]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Add linux kernel module support
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include <sys/zfs_context.h>
27 #include <sys/fm/fs/zfs.h>
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/uberblock_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/space_map.h>
37 #include <sys/zio.h>
38 #include <sys/zap.h>
39 #include <sys/fs/zfs.h>
40 #include <sys/arc.h>
41 #include <sys/zil.h>
42 #include <sys/dsl_scan.h>
43
44 /*
45 * Virtual device management.
46 */
47
48 static vdev_ops_t *vdev_ops_table[] = {
49 &vdev_root_ops,
50 &vdev_raidz_ops,
51 &vdev_mirror_ops,
52 &vdev_replacing_ops,
53 &vdev_spare_ops,
54 &vdev_disk_ops,
55 &vdev_file_ops,
56 &vdev_missing_ops,
57 &vdev_hole_ops,
58 NULL
59 };
60
61 /* maximum scrub/resilver I/O queue per leaf vdev */
62 int zfs_scrub_limit = 10;
63
64 /*
65 * Given a vdev type, return the appropriate ops vector.
66 */
67 static vdev_ops_t *
68 vdev_getops(const char *type)
69 {
70 vdev_ops_t *ops, **opspp;
71
72 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73 if (strcmp(ops->vdev_op_type, type) == 0)
74 break;
75
76 return (ops);
77 }
78
79 /*
80 * Default asize function: return the MAX of psize with the asize of
81 * all children. This is what's used by anything other than RAID-Z.
82 */
83 uint64_t
84 vdev_default_asize(vdev_t *vd, uint64_t psize)
85 {
86 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87 uint64_t csize;
88 int c;
89
90 for (c = 0; c < vd->vdev_children; c++) {
91 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
92 asize = MAX(asize, csize);
93 }
94
95 return (asize);
96 }
97
98 /*
99 * Get the minimum allocatable size. We define the allocatable size as
100 * the vdev's asize rounded to the nearest metaslab. This allows us to
101 * replace or attach devices which don't have the same physical size but
102 * can still satisfy the same number of allocations.
103 */
104 uint64_t
105 vdev_get_min_asize(vdev_t *vd)
106 {
107 vdev_t *pvd = vd->vdev_parent;
108
109 /*
110 * The our parent is NULL (inactive spare or cache) or is the root,
111 * just return our own asize.
112 */
113 if (pvd == NULL)
114 return (vd->vdev_asize);
115
116 /*
117 * The top-level vdev just returns the allocatable size rounded
118 * to the nearest metaslab.
119 */
120 if (vd == vd->vdev_top)
121 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
122
123 /*
124 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
125 * so each child must provide at least 1/Nth of its asize.
126 */
127 if (pvd->vdev_ops == &vdev_raidz_ops)
128 return (pvd->vdev_min_asize / pvd->vdev_children);
129
130 return (pvd->vdev_min_asize);
131 }
132
133 void
134 vdev_set_min_asize(vdev_t *vd)
135 {
136 int c;
137 vd->vdev_min_asize = vdev_get_min_asize(vd);
138
139 for (c = 0; c < vd->vdev_children; c++)
140 vdev_set_min_asize(vd->vdev_child[c]);
141 }
142
143 vdev_t *
144 vdev_lookup_top(spa_t *spa, uint64_t vdev)
145 {
146 vdev_t *rvd = spa->spa_root_vdev;
147
148 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
149
150 if (vdev < rvd->vdev_children) {
151 ASSERT(rvd->vdev_child[vdev] != NULL);
152 return (rvd->vdev_child[vdev]);
153 }
154
155 return (NULL);
156 }
157
158 vdev_t *
159 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
160 {
161 vdev_t *mvd;
162 int c;
163
164 if (vd->vdev_guid == guid)
165 return (vd);
166
167 for (c = 0; c < vd->vdev_children; c++)
168 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
169 NULL)
170 return (mvd);
171
172 return (NULL);
173 }
174
175 void
176 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
177 {
178 size_t oldsize, newsize;
179 uint64_t id = cvd->vdev_id;
180 vdev_t **newchild;
181
182 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
183 ASSERT(cvd->vdev_parent == NULL);
184
185 cvd->vdev_parent = pvd;
186
187 if (pvd == NULL)
188 return;
189
190 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
191
192 oldsize = pvd->vdev_children * sizeof (vdev_t *);
193 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
194 newsize = pvd->vdev_children * sizeof (vdev_t *);
195
196 newchild = kmem_zalloc(newsize, KM_SLEEP);
197 if (pvd->vdev_child != NULL) {
198 bcopy(pvd->vdev_child, newchild, oldsize);
199 kmem_free(pvd->vdev_child, oldsize);
200 }
201
202 pvd->vdev_child = newchild;
203 pvd->vdev_child[id] = cvd;
204
205 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
206 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
207
208 /*
209 * Walk up all ancestors to update guid sum.
210 */
211 for (; pvd != NULL; pvd = pvd->vdev_parent)
212 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
213 }
214
215 void
216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217 {
218 int c;
219 uint_t id = cvd->vdev_id;
220
221 ASSERT(cvd->vdev_parent == pvd);
222
223 if (pvd == NULL)
224 return;
225
226 ASSERT(id < pvd->vdev_children);
227 ASSERT(pvd->vdev_child[id] == cvd);
228
229 pvd->vdev_child[id] = NULL;
230 cvd->vdev_parent = NULL;
231
232 for (c = 0; c < pvd->vdev_children; c++)
233 if (pvd->vdev_child[c])
234 break;
235
236 if (c == pvd->vdev_children) {
237 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
238 pvd->vdev_child = NULL;
239 pvd->vdev_children = 0;
240 }
241
242 /*
243 * Walk up all ancestors to update guid sum.
244 */
245 for (; pvd != NULL; pvd = pvd->vdev_parent)
246 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
247 }
248
249 /*
250 * Remove any holes in the child array.
251 */
252 void
253 vdev_compact_children(vdev_t *pvd)
254 {
255 vdev_t **newchild, *cvd;
256 int oldc = pvd->vdev_children;
257 int newc;
258 int c;
259
260 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
261
262 for (c = newc = 0; c < oldc; c++)
263 if (pvd->vdev_child[c])
264 newc++;
265
266 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
267
268 for (c = newc = 0; c < oldc; c++) {
269 if ((cvd = pvd->vdev_child[c]) != NULL) {
270 newchild[newc] = cvd;
271 cvd->vdev_id = newc++;
272 }
273 }
274
275 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
276 pvd->vdev_child = newchild;
277 pvd->vdev_children = newc;
278 }
279
280 /*
281 * Allocate and minimally initialize a vdev_t.
282 */
283 vdev_t *
284 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
285 {
286 vdev_t *vd;
287 int t;
288
289 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
290
291 if (spa->spa_root_vdev == NULL) {
292 ASSERT(ops == &vdev_root_ops);
293 spa->spa_root_vdev = vd;
294 }
295
296 if (guid == 0 && ops != &vdev_hole_ops) {
297 if (spa->spa_root_vdev == vd) {
298 /*
299 * The root vdev's guid will also be the pool guid,
300 * which must be unique among all pools.
301 */
302 guid = spa_generate_guid(NULL);
303 } else {
304 /*
305 * Any other vdev's guid must be unique within the pool.
306 */
307 guid = spa_generate_guid(spa);
308 }
309 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
310 }
311
312 vd->vdev_spa = spa;
313 vd->vdev_id = id;
314 vd->vdev_guid = guid;
315 vd->vdev_guid_sum = guid;
316 vd->vdev_ops = ops;
317 vd->vdev_state = VDEV_STATE_CLOSED;
318 vd->vdev_ishole = (ops == &vdev_hole_ops);
319
320 list_link_init(&vd->vdev_config_dirty_node);
321 list_link_init(&vd->vdev_state_dirty_node);
322 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
323 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
324 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
325 for (t = 0; t < DTL_TYPES; t++) {
326 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
327 &vd->vdev_dtl_lock);
328 }
329 txg_list_create(&vd->vdev_ms_list,
330 offsetof(struct metaslab, ms_txg_node));
331 txg_list_create(&vd->vdev_dtl_list,
332 offsetof(struct vdev, vdev_dtl_node));
333 vd->vdev_stat.vs_timestamp = gethrtime();
334 vdev_queue_init(vd);
335 vdev_cache_init(vd);
336
337 return (vd);
338 }
339
340 /*
341 * Allocate a new vdev. The 'alloctype' is used to control whether we are
342 * creating a new vdev or loading an existing one - the behavior is slightly
343 * different for each case.
344 */
345 int
346 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
347 int alloctype)
348 {
349 vdev_ops_t *ops;
350 char *type;
351 uint64_t guid = 0, islog, nparity;
352 vdev_t *vd;
353
354 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
355
356 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
357 return (EINVAL);
358
359 if ((ops = vdev_getops(type)) == NULL)
360 return (EINVAL);
361
362 /*
363 * If this is a load, get the vdev guid from the nvlist.
364 * Otherwise, vdev_alloc_common() will generate one for us.
365 */
366 if (alloctype == VDEV_ALLOC_LOAD) {
367 uint64_t label_id;
368
369 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
370 label_id != id)
371 return (EINVAL);
372
373 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
374 return (EINVAL);
375 } else if (alloctype == VDEV_ALLOC_SPARE) {
376 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377 return (EINVAL);
378 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
379 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380 return (EINVAL);
381 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
382 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383 return (EINVAL);
384 }
385
386 /*
387 * The first allocated vdev must be of type 'root'.
388 */
389 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
390 return (EINVAL);
391
392 /*
393 * Determine whether we're a log vdev.
394 */
395 islog = 0;
396 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
397 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
398 return (ENOTSUP);
399
400 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
401 return (ENOTSUP);
402
403 /*
404 * Set the nparity property for RAID-Z vdevs.
405 */
406 nparity = -1ULL;
407 if (ops == &vdev_raidz_ops) {
408 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
409 &nparity) == 0) {
410 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
411 return (EINVAL);
412 /*
413 * Previous versions could only support 1 or 2 parity
414 * device.
415 */
416 if (nparity > 1 &&
417 spa_version(spa) < SPA_VERSION_RAIDZ2)
418 return (ENOTSUP);
419 if (nparity > 2 &&
420 spa_version(spa) < SPA_VERSION_RAIDZ3)
421 return (ENOTSUP);
422 } else {
423 /*
424 * We require the parity to be specified for SPAs that
425 * support multiple parity levels.
426 */
427 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
428 return (EINVAL);
429 /*
430 * Otherwise, we default to 1 parity device for RAID-Z.
431 */
432 nparity = 1;
433 }
434 } else {
435 nparity = 0;
436 }
437 ASSERT(nparity != -1ULL);
438
439 vd = vdev_alloc_common(spa, id, guid, ops);
440
441 vd->vdev_islog = islog;
442 vd->vdev_nparity = nparity;
443
444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
445 vd->vdev_path = spa_strdup(vd->vdev_path);
446 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
447 vd->vdev_devid = spa_strdup(vd->vdev_devid);
448 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
449 &vd->vdev_physpath) == 0)
450 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
451 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
452 vd->vdev_fru = spa_strdup(vd->vdev_fru);
453
454 /*
455 * Set the whole_disk property. If it's not specified, leave the value
456 * as -1.
457 */
458 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
459 &vd->vdev_wholedisk) != 0)
460 vd->vdev_wholedisk = -1ULL;
461
462 /*
463 * Look for the 'not present' flag. This will only be set if the device
464 * was not present at the time of import.
465 */
466 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
467 &vd->vdev_not_present);
468
469 /*
470 * Get the alignment requirement.
471 */
472 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
473
474 /*
475 * Retrieve the vdev creation time.
476 */
477 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
478 &vd->vdev_crtxg);
479
480 /*
481 * If we're a top-level vdev, try to load the allocation parameters.
482 */
483 if (parent && !parent->vdev_parent &&
484 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
485 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
486 &vd->vdev_ms_array);
487 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
488 &vd->vdev_ms_shift);
489 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
490 &vd->vdev_asize);
491 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
492 &vd->vdev_removing);
493 }
494
495 if (parent && !parent->vdev_parent) {
496 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
497 alloctype == VDEV_ALLOC_ADD ||
498 alloctype == VDEV_ALLOC_SPLIT ||
499 alloctype == VDEV_ALLOC_ROOTPOOL);
500 vd->vdev_mg = metaslab_group_create(islog ?
501 spa_log_class(spa) : spa_normal_class(spa), vd);
502 }
503
504 /*
505 * If we're a leaf vdev, try to load the DTL object and other state.
506 */
507 if (vd->vdev_ops->vdev_op_leaf &&
508 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
509 alloctype == VDEV_ALLOC_ROOTPOOL)) {
510 if (alloctype == VDEV_ALLOC_LOAD) {
511 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
512 &vd->vdev_dtl_smo.smo_object);
513 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
514 &vd->vdev_unspare);
515 }
516
517 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
518 uint64_t spare = 0;
519
520 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
521 &spare) == 0 && spare)
522 spa_spare_add(vd);
523 }
524
525 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
526 &vd->vdev_offline);
527
528 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
529 &vd->vdev_resilvering);
530
531 /*
532 * When importing a pool, we want to ignore the persistent fault
533 * state, as the diagnosis made on another system may not be
534 * valid in the current context. Local vdevs will
535 * remain in the faulted state.
536 */
537 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
538 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
539 &vd->vdev_faulted);
540 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
541 &vd->vdev_degraded);
542 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
543 &vd->vdev_removed);
544
545 if (vd->vdev_faulted || vd->vdev_degraded) {
546 char *aux;
547
548 vd->vdev_label_aux =
549 VDEV_AUX_ERR_EXCEEDED;
550 if (nvlist_lookup_string(nv,
551 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
552 strcmp(aux, "external") == 0)
553 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
554 }
555 }
556 }
557
558 /*
559 * Add ourselves to the parent's list of children.
560 */
561 vdev_add_child(parent, vd);
562
563 *vdp = vd;
564
565 return (0);
566 }
567
568 void
569 vdev_free(vdev_t *vd)
570 {
571 int c, t;
572 spa_t *spa = vd->vdev_spa;
573
574 /*
575 * vdev_free() implies closing the vdev first. This is simpler than
576 * trying to ensure complicated semantics for all callers.
577 */
578 vdev_close(vd);
579
580 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
581 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
582
583 /*
584 * Free all children.
585 */
586 for (c = 0; c < vd->vdev_children; c++)
587 vdev_free(vd->vdev_child[c]);
588
589 ASSERT(vd->vdev_child == NULL);
590 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
591
592 /*
593 * Discard allocation state.
594 */
595 if (vd->vdev_mg != NULL) {
596 vdev_metaslab_fini(vd);
597 metaslab_group_destroy(vd->vdev_mg);
598 }
599
600 ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
601 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
602 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
603
604 /*
605 * Remove this vdev from its parent's child list.
606 */
607 vdev_remove_child(vd->vdev_parent, vd);
608
609 ASSERT(vd->vdev_parent == NULL);
610
611 /*
612 * Clean up vdev structure.
613 */
614 vdev_queue_fini(vd);
615 vdev_cache_fini(vd);
616
617 if (vd->vdev_path)
618 spa_strfree(vd->vdev_path);
619 if (vd->vdev_devid)
620 spa_strfree(vd->vdev_devid);
621 if (vd->vdev_physpath)
622 spa_strfree(vd->vdev_physpath);
623 if (vd->vdev_fru)
624 spa_strfree(vd->vdev_fru);
625
626 if (vd->vdev_isspare)
627 spa_spare_remove(vd);
628 if (vd->vdev_isl2cache)
629 spa_l2cache_remove(vd);
630
631 txg_list_destroy(&vd->vdev_ms_list);
632 txg_list_destroy(&vd->vdev_dtl_list);
633
634 mutex_enter(&vd->vdev_dtl_lock);
635 for (t = 0; t < DTL_TYPES; t++) {
636 space_map_unload(&vd->vdev_dtl[t]);
637 space_map_destroy(&vd->vdev_dtl[t]);
638 }
639 mutex_exit(&vd->vdev_dtl_lock);
640
641 mutex_destroy(&vd->vdev_dtl_lock);
642 mutex_destroy(&vd->vdev_stat_lock);
643 mutex_destroy(&vd->vdev_probe_lock);
644
645 if (vd == spa->spa_root_vdev)
646 spa->spa_root_vdev = NULL;
647
648 kmem_free(vd, sizeof (vdev_t));
649 }
650
651 /*
652 * Transfer top-level vdev state from svd to tvd.
653 */
654 static void
655 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
656 {
657 spa_t *spa = svd->vdev_spa;
658 metaslab_t *msp;
659 vdev_t *vd;
660 int t;
661
662 ASSERT(tvd == tvd->vdev_top);
663
664 tvd->vdev_ms_array = svd->vdev_ms_array;
665 tvd->vdev_ms_shift = svd->vdev_ms_shift;
666 tvd->vdev_ms_count = svd->vdev_ms_count;
667
668 svd->vdev_ms_array = 0;
669 svd->vdev_ms_shift = 0;
670 svd->vdev_ms_count = 0;
671
672 tvd->vdev_mg = svd->vdev_mg;
673 tvd->vdev_ms = svd->vdev_ms;
674
675 svd->vdev_mg = NULL;
676 svd->vdev_ms = NULL;
677
678 if (tvd->vdev_mg != NULL)
679 tvd->vdev_mg->mg_vd = tvd;
680
681 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
682 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
683 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
684
685 svd->vdev_stat.vs_alloc = 0;
686 svd->vdev_stat.vs_space = 0;
687 svd->vdev_stat.vs_dspace = 0;
688
689 for (t = 0; t < TXG_SIZE; t++) {
690 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
691 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
692 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
693 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
694 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
695 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
696 }
697
698 if (list_link_active(&svd->vdev_config_dirty_node)) {
699 vdev_config_clean(svd);
700 vdev_config_dirty(tvd);
701 }
702
703 if (list_link_active(&svd->vdev_state_dirty_node)) {
704 vdev_state_clean(svd);
705 vdev_state_dirty(tvd);
706 }
707
708 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
709 svd->vdev_deflate_ratio = 0;
710
711 tvd->vdev_islog = svd->vdev_islog;
712 svd->vdev_islog = 0;
713 }
714
715 static void
716 vdev_top_update(vdev_t *tvd, vdev_t *vd)
717 {
718 int c;
719
720 if (vd == NULL)
721 return;
722
723 vd->vdev_top = tvd;
724
725 for (c = 0; c < vd->vdev_children; c++)
726 vdev_top_update(tvd, vd->vdev_child[c]);
727 }
728
729 /*
730 * Add a mirror/replacing vdev above an existing vdev.
731 */
732 vdev_t *
733 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
734 {
735 spa_t *spa = cvd->vdev_spa;
736 vdev_t *pvd = cvd->vdev_parent;
737 vdev_t *mvd;
738
739 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
740
741 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
742
743 mvd->vdev_asize = cvd->vdev_asize;
744 mvd->vdev_min_asize = cvd->vdev_min_asize;
745 mvd->vdev_ashift = cvd->vdev_ashift;
746 mvd->vdev_state = cvd->vdev_state;
747 mvd->vdev_crtxg = cvd->vdev_crtxg;
748
749 vdev_remove_child(pvd, cvd);
750 vdev_add_child(pvd, mvd);
751 cvd->vdev_id = mvd->vdev_children;
752 vdev_add_child(mvd, cvd);
753 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
754
755 if (mvd == mvd->vdev_top)
756 vdev_top_transfer(cvd, mvd);
757
758 return (mvd);
759 }
760
761 /*
762 * Remove a 1-way mirror/replacing vdev from the tree.
763 */
764 void
765 vdev_remove_parent(vdev_t *cvd)
766 {
767 vdev_t *mvd = cvd->vdev_parent;
768 vdev_t *pvd = mvd->vdev_parent;
769
770 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
771
772 ASSERT(mvd->vdev_children == 1);
773 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
774 mvd->vdev_ops == &vdev_replacing_ops ||
775 mvd->vdev_ops == &vdev_spare_ops);
776 cvd->vdev_ashift = mvd->vdev_ashift;
777
778 vdev_remove_child(mvd, cvd);
779 vdev_remove_child(pvd, mvd);
780
781 /*
782 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
783 * Otherwise, we could have detached an offline device, and when we
784 * go to import the pool we'll think we have two top-level vdevs,
785 * instead of a different version of the same top-level vdev.
786 */
787 if (mvd->vdev_top == mvd) {
788 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
789 cvd->vdev_orig_guid = cvd->vdev_guid;
790 cvd->vdev_guid += guid_delta;
791 cvd->vdev_guid_sum += guid_delta;
792 }
793 cvd->vdev_id = mvd->vdev_id;
794 vdev_add_child(pvd, cvd);
795 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
796
797 if (cvd == cvd->vdev_top)
798 vdev_top_transfer(mvd, cvd);
799
800 ASSERT(mvd->vdev_children == 0);
801 vdev_free(mvd);
802 }
803
804 int
805 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
806 {
807 spa_t *spa = vd->vdev_spa;
808 objset_t *mos = spa->spa_meta_objset;
809 uint64_t m;
810 uint64_t oldc = vd->vdev_ms_count;
811 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
812 metaslab_t **mspp;
813 int error;
814
815 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
816
817 /*
818 * This vdev is not being allocated from yet or is a hole.
819 */
820 if (vd->vdev_ms_shift == 0)
821 return (0);
822
823 ASSERT(!vd->vdev_ishole);
824
825 /*
826 * Compute the raidz-deflation ratio. Note, we hard-code
827 * in 128k (1 << 17) because it is the current "typical" blocksize.
828 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
829 * or we will inconsistently account for existing bp's.
830 */
831 vd->vdev_deflate_ratio = (1 << 17) /
832 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
833
834 ASSERT(oldc <= newc);
835
836 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
837
838 if (oldc != 0) {
839 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
840 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
841 }
842
843 vd->vdev_ms = mspp;
844 vd->vdev_ms_count = newc;
845
846 for (m = oldc; m < newc; m++) {
847 space_map_obj_t smo = { 0, 0, 0 };
848 if (txg == 0) {
849 uint64_t object = 0;
850 error = dmu_read(mos, vd->vdev_ms_array,
851 m * sizeof (uint64_t), sizeof (uint64_t), &object,
852 DMU_READ_PREFETCH);
853 if (error)
854 return (error);
855 if (object != 0) {
856 dmu_buf_t *db;
857 error = dmu_bonus_hold(mos, object, FTAG, &db);
858 if (error)
859 return (error);
860 ASSERT3U(db->db_size, >=, sizeof (smo));
861 bcopy(db->db_data, &smo, sizeof (smo));
862 ASSERT3U(smo.smo_object, ==, object);
863 dmu_buf_rele(db, FTAG);
864 }
865 }
866 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
867 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
868 }
869
870 if (txg == 0)
871 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
872
873 /*
874 * If the vdev is being removed we don't activate
875 * the metaslabs since we want to ensure that no new
876 * allocations are performed on this device.
877 */
878 if (oldc == 0 && !vd->vdev_removing)
879 metaslab_group_activate(vd->vdev_mg);
880
881 if (txg == 0)
882 spa_config_exit(spa, SCL_ALLOC, FTAG);
883
884 return (0);
885 }
886
887 void
888 vdev_metaslab_fini(vdev_t *vd)
889 {
890 uint64_t m;
891 uint64_t count = vd->vdev_ms_count;
892
893 if (vd->vdev_ms != NULL) {
894 metaslab_group_passivate(vd->vdev_mg);
895 for (m = 0; m < count; m++)
896 if (vd->vdev_ms[m] != NULL)
897 metaslab_fini(vd->vdev_ms[m]);
898 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
899 vd->vdev_ms = NULL;
900 }
901 }
902
903 typedef struct vdev_probe_stats {
904 boolean_t vps_readable;
905 boolean_t vps_writeable;
906 int vps_flags;
907 } vdev_probe_stats_t;
908
909 static void
910 vdev_probe_done(zio_t *zio)
911 {
912 spa_t *spa = zio->io_spa;
913 vdev_t *vd = zio->io_vd;
914 vdev_probe_stats_t *vps = zio->io_private;
915
916 ASSERT(vd->vdev_probe_zio != NULL);
917
918 if (zio->io_type == ZIO_TYPE_READ) {
919 if (zio->io_error == 0)
920 vps->vps_readable = 1;
921 if (zio->io_error == 0 && spa_writeable(spa)) {
922 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
923 zio->io_offset, zio->io_size, zio->io_data,
924 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
925 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
926 } else {
927 zio_buf_free(zio->io_data, zio->io_size);
928 }
929 } else if (zio->io_type == ZIO_TYPE_WRITE) {
930 if (zio->io_error == 0)
931 vps->vps_writeable = 1;
932 zio_buf_free(zio->io_data, zio->io_size);
933 } else if (zio->io_type == ZIO_TYPE_NULL) {
934 zio_t *pio;
935
936 vd->vdev_cant_read |= !vps->vps_readable;
937 vd->vdev_cant_write |= !vps->vps_writeable;
938
939 if (vdev_readable(vd) &&
940 (vdev_writeable(vd) || !spa_writeable(spa))) {
941 zio->io_error = 0;
942 } else {
943 ASSERT(zio->io_error != 0);
944 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
945 spa, vd, NULL, 0, 0);
946 zio->io_error = ENXIO;
947 }
948
949 mutex_enter(&vd->vdev_probe_lock);
950 ASSERT(vd->vdev_probe_zio == zio);
951 vd->vdev_probe_zio = NULL;
952 mutex_exit(&vd->vdev_probe_lock);
953
954 while ((pio = zio_walk_parents(zio)) != NULL)
955 if (!vdev_accessible(vd, pio))
956 pio->io_error = ENXIO;
957
958 kmem_free(vps, sizeof (*vps));
959 }
960 }
961
962 /*
963 * Determine whether this device is accessible by reading and writing
964 * to several known locations: the pad regions of each vdev label
965 * but the first (which we leave alone in case it contains a VTOC).
966 */
967 zio_t *
968 vdev_probe(vdev_t *vd, zio_t *zio)
969 {
970 spa_t *spa = vd->vdev_spa;
971 vdev_probe_stats_t *vps = NULL;
972 zio_t *pio;
973 int l;
974
975 ASSERT(vd->vdev_ops->vdev_op_leaf);
976
977 /*
978 * Don't probe the probe.
979 */
980 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
981 return (NULL);
982
983 /*
984 * To prevent 'probe storms' when a device fails, we create
985 * just one probe i/o at a time. All zios that want to probe
986 * this vdev will become parents of the probe io.
987 */
988 mutex_enter(&vd->vdev_probe_lock);
989
990 if ((pio = vd->vdev_probe_zio) == NULL) {
991 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
992
993 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
994 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
995 ZIO_FLAG_TRYHARD;
996
997 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
998 /*
999 * vdev_cant_read and vdev_cant_write can only
1000 * transition from TRUE to FALSE when we have the
1001 * SCL_ZIO lock as writer; otherwise they can only
1002 * transition from FALSE to TRUE. This ensures that
1003 * any zio looking at these values can assume that
1004 * failures persist for the life of the I/O. That's
1005 * important because when a device has intermittent
1006 * connectivity problems, we want to ensure that
1007 * they're ascribed to the device (ENXIO) and not
1008 * the zio (EIO).
1009 *
1010 * Since we hold SCL_ZIO as writer here, clear both
1011 * values so the probe can reevaluate from first
1012 * principles.
1013 */
1014 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1015 vd->vdev_cant_read = B_FALSE;
1016 vd->vdev_cant_write = B_FALSE;
1017 }
1018
1019 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1020 vdev_probe_done, vps,
1021 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1022
1023 /*
1024 * We can't change the vdev state in this context, so we
1025 * kick off an async task to do it on our behalf.
1026 */
1027 if (zio != NULL) {
1028 vd->vdev_probe_wanted = B_TRUE;
1029 spa_async_request(spa, SPA_ASYNC_PROBE);
1030 }
1031 }
1032
1033 if (zio != NULL)
1034 zio_add_child(zio, pio);
1035
1036 mutex_exit(&vd->vdev_probe_lock);
1037
1038 if (vps == NULL) {
1039 ASSERT(zio != NULL);
1040 return (NULL);
1041 }
1042
1043 for (l = 1; l < VDEV_LABELS; l++) {
1044 zio_nowait(zio_read_phys(pio, vd,
1045 vdev_label_offset(vd->vdev_psize, l,
1046 offsetof(vdev_label_t, vl_pad2)),
1047 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1048 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1049 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1050 }
1051
1052 if (zio == NULL)
1053 return (pio);
1054
1055 zio_nowait(pio);
1056 return (NULL);
1057 }
1058
1059 static void
1060 vdev_open_child(void *arg)
1061 {
1062 vdev_t *vd = arg;
1063
1064 vd->vdev_open_thread = curthread;
1065 vd->vdev_open_error = vdev_open(vd);
1066 vd->vdev_open_thread = NULL;
1067 }
1068
1069 boolean_t
1070 vdev_uses_zvols(vdev_t *vd)
1071 {
1072 /*
1073 * Stacking zpools on top of zvols is unsupported until we implement a method
1074 * for determining if an arbitrary block device is a zvol without using the
1075 * path. Solaris would check the 'zvol' path component but this does not
1076 * exist in the Linux port, so we really should do something like stat the
1077 * file and check the major number. This is complicated by the fact that
1078 * we need to do this portably in user or kernel space.
1079 */
1080 #if 0
1081 int c;
1082
1083 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1084 strlen(ZVOL_DIR)) == 0)
1085 return (B_TRUE);
1086 for (c = 0; c < vd->vdev_children; c++)
1087 if (vdev_uses_zvols(vd->vdev_child[c]))
1088 return (B_TRUE);
1089 #endif
1090 return (B_FALSE);
1091 }
1092
1093 void
1094 vdev_open_children(vdev_t *vd)
1095 {
1096 taskq_t *tq;
1097 int children = vd->vdev_children;
1098 int c;
1099
1100 /*
1101 * in order to handle pools on top of zvols, do the opens
1102 * in a single thread so that the same thread holds the
1103 * spa_namespace_lock
1104 */
1105 if (vdev_uses_zvols(vd)) {
1106 for (c = 0; c < children; c++)
1107 vd->vdev_child[c]->vdev_open_error =
1108 vdev_open(vd->vdev_child[c]);
1109 return;
1110 }
1111 tq = taskq_create("vdev_open", children, minclsyspri,
1112 children, children, TASKQ_PREPOPULATE);
1113
1114 for (c = 0; c < children; c++)
1115 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1116 TQ_SLEEP) != 0);
1117
1118 taskq_destroy(tq);
1119 }
1120
1121 /*
1122 * Prepare a virtual device for access.
1123 */
1124 int
1125 vdev_open(vdev_t *vd)
1126 {
1127 spa_t *spa = vd->vdev_spa;
1128 int error;
1129 uint64_t osize = 0;
1130 uint64_t asize, psize;
1131 uint64_t ashift = 0;
1132 int c;
1133
1134 ASSERT(vd->vdev_open_thread == curthread ||
1135 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1136 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1137 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1138 vd->vdev_state == VDEV_STATE_OFFLINE);
1139
1140 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1141 vd->vdev_cant_read = B_FALSE;
1142 vd->vdev_cant_write = B_FALSE;
1143 vd->vdev_min_asize = vdev_get_min_asize(vd);
1144
1145 /*
1146 * If this vdev is not removed, check its fault status. If it's
1147 * faulted, bail out of the open.
1148 */
1149 if (!vd->vdev_removed && vd->vdev_faulted) {
1150 ASSERT(vd->vdev_children == 0);
1151 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1152 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1153 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1154 vd->vdev_label_aux);
1155 return (ENXIO);
1156 } else if (vd->vdev_offline) {
1157 ASSERT(vd->vdev_children == 0);
1158 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1159 return (ENXIO);
1160 }
1161
1162 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1163
1164 /*
1165 * Reset the vdev_reopening flag so that we actually close
1166 * the vdev on error.
1167 */
1168 vd->vdev_reopening = B_FALSE;
1169 if (zio_injection_enabled && error == 0)
1170 error = zio_handle_device_injection(vd, NULL, ENXIO);
1171
1172 if (error) {
1173 if (vd->vdev_removed &&
1174 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1175 vd->vdev_removed = B_FALSE;
1176
1177 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1178 vd->vdev_stat.vs_aux);
1179 return (error);
1180 }
1181
1182 vd->vdev_removed = B_FALSE;
1183
1184 /*
1185 * Recheck the faulted flag now that we have confirmed that
1186 * the vdev is accessible. If we're faulted, bail.
1187 */
1188 if (vd->vdev_faulted) {
1189 ASSERT(vd->vdev_children == 0);
1190 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1191 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1192 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1193 vd->vdev_label_aux);
1194 return (ENXIO);
1195 }
1196
1197 if (vd->vdev_degraded) {
1198 ASSERT(vd->vdev_children == 0);
1199 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1200 VDEV_AUX_ERR_EXCEEDED);
1201 } else {
1202 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1203 }
1204
1205 /*
1206 * For hole or missing vdevs we just return success.
1207 */
1208 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1209 return (0);
1210
1211 for (c = 0; c < vd->vdev_children; c++) {
1212 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1213 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1214 VDEV_AUX_NONE);
1215 break;
1216 }
1217 }
1218
1219 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1220
1221 if (vd->vdev_children == 0) {
1222 if (osize < SPA_MINDEVSIZE) {
1223 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1224 VDEV_AUX_TOO_SMALL);
1225 return (EOVERFLOW);
1226 }
1227 psize = osize;
1228 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1229 } else {
1230 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1231 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1232 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1233 VDEV_AUX_TOO_SMALL);
1234 return (EOVERFLOW);
1235 }
1236 psize = 0;
1237 asize = osize;
1238 }
1239
1240 vd->vdev_psize = psize;
1241
1242 /*
1243 * Make sure the allocatable size hasn't shrunk.
1244 */
1245 if (asize < vd->vdev_min_asize) {
1246 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1247 VDEV_AUX_BAD_LABEL);
1248 return (EINVAL);
1249 }
1250
1251 if (vd->vdev_asize == 0) {
1252 /*
1253 * This is the first-ever open, so use the computed values.
1254 * For testing purposes, a higher ashift can be requested.
1255 */
1256 vd->vdev_asize = asize;
1257 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1258 } else {
1259 /*
1260 * Make sure the alignment requirement hasn't increased.
1261 */
1262 if (ashift > vd->vdev_top->vdev_ashift) {
1263 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1264 VDEV_AUX_BAD_LABEL);
1265 return (EINVAL);
1266 }
1267 }
1268
1269 /*
1270 * If all children are healthy and the asize has increased,
1271 * then we've experienced dynamic LUN growth. If automatic
1272 * expansion is enabled then use the additional space.
1273 */
1274 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1275 (vd->vdev_expanding || spa->spa_autoexpand))
1276 vd->vdev_asize = asize;
1277
1278 vdev_set_min_asize(vd);
1279
1280 /*
1281 * Ensure we can issue some IO before declaring the
1282 * vdev open for business.
1283 */
1284 if (vd->vdev_ops->vdev_op_leaf &&
1285 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1286 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1287 VDEV_AUX_ERR_EXCEEDED);
1288 return (error);
1289 }
1290
1291 /*
1292 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1293 * resilver. But don't do this if we are doing a reopen for a scrub,
1294 * since this would just restart the scrub we are already doing.
1295 */
1296 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1297 vdev_resilver_needed(vd, NULL, NULL))
1298 spa_async_request(spa, SPA_ASYNC_RESILVER);
1299
1300 return (0);
1301 }
1302
1303 /*
1304 * Called once the vdevs are all opened, this routine validates the label
1305 * contents. This needs to be done before vdev_load() so that we don't
1306 * inadvertently do repair I/Os to the wrong device.
1307 *
1308 * This function will only return failure if one of the vdevs indicates that it
1309 * has since been destroyed or exported. This is only possible if
1310 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1311 * will be updated but the function will return 0.
1312 */
1313 int
1314 vdev_validate(vdev_t *vd)
1315 {
1316 spa_t *spa = vd->vdev_spa;
1317 nvlist_t *label;
1318 uint64_t guid = 0, top_guid;
1319 uint64_t state;
1320 int c;
1321
1322 for (c = 0; c < vd->vdev_children; c++)
1323 if (vdev_validate(vd->vdev_child[c]) != 0)
1324 return (EBADF);
1325
1326 /*
1327 * If the device has already failed, or was marked offline, don't do
1328 * any further validation. Otherwise, label I/O will fail and we will
1329 * overwrite the previous state.
1330 */
1331 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1332 uint64_t aux_guid = 0;
1333 nvlist_t *nvl;
1334
1335 if ((label = vdev_label_read_config(vd)) == NULL) {
1336 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1337 VDEV_AUX_BAD_LABEL);
1338 return (0);
1339 }
1340
1341 /*
1342 * Determine if this vdev has been split off into another
1343 * pool. If so, then refuse to open it.
1344 */
1345 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1346 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1347 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1348 VDEV_AUX_SPLIT_POOL);
1349 nvlist_free(label);
1350 return (0);
1351 }
1352
1353 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1354 &guid) != 0 || guid != spa_guid(spa)) {
1355 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1356 VDEV_AUX_CORRUPT_DATA);
1357 nvlist_free(label);
1358 return (0);
1359 }
1360
1361 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1362 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1363 &aux_guid) != 0)
1364 aux_guid = 0;
1365
1366 /*
1367 * If this vdev just became a top-level vdev because its
1368 * sibling was detached, it will have adopted the parent's
1369 * vdev guid -- but the label may or may not be on disk yet.
1370 * Fortunately, either version of the label will have the
1371 * same top guid, so if we're a top-level vdev, we can
1372 * safely compare to that instead.
1373 *
1374 * If we split this vdev off instead, then we also check the
1375 * original pool's guid. We don't want to consider the vdev
1376 * corrupt if it is partway through a split operation.
1377 */
1378 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1379 &guid) != 0 ||
1380 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1381 &top_guid) != 0 ||
1382 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1383 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1384 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1385 VDEV_AUX_CORRUPT_DATA);
1386 nvlist_free(label);
1387 return (0);
1388 }
1389
1390 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1391 &state) != 0) {
1392 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1393 VDEV_AUX_CORRUPT_DATA);
1394 nvlist_free(label);
1395 return (0);
1396 }
1397
1398 nvlist_free(label);
1399
1400 /*
1401 * If this is a verbatim import, no need to check the
1402 * state of the pool.
1403 */
1404 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1405 spa_load_state(spa) == SPA_LOAD_OPEN &&
1406 state != POOL_STATE_ACTIVE)
1407 return (EBADF);
1408
1409 /*
1410 * If we were able to open and validate a vdev that was
1411 * previously marked permanently unavailable, clear that state
1412 * now.
1413 */
1414 if (vd->vdev_not_present)
1415 vd->vdev_not_present = 0;
1416 }
1417
1418 return (0);
1419 }
1420
1421 /*
1422 * Close a virtual device.
1423 */
1424 void
1425 vdev_close(vdev_t *vd)
1426 {
1427 vdev_t *pvd = vd->vdev_parent;
1428 ASSERTV(spa_t *spa = vd->vdev_spa);
1429
1430 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1431
1432 /*
1433 * If our parent is reopening, then we are as well, unless we are
1434 * going offline.
1435 */
1436 if (pvd != NULL && pvd->vdev_reopening)
1437 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1438
1439 vd->vdev_ops->vdev_op_close(vd);
1440
1441 vdev_cache_purge(vd);
1442
1443 /*
1444 * We record the previous state before we close it, so that if we are
1445 * doing a reopen(), we don't generate FMA ereports if we notice that
1446 * it's still faulted.
1447 */
1448 vd->vdev_prevstate = vd->vdev_state;
1449
1450 if (vd->vdev_offline)
1451 vd->vdev_state = VDEV_STATE_OFFLINE;
1452 else
1453 vd->vdev_state = VDEV_STATE_CLOSED;
1454 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1455 }
1456
1457 void
1458 vdev_hold(vdev_t *vd)
1459 {
1460 spa_t *spa = vd->vdev_spa;
1461 int c;
1462
1463 ASSERT(spa_is_root(spa));
1464 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1465 return;
1466
1467 for (c = 0; c < vd->vdev_children; c++)
1468 vdev_hold(vd->vdev_child[c]);
1469
1470 if (vd->vdev_ops->vdev_op_leaf)
1471 vd->vdev_ops->vdev_op_hold(vd);
1472 }
1473
1474 void
1475 vdev_rele(vdev_t *vd)
1476 {
1477 int c;
1478
1479 ASSERT(spa_is_root(vd->vdev_spa));
1480 for (c = 0; c < vd->vdev_children; c++)
1481 vdev_rele(vd->vdev_child[c]);
1482
1483 if (vd->vdev_ops->vdev_op_leaf)
1484 vd->vdev_ops->vdev_op_rele(vd);
1485 }
1486
1487 /*
1488 * Reopen all interior vdevs and any unopened leaves. We don't actually
1489 * reopen leaf vdevs which had previously been opened as they might deadlock
1490 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1491 * If the leaf has never been opened then open it, as usual.
1492 */
1493 void
1494 vdev_reopen(vdev_t *vd)
1495 {
1496 spa_t *spa = vd->vdev_spa;
1497
1498 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1499
1500 /* set the reopening flag unless we're taking the vdev offline */
1501 vd->vdev_reopening = !vd->vdev_offline;
1502 vdev_close(vd);
1503 (void) vdev_open(vd);
1504
1505 /*
1506 * Call vdev_validate() here to make sure we have the same device.
1507 * Otherwise, a device with an invalid label could be successfully
1508 * opened in response to vdev_reopen().
1509 */
1510 if (vd->vdev_aux) {
1511 (void) vdev_validate_aux(vd);
1512 if (vdev_readable(vd) && vdev_writeable(vd) &&
1513 vd->vdev_aux == &spa->spa_l2cache &&
1514 !l2arc_vdev_present(vd))
1515 l2arc_add_vdev(spa, vd);
1516 } else {
1517 (void) vdev_validate(vd);
1518 }
1519
1520 /*
1521 * Reassess parent vdev's health.
1522 */
1523 vdev_propagate_state(vd);
1524 }
1525
1526 int
1527 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1528 {
1529 int error;
1530
1531 /*
1532 * Normally, partial opens (e.g. of a mirror) are allowed.
1533 * For a create, however, we want to fail the request if
1534 * there are any components we can't open.
1535 */
1536 error = vdev_open(vd);
1537
1538 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1539 vdev_close(vd);
1540 return (error ? error : ENXIO);
1541 }
1542
1543 /*
1544 * Recursively initialize all labels.
1545 */
1546 if ((error = vdev_label_init(vd, txg, isreplacing ?
1547 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1548 vdev_close(vd);
1549 return (error);
1550 }
1551
1552 return (0);
1553 }
1554
1555 void
1556 vdev_metaslab_set_size(vdev_t *vd)
1557 {
1558 /*
1559 * Aim for roughly 200 metaslabs per vdev.
1560 */
1561 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1562 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1563 }
1564
1565 void
1566 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1567 {
1568 ASSERT(vd == vd->vdev_top);
1569 ASSERT(!vd->vdev_ishole);
1570 ASSERT(ISP2(flags));
1571 ASSERT(spa_writeable(vd->vdev_spa));
1572
1573 if (flags & VDD_METASLAB)
1574 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1575
1576 if (flags & VDD_DTL)
1577 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1578
1579 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1580 }
1581
1582 /*
1583 * DTLs.
1584 *
1585 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1586 * the vdev has less than perfect replication. There are four kinds of DTL:
1587 *
1588 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1589 *
1590 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1591 *
1592 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1593 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1594 * txgs that was scrubbed.
1595 *
1596 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1597 * persistent errors or just some device being offline.
1598 * Unlike the other three, the DTL_OUTAGE map is not generally
1599 * maintained; it's only computed when needed, typically to
1600 * determine whether a device can be detached.
1601 *
1602 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1603 * either has the data or it doesn't.
1604 *
1605 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1606 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1607 * if any child is less than fully replicated, then so is its parent.
1608 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1609 * comprising only those txgs which appear in 'maxfaults' or more children;
1610 * those are the txgs we don't have enough replication to read. For example,
1611 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1612 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1613 * two child DTL_MISSING maps.
1614 *
1615 * It should be clear from the above that to compute the DTLs and outage maps
1616 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1617 * Therefore, that is all we keep on disk. When loading the pool, or after
1618 * a configuration change, we generate all other DTLs from first principles.
1619 */
1620 void
1621 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1622 {
1623 space_map_t *sm = &vd->vdev_dtl[t];
1624
1625 ASSERT(t < DTL_TYPES);
1626 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1627 ASSERT(spa_writeable(vd->vdev_spa));
1628
1629 mutex_enter(sm->sm_lock);
1630 if (!space_map_contains(sm, txg, size))
1631 space_map_add(sm, txg, size);
1632 mutex_exit(sm->sm_lock);
1633 }
1634
1635 boolean_t
1636 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1637 {
1638 space_map_t *sm = &vd->vdev_dtl[t];
1639 boolean_t dirty = B_FALSE;
1640
1641 ASSERT(t < DTL_TYPES);
1642 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1643
1644 mutex_enter(sm->sm_lock);
1645 if (sm->sm_space != 0)
1646 dirty = space_map_contains(sm, txg, size);
1647 mutex_exit(sm->sm_lock);
1648
1649 return (dirty);
1650 }
1651
1652 boolean_t
1653 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1654 {
1655 space_map_t *sm = &vd->vdev_dtl[t];
1656 boolean_t empty;
1657
1658 mutex_enter(sm->sm_lock);
1659 empty = (sm->sm_space == 0);
1660 mutex_exit(sm->sm_lock);
1661
1662 return (empty);
1663 }
1664
1665 /*
1666 * Reassess DTLs after a config change or scrub completion.
1667 */
1668 void
1669 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1670 {
1671 spa_t *spa = vd->vdev_spa;
1672 avl_tree_t reftree;
1673 int c, t, minref;
1674
1675 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1676
1677 for (c = 0; c < vd->vdev_children; c++)
1678 vdev_dtl_reassess(vd->vdev_child[c], txg,
1679 scrub_txg, scrub_done);
1680
1681 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1682 return;
1683
1684 if (vd->vdev_ops->vdev_op_leaf) {
1685 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1686
1687 mutex_enter(&vd->vdev_dtl_lock);
1688 if (scrub_txg != 0 &&
1689 (spa->spa_scrub_started ||
1690 (scn && scn->scn_phys.scn_errors == 0))) {
1691 /*
1692 * We completed a scrub up to scrub_txg. If we
1693 * did it without rebooting, then the scrub dtl
1694 * will be valid, so excise the old region and
1695 * fold in the scrub dtl. Otherwise, leave the
1696 * dtl as-is if there was an error.
1697 *
1698 * There's little trick here: to excise the beginning
1699 * of the DTL_MISSING map, we put it into a reference
1700 * tree and then add a segment with refcnt -1 that
1701 * covers the range [0, scrub_txg). This means
1702 * that each txg in that range has refcnt -1 or 0.
1703 * We then add DTL_SCRUB with a refcnt of 2, so that
1704 * entries in the range [0, scrub_txg) will have a
1705 * positive refcnt -- either 1 or 2. We then convert
1706 * the reference tree into the new DTL_MISSING map.
1707 */
1708 space_map_ref_create(&reftree);
1709 space_map_ref_add_map(&reftree,
1710 &vd->vdev_dtl[DTL_MISSING], 1);
1711 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1712 space_map_ref_add_map(&reftree,
1713 &vd->vdev_dtl[DTL_SCRUB], 2);
1714 space_map_ref_generate_map(&reftree,
1715 &vd->vdev_dtl[DTL_MISSING], 1);
1716 space_map_ref_destroy(&reftree);
1717 }
1718 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1719 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1720 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1721 if (scrub_done)
1722 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1723 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1724 if (!vdev_readable(vd))
1725 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1726 else
1727 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1728 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1729 mutex_exit(&vd->vdev_dtl_lock);
1730
1731 if (txg != 0)
1732 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1733 return;
1734 }
1735
1736 mutex_enter(&vd->vdev_dtl_lock);
1737 for (t = 0; t < DTL_TYPES; t++) {
1738 /* account for child's outage in parent's missing map */
1739 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1740 if (t == DTL_SCRUB)
1741 continue; /* leaf vdevs only */
1742 if (t == DTL_PARTIAL)
1743 minref = 1; /* i.e. non-zero */
1744 else if (vd->vdev_nparity != 0)
1745 minref = vd->vdev_nparity + 1; /* RAID-Z */
1746 else
1747 minref = vd->vdev_children; /* any kind of mirror */
1748 space_map_ref_create(&reftree);
1749 for (c = 0; c < vd->vdev_children; c++) {
1750 vdev_t *cvd = vd->vdev_child[c];
1751 mutex_enter(&cvd->vdev_dtl_lock);
1752 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1753 mutex_exit(&cvd->vdev_dtl_lock);
1754 }
1755 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1756 space_map_ref_destroy(&reftree);
1757 }
1758 mutex_exit(&vd->vdev_dtl_lock);
1759 }
1760
1761 static int
1762 vdev_dtl_load(vdev_t *vd)
1763 {
1764 spa_t *spa = vd->vdev_spa;
1765 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1766 objset_t *mos = spa->spa_meta_objset;
1767 dmu_buf_t *db;
1768 int error;
1769
1770 ASSERT(vd->vdev_children == 0);
1771
1772 if (smo->smo_object == 0)
1773 return (0);
1774
1775 ASSERT(!vd->vdev_ishole);
1776
1777 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1778 return (error);
1779
1780 ASSERT3U(db->db_size, >=, sizeof (*smo));
1781 bcopy(db->db_data, smo, sizeof (*smo));
1782 dmu_buf_rele(db, FTAG);
1783
1784 mutex_enter(&vd->vdev_dtl_lock);
1785 error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1786 NULL, SM_ALLOC, smo, mos);
1787 mutex_exit(&vd->vdev_dtl_lock);
1788
1789 return (error);
1790 }
1791
1792 void
1793 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1794 {
1795 spa_t *spa = vd->vdev_spa;
1796 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1797 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1798 objset_t *mos = spa->spa_meta_objset;
1799 space_map_t smsync;
1800 kmutex_t smlock;
1801 dmu_buf_t *db;
1802 dmu_tx_t *tx;
1803
1804 ASSERT(!vd->vdev_ishole);
1805
1806 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1807
1808 if (vd->vdev_detached) {
1809 if (smo->smo_object != 0) {
1810 VERIFY(0 == dmu_object_free(mos, smo->smo_object, tx));
1811 smo->smo_object = 0;
1812 }
1813 dmu_tx_commit(tx);
1814 return;
1815 }
1816
1817 if (smo->smo_object == 0) {
1818 ASSERT(smo->smo_objsize == 0);
1819 ASSERT(smo->smo_alloc == 0);
1820 smo->smo_object = dmu_object_alloc(mos,
1821 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1822 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1823 ASSERT(smo->smo_object != 0);
1824 vdev_config_dirty(vd->vdev_top);
1825 }
1826
1827 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1828
1829 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1830 &smlock);
1831
1832 mutex_enter(&smlock);
1833
1834 mutex_enter(&vd->vdev_dtl_lock);
1835 space_map_walk(sm, space_map_add, &smsync);
1836 mutex_exit(&vd->vdev_dtl_lock);
1837
1838 space_map_truncate(smo, mos, tx);
1839 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1840
1841 space_map_destroy(&smsync);
1842
1843 mutex_exit(&smlock);
1844 mutex_destroy(&smlock);
1845
1846 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1847 dmu_buf_will_dirty(db, tx);
1848 ASSERT3U(db->db_size, >=, sizeof (*smo));
1849 bcopy(smo, db->db_data, sizeof (*smo));
1850 dmu_buf_rele(db, FTAG);
1851
1852 dmu_tx_commit(tx);
1853 }
1854
1855 /*
1856 * Determine whether the specified vdev can be offlined/detached/removed
1857 * without losing data.
1858 */
1859 boolean_t
1860 vdev_dtl_required(vdev_t *vd)
1861 {
1862 spa_t *spa = vd->vdev_spa;
1863 vdev_t *tvd = vd->vdev_top;
1864 uint8_t cant_read = vd->vdev_cant_read;
1865 boolean_t required;
1866
1867 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1868
1869 if (vd == spa->spa_root_vdev || vd == tvd)
1870 return (B_TRUE);
1871
1872 /*
1873 * Temporarily mark the device as unreadable, and then determine
1874 * whether this results in any DTL outages in the top-level vdev.
1875 * If not, we can safely offline/detach/remove the device.
1876 */
1877 vd->vdev_cant_read = B_TRUE;
1878 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1879 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1880 vd->vdev_cant_read = cant_read;
1881 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1882
1883 if (!required && zio_injection_enabled)
1884 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1885
1886 return (required);
1887 }
1888
1889 /*
1890 * Determine if resilver is needed, and if so the txg range.
1891 */
1892 boolean_t
1893 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1894 {
1895 boolean_t needed = B_FALSE;
1896 uint64_t thismin = UINT64_MAX;
1897 uint64_t thismax = 0;
1898 int c;
1899
1900 if (vd->vdev_children == 0) {
1901 mutex_enter(&vd->vdev_dtl_lock);
1902 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1903 vdev_writeable(vd)) {
1904 space_seg_t *ss;
1905
1906 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1907 thismin = ss->ss_start - 1;
1908 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1909 thismax = ss->ss_end;
1910 needed = B_TRUE;
1911 }
1912 mutex_exit(&vd->vdev_dtl_lock);
1913 } else {
1914 for (c = 0; c < vd->vdev_children; c++) {
1915 vdev_t *cvd = vd->vdev_child[c];
1916 uint64_t cmin, cmax;
1917
1918 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1919 thismin = MIN(thismin, cmin);
1920 thismax = MAX(thismax, cmax);
1921 needed = B_TRUE;
1922 }
1923 }
1924 }
1925
1926 if (needed && minp) {
1927 *minp = thismin;
1928 *maxp = thismax;
1929 }
1930 return (needed);
1931 }
1932
1933 void
1934 vdev_load(vdev_t *vd)
1935 {
1936 int c;
1937
1938 /*
1939 * Recursively load all children.
1940 */
1941 for (c = 0; c < vd->vdev_children; c++)
1942 vdev_load(vd->vdev_child[c]);
1943
1944 /*
1945 * If this is a top-level vdev, initialize its metaslabs.
1946 */
1947 if (vd == vd->vdev_top && !vd->vdev_ishole &&
1948 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1949 vdev_metaslab_init(vd, 0) != 0))
1950 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1951 VDEV_AUX_CORRUPT_DATA);
1952
1953 /*
1954 * If this is a leaf vdev, load its DTL.
1955 */
1956 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1957 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1958 VDEV_AUX_CORRUPT_DATA);
1959 }
1960
1961 /*
1962 * The special vdev case is used for hot spares and l2cache devices. Its
1963 * sole purpose it to set the vdev state for the associated vdev. To do this,
1964 * we make sure that we can open the underlying device, then try to read the
1965 * label, and make sure that the label is sane and that it hasn't been
1966 * repurposed to another pool.
1967 */
1968 int
1969 vdev_validate_aux(vdev_t *vd)
1970 {
1971 nvlist_t *label;
1972 uint64_t guid, version;
1973 uint64_t state;
1974
1975 if (!vdev_readable(vd))
1976 return (0);
1977
1978 if ((label = vdev_label_read_config(vd)) == NULL) {
1979 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1980 VDEV_AUX_CORRUPT_DATA);
1981 return (-1);
1982 }
1983
1984 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1985 version > SPA_VERSION ||
1986 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1987 guid != vd->vdev_guid ||
1988 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1989 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1990 VDEV_AUX_CORRUPT_DATA);
1991 nvlist_free(label);
1992 return (-1);
1993 }
1994
1995 /*
1996 * We don't actually check the pool state here. If it's in fact in
1997 * use by another pool, we update this fact on the fly when requested.
1998 */
1999 nvlist_free(label);
2000 return (0);
2001 }
2002
2003 void
2004 vdev_remove(vdev_t *vd, uint64_t txg)
2005 {
2006 spa_t *spa = vd->vdev_spa;
2007 objset_t *mos = spa->spa_meta_objset;
2008 dmu_tx_t *tx;
2009 int m;
2010
2011 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2012
2013 if (vd->vdev_dtl_smo.smo_object) {
2014 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
2015 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2016 vd->vdev_dtl_smo.smo_object = 0;
2017 }
2018
2019 if (vd->vdev_ms != NULL) {
2020 for (m = 0; m < vd->vdev_ms_count; m++) {
2021 metaslab_t *msp = vd->vdev_ms[m];
2022
2023 if (msp == NULL || msp->ms_smo.smo_object == 0)
2024 continue;
2025
2026 ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2027 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2028 msp->ms_smo.smo_object = 0;
2029 }
2030 }
2031
2032 if (vd->vdev_ms_array) {
2033 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2034 vd->vdev_ms_array = 0;
2035 vd->vdev_ms_shift = 0;
2036 }
2037 dmu_tx_commit(tx);
2038 }
2039
2040 void
2041 vdev_sync_done(vdev_t *vd, uint64_t txg)
2042 {
2043 metaslab_t *msp;
2044 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2045
2046 ASSERT(!vd->vdev_ishole);
2047
2048 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2049 metaslab_sync_done(msp, txg);
2050
2051 if (reassess)
2052 metaslab_sync_reassess(vd->vdev_mg);
2053 }
2054
2055 void
2056 vdev_sync(vdev_t *vd, uint64_t txg)
2057 {
2058 spa_t *spa = vd->vdev_spa;
2059 vdev_t *lvd;
2060 metaslab_t *msp;
2061 dmu_tx_t *tx;
2062
2063 ASSERT(!vd->vdev_ishole);
2064
2065 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2066 ASSERT(vd == vd->vdev_top);
2067 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2068 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2069 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2070 ASSERT(vd->vdev_ms_array != 0);
2071 vdev_config_dirty(vd);
2072 dmu_tx_commit(tx);
2073 }
2074
2075 /*
2076 * Remove the metadata associated with this vdev once it's empty.
2077 */
2078 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2079 vdev_remove(vd, txg);
2080
2081 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2082 metaslab_sync(msp, txg);
2083 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2084 }
2085
2086 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2087 vdev_dtl_sync(lvd, txg);
2088
2089 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2090 }
2091
2092 uint64_t
2093 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2094 {
2095 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2096 }
2097
2098 /*
2099 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2100 * not be opened, and no I/O is attempted.
2101 */
2102 int
2103 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2104 {
2105 vdev_t *vd, *tvd;
2106
2107 spa_vdev_state_enter(spa, SCL_NONE);
2108
2109 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2110 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2111
2112 if (!vd->vdev_ops->vdev_op_leaf)
2113 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2114
2115 tvd = vd->vdev_top;
2116
2117 /*
2118 * We don't directly use the aux state here, but if we do a
2119 * vdev_reopen(), we need this value to be present to remember why we
2120 * were faulted.
2121 */
2122 vd->vdev_label_aux = aux;
2123
2124 /*
2125 * Faulted state takes precedence over degraded.
2126 */
2127 vd->vdev_delayed_close = B_FALSE;
2128 vd->vdev_faulted = 1ULL;
2129 vd->vdev_degraded = 0ULL;
2130 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2131
2132 /*
2133 * If this device has the only valid copy of the data, then
2134 * back off and simply mark the vdev as degraded instead.
2135 */
2136 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2137 vd->vdev_degraded = 1ULL;
2138 vd->vdev_faulted = 0ULL;
2139
2140 /*
2141 * If we reopen the device and it's not dead, only then do we
2142 * mark it degraded.
2143 */
2144 vdev_reopen(tvd);
2145
2146 if (vdev_readable(vd))
2147 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2148 }
2149
2150 return (spa_vdev_state_exit(spa, vd, 0));
2151 }
2152
2153 /*
2154 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2155 * user that something is wrong. The vdev continues to operate as normal as far
2156 * as I/O is concerned.
2157 */
2158 int
2159 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2160 {
2161 vdev_t *vd;
2162
2163 spa_vdev_state_enter(spa, SCL_NONE);
2164
2165 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2166 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2167
2168 if (!vd->vdev_ops->vdev_op_leaf)
2169 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2170
2171 /*
2172 * If the vdev is already faulted, then don't do anything.
2173 */
2174 if (vd->vdev_faulted || vd->vdev_degraded)
2175 return (spa_vdev_state_exit(spa, NULL, 0));
2176
2177 vd->vdev_degraded = 1ULL;
2178 if (!vdev_is_dead(vd))
2179 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2180 aux);
2181
2182 return (spa_vdev_state_exit(spa, vd, 0));
2183 }
2184
2185 /*
2186 * Online the given vdev. If 'unspare' is set, it implies two things. First,
2187 * any attached spare device should be detached when the device finishes
2188 * resilvering. Second, the online should be treated like a 'test' online case,
2189 * so no FMA events are generated if the device fails to open.
2190 */
2191 int
2192 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2193 {
2194 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2195
2196 spa_vdev_state_enter(spa, SCL_NONE);
2197
2198 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2199 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2200
2201 if (!vd->vdev_ops->vdev_op_leaf)
2202 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2203
2204 tvd = vd->vdev_top;
2205 vd->vdev_offline = B_FALSE;
2206 vd->vdev_tmpoffline = B_FALSE;
2207 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2208 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2209
2210 /* XXX - L2ARC 1.0 does not support expansion */
2211 if (!vd->vdev_aux) {
2212 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2213 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2214 }
2215
2216 vdev_reopen(tvd);
2217 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2218
2219 if (!vd->vdev_aux) {
2220 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2221 pvd->vdev_expanding = B_FALSE;
2222 }
2223
2224 if (newstate)
2225 *newstate = vd->vdev_state;
2226 if ((flags & ZFS_ONLINE_UNSPARE) &&
2227 !vdev_is_dead(vd) && vd->vdev_parent &&
2228 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2229 vd->vdev_parent->vdev_child[0] == vd)
2230 vd->vdev_unspare = B_TRUE;
2231
2232 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2233
2234 /* XXX - L2ARC 1.0 does not support expansion */
2235 if (vd->vdev_aux)
2236 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2237 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2238 }
2239 return (spa_vdev_state_exit(spa, vd, 0));
2240 }
2241
2242 static int
2243 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2244 {
2245 vdev_t *vd, *tvd;
2246 int error = 0;
2247 uint64_t generation;
2248 metaslab_group_t *mg;
2249
2250 top:
2251 spa_vdev_state_enter(spa, SCL_ALLOC);
2252
2253 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2254 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2255
2256 if (!vd->vdev_ops->vdev_op_leaf)
2257 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2258
2259 tvd = vd->vdev_top;
2260 mg = tvd->vdev_mg;
2261 generation = spa->spa_config_generation + 1;
2262
2263 /*
2264 * If the device isn't already offline, try to offline it.
2265 */
2266 if (!vd->vdev_offline) {
2267 /*
2268 * If this device has the only valid copy of some data,
2269 * don't allow it to be offlined. Log devices are always
2270 * expendable.
2271 */
2272 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2273 vdev_dtl_required(vd))
2274 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2275
2276 /*
2277 * If the top-level is a slog and it has had allocations
2278 * then proceed. We check that the vdev's metaslab group
2279 * is not NULL since it's possible that we may have just
2280 * added this vdev but not yet initialized its metaslabs.
2281 */
2282 if (tvd->vdev_islog && mg != NULL) {
2283 /*
2284 * Prevent any future allocations.
2285 */
2286 metaslab_group_passivate(mg);
2287 (void) spa_vdev_state_exit(spa, vd, 0);
2288
2289 error = spa_offline_log(spa);
2290
2291 spa_vdev_state_enter(spa, SCL_ALLOC);
2292
2293 /*
2294 * Check to see if the config has changed.
2295 */
2296 if (error || generation != spa->spa_config_generation) {
2297 metaslab_group_activate(mg);
2298 if (error)
2299 return (spa_vdev_state_exit(spa,
2300 vd, error));
2301 (void) spa_vdev_state_exit(spa, vd, 0);
2302 goto top;
2303 }
2304 ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2305 }
2306
2307 /*
2308 * Offline this device and reopen its top-level vdev.
2309 * If the top-level vdev is a log device then just offline
2310 * it. Otherwise, if this action results in the top-level
2311 * vdev becoming unusable, undo it and fail the request.
2312 */
2313 vd->vdev_offline = B_TRUE;
2314 vdev_reopen(tvd);
2315
2316 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2317 vdev_is_dead(tvd)) {
2318 vd->vdev_offline = B_FALSE;
2319 vdev_reopen(tvd);
2320 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2321 }
2322
2323 /*
2324 * Add the device back into the metaslab rotor so that
2325 * once we online the device it's open for business.
2326 */
2327 if (tvd->vdev_islog && mg != NULL)
2328 metaslab_group_activate(mg);
2329 }
2330
2331 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2332
2333 return (spa_vdev_state_exit(spa, vd, 0));
2334 }
2335
2336 int
2337 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2338 {
2339 int error;
2340
2341 mutex_enter(&spa->spa_vdev_top_lock);
2342 error = vdev_offline_locked(spa, guid, flags);
2343 mutex_exit(&spa->spa_vdev_top_lock);
2344
2345 return (error);
2346 }
2347
2348 /*
2349 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2350 * vdev_offline(), we assume the spa config is locked. We also clear all
2351 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2352 */
2353 void
2354 vdev_clear(spa_t *spa, vdev_t *vd)
2355 {
2356 vdev_t *rvd = spa->spa_root_vdev;
2357 int c;
2358
2359 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2360
2361 if (vd == NULL)
2362 vd = rvd;
2363
2364 vd->vdev_stat.vs_read_errors = 0;
2365 vd->vdev_stat.vs_write_errors = 0;
2366 vd->vdev_stat.vs_checksum_errors = 0;
2367
2368 for (c = 0; c < vd->vdev_children; c++)
2369 vdev_clear(spa, vd->vdev_child[c]);
2370
2371 /*
2372 * If we're in the FAULTED state or have experienced failed I/O, then
2373 * clear the persistent state and attempt to reopen the device. We
2374 * also mark the vdev config dirty, so that the new faulted state is
2375 * written out to disk.
2376 */
2377 if (vd->vdev_faulted || vd->vdev_degraded ||
2378 !vdev_readable(vd) || !vdev_writeable(vd)) {
2379
2380 /*
2381 * When reopening in reponse to a clear event, it may be due to
2382 * a fmadm repair request. In this case, if the device is
2383 * still broken, we want to still post the ereport again.
2384 */
2385 vd->vdev_forcefault = B_TRUE;
2386
2387 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2388 vd->vdev_cant_read = B_FALSE;
2389 vd->vdev_cant_write = B_FALSE;
2390
2391 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2392
2393 vd->vdev_forcefault = B_FALSE;
2394
2395 if (vd != rvd && vdev_writeable(vd->vdev_top))
2396 vdev_state_dirty(vd->vdev_top);
2397
2398 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2399 spa_async_request(spa, SPA_ASYNC_RESILVER);
2400
2401 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
2402 }
2403
2404 /*
2405 * When clearing a FMA-diagnosed fault, we always want to
2406 * unspare the device, as we assume that the original spare was
2407 * done in response to the FMA fault.
2408 */
2409 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2410 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2411 vd->vdev_parent->vdev_child[0] == vd)
2412 vd->vdev_unspare = B_TRUE;
2413 }
2414
2415 boolean_t
2416 vdev_is_dead(vdev_t *vd)
2417 {
2418 /*
2419 * Holes and missing devices are always considered "dead".
2420 * This simplifies the code since we don't have to check for
2421 * these types of devices in the various code paths.
2422 * Instead we rely on the fact that we skip over dead devices
2423 * before issuing I/O to them.
2424 */
2425 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2426 vd->vdev_ops == &vdev_missing_ops);
2427 }
2428
2429 boolean_t
2430 vdev_readable(vdev_t *vd)
2431 {
2432 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2433 }
2434
2435 boolean_t
2436 vdev_writeable(vdev_t *vd)
2437 {
2438 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2439 }
2440
2441 boolean_t
2442 vdev_allocatable(vdev_t *vd)
2443 {
2444 uint64_t state = vd->vdev_state;
2445
2446 /*
2447 * We currently allow allocations from vdevs which may be in the
2448 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2449 * fails to reopen then we'll catch it later when we're holding
2450 * the proper locks. Note that we have to get the vdev state
2451 * in a local variable because although it changes atomically,
2452 * we're asking two separate questions about it.
2453 */
2454 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2455 !vd->vdev_cant_write && !vd->vdev_ishole);
2456 }
2457
2458 boolean_t
2459 vdev_accessible(vdev_t *vd, zio_t *zio)
2460 {
2461 ASSERT(zio->io_vd == vd);
2462
2463 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2464 return (B_FALSE);
2465
2466 if (zio->io_type == ZIO_TYPE_READ)
2467 return (!vd->vdev_cant_read);
2468
2469 if (zio->io_type == ZIO_TYPE_WRITE)
2470 return (!vd->vdev_cant_write);
2471
2472 return (B_TRUE);
2473 }
2474
2475 /*
2476 * Get statistics for the given vdev.
2477 */
2478 void
2479 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2480 {
2481 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2482 int c, t;
2483
2484 mutex_enter(&vd->vdev_stat_lock);
2485 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2486 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2487 vs->vs_state = vd->vdev_state;
2488 vs->vs_rsize = vdev_get_min_asize(vd);
2489 if (vd->vdev_ops->vdev_op_leaf)
2490 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2491 mutex_exit(&vd->vdev_stat_lock);
2492
2493 /*
2494 * If we're getting stats on the root vdev, aggregate the I/O counts
2495 * over all top-level vdevs (i.e. the direct children of the root).
2496 */
2497 if (vd == rvd) {
2498 for (c = 0; c < rvd->vdev_children; c++) {
2499 vdev_t *cvd = rvd->vdev_child[c];
2500 vdev_stat_t *cvs = &cvd->vdev_stat;
2501
2502 mutex_enter(&vd->vdev_stat_lock);
2503 for (t = 0; t < ZIO_TYPES; t++) {
2504 vs->vs_ops[t] += cvs->vs_ops[t];
2505 vs->vs_bytes[t] += cvs->vs_bytes[t];
2506 }
2507 cvs->vs_scan_removing = cvd->vdev_removing;
2508 mutex_exit(&vd->vdev_stat_lock);
2509 }
2510 }
2511 }
2512
2513 void
2514 vdev_clear_stats(vdev_t *vd)
2515 {
2516 mutex_enter(&vd->vdev_stat_lock);
2517 vd->vdev_stat.vs_space = 0;
2518 vd->vdev_stat.vs_dspace = 0;
2519 vd->vdev_stat.vs_alloc = 0;
2520 mutex_exit(&vd->vdev_stat_lock);
2521 }
2522
2523 void
2524 vdev_scan_stat_init(vdev_t *vd)
2525 {
2526 vdev_stat_t *vs = &vd->vdev_stat;
2527 int c;
2528
2529 for (c = 0; c < vd->vdev_children; c++)
2530 vdev_scan_stat_init(vd->vdev_child[c]);
2531
2532 mutex_enter(&vd->vdev_stat_lock);
2533 vs->vs_scan_processed = 0;
2534 mutex_exit(&vd->vdev_stat_lock);
2535 }
2536
2537 void
2538 vdev_stat_update(zio_t *zio, uint64_t psize)
2539 {
2540 spa_t *spa = zio->io_spa;
2541 vdev_t *rvd = spa->spa_root_vdev;
2542 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2543 vdev_t *pvd;
2544 uint64_t txg = zio->io_txg;
2545 vdev_stat_t *vs = &vd->vdev_stat;
2546 zio_type_t type = zio->io_type;
2547 int flags = zio->io_flags;
2548
2549 /*
2550 * If this i/o is a gang leader, it didn't do any actual work.
2551 */
2552 if (zio->io_gang_tree)
2553 return;
2554
2555 if (zio->io_error == 0) {
2556 /*
2557 * If this is a root i/o, don't count it -- we've already
2558 * counted the top-level vdevs, and vdev_get_stats() will
2559 * aggregate them when asked. This reduces contention on
2560 * the root vdev_stat_lock and implicitly handles blocks
2561 * that compress away to holes, for which there is no i/o.
2562 * (Holes never create vdev children, so all the counters
2563 * remain zero, which is what we want.)
2564 *
2565 * Note: this only applies to successful i/o (io_error == 0)
2566 * because unlike i/o counts, errors are not additive.
2567 * When reading a ditto block, for example, failure of
2568 * one top-level vdev does not imply a root-level error.
2569 */
2570 if (vd == rvd)
2571 return;
2572
2573 ASSERT(vd == zio->io_vd);
2574
2575 if (flags & ZIO_FLAG_IO_BYPASS)
2576 return;
2577
2578 mutex_enter(&vd->vdev_stat_lock);
2579
2580 if (flags & ZIO_FLAG_IO_REPAIR) {
2581 if (flags & ZIO_FLAG_SCAN_THREAD) {
2582 dsl_scan_phys_t *scn_phys =
2583 &spa->spa_dsl_pool->dp_scan->scn_phys;
2584 uint64_t *processed = &scn_phys->scn_processed;
2585
2586 /* XXX cleanup? */
2587 if (vd->vdev_ops->vdev_op_leaf)
2588 atomic_add_64(processed, psize);
2589 vs->vs_scan_processed += psize;
2590 }
2591
2592 if (flags & ZIO_FLAG_SELF_HEAL)
2593 vs->vs_self_healed += psize;
2594 }
2595
2596 vs->vs_ops[type]++;
2597 vs->vs_bytes[type] += psize;
2598
2599 mutex_exit(&vd->vdev_stat_lock);
2600 return;
2601 }
2602
2603 if (flags & ZIO_FLAG_SPECULATIVE)
2604 return;
2605
2606 /*
2607 * If this is an I/O error that is going to be retried, then ignore the
2608 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2609 * hard errors, when in reality they can happen for any number of
2610 * innocuous reasons (bus resets, MPxIO link failure, etc).
2611 */
2612 if (zio->io_error == EIO &&
2613 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2614 return;
2615
2616 /*
2617 * Intent logs writes won't propagate their error to the root
2618 * I/O so don't mark these types of failures as pool-level
2619 * errors.
2620 */
2621 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2622 return;
2623
2624 mutex_enter(&vd->vdev_stat_lock);
2625 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2626 if (zio->io_error == ECKSUM)
2627 vs->vs_checksum_errors++;
2628 else
2629 vs->vs_read_errors++;
2630 }
2631 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2632 vs->vs_write_errors++;
2633 mutex_exit(&vd->vdev_stat_lock);
2634
2635 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2636 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2637 (flags & ZIO_FLAG_SCAN_THREAD) ||
2638 spa->spa_claiming)) {
2639 /*
2640 * This is either a normal write (not a repair), or it's
2641 * a repair induced by the scrub thread, or it's a repair
2642 * made by zil_claim() during spa_load() in the first txg.
2643 * In the normal case, we commit the DTL change in the same
2644 * txg as the block was born. In the scrub-induced repair
2645 * case, we know that scrubs run in first-pass syncing context,
2646 * so we commit the DTL change in spa_syncing_txg(spa).
2647 * In the zil_claim() case, we commit in spa_first_txg(spa).
2648 *
2649 * We currently do not make DTL entries for failed spontaneous
2650 * self-healing writes triggered by normal (non-scrubbing)
2651 * reads, because we have no transactional context in which to
2652 * do so -- and it's not clear that it'd be desirable anyway.
2653 */
2654 if (vd->vdev_ops->vdev_op_leaf) {
2655 uint64_t commit_txg = txg;
2656 if (flags & ZIO_FLAG_SCAN_THREAD) {
2657 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2658 ASSERT(spa_sync_pass(spa) == 1);
2659 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2660 commit_txg = spa_syncing_txg(spa);
2661 } else if (spa->spa_claiming) {
2662 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2663 commit_txg = spa_first_txg(spa);
2664 }
2665 ASSERT(commit_txg >= spa_syncing_txg(spa));
2666 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2667 return;
2668 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2669 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2670 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2671 }
2672 if (vd != rvd)
2673 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2674 }
2675 }
2676
2677 /*
2678 * Update the in-core space usage stats for this vdev, its metaslab class,
2679 * and the root vdev.
2680 */
2681 void
2682 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2683 int64_t space_delta)
2684 {
2685 int64_t dspace_delta = space_delta;
2686 spa_t *spa = vd->vdev_spa;
2687 vdev_t *rvd = spa->spa_root_vdev;
2688 metaslab_group_t *mg = vd->vdev_mg;
2689 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2690
2691 ASSERT(vd == vd->vdev_top);
2692
2693 /*
2694 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2695 * factor. We must calculate this here and not at the root vdev
2696 * because the root vdev's psize-to-asize is simply the max of its
2697 * childrens', thus not accurate enough for us.
2698 */
2699 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2700 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2701 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2702 vd->vdev_deflate_ratio;
2703
2704 mutex_enter(&vd->vdev_stat_lock);
2705 vd->vdev_stat.vs_alloc += alloc_delta;
2706 vd->vdev_stat.vs_space += space_delta;
2707 vd->vdev_stat.vs_dspace += dspace_delta;
2708 mutex_exit(&vd->vdev_stat_lock);
2709
2710 if (mc == spa_normal_class(spa)) {
2711 mutex_enter(&rvd->vdev_stat_lock);
2712 rvd->vdev_stat.vs_alloc += alloc_delta;
2713 rvd->vdev_stat.vs_space += space_delta;
2714 rvd->vdev_stat.vs_dspace += dspace_delta;
2715 mutex_exit(&rvd->vdev_stat_lock);
2716 }
2717
2718 if (mc != NULL) {
2719 ASSERT(rvd == vd->vdev_parent);
2720 ASSERT(vd->vdev_ms_count != 0);
2721
2722 metaslab_class_space_update(mc,
2723 alloc_delta, defer_delta, space_delta, dspace_delta);
2724 }
2725 }
2726
2727 /*
2728 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2729 * so that it will be written out next time the vdev configuration is synced.
2730 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2731 */
2732 void
2733 vdev_config_dirty(vdev_t *vd)
2734 {
2735 spa_t *spa = vd->vdev_spa;
2736 vdev_t *rvd = spa->spa_root_vdev;
2737 int c;
2738
2739 ASSERT(spa_writeable(spa));
2740
2741 /*
2742 * If this is an aux vdev (as with l2cache and spare devices), then we
2743 * update the vdev config manually and set the sync flag.
2744 */
2745 if (vd->vdev_aux != NULL) {
2746 spa_aux_vdev_t *sav = vd->vdev_aux;
2747 nvlist_t **aux;
2748 uint_t naux;
2749
2750 for (c = 0; c < sav->sav_count; c++) {
2751 if (sav->sav_vdevs[c] == vd)
2752 break;
2753 }
2754
2755 if (c == sav->sav_count) {
2756 /*
2757 * We're being removed. There's nothing more to do.
2758 */
2759 ASSERT(sav->sav_sync == B_TRUE);
2760 return;
2761 }
2762
2763 sav->sav_sync = B_TRUE;
2764
2765 if (nvlist_lookup_nvlist_array(sav->sav_config,
2766 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2767 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2768 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2769 }
2770
2771 ASSERT(c < naux);
2772
2773 /*
2774 * Setting the nvlist in the middle if the array is a little
2775 * sketchy, but it will work.
2776 */
2777 nvlist_free(aux[c]);
2778 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2779
2780 return;
2781 }
2782
2783 /*
2784 * The dirty list is protected by the SCL_CONFIG lock. The caller
2785 * must either hold SCL_CONFIG as writer, or must be the sync thread
2786 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2787 * so this is sufficient to ensure mutual exclusion.
2788 */
2789 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2790 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2791 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2792
2793 if (vd == rvd) {
2794 for (c = 0; c < rvd->vdev_children; c++)
2795 vdev_config_dirty(rvd->vdev_child[c]);
2796 } else {
2797 ASSERT(vd == vd->vdev_top);
2798
2799 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2800 !vd->vdev_ishole)
2801 list_insert_head(&spa->spa_config_dirty_list, vd);
2802 }
2803 }
2804
2805 void
2806 vdev_config_clean(vdev_t *vd)
2807 {
2808 spa_t *spa = vd->vdev_spa;
2809
2810 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2811 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2812 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2813
2814 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2815 list_remove(&spa->spa_config_dirty_list, vd);
2816 }
2817
2818 /*
2819 * Mark a top-level vdev's state as dirty, so that the next pass of
2820 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2821 * the state changes from larger config changes because they require
2822 * much less locking, and are often needed for administrative actions.
2823 */
2824 void
2825 vdev_state_dirty(vdev_t *vd)
2826 {
2827 spa_t *spa = vd->vdev_spa;
2828
2829 ASSERT(spa_writeable(spa));
2830 ASSERT(vd == vd->vdev_top);
2831
2832 /*
2833 * The state list is protected by the SCL_STATE lock. The caller
2834 * must either hold SCL_STATE as writer, or must be the sync thread
2835 * (which holds SCL_STATE as reader). There's only one sync thread,
2836 * so this is sufficient to ensure mutual exclusion.
2837 */
2838 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2839 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2840 spa_config_held(spa, SCL_STATE, RW_READER)));
2841
2842 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2843 list_insert_head(&spa->spa_state_dirty_list, vd);
2844 }
2845
2846 void
2847 vdev_state_clean(vdev_t *vd)
2848 {
2849 spa_t *spa = vd->vdev_spa;
2850
2851 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2852 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2853 spa_config_held(spa, SCL_STATE, RW_READER)));
2854
2855 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2856 list_remove(&spa->spa_state_dirty_list, vd);
2857 }
2858
2859 /*
2860 * Propagate vdev state up from children to parent.
2861 */
2862 void
2863 vdev_propagate_state(vdev_t *vd)
2864 {
2865 spa_t *spa = vd->vdev_spa;
2866 vdev_t *rvd = spa->spa_root_vdev;
2867 int degraded = 0, faulted = 0;
2868 int corrupted = 0;
2869 vdev_t *child;
2870 int c;
2871
2872 if (vd->vdev_children > 0) {
2873 for (c = 0; c < vd->vdev_children; c++) {
2874 child = vd->vdev_child[c];
2875
2876 /*
2877 * Don't factor holes into the decision.
2878 */
2879 if (child->vdev_ishole)
2880 continue;
2881
2882 if (!vdev_readable(child) ||
2883 (!vdev_writeable(child) && spa_writeable(spa))) {
2884 /*
2885 * Root special: if there is a top-level log
2886 * device, treat the root vdev as if it were
2887 * degraded.
2888 */
2889 if (child->vdev_islog && vd == rvd)
2890 degraded++;
2891 else
2892 faulted++;
2893 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2894 degraded++;
2895 }
2896
2897 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2898 corrupted++;
2899 }
2900
2901 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2902
2903 /*
2904 * Root special: if there is a top-level vdev that cannot be
2905 * opened due to corrupted metadata, then propagate the root
2906 * vdev's aux state as 'corrupt' rather than 'insufficient
2907 * replicas'.
2908 */
2909 if (corrupted && vd == rvd &&
2910 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2911 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2912 VDEV_AUX_CORRUPT_DATA);
2913 }
2914
2915 if (vd->vdev_parent)
2916 vdev_propagate_state(vd->vdev_parent);
2917 }
2918
2919 /*
2920 * Set a vdev's state. If this is during an open, we don't update the parent
2921 * state, because we're in the process of opening children depth-first.
2922 * Otherwise, we propagate the change to the parent.
2923 *
2924 * If this routine places a device in a faulted state, an appropriate ereport is
2925 * generated.
2926 */
2927 void
2928 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2929 {
2930 uint64_t save_state;
2931 spa_t *spa = vd->vdev_spa;
2932
2933 if (state == vd->vdev_state) {
2934 vd->vdev_stat.vs_aux = aux;
2935 return;
2936 }
2937
2938 save_state = vd->vdev_state;
2939
2940 vd->vdev_state = state;
2941 vd->vdev_stat.vs_aux = aux;
2942
2943 /*
2944 * If we are setting the vdev state to anything but an open state, then
2945 * always close the underlying device unless the device has requested
2946 * a delayed close (i.e. we're about to remove or fault the device).
2947 * Otherwise, we keep accessible but invalid devices open forever.
2948 * We don't call vdev_close() itself, because that implies some extra
2949 * checks (offline, etc) that we don't want here. This is limited to
2950 * leaf devices, because otherwise closing the device will affect other
2951 * children.
2952 */
2953 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2954 vd->vdev_ops->vdev_op_leaf)
2955 vd->vdev_ops->vdev_op_close(vd);
2956
2957 /*
2958 * If we have brought this vdev back into service, we need
2959 * to notify fmd so that it can gracefully repair any outstanding
2960 * cases due to a missing device. We do this in all cases, even those
2961 * that probably don't correlate to a repaired fault. This is sure to
2962 * catch all cases, and we let the zfs-retire agent sort it out. If
2963 * this is a transient state it's OK, as the retire agent will
2964 * double-check the state of the vdev before repairing it.
2965 */
2966 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2967 vd->vdev_prevstate != state)
2968 zfs_post_state_change(spa, vd);
2969
2970 if (vd->vdev_removed &&
2971 state == VDEV_STATE_CANT_OPEN &&
2972 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2973 /*
2974 * If the previous state is set to VDEV_STATE_REMOVED, then this
2975 * device was previously marked removed and someone attempted to
2976 * reopen it. If this failed due to a nonexistent device, then
2977 * keep the device in the REMOVED state. We also let this be if
2978 * it is one of our special test online cases, which is only
2979 * attempting to online the device and shouldn't generate an FMA
2980 * fault.
2981 */
2982 vd->vdev_state = VDEV_STATE_REMOVED;
2983 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2984 } else if (state == VDEV_STATE_REMOVED) {
2985 vd->vdev_removed = B_TRUE;
2986 } else if (state == VDEV_STATE_CANT_OPEN) {
2987 /*
2988 * If we fail to open a vdev during an import or recovery, we
2989 * mark it as "not available", which signifies that it was
2990 * never there to begin with. Failure to open such a device
2991 * is not considered an error.
2992 */
2993 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2994 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2995 vd->vdev_ops->vdev_op_leaf)
2996 vd->vdev_not_present = 1;
2997
2998 /*
2999 * Post the appropriate ereport. If the 'prevstate' field is
3000 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3001 * that this is part of a vdev_reopen(). In this case, we don't
3002 * want to post the ereport if the device was already in the
3003 * CANT_OPEN state beforehand.
3004 *
3005 * If the 'checkremove' flag is set, then this is an attempt to
3006 * online the device in response to an insertion event. If we
3007 * hit this case, then we have detected an insertion event for a
3008 * faulted or offline device that wasn't in the removed state.
3009 * In this scenario, we don't post an ereport because we are
3010 * about to replace the device, or attempt an online with
3011 * vdev_forcefault, which will generate the fault for us.
3012 */
3013 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3014 !vd->vdev_not_present && !vd->vdev_checkremove &&
3015 vd != spa->spa_root_vdev) {
3016 const char *class;
3017
3018 switch (aux) {
3019 case VDEV_AUX_OPEN_FAILED:
3020 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3021 break;
3022 case VDEV_AUX_CORRUPT_DATA:
3023 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3024 break;
3025 case VDEV_AUX_NO_REPLICAS:
3026 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3027 break;
3028 case VDEV_AUX_BAD_GUID_SUM:
3029 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3030 break;
3031 case VDEV_AUX_TOO_SMALL:
3032 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3033 break;
3034 case VDEV_AUX_BAD_LABEL:
3035 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3036 break;
3037 default:
3038 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3039 }
3040
3041 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3042 }
3043
3044 /* Erase any notion of persistent removed state */
3045 vd->vdev_removed = B_FALSE;
3046 } else {
3047 vd->vdev_removed = B_FALSE;
3048 }
3049
3050 if (!isopen && vd->vdev_parent)
3051 vdev_propagate_state(vd->vdev_parent);
3052 }
3053
3054 /*
3055 * Check the vdev configuration to ensure that it's capable of supporting
3056 * a root pool. Currently, we do not support RAID-Z or partial configuration.
3057 * In addition, only a single top-level vdev is allowed and none of the leaves
3058 * can be wholedisks.
3059 */
3060 boolean_t
3061 vdev_is_bootable(vdev_t *vd)
3062 {
3063 int c;
3064
3065 if (!vd->vdev_ops->vdev_op_leaf) {
3066 char *vdev_type = vd->vdev_ops->vdev_op_type;
3067
3068 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3069 vd->vdev_children > 1) {
3070 return (B_FALSE);
3071 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3072 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3073 return (B_FALSE);
3074 }
3075 } else if (vd->vdev_wholedisk == 1) {
3076 return (B_FALSE);
3077 }
3078
3079 for (c = 0; c < vd->vdev_children; c++) {
3080 if (!vdev_is_bootable(vd->vdev_child[c]))
3081 return (B_FALSE);
3082 }
3083 return (B_TRUE);
3084 }
3085
3086 /*
3087 * Load the state from the original vdev tree (ovd) which
3088 * we've retrieved from the MOS config object. If the original
3089 * vdev was offline or faulted then we transfer that state to the
3090 * device in the current vdev tree (nvd).
3091 */
3092 void
3093 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3094 {
3095 int c;
3096
3097 ASSERT(nvd->vdev_top->vdev_islog);
3098 ASSERT(spa_config_held(nvd->vdev_spa,
3099 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3100 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3101
3102 for (c = 0; c < nvd->vdev_children; c++)
3103 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3104
3105 if (nvd->vdev_ops->vdev_op_leaf) {
3106 /*
3107 * Restore the persistent vdev state
3108 */
3109 nvd->vdev_offline = ovd->vdev_offline;
3110 nvd->vdev_faulted = ovd->vdev_faulted;
3111 nvd->vdev_degraded = ovd->vdev_degraded;
3112 nvd->vdev_removed = ovd->vdev_removed;
3113 }
3114 }
3115
3116 /*
3117 * Determine if a log device has valid content. If the vdev was
3118 * removed or faulted in the MOS config then we know that
3119 * the content on the log device has already been written to the pool.
3120 */
3121 boolean_t
3122 vdev_log_state_valid(vdev_t *vd)
3123 {
3124 int c;
3125
3126 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3127 !vd->vdev_removed)
3128 return (B_TRUE);
3129
3130 for (c = 0; c < vd->vdev_children; c++)
3131 if (vdev_log_state_valid(vd->vdev_child[c]))
3132 return (B_TRUE);
3133
3134 return (B_FALSE);
3135 }
3136
3137 /*
3138 * Expand a vdev if possible.
3139 */
3140 void
3141 vdev_expand(vdev_t *vd, uint64_t txg)
3142 {
3143 ASSERT(vd->vdev_top == vd);
3144 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3145
3146 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3147 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3148 vdev_config_dirty(vd);
3149 }
3150 }
3151
3152 /*
3153 * Split a vdev.
3154 */
3155 void
3156 vdev_split(vdev_t *vd)
3157 {
3158 vdev_t *cvd, *pvd = vd->vdev_parent;
3159
3160 vdev_remove_child(pvd, vd);
3161 vdev_compact_children(pvd);
3162
3163 cvd = pvd->vdev_child[0];
3164 if (pvd->vdev_children == 1) {
3165 vdev_remove_parent(cvd);
3166 cvd->vdev_splitting = B_TRUE;
3167 }
3168 vdev_propagate_state(cvd);
3169 }
3170
3171 #if defined(_KERNEL) && defined(HAVE_SPL)
3172 EXPORT_SYMBOL(vdev_fault);
3173 EXPORT_SYMBOL(vdev_degrade);
3174 EXPORT_SYMBOL(vdev_online);
3175 EXPORT_SYMBOL(vdev_offline);
3176 EXPORT_SYMBOL(vdev_clear);
3177 #endif