]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/txg.c
Add txgs-<pool> kstat file
[mirror_zfs.git] / module / zfs / txg.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <sys/zfs_context.h>
26 #include <sys/txg_impl.h>
27 #include <sys/dmu_impl.h>
28 #include <sys/dmu_tx.h>
29 #include <sys/dsl_pool.h>
30 #include <sys/dsl_scan.h>
31 #include <sys/callb.h>
32 #include <sys/spa_impl.h>
33
34 /*
35 * Pool-wide transaction groups.
36 */
37
38 static void txg_sync_thread(dsl_pool_t *dp);
39 static void txg_quiesce_thread(dsl_pool_t *dp);
40
41 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */
42
43 /*
44 * Prepare the txg subsystem.
45 */
46 void
47 txg_init(dsl_pool_t *dp, uint64_t txg)
48 {
49 tx_state_t *tx = &dp->dp_tx;
50 int c;
51 bzero(tx, sizeof (tx_state_t));
52
53 tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
54
55 for (c = 0; c < max_ncpus; c++) {
56 int i;
57
58 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
59 for (i = 0; i < TXG_SIZE; i++) {
60 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
61 NULL);
62 list_create(&tx->tx_cpu[c].tc_callbacks[i],
63 sizeof (dmu_tx_callback_t),
64 offsetof(dmu_tx_callback_t, dcb_node));
65 }
66 }
67
68 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
69
70 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
71 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
72 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
73 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
74 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
75
76 tx->tx_open_txg = txg;
77 }
78
79 /*
80 * Close down the txg subsystem.
81 */
82 void
83 txg_fini(dsl_pool_t *dp)
84 {
85 tx_state_t *tx = &dp->dp_tx;
86 int c;
87
88 ASSERT(tx->tx_threads == 0);
89
90 mutex_destroy(&tx->tx_sync_lock);
91
92 cv_destroy(&tx->tx_sync_more_cv);
93 cv_destroy(&tx->tx_sync_done_cv);
94 cv_destroy(&tx->tx_quiesce_more_cv);
95 cv_destroy(&tx->tx_quiesce_done_cv);
96 cv_destroy(&tx->tx_exit_cv);
97
98 for (c = 0; c < max_ncpus; c++) {
99 int i;
100
101 mutex_destroy(&tx->tx_cpu[c].tc_lock);
102 for (i = 0; i < TXG_SIZE; i++) {
103 cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
104 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
105 }
106 }
107
108 if (tx->tx_commit_cb_taskq != NULL)
109 taskq_destroy(tx->tx_commit_cb_taskq);
110
111 vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
112
113 bzero(tx, sizeof (tx_state_t));
114 }
115
116 /*
117 * Start syncing transaction groups.
118 */
119 void
120 txg_sync_start(dsl_pool_t *dp)
121 {
122 tx_state_t *tx = &dp->dp_tx;
123
124 mutex_enter(&tx->tx_sync_lock);
125
126 dprintf("pool %p\n", dp);
127
128 ASSERT(tx->tx_threads == 0);
129
130 tx->tx_threads = 2;
131
132 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
133 dp, 0, &p0, TS_RUN, minclsyspri);
134
135 /*
136 * The sync thread can need a larger-than-default stack size on
137 * 32-bit x86. This is due in part to nested pools and
138 * scrub_visitbp() recursion.
139 */
140 tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread,
141 dp, 0, &p0, TS_RUN, minclsyspri);
142
143 mutex_exit(&tx->tx_sync_lock);
144 }
145
146 static void
147 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
148 {
149 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
150 mutex_enter(&tx->tx_sync_lock);
151 }
152
153 static void
154 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
155 {
156 ASSERT(*tpp != NULL);
157 *tpp = NULL;
158 tx->tx_threads--;
159 cv_broadcast(&tx->tx_exit_cv);
160 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */
161 thread_exit();
162 }
163
164 static void
165 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, uint64_t time)
166 {
167 CALLB_CPR_SAFE_BEGIN(cpr);
168
169 if (time)
170 (void) cv_timedwait_interruptible(cv, &tx->tx_sync_lock,
171 ddi_get_lbolt() + time);
172 else
173 cv_wait_interruptible(cv, &tx->tx_sync_lock);
174
175 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
176 }
177
178 /*
179 * Stop syncing transaction groups.
180 */
181 void
182 txg_sync_stop(dsl_pool_t *dp)
183 {
184 tx_state_t *tx = &dp->dp_tx;
185
186 dprintf("pool %p\n", dp);
187 /*
188 * Finish off any work in progress.
189 */
190 ASSERT(tx->tx_threads == 2);
191
192 /*
193 * We need to ensure that we've vacated the deferred space_maps.
194 */
195 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
196
197 /*
198 * Wake all sync threads and wait for them to die.
199 */
200 mutex_enter(&tx->tx_sync_lock);
201
202 ASSERT(tx->tx_threads == 2);
203
204 tx->tx_exiting = 1;
205
206 cv_broadcast(&tx->tx_quiesce_more_cv);
207 cv_broadcast(&tx->tx_quiesce_done_cv);
208 cv_broadcast(&tx->tx_sync_more_cv);
209
210 while (tx->tx_threads != 0)
211 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
212
213 tx->tx_exiting = 0;
214
215 mutex_exit(&tx->tx_sync_lock);
216 }
217
218 uint64_t
219 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
220 {
221 tx_state_t *tx = &dp->dp_tx;
222 tx_cpu_t *tc;
223 uint64_t txg;
224
225 /*
226 * It appears the processor id is simply used as a "random"
227 * number to index into the array, and there isn't any other
228 * significance to the chosen tx_cpu. Because.. Why not use
229 * the current cpu to index into the array?
230 */
231 kpreempt_disable();
232 tc = &tx->tx_cpu[CPU_SEQID];
233 kpreempt_enable();
234
235 mutex_enter(&tc->tc_lock);
236
237 txg = tx->tx_open_txg;
238 tc->tc_count[txg & TXG_MASK]++;
239
240 th->th_cpu = tc;
241 th->th_txg = txg;
242
243 return (txg);
244 }
245
246 void
247 txg_rele_to_quiesce(txg_handle_t *th)
248 {
249 tx_cpu_t *tc = th->th_cpu;
250
251 mutex_exit(&tc->tc_lock);
252 }
253
254 void
255 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
256 {
257 tx_cpu_t *tc = th->th_cpu;
258 int g = th->th_txg & TXG_MASK;
259
260 mutex_enter(&tc->tc_lock);
261 list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
262 mutex_exit(&tc->tc_lock);
263 }
264
265 void
266 txg_rele_to_sync(txg_handle_t *th)
267 {
268 tx_cpu_t *tc = th->th_cpu;
269 int g = th->th_txg & TXG_MASK;
270
271 mutex_enter(&tc->tc_lock);
272 ASSERT(tc->tc_count[g] != 0);
273 if (--tc->tc_count[g] == 0)
274 cv_broadcast(&tc->tc_cv[g]);
275 mutex_exit(&tc->tc_lock);
276
277 th->th_cpu = NULL; /* defensive */
278 }
279
280 static void
281 txg_quiesce(dsl_pool_t *dp, uint64_t txg)
282 {
283 hrtime_t start;
284 txg_history_t *th;
285 tx_state_t *tx = &dp->dp_tx;
286 int g = txg & TXG_MASK;
287 int c;
288
289 /*
290 * Grab all tx_cpu locks so nobody else can get into this txg.
291 */
292 for (c = 0; c < max_ncpus; c++)
293 mutex_enter(&tx->tx_cpu[c].tc_lock);
294
295 ASSERT(txg == tx->tx_open_txg);
296 tx->tx_open_txg++;
297
298 /*
299 * Measure how long the txg was open and replace the kstat.
300 */
301 th = dsl_pool_txg_history_get(dp, txg);
302 th->th_kstat.open_time = gethrtime() - th->th_kstat.birth;
303 th->th_kstat.state = TXG_STATE_QUIESCING;
304 dsl_pool_txg_history_put(th);
305 dsl_pool_txg_history_add(dp, tx->tx_open_txg);
306
307 /*
308 * Now that we've incremented tx_open_txg, we can let threads
309 * enter the next transaction group.
310 */
311 for (c = 0; c < max_ncpus; c++)
312 mutex_exit(&tx->tx_cpu[c].tc_lock);
313
314 /*
315 * Quiesce the transaction group by waiting for everyone to txg_exit().
316 */
317 start = gethrtime();
318
319 for (c = 0; c < max_ncpus; c++) {
320 tx_cpu_t *tc = &tx->tx_cpu[c];
321 mutex_enter(&tc->tc_lock);
322 while (tc->tc_count[g] != 0)
323 cv_wait(&tc->tc_cv[g], &tc->tc_lock);
324 mutex_exit(&tc->tc_lock);
325 }
326
327 /*
328 * Measure how long the txg took to quiesce.
329 */
330 th = dsl_pool_txg_history_get(dp, txg);
331 th->th_kstat.quiesce_time = gethrtime() - start;
332 dsl_pool_txg_history_put(th);
333 }
334
335 static void
336 txg_do_callbacks(list_t *cb_list)
337 {
338 dmu_tx_do_callbacks(cb_list, 0);
339
340 list_destroy(cb_list);
341
342 kmem_free(cb_list, sizeof (list_t));
343 }
344
345 /*
346 * Dispatch the commit callbacks registered on this txg to worker threads.
347 */
348 static void
349 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
350 {
351 int c;
352 tx_state_t *tx = &dp->dp_tx;
353 list_t *cb_list;
354
355 for (c = 0; c < max_ncpus; c++) {
356 tx_cpu_t *tc = &tx->tx_cpu[c];
357 /* No need to lock tx_cpu_t at this point */
358
359 int g = txg & TXG_MASK;
360
361 if (list_is_empty(&tc->tc_callbacks[g]))
362 continue;
363
364 if (tx->tx_commit_cb_taskq == NULL) {
365 /*
366 * Commit callback taskq hasn't been created yet.
367 */
368 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
369 100, minclsyspri, max_ncpus, INT_MAX,
370 TASKQ_THREADS_CPU_PCT | TASKQ_PREPOPULATE);
371 }
372
373 cb_list = kmem_alloc(sizeof (list_t), KM_PUSHPAGE);
374 list_create(cb_list, sizeof (dmu_tx_callback_t),
375 offsetof(dmu_tx_callback_t, dcb_node));
376
377 list_move_tail(cb_list, &tc->tc_callbacks[g]);
378
379 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
380 txg_do_callbacks, cb_list, TQ_SLEEP);
381 }
382 }
383
384 /*
385 * Wait for pending commit callbacks of already-synced transactions to finish
386 * processing.
387 * Calling this function from within a commit callback will deadlock.
388 */
389 void
390 txg_wait_callbacks(dsl_pool_t *dp)
391 {
392 tx_state_t *tx = &dp->dp_tx;
393
394 if (tx->tx_commit_cb_taskq != NULL)
395 taskq_wait(tx->tx_commit_cb_taskq);
396 }
397
398 static void
399 txg_sync_thread(dsl_pool_t *dp)
400 {
401 spa_t *spa = dp->dp_spa;
402 tx_state_t *tx = &dp->dp_tx;
403 callb_cpr_t cpr;
404 uint64_t start, delta;
405
406 #ifdef _KERNEL
407 /*
408 * Annotate this process with a flag that indicates that it is
409 * unsafe to use KM_SLEEP during memory allocations due to the
410 * potential for a deadlock. KM_PUSHPAGE should be used instead.
411 */
412 current->flags |= PF_NOFS;
413 #endif /* _KERNEL */
414
415 txg_thread_enter(tx, &cpr);
416
417 start = delta = 0;
418 for (;;) {
419 hrtime_t hrstart;
420 txg_history_t *th;
421 uint64_t timer, timeout;
422 uint64_t txg;
423
424 timeout = zfs_txg_timeout * hz;
425
426 /*
427 * We sync when we're scanning, there's someone waiting
428 * on us, or the quiesce thread has handed off a txg to
429 * us, or we have reached our timeout.
430 */
431 timer = (delta >= timeout ? 0 : timeout - delta);
432 while (!dsl_scan_active(dp->dp_scan) &&
433 !tx->tx_exiting && timer > 0 &&
434 tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
435 tx->tx_quiesced_txg == 0) {
436 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
437 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
438 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
439 delta = ddi_get_lbolt() - start;
440 timer = (delta > timeout ? 0 : timeout - delta);
441 }
442
443 /*
444 * Wait until the quiesce thread hands off a txg to us,
445 * prompting it to do so if necessary.
446 */
447 while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) {
448 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
449 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
450 cv_broadcast(&tx->tx_quiesce_more_cv);
451 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
452 }
453
454 if (tx->tx_exiting)
455 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
456
457 /*
458 * Consume the quiesced txg which has been handed off to
459 * us. This may cause the quiescing thread to now be
460 * able to quiesce another txg, so we must signal it.
461 */
462 txg = tx->tx_quiesced_txg;
463 tx->tx_quiesced_txg = 0;
464 tx->tx_syncing_txg = txg;
465 cv_broadcast(&tx->tx_quiesce_more_cv);
466
467 th = dsl_pool_txg_history_get(dp, txg);
468 th->th_kstat.state = TXG_STATE_SYNCING;
469 vdev_get_stats(spa->spa_root_vdev, &th->th_vs1);
470 dsl_pool_txg_history_put(th);
471
472 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
473 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
474 mutex_exit(&tx->tx_sync_lock);
475
476 start = ddi_get_lbolt();
477 hrstart = gethrtime();
478 spa_sync(spa, txg);
479 delta = ddi_get_lbolt() - start;
480
481 mutex_enter(&tx->tx_sync_lock);
482 tx->tx_synced_txg = txg;
483 tx->tx_syncing_txg = 0;
484 cv_broadcast(&tx->tx_sync_done_cv);
485
486 /*
487 * Dispatch commit callbacks to worker threads.
488 */
489 txg_dispatch_callbacks(dp, txg);
490
491 /*
492 * Measure the txg sync time determine the amount of I/O done.
493 */
494 th = dsl_pool_txg_history_get(dp, txg);
495 vdev_get_stats(spa->spa_root_vdev, &th->th_vs2);
496 th->th_kstat.sync_time = gethrtime() - hrstart;
497 th->th_kstat.nread = th->th_vs2.vs_bytes[ZIO_TYPE_READ] -
498 th->th_vs1.vs_bytes[ZIO_TYPE_READ];
499 th->th_kstat.nwritten = th->th_vs2.vs_bytes[ZIO_TYPE_WRITE] -
500 th->th_vs1.vs_bytes[ZIO_TYPE_WRITE];
501 th->th_kstat.reads = th->th_vs2.vs_ops[ZIO_TYPE_READ] -
502 th->th_vs1.vs_ops[ZIO_TYPE_READ];
503 th->th_kstat.writes = th->th_vs2.vs_ops[ZIO_TYPE_WRITE] -
504 th->th_vs1.vs_ops[ZIO_TYPE_WRITE];
505 th->th_kstat.state = TXG_STATE_COMMITTED;
506 dsl_pool_txg_history_put(th);
507 }
508 }
509
510 static void
511 txg_quiesce_thread(dsl_pool_t *dp)
512 {
513 tx_state_t *tx = &dp->dp_tx;
514 callb_cpr_t cpr;
515
516 txg_thread_enter(tx, &cpr);
517
518 for (;;) {
519 uint64_t txg;
520
521 /*
522 * We quiesce when there's someone waiting on us.
523 * However, we can only have one txg in "quiescing" or
524 * "quiesced, waiting to sync" state. So we wait until
525 * the "quiesced, waiting to sync" txg has been consumed
526 * by the sync thread.
527 */
528 while (!tx->tx_exiting &&
529 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
530 tx->tx_quiesced_txg != 0))
531 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
532
533 if (tx->tx_exiting)
534 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
535
536 txg = tx->tx_open_txg;
537 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
538 txg, tx->tx_quiesce_txg_waiting,
539 tx->tx_sync_txg_waiting);
540 mutex_exit(&tx->tx_sync_lock);
541 txg_quiesce(dp, txg);
542 mutex_enter(&tx->tx_sync_lock);
543
544 /*
545 * Hand this txg off to the sync thread.
546 */
547 dprintf("quiesce done, handing off txg %llu\n", txg);
548 tx->tx_quiesced_txg = txg;
549 cv_broadcast(&tx->tx_sync_more_cv);
550 cv_broadcast(&tx->tx_quiesce_done_cv);
551 }
552 }
553
554 /*
555 * Delay this thread by 'ticks' if we are still in the open transaction
556 * group and there is already a waiting txg quiesing or quiesced. Abort
557 * the delay if this txg stalls or enters the quiesing state.
558 */
559 void
560 txg_delay(dsl_pool_t *dp, uint64_t txg, int ticks)
561 {
562 tx_state_t *tx = &dp->dp_tx;
563 clock_t timeout = ddi_get_lbolt() + ticks;
564
565 /* don't delay if this txg could transition to quiesing immediately */
566 if (tx->tx_open_txg > txg ||
567 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
568 return;
569
570 mutex_enter(&tx->tx_sync_lock);
571 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
572 mutex_exit(&tx->tx_sync_lock);
573 return;
574 }
575
576 while (ddi_get_lbolt() < timeout &&
577 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp))
578 (void) cv_timedwait(&tx->tx_quiesce_more_cv, &tx->tx_sync_lock,
579 timeout);
580
581 DMU_TX_STAT_BUMP(dmu_tx_delay);
582
583 mutex_exit(&tx->tx_sync_lock);
584 }
585
586 void
587 txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
588 {
589 tx_state_t *tx = &dp->dp_tx;
590
591 mutex_enter(&tx->tx_sync_lock);
592 ASSERT(tx->tx_threads == 2);
593 if (txg == 0)
594 txg = tx->tx_open_txg + TXG_DEFER_SIZE;
595 if (tx->tx_sync_txg_waiting < txg)
596 tx->tx_sync_txg_waiting = txg;
597 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
598 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
599 while (tx->tx_synced_txg < txg) {
600 dprintf("broadcasting sync more "
601 "tx_synced=%llu waiting=%llu dp=%p\n",
602 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
603 cv_broadcast(&tx->tx_sync_more_cv);
604 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
605 }
606 mutex_exit(&tx->tx_sync_lock);
607 }
608
609 void
610 txg_wait_open(dsl_pool_t *dp, uint64_t txg)
611 {
612 tx_state_t *tx = &dp->dp_tx;
613
614 mutex_enter(&tx->tx_sync_lock);
615 ASSERT(tx->tx_threads == 2);
616 if (txg == 0)
617 txg = tx->tx_open_txg + 1;
618 if (tx->tx_quiesce_txg_waiting < txg)
619 tx->tx_quiesce_txg_waiting = txg;
620 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
621 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
622 while (tx->tx_open_txg < txg) {
623 cv_broadcast(&tx->tx_quiesce_more_cv);
624 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
625 }
626 mutex_exit(&tx->tx_sync_lock);
627 }
628
629 boolean_t
630 txg_stalled(dsl_pool_t *dp)
631 {
632 tx_state_t *tx = &dp->dp_tx;
633 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
634 }
635
636 boolean_t
637 txg_sync_waiting(dsl_pool_t *dp)
638 {
639 tx_state_t *tx = &dp->dp_tx;
640
641 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
642 tx->tx_quiesced_txg != 0);
643 }
644
645 /*
646 * Per-txg object lists.
647 */
648 void
649 txg_list_create(txg_list_t *tl, size_t offset)
650 {
651 int t;
652
653 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
654
655 tl->tl_offset = offset;
656
657 for (t = 0; t < TXG_SIZE; t++)
658 tl->tl_head[t] = NULL;
659 }
660
661 void
662 txg_list_destroy(txg_list_t *tl)
663 {
664 int t;
665
666 for (t = 0; t < TXG_SIZE; t++)
667 ASSERT(txg_list_empty(tl, t));
668
669 mutex_destroy(&tl->tl_lock);
670 }
671
672 int
673 txg_list_empty(txg_list_t *tl, uint64_t txg)
674 {
675 return (tl->tl_head[txg & TXG_MASK] == NULL);
676 }
677
678 /*
679 * Add an entry to the list.
680 * Returns 0 if it's a new entry, 1 if it's already there.
681 */
682 int
683 txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
684 {
685 int t = txg & TXG_MASK;
686 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
687 int already_on_list;
688
689 mutex_enter(&tl->tl_lock);
690 already_on_list = tn->tn_member[t];
691 if (!already_on_list) {
692 tn->tn_member[t] = 1;
693 tn->tn_next[t] = tl->tl_head[t];
694 tl->tl_head[t] = tn;
695 }
696 mutex_exit(&tl->tl_lock);
697
698 return (already_on_list);
699 }
700
701 /*
702 * Add an entry to the end of the list (walks list to find end).
703 * Returns 0 if it's a new entry, 1 if it's already there.
704 */
705 int
706 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
707 {
708 int t = txg & TXG_MASK;
709 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
710 int already_on_list;
711
712 mutex_enter(&tl->tl_lock);
713 already_on_list = tn->tn_member[t];
714 if (!already_on_list) {
715 txg_node_t **tp;
716
717 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
718 continue;
719
720 tn->tn_member[t] = 1;
721 tn->tn_next[t] = NULL;
722 *tp = tn;
723 }
724 mutex_exit(&tl->tl_lock);
725
726 return (already_on_list);
727 }
728
729 /*
730 * Remove the head of the list and return it.
731 */
732 void *
733 txg_list_remove(txg_list_t *tl, uint64_t txg)
734 {
735 int t = txg & TXG_MASK;
736 txg_node_t *tn;
737 void *p = NULL;
738
739 mutex_enter(&tl->tl_lock);
740 if ((tn = tl->tl_head[t]) != NULL) {
741 p = (char *)tn - tl->tl_offset;
742 tl->tl_head[t] = tn->tn_next[t];
743 tn->tn_next[t] = NULL;
744 tn->tn_member[t] = 0;
745 }
746 mutex_exit(&tl->tl_lock);
747
748 return (p);
749 }
750
751 /*
752 * Remove a specific item from the list and return it.
753 */
754 void *
755 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
756 {
757 int t = txg & TXG_MASK;
758 txg_node_t *tn, **tp;
759
760 mutex_enter(&tl->tl_lock);
761
762 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
763 if ((char *)tn - tl->tl_offset == p) {
764 *tp = tn->tn_next[t];
765 tn->tn_next[t] = NULL;
766 tn->tn_member[t] = 0;
767 mutex_exit(&tl->tl_lock);
768 return (p);
769 }
770 }
771
772 mutex_exit(&tl->tl_lock);
773
774 return (NULL);
775 }
776
777 int
778 txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
779 {
780 int t = txg & TXG_MASK;
781 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
782
783 return (tn->tn_member[t]);
784 }
785
786 /*
787 * Walk a txg list -- only safe if you know it's not changing.
788 */
789 void *
790 txg_list_head(txg_list_t *tl, uint64_t txg)
791 {
792 int t = txg & TXG_MASK;
793 txg_node_t *tn = tl->tl_head[t];
794
795 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
796 }
797
798 void *
799 txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
800 {
801 int t = txg & TXG_MASK;
802 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
803
804 tn = tn->tn_next[t];
805
806 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
807 }
808
809 #if defined(_KERNEL) && defined(HAVE_SPL)
810 EXPORT_SYMBOL(txg_init);
811 EXPORT_SYMBOL(txg_fini);
812 EXPORT_SYMBOL(txg_sync_start);
813 EXPORT_SYMBOL(txg_sync_stop);
814 EXPORT_SYMBOL(txg_hold_open);
815 EXPORT_SYMBOL(txg_rele_to_quiesce);
816 EXPORT_SYMBOL(txg_rele_to_sync);
817 EXPORT_SYMBOL(txg_register_callbacks);
818 EXPORT_SYMBOL(txg_delay);
819 EXPORT_SYMBOL(txg_wait_synced);
820 EXPORT_SYMBOL(txg_wait_open);
821 EXPORT_SYMBOL(txg_wait_callbacks);
822 EXPORT_SYMBOL(txg_stalled);
823 EXPORT_SYMBOL(txg_sync_waiting);
824
825 module_param(zfs_txg_timeout, int, 0644);
826 MODULE_PARM_DESC(zfs_txg_timeout, "Max seconds worth of delta per txg");
827 #endif