 static void
228 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
229 {
230 ASSERT(*tpp != NULL);
231 *tpp = NULL;
232 tx->tx_threads--;
233 cv_broadcast(&tx->tx_exit_cv);
234 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */
235 thread_exit();
236 }
237
238 static void
239 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time)
240 {
241 CALLB_CPR_SAFE_BEGIN(cpr);
242
243 if (time)
244 (void) cv_timedwait_interruptible(cv, &tx->tx_sync_lock,
245 ddi_get_lbolt() + time);
246 else
247 cv_wait_interruptible(cv, &tx->tx_sync_lock);
248
249 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
250 }
251
252 /*
253 * Stop syncing transaction groups.
254 */
255 void
256 txg_sync_stop(dsl_pool_t *dp)
257 {
258 tx_state_t *tx = &dp->dp_tx;
259
260 dprintf("pool %p\n", dp);
261 /*
262 * Finish off any work in progress.
263 */
264 ASSERT(tx->tx_threads == 2);
265
266 /*
267 * We need to ensure that we've vacated the deferred space_maps.
268 */
269 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
270
271 /*
272 * Wake all sync threads and wait for them to die.
273 */
274 mutex_enter(&tx->tx_sync_lock);
275
276 ASSERT(tx->tx_threads == 2);
277
278 tx->tx_exiting = 1;
279
280 cv_broadcast(&tx->tx_quiesce_more_cv);
281 cv_broadcast(&tx->tx_quiesce_done_cv);
282 cv_broadcast(&tx->tx_sync_more_cv);
283
284 while (tx->tx_threads != 0)
285 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
286
287 tx->tx_exiting = 0;
288
289 mutex_exit(&tx->tx_sync_lock);
290 }
291
292 uint64_t
293 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
294 {
295 tx_state_t *tx = &dp->dp_tx;
296 tx_cpu_t *tc;
297 uint64_t txg;
298
299 /*
300 * It appears the processor id is simply used as a "random"
301 * number to index into the array, and there isn't any other
302 * significance to the chosen tx_cpu. Because.. Why not use
303 * the current cpu to index into the array?
304 */
305 kpreempt_disable();
306 tc = &tx->tx_cpu[CPU_SEQID];
307 kpreempt_enable();
308
309 mutex_enter(&tc->tc_open_lock);
310 txg = tx->tx_open_txg;
311
312 mutex_enter(&tc->tc_lock);
313 tc->tc_count[txg & TXG_MASK]++;
314 mutex_exit(&tc->tc_lock);
315
316 th->th_cpu = tc;
317 th->th_txg = txg;
318
319 return (txg);
320 }
321
322 void
323 txg_rele_to_quiesce(txg_handle_t *th)
324 {
325 tx_cpu_t *tc = th->th_cpu;
326
327 ASSERT(!MUTEX_HELD(&tc->tc_lock));
328 mutex_exit(&tc->tc_open_lock);
329 }
330
331 void
332 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
333 {
334 tx_cpu_t *tc = th->th_cpu;
335 int g = th->th_txg & TXG_MASK;
336
337 mutex_enter(&tc->tc_lock);
338 list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
339 mutex_exit(&tc->tc_lock);
340 }
341
342 void
343 txg_rele_to_sync(txg_handle_t *th)
344 {
345 tx_cpu_t *tc = th->th_cpu;
346 int g = th->th_txg & TXG_MASK;
347
348 mutex_enter(&tc->tc_lock);
349 ASSERT(tc->tc_count[g] != 0);
350 if (--tc->tc_count[g] == 0)
351 cv_broadcast(&tc->tc_cv[g]);
352 mutex_exit(&tc->tc_lock);
353
354 th->th_cpu = NULL; /* defensive */
355 }
356
357 /*
358 * Blocks until all transactions in the group are committed.
359 *
360 * On return, the transaction group has reached a stable state in which it can
361 * then be passed off to the syncing context.
362 */
363 static void
364 txg_quiesce(dsl_pool_t *dp, uint64_t txg)
365 {
366 tx_state_t *tx = &dp->dp_tx;
367 int g = txg & TXG_MASK;
368 int c;
369
370 /*
371 * Grab all tc_open_locks so nobody else can get into this txg.
372 */
373 for (c = 0; c < max_ncpus; c++)
374 mutex_enter(&tx->tx_cpu[c].tc_open_lock);
375
376 ASSERT(txg == tx->tx_open_txg);
377 tx->tx_open_txg++;
378
379 spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_OPEN, gethrtime());
380 spa_txg_history_add(dp->dp_spa, tx->tx_open_txg);
381
382 DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg);
383 DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg);
384
385 /*
386 * Now that we've incremented tx_open_txg, we can let threads
387 * enter the next transaction group.
388 */
389 for (c = 0; c < max_ncpus; c++)
390 mutex_exit(&tx->tx_cpu[c].tc_open_lock);
391
392 /*
393 * Quiesce the transaction group by waiting for everyone to txg_exit().
394 */
395 for (c = 0; c < max_ncpus; c++) {
396 tx_cpu_t *tc = &tx->tx_cpu[c];
397 mutex_enter(&tc->tc_lock);
398 while (tc->tc_count[g] != 0)
399 cv_wait(&tc->tc_cv[g], &tc->tc_lock);
400 mutex_exit(&tc->tc_lock);
401 }
402
403 spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_QUIESCED, gethrtime());
404 }
405
406 static void
407 txg_do_callbacks(list_t *cb_list)
408 {
409 dmu_tx_do_callbacks(cb_list, 0);
410
411 list_destroy(cb_list);
412
413 kmem_free(cb_list, sizeof (list_t));
414 }
415
416 /*
417 * Dispatch the commit callbacks registered on this txg to worker threads.
418 *
419 * If no callbacks are registered for a given TXG, nothing happens.
420 * This function creates a taskq for the associated pool, if needed.
421 */
422 static void
423 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
424 {
425 int c;
426 tx_state_t *tx = &dp->dp_tx;
427 list_t *cb_list;
428
429 for (c = 0; c < max_ncpus; c++) {
430 tx_cpu_t *tc = &tx->tx_cpu[c];
431 /*
432 * No need to lock tx_cpu_t at this point, since this can
433 * only be called once a txg has been synced.
434 */
435
436 int g = txg & TXG_MASK;
437
438 if (list_is_empty(&tc->tc_callbacks[g]))
439 continue;
440
441 if (tx->tx_commit_cb_taskq == NULL) {
442 /*
443 * Commit callback taskq hasn't been created yet.
444 */
445 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
446 100, minclsyspri, max_ncpus, INT_MAX,
447 TASKQ_THREADS_CPU_PCT | TASKQ_PREPOPULATE);
448 }
449
450 cb_list = kmem_alloc(sizeof (list_t), KM_PUSHPAGE);
451 list_create(cb_list, sizeof (dmu_tx_callback_t),
452 offsetof(dmu_tx_callback_t, dcb_node));
453
454 list_move_tail(cb_list, &tc->tc_callbacks[g]);
455
456 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
457 txg_do_callbacks, cb_list, TQ_SLEEP);
458 }
459 }
460
461 /*
462 * Wait for pending commit callbacks of already-synced transactions to finish
463 * processing.
464 * Calling this function from within a commit callback will deadlock.
465 */
466 void
467 txg_wait_callbacks(dsl_pool_t *dp)
468 {
469 tx_state_t *tx = &dp->dp_tx;
470
471 if (tx->tx_commit_cb_taskq != NULL)
472 taskq_wait(tx->tx_commit_cb_taskq);
473 }
474
475 static void
476 txg_sync_thread(dsl_pool_t *dp)
477 {
478 spa_t *spa = dp->dp_spa;
479 tx_state_t *tx = &dp->dp_tx;
480 callb_cpr_t cpr;
481 vdev_stat_t *vs1, *vs2;
482 uint64_t start, delta;
483
484 #ifdef _KERNEL
485 /*
486 * Annotate this process with a flag that indicates that it is
487 * unsafe to use KM_SLEEP during memory allocations due to the
488 * potential for a deadlock. KM_PUSHPAGE should be used instead.
489 */
490 current->flags |= PF_NOFS;
491 #endif /* _KERNEL */
492
493 txg_thread_enter(tx, &cpr);
494
495 vs1 = kmem_alloc(sizeof(vdev_stat_t), KM_PUSHPAGE);
496 vs2 = kmem_alloc(sizeof(vdev_stat_t), KM_PUSHPAGE);
497
498 start = delta = 0;
499 for (;;) {
500 uint64_t timer, timeout;
501 uint64_t txg;
502
503 timeout = zfs_txg_timeout * hz;
504
505 /*
506 * We sync when we're scanning, there's someone waiting
507 * on us, or the quiesce thread has handed off a txg to
508 * us, or we have reached our timeout.
509 */
510 timer = (delta >= timeout ? 0 : timeout - delta);
511 while (!dsl_scan_active(dp->dp_scan) &&
512 !tx->tx_exiting && timer > 0 &&
513 tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
514 tx->tx_quiesced_txg == 0) {
515 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
516 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
517 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
518 delta = ddi_get_lbolt() - start;
519 timer = (delta > timeout ? 0 : timeout - delta);
520 }
521
522 /*
523 * Wait until the quiesce thread hands off a txg to us,
524 * prompting it to do so if necessary.
525 */
526 while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) {
527 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
528 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
529 cv_broadcast(&tx->tx_quiesce_more_cv);
530 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
531 }
532
533 if (tx->tx_exiting) {
534 kmem_free(vs2, sizeof(vdev_stat_t));
535 kmem_free(vs1, sizeof(vdev_stat_t));
536 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
537 }
538
539 vdev_get_stats(spa->spa_root_vdev, vs1);
540
541 /*
542 * Consume the quiesced txg which has been handed off to
543 * us. This may cause the quiescing thread to now be
544 * able to quiesce another txg, so we must signal it.
545 */
546 txg = tx->tx_quiesced_txg;
547 tx->tx_quiesced_txg = 0;
548 tx->tx_syncing_txg = txg;
549 DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg);
550 cv_broadcast(&tx->tx_quiesce_more_cv);
551
552 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
553 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
554 mutex_exit(&tx->tx_sync_lock);
555
556 start = ddi_get_lbolt();
557 spa_sync(spa, txg);
558 delta = ddi_get_lbolt() - start;
559
560 mutex_enter(&tx->tx_sync_lock);
561 tx->tx_synced_txg = txg;
562 tx->tx_syncing_txg = 0;
563 DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg);
564 cv_broadcast(&tx->tx_sync_done_cv);
565
566 /*
567 * Dispatch commit callbacks to worker threads.
568 */
569 txg_dispatch_callbacks(dp, txg);
570
571 vdev_get_stats(spa->spa_root_vdev, vs2);
572 spa_txg_history_set_io(spa, txg,
573 vs2->vs_bytes[ZIO_TYPE_READ]-vs1->vs_bytes[ZIO_TYPE_READ],
574 vs2->vs_bytes[ZIO_TYPE_WRITE]-vs1->vs_bytes[ZIO_TYPE_WRITE],
575 vs2->vs_ops[ZIO_TYPE_READ]-vs1->vs_ops[ZIO_TYPE_READ],
576 vs2->vs_ops[ZIO_TYPE_WRITE]-vs1->vs_ops[ZIO_TYPE_WRITE],
577 dp->dp_space_towrite[txg & TXG_MASK] +
578 dp->dp_tempreserved[txg & TXG_MASK] / 2);
579 spa_txg_history_set(spa, txg, TXG_STATE_SYNCED, gethrtime());
580 }
581 }
582
583 static void
584 txg_quiesce_thread(dsl_pool_t *dp)
585 {
586 tx_state_t *tx = &dp->dp_tx;
587 callb_cpr_t cpr;
588
589 txg_thread_enter(tx, &cpr);
590
591 for (;;) {
592 uint64_t txg;
593
594 /*
595 * We quiesce when there's someone waiting on us.
596 * However, we can only have one txg in "quiescing" or
597 * "quiesced, waiting to sync" state. So we wait until
598 * the "quiesced, waiting to sync" txg has been consumed
599 * by the sync thread.
600 */
601 while (!tx->tx_exiting &&
602 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
603 tx->tx_quiesced_txg != 0))
604 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
605
606 if (tx->tx_exiting)
607 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
608
609 txg = tx->tx_open_txg;
610 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
611 txg, tx->tx_quiesce_txg_waiting,
612 tx->tx_sync_txg_waiting);
613 mutex_exit(&tx->tx_sync_lock);
614 txg_quiesce(dp, txg);
615 mutex_enter(&tx->tx_sync_lock);
616
617 /*
618 * Hand this txg off to the sync thread.
619 */
620 dprintf("quiesce done, handing off txg %llu\n", txg);
621 tx->tx_quiesced_txg = txg;
622 DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg);
623 cv_broadcast(&tx->tx_sync_more_cv);
624 cv_broadcast(&tx->tx_quiesce_done_cv);
625 }
626 }
627
628 /*
629 * Delay this thread by delay nanoseconds if we are still in the open
630 * transaction group and there is already a waiting txg quiesing or quiesced.
631 * Abort the delay if this txg stalls or enters the quiesing state.
632 */
633 void
634 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution)
635 {
636 tx_state_t *tx = &dp->dp_tx;
637 hrtime_t start = gethrtime();
638
639 /* don't delay if this txg could transition to quiescing immediately */
640 if (tx->tx_open_txg > txg ||
641 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
642 return;
643
644 mutex_enter(&tx->tx_sync_lock);
645 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
646 mutex_exit(&tx->tx_sync_lock);
647 return;
648 }
649
650 while (gethrtime() - start < delay &&
651 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) {
652 (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv,
653 &tx->tx_sync_lock, delay, resolution, 0);
654 }
655
656 DMU_TX_STAT_BUMP(dmu_tx_delay);
657
658 mutex_exit(&tx->tx_sync_lock);
659 }
660
661 void
662 txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
663 {
664 tx_state_t *tx = &dp->dp_tx;
665
666 ASSERT(!dsl_pool_config_held(dp));
667
668 mutex_enter(&tx->tx_sync_lock);
669 ASSERT(tx->tx_threads == 2);
670 if (txg == 0)
671 txg = tx->tx_open_txg + TXG_DEFER_SIZE;
672 if (tx->tx_sync_txg_waiting < txg)
673 tx->tx_sync_txg_waiting = txg;
674 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
675 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
676 while (tx->tx_synced_txg < txg) {
677 dprintf("broadcasting sync more "
678 "tx_synced=%llu waiting=%llu dp=%p\n",
679 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
680 cv_broadcast(&tx->tx_sync_more_cv);
681 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
682 }
683 mutex_exit(&tx->tx_sync_lock);
684 }
685
686 void
687 txg_wait_open(dsl_pool_t *dp, uint64_t txg)
688 {
689 tx_state_t *tx = &dp->dp_tx;
690
691 ASSERT(!dsl_pool_config_held(dp));
692
693 mutex_enter(&tx->tx_sync_lock);
694 ASSERT(tx->tx_threads == 2);
695 if (txg == 0)
696 txg = tx->tx_open_txg + 1;
697 if (tx->tx_quiesce_txg_waiting < txg)
698 tx->tx_quiesce_txg_waiting = txg;
699 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
700 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
701 while (tx->tx_open_txg < txg) {
702 cv_broadcast(&tx->tx_quiesce_more_cv);
703 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
704 }
705 mutex_exit(&tx->tx_sync_lock);
706 }
707
708 boolean_t
709 txg_stalled(dsl_pool_t *dp)
710 {
711 tx_state_t *tx = &dp->dp_tx;
712 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
713 }
714
715 boolean_t
716 txg_sync_waiting(dsl_pool_t *dp)
717 {
718 tx_state_t *tx = &dp->dp_tx;
719
720 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
721 tx->tx_quiesced_txg != 0);
722 }
723
724 /*
725 * Per-txg object lists.
726 */
727 void
728 txg_list_create(txg_list_t *tl, size_t offset)
729 {
730 int t;
731
732 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
733
734 tl->tl_offset = offset;
735
736 for (t = 0; t < TXG_SIZE; t++)
737 tl->tl_head[t] = NULL;
738 }
739
740 void
741 txg_list_destroy(txg_list_t *tl)
742 {
743 int t;
744
745 for (t = 0; t < TXG_SIZE; t++)
746 ASSERT(txg_list_empty(tl, t));
747
748 mutex_destroy(&tl->tl_lock);
749 }
750
751 boolean_t
752 txg_list_empty(txg_list_t *tl, uint64_t txg)
753 {
754 return (tl->tl_head[txg & TXG_MASK] == NULL);
755 }
756
757 /*
758 * Add an entry to the list (unless it's already on the list).
759 * Returns B_TRUE if it was actually added.
760 */
761 boolean_t
762 txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
763 {
764 int t = txg & TXG_MASK;
765 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
766 boolean_t add;
767
768 mutex_enter(&tl->tl_lock);
769 add = (tn->tn_member[t] == 0);
770 if (add) {
771 tn->tn_member[t] = 1;
772 tn->tn_next[t] = tl->tl_head[t];
773 tl->tl_head[t] = tn;
774 }
775 mutex_exit(&tl->tl_lock);
776
777 return (add);
778 }
779
780 /*
781 * Add an entry to the end of the list, unless it's already on the list.
782 * (walks list to find end)
783 * Returns B_TRUE if it was actually added.
784 */
785 boolean_t
786 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
787 {
788 int t = txg & TXG_MASK;
789 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
790 boolean_t add;
791
792 mutex_enter(&tl->tl_lock);
793 add = (tn->tn_member[t] == 0);
794 if (add) {
795 txg_node_t **tp;
796
797 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
798 continue;
799
800 tn->tn_member[t] = 1;
801 tn->tn_next[t] = NULL;
802 *tp = tn;
803 }
804 mutex_exit(&tl->tl_lock);
805
806 return (add);
807 }
808
809 /*
810 * Remove the head of the list and return it.
811 */
812 void *
813 txg_list_remove(txg_list_t *tl, uint64_t txg)
814 {
815 int t = txg & TXG_MASK;
816 txg_node_t *tn;
817 void *p = NULL;
818
819 mutex_enter(&tl->tl_lock);
820 if ((tn = tl->tl_head[t]) != NULL) {
821 p = (char *)tn - tl->tl_offset;
822 tl->tl_head[t] = tn->tn_next[t];
823 tn->tn_next[t] = NULL;
824 tn->tn_member[t] = 0;
825 }
826 mutex_exit(&tl->tl_lock);
827
828 return (p);
829 }
830
831 /*
832 * Remove a specific item from the list and return it.
833 */
834 void *
835 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
836 {
837 int t = txg & TXG_MASK;
838 txg_node_t *tn, **tp;
839
840 mutex_enter(&tl->tl_lock);
841
842 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
843 if ((char *)tn - tl->tl_offset == p) {
844 *tp = tn->tn_next[t];
845 tn->tn_next[t] = NULL;
846 tn->tn_member[t] = 0;
847 mutex_exit(&tl->tl_lock);
848 return (p);
849 }
850 }
851
852 mutex_exit(&tl->tl_lock);
853
854 return (NULL);
855 }
856
857 boolean_t
858 txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
859 {
860 int t = txg & TXG_MASK;
861 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
862
863 return (tn->tn_member[t] != 0);
864 }
865
866 /*
867 * Walk a txg list -- only safe if you know it's not changing.
868 */
869 void *
870 txg_list_head(txg_list_t *tl, uint64_t txg)
871 {
872 int t = txg & TXG_MASK;
873 txg_node_t *tn = tl->tl_head[t];
874
875 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
876 }
877
878 void *
879 txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
880 {
881 int t = txg & TXG_MASK;
882 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
883
884 tn = tn->tn_next[t];
885
886 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
887 }
888
889 #if defined(_KERNEL) && defined(HAVE_SPL)
890 EXPORT_SYMBOL(txg_init);
891 EXPORT_SYMBOL(txg_fini);
892 EXPORT_SYMBOL(txg_sync_start);
893 EXPORT_SYMBOL(txg_sync_stop);
894 EXPORT_SYMBOL(txg_hold_open);
895 EXPORT_SYMBOL(txg_rele_to_quiesce);
896 EXPORT_SYMBOL(txg_rele_to_sync);
897 EXPORT_SYMBOL(txg_register_callbacks);
898 EXPORT_SYMBOL(txg_delay);
899 EXPORT_SYMBOL(txg_wait_synced);
900 EXPORT_SYMBOL(txg_wait_open);
901 EXPORT_SYMBOL(txg_wait_callbacks);
902 EXPORT_SYMBOL(txg_stalled);
903 EXPORT_SYMBOL(txg_sync_waiting);
904
905 module_param(zfs_txg_timeout, int, 0644);
906 MODULE_PARM_DESC(zfs_txg_timeout, "Max seconds worth of delta per txg");
907 #endif