]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Illumos #3598
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 by Delphix. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/arc.h>
43 #include <sys/zil.h>
44 #include <sys/dsl_scan.h>
45 #include <sys/zvol.h>
46
47 /*
48 * Virtual device management.
49 */
50
51 static vdev_ops_t *vdev_ops_table[] = {
52 &vdev_root_ops,
53 &vdev_raidz_ops,
54 &vdev_mirror_ops,
55 &vdev_replacing_ops,
56 &vdev_spare_ops,
57 &vdev_disk_ops,
58 &vdev_file_ops,
59 &vdev_missing_ops,
60 &vdev_hole_ops,
61 NULL
62 };
63
64 /*
65 * Given a vdev type, return the appropriate ops vector.
66 */
67 static vdev_ops_t *
68 vdev_getops(const char *type)
69 {
70 vdev_ops_t *ops, **opspp;
71
72 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73 if (strcmp(ops->vdev_op_type, type) == 0)
74 break;
75
76 return (ops);
77 }
78
79 /*
80 * Default asize function: return the MAX of psize with the asize of
81 * all children. This is what's used by anything other than RAID-Z.
82 */
83 uint64_t
84 vdev_default_asize(vdev_t *vd, uint64_t psize)
85 {
86 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87 uint64_t csize;
88 int c;
89
90 for (c = 0; c < vd->vdev_children; c++) {
91 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
92 asize = MAX(asize, csize);
93 }
94
95 return (asize);
96 }
97
98 /*
99 * Get the minimum allocatable size. We define the allocatable size as
100 * the vdev's asize rounded to the nearest metaslab. This allows us to
101 * replace or attach devices which don't have the same physical size but
102 * can still satisfy the same number of allocations.
103 */
104 uint64_t
105 vdev_get_min_asize(vdev_t *vd)
106 {
107 vdev_t *pvd = vd->vdev_parent;
108
109 /*
110 * If our parent is NULL (inactive spare or cache) or is the root,
111 * just return our own asize.
112 */
113 if (pvd == NULL)
114 return (vd->vdev_asize);
115
116 /*
117 * The top-level vdev just returns the allocatable size rounded
118 * to the nearest metaslab.
119 */
120 if (vd == vd->vdev_top)
121 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
122
123 /*
124 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
125 * so each child must provide at least 1/Nth of its asize.
126 */
127 if (pvd->vdev_ops == &vdev_raidz_ops)
128 return (pvd->vdev_min_asize / pvd->vdev_children);
129
130 return (pvd->vdev_min_asize);
131 }
132
133 void
134 vdev_set_min_asize(vdev_t *vd)
135 {
136 int c;
137 vd->vdev_min_asize = vdev_get_min_asize(vd);
138
139 for (c = 0; c < vd->vdev_children; c++)
140 vdev_set_min_asize(vd->vdev_child[c]);
141 }
142
143 vdev_t *
144 vdev_lookup_top(spa_t *spa, uint64_t vdev)
145 {
146 vdev_t *rvd = spa->spa_root_vdev;
147
148 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
149
150 if (vdev < rvd->vdev_children) {
151 ASSERT(rvd->vdev_child[vdev] != NULL);
152 return (rvd->vdev_child[vdev]);
153 }
154
155 return (NULL);
156 }
157
158 vdev_t *
159 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
160 {
161 vdev_t *mvd;
162 int c;
163
164 if (vd->vdev_guid == guid)
165 return (vd);
166
167 for (c = 0; c < vd->vdev_children; c++)
168 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
169 NULL)
170 return (mvd);
171
172 return (NULL);
173 }
174
175 void
176 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
177 {
178 size_t oldsize, newsize;
179 uint64_t id = cvd->vdev_id;
180 vdev_t **newchild;
181
182 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
183 ASSERT(cvd->vdev_parent == NULL);
184
185 cvd->vdev_parent = pvd;
186
187 if (pvd == NULL)
188 return;
189
190 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
191
192 oldsize = pvd->vdev_children * sizeof (vdev_t *);
193 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
194 newsize = pvd->vdev_children * sizeof (vdev_t *);
195
196 newchild = kmem_zalloc(newsize, KM_PUSHPAGE);
197 if (pvd->vdev_child != NULL) {
198 bcopy(pvd->vdev_child, newchild, oldsize);
199 kmem_free(pvd->vdev_child, oldsize);
200 }
201
202 pvd->vdev_child = newchild;
203 pvd->vdev_child[id] = cvd;
204
205 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
206 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
207
208 /*
209 * Walk up all ancestors to update guid sum.
210 */
211 for (; pvd != NULL; pvd = pvd->vdev_parent)
212 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
213 }
214
215 void
216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217 {
218 int c;
219 uint_t id = cvd->vdev_id;
220
221 ASSERT(cvd->vdev_parent == pvd);
222
223 if (pvd == NULL)
224 return;
225
226 ASSERT(id < pvd->vdev_children);
227 ASSERT(pvd->vdev_child[id] == cvd);
228
229 pvd->vdev_child[id] = NULL;
230 cvd->vdev_parent = NULL;
231
232 for (c = 0; c < pvd->vdev_children; c++)
233 if (pvd->vdev_child[c])
234 break;
235
236 if (c == pvd->vdev_children) {
237 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
238 pvd->vdev_child = NULL;
239 pvd->vdev_children = 0;
240 }
241
242 /*
243 * Walk up all ancestors to update guid sum.
244 */
245 for (; pvd != NULL; pvd = pvd->vdev_parent)
246 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
247 }
248
249 /*
250 * Remove any holes in the child array.
251 */
252 void
253 vdev_compact_children(vdev_t *pvd)
254 {
255 vdev_t **newchild, *cvd;
256 int oldc = pvd->vdev_children;
257 int newc;
258 int c;
259
260 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
261
262 for (c = newc = 0; c < oldc; c++)
263 if (pvd->vdev_child[c])
264 newc++;
265
266 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_PUSHPAGE);
267
268 for (c = newc = 0; c < oldc; c++) {
269 if ((cvd = pvd->vdev_child[c]) != NULL) {
270 newchild[newc] = cvd;
271 cvd->vdev_id = newc++;
272 }
273 }
274
275 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
276 pvd->vdev_child = newchild;
277 pvd->vdev_children = newc;
278 }
279
280 /*
281 * Allocate and minimally initialize a vdev_t.
282 */
283 vdev_t *
284 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
285 {
286 vdev_t *vd;
287 int t;
288
289 vd = kmem_zalloc(sizeof (vdev_t), KM_PUSHPAGE);
290
291 if (spa->spa_root_vdev == NULL) {
292 ASSERT(ops == &vdev_root_ops);
293 spa->spa_root_vdev = vd;
294 spa->spa_load_guid = spa_generate_guid(NULL);
295 }
296
297 if (guid == 0 && ops != &vdev_hole_ops) {
298 if (spa->spa_root_vdev == vd) {
299 /*
300 * The root vdev's guid will also be the pool guid,
301 * which must be unique among all pools.
302 */
303 guid = spa_generate_guid(NULL);
304 } else {
305 /*
306 * Any other vdev's guid must be unique within the pool.
307 */
308 guid = spa_generate_guid(spa);
309 }
310 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
311 }
312
313 vd->vdev_spa = spa;
314 vd->vdev_id = id;
315 vd->vdev_guid = guid;
316 vd->vdev_guid_sum = guid;
317 vd->vdev_ops = ops;
318 vd->vdev_state = VDEV_STATE_CLOSED;
319 vd->vdev_ishole = (ops == &vdev_hole_ops);
320
321 list_link_init(&vd->vdev_config_dirty_node);
322 list_link_init(&vd->vdev_state_dirty_node);
323 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
324 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
325 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
326 for (t = 0; t < DTL_TYPES; t++) {
327 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
328 &vd->vdev_dtl_lock);
329 }
330 txg_list_create(&vd->vdev_ms_list,
331 offsetof(struct metaslab, ms_txg_node));
332 txg_list_create(&vd->vdev_dtl_list,
333 offsetof(struct vdev, vdev_dtl_node));
334 vd->vdev_stat.vs_timestamp = gethrtime();
335 vdev_queue_init(vd);
336 vdev_cache_init(vd);
337
338 return (vd);
339 }
340
341 /*
342 * Allocate a new vdev. The 'alloctype' is used to control whether we are
343 * creating a new vdev or loading an existing one - the behavior is slightly
344 * different for each case.
345 */
346 int
347 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
348 int alloctype)
349 {
350 vdev_ops_t *ops;
351 char *type;
352 uint64_t guid = 0, islog, nparity;
353 vdev_t *vd;
354
355 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
356
357 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
358 return (SET_ERROR(EINVAL));
359
360 if ((ops = vdev_getops(type)) == NULL)
361 return (SET_ERROR(EINVAL));
362
363 /*
364 * If this is a load, get the vdev guid from the nvlist.
365 * Otherwise, vdev_alloc_common() will generate one for us.
366 */
367 if (alloctype == VDEV_ALLOC_LOAD) {
368 uint64_t label_id;
369
370 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
371 label_id != id)
372 return (SET_ERROR(EINVAL));
373
374 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
375 return (SET_ERROR(EINVAL));
376 } else if (alloctype == VDEV_ALLOC_SPARE) {
377 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
378 return (SET_ERROR(EINVAL));
379 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
380 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
381 return (SET_ERROR(EINVAL));
382 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
383 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
384 return (SET_ERROR(EINVAL));
385 }
386
387 /*
388 * The first allocated vdev must be of type 'root'.
389 */
390 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
391 return (SET_ERROR(EINVAL));
392
393 /*
394 * Determine whether we're a log vdev.
395 */
396 islog = 0;
397 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
398 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
399 return (SET_ERROR(ENOTSUP));
400
401 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
402 return (SET_ERROR(ENOTSUP));
403
404 /*
405 * Set the nparity property for RAID-Z vdevs.
406 */
407 nparity = -1ULL;
408 if (ops == &vdev_raidz_ops) {
409 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
410 &nparity) == 0) {
411 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
412 return (SET_ERROR(EINVAL));
413 /*
414 * Previous versions could only support 1 or 2 parity
415 * device.
416 */
417 if (nparity > 1 &&
418 spa_version(spa) < SPA_VERSION_RAIDZ2)
419 return (SET_ERROR(ENOTSUP));
420 if (nparity > 2 &&
421 spa_version(spa) < SPA_VERSION_RAIDZ3)
422 return (SET_ERROR(ENOTSUP));
423 } else {
424 /*
425 * We require the parity to be specified for SPAs that
426 * support multiple parity levels.
427 */
428 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
429 return (SET_ERROR(EINVAL));
430 /*
431 * Otherwise, we default to 1 parity device for RAID-Z.
432 */
433 nparity = 1;
434 }
435 } else {
436 nparity = 0;
437 }
438 ASSERT(nparity != -1ULL);
439
440 vd = vdev_alloc_common(spa, id, guid, ops);
441
442 vd->vdev_islog = islog;
443 vd->vdev_nparity = nparity;
444
445 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
446 vd->vdev_path = spa_strdup(vd->vdev_path);
447 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
448 vd->vdev_devid = spa_strdup(vd->vdev_devid);
449 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
450 &vd->vdev_physpath) == 0)
451 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
452 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
453 vd->vdev_fru = spa_strdup(vd->vdev_fru);
454
455 /*
456 * Set the whole_disk property. If it's not specified, leave the value
457 * as -1.
458 */
459 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
460 &vd->vdev_wholedisk) != 0)
461 vd->vdev_wholedisk = -1ULL;
462
463 /*
464 * Look for the 'not present' flag. This will only be set if the device
465 * was not present at the time of import.
466 */
467 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
468 &vd->vdev_not_present);
469
470 /*
471 * Get the alignment requirement.
472 */
473 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
474
475 /*
476 * Retrieve the vdev creation time.
477 */
478 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
479 &vd->vdev_crtxg);
480
481 /*
482 * If we're a top-level vdev, try to load the allocation parameters.
483 */
484 if (parent && !parent->vdev_parent &&
485 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
486 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
487 &vd->vdev_ms_array);
488 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
489 &vd->vdev_ms_shift);
490 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
491 &vd->vdev_asize);
492 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
493 &vd->vdev_removing);
494 }
495
496 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
497 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
498 alloctype == VDEV_ALLOC_ADD ||
499 alloctype == VDEV_ALLOC_SPLIT ||
500 alloctype == VDEV_ALLOC_ROOTPOOL);
501 vd->vdev_mg = metaslab_group_create(islog ?
502 spa_log_class(spa) : spa_normal_class(spa), vd);
503 }
504
505 /*
506 * If we're a leaf vdev, try to load the DTL object and other state.
507 */
508 if (vd->vdev_ops->vdev_op_leaf &&
509 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
510 alloctype == VDEV_ALLOC_ROOTPOOL)) {
511 if (alloctype == VDEV_ALLOC_LOAD) {
512 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
513 &vd->vdev_dtl_smo.smo_object);
514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
515 &vd->vdev_unspare);
516 }
517
518 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
519 uint64_t spare = 0;
520
521 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
522 &spare) == 0 && spare)
523 spa_spare_add(vd);
524 }
525
526 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
527 &vd->vdev_offline);
528
529 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
530 &vd->vdev_resilvering);
531
532 /*
533 * When importing a pool, we want to ignore the persistent fault
534 * state, as the diagnosis made on another system may not be
535 * valid in the current context. Local vdevs will
536 * remain in the faulted state.
537 */
538 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
539 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
540 &vd->vdev_faulted);
541 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
542 &vd->vdev_degraded);
543 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
544 &vd->vdev_removed);
545
546 if (vd->vdev_faulted || vd->vdev_degraded) {
547 char *aux;
548
549 vd->vdev_label_aux =
550 VDEV_AUX_ERR_EXCEEDED;
551 if (nvlist_lookup_string(nv,
552 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
553 strcmp(aux, "external") == 0)
554 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
555 }
556 }
557 }
558
559 /*
560 * Add ourselves to the parent's list of children.
561 */
562 vdev_add_child(parent, vd);
563
564 *vdp = vd;
565
566 return (0);
567 }
568
569 void
570 vdev_free(vdev_t *vd)
571 {
572 int c, t;
573 spa_t *spa = vd->vdev_spa;
574
575 /*
576 * vdev_free() implies closing the vdev first. This is simpler than
577 * trying to ensure complicated semantics for all callers.
578 */
579 vdev_close(vd);
580
581 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
582 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
583
584 /*
585 * Free all children.
586 */
587 for (c = 0; c < vd->vdev_children; c++)
588 vdev_free(vd->vdev_child[c]);
589
590 ASSERT(vd->vdev_child == NULL);
591 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
592
593 /*
594 * Discard allocation state.
595 */
596 if (vd->vdev_mg != NULL) {
597 vdev_metaslab_fini(vd);
598 metaslab_group_destroy(vd->vdev_mg);
599 }
600
601 ASSERT0(vd->vdev_stat.vs_space);
602 ASSERT0(vd->vdev_stat.vs_dspace);
603 ASSERT0(vd->vdev_stat.vs_alloc);
604
605 /*
606 * Remove this vdev from its parent's child list.
607 */
608 vdev_remove_child(vd->vdev_parent, vd);
609
610 ASSERT(vd->vdev_parent == NULL);
611
612 /*
613 * Clean up vdev structure.
614 */
615 vdev_queue_fini(vd);
616 vdev_cache_fini(vd);
617
618 if (vd->vdev_path)
619 spa_strfree(vd->vdev_path);
620 if (vd->vdev_devid)
621 spa_strfree(vd->vdev_devid);
622 if (vd->vdev_physpath)
623 spa_strfree(vd->vdev_physpath);
624 if (vd->vdev_fru)
625 spa_strfree(vd->vdev_fru);
626
627 if (vd->vdev_isspare)
628 spa_spare_remove(vd);
629 if (vd->vdev_isl2cache)
630 spa_l2cache_remove(vd);
631
632 txg_list_destroy(&vd->vdev_ms_list);
633 txg_list_destroy(&vd->vdev_dtl_list);
634
635 mutex_enter(&vd->vdev_dtl_lock);
636 for (t = 0; t < DTL_TYPES; t++) {
637 space_map_unload(&vd->vdev_dtl[t]);
638 space_map_destroy(&vd->vdev_dtl[t]);
639 }
640 mutex_exit(&vd->vdev_dtl_lock);
641
642 mutex_destroy(&vd->vdev_dtl_lock);
643 mutex_destroy(&vd->vdev_stat_lock);
644 mutex_destroy(&vd->vdev_probe_lock);
645
646 if (vd == spa->spa_root_vdev)
647 spa->spa_root_vdev = NULL;
648
649 kmem_free(vd, sizeof (vdev_t));
650 }
651
652 /*
653 * Transfer top-level vdev state from svd to tvd.
654 */
655 static void
656 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
657 {
658 spa_t *spa = svd->vdev_spa;
659 metaslab_t *msp;
660 vdev_t *vd;
661 int t;
662
663 ASSERT(tvd == tvd->vdev_top);
664
665 tvd->vdev_ms_array = svd->vdev_ms_array;
666 tvd->vdev_ms_shift = svd->vdev_ms_shift;
667 tvd->vdev_ms_count = svd->vdev_ms_count;
668
669 svd->vdev_ms_array = 0;
670 svd->vdev_ms_shift = 0;
671 svd->vdev_ms_count = 0;
672
673 if (tvd->vdev_mg)
674 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
675 tvd->vdev_mg = svd->vdev_mg;
676 tvd->vdev_ms = svd->vdev_ms;
677
678 svd->vdev_mg = NULL;
679 svd->vdev_ms = NULL;
680
681 if (tvd->vdev_mg != NULL)
682 tvd->vdev_mg->mg_vd = tvd;
683
684 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
685 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
686 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
687
688 svd->vdev_stat.vs_alloc = 0;
689 svd->vdev_stat.vs_space = 0;
690 svd->vdev_stat.vs_dspace = 0;
691
692 for (t = 0; t < TXG_SIZE; t++) {
693 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
694 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
695 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
696 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
697 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
698 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
699 }
700
701 if (list_link_active(&svd->vdev_config_dirty_node)) {
702 vdev_config_clean(svd);
703 vdev_config_dirty(tvd);
704 }
705
706 if (list_link_active(&svd->vdev_state_dirty_node)) {
707 vdev_state_clean(svd);
708 vdev_state_dirty(tvd);
709 }
710
711 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
712 svd->vdev_deflate_ratio = 0;
713
714 tvd->vdev_islog = svd->vdev_islog;
715 svd->vdev_islog = 0;
716 }
717
718 static void
719 vdev_top_update(vdev_t *tvd, vdev_t *vd)
720 {
721 int c;
722
723 if (vd == NULL)
724 return;
725
726 vd->vdev_top = tvd;
727
728 for (c = 0; c < vd->vdev_children; c++)
729 vdev_top_update(tvd, vd->vdev_child[c]);
730 }
731
732 /*
733 * Add a mirror/replacing vdev above an existing vdev.
734 */
735 vdev_t *
736 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
737 {
738 spa_t *spa = cvd->vdev_spa;
739 vdev_t *pvd = cvd->vdev_parent;
740 vdev_t *mvd;
741
742 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
743
744 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
745
746 mvd->vdev_asize = cvd->vdev_asize;
747 mvd->vdev_min_asize = cvd->vdev_min_asize;
748 mvd->vdev_max_asize = cvd->vdev_max_asize;
749 mvd->vdev_ashift = cvd->vdev_ashift;
750 mvd->vdev_state = cvd->vdev_state;
751 mvd->vdev_crtxg = cvd->vdev_crtxg;
752
753 vdev_remove_child(pvd, cvd);
754 vdev_add_child(pvd, mvd);
755 cvd->vdev_id = mvd->vdev_children;
756 vdev_add_child(mvd, cvd);
757 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
758
759 if (mvd == mvd->vdev_top)
760 vdev_top_transfer(cvd, mvd);
761
762 return (mvd);
763 }
764
765 /*
766 * Remove a 1-way mirror/replacing vdev from the tree.
767 */
768 void
769 vdev_remove_parent(vdev_t *cvd)
770 {
771 vdev_t *mvd = cvd->vdev_parent;
772 vdev_t *pvd = mvd->vdev_parent;
773
774 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
775
776 ASSERT(mvd->vdev_children == 1);
777 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
778 mvd->vdev_ops == &vdev_replacing_ops ||
779 mvd->vdev_ops == &vdev_spare_ops);
780 cvd->vdev_ashift = mvd->vdev_ashift;
781
782 vdev_remove_child(mvd, cvd);
783 vdev_remove_child(pvd, mvd);
784
785 /*
786 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
787 * Otherwise, we could have detached an offline device, and when we
788 * go to import the pool we'll think we have two top-level vdevs,
789 * instead of a different version of the same top-level vdev.
790 */
791 if (mvd->vdev_top == mvd) {
792 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
793 cvd->vdev_orig_guid = cvd->vdev_guid;
794 cvd->vdev_guid += guid_delta;
795 cvd->vdev_guid_sum += guid_delta;
796 }
797 cvd->vdev_id = mvd->vdev_id;
798 vdev_add_child(pvd, cvd);
799 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
800
801 if (cvd == cvd->vdev_top)
802 vdev_top_transfer(mvd, cvd);
803
804 ASSERT(mvd->vdev_children == 0);
805 vdev_free(mvd);
806 }
807
808 int
809 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
810 {
811 spa_t *spa = vd->vdev_spa;
812 objset_t *mos = spa->spa_meta_objset;
813 uint64_t m;
814 uint64_t oldc = vd->vdev_ms_count;
815 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
816 metaslab_t **mspp;
817 int error;
818
819 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
820
821 /*
822 * This vdev is not being allocated from yet or is a hole.
823 */
824 if (vd->vdev_ms_shift == 0)
825 return (0);
826
827 ASSERT(!vd->vdev_ishole);
828
829 /*
830 * Compute the raidz-deflation ratio. Note, we hard-code
831 * in 128k (1 << 17) because it is the current "typical" blocksize.
832 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
833 * or we will inconsistently account for existing bp's.
834 */
835 vd->vdev_deflate_ratio = (1 << 17) /
836 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
837
838 ASSERT(oldc <= newc);
839
840 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_PUSHPAGE | KM_NODEBUG);
841
842 if (oldc != 0) {
843 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
844 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
845 }
846
847 vd->vdev_ms = mspp;
848 vd->vdev_ms_count = newc;
849
850 for (m = oldc; m < newc; m++) {
851 space_map_obj_t smo = { 0, 0, 0 };
852 if (txg == 0) {
853 uint64_t object = 0;
854 error = dmu_read(mos, vd->vdev_ms_array,
855 m * sizeof (uint64_t), sizeof (uint64_t), &object,
856 DMU_READ_PREFETCH);
857 if (error)
858 return (error);
859 if (object != 0) {
860 dmu_buf_t *db;
861 error = dmu_bonus_hold(mos, object, FTAG, &db);
862 if (error)
863 return (error);
864 ASSERT3U(db->db_size, >=, sizeof (smo));
865 bcopy(db->db_data, &smo, sizeof (smo));
866 ASSERT3U(smo.smo_object, ==, object);
867 dmu_buf_rele(db, FTAG);
868 }
869 }
870 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
871 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
872 }
873
874 if (txg == 0)
875 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
876
877 /*
878 * If the vdev is being removed we don't activate
879 * the metaslabs since we want to ensure that no new
880 * allocations are performed on this device.
881 */
882 if (oldc == 0 && !vd->vdev_removing)
883 metaslab_group_activate(vd->vdev_mg);
884
885 if (txg == 0)
886 spa_config_exit(spa, SCL_ALLOC, FTAG);
887
888 return (0);
889 }
890
891 void
892 vdev_metaslab_fini(vdev_t *vd)
893 {
894 uint64_t m;
895 uint64_t count = vd->vdev_ms_count;
896
897 if (vd->vdev_ms != NULL) {
898 metaslab_group_passivate(vd->vdev_mg);
899 for (m = 0; m < count; m++)
900 if (vd->vdev_ms[m] != NULL)
901 metaslab_fini(vd->vdev_ms[m]);
902 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
903 vd->vdev_ms = NULL;
904 }
905
906 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
907 }
908
909 typedef struct vdev_probe_stats {
910 boolean_t vps_readable;
911 boolean_t vps_writeable;
912 int vps_flags;
913 } vdev_probe_stats_t;
914
915 static void
916 vdev_probe_done(zio_t *zio)
917 {
918 spa_t *spa = zio->io_spa;
919 vdev_t *vd = zio->io_vd;
920 vdev_probe_stats_t *vps = zio->io_private;
921
922 ASSERT(vd->vdev_probe_zio != NULL);
923
924 if (zio->io_type == ZIO_TYPE_READ) {
925 if (zio->io_error == 0)
926 vps->vps_readable = 1;
927 if (zio->io_error == 0 && spa_writeable(spa)) {
928 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
929 zio->io_offset, zio->io_size, zio->io_data,
930 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
931 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
932 } else {
933 zio_buf_free(zio->io_data, zio->io_size);
934 }
935 } else if (zio->io_type == ZIO_TYPE_WRITE) {
936 if (zio->io_error == 0)
937 vps->vps_writeable = 1;
938 zio_buf_free(zio->io_data, zio->io_size);
939 } else if (zio->io_type == ZIO_TYPE_NULL) {
940 zio_t *pio;
941
942 vd->vdev_cant_read |= !vps->vps_readable;
943 vd->vdev_cant_write |= !vps->vps_writeable;
944
945 if (vdev_readable(vd) &&
946 (vdev_writeable(vd) || !spa_writeable(spa))) {
947 zio->io_error = 0;
948 } else {
949 ASSERT(zio->io_error != 0);
950 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
951 spa, vd, NULL, 0, 0);
952 zio->io_error = SET_ERROR(ENXIO);
953 }
954
955 mutex_enter(&vd->vdev_probe_lock);
956 ASSERT(vd->vdev_probe_zio == zio);
957 vd->vdev_probe_zio = NULL;
958 mutex_exit(&vd->vdev_probe_lock);
959
960 while ((pio = zio_walk_parents(zio)) != NULL)
961 if (!vdev_accessible(vd, pio))
962 pio->io_error = SET_ERROR(ENXIO);
963
964 kmem_free(vps, sizeof (*vps));
965 }
966 }
967
968 /*
969 * Determine whether this device is accessible by reading and writing
970 * to several known locations: the pad regions of each vdev label
971 * but the first (which we leave alone in case it contains a VTOC).
972 */
973 zio_t *
974 vdev_probe(vdev_t *vd, zio_t *zio)
975 {
976 spa_t *spa = vd->vdev_spa;
977 vdev_probe_stats_t *vps = NULL;
978 zio_t *pio;
979 int l;
980
981 ASSERT(vd->vdev_ops->vdev_op_leaf);
982
983 /*
984 * Don't probe the probe.
985 */
986 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
987 return (NULL);
988
989 /*
990 * To prevent 'probe storms' when a device fails, we create
991 * just one probe i/o at a time. All zios that want to probe
992 * this vdev will become parents of the probe io.
993 */
994 mutex_enter(&vd->vdev_probe_lock);
995
996 if ((pio = vd->vdev_probe_zio) == NULL) {
997 vps = kmem_zalloc(sizeof (*vps), KM_PUSHPAGE);
998
999 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1000 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1001 ZIO_FLAG_TRYHARD;
1002
1003 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1004 /*
1005 * vdev_cant_read and vdev_cant_write can only
1006 * transition from TRUE to FALSE when we have the
1007 * SCL_ZIO lock as writer; otherwise they can only
1008 * transition from FALSE to TRUE. This ensures that
1009 * any zio looking at these values can assume that
1010 * failures persist for the life of the I/O. That's
1011 * important because when a device has intermittent
1012 * connectivity problems, we want to ensure that
1013 * they're ascribed to the device (ENXIO) and not
1014 * the zio (EIO).
1015 *
1016 * Since we hold SCL_ZIO as writer here, clear both
1017 * values so the probe can reevaluate from first
1018 * principles.
1019 */
1020 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1021 vd->vdev_cant_read = B_FALSE;
1022 vd->vdev_cant_write = B_FALSE;
1023 }
1024
1025 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1026 vdev_probe_done, vps,
1027 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1028
1029 /*
1030 * We can't change the vdev state in this context, so we
1031 * kick off an async task to do it on our behalf.
1032 */
1033 if (zio != NULL) {
1034 vd->vdev_probe_wanted = B_TRUE;
1035 spa_async_request(spa, SPA_ASYNC_PROBE);
1036 }
1037 }
1038
1039 if (zio != NULL)
1040 zio_add_child(zio, pio);
1041
1042 mutex_exit(&vd->vdev_probe_lock);
1043
1044 if (vps == NULL) {
1045 ASSERT(zio != NULL);
1046 return (NULL);
1047 }
1048
1049 for (l = 1; l < VDEV_LABELS; l++) {
1050 zio_nowait(zio_read_phys(pio, vd,
1051 vdev_label_offset(vd->vdev_psize, l,
1052 offsetof(vdev_label_t, vl_pad2)),
1053 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1054 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1055 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1056 }
1057
1058 if (zio == NULL)
1059 return (pio);
1060
1061 zio_nowait(pio);
1062 return (NULL);
1063 }
1064
1065 static void
1066 vdev_open_child(void *arg)
1067 {
1068 vdev_t *vd = arg;
1069
1070 vd->vdev_open_thread = curthread;
1071 vd->vdev_open_error = vdev_open(vd);
1072 vd->vdev_open_thread = NULL;
1073 }
1074
1075 static boolean_t
1076 vdev_uses_zvols(vdev_t *vd)
1077 {
1078 int c;
1079
1080 #ifdef _KERNEL
1081 if (zvol_is_zvol(vd->vdev_path))
1082 return (B_TRUE);
1083 #endif
1084
1085 for (c = 0; c < vd->vdev_children; c++)
1086 if (vdev_uses_zvols(vd->vdev_child[c]))
1087 return (B_TRUE);
1088
1089 return (B_FALSE);
1090 }
1091
1092 void
1093 vdev_open_children(vdev_t *vd)
1094 {
1095 taskq_t *tq;
1096 int children = vd->vdev_children;
1097 int c;
1098
1099 /*
1100 * in order to handle pools on top of zvols, do the opens
1101 * in a single thread so that the same thread holds the
1102 * spa_namespace_lock
1103 */
1104 if (vdev_uses_zvols(vd)) {
1105 for (c = 0; c < children; c++)
1106 vd->vdev_child[c]->vdev_open_error =
1107 vdev_open(vd->vdev_child[c]);
1108 return;
1109 }
1110 tq = taskq_create("vdev_open", children, minclsyspri,
1111 children, children, TASKQ_PREPOPULATE);
1112
1113 for (c = 0; c < children; c++)
1114 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1115 TQ_SLEEP) != 0);
1116
1117 taskq_destroy(tq);
1118 }
1119
1120 /*
1121 * Prepare a virtual device for access.
1122 */
1123 int
1124 vdev_open(vdev_t *vd)
1125 {
1126 spa_t *spa = vd->vdev_spa;
1127 int error;
1128 uint64_t osize = 0;
1129 uint64_t max_osize = 0;
1130 uint64_t asize, max_asize, psize;
1131 uint64_t ashift = 0;
1132 int c;
1133
1134 ASSERT(vd->vdev_open_thread == curthread ||
1135 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1136 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1137 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1138 vd->vdev_state == VDEV_STATE_OFFLINE);
1139
1140 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1141 vd->vdev_cant_read = B_FALSE;
1142 vd->vdev_cant_write = B_FALSE;
1143 vd->vdev_min_asize = vdev_get_min_asize(vd);
1144
1145 /*
1146 * If this vdev is not removed, check its fault status. If it's
1147 * faulted, bail out of the open.
1148 */
1149 if (!vd->vdev_removed && vd->vdev_faulted) {
1150 ASSERT(vd->vdev_children == 0);
1151 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1152 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1153 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1154 vd->vdev_label_aux);
1155 return (SET_ERROR(ENXIO));
1156 } else if (vd->vdev_offline) {
1157 ASSERT(vd->vdev_children == 0);
1158 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1159 return (SET_ERROR(ENXIO));
1160 }
1161
1162 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1163
1164 /*
1165 * Reset the vdev_reopening flag so that we actually close
1166 * the vdev on error.
1167 */
1168 vd->vdev_reopening = B_FALSE;
1169 if (zio_injection_enabled && error == 0)
1170 error = zio_handle_device_injection(vd, NULL, ENXIO);
1171
1172 if (error) {
1173 if (vd->vdev_removed &&
1174 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1175 vd->vdev_removed = B_FALSE;
1176
1177 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1178 vd->vdev_stat.vs_aux);
1179 return (error);
1180 }
1181
1182 vd->vdev_removed = B_FALSE;
1183
1184 /*
1185 * Recheck the faulted flag now that we have confirmed that
1186 * the vdev is accessible. If we're faulted, bail.
1187 */
1188 if (vd->vdev_faulted) {
1189 ASSERT(vd->vdev_children == 0);
1190 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1191 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1192 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1193 vd->vdev_label_aux);
1194 return (SET_ERROR(ENXIO));
1195 }
1196
1197 if (vd->vdev_degraded) {
1198 ASSERT(vd->vdev_children == 0);
1199 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1200 VDEV_AUX_ERR_EXCEEDED);
1201 } else {
1202 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1203 }
1204
1205 /*
1206 * For hole or missing vdevs we just return success.
1207 */
1208 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1209 return (0);
1210
1211 for (c = 0; c < vd->vdev_children; c++) {
1212 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1213 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1214 VDEV_AUX_NONE);
1215 break;
1216 }
1217 }
1218
1219 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1220 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1221
1222 if (vd->vdev_children == 0) {
1223 if (osize < SPA_MINDEVSIZE) {
1224 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1225 VDEV_AUX_TOO_SMALL);
1226 return (SET_ERROR(EOVERFLOW));
1227 }
1228 psize = osize;
1229 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1230 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1231 VDEV_LABEL_END_SIZE);
1232 } else {
1233 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1234 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1235 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1236 VDEV_AUX_TOO_SMALL);
1237 return (SET_ERROR(EOVERFLOW));
1238 }
1239 psize = 0;
1240 asize = osize;
1241 max_asize = max_osize;
1242 }
1243
1244 vd->vdev_psize = psize;
1245
1246 /*
1247 * Make sure the allocatable size hasn't shrunk.
1248 */
1249 if (asize < vd->vdev_min_asize) {
1250 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1251 VDEV_AUX_BAD_LABEL);
1252 return (SET_ERROR(EINVAL));
1253 }
1254
1255 if (vd->vdev_asize == 0) {
1256 /*
1257 * This is the first-ever open, so use the computed values.
1258 * For compatibility, a different ashift can be requested.
1259 */
1260 vd->vdev_asize = asize;
1261 vd->vdev_max_asize = max_asize;
1262 if (vd->vdev_ashift == 0)
1263 vd->vdev_ashift = ashift;
1264 } else {
1265 /*
1266 * Detect if the alignment requirement has increased.
1267 * We don't want to make the pool unavailable, just
1268 * post an event instead.
1269 */
1270 if (ashift > vd->vdev_top->vdev_ashift &&
1271 vd->vdev_ops->vdev_op_leaf) {
1272 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1273 spa, vd, NULL, 0, 0);
1274 }
1275
1276 vd->vdev_max_asize = max_asize;
1277 }
1278
1279 /*
1280 * If all children are healthy and the asize has increased,
1281 * then we've experienced dynamic LUN growth. If automatic
1282 * expansion is enabled then use the additional space.
1283 */
1284 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1285 (vd->vdev_expanding || spa->spa_autoexpand))
1286 vd->vdev_asize = asize;
1287
1288 vdev_set_min_asize(vd);
1289
1290 /*
1291 * Ensure we can issue some IO before declaring the
1292 * vdev open for business.
1293 */
1294 if (vd->vdev_ops->vdev_op_leaf &&
1295 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1296 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1297 VDEV_AUX_ERR_EXCEEDED);
1298 return (error);
1299 }
1300
1301 /*
1302 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1303 * resilver. But don't do this if we are doing a reopen for a scrub,
1304 * since this would just restart the scrub we are already doing.
1305 */
1306 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1307 vdev_resilver_needed(vd, NULL, NULL))
1308 spa_async_request(spa, SPA_ASYNC_RESILVER);
1309
1310 return (0);
1311 }
1312
1313 /*
1314 * Called once the vdevs are all opened, this routine validates the label
1315 * contents. This needs to be done before vdev_load() so that we don't
1316 * inadvertently do repair I/Os to the wrong device.
1317 *
1318 * If 'strict' is false ignore the spa guid check. This is necessary because
1319 * if the machine crashed during a re-guid the new guid might have been written
1320 * to all of the vdev labels, but not the cached config. The strict check
1321 * will be performed when the pool is opened again using the mos config.
1322 *
1323 * This function will only return failure if one of the vdevs indicates that it
1324 * has since been destroyed or exported. This is only possible if
1325 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1326 * will be updated but the function will return 0.
1327 */
1328 int
1329 vdev_validate(vdev_t *vd, boolean_t strict)
1330 {
1331 spa_t *spa = vd->vdev_spa;
1332 nvlist_t *label;
1333 uint64_t guid = 0, top_guid;
1334 uint64_t state;
1335 int c;
1336
1337 for (c = 0; c < vd->vdev_children; c++)
1338 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1339 return (SET_ERROR(EBADF));
1340
1341 /*
1342 * If the device has already failed, or was marked offline, don't do
1343 * any further validation. Otherwise, label I/O will fail and we will
1344 * overwrite the previous state.
1345 */
1346 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1347 uint64_t aux_guid = 0;
1348 nvlist_t *nvl;
1349 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1350 spa_last_synced_txg(spa) : -1ULL;
1351
1352 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1353 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1354 VDEV_AUX_BAD_LABEL);
1355 return (0);
1356 }
1357
1358 /*
1359 * Determine if this vdev has been split off into another
1360 * pool. If so, then refuse to open it.
1361 */
1362 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1363 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1364 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1365 VDEV_AUX_SPLIT_POOL);
1366 nvlist_free(label);
1367 return (0);
1368 }
1369
1370 if (strict && (nvlist_lookup_uint64(label,
1371 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1372 guid != spa_guid(spa))) {
1373 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1374 VDEV_AUX_CORRUPT_DATA);
1375 nvlist_free(label);
1376 return (0);
1377 }
1378
1379 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1380 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1381 &aux_guid) != 0)
1382 aux_guid = 0;
1383
1384 /*
1385 * If this vdev just became a top-level vdev because its
1386 * sibling was detached, it will have adopted the parent's
1387 * vdev guid -- but the label may or may not be on disk yet.
1388 * Fortunately, either version of the label will have the
1389 * same top guid, so if we're a top-level vdev, we can
1390 * safely compare to that instead.
1391 *
1392 * If we split this vdev off instead, then we also check the
1393 * original pool's guid. We don't want to consider the vdev
1394 * corrupt if it is partway through a split operation.
1395 */
1396 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1397 &guid) != 0 ||
1398 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1399 &top_guid) != 0 ||
1400 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1401 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1402 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1403 VDEV_AUX_CORRUPT_DATA);
1404 nvlist_free(label);
1405 return (0);
1406 }
1407
1408 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1409 &state) != 0) {
1410 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1411 VDEV_AUX_CORRUPT_DATA);
1412 nvlist_free(label);
1413 return (0);
1414 }
1415
1416 nvlist_free(label);
1417
1418 /*
1419 * If this is a verbatim import, no need to check the
1420 * state of the pool.
1421 */
1422 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1423 spa_load_state(spa) == SPA_LOAD_OPEN &&
1424 state != POOL_STATE_ACTIVE)
1425 return (SET_ERROR(EBADF));
1426
1427 /*
1428 * If we were able to open and validate a vdev that was
1429 * previously marked permanently unavailable, clear that state
1430 * now.
1431 */
1432 if (vd->vdev_not_present)
1433 vd->vdev_not_present = 0;
1434 }
1435
1436 return (0);
1437 }
1438
1439 /*
1440 * Close a virtual device.
1441 */
1442 void
1443 vdev_close(vdev_t *vd)
1444 {
1445 vdev_t *pvd = vd->vdev_parent;
1446 ASSERTV(spa_t *spa = vd->vdev_spa);
1447
1448 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1449
1450 /*
1451 * If our parent is reopening, then we are as well, unless we are
1452 * going offline.
1453 */
1454 if (pvd != NULL && pvd->vdev_reopening)
1455 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1456
1457 vd->vdev_ops->vdev_op_close(vd);
1458
1459 vdev_cache_purge(vd);
1460
1461 /*
1462 * We record the previous state before we close it, so that if we are
1463 * doing a reopen(), we don't generate FMA ereports if we notice that
1464 * it's still faulted.
1465 */
1466 vd->vdev_prevstate = vd->vdev_state;
1467
1468 if (vd->vdev_offline)
1469 vd->vdev_state = VDEV_STATE_OFFLINE;
1470 else
1471 vd->vdev_state = VDEV_STATE_CLOSED;
1472 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1473 }
1474
1475 void
1476 vdev_hold(vdev_t *vd)
1477 {
1478 spa_t *spa = vd->vdev_spa;
1479 int c;
1480
1481 ASSERT(spa_is_root(spa));
1482 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1483 return;
1484
1485 for (c = 0; c < vd->vdev_children; c++)
1486 vdev_hold(vd->vdev_child[c]);
1487
1488 if (vd->vdev_ops->vdev_op_leaf)
1489 vd->vdev_ops->vdev_op_hold(vd);
1490 }
1491
1492 void
1493 vdev_rele(vdev_t *vd)
1494 {
1495 int c;
1496
1497 ASSERT(spa_is_root(vd->vdev_spa));
1498 for (c = 0; c < vd->vdev_children; c++)
1499 vdev_rele(vd->vdev_child[c]);
1500
1501 if (vd->vdev_ops->vdev_op_leaf)
1502 vd->vdev_ops->vdev_op_rele(vd);
1503 }
1504
1505 /*
1506 * Reopen all interior vdevs and any unopened leaves. We don't actually
1507 * reopen leaf vdevs which had previously been opened as they might deadlock
1508 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1509 * If the leaf has never been opened then open it, as usual.
1510 */
1511 void
1512 vdev_reopen(vdev_t *vd)
1513 {
1514 spa_t *spa = vd->vdev_spa;
1515
1516 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1517
1518 /* set the reopening flag unless we're taking the vdev offline */
1519 vd->vdev_reopening = !vd->vdev_offline;
1520 vdev_close(vd);
1521 (void) vdev_open(vd);
1522
1523 /*
1524 * Call vdev_validate() here to make sure we have the same device.
1525 * Otherwise, a device with an invalid label could be successfully
1526 * opened in response to vdev_reopen().
1527 */
1528 if (vd->vdev_aux) {
1529 (void) vdev_validate_aux(vd);
1530 if (vdev_readable(vd) && vdev_writeable(vd) &&
1531 vd->vdev_aux == &spa->spa_l2cache &&
1532 !l2arc_vdev_present(vd))
1533 l2arc_add_vdev(spa, vd);
1534 } else {
1535 (void) vdev_validate(vd, B_TRUE);
1536 }
1537
1538 /*
1539 * Reassess parent vdev's health.
1540 */
1541 vdev_propagate_state(vd);
1542 }
1543
1544 int
1545 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1546 {
1547 int error;
1548
1549 /*
1550 * Normally, partial opens (e.g. of a mirror) are allowed.
1551 * For a create, however, we want to fail the request if
1552 * there are any components we can't open.
1553 */
1554 error = vdev_open(vd);
1555
1556 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1557 vdev_close(vd);
1558 return (error ? error : ENXIO);
1559 }
1560
1561 /*
1562 * Recursively initialize all labels.
1563 */
1564 if ((error = vdev_label_init(vd, txg, isreplacing ?
1565 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1566 vdev_close(vd);
1567 return (error);
1568 }
1569
1570 return (0);
1571 }
1572
1573 void
1574 vdev_metaslab_set_size(vdev_t *vd)
1575 {
1576 /*
1577 * Aim for roughly 200 metaslabs per vdev.
1578 */
1579 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1580 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1581 }
1582
1583 void
1584 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1585 {
1586 ASSERT(vd == vd->vdev_top);
1587 ASSERT(!vd->vdev_ishole);
1588 ASSERT(ISP2(flags));
1589 ASSERT(spa_writeable(vd->vdev_spa));
1590
1591 if (flags & VDD_METASLAB)
1592 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1593
1594 if (flags & VDD_DTL)
1595 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1596
1597 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1598 }
1599
1600 /*
1601 * DTLs.
1602 *
1603 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1604 * the vdev has less than perfect replication. There are four kinds of DTL:
1605 *
1606 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1607 *
1608 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1609 *
1610 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1611 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1612 * txgs that was scrubbed.
1613 *
1614 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1615 * persistent errors or just some device being offline.
1616 * Unlike the other three, the DTL_OUTAGE map is not generally
1617 * maintained; it's only computed when needed, typically to
1618 * determine whether a device can be detached.
1619 *
1620 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1621 * either has the data or it doesn't.
1622 *
1623 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1624 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1625 * if any child is less than fully replicated, then so is its parent.
1626 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1627 * comprising only those txgs which appear in 'maxfaults' or more children;
1628 * those are the txgs we don't have enough replication to read. For example,
1629 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1630 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1631 * two child DTL_MISSING maps.
1632 *
1633 * It should be clear from the above that to compute the DTLs and outage maps
1634 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1635 * Therefore, that is all we keep on disk. When loading the pool, or after
1636 * a configuration change, we generate all other DTLs from first principles.
1637 */
1638 void
1639 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1640 {
1641 space_map_t *sm = &vd->vdev_dtl[t];
1642
1643 ASSERT(t < DTL_TYPES);
1644 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1645 ASSERT(spa_writeable(vd->vdev_spa));
1646
1647 mutex_enter(sm->sm_lock);
1648 if (!space_map_contains(sm, txg, size))
1649 space_map_add(sm, txg, size);
1650 mutex_exit(sm->sm_lock);
1651 }
1652
1653 boolean_t
1654 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1655 {
1656 space_map_t *sm = &vd->vdev_dtl[t];
1657 boolean_t dirty = B_FALSE;
1658
1659 ASSERT(t < DTL_TYPES);
1660 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1661
1662 mutex_enter(sm->sm_lock);
1663 if (sm->sm_space != 0)
1664 dirty = space_map_contains(sm, txg, size);
1665 mutex_exit(sm->sm_lock);
1666
1667 return (dirty);
1668 }
1669
1670 boolean_t
1671 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1672 {
1673 space_map_t *sm = &vd->vdev_dtl[t];
1674 boolean_t empty;
1675
1676 mutex_enter(sm->sm_lock);
1677 empty = (sm->sm_space == 0);
1678 mutex_exit(sm->sm_lock);
1679
1680 return (empty);
1681 }
1682
1683 /*
1684 * Reassess DTLs after a config change or scrub completion.
1685 */
1686 void
1687 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1688 {
1689 spa_t *spa = vd->vdev_spa;
1690 avl_tree_t reftree;
1691 int c, t, minref;
1692
1693 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1694
1695 for (c = 0; c < vd->vdev_children; c++)
1696 vdev_dtl_reassess(vd->vdev_child[c], txg,
1697 scrub_txg, scrub_done);
1698
1699 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1700 return;
1701
1702 if (vd->vdev_ops->vdev_op_leaf) {
1703 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1704
1705 mutex_enter(&vd->vdev_dtl_lock);
1706 if (scrub_txg != 0 &&
1707 (spa->spa_scrub_started ||
1708 (scn && scn->scn_phys.scn_errors == 0))) {
1709 /*
1710 * We completed a scrub up to scrub_txg. If we
1711 * did it without rebooting, then the scrub dtl
1712 * will be valid, so excise the old region and
1713 * fold in the scrub dtl. Otherwise, leave the
1714 * dtl as-is if there was an error.
1715 *
1716 * There's little trick here: to excise the beginning
1717 * of the DTL_MISSING map, we put it into a reference
1718 * tree and then add a segment with refcnt -1 that
1719 * covers the range [0, scrub_txg). This means
1720 * that each txg in that range has refcnt -1 or 0.
1721 * We then add DTL_SCRUB with a refcnt of 2, so that
1722 * entries in the range [0, scrub_txg) will have a
1723 * positive refcnt -- either 1 or 2. We then convert
1724 * the reference tree into the new DTL_MISSING map.
1725 */
1726 space_map_ref_create(&reftree);
1727 space_map_ref_add_map(&reftree,
1728 &vd->vdev_dtl[DTL_MISSING], 1);
1729 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1730 space_map_ref_add_map(&reftree,
1731 &vd->vdev_dtl[DTL_SCRUB], 2);
1732 space_map_ref_generate_map(&reftree,
1733 &vd->vdev_dtl[DTL_MISSING], 1);
1734 space_map_ref_destroy(&reftree);
1735 }
1736 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1737 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1738 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1739 if (scrub_done)
1740 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1741 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1742 if (!vdev_readable(vd))
1743 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1744 else
1745 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1746 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1747 mutex_exit(&vd->vdev_dtl_lock);
1748
1749 if (txg != 0)
1750 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1751 return;
1752 }
1753
1754 mutex_enter(&vd->vdev_dtl_lock);
1755 for (t = 0; t < DTL_TYPES; t++) {
1756 /* account for child's outage in parent's missing map */
1757 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1758 if (t == DTL_SCRUB)
1759 continue; /* leaf vdevs only */
1760 if (t == DTL_PARTIAL)
1761 minref = 1; /* i.e. non-zero */
1762 else if (vd->vdev_nparity != 0)
1763 minref = vd->vdev_nparity + 1; /* RAID-Z */
1764 else
1765 minref = vd->vdev_children; /* any kind of mirror */
1766 space_map_ref_create(&reftree);
1767 for (c = 0; c < vd->vdev_children; c++) {
1768 vdev_t *cvd = vd->vdev_child[c];
1769 mutex_enter(&cvd->vdev_dtl_lock);
1770 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1771 mutex_exit(&cvd->vdev_dtl_lock);
1772 }
1773 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1774 space_map_ref_destroy(&reftree);
1775 }
1776 mutex_exit(&vd->vdev_dtl_lock);
1777 }
1778
1779 static int
1780 vdev_dtl_load(vdev_t *vd)
1781 {
1782 spa_t *spa = vd->vdev_spa;
1783 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1784 objset_t *mos = spa->spa_meta_objset;
1785 dmu_buf_t *db;
1786 int error;
1787
1788 ASSERT(vd->vdev_children == 0);
1789
1790 if (smo->smo_object == 0)
1791 return (0);
1792
1793 ASSERT(!vd->vdev_ishole);
1794
1795 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1796 return (error);
1797
1798 ASSERT3U(db->db_size, >=, sizeof (*smo));
1799 bcopy(db->db_data, smo, sizeof (*smo));
1800 dmu_buf_rele(db, FTAG);
1801
1802 mutex_enter(&vd->vdev_dtl_lock);
1803 error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1804 NULL, SM_ALLOC, smo, mos);
1805 mutex_exit(&vd->vdev_dtl_lock);
1806
1807 return (error);
1808 }
1809
1810 void
1811 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1812 {
1813 spa_t *spa = vd->vdev_spa;
1814 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1815 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1816 objset_t *mos = spa->spa_meta_objset;
1817 space_map_t smsync;
1818 kmutex_t smlock;
1819 dmu_buf_t *db;
1820 dmu_tx_t *tx;
1821
1822 ASSERT(!vd->vdev_ishole);
1823
1824 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1825
1826 if (vd->vdev_detached) {
1827 if (smo->smo_object != 0) {
1828 VERIFY0(dmu_object_free(mos, smo->smo_object, tx));
1829 smo->smo_object = 0;
1830 }
1831 dmu_tx_commit(tx);
1832 return;
1833 }
1834
1835 if (smo->smo_object == 0) {
1836 ASSERT(smo->smo_objsize == 0);
1837 ASSERT(smo->smo_alloc == 0);
1838 smo->smo_object = dmu_object_alloc(mos,
1839 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1840 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1841 ASSERT(smo->smo_object != 0);
1842 vdev_config_dirty(vd->vdev_top);
1843 }
1844
1845 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1846
1847 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1848 &smlock);
1849
1850 mutex_enter(&smlock);
1851
1852 mutex_enter(&vd->vdev_dtl_lock);
1853 space_map_walk(sm, space_map_add, &smsync);
1854 mutex_exit(&vd->vdev_dtl_lock);
1855
1856 space_map_truncate(smo, mos, tx);
1857 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1858 space_map_vacate(&smsync, NULL, NULL);
1859
1860 space_map_destroy(&smsync);
1861
1862 mutex_exit(&smlock);
1863 mutex_destroy(&smlock);
1864
1865 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1866 dmu_buf_will_dirty(db, tx);
1867 ASSERT3U(db->db_size, >=, sizeof (*smo));
1868 bcopy(smo, db->db_data, sizeof (*smo));
1869 dmu_buf_rele(db, FTAG);
1870
1871 dmu_tx_commit(tx);
1872 }
1873
1874 /*
1875 * Determine whether the specified vdev can be offlined/detached/removed
1876 * without losing data.
1877 */
1878 boolean_t
1879 vdev_dtl_required(vdev_t *vd)
1880 {
1881 spa_t *spa = vd->vdev_spa;
1882 vdev_t *tvd = vd->vdev_top;
1883 uint8_t cant_read = vd->vdev_cant_read;
1884 boolean_t required;
1885
1886 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1887
1888 if (vd == spa->spa_root_vdev || vd == tvd)
1889 return (B_TRUE);
1890
1891 /*
1892 * Temporarily mark the device as unreadable, and then determine
1893 * whether this results in any DTL outages in the top-level vdev.
1894 * If not, we can safely offline/detach/remove the device.
1895 */
1896 vd->vdev_cant_read = B_TRUE;
1897 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1898 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1899 vd->vdev_cant_read = cant_read;
1900 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1901
1902 if (!required && zio_injection_enabled)
1903 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1904
1905 return (required);
1906 }
1907
1908 /*
1909 * Determine if resilver is needed, and if so the txg range.
1910 */
1911 boolean_t
1912 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1913 {
1914 boolean_t needed = B_FALSE;
1915 uint64_t thismin = UINT64_MAX;
1916 uint64_t thismax = 0;
1917 int c;
1918
1919 if (vd->vdev_children == 0) {
1920 mutex_enter(&vd->vdev_dtl_lock);
1921 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1922 vdev_writeable(vd)) {
1923 space_seg_t *ss;
1924
1925 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1926 thismin = ss->ss_start - 1;
1927 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1928 thismax = ss->ss_end;
1929 needed = B_TRUE;
1930 }
1931 mutex_exit(&vd->vdev_dtl_lock);
1932 } else {
1933 for (c = 0; c < vd->vdev_children; c++) {
1934 vdev_t *cvd = vd->vdev_child[c];
1935 uint64_t cmin, cmax;
1936
1937 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1938 thismin = MIN(thismin, cmin);
1939 thismax = MAX(thismax, cmax);
1940 needed = B_TRUE;
1941 }
1942 }
1943 }
1944
1945 if (needed && minp) {
1946 *minp = thismin;
1947 *maxp = thismax;
1948 }
1949 return (needed);
1950 }
1951
1952 void
1953 vdev_load(vdev_t *vd)
1954 {
1955 int c;
1956
1957 /*
1958 * Recursively load all children.
1959 */
1960 for (c = 0; c < vd->vdev_children; c++)
1961 vdev_load(vd->vdev_child[c]);
1962
1963 /*
1964 * If this is a top-level vdev, initialize its metaslabs.
1965 */
1966 if (vd == vd->vdev_top && !vd->vdev_ishole &&
1967 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1968 vdev_metaslab_init(vd, 0) != 0))
1969 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1970 VDEV_AUX_CORRUPT_DATA);
1971
1972 /*
1973 * If this is a leaf vdev, load its DTL.
1974 */
1975 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1976 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1977 VDEV_AUX_CORRUPT_DATA);
1978 }
1979
1980 /*
1981 * The special vdev case is used for hot spares and l2cache devices. Its
1982 * sole purpose it to set the vdev state for the associated vdev. To do this,
1983 * we make sure that we can open the underlying device, then try to read the
1984 * label, and make sure that the label is sane and that it hasn't been
1985 * repurposed to another pool.
1986 */
1987 int
1988 vdev_validate_aux(vdev_t *vd)
1989 {
1990 nvlist_t *label;
1991 uint64_t guid, version;
1992 uint64_t state;
1993
1994 if (!vdev_readable(vd))
1995 return (0);
1996
1997 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
1998 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1999 VDEV_AUX_CORRUPT_DATA);
2000 return (-1);
2001 }
2002
2003 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2004 !SPA_VERSION_IS_SUPPORTED(version) ||
2005 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2006 guid != vd->vdev_guid ||
2007 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2008 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2009 VDEV_AUX_CORRUPT_DATA);
2010 nvlist_free(label);
2011 return (-1);
2012 }
2013
2014 /*
2015 * We don't actually check the pool state here. If it's in fact in
2016 * use by another pool, we update this fact on the fly when requested.
2017 */
2018 nvlist_free(label);
2019 return (0);
2020 }
2021
2022 void
2023 vdev_remove(vdev_t *vd, uint64_t txg)
2024 {
2025 spa_t *spa = vd->vdev_spa;
2026 objset_t *mos = spa->spa_meta_objset;
2027 dmu_tx_t *tx;
2028 int m;
2029
2030 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2031
2032 if (vd->vdev_dtl_smo.smo_object) {
2033 ASSERT0(vd->vdev_dtl_smo.smo_alloc);
2034 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2035 vd->vdev_dtl_smo.smo_object = 0;
2036 }
2037
2038 if (vd->vdev_ms != NULL) {
2039 for (m = 0; m < vd->vdev_ms_count; m++) {
2040 metaslab_t *msp = vd->vdev_ms[m];
2041
2042 if (msp == NULL || msp->ms_smo.smo_object == 0)
2043 continue;
2044
2045 ASSERT0(msp->ms_smo.smo_alloc);
2046 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2047 msp->ms_smo.smo_object = 0;
2048 }
2049 }
2050
2051 if (vd->vdev_ms_array) {
2052 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2053 vd->vdev_ms_array = 0;
2054 vd->vdev_ms_shift = 0;
2055 }
2056 dmu_tx_commit(tx);
2057 }
2058
2059 void
2060 vdev_sync_done(vdev_t *vd, uint64_t txg)
2061 {
2062 metaslab_t *msp;
2063 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2064
2065 ASSERT(!vd->vdev_ishole);
2066
2067 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2068 metaslab_sync_done(msp, txg);
2069
2070 if (reassess)
2071 metaslab_sync_reassess(vd->vdev_mg);
2072 }
2073
2074 void
2075 vdev_sync(vdev_t *vd, uint64_t txg)
2076 {
2077 spa_t *spa = vd->vdev_spa;
2078 vdev_t *lvd;
2079 metaslab_t *msp;
2080 dmu_tx_t *tx;
2081
2082 ASSERT(!vd->vdev_ishole);
2083
2084 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2085 ASSERT(vd == vd->vdev_top);
2086 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2087 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2088 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2089 ASSERT(vd->vdev_ms_array != 0);
2090 vdev_config_dirty(vd);
2091 dmu_tx_commit(tx);
2092 }
2093
2094 /*
2095 * Remove the metadata associated with this vdev once it's empty.
2096 */
2097 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2098 vdev_remove(vd, txg);
2099
2100 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2101 metaslab_sync(msp, txg);
2102 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2103 }
2104
2105 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2106 vdev_dtl_sync(lvd, txg);
2107
2108 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2109 }
2110
2111 uint64_t
2112 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2113 {
2114 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2115 }
2116
2117 /*
2118 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2119 * not be opened, and no I/O is attempted.
2120 */
2121 int
2122 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2123 {
2124 vdev_t *vd, *tvd;
2125
2126 spa_vdev_state_enter(spa, SCL_NONE);
2127
2128 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2129 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2130
2131 if (!vd->vdev_ops->vdev_op_leaf)
2132 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2133
2134 tvd = vd->vdev_top;
2135
2136 /*
2137 * We don't directly use the aux state here, but if we do a
2138 * vdev_reopen(), we need this value to be present to remember why we
2139 * were faulted.
2140 */
2141 vd->vdev_label_aux = aux;
2142
2143 /*
2144 * Faulted state takes precedence over degraded.
2145 */
2146 vd->vdev_delayed_close = B_FALSE;
2147 vd->vdev_faulted = 1ULL;
2148 vd->vdev_degraded = 0ULL;
2149 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2150
2151 /*
2152 * If this device has the only valid copy of the data, then
2153 * back off and simply mark the vdev as degraded instead.
2154 */
2155 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2156 vd->vdev_degraded = 1ULL;
2157 vd->vdev_faulted = 0ULL;
2158
2159 /*
2160 * If we reopen the device and it's not dead, only then do we
2161 * mark it degraded.
2162 */
2163 vdev_reopen(tvd);
2164
2165 if (vdev_readable(vd))
2166 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2167 }
2168
2169 return (spa_vdev_state_exit(spa, vd, 0));
2170 }
2171
2172 /*
2173 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2174 * user that something is wrong. The vdev continues to operate as normal as far
2175 * as I/O is concerned.
2176 */
2177 int
2178 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2179 {
2180 vdev_t *vd;
2181
2182 spa_vdev_state_enter(spa, SCL_NONE);
2183
2184 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2185 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2186
2187 if (!vd->vdev_ops->vdev_op_leaf)
2188 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2189
2190 /*
2191 * If the vdev is already faulted, then don't do anything.
2192 */
2193 if (vd->vdev_faulted || vd->vdev_degraded)
2194 return (spa_vdev_state_exit(spa, NULL, 0));
2195
2196 vd->vdev_degraded = 1ULL;
2197 if (!vdev_is_dead(vd))
2198 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2199 aux);
2200
2201 return (spa_vdev_state_exit(spa, vd, 0));
2202 }
2203
2204 /*
2205 * Online the given vdev. If 'unspare' is set, it implies two things. First,
2206 * any attached spare device should be detached when the device finishes
2207 * resilvering. Second, the online should be treated like a 'test' online case,
2208 * so no FMA events are generated if the device fails to open.
2209 */
2210 int
2211 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2212 {
2213 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2214
2215 spa_vdev_state_enter(spa, SCL_NONE);
2216
2217 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2218 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2219
2220 if (!vd->vdev_ops->vdev_op_leaf)
2221 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2222
2223 tvd = vd->vdev_top;
2224 vd->vdev_offline = B_FALSE;
2225 vd->vdev_tmpoffline = B_FALSE;
2226 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2227 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2228
2229 /* XXX - L2ARC 1.0 does not support expansion */
2230 if (!vd->vdev_aux) {
2231 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2232 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2233 }
2234
2235 vdev_reopen(tvd);
2236 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2237
2238 if (!vd->vdev_aux) {
2239 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2240 pvd->vdev_expanding = B_FALSE;
2241 }
2242
2243 if (newstate)
2244 *newstate = vd->vdev_state;
2245 if ((flags & ZFS_ONLINE_UNSPARE) &&
2246 !vdev_is_dead(vd) && vd->vdev_parent &&
2247 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2248 vd->vdev_parent->vdev_child[0] == vd)
2249 vd->vdev_unspare = B_TRUE;
2250
2251 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2252
2253 /* XXX - L2ARC 1.0 does not support expansion */
2254 if (vd->vdev_aux)
2255 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2256 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2257 }
2258 return (spa_vdev_state_exit(spa, vd, 0));
2259 }
2260
2261 static int
2262 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2263 {
2264 vdev_t *vd, *tvd;
2265 int error = 0;
2266 uint64_t generation;
2267 metaslab_group_t *mg;
2268
2269 top:
2270 spa_vdev_state_enter(spa, SCL_ALLOC);
2271
2272 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2273 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2274
2275 if (!vd->vdev_ops->vdev_op_leaf)
2276 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2277
2278 tvd = vd->vdev_top;
2279 mg = tvd->vdev_mg;
2280 generation = spa->spa_config_generation + 1;
2281
2282 /*
2283 * If the device isn't already offline, try to offline it.
2284 */
2285 if (!vd->vdev_offline) {
2286 /*
2287 * If this device has the only valid copy of some data,
2288 * don't allow it to be offlined. Log devices are always
2289 * expendable.
2290 */
2291 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2292 vdev_dtl_required(vd))
2293 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2294
2295 /*
2296 * If the top-level is a slog and it has had allocations
2297 * then proceed. We check that the vdev's metaslab group
2298 * is not NULL since it's possible that we may have just
2299 * added this vdev but not yet initialized its metaslabs.
2300 */
2301 if (tvd->vdev_islog && mg != NULL) {
2302 /*
2303 * Prevent any future allocations.
2304 */
2305 metaslab_group_passivate(mg);
2306 (void) spa_vdev_state_exit(spa, vd, 0);
2307
2308 error = spa_offline_log(spa);
2309
2310 spa_vdev_state_enter(spa, SCL_ALLOC);
2311
2312 /*
2313 * Check to see if the config has changed.
2314 */
2315 if (error || generation != spa->spa_config_generation) {
2316 metaslab_group_activate(mg);
2317 if (error)
2318 return (spa_vdev_state_exit(spa,
2319 vd, error));
2320 (void) spa_vdev_state_exit(spa, vd, 0);
2321 goto top;
2322 }
2323 ASSERT0(tvd->vdev_stat.vs_alloc);
2324 }
2325
2326 /*
2327 * Offline this device and reopen its top-level vdev.
2328 * If the top-level vdev is a log device then just offline
2329 * it. Otherwise, if this action results in the top-level
2330 * vdev becoming unusable, undo it and fail the request.
2331 */
2332 vd->vdev_offline = B_TRUE;
2333 vdev_reopen(tvd);
2334
2335 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2336 vdev_is_dead(tvd)) {
2337 vd->vdev_offline = B_FALSE;
2338 vdev_reopen(tvd);
2339 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2340 }
2341
2342 /*
2343 * Add the device back into the metaslab rotor so that
2344 * once we online the device it's open for business.
2345 */
2346 if (tvd->vdev_islog && mg != NULL)
2347 metaslab_group_activate(mg);
2348 }
2349
2350 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2351
2352 return (spa_vdev_state_exit(spa, vd, 0));
2353 }
2354
2355 int
2356 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2357 {
2358 int error;
2359
2360 mutex_enter(&spa->spa_vdev_top_lock);
2361 error = vdev_offline_locked(spa, guid, flags);
2362 mutex_exit(&spa->spa_vdev_top_lock);
2363
2364 return (error);
2365 }
2366
2367 /*
2368 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2369 * vdev_offline(), we assume the spa config is locked. We also clear all
2370 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2371 */
2372 void
2373 vdev_clear(spa_t *spa, vdev_t *vd)
2374 {
2375 vdev_t *rvd = spa->spa_root_vdev;
2376 int c;
2377
2378 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2379
2380 if (vd == NULL)
2381 vd = rvd;
2382
2383 vd->vdev_stat.vs_read_errors = 0;
2384 vd->vdev_stat.vs_write_errors = 0;
2385 vd->vdev_stat.vs_checksum_errors = 0;
2386
2387 for (c = 0; c < vd->vdev_children; c++)
2388 vdev_clear(spa, vd->vdev_child[c]);
2389
2390 /*
2391 * If we're in the FAULTED state or have experienced failed I/O, then
2392 * clear the persistent state and attempt to reopen the device. We
2393 * also mark the vdev config dirty, so that the new faulted state is
2394 * written out to disk.
2395 */
2396 if (vd->vdev_faulted || vd->vdev_degraded ||
2397 !vdev_readable(vd) || !vdev_writeable(vd)) {
2398
2399 /*
2400 * When reopening in reponse to a clear event, it may be due to
2401 * a fmadm repair request. In this case, if the device is
2402 * still broken, we want to still post the ereport again.
2403 */
2404 vd->vdev_forcefault = B_TRUE;
2405
2406 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2407 vd->vdev_cant_read = B_FALSE;
2408 vd->vdev_cant_write = B_FALSE;
2409
2410 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2411
2412 vd->vdev_forcefault = B_FALSE;
2413
2414 if (vd != rvd && vdev_writeable(vd->vdev_top))
2415 vdev_state_dirty(vd->vdev_top);
2416
2417 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2418 spa_async_request(spa, SPA_ASYNC_RESILVER);
2419
2420 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
2421 }
2422
2423 /*
2424 * When clearing a FMA-diagnosed fault, we always want to
2425 * unspare the device, as we assume that the original spare was
2426 * done in response to the FMA fault.
2427 */
2428 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2429 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2430 vd->vdev_parent->vdev_child[0] == vd)
2431 vd->vdev_unspare = B_TRUE;
2432 }
2433
2434 boolean_t
2435 vdev_is_dead(vdev_t *vd)
2436 {
2437 /*
2438 * Holes and missing devices are always considered "dead".
2439 * This simplifies the code since we don't have to check for
2440 * these types of devices in the various code paths.
2441 * Instead we rely on the fact that we skip over dead devices
2442 * before issuing I/O to them.
2443 */
2444 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2445 vd->vdev_ops == &vdev_missing_ops);
2446 }
2447
2448 boolean_t
2449 vdev_readable(vdev_t *vd)
2450 {
2451 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2452 }
2453
2454 boolean_t
2455 vdev_writeable(vdev_t *vd)
2456 {
2457 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2458 }
2459
2460 boolean_t
2461 vdev_allocatable(vdev_t *vd)
2462 {
2463 uint64_t state = vd->vdev_state;
2464
2465 /*
2466 * We currently allow allocations from vdevs which may be in the
2467 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2468 * fails to reopen then we'll catch it later when we're holding
2469 * the proper locks. Note that we have to get the vdev state
2470 * in a local variable because although it changes atomically,
2471 * we're asking two separate questions about it.
2472 */
2473 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2474 !vd->vdev_cant_write && !vd->vdev_ishole);
2475 }
2476
2477 boolean_t
2478 vdev_accessible(vdev_t *vd, zio_t *zio)
2479 {
2480 ASSERT(zio->io_vd == vd);
2481
2482 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2483 return (B_FALSE);
2484
2485 if (zio->io_type == ZIO_TYPE_READ)
2486 return (!vd->vdev_cant_read);
2487
2488 if (zio->io_type == ZIO_TYPE_WRITE)
2489 return (!vd->vdev_cant_write);
2490
2491 return (B_TRUE);
2492 }
2493
2494 /*
2495 * Get statistics for the given vdev.
2496 */
2497 void
2498 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2499 {
2500 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2501 int c, t;
2502
2503 mutex_enter(&vd->vdev_stat_lock);
2504 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2505 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2506 vs->vs_state = vd->vdev_state;
2507 vs->vs_rsize = vdev_get_min_asize(vd);
2508 if (vd->vdev_ops->vdev_op_leaf)
2509 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2510 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2511 mutex_exit(&vd->vdev_stat_lock);
2512
2513 /*
2514 * If we're getting stats on the root vdev, aggregate the I/O counts
2515 * over all top-level vdevs (i.e. the direct children of the root).
2516 */
2517 if (vd == rvd) {
2518 for (c = 0; c < rvd->vdev_children; c++) {
2519 vdev_t *cvd = rvd->vdev_child[c];
2520 vdev_stat_t *cvs = &cvd->vdev_stat;
2521
2522 mutex_enter(&vd->vdev_stat_lock);
2523 for (t = 0; t < ZIO_TYPES; t++) {
2524 vs->vs_ops[t] += cvs->vs_ops[t];
2525 vs->vs_bytes[t] += cvs->vs_bytes[t];
2526 }
2527 cvs->vs_scan_removing = cvd->vdev_removing;
2528 mutex_exit(&vd->vdev_stat_lock);
2529 }
2530 }
2531 }
2532
2533 void
2534 vdev_clear_stats(vdev_t *vd)
2535 {
2536 mutex_enter(&vd->vdev_stat_lock);
2537 vd->vdev_stat.vs_space = 0;
2538 vd->vdev_stat.vs_dspace = 0;
2539 vd->vdev_stat.vs_alloc = 0;
2540 mutex_exit(&vd->vdev_stat_lock);
2541 }
2542
2543 void
2544 vdev_scan_stat_init(vdev_t *vd)
2545 {
2546 vdev_stat_t *vs = &vd->vdev_stat;
2547 int c;
2548
2549 for (c = 0; c < vd->vdev_children; c++)
2550 vdev_scan_stat_init(vd->vdev_child[c]);
2551
2552 mutex_enter(&vd->vdev_stat_lock);
2553 vs->vs_scan_processed = 0;
2554 mutex_exit(&vd->vdev_stat_lock);
2555 }
2556
2557 void
2558 vdev_stat_update(zio_t *zio, uint64_t psize)
2559 {
2560 spa_t *spa = zio->io_spa;
2561 vdev_t *rvd = spa->spa_root_vdev;
2562 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2563 vdev_t *pvd;
2564 uint64_t txg = zio->io_txg;
2565 vdev_stat_t *vs = &vd->vdev_stat;
2566 zio_type_t type = zio->io_type;
2567 int flags = zio->io_flags;
2568
2569 /*
2570 * If this i/o is a gang leader, it didn't do any actual work.
2571 */
2572 if (zio->io_gang_tree)
2573 return;
2574
2575 if (zio->io_error == 0) {
2576 /*
2577 * If this is a root i/o, don't count it -- we've already
2578 * counted the top-level vdevs, and vdev_get_stats() will
2579 * aggregate them when asked. This reduces contention on
2580 * the root vdev_stat_lock and implicitly handles blocks
2581 * that compress away to holes, for which there is no i/o.
2582 * (Holes never create vdev children, so all the counters
2583 * remain zero, which is what we want.)
2584 *
2585 * Note: this only applies to successful i/o (io_error == 0)
2586 * because unlike i/o counts, errors are not additive.
2587 * When reading a ditto block, for example, failure of
2588 * one top-level vdev does not imply a root-level error.
2589 */
2590 if (vd == rvd)
2591 return;
2592
2593 ASSERT(vd == zio->io_vd);
2594
2595 if (flags & ZIO_FLAG_IO_BYPASS)
2596 return;
2597
2598 mutex_enter(&vd->vdev_stat_lock);
2599
2600 if (flags & ZIO_FLAG_IO_REPAIR) {
2601 if (flags & ZIO_FLAG_SCAN_THREAD) {
2602 dsl_scan_phys_t *scn_phys =
2603 &spa->spa_dsl_pool->dp_scan->scn_phys;
2604 uint64_t *processed = &scn_phys->scn_processed;
2605
2606 /* XXX cleanup? */
2607 if (vd->vdev_ops->vdev_op_leaf)
2608 atomic_add_64(processed, psize);
2609 vs->vs_scan_processed += psize;
2610 }
2611
2612 if (flags & ZIO_FLAG_SELF_HEAL)
2613 vs->vs_self_healed += psize;
2614 }
2615
2616 vs->vs_ops[type]++;
2617 vs->vs_bytes[type] += psize;
2618
2619 mutex_exit(&vd->vdev_stat_lock);
2620 return;
2621 }
2622
2623 if (flags & ZIO_FLAG_SPECULATIVE)
2624 return;
2625
2626 /*
2627 * If this is an I/O error that is going to be retried, then ignore the
2628 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2629 * hard errors, when in reality they can happen for any number of
2630 * innocuous reasons (bus resets, MPxIO link failure, etc).
2631 */
2632 if (zio->io_error == EIO &&
2633 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2634 return;
2635
2636 /*
2637 * Intent logs writes won't propagate their error to the root
2638 * I/O so don't mark these types of failures as pool-level
2639 * errors.
2640 */
2641 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2642 return;
2643
2644 mutex_enter(&vd->vdev_stat_lock);
2645 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2646 if (zio->io_error == ECKSUM)
2647 vs->vs_checksum_errors++;
2648 else
2649 vs->vs_read_errors++;
2650 }
2651 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2652 vs->vs_write_errors++;
2653 mutex_exit(&vd->vdev_stat_lock);
2654
2655 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2656 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2657 (flags & ZIO_FLAG_SCAN_THREAD) ||
2658 spa->spa_claiming)) {
2659 /*
2660 * This is either a normal write (not a repair), or it's
2661 * a repair induced by the scrub thread, or it's a repair
2662 * made by zil_claim() during spa_load() in the first txg.
2663 * In the normal case, we commit the DTL change in the same
2664 * txg as the block was born. In the scrub-induced repair
2665 * case, we know that scrubs run in first-pass syncing context,
2666 * so we commit the DTL change in spa_syncing_txg(spa).
2667 * In the zil_claim() case, we commit in spa_first_txg(spa).
2668 *
2669 * We currently do not make DTL entries for failed spontaneous
2670 * self-healing writes triggered by normal (non-scrubbing)
2671 * reads, because we have no transactional context in which to
2672 * do so -- and it's not clear that it'd be desirable anyway.
2673 */
2674 if (vd->vdev_ops->vdev_op_leaf) {
2675 uint64_t commit_txg = txg;
2676 if (flags & ZIO_FLAG_SCAN_THREAD) {
2677 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2678 ASSERT(spa_sync_pass(spa) == 1);
2679 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2680 commit_txg = spa_syncing_txg(spa);
2681 } else if (spa->spa_claiming) {
2682 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2683 commit_txg = spa_first_txg(spa);
2684 }
2685 ASSERT(commit_txg >= spa_syncing_txg(spa));
2686 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2687 return;
2688 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2689 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2690 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2691 }
2692 if (vd != rvd)
2693 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2694 }
2695 }
2696
2697 /*
2698 * Update the in-core space usage stats for this vdev, its metaslab class,
2699 * and the root vdev.
2700 */
2701 void
2702 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2703 int64_t space_delta)
2704 {
2705 int64_t dspace_delta = space_delta;
2706 spa_t *spa = vd->vdev_spa;
2707 vdev_t *rvd = spa->spa_root_vdev;
2708 metaslab_group_t *mg = vd->vdev_mg;
2709 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2710
2711 ASSERT(vd == vd->vdev_top);
2712
2713 /*
2714 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2715 * factor. We must calculate this here and not at the root vdev
2716 * because the root vdev's psize-to-asize is simply the max of its
2717 * childrens', thus not accurate enough for us.
2718 */
2719 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2720 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2721 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2722 vd->vdev_deflate_ratio;
2723
2724 mutex_enter(&vd->vdev_stat_lock);
2725 vd->vdev_stat.vs_alloc += alloc_delta;
2726 vd->vdev_stat.vs_space += space_delta;
2727 vd->vdev_stat.vs_dspace += dspace_delta;
2728 mutex_exit(&vd->vdev_stat_lock);
2729
2730 if (mc == spa_normal_class(spa)) {
2731 mutex_enter(&rvd->vdev_stat_lock);
2732 rvd->vdev_stat.vs_alloc += alloc_delta;
2733 rvd->vdev_stat.vs_space += space_delta;
2734 rvd->vdev_stat.vs_dspace += dspace_delta;
2735 mutex_exit(&rvd->vdev_stat_lock);
2736 }
2737
2738 if (mc != NULL) {
2739 ASSERT(rvd == vd->vdev_parent);
2740 ASSERT(vd->vdev_ms_count != 0);
2741
2742 metaslab_class_space_update(mc,
2743 alloc_delta, defer_delta, space_delta, dspace_delta);
2744 }
2745 }
2746
2747 /*
2748 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2749 * so that it will be written out next time the vdev configuration is synced.
2750 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2751 */
2752 void
2753 vdev_config_dirty(vdev_t *vd)
2754 {
2755 spa_t *spa = vd->vdev_spa;
2756 vdev_t *rvd = spa->spa_root_vdev;
2757 int c;
2758
2759 ASSERT(spa_writeable(spa));
2760
2761 /*
2762 * If this is an aux vdev (as with l2cache and spare devices), then we
2763 * update the vdev config manually and set the sync flag.
2764 */
2765 if (vd->vdev_aux != NULL) {
2766 spa_aux_vdev_t *sav = vd->vdev_aux;
2767 nvlist_t **aux;
2768 uint_t naux;
2769
2770 for (c = 0; c < sav->sav_count; c++) {
2771 if (sav->sav_vdevs[c] == vd)
2772 break;
2773 }
2774
2775 if (c == sav->sav_count) {
2776 /*
2777 * We're being removed. There's nothing more to do.
2778 */
2779 ASSERT(sav->sav_sync == B_TRUE);
2780 return;
2781 }
2782
2783 sav->sav_sync = B_TRUE;
2784
2785 if (nvlist_lookup_nvlist_array(sav->sav_config,
2786 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2787 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2788 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2789 }
2790
2791 ASSERT(c < naux);
2792
2793 /*
2794 * Setting the nvlist in the middle if the array is a little
2795 * sketchy, but it will work.
2796 */
2797 nvlist_free(aux[c]);
2798 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2799
2800 return;
2801 }
2802
2803 /*
2804 * The dirty list is protected by the SCL_CONFIG lock. The caller
2805 * must either hold SCL_CONFIG as writer, or must be the sync thread
2806 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2807 * so this is sufficient to ensure mutual exclusion.
2808 */
2809 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2810 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2811 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2812
2813 if (vd == rvd) {
2814 for (c = 0; c < rvd->vdev_children; c++)
2815 vdev_config_dirty(rvd->vdev_child[c]);
2816 } else {
2817 ASSERT(vd == vd->vdev_top);
2818
2819 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2820 !vd->vdev_ishole)
2821 list_insert_head(&spa->spa_config_dirty_list, vd);
2822 }
2823 }
2824
2825 void
2826 vdev_config_clean(vdev_t *vd)
2827 {
2828 spa_t *spa = vd->vdev_spa;
2829
2830 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2831 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2832 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2833
2834 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2835 list_remove(&spa->spa_config_dirty_list, vd);
2836 }
2837
2838 /*
2839 * Mark a top-level vdev's state as dirty, so that the next pass of
2840 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2841 * the state changes from larger config changes because they require
2842 * much less locking, and are often needed for administrative actions.
2843 */
2844 void
2845 vdev_state_dirty(vdev_t *vd)
2846 {
2847 spa_t *spa = vd->vdev_spa;
2848
2849 ASSERT(spa_writeable(spa));
2850 ASSERT(vd == vd->vdev_top);
2851
2852 /*
2853 * The state list is protected by the SCL_STATE lock. The caller
2854 * must either hold SCL_STATE as writer, or must be the sync thread
2855 * (which holds SCL_STATE as reader). There's only one sync thread,
2856 * so this is sufficient to ensure mutual exclusion.
2857 */
2858 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2859 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2860 spa_config_held(spa, SCL_STATE, RW_READER)));
2861
2862 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2863 list_insert_head(&spa->spa_state_dirty_list, vd);
2864 }
2865
2866 void
2867 vdev_state_clean(vdev_t *vd)
2868 {
2869 spa_t *spa = vd->vdev_spa;
2870
2871 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2872 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2873 spa_config_held(spa, SCL_STATE, RW_READER)));
2874
2875 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2876 list_remove(&spa->spa_state_dirty_list, vd);
2877 }
2878
2879 /*
2880 * Propagate vdev state up from children to parent.
2881 */
2882 void
2883 vdev_propagate_state(vdev_t *vd)
2884 {
2885 spa_t *spa = vd->vdev_spa;
2886 vdev_t *rvd = spa->spa_root_vdev;
2887 int degraded = 0, faulted = 0;
2888 int corrupted = 0;
2889 vdev_t *child;
2890 int c;
2891
2892 if (vd->vdev_children > 0) {
2893 for (c = 0; c < vd->vdev_children; c++) {
2894 child = vd->vdev_child[c];
2895
2896 /*
2897 * Don't factor holes into the decision.
2898 */
2899 if (child->vdev_ishole)
2900 continue;
2901
2902 if (!vdev_readable(child) ||
2903 (!vdev_writeable(child) && spa_writeable(spa))) {
2904 /*
2905 * Root special: if there is a top-level log
2906 * device, treat the root vdev as if it were
2907 * degraded.
2908 */
2909 if (child->vdev_islog && vd == rvd)
2910 degraded++;
2911 else
2912 faulted++;
2913 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2914 degraded++;
2915 }
2916
2917 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2918 corrupted++;
2919 }
2920
2921 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2922
2923 /*
2924 * Root special: if there is a top-level vdev that cannot be
2925 * opened due to corrupted metadata, then propagate the root
2926 * vdev's aux state as 'corrupt' rather than 'insufficient
2927 * replicas'.
2928 */
2929 if (corrupted && vd == rvd &&
2930 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2931 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2932 VDEV_AUX_CORRUPT_DATA);
2933 }
2934
2935 if (vd->vdev_parent)
2936 vdev_propagate_state(vd->vdev_parent);
2937 }
2938
2939 /*
2940 * Set a vdev's state. If this is during an open, we don't update the parent
2941 * state, because we're in the process of opening children depth-first.
2942 * Otherwise, we propagate the change to the parent.
2943 *
2944 * If this routine places a device in a faulted state, an appropriate ereport is
2945 * generated.
2946 */
2947 void
2948 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2949 {
2950 uint64_t save_state;
2951 spa_t *spa = vd->vdev_spa;
2952
2953 if (state == vd->vdev_state) {
2954 vd->vdev_stat.vs_aux = aux;
2955 return;
2956 }
2957
2958 save_state = vd->vdev_state;
2959
2960 vd->vdev_state = state;
2961 vd->vdev_stat.vs_aux = aux;
2962
2963 /*
2964 * If we are setting the vdev state to anything but an open state, then
2965 * always close the underlying device unless the device has requested
2966 * a delayed close (i.e. we're about to remove or fault the device).
2967 * Otherwise, we keep accessible but invalid devices open forever.
2968 * We don't call vdev_close() itself, because that implies some extra
2969 * checks (offline, etc) that we don't want here. This is limited to
2970 * leaf devices, because otherwise closing the device will affect other
2971 * children.
2972 */
2973 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2974 vd->vdev_ops->vdev_op_leaf)
2975 vd->vdev_ops->vdev_op_close(vd);
2976
2977 /*
2978 * If we have brought this vdev back into service, we need
2979 * to notify fmd so that it can gracefully repair any outstanding
2980 * cases due to a missing device. We do this in all cases, even those
2981 * that probably don't correlate to a repaired fault. This is sure to
2982 * catch all cases, and we let the zfs-retire agent sort it out. If
2983 * this is a transient state it's OK, as the retire agent will
2984 * double-check the state of the vdev before repairing it.
2985 */
2986 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2987 vd->vdev_prevstate != state)
2988 zfs_post_state_change(spa, vd);
2989
2990 if (vd->vdev_removed &&
2991 state == VDEV_STATE_CANT_OPEN &&
2992 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2993 /*
2994 * If the previous state is set to VDEV_STATE_REMOVED, then this
2995 * device was previously marked removed and someone attempted to
2996 * reopen it. If this failed due to a nonexistent device, then
2997 * keep the device in the REMOVED state. We also let this be if
2998 * it is one of our special test online cases, which is only
2999 * attempting to online the device and shouldn't generate an FMA
3000 * fault.
3001 */
3002 vd->vdev_state = VDEV_STATE_REMOVED;
3003 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3004 } else if (state == VDEV_STATE_REMOVED) {
3005 vd->vdev_removed = B_TRUE;
3006 } else if (state == VDEV_STATE_CANT_OPEN) {
3007 /*
3008 * If we fail to open a vdev during an import or recovery, we
3009 * mark it as "not available", which signifies that it was
3010 * never there to begin with. Failure to open such a device
3011 * is not considered an error.
3012 */
3013 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3014 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3015 vd->vdev_ops->vdev_op_leaf)
3016 vd->vdev_not_present = 1;
3017
3018 /*
3019 * Post the appropriate ereport. If the 'prevstate' field is
3020 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3021 * that this is part of a vdev_reopen(). In this case, we don't
3022 * want to post the ereport if the device was already in the
3023 * CANT_OPEN state beforehand.
3024 *
3025 * If the 'checkremove' flag is set, then this is an attempt to
3026 * online the device in response to an insertion event. If we
3027 * hit this case, then we have detected an insertion event for a
3028 * faulted or offline device that wasn't in the removed state.
3029 * In this scenario, we don't post an ereport because we are
3030 * about to replace the device, or attempt an online with
3031 * vdev_forcefault, which will generate the fault for us.
3032 */
3033 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3034 !vd->vdev_not_present && !vd->vdev_checkremove &&
3035 vd != spa->spa_root_vdev) {
3036 const char *class;
3037
3038 switch (aux) {
3039 case VDEV_AUX_OPEN_FAILED:
3040 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3041 break;
3042 case VDEV_AUX_CORRUPT_DATA:
3043 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3044 break;
3045 case VDEV_AUX_NO_REPLICAS:
3046 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3047 break;
3048 case VDEV_AUX_BAD_GUID_SUM:
3049 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3050 break;
3051 case VDEV_AUX_TOO_SMALL:
3052 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3053 break;
3054 case VDEV_AUX_BAD_LABEL:
3055 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3056 break;
3057 default:
3058 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3059 }
3060
3061 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3062 }
3063
3064 /* Erase any notion of persistent removed state */
3065 vd->vdev_removed = B_FALSE;
3066 } else {
3067 vd->vdev_removed = B_FALSE;
3068 }
3069
3070 if (!isopen && vd->vdev_parent)
3071 vdev_propagate_state(vd->vdev_parent);
3072 }
3073
3074 /*
3075 * Check the vdev configuration to ensure that it's capable of supporting
3076 * a root pool.
3077 */
3078 boolean_t
3079 vdev_is_bootable(vdev_t *vd)
3080 {
3081 #if defined(__sun__) || defined(__sun)
3082 /*
3083 * Currently, we do not support RAID-Z or partial configuration.
3084 * In addition, only a single top-level vdev is allowed and none of the
3085 * leaves can be wholedisks.
3086 */
3087 int c;
3088
3089 if (!vd->vdev_ops->vdev_op_leaf) {
3090 char *vdev_type = vd->vdev_ops->vdev_op_type;
3091
3092 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3093 vd->vdev_children > 1) {
3094 return (B_FALSE);
3095 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3096 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3097 return (B_FALSE);
3098 }
3099 } else if (vd->vdev_wholedisk == 1) {
3100 return (B_FALSE);
3101 }
3102
3103 for (c = 0; c < vd->vdev_children; c++) {
3104 if (!vdev_is_bootable(vd->vdev_child[c]))
3105 return (B_FALSE);
3106 }
3107 #endif /* __sun__ || __sun */
3108 return (B_TRUE);
3109 }
3110
3111 /*
3112 * Load the state from the original vdev tree (ovd) which
3113 * we've retrieved from the MOS config object. If the original
3114 * vdev was offline or faulted then we transfer that state to the
3115 * device in the current vdev tree (nvd).
3116 */
3117 void
3118 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3119 {
3120 int c;
3121
3122 ASSERT(nvd->vdev_top->vdev_islog);
3123 ASSERT(spa_config_held(nvd->vdev_spa,
3124 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3125 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3126
3127 for (c = 0; c < nvd->vdev_children; c++)
3128 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3129
3130 if (nvd->vdev_ops->vdev_op_leaf) {
3131 /*
3132 * Restore the persistent vdev state
3133 */
3134 nvd->vdev_offline = ovd->vdev_offline;
3135 nvd->vdev_faulted = ovd->vdev_faulted;
3136 nvd->vdev_degraded = ovd->vdev_degraded;
3137 nvd->vdev_removed = ovd->vdev_removed;
3138 }
3139 }
3140
3141 /*
3142 * Determine if a log device has valid content. If the vdev was
3143 * removed or faulted in the MOS config then we know that
3144 * the content on the log device has already been written to the pool.
3145 */
3146 boolean_t
3147 vdev_log_state_valid(vdev_t *vd)
3148 {
3149 int c;
3150
3151 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3152 !vd->vdev_removed)
3153 return (B_TRUE);
3154
3155 for (c = 0; c < vd->vdev_children; c++)
3156 if (vdev_log_state_valid(vd->vdev_child[c]))
3157 return (B_TRUE);
3158
3159 return (B_FALSE);
3160 }
3161
3162 /*
3163 * Expand a vdev if possible.
3164 */
3165 void
3166 vdev_expand(vdev_t *vd, uint64_t txg)
3167 {
3168 ASSERT(vd->vdev_top == vd);
3169 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3170
3171 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3172 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3173 vdev_config_dirty(vd);
3174 }
3175 }
3176
3177 /*
3178 * Split a vdev.
3179 */
3180 void
3181 vdev_split(vdev_t *vd)
3182 {
3183 vdev_t *cvd, *pvd = vd->vdev_parent;
3184
3185 vdev_remove_child(pvd, vd);
3186 vdev_compact_children(pvd);
3187
3188 cvd = pvd->vdev_child[0];
3189 if (pvd->vdev_children == 1) {
3190 vdev_remove_parent(cvd);
3191 cvd->vdev_splitting = B_TRUE;
3192 }
3193 vdev_propagate_state(cvd);
3194 }
3195
3196 void
3197 vdev_deadman(vdev_t *vd)
3198 {
3199 int c;
3200
3201 for (c = 0; c < vd->vdev_children; c++) {
3202 vdev_t *cvd = vd->vdev_child[c];
3203
3204 vdev_deadman(cvd);
3205 }
3206
3207 if (vd->vdev_ops->vdev_op_leaf) {
3208 vdev_queue_t *vq = &vd->vdev_queue;
3209
3210 mutex_enter(&vq->vq_lock);
3211 if (avl_numnodes(&vq->vq_pending_tree) > 0) {
3212 spa_t *spa = vd->vdev_spa;
3213 zio_t *fio;
3214 uint64_t delta;
3215
3216 /*
3217 * Look at the head of all the pending queues,
3218 * if any I/O has been outstanding for longer than
3219 * the spa_deadman_synctime we log a zevent.
3220 */
3221 fio = avl_first(&vq->vq_pending_tree);
3222 delta = gethrtime() - fio->io_timestamp;
3223 if (delta > spa_deadman_synctime(spa)) {
3224 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3225 "delta %lluns, last io %lluns",
3226 fio->io_timestamp, delta,
3227 vq->vq_io_complete_ts);
3228 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3229 spa, vd, fio, 0, 0);
3230 }
3231 }
3232 mutex_exit(&vq->vq_lock);
3233 }
3234 }
3235
3236 #if defined(_KERNEL) && defined(HAVE_SPL)
3237 EXPORT_SYMBOL(vdev_fault);
3238 EXPORT_SYMBOL(vdev_degrade);
3239 EXPORT_SYMBOL(vdev_online);
3240 EXPORT_SYMBOL(vdev_offline);
3241 EXPORT_SYMBOL(vdev_clear);
3242 #endif