]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
OpenZFS 7885 - zpool list can report 16.0e for expandsz
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/space_reftree.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/abd.h>
47 #include <sys/zvol.h>
48 #include <sys/zfs_ratelimit.h>
49
50 /*
51 * When a vdev is added, it will be divided into approximately (but no
52 * more than) this number of metaslabs.
53 */
54 int metaslabs_per_vdev = 200;
55
56 /*
57 * Virtual device management.
58 */
59
60 static vdev_ops_t *vdev_ops_table[] = {
61 &vdev_root_ops,
62 &vdev_raidz_ops,
63 &vdev_mirror_ops,
64 &vdev_replacing_ops,
65 &vdev_spare_ops,
66 &vdev_disk_ops,
67 &vdev_file_ops,
68 &vdev_missing_ops,
69 &vdev_hole_ops,
70 NULL
71 };
72
73 /*
74 * Given a vdev type, return the appropriate ops vector.
75 */
76 static vdev_ops_t *
77 vdev_getops(const char *type)
78 {
79 vdev_ops_t *ops, **opspp;
80
81 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
82 if (strcmp(ops->vdev_op_type, type) == 0)
83 break;
84
85 return (ops);
86 }
87
88 /*
89 * Default asize function: return the MAX of psize with the asize of
90 * all children. This is what's used by anything other than RAID-Z.
91 */
92 uint64_t
93 vdev_default_asize(vdev_t *vd, uint64_t psize)
94 {
95 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
96 uint64_t csize;
97 int c;
98
99 for (c = 0; c < vd->vdev_children; c++) {
100 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
101 asize = MAX(asize, csize);
102 }
103
104 return (asize);
105 }
106
107 /*
108 * Get the minimum allocatable size. We define the allocatable size as
109 * the vdev's asize rounded to the nearest metaslab. This allows us to
110 * replace or attach devices which don't have the same physical size but
111 * can still satisfy the same number of allocations.
112 */
113 uint64_t
114 vdev_get_min_asize(vdev_t *vd)
115 {
116 vdev_t *pvd = vd->vdev_parent;
117
118 /*
119 * If our parent is NULL (inactive spare or cache) or is the root,
120 * just return our own asize.
121 */
122 if (pvd == NULL)
123 return (vd->vdev_asize);
124
125 /*
126 * The top-level vdev just returns the allocatable size rounded
127 * to the nearest metaslab.
128 */
129 if (vd == vd->vdev_top)
130 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
131
132 /*
133 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
134 * so each child must provide at least 1/Nth of its asize.
135 */
136 if (pvd->vdev_ops == &vdev_raidz_ops)
137 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
138 pvd->vdev_children);
139
140 return (pvd->vdev_min_asize);
141 }
142
143 void
144 vdev_set_min_asize(vdev_t *vd)
145 {
146 int c;
147 vd->vdev_min_asize = vdev_get_min_asize(vd);
148
149 for (c = 0; c < vd->vdev_children; c++)
150 vdev_set_min_asize(vd->vdev_child[c]);
151 }
152
153 vdev_t *
154 vdev_lookup_top(spa_t *spa, uint64_t vdev)
155 {
156 vdev_t *rvd = spa->spa_root_vdev;
157
158 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
159
160 if (vdev < rvd->vdev_children) {
161 ASSERT(rvd->vdev_child[vdev] != NULL);
162 return (rvd->vdev_child[vdev]);
163 }
164
165 return (NULL);
166 }
167
168 vdev_t *
169 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
170 {
171 vdev_t *mvd;
172 int c;
173
174 if (vd->vdev_guid == guid)
175 return (vd);
176
177 for (c = 0; c < vd->vdev_children; c++)
178 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
179 NULL)
180 return (mvd);
181
182 return (NULL);
183 }
184
185 static int
186 vdev_count_leaves_impl(vdev_t *vd)
187 {
188 int n = 0;
189 int c;
190
191 if (vd->vdev_ops->vdev_op_leaf)
192 return (1);
193
194 for (c = 0; c < vd->vdev_children; c++)
195 n += vdev_count_leaves_impl(vd->vdev_child[c]);
196
197 return (n);
198 }
199
200 int
201 vdev_count_leaves(spa_t *spa)
202 {
203 return (vdev_count_leaves_impl(spa->spa_root_vdev));
204 }
205
206 void
207 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
208 {
209 size_t oldsize, newsize;
210 uint64_t id = cvd->vdev_id;
211 vdev_t **newchild;
212
213 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
214 ASSERT(cvd->vdev_parent == NULL);
215
216 cvd->vdev_parent = pvd;
217
218 if (pvd == NULL)
219 return;
220
221 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
222
223 oldsize = pvd->vdev_children * sizeof (vdev_t *);
224 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
225 newsize = pvd->vdev_children * sizeof (vdev_t *);
226
227 newchild = kmem_alloc(newsize, KM_SLEEP);
228 if (pvd->vdev_child != NULL) {
229 bcopy(pvd->vdev_child, newchild, oldsize);
230 kmem_free(pvd->vdev_child, oldsize);
231 }
232
233 pvd->vdev_child = newchild;
234 pvd->vdev_child[id] = cvd;
235
236 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
237 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
238
239 /*
240 * Walk up all ancestors to update guid sum.
241 */
242 for (; pvd != NULL; pvd = pvd->vdev_parent)
243 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
244 }
245
246 void
247 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
248 {
249 int c;
250 uint_t id = cvd->vdev_id;
251
252 ASSERT(cvd->vdev_parent == pvd);
253
254 if (pvd == NULL)
255 return;
256
257 ASSERT(id < pvd->vdev_children);
258 ASSERT(pvd->vdev_child[id] == cvd);
259
260 pvd->vdev_child[id] = NULL;
261 cvd->vdev_parent = NULL;
262
263 for (c = 0; c < pvd->vdev_children; c++)
264 if (pvd->vdev_child[c])
265 break;
266
267 if (c == pvd->vdev_children) {
268 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
269 pvd->vdev_child = NULL;
270 pvd->vdev_children = 0;
271 }
272
273 /*
274 * Walk up all ancestors to update guid sum.
275 */
276 for (; pvd != NULL; pvd = pvd->vdev_parent)
277 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
278 }
279
280 /*
281 * Remove any holes in the child array.
282 */
283 void
284 vdev_compact_children(vdev_t *pvd)
285 {
286 vdev_t **newchild, *cvd;
287 int oldc = pvd->vdev_children;
288 int newc;
289 int c;
290
291 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
292
293 for (c = newc = 0; c < oldc; c++)
294 if (pvd->vdev_child[c])
295 newc++;
296
297 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
298
299 for (c = newc = 0; c < oldc; c++) {
300 if ((cvd = pvd->vdev_child[c]) != NULL) {
301 newchild[newc] = cvd;
302 cvd->vdev_id = newc++;
303 }
304 }
305
306 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
307 pvd->vdev_child = newchild;
308 pvd->vdev_children = newc;
309 }
310
311 /*
312 * Allocate and minimally initialize a vdev_t.
313 */
314 vdev_t *
315 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
316 {
317 vdev_t *vd;
318 int t;
319
320 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
321
322 if (spa->spa_root_vdev == NULL) {
323 ASSERT(ops == &vdev_root_ops);
324 spa->spa_root_vdev = vd;
325 spa->spa_load_guid = spa_generate_guid(NULL);
326 }
327
328 if (guid == 0 && ops != &vdev_hole_ops) {
329 if (spa->spa_root_vdev == vd) {
330 /*
331 * The root vdev's guid will also be the pool guid,
332 * which must be unique among all pools.
333 */
334 guid = spa_generate_guid(NULL);
335 } else {
336 /*
337 * Any other vdev's guid must be unique within the pool.
338 */
339 guid = spa_generate_guid(spa);
340 }
341 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
342 }
343
344 vd->vdev_spa = spa;
345 vd->vdev_id = id;
346 vd->vdev_guid = guid;
347 vd->vdev_guid_sum = guid;
348 vd->vdev_ops = ops;
349 vd->vdev_state = VDEV_STATE_CLOSED;
350 vd->vdev_ishole = (ops == &vdev_hole_ops);
351
352 /*
353 * Initialize rate limit structs for events. We rate limit ZIO delay
354 * and checksum events so that we don't overwhelm ZED with thousands
355 * of events when a disk is acting up.
356 */
357 zfs_ratelimit_init(&vd->vdev_delay_rl, DELAYS_PER_SECOND, 1);
358 zfs_ratelimit_init(&vd->vdev_checksum_rl, CHECKSUMS_PER_SECOND, 1);
359
360 list_link_init(&vd->vdev_config_dirty_node);
361 list_link_init(&vd->vdev_state_dirty_node);
362 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
363 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
364 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
365 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
366
367 for (t = 0; t < DTL_TYPES; t++) {
368 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
369 &vd->vdev_dtl_lock);
370 }
371 txg_list_create(&vd->vdev_ms_list,
372 offsetof(struct metaslab, ms_txg_node));
373 txg_list_create(&vd->vdev_dtl_list,
374 offsetof(struct vdev, vdev_dtl_node));
375 vd->vdev_stat.vs_timestamp = gethrtime();
376 vdev_queue_init(vd);
377 vdev_cache_init(vd);
378
379 return (vd);
380 }
381
382 /*
383 * Allocate a new vdev. The 'alloctype' is used to control whether we are
384 * creating a new vdev or loading an existing one - the behavior is slightly
385 * different for each case.
386 */
387 int
388 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
389 int alloctype)
390 {
391 vdev_ops_t *ops;
392 char *type;
393 uint64_t guid = 0, islog, nparity;
394 vdev_t *vd;
395
396 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
397
398 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
399 return (SET_ERROR(EINVAL));
400
401 if ((ops = vdev_getops(type)) == NULL)
402 return (SET_ERROR(EINVAL));
403
404 /*
405 * If this is a load, get the vdev guid from the nvlist.
406 * Otherwise, vdev_alloc_common() will generate one for us.
407 */
408 if (alloctype == VDEV_ALLOC_LOAD) {
409 uint64_t label_id;
410
411 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
412 label_id != id)
413 return (SET_ERROR(EINVAL));
414
415 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
416 return (SET_ERROR(EINVAL));
417 } else if (alloctype == VDEV_ALLOC_SPARE) {
418 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
419 return (SET_ERROR(EINVAL));
420 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
421 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
422 return (SET_ERROR(EINVAL));
423 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
424 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
425 return (SET_ERROR(EINVAL));
426 }
427
428 /*
429 * The first allocated vdev must be of type 'root'.
430 */
431 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
432 return (SET_ERROR(EINVAL));
433
434 /*
435 * Determine whether we're a log vdev.
436 */
437 islog = 0;
438 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
439 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
440 return (SET_ERROR(ENOTSUP));
441
442 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
443 return (SET_ERROR(ENOTSUP));
444
445 /*
446 * Set the nparity property for RAID-Z vdevs.
447 */
448 nparity = -1ULL;
449 if (ops == &vdev_raidz_ops) {
450 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
451 &nparity) == 0) {
452 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
453 return (SET_ERROR(EINVAL));
454 /*
455 * Previous versions could only support 1 or 2 parity
456 * device.
457 */
458 if (nparity > 1 &&
459 spa_version(spa) < SPA_VERSION_RAIDZ2)
460 return (SET_ERROR(ENOTSUP));
461 if (nparity > 2 &&
462 spa_version(spa) < SPA_VERSION_RAIDZ3)
463 return (SET_ERROR(ENOTSUP));
464 } else {
465 /*
466 * We require the parity to be specified for SPAs that
467 * support multiple parity levels.
468 */
469 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
470 return (SET_ERROR(EINVAL));
471 /*
472 * Otherwise, we default to 1 parity device for RAID-Z.
473 */
474 nparity = 1;
475 }
476 } else {
477 nparity = 0;
478 }
479 ASSERT(nparity != -1ULL);
480
481 vd = vdev_alloc_common(spa, id, guid, ops);
482
483 vd->vdev_islog = islog;
484 vd->vdev_nparity = nparity;
485
486 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
487 vd->vdev_path = spa_strdup(vd->vdev_path);
488 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
489 vd->vdev_devid = spa_strdup(vd->vdev_devid);
490 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
491 &vd->vdev_physpath) == 0)
492 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
493
494 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
495 &vd->vdev_enc_sysfs_path) == 0)
496 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
497
498 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
499 vd->vdev_fru = spa_strdup(vd->vdev_fru);
500
501 /*
502 * Set the whole_disk property. If it's not specified, leave the value
503 * as -1.
504 */
505 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
506 &vd->vdev_wholedisk) != 0)
507 vd->vdev_wholedisk = -1ULL;
508
509 /*
510 * Look for the 'not present' flag. This will only be set if the device
511 * was not present at the time of import.
512 */
513 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
514 &vd->vdev_not_present);
515
516 /*
517 * Get the alignment requirement.
518 */
519 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
520
521 /*
522 * Retrieve the vdev creation time.
523 */
524 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
525 &vd->vdev_crtxg);
526
527 /*
528 * If we're a top-level vdev, try to load the allocation parameters.
529 */
530 if (parent && !parent->vdev_parent &&
531 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
532 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
533 &vd->vdev_ms_array);
534 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
535 &vd->vdev_ms_shift);
536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
537 &vd->vdev_asize);
538 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
539 &vd->vdev_removing);
540 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
541 &vd->vdev_top_zap);
542 } else {
543 ASSERT0(vd->vdev_top_zap);
544 }
545
546 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
547 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
548 alloctype == VDEV_ALLOC_ADD ||
549 alloctype == VDEV_ALLOC_SPLIT ||
550 alloctype == VDEV_ALLOC_ROOTPOOL);
551 vd->vdev_mg = metaslab_group_create(islog ?
552 spa_log_class(spa) : spa_normal_class(spa), vd);
553 }
554
555 if (vd->vdev_ops->vdev_op_leaf &&
556 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
557 (void) nvlist_lookup_uint64(nv,
558 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
559 } else {
560 ASSERT0(vd->vdev_leaf_zap);
561 }
562
563 /*
564 * If we're a leaf vdev, try to load the DTL object and other state.
565 */
566
567 if (vd->vdev_ops->vdev_op_leaf &&
568 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
569 alloctype == VDEV_ALLOC_ROOTPOOL)) {
570 if (alloctype == VDEV_ALLOC_LOAD) {
571 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
572 &vd->vdev_dtl_object);
573 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
574 &vd->vdev_unspare);
575 }
576
577 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
578 uint64_t spare = 0;
579
580 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
581 &spare) == 0 && spare)
582 spa_spare_add(vd);
583 }
584
585 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
586 &vd->vdev_offline);
587
588 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
589 &vd->vdev_resilver_txg);
590
591 /*
592 * When importing a pool, we want to ignore the persistent fault
593 * state, as the diagnosis made on another system may not be
594 * valid in the current context. Local vdevs will
595 * remain in the faulted state.
596 */
597 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
598 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
599 &vd->vdev_faulted);
600 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
601 &vd->vdev_degraded);
602 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
603 &vd->vdev_removed);
604
605 if (vd->vdev_faulted || vd->vdev_degraded) {
606 char *aux;
607
608 vd->vdev_label_aux =
609 VDEV_AUX_ERR_EXCEEDED;
610 if (nvlist_lookup_string(nv,
611 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
612 strcmp(aux, "external") == 0)
613 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
614 }
615 }
616 }
617
618 /*
619 * Add ourselves to the parent's list of children.
620 */
621 vdev_add_child(parent, vd);
622
623 *vdp = vd;
624
625 return (0);
626 }
627
628 void
629 vdev_free(vdev_t *vd)
630 {
631 int c, t;
632 spa_t *spa = vd->vdev_spa;
633
634 /*
635 * vdev_free() implies closing the vdev first. This is simpler than
636 * trying to ensure complicated semantics for all callers.
637 */
638 vdev_close(vd);
639
640 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
641 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
642
643 /*
644 * Free all children.
645 */
646 for (c = 0; c < vd->vdev_children; c++)
647 vdev_free(vd->vdev_child[c]);
648
649 ASSERT(vd->vdev_child == NULL);
650 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
651
652 /*
653 * Discard allocation state.
654 */
655 if (vd->vdev_mg != NULL) {
656 vdev_metaslab_fini(vd);
657 metaslab_group_destroy(vd->vdev_mg);
658 }
659
660 ASSERT0(vd->vdev_stat.vs_space);
661 ASSERT0(vd->vdev_stat.vs_dspace);
662 ASSERT0(vd->vdev_stat.vs_alloc);
663
664 /*
665 * Remove this vdev from its parent's child list.
666 */
667 vdev_remove_child(vd->vdev_parent, vd);
668
669 ASSERT(vd->vdev_parent == NULL);
670
671 /*
672 * Clean up vdev structure.
673 */
674 vdev_queue_fini(vd);
675 vdev_cache_fini(vd);
676
677 if (vd->vdev_path)
678 spa_strfree(vd->vdev_path);
679 if (vd->vdev_devid)
680 spa_strfree(vd->vdev_devid);
681 if (vd->vdev_physpath)
682 spa_strfree(vd->vdev_physpath);
683
684 if (vd->vdev_enc_sysfs_path)
685 spa_strfree(vd->vdev_enc_sysfs_path);
686
687 if (vd->vdev_fru)
688 spa_strfree(vd->vdev_fru);
689
690 if (vd->vdev_isspare)
691 spa_spare_remove(vd);
692 if (vd->vdev_isl2cache)
693 spa_l2cache_remove(vd);
694
695 txg_list_destroy(&vd->vdev_ms_list);
696 txg_list_destroy(&vd->vdev_dtl_list);
697
698 mutex_enter(&vd->vdev_dtl_lock);
699 space_map_close(vd->vdev_dtl_sm);
700 for (t = 0; t < DTL_TYPES; t++) {
701 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
702 range_tree_destroy(vd->vdev_dtl[t]);
703 }
704 mutex_exit(&vd->vdev_dtl_lock);
705
706 mutex_destroy(&vd->vdev_queue_lock);
707 mutex_destroy(&vd->vdev_dtl_lock);
708 mutex_destroy(&vd->vdev_stat_lock);
709 mutex_destroy(&vd->vdev_probe_lock);
710
711 if (vd == spa->spa_root_vdev)
712 spa->spa_root_vdev = NULL;
713
714 kmem_free(vd, sizeof (vdev_t));
715 }
716
717 /*
718 * Transfer top-level vdev state from svd to tvd.
719 */
720 static void
721 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
722 {
723 spa_t *spa = svd->vdev_spa;
724 metaslab_t *msp;
725 vdev_t *vd;
726 int t;
727
728 ASSERT(tvd == tvd->vdev_top);
729
730 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
731 tvd->vdev_ms_array = svd->vdev_ms_array;
732 tvd->vdev_ms_shift = svd->vdev_ms_shift;
733 tvd->vdev_ms_count = svd->vdev_ms_count;
734 tvd->vdev_top_zap = svd->vdev_top_zap;
735
736 svd->vdev_ms_array = 0;
737 svd->vdev_ms_shift = 0;
738 svd->vdev_ms_count = 0;
739 svd->vdev_top_zap = 0;
740
741 if (tvd->vdev_mg)
742 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
743 tvd->vdev_mg = svd->vdev_mg;
744 tvd->vdev_ms = svd->vdev_ms;
745
746 svd->vdev_mg = NULL;
747 svd->vdev_ms = NULL;
748
749 if (tvd->vdev_mg != NULL)
750 tvd->vdev_mg->mg_vd = tvd;
751
752 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
753 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
754 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
755
756 svd->vdev_stat.vs_alloc = 0;
757 svd->vdev_stat.vs_space = 0;
758 svd->vdev_stat.vs_dspace = 0;
759
760 for (t = 0; t < TXG_SIZE; t++) {
761 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
762 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
763 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
764 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
765 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
766 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
767 }
768
769 if (list_link_active(&svd->vdev_config_dirty_node)) {
770 vdev_config_clean(svd);
771 vdev_config_dirty(tvd);
772 }
773
774 if (list_link_active(&svd->vdev_state_dirty_node)) {
775 vdev_state_clean(svd);
776 vdev_state_dirty(tvd);
777 }
778
779 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
780 svd->vdev_deflate_ratio = 0;
781
782 tvd->vdev_islog = svd->vdev_islog;
783 svd->vdev_islog = 0;
784 }
785
786 static void
787 vdev_top_update(vdev_t *tvd, vdev_t *vd)
788 {
789 int c;
790
791 if (vd == NULL)
792 return;
793
794 vd->vdev_top = tvd;
795
796 for (c = 0; c < vd->vdev_children; c++)
797 vdev_top_update(tvd, vd->vdev_child[c]);
798 }
799
800 /*
801 * Add a mirror/replacing vdev above an existing vdev.
802 */
803 vdev_t *
804 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
805 {
806 spa_t *spa = cvd->vdev_spa;
807 vdev_t *pvd = cvd->vdev_parent;
808 vdev_t *mvd;
809
810 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
811
812 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
813
814 mvd->vdev_asize = cvd->vdev_asize;
815 mvd->vdev_min_asize = cvd->vdev_min_asize;
816 mvd->vdev_max_asize = cvd->vdev_max_asize;
817 mvd->vdev_ashift = cvd->vdev_ashift;
818 mvd->vdev_state = cvd->vdev_state;
819 mvd->vdev_crtxg = cvd->vdev_crtxg;
820
821 vdev_remove_child(pvd, cvd);
822 vdev_add_child(pvd, mvd);
823 cvd->vdev_id = mvd->vdev_children;
824 vdev_add_child(mvd, cvd);
825 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
826
827 if (mvd == mvd->vdev_top)
828 vdev_top_transfer(cvd, mvd);
829
830 return (mvd);
831 }
832
833 /*
834 * Remove a 1-way mirror/replacing vdev from the tree.
835 */
836 void
837 vdev_remove_parent(vdev_t *cvd)
838 {
839 vdev_t *mvd = cvd->vdev_parent;
840 vdev_t *pvd = mvd->vdev_parent;
841
842 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
843
844 ASSERT(mvd->vdev_children == 1);
845 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
846 mvd->vdev_ops == &vdev_replacing_ops ||
847 mvd->vdev_ops == &vdev_spare_ops);
848 cvd->vdev_ashift = mvd->vdev_ashift;
849
850 vdev_remove_child(mvd, cvd);
851 vdev_remove_child(pvd, mvd);
852
853 /*
854 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
855 * Otherwise, we could have detached an offline device, and when we
856 * go to import the pool we'll think we have two top-level vdevs,
857 * instead of a different version of the same top-level vdev.
858 */
859 if (mvd->vdev_top == mvd) {
860 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
861 cvd->vdev_orig_guid = cvd->vdev_guid;
862 cvd->vdev_guid += guid_delta;
863 cvd->vdev_guid_sum += guid_delta;
864
865 /*
866 * If pool not set for autoexpand, we need to also preserve
867 * mvd's asize to prevent automatic expansion of cvd.
868 * Otherwise if we are adjusting the mirror by attaching and
869 * detaching children of non-uniform sizes, the mirror could
870 * autoexpand, unexpectedly requiring larger devices to
871 * re-establish the mirror.
872 */
873 if (!cvd->vdev_spa->spa_autoexpand)
874 cvd->vdev_asize = mvd->vdev_asize;
875 }
876 cvd->vdev_id = mvd->vdev_id;
877 vdev_add_child(pvd, cvd);
878 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
879
880 if (cvd == cvd->vdev_top)
881 vdev_top_transfer(mvd, cvd);
882
883 ASSERT(mvd->vdev_children == 0);
884 vdev_free(mvd);
885 }
886
887 int
888 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
889 {
890 spa_t *spa = vd->vdev_spa;
891 objset_t *mos = spa->spa_meta_objset;
892 uint64_t m;
893 uint64_t oldc = vd->vdev_ms_count;
894 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
895 metaslab_t **mspp;
896 int error;
897
898 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
899
900 /*
901 * This vdev is not being allocated from yet or is a hole.
902 */
903 if (vd->vdev_ms_shift == 0)
904 return (0);
905
906 ASSERT(!vd->vdev_ishole);
907
908 /*
909 * Compute the raidz-deflation ratio. Note, we hard-code
910 * in 128k (1 << 17) because it is the "typical" blocksize.
911 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
912 * otherwise it would inconsistently account for existing bp's.
913 */
914 vd->vdev_deflate_ratio = (1 << 17) /
915 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
916
917 ASSERT(oldc <= newc);
918
919 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
920
921 if (oldc != 0) {
922 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
923 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
924 }
925
926 vd->vdev_ms = mspp;
927 vd->vdev_ms_count = newc;
928
929 for (m = oldc; m < newc; m++) {
930 uint64_t object = 0;
931
932 if (txg == 0) {
933 error = dmu_read(mos, vd->vdev_ms_array,
934 m * sizeof (uint64_t), sizeof (uint64_t), &object,
935 DMU_READ_PREFETCH);
936 if (error)
937 return (error);
938 }
939
940 error = metaslab_init(vd->vdev_mg, m, object, txg,
941 &(vd->vdev_ms[m]));
942 if (error)
943 return (error);
944 }
945
946 if (txg == 0)
947 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
948
949 /*
950 * If the vdev is being removed we don't activate
951 * the metaslabs since we want to ensure that no new
952 * allocations are performed on this device.
953 */
954 if (oldc == 0 && !vd->vdev_removing)
955 metaslab_group_activate(vd->vdev_mg);
956
957 if (txg == 0)
958 spa_config_exit(spa, SCL_ALLOC, FTAG);
959
960 return (0);
961 }
962
963 void
964 vdev_metaslab_fini(vdev_t *vd)
965 {
966 uint64_t m;
967 uint64_t count = vd->vdev_ms_count;
968
969 if (vd->vdev_ms != NULL) {
970 metaslab_group_passivate(vd->vdev_mg);
971 for (m = 0; m < count; m++) {
972 metaslab_t *msp = vd->vdev_ms[m];
973
974 if (msp != NULL)
975 metaslab_fini(msp);
976 }
977 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
978 vd->vdev_ms = NULL;
979 }
980
981 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
982 }
983
984 typedef struct vdev_probe_stats {
985 boolean_t vps_readable;
986 boolean_t vps_writeable;
987 int vps_flags;
988 } vdev_probe_stats_t;
989
990 static void
991 vdev_probe_done(zio_t *zio)
992 {
993 spa_t *spa = zio->io_spa;
994 vdev_t *vd = zio->io_vd;
995 vdev_probe_stats_t *vps = zio->io_private;
996
997 ASSERT(vd->vdev_probe_zio != NULL);
998
999 if (zio->io_type == ZIO_TYPE_READ) {
1000 if (zio->io_error == 0)
1001 vps->vps_readable = 1;
1002 if (zio->io_error == 0 && spa_writeable(spa)) {
1003 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1004 zio->io_offset, zio->io_size, zio->io_abd,
1005 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1006 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1007 } else {
1008 abd_free(zio->io_abd);
1009 }
1010 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1011 if (zio->io_error == 0)
1012 vps->vps_writeable = 1;
1013 abd_free(zio->io_abd);
1014 } else if (zio->io_type == ZIO_TYPE_NULL) {
1015 zio_t *pio;
1016 zio_link_t *zl;
1017
1018 vd->vdev_cant_read |= !vps->vps_readable;
1019 vd->vdev_cant_write |= !vps->vps_writeable;
1020
1021 if (vdev_readable(vd) &&
1022 (vdev_writeable(vd) || !spa_writeable(spa))) {
1023 zio->io_error = 0;
1024 } else {
1025 ASSERT(zio->io_error != 0);
1026 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1027 spa, vd, NULL, 0, 0);
1028 zio->io_error = SET_ERROR(ENXIO);
1029 }
1030
1031 mutex_enter(&vd->vdev_probe_lock);
1032 ASSERT(vd->vdev_probe_zio == zio);
1033 vd->vdev_probe_zio = NULL;
1034 mutex_exit(&vd->vdev_probe_lock);
1035
1036 zl = NULL;
1037 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1038 if (!vdev_accessible(vd, pio))
1039 pio->io_error = SET_ERROR(ENXIO);
1040
1041 kmem_free(vps, sizeof (*vps));
1042 }
1043 }
1044
1045 /*
1046 * Determine whether this device is accessible.
1047 *
1048 * Read and write to several known locations: the pad regions of each
1049 * vdev label but the first, which we leave alone in case it contains
1050 * a VTOC.
1051 */
1052 zio_t *
1053 vdev_probe(vdev_t *vd, zio_t *zio)
1054 {
1055 spa_t *spa = vd->vdev_spa;
1056 vdev_probe_stats_t *vps = NULL;
1057 zio_t *pio;
1058 int l;
1059
1060 ASSERT(vd->vdev_ops->vdev_op_leaf);
1061
1062 /*
1063 * Don't probe the probe.
1064 */
1065 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1066 return (NULL);
1067
1068 /*
1069 * To prevent 'probe storms' when a device fails, we create
1070 * just one probe i/o at a time. All zios that want to probe
1071 * this vdev will become parents of the probe io.
1072 */
1073 mutex_enter(&vd->vdev_probe_lock);
1074
1075 if ((pio = vd->vdev_probe_zio) == NULL) {
1076 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1077
1078 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1079 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1080 ZIO_FLAG_TRYHARD;
1081
1082 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1083 /*
1084 * vdev_cant_read and vdev_cant_write can only
1085 * transition from TRUE to FALSE when we have the
1086 * SCL_ZIO lock as writer; otherwise they can only
1087 * transition from FALSE to TRUE. This ensures that
1088 * any zio looking at these values can assume that
1089 * failures persist for the life of the I/O. That's
1090 * important because when a device has intermittent
1091 * connectivity problems, we want to ensure that
1092 * they're ascribed to the device (ENXIO) and not
1093 * the zio (EIO).
1094 *
1095 * Since we hold SCL_ZIO as writer here, clear both
1096 * values so the probe can reevaluate from first
1097 * principles.
1098 */
1099 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1100 vd->vdev_cant_read = B_FALSE;
1101 vd->vdev_cant_write = B_FALSE;
1102 }
1103
1104 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1105 vdev_probe_done, vps,
1106 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1107
1108 /*
1109 * We can't change the vdev state in this context, so we
1110 * kick off an async task to do it on our behalf.
1111 */
1112 if (zio != NULL) {
1113 vd->vdev_probe_wanted = B_TRUE;
1114 spa_async_request(spa, SPA_ASYNC_PROBE);
1115 }
1116 }
1117
1118 if (zio != NULL)
1119 zio_add_child(zio, pio);
1120
1121 mutex_exit(&vd->vdev_probe_lock);
1122
1123 if (vps == NULL) {
1124 ASSERT(zio != NULL);
1125 return (NULL);
1126 }
1127
1128 for (l = 1; l < VDEV_LABELS; l++) {
1129 zio_nowait(zio_read_phys(pio, vd,
1130 vdev_label_offset(vd->vdev_psize, l,
1131 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1132 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1133 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1134 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1135 }
1136
1137 if (zio == NULL)
1138 return (pio);
1139
1140 zio_nowait(pio);
1141 return (NULL);
1142 }
1143
1144 static void
1145 vdev_open_child(void *arg)
1146 {
1147 vdev_t *vd = arg;
1148
1149 vd->vdev_open_thread = curthread;
1150 vd->vdev_open_error = vdev_open(vd);
1151 vd->vdev_open_thread = NULL;
1152 }
1153
1154 static boolean_t
1155 vdev_uses_zvols(vdev_t *vd)
1156 {
1157 int c;
1158
1159 #ifdef _KERNEL
1160 if (zvol_is_zvol(vd->vdev_path))
1161 return (B_TRUE);
1162 #endif
1163
1164 for (c = 0; c < vd->vdev_children; c++)
1165 if (vdev_uses_zvols(vd->vdev_child[c]))
1166 return (B_TRUE);
1167
1168 return (B_FALSE);
1169 }
1170
1171 void
1172 vdev_open_children(vdev_t *vd)
1173 {
1174 taskq_t *tq;
1175 int children = vd->vdev_children;
1176 int c;
1177
1178 /*
1179 * in order to handle pools on top of zvols, do the opens
1180 * in a single thread so that the same thread holds the
1181 * spa_namespace_lock
1182 */
1183 if (vdev_uses_zvols(vd)) {
1184 retry_sync:
1185 for (c = 0; c < children; c++)
1186 vd->vdev_child[c]->vdev_open_error =
1187 vdev_open(vd->vdev_child[c]);
1188 } else {
1189 tq = taskq_create("vdev_open", children, minclsyspri,
1190 children, children, TASKQ_PREPOPULATE);
1191 if (tq == NULL)
1192 goto retry_sync;
1193
1194 for (c = 0; c < children; c++)
1195 VERIFY(taskq_dispatch(tq, vdev_open_child,
1196 vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1197
1198 taskq_destroy(tq);
1199 }
1200
1201 vd->vdev_nonrot = B_TRUE;
1202
1203 for (c = 0; c < children; c++)
1204 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1205 }
1206
1207 /*
1208 * Prepare a virtual device for access.
1209 */
1210 int
1211 vdev_open(vdev_t *vd)
1212 {
1213 spa_t *spa = vd->vdev_spa;
1214 int error;
1215 uint64_t osize = 0;
1216 uint64_t max_osize = 0;
1217 uint64_t asize, max_asize, psize;
1218 uint64_t ashift = 0;
1219 int c;
1220
1221 ASSERT(vd->vdev_open_thread == curthread ||
1222 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1223 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1224 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1225 vd->vdev_state == VDEV_STATE_OFFLINE);
1226
1227 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1228 vd->vdev_cant_read = B_FALSE;
1229 vd->vdev_cant_write = B_FALSE;
1230 vd->vdev_min_asize = vdev_get_min_asize(vd);
1231
1232 /*
1233 * If this vdev is not removed, check its fault status. If it's
1234 * faulted, bail out of the open.
1235 */
1236 if (!vd->vdev_removed && vd->vdev_faulted) {
1237 ASSERT(vd->vdev_children == 0);
1238 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1239 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1240 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1241 vd->vdev_label_aux);
1242 return (SET_ERROR(ENXIO));
1243 } else if (vd->vdev_offline) {
1244 ASSERT(vd->vdev_children == 0);
1245 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1246 return (SET_ERROR(ENXIO));
1247 }
1248
1249 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1250
1251 /*
1252 * Reset the vdev_reopening flag so that we actually close
1253 * the vdev on error.
1254 */
1255 vd->vdev_reopening = B_FALSE;
1256 if (zio_injection_enabled && error == 0)
1257 error = zio_handle_device_injection(vd, NULL, ENXIO);
1258
1259 if (error) {
1260 if (vd->vdev_removed &&
1261 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1262 vd->vdev_removed = B_FALSE;
1263
1264 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1265 vd->vdev_stat.vs_aux);
1266 return (error);
1267 }
1268
1269 vd->vdev_removed = B_FALSE;
1270
1271 /*
1272 * Recheck the faulted flag now that we have confirmed that
1273 * the vdev is accessible. If we're faulted, bail.
1274 */
1275 if (vd->vdev_faulted) {
1276 ASSERT(vd->vdev_children == 0);
1277 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1278 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1279 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1280 vd->vdev_label_aux);
1281 return (SET_ERROR(ENXIO));
1282 }
1283
1284 if (vd->vdev_degraded) {
1285 ASSERT(vd->vdev_children == 0);
1286 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1287 VDEV_AUX_ERR_EXCEEDED);
1288 } else {
1289 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1290 }
1291
1292 /*
1293 * For hole or missing vdevs we just return success.
1294 */
1295 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1296 return (0);
1297
1298 for (c = 0; c < vd->vdev_children; c++) {
1299 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1300 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1301 VDEV_AUX_NONE);
1302 break;
1303 }
1304 }
1305
1306 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1307 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1308
1309 if (vd->vdev_children == 0) {
1310 if (osize < SPA_MINDEVSIZE) {
1311 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1312 VDEV_AUX_TOO_SMALL);
1313 return (SET_ERROR(EOVERFLOW));
1314 }
1315 psize = osize;
1316 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1317 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1318 VDEV_LABEL_END_SIZE);
1319 } else {
1320 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1321 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1322 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1323 VDEV_AUX_TOO_SMALL);
1324 return (SET_ERROR(EOVERFLOW));
1325 }
1326 psize = 0;
1327 asize = osize;
1328 max_asize = max_osize;
1329 }
1330
1331 vd->vdev_psize = psize;
1332
1333 /*
1334 * Make sure the allocatable size hasn't shrunk too much.
1335 */
1336 if (asize < vd->vdev_min_asize) {
1337 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1338 VDEV_AUX_BAD_LABEL);
1339 return (SET_ERROR(EINVAL));
1340 }
1341
1342 if (vd->vdev_asize == 0) {
1343 /*
1344 * This is the first-ever open, so use the computed values.
1345 * For compatibility, a different ashift can be requested.
1346 */
1347 vd->vdev_asize = asize;
1348 vd->vdev_max_asize = max_asize;
1349 if (vd->vdev_ashift == 0) {
1350 vd->vdev_ashift = ashift; /* use detected value */
1351 }
1352 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1353 vd->vdev_ashift > ASHIFT_MAX)) {
1354 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1355 VDEV_AUX_BAD_ASHIFT);
1356 return (SET_ERROR(EDOM));
1357 }
1358 } else {
1359 /*
1360 * Detect if the alignment requirement has increased.
1361 * We don't want to make the pool unavailable, just
1362 * post an event instead.
1363 */
1364 if (ashift > vd->vdev_top->vdev_ashift &&
1365 vd->vdev_ops->vdev_op_leaf) {
1366 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1367 spa, vd, NULL, 0, 0);
1368 }
1369
1370 vd->vdev_max_asize = max_asize;
1371 }
1372
1373 /*
1374 * If all children are healthy we update asize if either:
1375 * The asize has increased, due to a device expansion caused by dynamic
1376 * LUN growth or vdev replacement, and automatic expansion is enabled;
1377 * making the additional space available.
1378 *
1379 * The asize has decreased, due to a device shrink usually caused by a
1380 * vdev replace with a smaller device. This ensures that calculations
1381 * based of max_asize and asize e.g. esize are always valid. It's safe
1382 * to do this as we've already validated that asize is greater than
1383 * vdev_min_asize.
1384 */
1385 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1386 ((asize > vd->vdev_asize &&
1387 (vd->vdev_expanding || spa->spa_autoexpand)) ||
1388 (asize < vd->vdev_asize)))
1389 vd->vdev_asize = asize;
1390
1391 vdev_set_min_asize(vd);
1392
1393 /*
1394 * Ensure we can issue some IO before declaring the
1395 * vdev open for business.
1396 */
1397 if (vd->vdev_ops->vdev_op_leaf &&
1398 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1399 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1400 VDEV_AUX_ERR_EXCEEDED);
1401 return (error);
1402 }
1403
1404 /*
1405 * Track the min and max ashift values for normal data devices.
1406 */
1407 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1408 !vd->vdev_islog && vd->vdev_aux == NULL) {
1409 if (vd->vdev_ashift > spa->spa_max_ashift)
1410 spa->spa_max_ashift = vd->vdev_ashift;
1411 if (vd->vdev_ashift < spa->spa_min_ashift)
1412 spa->spa_min_ashift = vd->vdev_ashift;
1413 }
1414
1415 /*
1416 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1417 * resilver. But don't do this if we are doing a reopen for a scrub,
1418 * since this would just restart the scrub we are already doing.
1419 */
1420 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1421 vdev_resilver_needed(vd, NULL, NULL))
1422 spa_async_request(spa, SPA_ASYNC_RESILVER);
1423
1424 return (0);
1425 }
1426
1427 /*
1428 * Called once the vdevs are all opened, this routine validates the label
1429 * contents. This needs to be done before vdev_load() so that we don't
1430 * inadvertently do repair I/Os to the wrong device.
1431 *
1432 * If 'strict' is false ignore the spa guid check. This is necessary because
1433 * if the machine crashed during a re-guid the new guid might have been written
1434 * to all of the vdev labels, but not the cached config. The strict check
1435 * will be performed when the pool is opened again using the mos config.
1436 *
1437 * This function will only return failure if one of the vdevs indicates that it
1438 * has since been destroyed or exported. This is only possible if
1439 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1440 * will be updated but the function will return 0.
1441 */
1442 int
1443 vdev_validate(vdev_t *vd, boolean_t strict)
1444 {
1445 spa_t *spa = vd->vdev_spa;
1446 nvlist_t *label;
1447 uint64_t guid = 0, top_guid;
1448 uint64_t state;
1449 int c;
1450
1451 for (c = 0; c < vd->vdev_children; c++)
1452 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1453 return (SET_ERROR(EBADF));
1454
1455 /*
1456 * If the device has already failed, or was marked offline, don't do
1457 * any further validation. Otherwise, label I/O will fail and we will
1458 * overwrite the previous state.
1459 */
1460 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1461 uint64_t aux_guid = 0;
1462 nvlist_t *nvl;
1463 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1464 spa_last_synced_txg(spa) : -1ULL;
1465
1466 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1467 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1468 VDEV_AUX_BAD_LABEL);
1469 return (0);
1470 }
1471
1472 /*
1473 * Determine if this vdev has been split off into another
1474 * pool. If so, then refuse to open it.
1475 */
1476 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1477 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1478 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1479 VDEV_AUX_SPLIT_POOL);
1480 nvlist_free(label);
1481 return (0);
1482 }
1483
1484 if (strict && (nvlist_lookup_uint64(label,
1485 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1486 guid != spa_guid(spa))) {
1487 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1488 VDEV_AUX_CORRUPT_DATA);
1489 nvlist_free(label);
1490 return (0);
1491 }
1492
1493 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1494 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1495 &aux_guid) != 0)
1496 aux_guid = 0;
1497
1498 /*
1499 * If this vdev just became a top-level vdev because its
1500 * sibling was detached, it will have adopted the parent's
1501 * vdev guid -- but the label may or may not be on disk yet.
1502 * Fortunately, either version of the label will have the
1503 * same top guid, so if we're a top-level vdev, we can
1504 * safely compare to that instead.
1505 *
1506 * If we split this vdev off instead, then we also check the
1507 * original pool's guid. We don't want to consider the vdev
1508 * corrupt if it is partway through a split operation.
1509 */
1510 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1511 &guid) != 0 ||
1512 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1513 &top_guid) != 0 ||
1514 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1515 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1516 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1517 VDEV_AUX_CORRUPT_DATA);
1518 nvlist_free(label);
1519 return (0);
1520 }
1521
1522 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1523 &state) != 0) {
1524 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1525 VDEV_AUX_CORRUPT_DATA);
1526 nvlist_free(label);
1527 return (0);
1528 }
1529
1530 nvlist_free(label);
1531
1532 /*
1533 * If this is a verbatim import, no need to check the
1534 * state of the pool.
1535 */
1536 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1537 spa_load_state(spa) == SPA_LOAD_OPEN &&
1538 state != POOL_STATE_ACTIVE)
1539 return (SET_ERROR(EBADF));
1540
1541 /*
1542 * If we were able to open and validate a vdev that was
1543 * previously marked permanently unavailable, clear that state
1544 * now.
1545 */
1546 if (vd->vdev_not_present)
1547 vd->vdev_not_present = 0;
1548 }
1549
1550 return (0);
1551 }
1552
1553 /*
1554 * Close a virtual device.
1555 */
1556 void
1557 vdev_close(vdev_t *vd)
1558 {
1559 vdev_t *pvd = vd->vdev_parent;
1560 ASSERTV(spa_t *spa = vd->vdev_spa);
1561
1562 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1563
1564 /*
1565 * If our parent is reopening, then we are as well, unless we are
1566 * going offline.
1567 */
1568 if (pvd != NULL && pvd->vdev_reopening)
1569 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1570
1571 vd->vdev_ops->vdev_op_close(vd);
1572
1573 vdev_cache_purge(vd);
1574
1575 /*
1576 * We record the previous state before we close it, so that if we are
1577 * doing a reopen(), we don't generate FMA ereports if we notice that
1578 * it's still faulted.
1579 */
1580 vd->vdev_prevstate = vd->vdev_state;
1581
1582 if (vd->vdev_offline)
1583 vd->vdev_state = VDEV_STATE_OFFLINE;
1584 else
1585 vd->vdev_state = VDEV_STATE_CLOSED;
1586 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1587 }
1588
1589 void
1590 vdev_hold(vdev_t *vd)
1591 {
1592 spa_t *spa = vd->vdev_spa;
1593 int c;
1594
1595 ASSERT(spa_is_root(spa));
1596 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1597 return;
1598
1599 for (c = 0; c < vd->vdev_children; c++)
1600 vdev_hold(vd->vdev_child[c]);
1601
1602 if (vd->vdev_ops->vdev_op_leaf)
1603 vd->vdev_ops->vdev_op_hold(vd);
1604 }
1605
1606 void
1607 vdev_rele(vdev_t *vd)
1608 {
1609 int c;
1610
1611 ASSERT(spa_is_root(vd->vdev_spa));
1612 for (c = 0; c < vd->vdev_children; c++)
1613 vdev_rele(vd->vdev_child[c]);
1614
1615 if (vd->vdev_ops->vdev_op_leaf)
1616 vd->vdev_ops->vdev_op_rele(vd);
1617 }
1618
1619 /*
1620 * Reopen all interior vdevs and any unopened leaves. We don't actually
1621 * reopen leaf vdevs which had previously been opened as they might deadlock
1622 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1623 * If the leaf has never been opened then open it, as usual.
1624 */
1625 void
1626 vdev_reopen(vdev_t *vd)
1627 {
1628 spa_t *spa = vd->vdev_spa;
1629
1630 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1631
1632 /* set the reopening flag unless we're taking the vdev offline */
1633 vd->vdev_reopening = !vd->vdev_offline;
1634 vdev_close(vd);
1635 (void) vdev_open(vd);
1636
1637 /*
1638 * Call vdev_validate() here to make sure we have the same device.
1639 * Otherwise, a device with an invalid label could be successfully
1640 * opened in response to vdev_reopen().
1641 */
1642 if (vd->vdev_aux) {
1643 (void) vdev_validate_aux(vd);
1644 if (vdev_readable(vd) && vdev_writeable(vd) &&
1645 vd->vdev_aux == &spa->spa_l2cache &&
1646 !l2arc_vdev_present(vd))
1647 l2arc_add_vdev(spa, vd);
1648 } else {
1649 (void) vdev_validate(vd, B_TRUE);
1650 }
1651
1652 /*
1653 * Reassess parent vdev's health.
1654 */
1655 vdev_propagate_state(vd);
1656 }
1657
1658 int
1659 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1660 {
1661 int error;
1662
1663 /*
1664 * Normally, partial opens (e.g. of a mirror) are allowed.
1665 * For a create, however, we want to fail the request if
1666 * there are any components we can't open.
1667 */
1668 error = vdev_open(vd);
1669
1670 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1671 vdev_close(vd);
1672 return (error ? error : ENXIO);
1673 }
1674
1675 /*
1676 * Recursively load DTLs and initialize all labels.
1677 */
1678 if ((error = vdev_dtl_load(vd)) != 0 ||
1679 (error = vdev_label_init(vd, txg, isreplacing ?
1680 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1681 vdev_close(vd);
1682 return (error);
1683 }
1684
1685 return (0);
1686 }
1687
1688 void
1689 vdev_metaslab_set_size(vdev_t *vd)
1690 {
1691 /*
1692 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1693 */
1694 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1695 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1696 }
1697
1698 void
1699 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1700 {
1701 ASSERT(vd == vd->vdev_top);
1702 ASSERT(!vd->vdev_ishole);
1703 ASSERT(ISP2(flags));
1704 ASSERT(spa_writeable(vd->vdev_spa));
1705
1706 if (flags & VDD_METASLAB)
1707 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1708
1709 if (flags & VDD_DTL)
1710 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1711
1712 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1713 }
1714
1715 void
1716 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1717 {
1718 int c;
1719
1720 for (c = 0; c < vd->vdev_children; c++)
1721 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1722
1723 if (vd->vdev_ops->vdev_op_leaf)
1724 vdev_dirty(vd->vdev_top, flags, vd, txg);
1725 }
1726
1727 /*
1728 * DTLs.
1729 *
1730 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1731 * the vdev has less than perfect replication. There are four kinds of DTL:
1732 *
1733 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1734 *
1735 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1736 *
1737 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1738 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1739 * txgs that was scrubbed.
1740 *
1741 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1742 * persistent errors or just some device being offline.
1743 * Unlike the other three, the DTL_OUTAGE map is not generally
1744 * maintained; it's only computed when needed, typically to
1745 * determine whether a device can be detached.
1746 *
1747 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1748 * either has the data or it doesn't.
1749 *
1750 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1751 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1752 * if any child is less than fully replicated, then so is its parent.
1753 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1754 * comprising only those txgs which appear in 'maxfaults' or more children;
1755 * those are the txgs we don't have enough replication to read. For example,
1756 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1757 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1758 * two child DTL_MISSING maps.
1759 *
1760 * It should be clear from the above that to compute the DTLs and outage maps
1761 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1762 * Therefore, that is all we keep on disk. When loading the pool, or after
1763 * a configuration change, we generate all other DTLs from first principles.
1764 */
1765 void
1766 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1767 {
1768 range_tree_t *rt = vd->vdev_dtl[t];
1769
1770 ASSERT(t < DTL_TYPES);
1771 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1772 ASSERT(spa_writeable(vd->vdev_spa));
1773
1774 mutex_enter(rt->rt_lock);
1775 if (!range_tree_contains(rt, txg, size))
1776 range_tree_add(rt, txg, size);
1777 mutex_exit(rt->rt_lock);
1778 }
1779
1780 boolean_t
1781 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1782 {
1783 range_tree_t *rt = vd->vdev_dtl[t];
1784 boolean_t dirty = B_FALSE;
1785
1786 ASSERT(t < DTL_TYPES);
1787 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1788
1789 mutex_enter(rt->rt_lock);
1790 if (range_tree_space(rt) != 0)
1791 dirty = range_tree_contains(rt, txg, size);
1792 mutex_exit(rt->rt_lock);
1793
1794 return (dirty);
1795 }
1796
1797 boolean_t
1798 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1799 {
1800 range_tree_t *rt = vd->vdev_dtl[t];
1801 boolean_t empty;
1802
1803 mutex_enter(rt->rt_lock);
1804 empty = (range_tree_space(rt) == 0);
1805 mutex_exit(rt->rt_lock);
1806
1807 return (empty);
1808 }
1809
1810 /*
1811 * Returns the lowest txg in the DTL range.
1812 */
1813 static uint64_t
1814 vdev_dtl_min(vdev_t *vd)
1815 {
1816 range_seg_t *rs;
1817
1818 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1819 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1820 ASSERT0(vd->vdev_children);
1821
1822 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1823 return (rs->rs_start - 1);
1824 }
1825
1826 /*
1827 * Returns the highest txg in the DTL.
1828 */
1829 static uint64_t
1830 vdev_dtl_max(vdev_t *vd)
1831 {
1832 range_seg_t *rs;
1833
1834 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1835 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1836 ASSERT0(vd->vdev_children);
1837
1838 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1839 return (rs->rs_end);
1840 }
1841
1842 /*
1843 * Determine if a resilvering vdev should remove any DTL entries from
1844 * its range. If the vdev was resilvering for the entire duration of the
1845 * scan then it should excise that range from its DTLs. Otherwise, this
1846 * vdev is considered partially resilvered and should leave its DTL
1847 * entries intact. The comment in vdev_dtl_reassess() describes how we
1848 * excise the DTLs.
1849 */
1850 static boolean_t
1851 vdev_dtl_should_excise(vdev_t *vd)
1852 {
1853 spa_t *spa = vd->vdev_spa;
1854 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1855
1856 ASSERT0(scn->scn_phys.scn_errors);
1857 ASSERT0(vd->vdev_children);
1858
1859 if (vd->vdev_resilver_txg == 0 ||
1860 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1861 return (B_TRUE);
1862
1863 /*
1864 * When a resilver is initiated the scan will assign the scn_max_txg
1865 * value to the highest txg value that exists in all DTLs. If this
1866 * device's max DTL is not part of this scan (i.e. it is not in
1867 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1868 * for excision.
1869 */
1870 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1871 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1872 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1873 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1874 return (B_TRUE);
1875 }
1876 return (B_FALSE);
1877 }
1878
1879 /*
1880 * Reassess DTLs after a config change or scrub completion.
1881 */
1882 void
1883 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1884 {
1885 spa_t *spa = vd->vdev_spa;
1886 avl_tree_t reftree;
1887 int c, t, minref;
1888
1889 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1890
1891 for (c = 0; c < vd->vdev_children; c++)
1892 vdev_dtl_reassess(vd->vdev_child[c], txg,
1893 scrub_txg, scrub_done);
1894
1895 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1896 return;
1897
1898 if (vd->vdev_ops->vdev_op_leaf) {
1899 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1900
1901 mutex_enter(&vd->vdev_dtl_lock);
1902
1903 /*
1904 * If we've completed a scan cleanly then determine
1905 * if this vdev should remove any DTLs. We only want to
1906 * excise regions on vdevs that were available during
1907 * the entire duration of this scan.
1908 */
1909 if (scrub_txg != 0 &&
1910 (spa->spa_scrub_started ||
1911 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1912 vdev_dtl_should_excise(vd)) {
1913 /*
1914 * We completed a scrub up to scrub_txg. If we
1915 * did it without rebooting, then the scrub dtl
1916 * will be valid, so excise the old region and
1917 * fold in the scrub dtl. Otherwise, leave the
1918 * dtl as-is if there was an error.
1919 *
1920 * There's little trick here: to excise the beginning
1921 * of the DTL_MISSING map, we put it into a reference
1922 * tree and then add a segment with refcnt -1 that
1923 * covers the range [0, scrub_txg). This means
1924 * that each txg in that range has refcnt -1 or 0.
1925 * We then add DTL_SCRUB with a refcnt of 2, so that
1926 * entries in the range [0, scrub_txg) will have a
1927 * positive refcnt -- either 1 or 2. We then convert
1928 * the reference tree into the new DTL_MISSING map.
1929 */
1930 space_reftree_create(&reftree);
1931 space_reftree_add_map(&reftree,
1932 vd->vdev_dtl[DTL_MISSING], 1);
1933 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1934 space_reftree_add_map(&reftree,
1935 vd->vdev_dtl[DTL_SCRUB], 2);
1936 space_reftree_generate_map(&reftree,
1937 vd->vdev_dtl[DTL_MISSING], 1);
1938 space_reftree_destroy(&reftree);
1939 }
1940 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1941 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1942 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1943 if (scrub_done)
1944 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1945 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1946 if (!vdev_readable(vd))
1947 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1948 else
1949 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1950 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1951
1952 /*
1953 * If the vdev was resilvering and no longer has any
1954 * DTLs then reset its resilvering flag and dirty
1955 * the top level so that we persist the change.
1956 */
1957 if (vd->vdev_resilver_txg != 0 &&
1958 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1959 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
1960 vd->vdev_resilver_txg = 0;
1961 vdev_config_dirty(vd->vdev_top);
1962 }
1963
1964 mutex_exit(&vd->vdev_dtl_lock);
1965
1966 if (txg != 0)
1967 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1968 return;
1969 }
1970
1971 mutex_enter(&vd->vdev_dtl_lock);
1972 for (t = 0; t < DTL_TYPES; t++) {
1973 int c;
1974
1975 /* account for child's outage in parent's missing map */
1976 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1977 if (t == DTL_SCRUB)
1978 continue; /* leaf vdevs only */
1979 if (t == DTL_PARTIAL)
1980 minref = 1; /* i.e. non-zero */
1981 else if (vd->vdev_nparity != 0)
1982 minref = vd->vdev_nparity + 1; /* RAID-Z */
1983 else
1984 minref = vd->vdev_children; /* any kind of mirror */
1985 space_reftree_create(&reftree);
1986 for (c = 0; c < vd->vdev_children; c++) {
1987 vdev_t *cvd = vd->vdev_child[c];
1988 mutex_enter(&cvd->vdev_dtl_lock);
1989 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1990 mutex_exit(&cvd->vdev_dtl_lock);
1991 }
1992 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1993 space_reftree_destroy(&reftree);
1994 }
1995 mutex_exit(&vd->vdev_dtl_lock);
1996 }
1997
1998 int
1999 vdev_dtl_load(vdev_t *vd)
2000 {
2001 spa_t *spa = vd->vdev_spa;
2002 objset_t *mos = spa->spa_meta_objset;
2003 int error = 0;
2004 int c;
2005
2006 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2007 ASSERT(!vd->vdev_ishole);
2008
2009 error = space_map_open(&vd->vdev_dtl_sm, mos,
2010 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2011 if (error)
2012 return (error);
2013 ASSERT(vd->vdev_dtl_sm != NULL);
2014
2015 mutex_enter(&vd->vdev_dtl_lock);
2016
2017 /*
2018 * Now that we've opened the space_map we need to update
2019 * the in-core DTL.
2020 */
2021 space_map_update(vd->vdev_dtl_sm);
2022
2023 error = space_map_load(vd->vdev_dtl_sm,
2024 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2025 mutex_exit(&vd->vdev_dtl_lock);
2026
2027 return (error);
2028 }
2029
2030 for (c = 0; c < vd->vdev_children; c++) {
2031 error = vdev_dtl_load(vd->vdev_child[c]);
2032 if (error != 0)
2033 break;
2034 }
2035
2036 return (error);
2037 }
2038
2039 void
2040 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2041 {
2042 spa_t *spa = vd->vdev_spa;
2043
2044 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2045 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2046 zapobj, tx));
2047 }
2048
2049 uint64_t
2050 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2051 {
2052 spa_t *spa = vd->vdev_spa;
2053 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2054 DMU_OT_NONE, 0, tx);
2055
2056 ASSERT(zap != 0);
2057 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2058 zap, tx));
2059
2060 return (zap);
2061 }
2062
2063 void
2064 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2065 {
2066 uint64_t i;
2067
2068 if (vd->vdev_ops != &vdev_hole_ops &&
2069 vd->vdev_ops != &vdev_missing_ops &&
2070 vd->vdev_ops != &vdev_root_ops &&
2071 !vd->vdev_top->vdev_removing) {
2072 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2073 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2074 }
2075 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2076 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2077 }
2078 }
2079 for (i = 0; i < vd->vdev_children; i++) {
2080 vdev_construct_zaps(vd->vdev_child[i], tx);
2081 }
2082 }
2083
2084 void
2085 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2086 {
2087 spa_t *spa = vd->vdev_spa;
2088 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2089 objset_t *mos = spa->spa_meta_objset;
2090 range_tree_t *rtsync;
2091 kmutex_t rtlock;
2092 dmu_tx_t *tx;
2093 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2094
2095 ASSERT(!vd->vdev_ishole);
2096 ASSERT(vd->vdev_ops->vdev_op_leaf);
2097
2098 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2099
2100 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2101 mutex_enter(&vd->vdev_dtl_lock);
2102 space_map_free(vd->vdev_dtl_sm, tx);
2103 space_map_close(vd->vdev_dtl_sm);
2104 vd->vdev_dtl_sm = NULL;
2105 mutex_exit(&vd->vdev_dtl_lock);
2106
2107 /*
2108 * We only destroy the leaf ZAP for detached leaves or for
2109 * removed log devices. Removed data devices handle leaf ZAP
2110 * cleanup later, once cancellation is no longer possible.
2111 */
2112 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2113 vd->vdev_top->vdev_islog)) {
2114 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2115 vd->vdev_leaf_zap = 0;
2116 }
2117
2118 dmu_tx_commit(tx);
2119 return;
2120 }
2121
2122 if (vd->vdev_dtl_sm == NULL) {
2123 uint64_t new_object;
2124
2125 new_object = space_map_alloc(mos, tx);
2126 VERIFY3U(new_object, !=, 0);
2127
2128 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2129 0, -1ULL, 0, &vd->vdev_dtl_lock));
2130 ASSERT(vd->vdev_dtl_sm != NULL);
2131 }
2132
2133 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2134
2135 rtsync = range_tree_create(NULL, NULL, &rtlock);
2136
2137 mutex_enter(&rtlock);
2138
2139 mutex_enter(&vd->vdev_dtl_lock);
2140 range_tree_walk(rt, range_tree_add, rtsync);
2141 mutex_exit(&vd->vdev_dtl_lock);
2142
2143 space_map_truncate(vd->vdev_dtl_sm, tx);
2144 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2145 range_tree_vacate(rtsync, NULL, NULL);
2146
2147 range_tree_destroy(rtsync);
2148
2149 mutex_exit(&rtlock);
2150 mutex_destroy(&rtlock);
2151
2152 /*
2153 * If the object for the space map has changed then dirty
2154 * the top level so that we update the config.
2155 */
2156 if (object != space_map_object(vd->vdev_dtl_sm)) {
2157 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2158 "new object %llu", txg, spa_name(spa), object,
2159 space_map_object(vd->vdev_dtl_sm));
2160 vdev_config_dirty(vd->vdev_top);
2161 }
2162
2163 dmu_tx_commit(tx);
2164
2165 mutex_enter(&vd->vdev_dtl_lock);
2166 space_map_update(vd->vdev_dtl_sm);
2167 mutex_exit(&vd->vdev_dtl_lock);
2168 }
2169
2170 /*
2171 * Determine whether the specified vdev can be offlined/detached/removed
2172 * without losing data.
2173 */
2174 boolean_t
2175 vdev_dtl_required(vdev_t *vd)
2176 {
2177 spa_t *spa = vd->vdev_spa;
2178 vdev_t *tvd = vd->vdev_top;
2179 uint8_t cant_read = vd->vdev_cant_read;
2180 boolean_t required;
2181
2182 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2183
2184 if (vd == spa->spa_root_vdev || vd == tvd)
2185 return (B_TRUE);
2186
2187 /*
2188 * Temporarily mark the device as unreadable, and then determine
2189 * whether this results in any DTL outages in the top-level vdev.
2190 * If not, we can safely offline/detach/remove the device.
2191 */
2192 vd->vdev_cant_read = B_TRUE;
2193 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2194 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2195 vd->vdev_cant_read = cant_read;
2196 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2197
2198 if (!required && zio_injection_enabled)
2199 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2200
2201 return (required);
2202 }
2203
2204 /*
2205 * Determine if resilver is needed, and if so the txg range.
2206 */
2207 boolean_t
2208 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2209 {
2210 boolean_t needed = B_FALSE;
2211 uint64_t thismin = UINT64_MAX;
2212 uint64_t thismax = 0;
2213 int c;
2214
2215 if (vd->vdev_children == 0) {
2216 mutex_enter(&vd->vdev_dtl_lock);
2217 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2218 vdev_writeable(vd)) {
2219
2220 thismin = vdev_dtl_min(vd);
2221 thismax = vdev_dtl_max(vd);
2222 needed = B_TRUE;
2223 }
2224 mutex_exit(&vd->vdev_dtl_lock);
2225 } else {
2226 for (c = 0; c < vd->vdev_children; c++) {
2227 vdev_t *cvd = vd->vdev_child[c];
2228 uint64_t cmin, cmax;
2229
2230 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2231 thismin = MIN(thismin, cmin);
2232 thismax = MAX(thismax, cmax);
2233 needed = B_TRUE;
2234 }
2235 }
2236 }
2237
2238 if (needed && minp) {
2239 *minp = thismin;
2240 *maxp = thismax;
2241 }
2242 return (needed);
2243 }
2244
2245 void
2246 vdev_load(vdev_t *vd)
2247 {
2248 int c;
2249
2250 /*
2251 * Recursively load all children.
2252 */
2253 for (c = 0; c < vd->vdev_children; c++)
2254 vdev_load(vd->vdev_child[c]);
2255
2256 /*
2257 * If this is a top-level vdev, initialize its metaslabs.
2258 */
2259 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2260 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2261 vdev_metaslab_init(vd, 0) != 0))
2262 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2263 VDEV_AUX_CORRUPT_DATA);
2264 /*
2265 * If this is a leaf vdev, load its DTL.
2266 */
2267 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2268 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2269 VDEV_AUX_CORRUPT_DATA);
2270 }
2271
2272 /*
2273 * The special vdev case is used for hot spares and l2cache devices. Its
2274 * sole purpose it to set the vdev state for the associated vdev. To do this,
2275 * we make sure that we can open the underlying device, then try to read the
2276 * label, and make sure that the label is sane and that it hasn't been
2277 * repurposed to another pool.
2278 */
2279 int
2280 vdev_validate_aux(vdev_t *vd)
2281 {
2282 nvlist_t *label;
2283 uint64_t guid, version;
2284 uint64_t state;
2285
2286 if (!vdev_readable(vd))
2287 return (0);
2288
2289 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2290 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2291 VDEV_AUX_CORRUPT_DATA);
2292 return (-1);
2293 }
2294
2295 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2296 !SPA_VERSION_IS_SUPPORTED(version) ||
2297 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2298 guid != vd->vdev_guid ||
2299 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2300 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2301 VDEV_AUX_CORRUPT_DATA);
2302 nvlist_free(label);
2303 return (-1);
2304 }
2305
2306 /*
2307 * We don't actually check the pool state here. If it's in fact in
2308 * use by another pool, we update this fact on the fly when requested.
2309 */
2310 nvlist_free(label);
2311 return (0);
2312 }
2313
2314 void
2315 vdev_remove(vdev_t *vd, uint64_t txg)
2316 {
2317 spa_t *spa = vd->vdev_spa;
2318 objset_t *mos = spa->spa_meta_objset;
2319 dmu_tx_t *tx;
2320 int m, i;
2321
2322 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2323 ASSERT(vd == vd->vdev_top);
2324 ASSERT3U(txg, ==, spa_syncing_txg(spa));
2325
2326 if (vd->vdev_ms != NULL) {
2327 metaslab_group_t *mg = vd->vdev_mg;
2328
2329 metaslab_group_histogram_verify(mg);
2330 metaslab_class_histogram_verify(mg->mg_class);
2331
2332 for (m = 0; m < vd->vdev_ms_count; m++) {
2333 metaslab_t *msp = vd->vdev_ms[m];
2334
2335 if (msp == NULL || msp->ms_sm == NULL)
2336 continue;
2337
2338 mutex_enter(&msp->ms_lock);
2339 /*
2340 * If the metaslab was not loaded when the vdev
2341 * was removed then the histogram accounting may
2342 * not be accurate. Update the histogram information
2343 * here so that we ensure that the metaslab group
2344 * and metaslab class are up-to-date.
2345 */
2346 metaslab_group_histogram_remove(mg, msp);
2347
2348 VERIFY0(space_map_allocated(msp->ms_sm));
2349 space_map_free(msp->ms_sm, tx);
2350 space_map_close(msp->ms_sm);
2351 msp->ms_sm = NULL;
2352 mutex_exit(&msp->ms_lock);
2353 }
2354
2355 metaslab_group_histogram_verify(mg);
2356 metaslab_class_histogram_verify(mg->mg_class);
2357 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2358 ASSERT0(mg->mg_histogram[i]);
2359
2360 }
2361
2362 if (vd->vdev_ms_array) {
2363 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2364 vd->vdev_ms_array = 0;
2365 }
2366
2367 if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2368 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2369 vd->vdev_top_zap = 0;
2370 }
2371 dmu_tx_commit(tx);
2372 }
2373
2374 void
2375 vdev_sync_done(vdev_t *vd, uint64_t txg)
2376 {
2377 metaslab_t *msp;
2378 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2379
2380 ASSERT(!vd->vdev_ishole);
2381
2382 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2383 metaslab_sync_done(msp, txg);
2384
2385 if (reassess)
2386 metaslab_sync_reassess(vd->vdev_mg);
2387 }
2388
2389 void
2390 vdev_sync(vdev_t *vd, uint64_t txg)
2391 {
2392 spa_t *spa = vd->vdev_spa;
2393 vdev_t *lvd;
2394 metaslab_t *msp;
2395 dmu_tx_t *tx;
2396
2397 ASSERT(!vd->vdev_ishole);
2398
2399 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2400 ASSERT(vd == vd->vdev_top);
2401 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2402 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2403 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2404 ASSERT(vd->vdev_ms_array != 0);
2405 vdev_config_dirty(vd);
2406 dmu_tx_commit(tx);
2407 }
2408
2409 /*
2410 * Remove the metadata associated with this vdev once it's empty.
2411 */
2412 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2413 vdev_remove(vd, txg);
2414
2415 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2416 metaslab_sync(msp, txg);
2417 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2418 }
2419
2420 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2421 vdev_dtl_sync(lvd, txg);
2422
2423 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2424 }
2425
2426 uint64_t
2427 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2428 {
2429 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2430 }
2431
2432 /*
2433 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2434 * not be opened, and no I/O is attempted.
2435 */
2436 int
2437 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2438 {
2439 vdev_t *vd, *tvd;
2440
2441 spa_vdev_state_enter(spa, SCL_NONE);
2442
2443 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2444 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2445
2446 if (!vd->vdev_ops->vdev_op_leaf)
2447 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2448
2449 tvd = vd->vdev_top;
2450
2451 /*
2452 * We don't directly use the aux state here, but if we do a
2453 * vdev_reopen(), we need this value to be present to remember why we
2454 * were faulted.
2455 */
2456 vd->vdev_label_aux = aux;
2457
2458 /*
2459 * Faulted state takes precedence over degraded.
2460 */
2461 vd->vdev_delayed_close = B_FALSE;
2462 vd->vdev_faulted = 1ULL;
2463 vd->vdev_degraded = 0ULL;
2464 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2465
2466 /*
2467 * If this device has the only valid copy of the data, then
2468 * back off and simply mark the vdev as degraded instead.
2469 */
2470 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2471 vd->vdev_degraded = 1ULL;
2472 vd->vdev_faulted = 0ULL;
2473
2474 /*
2475 * If we reopen the device and it's not dead, only then do we
2476 * mark it degraded.
2477 */
2478 vdev_reopen(tvd);
2479
2480 if (vdev_readable(vd))
2481 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2482 }
2483
2484 return (spa_vdev_state_exit(spa, vd, 0));
2485 }
2486
2487 /*
2488 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2489 * user that something is wrong. The vdev continues to operate as normal as far
2490 * as I/O is concerned.
2491 */
2492 int
2493 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2494 {
2495 vdev_t *vd;
2496
2497 spa_vdev_state_enter(spa, SCL_NONE);
2498
2499 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2500 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2501
2502 if (!vd->vdev_ops->vdev_op_leaf)
2503 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2504
2505 /*
2506 * If the vdev is already faulted, then don't do anything.
2507 */
2508 if (vd->vdev_faulted || vd->vdev_degraded)
2509 return (spa_vdev_state_exit(spa, NULL, 0));
2510
2511 vd->vdev_degraded = 1ULL;
2512 if (!vdev_is_dead(vd))
2513 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2514 aux);
2515
2516 return (spa_vdev_state_exit(spa, vd, 0));
2517 }
2518
2519 /*
2520 * Online the given vdev.
2521 *
2522 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2523 * spare device should be detached when the device finishes resilvering.
2524 * Second, the online should be treated like a 'test' online case, so no FMA
2525 * events are generated if the device fails to open.
2526 */
2527 int
2528 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2529 {
2530 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2531 boolean_t postevent = B_FALSE;
2532
2533 spa_vdev_state_enter(spa, SCL_NONE);
2534
2535 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2536 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2537
2538 if (!vd->vdev_ops->vdev_op_leaf)
2539 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2540
2541 postevent =
2542 (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2543 B_TRUE : B_FALSE;
2544
2545 tvd = vd->vdev_top;
2546 vd->vdev_offline = B_FALSE;
2547 vd->vdev_tmpoffline = B_FALSE;
2548 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2549 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2550
2551 /* XXX - L2ARC 1.0 does not support expansion */
2552 if (!vd->vdev_aux) {
2553 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2554 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2555 }
2556
2557 vdev_reopen(tvd);
2558 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2559
2560 if (!vd->vdev_aux) {
2561 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2562 pvd->vdev_expanding = B_FALSE;
2563 }
2564
2565 if (newstate)
2566 *newstate = vd->vdev_state;
2567 if ((flags & ZFS_ONLINE_UNSPARE) &&
2568 !vdev_is_dead(vd) && vd->vdev_parent &&
2569 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2570 vd->vdev_parent->vdev_child[0] == vd)
2571 vd->vdev_unspare = B_TRUE;
2572
2573 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2574
2575 /* XXX - L2ARC 1.0 does not support expansion */
2576 if (vd->vdev_aux)
2577 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2578 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2579 }
2580
2581 if (postevent)
2582 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2583
2584 return (spa_vdev_state_exit(spa, vd, 0));
2585 }
2586
2587 static int
2588 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2589 {
2590 vdev_t *vd, *tvd;
2591 int error = 0;
2592 uint64_t generation;
2593 metaslab_group_t *mg;
2594
2595 top:
2596 spa_vdev_state_enter(spa, SCL_ALLOC);
2597
2598 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2599 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2600
2601 if (!vd->vdev_ops->vdev_op_leaf)
2602 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2603
2604 tvd = vd->vdev_top;
2605 mg = tvd->vdev_mg;
2606 generation = spa->spa_config_generation + 1;
2607
2608 /*
2609 * If the device isn't already offline, try to offline it.
2610 */
2611 if (!vd->vdev_offline) {
2612 /*
2613 * If this device has the only valid copy of some data,
2614 * don't allow it to be offlined. Log devices are always
2615 * expendable.
2616 */
2617 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2618 vdev_dtl_required(vd))
2619 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2620
2621 /*
2622 * If the top-level is a slog and it has had allocations
2623 * then proceed. We check that the vdev's metaslab group
2624 * is not NULL since it's possible that we may have just
2625 * added this vdev but not yet initialized its metaslabs.
2626 */
2627 if (tvd->vdev_islog && mg != NULL) {
2628 /*
2629 * Prevent any future allocations.
2630 */
2631 metaslab_group_passivate(mg);
2632 (void) spa_vdev_state_exit(spa, vd, 0);
2633
2634 error = spa_offline_log(spa);
2635
2636 spa_vdev_state_enter(spa, SCL_ALLOC);
2637
2638 /*
2639 * Check to see if the config has changed.
2640 */
2641 if (error || generation != spa->spa_config_generation) {
2642 metaslab_group_activate(mg);
2643 if (error)
2644 return (spa_vdev_state_exit(spa,
2645 vd, error));
2646 (void) spa_vdev_state_exit(spa, vd, 0);
2647 goto top;
2648 }
2649 ASSERT0(tvd->vdev_stat.vs_alloc);
2650 }
2651
2652 /*
2653 * Offline this device and reopen its top-level vdev.
2654 * If the top-level vdev is a log device then just offline
2655 * it. Otherwise, if this action results in the top-level
2656 * vdev becoming unusable, undo it and fail the request.
2657 */
2658 vd->vdev_offline = B_TRUE;
2659 vdev_reopen(tvd);
2660
2661 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2662 vdev_is_dead(tvd)) {
2663 vd->vdev_offline = B_FALSE;
2664 vdev_reopen(tvd);
2665 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2666 }
2667
2668 /*
2669 * Add the device back into the metaslab rotor so that
2670 * once we online the device it's open for business.
2671 */
2672 if (tvd->vdev_islog && mg != NULL)
2673 metaslab_group_activate(mg);
2674 }
2675
2676 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2677
2678 return (spa_vdev_state_exit(spa, vd, 0));
2679 }
2680
2681 int
2682 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2683 {
2684 int error;
2685
2686 mutex_enter(&spa->spa_vdev_top_lock);
2687 error = vdev_offline_locked(spa, guid, flags);
2688 mutex_exit(&spa->spa_vdev_top_lock);
2689
2690 return (error);
2691 }
2692
2693 /*
2694 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2695 * vdev_offline(), we assume the spa config is locked. We also clear all
2696 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2697 */
2698 void
2699 vdev_clear(spa_t *spa, vdev_t *vd)
2700 {
2701 vdev_t *rvd = spa->spa_root_vdev;
2702 int c;
2703
2704 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2705
2706 if (vd == NULL)
2707 vd = rvd;
2708
2709 vd->vdev_stat.vs_read_errors = 0;
2710 vd->vdev_stat.vs_write_errors = 0;
2711 vd->vdev_stat.vs_checksum_errors = 0;
2712
2713 for (c = 0; c < vd->vdev_children; c++)
2714 vdev_clear(spa, vd->vdev_child[c]);
2715
2716 /*
2717 * If we're in the FAULTED state or have experienced failed I/O, then
2718 * clear the persistent state and attempt to reopen the device. We
2719 * also mark the vdev config dirty, so that the new faulted state is
2720 * written out to disk.
2721 */
2722 if (vd->vdev_faulted || vd->vdev_degraded ||
2723 !vdev_readable(vd) || !vdev_writeable(vd)) {
2724
2725 /*
2726 * When reopening in response to a clear event, it may be due to
2727 * a fmadm repair request. In this case, if the device is
2728 * still broken, we want to still post the ereport again.
2729 */
2730 vd->vdev_forcefault = B_TRUE;
2731
2732 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2733 vd->vdev_cant_read = B_FALSE;
2734 vd->vdev_cant_write = B_FALSE;
2735
2736 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2737
2738 vd->vdev_forcefault = B_FALSE;
2739
2740 if (vd != rvd && vdev_writeable(vd->vdev_top))
2741 vdev_state_dirty(vd->vdev_top);
2742
2743 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2744 spa_async_request(spa, SPA_ASYNC_RESILVER);
2745
2746 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2747 }
2748
2749 /*
2750 * When clearing a FMA-diagnosed fault, we always want to
2751 * unspare the device, as we assume that the original spare was
2752 * done in response to the FMA fault.
2753 */
2754 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2755 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2756 vd->vdev_parent->vdev_child[0] == vd)
2757 vd->vdev_unspare = B_TRUE;
2758 }
2759
2760 boolean_t
2761 vdev_is_dead(vdev_t *vd)
2762 {
2763 /*
2764 * Holes and missing devices are always considered "dead".
2765 * This simplifies the code since we don't have to check for
2766 * these types of devices in the various code paths.
2767 * Instead we rely on the fact that we skip over dead devices
2768 * before issuing I/O to them.
2769 */
2770 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2771 vd->vdev_ops == &vdev_missing_ops);
2772 }
2773
2774 boolean_t
2775 vdev_readable(vdev_t *vd)
2776 {
2777 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2778 }
2779
2780 boolean_t
2781 vdev_writeable(vdev_t *vd)
2782 {
2783 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2784 }
2785
2786 boolean_t
2787 vdev_allocatable(vdev_t *vd)
2788 {
2789 uint64_t state = vd->vdev_state;
2790
2791 /*
2792 * We currently allow allocations from vdevs which may be in the
2793 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2794 * fails to reopen then we'll catch it later when we're holding
2795 * the proper locks. Note that we have to get the vdev state
2796 * in a local variable because although it changes atomically,
2797 * we're asking two separate questions about it.
2798 */
2799 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2800 !vd->vdev_cant_write && !vd->vdev_ishole &&
2801 vd->vdev_mg->mg_initialized);
2802 }
2803
2804 boolean_t
2805 vdev_accessible(vdev_t *vd, zio_t *zio)
2806 {
2807 ASSERT(zio->io_vd == vd);
2808
2809 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2810 return (B_FALSE);
2811
2812 if (zio->io_type == ZIO_TYPE_READ)
2813 return (!vd->vdev_cant_read);
2814
2815 if (zio->io_type == ZIO_TYPE_WRITE)
2816 return (!vd->vdev_cant_write);
2817
2818 return (B_TRUE);
2819 }
2820
2821 static void
2822 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
2823 {
2824 int t;
2825 for (t = 0; t < ZIO_TYPES; t++) {
2826 vs->vs_ops[t] += cvs->vs_ops[t];
2827 vs->vs_bytes[t] += cvs->vs_bytes[t];
2828 }
2829
2830 cvs->vs_scan_removing = cvd->vdev_removing;
2831 }
2832
2833 /*
2834 * Get extended stats
2835 */
2836 static void
2837 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
2838 {
2839 int t, b;
2840 for (t = 0; t < ZIO_TYPES; t++) {
2841 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
2842 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
2843
2844 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
2845 vsx->vsx_total_histo[t][b] +=
2846 cvsx->vsx_total_histo[t][b];
2847 }
2848 }
2849
2850 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
2851 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
2852 vsx->vsx_queue_histo[t][b] +=
2853 cvsx->vsx_queue_histo[t][b];
2854 }
2855 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
2856 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
2857
2858 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
2859 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
2860
2861 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
2862 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
2863 }
2864
2865 }
2866
2867 /*
2868 * Get statistics for the given vdev.
2869 */
2870 static void
2871 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2872 {
2873 int c, t;
2874 /*
2875 * If we're getting stats on the root vdev, aggregate the I/O counts
2876 * over all top-level vdevs (i.e. the direct children of the root).
2877 */
2878 if (!vd->vdev_ops->vdev_op_leaf) {
2879 if (vs) {
2880 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
2881 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
2882 }
2883 if (vsx)
2884 memset(vsx, 0, sizeof (*vsx));
2885
2886 for (c = 0; c < vd->vdev_children; c++) {
2887 vdev_t *cvd = vd->vdev_child[c];
2888 vdev_stat_t *cvs = &cvd->vdev_stat;
2889 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
2890
2891 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
2892 if (vs)
2893 vdev_get_child_stat(cvd, vs, cvs);
2894 if (vsx)
2895 vdev_get_child_stat_ex(cvd, vsx, cvsx);
2896
2897 }
2898 } else {
2899 /*
2900 * We're a leaf. Just copy our ZIO active queue stats in. The
2901 * other leaf stats are updated in vdev_stat_update().
2902 */
2903 if (!vsx)
2904 return;
2905
2906 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
2907
2908 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
2909 vsx->vsx_active_queue[t] =
2910 vd->vdev_queue.vq_class[t].vqc_active;
2911 vsx->vsx_pend_queue[t] = avl_numnodes(
2912 &vd->vdev_queue.vq_class[t].vqc_queued_tree);
2913 }
2914 }
2915 }
2916
2917 void
2918 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2919 {
2920 vdev_t *tvd = vd->vdev_top;
2921 mutex_enter(&vd->vdev_stat_lock);
2922 if (vs) {
2923 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2924 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2925 vs->vs_state = vd->vdev_state;
2926 vs->vs_rsize = vdev_get_min_asize(vd);
2927 if (vd->vdev_ops->vdev_op_leaf)
2928 vs->vs_rsize += VDEV_LABEL_START_SIZE +
2929 VDEV_LABEL_END_SIZE;
2930 /*
2931 * Report expandable space on top-level, non-auxillary devices
2932 * only. The expandable space is reported in terms of metaslab
2933 * sized units since that determines how much space the pool
2934 * can expand.
2935 */
2936 if (vd->vdev_aux == NULL && tvd != NULL) {
2937 vs->vs_esize = P2ALIGN(
2938 vd->vdev_max_asize - vd->vdev_asize,
2939 1ULL << tvd->vdev_ms_shift);
2940 }
2941 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2942 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
2943 !vd->vdev_ishole) {
2944 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2945 }
2946 }
2947
2948 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_READER) != 0);
2949 vdev_get_stats_ex_impl(vd, vs, vsx);
2950 mutex_exit(&vd->vdev_stat_lock);
2951 }
2952
2953 void
2954 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2955 {
2956 return (vdev_get_stats_ex(vd, vs, NULL));
2957 }
2958
2959 void
2960 vdev_clear_stats(vdev_t *vd)
2961 {
2962 mutex_enter(&vd->vdev_stat_lock);
2963 vd->vdev_stat.vs_space = 0;
2964 vd->vdev_stat.vs_dspace = 0;
2965 vd->vdev_stat.vs_alloc = 0;
2966 mutex_exit(&vd->vdev_stat_lock);
2967 }
2968
2969 void
2970 vdev_scan_stat_init(vdev_t *vd)
2971 {
2972 vdev_stat_t *vs = &vd->vdev_stat;
2973 int c;
2974
2975 for (c = 0; c < vd->vdev_children; c++)
2976 vdev_scan_stat_init(vd->vdev_child[c]);
2977
2978 mutex_enter(&vd->vdev_stat_lock);
2979 vs->vs_scan_processed = 0;
2980 mutex_exit(&vd->vdev_stat_lock);
2981 }
2982
2983 void
2984 vdev_stat_update(zio_t *zio, uint64_t psize)
2985 {
2986 spa_t *spa = zio->io_spa;
2987 vdev_t *rvd = spa->spa_root_vdev;
2988 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2989 vdev_t *pvd;
2990 uint64_t txg = zio->io_txg;
2991 vdev_stat_t *vs = &vd->vdev_stat;
2992 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
2993 zio_type_t type = zio->io_type;
2994 int flags = zio->io_flags;
2995
2996 /*
2997 * If this i/o is a gang leader, it didn't do any actual work.
2998 */
2999 if (zio->io_gang_tree)
3000 return;
3001
3002 if (zio->io_error == 0) {
3003 /*
3004 * If this is a root i/o, don't count it -- we've already
3005 * counted the top-level vdevs, and vdev_get_stats() will
3006 * aggregate them when asked. This reduces contention on
3007 * the root vdev_stat_lock and implicitly handles blocks
3008 * that compress away to holes, for which there is no i/o.
3009 * (Holes never create vdev children, so all the counters
3010 * remain zero, which is what we want.)
3011 *
3012 * Note: this only applies to successful i/o (io_error == 0)
3013 * because unlike i/o counts, errors are not additive.
3014 * When reading a ditto block, for example, failure of
3015 * one top-level vdev does not imply a root-level error.
3016 */
3017 if (vd == rvd)
3018 return;
3019
3020 ASSERT(vd == zio->io_vd);
3021
3022 if (flags & ZIO_FLAG_IO_BYPASS)
3023 return;
3024
3025 mutex_enter(&vd->vdev_stat_lock);
3026
3027 if (flags & ZIO_FLAG_IO_REPAIR) {
3028 if (flags & ZIO_FLAG_SCAN_THREAD) {
3029 dsl_scan_phys_t *scn_phys =
3030 &spa->spa_dsl_pool->dp_scan->scn_phys;
3031 uint64_t *processed = &scn_phys->scn_processed;
3032
3033 /* XXX cleanup? */
3034 if (vd->vdev_ops->vdev_op_leaf)
3035 atomic_add_64(processed, psize);
3036 vs->vs_scan_processed += psize;
3037 }
3038
3039 if (flags & ZIO_FLAG_SELF_HEAL)
3040 vs->vs_self_healed += psize;
3041 }
3042
3043 /*
3044 * The bytes/ops/histograms are recorded at the leaf level and
3045 * aggregated into the higher level vdevs in vdev_get_stats().
3046 */
3047 if (vd->vdev_ops->vdev_op_leaf &&
3048 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
3049
3050 vs->vs_ops[type]++;
3051 vs->vs_bytes[type] += psize;
3052
3053 if (flags & ZIO_FLAG_DELEGATED) {
3054 vsx->vsx_agg_histo[zio->io_priority]
3055 [RQ_HISTO(zio->io_size)]++;
3056 } else {
3057 vsx->vsx_ind_histo[zio->io_priority]
3058 [RQ_HISTO(zio->io_size)]++;
3059 }
3060
3061 if (zio->io_delta && zio->io_delay) {
3062 vsx->vsx_queue_histo[zio->io_priority]
3063 [L_HISTO(zio->io_delta - zio->io_delay)]++;
3064 vsx->vsx_disk_histo[type]
3065 [L_HISTO(zio->io_delay)]++;
3066 vsx->vsx_total_histo[type]
3067 [L_HISTO(zio->io_delta)]++;
3068 }
3069 }
3070
3071 mutex_exit(&vd->vdev_stat_lock);
3072 return;
3073 }
3074
3075 if (flags & ZIO_FLAG_SPECULATIVE)
3076 return;
3077
3078 /*
3079 * If this is an I/O error that is going to be retried, then ignore the
3080 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
3081 * hard errors, when in reality they can happen for any number of
3082 * innocuous reasons (bus resets, MPxIO link failure, etc).
3083 */
3084 if (zio->io_error == EIO &&
3085 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3086 return;
3087
3088 /*
3089 * Intent logs writes won't propagate their error to the root
3090 * I/O so don't mark these types of failures as pool-level
3091 * errors.
3092 */
3093 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3094 return;
3095
3096 mutex_enter(&vd->vdev_stat_lock);
3097 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3098 if (zio->io_error == ECKSUM)
3099 vs->vs_checksum_errors++;
3100 else
3101 vs->vs_read_errors++;
3102 }
3103 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3104 vs->vs_write_errors++;
3105 mutex_exit(&vd->vdev_stat_lock);
3106
3107 if (type == ZIO_TYPE_WRITE && txg != 0 &&
3108 (!(flags & ZIO_FLAG_IO_REPAIR) ||
3109 (flags & ZIO_FLAG_SCAN_THREAD) ||
3110 spa->spa_claiming)) {
3111 /*
3112 * This is either a normal write (not a repair), or it's
3113 * a repair induced by the scrub thread, or it's a repair
3114 * made by zil_claim() during spa_load() in the first txg.
3115 * In the normal case, we commit the DTL change in the same
3116 * txg as the block was born. In the scrub-induced repair
3117 * case, we know that scrubs run in first-pass syncing context,
3118 * so we commit the DTL change in spa_syncing_txg(spa).
3119 * In the zil_claim() case, we commit in spa_first_txg(spa).
3120 *
3121 * We currently do not make DTL entries for failed spontaneous
3122 * self-healing writes triggered by normal (non-scrubbing)
3123 * reads, because we have no transactional context in which to
3124 * do so -- and it's not clear that it'd be desirable anyway.
3125 */
3126 if (vd->vdev_ops->vdev_op_leaf) {
3127 uint64_t commit_txg = txg;
3128 if (flags & ZIO_FLAG_SCAN_THREAD) {
3129 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3130 ASSERT(spa_sync_pass(spa) == 1);
3131 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3132 commit_txg = spa_syncing_txg(spa);
3133 } else if (spa->spa_claiming) {
3134 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3135 commit_txg = spa_first_txg(spa);
3136 }
3137 ASSERT(commit_txg >= spa_syncing_txg(spa));
3138 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3139 return;
3140 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3141 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3142 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3143 }
3144 if (vd != rvd)
3145 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3146 }
3147 }
3148
3149 /*
3150 * Update the in-core space usage stats for this vdev, its metaslab class,
3151 * and the root vdev.
3152 */
3153 void
3154 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3155 int64_t space_delta)
3156 {
3157 int64_t dspace_delta = space_delta;
3158 spa_t *spa = vd->vdev_spa;
3159 vdev_t *rvd = spa->spa_root_vdev;
3160 metaslab_group_t *mg = vd->vdev_mg;
3161 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3162
3163 ASSERT(vd == vd->vdev_top);
3164
3165 /*
3166 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3167 * factor. We must calculate this here and not at the root vdev
3168 * because the root vdev's psize-to-asize is simply the max of its
3169 * childrens', thus not accurate enough for us.
3170 */
3171 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3172 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3173 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3174 vd->vdev_deflate_ratio;
3175
3176 mutex_enter(&vd->vdev_stat_lock);
3177 vd->vdev_stat.vs_alloc += alloc_delta;
3178 vd->vdev_stat.vs_space += space_delta;
3179 vd->vdev_stat.vs_dspace += dspace_delta;
3180 mutex_exit(&vd->vdev_stat_lock);
3181
3182 if (mc == spa_normal_class(spa)) {
3183 mutex_enter(&rvd->vdev_stat_lock);
3184 rvd->vdev_stat.vs_alloc += alloc_delta;
3185 rvd->vdev_stat.vs_space += space_delta;
3186 rvd->vdev_stat.vs_dspace += dspace_delta;
3187 mutex_exit(&rvd->vdev_stat_lock);
3188 }
3189
3190 if (mc != NULL) {
3191 ASSERT(rvd == vd->vdev_parent);
3192 ASSERT(vd->vdev_ms_count != 0);
3193
3194 metaslab_class_space_update(mc,
3195 alloc_delta, defer_delta, space_delta, dspace_delta);
3196 }
3197 }
3198
3199 /*
3200 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3201 * so that it will be written out next time the vdev configuration is synced.
3202 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3203 */
3204 void
3205 vdev_config_dirty(vdev_t *vd)
3206 {
3207 spa_t *spa = vd->vdev_spa;
3208 vdev_t *rvd = spa->spa_root_vdev;
3209 int c;
3210
3211 ASSERT(spa_writeable(spa));
3212
3213 /*
3214 * If this is an aux vdev (as with l2cache and spare devices), then we
3215 * update the vdev config manually and set the sync flag.
3216 */
3217 if (vd->vdev_aux != NULL) {
3218 spa_aux_vdev_t *sav = vd->vdev_aux;
3219 nvlist_t **aux;
3220 uint_t naux;
3221
3222 for (c = 0; c < sav->sav_count; c++) {
3223 if (sav->sav_vdevs[c] == vd)
3224 break;
3225 }
3226
3227 if (c == sav->sav_count) {
3228 /*
3229 * We're being removed. There's nothing more to do.
3230 */
3231 ASSERT(sav->sav_sync == B_TRUE);
3232 return;
3233 }
3234
3235 sav->sav_sync = B_TRUE;
3236
3237 if (nvlist_lookup_nvlist_array(sav->sav_config,
3238 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3239 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3240 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3241 }
3242
3243 ASSERT(c < naux);
3244
3245 /*
3246 * Setting the nvlist in the middle if the array is a little
3247 * sketchy, but it will work.
3248 */
3249 nvlist_free(aux[c]);
3250 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3251
3252 return;
3253 }
3254
3255 /*
3256 * The dirty list is protected by the SCL_CONFIG lock. The caller
3257 * must either hold SCL_CONFIG as writer, or must be the sync thread
3258 * (which holds SCL_CONFIG as reader). There's only one sync thread,
3259 * so this is sufficient to ensure mutual exclusion.
3260 */
3261 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3262 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3263 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3264
3265 if (vd == rvd) {
3266 for (c = 0; c < rvd->vdev_children; c++)
3267 vdev_config_dirty(rvd->vdev_child[c]);
3268 } else {
3269 ASSERT(vd == vd->vdev_top);
3270
3271 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3272 !vd->vdev_ishole)
3273 list_insert_head(&spa->spa_config_dirty_list, vd);
3274 }
3275 }
3276
3277 void
3278 vdev_config_clean(vdev_t *vd)
3279 {
3280 spa_t *spa = vd->vdev_spa;
3281
3282 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3283 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3284 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3285
3286 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3287 list_remove(&spa->spa_config_dirty_list, vd);
3288 }
3289
3290 /*
3291 * Mark a top-level vdev's state as dirty, so that the next pass of
3292 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3293 * the state changes from larger config changes because they require
3294 * much less locking, and are often needed for administrative actions.
3295 */
3296 void
3297 vdev_state_dirty(vdev_t *vd)
3298 {
3299 spa_t *spa = vd->vdev_spa;
3300
3301 ASSERT(spa_writeable(spa));
3302 ASSERT(vd == vd->vdev_top);
3303
3304 /*
3305 * The state list is protected by the SCL_STATE lock. The caller
3306 * must either hold SCL_STATE as writer, or must be the sync thread
3307 * (which holds SCL_STATE as reader). There's only one sync thread,
3308 * so this is sufficient to ensure mutual exclusion.
3309 */
3310 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3311 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3312 spa_config_held(spa, SCL_STATE, RW_READER)));
3313
3314 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3315 list_insert_head(&spa->spa_state_dirty_list, vd);
3316 }
3317
3318 void
3319 vdev_state_clean(vdev_t *vd)
3320 {
3321 spa_t *spa = vd->vdev_spa;
3322
3323 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3324 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3325 spa_config_held(spa, SCL_STATE, RW_READER)));
3326
3327 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3328 list_remove(&spa->spa_state_dirty_list, vd);
3329 }
3330
3331 /*
3332 * Propagate vdev state up from children to parent.
3333 */
3334 void
3335 vdev_propagate_state(vdev_t *vd)
3336 {
3337 spa_t *spa = vd->vdev_spa;
3338 vdev_t *rvd = spa->spa_root_vdev;
3339 int degraded = 0, faulted = 0;
3340 int corrupted = 0;
3341 vdev_t *child;
3342 int c;
3343
3344 if (vd->vdev_children > 0) {
3345 for (c = 0; c < vd->vdev_children; c++) {
3346 child = vd->vdev_child[c];
3347
3348 /*
3349 * Don't factor holes into the decision.
3350 */
3351 if (child->vdev_ishole)
3352 continue;
3353
3354 if (!vdev_readable(child) ||
3355 (!vdev_writeable(child) && spa_writeable(spa))) {
3356 /*
3357 * Root special: if there is a top-level log
3358 * device, treat the root vdev as if it were
3359 * degraded.
3360 */
3361 if (child->vdev_islog && vd == rvd)
3362 degraded++;
3363 else
3364 faulted++;
3365 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3366 degraded++;
3367 }
3368
3369 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3370 corrupted++;
3371 }
3372
3373 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3374
3375 /*
3376 * Root special: if there is a top-level vdev that cannot be
3377 * opened due to corrupted metadata, then propagate the root
3378 * vdev's aux state as 'corrupt' rather than 'insufficient
3379 * replicas'.
3380 */
3381 if (corrupted && vd == rvd &&
3382 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3383 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3384 VDEV_AUX_CORRUPT_DATA);
3385 }
3386
3387 if (vd->vdev_parent)
3388 vdev_propagate_state(vd->vdev_parent);
3389 }
3390
3391 /*
3392 * Set a vdev's state. If this is during an open, we don't update the parent
3393 * state, because we're in the process of opening children depth-first.
3394 * Otherwise, we propagate the change to the parent.
3395 *
3396 * If this routine places a device in a faulted state, an appropriate ereport is
3397 * generated.
3398 */
3399 void
3400 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3401 {
3402 uint64_t save_state;
3403 spa_t *spa = vd->vdev_spa;
3404
3405 if (state == vd->vdev_state) {
3406 /*
3407 * Since vdev_offline() code path is already in an offline
3408 * state we can miss a statechange event to OFFLINE. Check
3409 * the previous state to catch this condition.
3410 */
3411 if (vd->vdev_ops->vdev_op_leaf &&
3412 (state == VDEV_STATE_OFFLINE) &&
3413 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
3414 /* post an offline state change */
3415 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
3416 }
3417 vd->vdev_stat.vs_aux = aux;
3418 return;
3419 }
3420
3421 save_state = vd->vdev_state;
3422
3423 vd->vdev_state = state;
3424 vd->vdev_stat.vs_aux = aux;
3425
3426 /*
3427 * If we are setting the vdev state to anything but an open state, then
3428 * always close the underlying device unless the device has requested
3429 * a delayed close (i.e. we're about to remove or fault the device).
3430 * Otherwise, we keep accessible but invalid devices open forever.
3431 * We don't call vdev_close() itself, because that implies some extra
3432 * checks (offline, etc) that we don't want here. This is limited to
3433 * leaf devices, because otherwise closing the device will affect other
3434 * children.
3435 */
3436 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3437 vd->vdev_ops->vdev_op_leaf)
3438 vd->vdev_ops->vdev_op_close(vd);
3439
3440 if (vd->vdev_removed &&
3441 state == VDEV_STATE_CANT_OPEN &&
3442 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3443 /*
3444 * If the previous state is set to VDEV_STATE_REMOVED, then this
3445 * device was previously marked removed and someone attempted to
3446 * reopen it. If this failed due to a nonexistent device, then
3447 * keep the device in the REMOVED state. We also let this be if
3448 * it is one of our special test online cases, which is only
3449 * attempting to online the device and shouldn't generate an FMA
3450 * fault.
3451 */
3452 vd->vdev_state = VDEV_STATE_REMOVED;
3453 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3454 } else if (state == VDEV_STATE_REMOVED) {
3455 vd->vdev_removed = B_TRUE;
3456 } else if (state == VDEV_STATE_CANT_OPEN) {
3457 /*
3458 * If we fail to open a vdev during an import or recovery, we
3459 * mark it as "not available", which signifies that it was
3460 * never there to begin with. Failure to open such a device
3461 * is not considered an error.
3462 */
3463 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3464 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3465 vd->vdev_ops->vdev_op_leaf)
3466 vd->vdev_not_present = 1;
3467
3468 /*
3469 * Post the appropriate ereport. If the 'prevstate' field is
3470 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3471 * that this is part of a vdev_reopen(). In this case, we don't
3472 * want to post the ereport if the device was already in the
3473 * CANT_OPEN state beforehand.
3474 *
3475 * If the 'checkremove' flag is set, then this is an attempt to
3476 * online the device in response to an insertion event. If we
3477 * hit this case, then we have detected an insertion event for a
3478 * faulted or offline device that wasn't in the removed state.
3479 * In this scenario, we don't post an ereport because we are
3480 * about to replace the device, or attempt an online with
3481 * vdev_forcefault, which will generate the fault for us.
3482 */
3483 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3484 !vd->vdev_not_present && !vd->vdev_checkremove &&
3485 vd != spa->spa_root_vdev) {
3486 const char *class;
3487
3488 switch (aux) {
3489 case VDEV_AUX_OPEN_FAILED:
3490 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3491 break;
3492 case VDEV_AUX_CORRUPT_DATA:
3493 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3494 break;
3495 case VDEV_AUX_NO_REPLICAS:
3496 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3497 break;
3498 case VDEV_AUX_BAD_GUID_SUM:
3499 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3500 break;
3501 case VDEV_AUX_TOO_SMALL:
3502 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3503 break;
3504 case VDEV_AUX_BAD_LABEL:
3505 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3506 break;
3507 case VDEV_AUX_BAD_ASHIFT:
3508 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
3509 break;
3510 default:
3511 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3512 }
3513
3514 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3515 }
3516
3517 /* Erase any notion of persistent removed state */
3518 vd->vdev_removed = B_FALSE;
3519 } else {
3520 vd->vdev_removed = B_FALSE;
3521 }
3522
3523 /*
3524 * Notify ZED of any significant state-change on a leaf vdev.
3525 *
3526 */
3527 if (vd->vdev_ops->vdev_op_leaf) {
3528 /* preserve original state from a vdev_reopen() */
3529 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
3530 (vd->vdev_prevstate != vd->vdev_state) &&
3531 (save_state <= VDEV_STATE_CLOSED))
3532 save_state = vd->vdev_prevstate;
3533
3534 /* filter out state change due to initial vdev_open */
3535 if (save_state > VDEV_STATE_CLOSED)
3536 zfs_post_state_change(spa, vd, save_state);
3537 }
3538
3539 if (!isopen && vd->vdev_parent)
3540 vdev_propagate_state(vd->vdev_parent);
3541 }
3542
3543 /*
3544 * Check the vdev configuration to ensure that it's capable of supporting
3545 * a root pool.
3546 */
3547 boolean_t
3548 vdev_is_bootable(vdev_t *vd)
3549 {
3550 #if defined(__sun__) || defined(__sun)
3551 /*
3552 * Currently, we do not support RAID-Z or partial configuration.
3553 * In addition, only a single top-level vdev is allowed and none of the
3554 * leaves can be wholedisks.
3555 */
3556 int c;
3557
3558 if (!vd->vdev_ops->vdev_op_leaf) {
3559 char *vdev_type = vd->vdev_ops->vdev_op_type;
3560
3561 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3562 vd->vdev_children > 1) {
3563 return (B_FALSE);
3564 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3565 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3566 return (B_FALSE);
3567 }
3568 }
3569
3570 for (c = 0; c < vd->vdev_children; c++) {
3571 if (!vdev_is_bootable(vd->vdev_child[c]))
3572 return (B_FALSE);
3573 }
3574 #endif /* __sun__ || __sun */
3575 return (B_TRUE);
3576 }
3577
3578 /*
3579 * Load the state from the original vdev tree (ovd) which
3580 * we've retrieved from the MOS config object. If the original
3581 * vdev was offline or faulted then we transfer that state to the
3582 * device in the current vdev tree (nvd).
3583 */
3584 void
3585 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3586 {
3587 int c;
3588
3589 ASSERT(nvd->vdev_top->vdev_islog);
3590 ASSERT(spa_config_held(nvd->vdev_spa,
3591 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3592 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3593
3594 for (c = 0; c < nvd->vdev_children; c++)
3595 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3596
3597 if (nvd->vdev_ops->vdev_op_leaf) {
3598 /*
3599 * Restore the persistent vdev state
3600 */
3601 nvd->vdev_offline = ovd->vdev_offline;
3602 nvd->vdev_faulted = ovd->vdev_faulted;
3603 nvd->vdev_degraded = ovd->vdev_degraded;
3604 nvd->vdev_removed = ovd->vdev_removed;
3605 }
3606 }
3607
3608 /*
3609 * Determine if a log device has valid content. If the vdev was
3610 * removed or faulted in the MOS config then we know that
3611 * the content on the log device has already been written to the pool.
3612 */
3613 boolean_t
3614 vdev_log_state_valid(vdev_t *vd)
3615 {
3616 int c;
3617
3618 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3619 !vd->vdev_removed)
3620 return (B_TRUE);
3621
3622 for (c = 0; c < vd->vdev_children; c++)
3623 if (vdev_log_state_valid(vd->vdev_child[c]))
3624 return (B_TRUE);
3625
3626 return (B_FALSE);
3627 }
3628
3629 /*
3630 * Expand a vdev if possible.
3631 */
3632 void
3633 vdev_expand(vdev_t *vd, uint64_t txg)
3634 {
3635 ASSERT(vd->vdev_top == vd);
3636 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3637
3638 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3639 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3640 vdev_config_dirty(vd);
3641 }
3642 }
3643
3644 /*
3645 * Split a vdev.
3646 */
3647 void
3648 vdev_split(vdev_t *vd)
3649 {
3650 vdev_t *cvd, *pvd = vd->vdev_parent;
3651
3652 vdev_remove_child(pvd, vd);
3653 vdev_compact_children(pvd);
3654
3655 cvd = pvd->vdev_child[0];
3656 if (pvd->vdev_children == 1) {
3657 vdev_remove_parent(cvd);
3658 cvd->vdev_splitting = B_TRUE;
3659 }
3660 vdev_propagate_state(cvd);
3661 }
3662
3663 void
3664 vdev_deadman(vdev_t *vd)
3665 {
3666 int c;
3667
3668 for (c = 0; c < vd->vdev_children; c++) {
3669 vdev_t *cvd = vd->vdev_child[c];
3670
3671 vdev_deadman(cvd);
3672 }
3673
3674 if (vd->vdev_ops->vdev_op_leaf) {
3675 vdev_queue_t *vq = &vd->vdev_queue;
3676
3677 mutex_enter(&vq->vq_lock);
3678 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3679 spa_t *spa = vd->vdev_spa;
3680 zio_t *fio;
3681 uint64_t delta;
3682
3683 /*
3684 * Look at the head of all the pending queues,
3685 * if any I/O has been outstanding for longer than
3686 * the spa_deadman_synctime we log a zevent.
3687 */
3688 fio = avl_first(&vq->vq_active_tree);
3689 delta = gethrtime() - fio->io_timestamp;
3690 if (delta > spa_deadman_synctime(spa)) {
3691 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3692 "delta %lluns, last io %lluns",
3693 fio->io_timestamp, delta,
3694 vq->vq_io_complete_ts);
3695 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3696 spa, vd, fio, 0, 0);
3697 }
3698 }
3699 mutex_exit(&vq->vq_lock);
3700 }
3701 }
3702
3703 #if defined(_KERNEL) && defined(HAVE_SPL)
3704 EXPORT_SYMBOL(vdev_fault);
3705 EXPORT_SYMBOL(vdev_degrade);
3706 EXPORT_SYMBOL(vdev_online);
3707 EXPORT_SYMBOL(vdev_offline);
3708 EXPORT_SYMBOL(vdev_clear);
3709 /* BEGIN CSTYLED */
3710 module_param(metaslabs_per_vdev, int, 0644);
3711 MODULE_PARM_DESC(metaslabs_per_vdev,
3712 "Divide added vdev into approximately (but no more than) this number "
3713 "of metaslabs");
3714 /* END CSTYLED */
3715 #endif