]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Update core ZFS code from build 121 to build 141.
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include <sys/zfs_context.h>
27 #include <sys/fm/fs/zfs.h>
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/uberblock_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/space_map.h>
37 #include <sys/zio.h>
38 #include <sys/zap.h>
39 #include <sys/fs/zfs.h>
40 #include <sys/arc.h>
41 #include <sys/zil.h>
42 #include <sys/dsl_scan.h>
43
44 /*
45 * Virtual device management.
46 */
47
48 static vdev_ops_t *vdev_ops_table[] = {
49 &vdev_root_ops,
50 &vdev_raidz_ops,
51 &vdev_mirror_ops,
52 &vdev_replacing_ops,
53 &vdev_spare_ops,
54 &vdev_disk_ops,
55 &vdev_file_ops,
56 &vdev_missing_ops,
57 &vdev_hole_ops,
58 NULL
59 };
60
61 /* maximum scrub/resilver I/O queue per leaf vdev */
62 int zfs_scrub_limit = 10;
63
64 /*
65 * Given a vdev type, return the appropriate ops vector.
66 */
67 static vdev_ops_t *
68 vdev_getops(const char *type)
69 {
70 vdev_ops_t *ops, **opspp;
71
72 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73 if (strcmp(ops->vdev_op_type, type) == 0)
74 break;
75
76 return (ops);
77 }
78
79 /*
80 * Default asize function: return the MAX of psize with the asize of
81 * all children. This is what's used by anything other than RAID-Z.
82 */
83 uint64_t
84 vdev_default_asize(vdev_t *vd, uint64_t psize)
85 {
86 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87 uint64_t csize;
88
89 for (int c = 0; c < vd->vdev_children; c++) {
90 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
91 asize = MAX(asize, csize);
92 }
93
94 return (asize);
95 }
96
97 /*
98 * Get the minimum allocatable size. We define the allocatable size as
99 * the vdev's asize rounded to the nearest metaslab. This allows us to
100 * replace or attach devices which don't have the same physical size but
101 * can still satisfy the same number of allocations.
102 */
103 uint64_t
104 vdev_get_min_asize(vdev_t *vd)
105 {
106 vdev_t *pvd = vd->vdev_parent;
107
108 /*
109 * The our parent is NULL (inactive spare or cache) or is the root,
110 * just return our own asize.
111 */
112 if (pvd == NULL)
113 return (vd->vdev_asize);
114
115 /*
116 * The top-level vdev just returns the allocatable size rounded
117 * to the nearest metaslab.
118 */
119 if (vd == vd->vdev_top)
120 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
121
122 /*
123 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
124 * so each child must provide at least 1/Nth of its asize.
125 */
126 if (pvd->vdev_ops == &vdev_raidz_ops)
127 return (pvd->vdev_min_asize / pvd->vdev_children);
128
129 return (pvd->vdev_min_asize);
130 }
131
132 void
133 vdev_set_min_asize(vdev_t *vd)
134 {
135 vd->vdev_min_asize = vdev_get_min_asize(vd);
136
137 for (int c = 0; c < vd->vdev_children; c++)
138 vdev_set_min_asize(vd->vdev_child[c]);
139 }
140
141 vdev_t *
142 vdev_lookup_top(spa_t *spa, uint64_t vdev)
143 {
144 vdev_t *rvd = spa->spa_root_vdev;
145
146 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
147
148 if (vdev < rvd->vdev_children) {
149 ASSERT(rvd->vdev_child[vdev] != NULL);
150 return (rvd->vdev_child[vdev]);
151 }
152
153 return (NULL);
154 }
155
156 vdev_t *
157 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
158 {
159 vdev_t *mvd;
160
161 if (vd->vdev_guid == guid)
162 return (vd);
163
164 for (int c = 0; c < vd->vdev_children; c++)
165 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
166 NULL)
167 return (mvd);
168
169 return (NULL);
170 }
171
172 void
173 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
174 {
175 size_t oldsize, newsize;
176 uint64_t id = cvd->vdev_id;
177 vdev_t **newchild;
178
179 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
180 ASSERT(cvd->vdev_parent == NULL);
181
182 cvd->vdev_parent = pvd;
183
184 if (pvd == NULL)
185 return;
186
187 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
188
189 oldsize = pvd->vdev_children * sizeof (vdev_t *);
190 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
191 newsize = pvd->vdev_children * sizeof (vdev_t *);
192
193 newchild = kmem_zalloc(newsize, KM_SLEEP);
194 if (pvd->vdev_child != NULL) {
195 bcopy(pvd->vdev_child, newchild, oldsize);
196 kmem_free(pvd->vdev_child, oldsize);
197 }
198
199 pvd->vdev_child = newchild;
200 pvd->vdev_child[id] = cvd;
201
202 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
203 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
204
205 /*
206 * Walk up all ancestors to update guid sum.
207 */
208 for (; pvd != NULL; pvd = pvd->vdev_parent)
209 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
210
211 if (cvd->vdev_ops->vdev_op_leaf)
212 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
213 }
214
215 void
216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217 {
218 int c;
219 uint_t id = cvd->vdev_id;
220
221 ASSERT(cvd->vdev_parent == pvd);
222
223 if (pvd == NULL)
224 return;
225
226 ASSERT(id < pvd->vdev_children);
227 ASSERT(pvd->vdev_child[id] == cvd);
228
229 pvd->vdev_child[id] = NULL;
230 cvd->vdev_parent = NULL;
231
232 for (c = 0; c < pvd->vdev_children; c++)
233 if (pvd->vdev_child[c])
234 break;
235
236 if (c == pvd->vdev_children) {
237 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
238 pvd->vdev_child = NULL;
239 pvd->vdev_children = 0;
240 }
241
242 /*
243 * Walk up all ancestors to update guid sum.
244 */
245 for (; pvd != NULL; pvd = pvd->vdev_parent)
246 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
247
248 if (cvd->vdev_ops->vdev_op_leaf)
249 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
250 }
251
252 /*
253 * Remove any holes in the child array.
254 */
255 void
256 vdev_compact_children(vdev_t *pvd)
257 {
258 vdev_t **newchild, *cvd;
259 int oldc = pvd->vdev_children;
260 int newc;
261
262 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
263
264 for (int c = newc = 0; c < oldc; c++)
265 if (pvd->vdev_child[c])
266 newc++;
267
268 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
269
270 for (int c = newc = 0; c < oldc; c++) {
271 if ((cvd = pvd->vdev_child[c]) != NULL) {
272 newchild[newc] = cvd;
273 cvd->vdev_id = newc++;
274 }
275 }
276
277 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
278 pvd->vdev_child = newchild;
279 pvd->vdev_children = newc;
280 }
281
282 /*
283 * Allocate and minimally initialize a vdev_t.
284 */
285 vdev_t *
286 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
287 {
288 vdev_t *vd;
289
290 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
291
292 if (spa->spa_root_vdev == NULL) {
293 ASSERT(ops == &vdev_root_ops);
294 spa->spa_root_vdev = vd;
295 }
296
297 if (guid == 0 && ops != &vdev_hole_ops) {
298 if (spa->spa_root_vdev == vd) {
299 /*
300 * The root vdev's guid will also be the pool guid,
301 * which must be unique among all pools.
302 */
303 guid = spa_generate_guid(NULL);
304 } else {
305 /*
306 * Any other vdev's guid must be unique within the pool.
307 */
308 guid = spa_generate_guid(spa);
309 }
310 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
311 }
312
313 vd->vdev_spa = spa;
314 vd->vdev_id = id;
315 vd->vdev_guid = guid;
316 vd->vdev_guid_sum = guid;
317 vd->vdev_ops = ops;
318 vd->vdev_state = VDEV_STATE_CLOSED;
319 vd->vdev_ishole = (ops == &vdev_hole_ops);
320
321 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
322 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
323 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
324 for (int t = 0; t < DTL_TYPES; t++) {
325 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
326 &vd->vdev_dtl_lock);
327 }
328 txg_list_create(&vd->vdev_ms_list,
329 offsetof(struct metaslab, ms_txg_node));
330 txg_list_create(&vd->vdev_dtl_list,
331 offsetof(struct vdev, vdev_dtl_node));
332 vd->vdev_stat.vs_timestamp = gethrtime();
333 vdev_queue_init(vd);
334 vdev_cache_init(vd);
335
336 return (vd);
337 }
338
339 /*
340 * Allocate a new vdev. The 'alloctype' is used to control whether we are
341 * creating a new vdev or loading an existing one - the behavior is slightly
342 * different for each case.
343 */
344 int
345 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
346 int alloctype)
347 {
348 vdev_ops_t *ops;
349 char *type;
350 uint64_t guid = 0, islog, nparity;
351 vdev_t *vd;
352
353 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
354
355 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
356 return (EINVAL);
357
358 if ((ops = vdev_getops(type)) == NULL)
359 return (EINVAL);
360
361 /*
362 * If this is a load, get the vdev guid from the nvlist.
363 * Otherwise, vdev_alloc_common() will generate one for us.
364 */
365 if (alloctype == VDEV_ALLOC_LOAD) {
366 uint64_t label_id;
367
368 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
369 label_id != id)
370 return (EINVAL);
371
372 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
373 return (EINVAL);
374 } else if (alloctype == VDEV_ALLOC_SPARE) {
375 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376 return (EINVAL);
377 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
378 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
379 return (EINVAL);
380 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
381 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
382 return (EINVAL);
383 }
384
385 /*
386 * The first allocated vdev must be of type 'root'.
387 */
388 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
389 return (EINVAL);
390
391 /*
392 * Determine whether we're a log vdev.
393 */
394 islog = 0;
395 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
396 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
397 return (ENOTSUP);
398
399 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
400 return (ENOTSUP);
401
402 /*
403 * Set the nparity property for RAID-Z vdevs.
404 */
405 nparity = -1ULL;
406 if (ops == &vdev_raidz_ops) {
407 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
408 &nparity) == 0) {
409 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
410 return (EINVAL);
411 /*
412 * Previous versions could only support 1 or 2 parity
413 * device.
414 */
415 if (nparity > 1 &&
416 spa_version(spa) < SPA_VERSION_RAIDZ2)
417 return (ENOTSUP);
418 if (nparity > 2 &&
419 spa_version(spa) < SPA_VERSION_RAIDZ3)
420 return (ENOTSUP);
421 } else {
422 /*
423 * We require the parity to be specified for SPAs that
424 * support multiple parity levels.
425 */
426 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
427 return (EINVAL);
428 /*
429 * Otherwise, we default to 1 parity device for RAID-Z.
430 */
431 nparity = 1;
432 }
433 } else {
434 nparity = 0;
435 }
436 ASSERT(nparity != -1ULL);
437
438 vd = vdev_alloc_common(spa, id, guid, ops);
439
440 vd->vdev_islog = islog;
441 vd->vdev_nparity = nparity;
442
443 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
444 vd->vdev_path = spa_strdup(vd->vdev_path);
445 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
446 vd->vdev_devid = spa_strdup(vd->vdev_devid);
447 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
448 &vd->vdev_physpath) == 0)
449 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
450 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
451 vd->vdev_fru = spa_strdup(vd->vdev_fru);
452
453 /*
454 * Set the whole_disk property. If it's not specified, leave the value
455 * as -1.
456 */
457 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
458 &vd->vdev_wholedisk) != 0)
459 vd->vdev_wholedisk = -1ULL;
460
461 /*
462 * Look for the 'not present' flag. This will only be set if the device
463 * was not present at the time of import.
464 */
465 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
466 &vd->vdev_not_present);
467
468 /*
469 * Get the alignment requirement.
470 */
471 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
472
473 /*
474 * Retrieve the vdev creation time.
475 */
476 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
477 &vd->vdev_crtxg);
478
479 /*
480 * If we're a top-level vdev, try to load the allocation parameters.
481 */
482 if (parent && !parent->vdev_parent &&
483 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
484 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
485 &vd->vdev_ms_array);
486 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
487 &vd->vdev_ms_shift);
488 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
489 &vd->vdev_asize);
490 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
491 &vd->vdev_removing);
492 }
493
494 if (parent && !parent->vdev_parent) {
495 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
496 alloctype == VDEV_ALLOC_ADD ||
497 alloctype == VDEV_ALLOC_SPLIT ||
498 alloctype == VDEV_ALLOC_ROOTPOOL);
499 vd->vdev_mg = metaslab_group_create(islog ?
500 spa_log_class(spa) : spa_normal_class(spa), vd);
501 }
502
503 /*
504 * If we're a leaf vdev, try to load the DTL object and other state.
505 */
506 if (vd->vdev_ops->vdev_op_leaf &&
507 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
508 alloctype == VDEV_ALLOC_ROOTPOOL)) {
509 if (alloctype == VDEV_ALLOC_LOAD) {
510 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
511 &vd->vdev_dtl_smo.smo_object);
512 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
513 &vd->vdev_unspare);
514 }
515
516 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
517 uint64_t spare = 0;
518
519 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
520 &spare) == 0 && spare)
521 spa_spare_add(vd);
522 }
523
524 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
525 &vd->vdev_offline);
526
527 /*
528 * When importing a pool, we want to ignore the persistent fault
529 * state, as the diagnosis made on another system may not be
530 * valid in the current context. Local vdevs will
531 * remain in the faulted state.
532 */
533 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
534 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
535 &vd->vdev_faulted);
536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
537 &vd->vdev_degraded);
538 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
539 &vd->vdev_removed);
540
541 if (vd->vdev_faulted || vd->vdev_degraded) {
542 char *aux;
543
544 vd->vdev_label_aux =
545 VDEV_AUX_ERR_EXCEEDED;
546 if (nvlist_lookup_string(nv,
547 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
548 strcmp(aux, "external") == 0)
549 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
550 }
551 }
552 }
553
554 /*
555 * Add ourselves to the parent's list of children.
556 */
557 vdev_add_child(parent, vd);
558
559 *vdp = vd;
560
561 return (0);
562 }
563
564 void
565 vdev_free(vdev_t *vd)
566 {
567 spa_t *spa = vd->vdev_spa;
568
569 /*
570 * vdev_free() implies closing the vdev first. This is simpler than
571 * trying to ensure complicated semantics for all callers.
572 */
573 vdev_close(vd);
574
575 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
576 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
577
578 /*
579 * Free all children.
580 */
581 for (int c = 0; c < vd->vdev_children; c++)
582 vdev_free(vd->vdev_child[c]);
583
584 ASSERT(vd->vdev_child == NULL);
585 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
586
587 /*
588 * Discard allocation state.
589 */
590 if (vd->vdev_mg != NULL) {
591 vdev_metaslab_fini(vd);
592 metaslab_group_destroy(vd->vdev_mg);
593 }
594
595 ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
596 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
597 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
598
599 /*
600 * Remove this vdev from its parent's child list.
601 */
602 vdev_remove_child(vd->vdev_parent, vd);
603
604 ASSERT(vd->vdev_parent == NULL);
605
606 /*
607 * Clean up vdev structure.
608 */
609 vdev_queue_fini(vd);
610 vdev_cache_fini(vd);
611
612 if (vd->vdev_path)
613 spa_strfree(vd->vdev_path);
614 if (vd->vdev_devid)
615 spa_strfree(vd->vdev_devid);
616 if (vd->vdev_physpath)
617 spa_strfree(vd->vdev_physpath);
618 if (vd->vdev_fru)
619 spa_strfree(vd->vdev_fru);
620
621 if (vd->vdev_isspare)
622 spa_spare_remove(vd);
623 if (vd->vdev_isl2cache)
624 spa_l2cache_remove(vd);
625
626 txg_list_destroy(&vd->vdev_ms_list);
627 txg_list_destroy(&vd->vdev_dtl_list);
628
629 mutex_enter(&vd->vdev_dtl_lock);
630 for (int t = 0; t < DTL_TYPES; t++) {
631 space_map_unload(&vd->vdev_dtl[t]);
632 space_map_destroy(&vd->vdev_dtl[t]);
633 }
634 mutex_exit(&vd->vdev_dtl_lock);
635
636 mutex_destroy(&vd->vdev_dtl_lock);
637 mutex_destroy(&vd->vdev_stat_lock);
638 mutex_destroy(&vd->vdev_probe_lock);
639
640 if (vd == spa->spa_root_vdev)
641 spa->spa_root_vdev = NULL;
642
643 kmem_free(vd, sizeof (vdev_t));
644 }
645
646 /*
647 * Transfer top-level vdev state from svd to tvd.
648 */
649 static void
650 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
651 {
652 spa_t *spa = svd->vdev_spa;
653 metaslab_t *msp;
654 vdev_t *vd;
655 int t;
656
657 ASSERT(tvd == tvd->vdev_top);
658
659 tvd->vdev_ms_array = svd->vdev_ms_array;
660 tvd->vdev_ms_shift = svd->vdev_ms_shift;
661 tvd->vdev_ms_count = svd->vdev_ms_count;
662
663 svd->vdev_ms_array = 0;
664 svd->vdev_ms_shift = 0;
665 svd->vdev_ms_count = 0;
666
667 tvd->vdev_mg = svd->vdev_mg;
668 tvd->vdev_ms = svd->vdev_ms;
669
670 svd->vdev_mg = NULL;
671 svd->vdev_ms = NULL;
672
673 if (tvd->vdev_mg != NULL)
674 tvd->vdev_mg->mg_vd = tvd;
675
676 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
677 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
678 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
679
680 svd->vdev_stat.vs_alloc = 0;
681 svd->vdev_stat.vs_space = 0;
682 svd->vdev_stat.vs_dspace = 0;
683
684 for (t = 0; t < TXG_SIZE; t++) {
685 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
686 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
687 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
688 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
689 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
690 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
691 }
692
693 if (list_link_active(&svd->vdev_config_dirty_node)) {
694 vdev_config_clean(svd);
695 vdev_config_dirty(tvd);
696 }
697
698 if (list_link_active(&svd->vdev_state_dirty_node)) {
699 vdev_state_clean(svd);
700 vdev_state_dirty(tvd);
701 }
702
703 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
704 svd->vdev_deflate_ratio = 0;
705
706 tvd->vdev_islog = svd->vdev_islog;
707 svd->vdev_islog = 0;
708 }
709
710 static void
711 vdev_top_update(vdev_t *tvd, vdev_t *vd)
712 {
713 if (vd == NULL)
714 return;
715
716 vd->vdev_top = tvd;
717
718 for (int c = 0; c < vd->vdev_children; c++)
719 vdev_top_update(tvd, vd->vdev_child[c]);
720 }
721
722 /*
723 * Add a mirror/replacing vdev above an existing vdev.
724 */
725 vdev_t *
726 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
727 {
728 spa_t *spa = cvd->vdev_spa;
729 vdev_t *pvd = cvd->vdev_parent;
730 vdev_t *mvd;
731
732 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
733
734 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
735
736 mvd->vdev_asize = cvd->vdev_asize;
737 mvd->vdev_min_asize = cvd->vdev_min_asize;
738 mvd->vdev_ashift = cvd->vdev_ashift;
739 mvd->vdev_state = cvd->vdev_state;
740 mvd->vdev_crtxg = cvd->vdev_crtxg;
741
742 vdev_remove_child(pvd, cvd);
743 vdev_add_child(pvd, mvd);
744 cvd->vdev_id = mvd->vdev_children;
745 vdev_add_child(mvd, cvd);
746 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
747
748 if (mvd == mvd->vdev_top)
749 vdev_top_transfer(cvd, mvd);
750
751 return (mvd);
752 }
753
754 /*
755 * Remove a 1-way mirror/replacing vdev from the tree.
756 */
757 void
758 vdev_remove_parent(vdev_t *cvd)
759 {
760 vdev_t *mvd = cvd->vdev_parent;
761 vdev_t *pvd = mvd->vdev_parent;
762
763 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
764
765 ASSERT(mvd->vdev_children == 1);
766 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
767 mvd->vdev_ops == &vdev_replacing_ops ||
768 mvd->vdev_ops == &vdev_spare_ops);
769 cvd->vdev_ashift = mvd->vdev_ashift;
770
771 vdev_remove_child(mvd, cvd);
772 vdev_remove_child(pvd, mvd);
773
774 /*
775 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
776 * Otherwise, we could have detached an offline device, and when we
777 * go to import the pool we'll think we have two top-level vdevs,
778 * instead of a different version of the same top-level vdev.
779 */
780 if (mvd->vdev_top == mvd) {
781 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
782 cvd->vdev_orig_guid = cvd->vdev_guid;
783 cvd->vdev_guid += guid_delta;
784 cvd->vdev_guid_sum += guid_delta;
785 }
786 cvd->vdev_id = mvd->vdev_id;
787 vdev_add_child(pvd, cvd);
788 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
789
790 if (cvd == cvd->vdev_top)
791 vdev_top_transfer(mvd, cvd);
792
793 ASSERT(mvd->vdev_children == 0);
794 vdev_free(mvd);
795 }
796
797 int
798 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
799 {
800 spa_t *spa = vd->vdev_spa;
801 objset_t *mos = spa->spa_meta_objset;
802 uint64_t m;
803 uint64_t oldc = vd->vdev_ms_count;
804 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
805 metaslab_t **mspp;
806 int error;
807
808 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
809
810 /*
811 * This vdev is not being allocated from yet or is a hole.
812 */
813 if (vd->vdev_ms_shift == 0)
814 return (0);
815
816 ASSERT(!vd->vdev_ishole);
817
818 /*
819 * Compute the raidz-deflation ratio. Note, we hard-code
820 * in 128k (1 << 17) because it is the current "typical" blocksize.
821 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
822 * or we will inconsistently account for existing bp's.
823 */
824 vd->vdev_deflate_ratio = (1 << 17) /
825 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
826
827 ASSERT(oldc <= newc);
828
829 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
830
831 if (oldc != 0) {
832 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
833 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
834 }
835
836 vd->vdev_ms = mspp;
837 vd->vdev_ms_count = newc;
838
839 for (m = oldc; m < newc; m++) {
840 space_map_obj_t smo = { 0, 0, 0 };
841 if (txg == 0) {
842 uint64_t object = 0;
843 error = dmu_read(mos, vd->vdev_ms_array,
844 m * sizeof (uint64_t), sizeof (uint64_t), &object,
845 DMU_READ_PREFETCH);
846 if (error)
847 return (error);
848 if (object != 0) {
849 dmu_buf_t *db;
850 error = dmu_bonus_hold(mos, object, FTAG, &db);
851 if (error)
852 return (error);
853 ASSERT3U(db->db_size, >=, sizeof (smo));
854 bcopy(db->db_data, &smo, sizeof (smo));
855 ASSERT3U(smo.smo_object, ==, object);
856 dmu_buf_rele(db, FTAG);
857 }
858 }
859 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
860 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
861 }
862
863 if (txg == 0)
864 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
865
866 /*
867 * If the vdev is being removed we don't activate
868 * the metaslabs since we want to ensure that no new
869 * allocations are performed on this device.
870 */
871 if (oldc == 0 && !vd->vdev_removing)
872 metaslab_group_activate(vd->vdev_mg);
873
874 if (txg == 0)
875 spa_config_exit(spa, SCL_ALLOC, FTAG);
876
877 return (0);
878 }
879
880 void
881 vdev_metaslab_fini(vdev_t *vd)
882 {
883 uint64_t m;
884 uint64_t count = vd->vdev_ms_count;
885
886 if (vd->vdev_ms != NULL) {
887 metaslab_group_passivate(vd->vdev_mg);
888 for (m = 0; m < count; m++)
889 if (vd->vdev_ms[m] != NULL)
890 metaslab_fini(vd->vdev_ms[m]);
891 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
892 vd->vdev_ms = NULL;
893 }
894 }
895
896 typedef struct vdev_probe_stats {
897 boolean_t vps_readable;
898 boolean_t vps_writeable;
899 int vps_flags;
900 } vdev_probe_stats_t;
901
902 static void
903 vdev_probe_done(zio_t *zio)
904 {
905 spa_t *spa = zio->io_spa;
906 vdev_t *vd = zio->io_vd;
907 vdev_probe_stats_t *vps = zio->io_private;
908
909 ASSERT(vd->vdev_probe_zio != NULL);
910
911 if (zio->io_type == ZIO_TYPE_READ) {
912 if (zio->io_error == 0)
913 vps->vps_readable = 1;
914 if (zio->io_error == 0 && spa_writeable(spa)) {
915 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
916 zio->io_offset, zio->io_size, zio->io_data,
917 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
918 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
919 } else {
920 zio_buf_free(zio->io_data, zio->io_size);
921 }
922 } else if (zio->io_type == ZIO_TYPE_WRITE) {
923 if (zio->io_error == 0)
924 vps->vps_writeable = 1;
925 zio_buf_free(zio->io_data, zio->io_size);
926 } else if (zio->io_type == ZIO_TYPE_NULL) {
927 zio_t *pio;
928
929 vd->vdev_cant_read |= !vps->vps_readable;
930 vd->vdev_cant_write |= !vps->vps_writeable;
931
932 if (vdev_readable(vd) &&
933 (vdev_writeable(vd) || !spa_writeable(spa))) {
934 zio->io_error = 0;
935 } else {
936 ASSERT(zio->io_error != 0);
937 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
938 spa, vd, NULL, 0, 0);
939 zio->io_error = ENXIO;
940 }
941
942 mutex_enter(&vd->vdev_probe_lock);
943 ASSERT(vd->vdev_probe_zio == zio);
944 vd->vdev_probe_zio = NULL;
945 mutex_exit(&vd->vdev_probe_lock);
946
947 while ((pio = zio_walk_parents(zio)) != NULL)
948 if (!vdev_accessible(vd, pio))
949 pio->io_error = ENXIO;
950
951 kmem_free(vps, sizeof (*vps));
952 }
953 }
954
955 /*
956 * Determine whether this device is accessible by reading and writing
957 * to several known locations: the pad regions of each vdev label
958 * but the first (which we leave alone in case it contains a VTOC).
959 */
960 zio_t *
961 vdev_probe(vdev_t *vd, zio_t *zio)
962 {
963 spa_t *spa = vd->vdev_spa;
964 vdev_probe_stats_t *vps = NULL;
965 zio_t *pio;
966
967 ASSERT(vd->vdev_ops->vdev_op_leaf);
968
969 /*
970 * Don't probe the probe.
971 */
972 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
973 return (NULL);
974
975 /*
976 * To prevent 'probe storms' when a device fails, we create
977 * just one probe i/o at a time. All zios that want to probe
978 * this vdev will become parents of the probe io.
979 */
980 mutex_enter(&vd->vdev_probe_lock);
981
982 if ((pio = vd->vdev_probe_zio) == NULL) {
983 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
984
985 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
986 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
987 ZIO_FLAG_TRYHARD;
988
989 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
990 /*
991 * vdev_cant_read and vdev_cant_write can only
992 * transition from TRUE to FALSE when we have the
993 * SCL_ZIO lock as writer; otherwise they can only
994 * transition from FALSE to TRUE. This ensures that
995 * any zio looking at these values can assume that
996 * failures persist for the life of the I/O. That's
997 * important because when a device has intermittent
998 * connectivity problems, we want to ensure that
999 * they're ascribed to the device (ENXIO) and not
1000 * the zio (EIO).
1001 *
1002 * Since we hold SCL_ZIO as writer here, clear both
1003 * values so the probe can reevaluate from first
1004 * principles.
1005 */
1006 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1007 vd->vdev_cant_read = B_FALSE;
1008 vd->vdev_cant_write = B_FALSE;
1009 }
1010
1011 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1012 vdev_probe_done, vps,
1013 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1014
1015 /*
1016 * We can't change the vdev state in this context, so we
1017 * kick off an async task to do it on our behalf.
1018 */
1019 if (zio != NULL) {
1020 vd->vdev_probe_wanted = B_TRUE;
1021 spa_async_request(spa, SPA_ASYNC_PROBE);
1022 }
1023 }
1024
1025 if (zio != NULL)
1026 zio_add_child(zio, pio);
1027
1028 mutex_exit(&vd->vdev_probe_lock);
1029
1030 if (vps == NULL) {
1031 ASSERT(zio != NULL);
1032 return (NULL);
1033 }
1034
1035 for (int l = 1; l < VDEV_LABELS; l++) {
1036 zio_nowait(zio_read_phys(pio, vd,
1037 vdev_label_offset(vd->vdev_psize, l,
1038 offsetof(vdev_label_t, vl_pad2)),
1039 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1040 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1041 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1042 }
1043
1044 if (zio == NULL)
1045 return (pio);
1046
1047 zio_nowait(pio);
1048 return (NULL);
1049 }
1050
1051 static void
1052 vdev_open_child(void *arg)
1053 {
1054 vdev_t *vd = arg;
1055
1056 vd->vdev_open_thread = curthread;
1057 vd->vdev_open_error = vdev_open(vd);
1058 vd->vdev_open_thread = NULL;
1059 }
1060
1061 boolean_t
1062 vdev_uses_zvols(vdev_t *vd)
1063 {
1064 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1065 strlen(ZVOL_DIR)) == 0)
1066 return (B_TRUE);
1067 for (int c = 0; c < vd->vdev_children; c++)
1068 if (vdev_uses_zvols(vd->vdev_child[c]))
1069 return (B_TRUE);
1070 return (B_FALSE);
1071 }
1072
1073 void
1074 vdev_open_children(vdev_t *vd)
1075 {
1076 taskq_t *tq;
1077 int children = vd->vdev_children;
1078
1079 /*
1080 * in order to handle pools on top of zvols, do the opens
1081 * in a single thread so that the same thread holds the
1082 * spa_namespace_lock
1083 */
1084 if (vdev_uses_zvols(vd)) {
1085 for (int c = 0; c < children; c++)
1086 vd->vdev_child[c]->vdev_open_error =
1087 vdev_open(vd->vdev_child[c]);
1088 return;
1089 }
1090 tq = taskq_create("vdev_open", children, minclsyspri,
1091 children, children, TASKQ_PREPOPULATE);
1092
1093 for (int c = 0; c < children; c++)
1094 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1095 TQ_SLEEP) != NULL);
1096
1097 taskq_destroy(tq);
1098 }
1099
1100 /*
1101 * Prepare a virtual device for access.
1102 */
1103 int
1104 vdev_open(vdev_t *vd)
1105 {
1106 spa_t *spa = vd->vdev_spa;
1107 int error;
1108 uint64_t osize = 0;
1109 uint64_t asize, psize;
1110 uint64_t ashift = 0;
1111
1112 ASSERT(vd->vdev_open_thread == curthread ||
1113 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1114 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1115 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1116 vd->vdev_state == VDEV_STATE_OFFLINE);
1117
1118 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1119 vd->vdev_cant_read = B_FALSE;
1120 vd->vdev_cant_write = B_FALSE;
1121 vd->vdev_min_asize = vdev_get_min_asize(vd);
1122
1123 /*
1124 * If this vdev is not removed, check its fault status. If it's
1125 * faulted, bail out of the open.
1126 */
1127 if (!vd->vdev_removed && vd->vdev_faulted) {
1128 ASSERT(vd->vdev_children == 0);
1129 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1130 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1131 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1132 vd->vdev_label_aux);
1133 return (ENXIO);
1134 } else if (vd->vdev_offline) {
1135 ASSERT(vd->vdev_children == 0);
1136 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1137 return (ENXIO);
1138 }
1139
1140 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1141
1142 /*
1143 * Reset the vdev_reopening flag so that we actually close
1144 * the vdev on error.
1145 */
1146 vd->vdev_reopening = B_FALSE;
1147 if (zio_injection_enabled && error == 0)
1148 error = zio_handle_device_injection(vd, NULL, ENXIO);
1149
1150 if (error) {
1151 if (vd->vdev_removed &&
1152 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1153 vd->vdev_removed = B_FALSE;
1154
1155 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1156 vd->vdev_stat.vs_aux);
1157 return (error);
1158 }
1159
1160 vd->vdev_removed = B_FALSE;
1161
1162 /*
1163 * Recheck the faulted flag now that we have confirmed that
1164 * the vdev is accessible. If we're faulted, bail.
1165 */
1166 if (vd->vdev_faulted) {
1167 ASSERT(vd->vdev_children == 0);
1168 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1169 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1170 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1171 vd->vdev_label_aux);
1172 return (ENXIO);
1173 }
1174
1175 if (vd->vdev_degraded) {
1176 ASSERT(vd->vdev_children == 0);
1177 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1178 VDEV_AUX_ERR_EXCEEDED);
1179 } else {
1180 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1181 }
1182
1183 /*
1184 * For hole or missing vdevs we just return success.
1185 */
1186 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1187 return (0);
1188
1189 for (int c = 0; c < vd->vdev_children; c++) {
1190 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1191 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1192 VDEV_AUX_NONE);
1193 break;
1194 }
1195 }
1196
1197 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1198
1199 if (vd->vdev_children == 0) {
1200 if (osize < SPA_MINDEVSIZE) {
1201 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1202 VDEV_AUX_TOO_SMALL);
1203 return (EOVERFLOW);
1204 }
1205 psize = osize;
1206 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1207 } else {
1208 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1209 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1210 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1211 VDEV_AUX_TOO_SMALL);
1212 return (EOVERFLOW);
1213 }
1214 psize = 0;
1215 asize = osize;
1216 }
1217
1218 vd->vdev_psize = psize;
1219
1220 /*
1221 * Make sure the allocatable size hasn't shrunk.
1222 */
1223 if (asize < vd->vdev_min_asize) {
1224 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1225 VDEV_AUX_BAD_LABEL);
1226 return (EINVAL);
1227 }
1228
1229 if (vd->vdev_asize == 0) {
1230 /*
1231 * This is the first-ever open, so use the computed values.
1232 * For testing purposes, a higher ashift can be requested.
1233 */
1234 vd->vdev_asize = asize;
1235 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1236 } else {
1237 /*
1238 * Make sure the alignment requirement hasn't increased.
1239 */
1240 if (ashift > vd->vdev_top->vdev_ashift) {
1241 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1242 VDEV_AUX_BAD_LABEL);
1243 return (EINVAL);
1244 }
1245 }
1246
1247 /*
1248 * If all children are healthy and the asize has increased,
1249 * then we've experienced dynamic LUN growth. If automatic
1250 * expansion is enabled then use the additional space.
1251 */
1252 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1253 (vd->vdev_expanding || spa->spa_autoexpand))
1254 vd->vdev_asize = asize;
1255
1256 vdev_set_min_asize(vd);
1257
1258 /*
1259 * Ensure we can issue some IO before declaring the
1260 * vdev open for business.
1261 */
1262 if (vd->vdev_ops->vdev_op_leaf &&
1263 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1264 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1265 VDEV_AUX_ERR_EXCEEDED);
1266 return (error);
1267 }
1268
1269 /*
1270 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1271 * resilver. But don't do this if we are doing a reopen for a scrub,
1272 * since this would just restart the scrub we are already doing.
1273 */
1274 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1275 vdev_resilver_needed(vd, NULL, NULL))
1276 spa_async_request(spa, SPA_ASYNC_RESILVER);
1277
1278 return (0);
1279 }
1280
1281 /*
1282 * Called once the vdevs are all opened, this routine validates the label
1283 * contents. This needs to be done before vdev_load() so that we don't
1284 * inadvertently do repair I/Os to the wrong device.
1285 *
1286 * This function will only return failure if one of the vdevs indicates that it
1287 * has since been destroyed or exported. This is only possible if
1288 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1289 * will be updated but the function will return 0.
1290 */
1291 int
1292 vdev_validate(vdev_t *vd)
1293 {
1294 spa_t *spa = vd->vdev_spa;
1295 nvlist_t *label;
1296 uint64_t guid = 0, top_guid;
1297 uint64_t state;
1298
1299 for (int c = 0; c < vd->vdev_children; c++)
1300 if (vdev_validate(vd->vdev_child[c]) != 0)
1301 return (EBADF);
1302
1303 /*
1304 * If the device has already failed, or was marked offline, don't do
1305 * any further validation. Otherwise, label I/O will fail and we will
1306 * overwrite the previous state.
1307 */
1308 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1309 uint64_t aux_guid = 0;
1310 nvlist_t *nvl;
1311
1312 if ((label = vdev_label_read_config(vd)) == NULL) {
1313 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1314 VDEV_AUX_BAD_LABEL);
1315 return (0);
1316 }
1317
1318 /*
1319 * Determine if this vdev has been split off into another
1320 * pool. If so, then refuse to open it.
1321 */
1322 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1323 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1324 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1325 VDEV_AUX_SPLIT_POOL);
1326 nvlist_free(label);
1327 return (0);
1328 }
1329
1330 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1331 &guid) != 0 || guid != spa_guid(spa)) {
1332 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1333 VDEV_AUX_CORRUPT_DATA);
1334 nvlist_free(label);
1335 return (0);
1336 }
1337
1338 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1339 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1340 &aux_guid) != 0)
1341 aux_guid = 0;
1342
1343 /*
1344 * If this vdev just became a top-level vdev because its
1345 * sibling was detached, it will have adopted the parent's
1346 * vdev guid -- but the label may or may not be on disk yet.
1347 * Fortunately, either version of the label will have the
1348 * same top guid, so if we're a top-level vdev, we can
1349 * safely compare to that instead.
1350 *
1351 * If we split this vdev off instead, then we also check the
1352 * original pool's guid. We don't want to consider the vdev
1353 * corrupt if it is partway through a split operation.
1354 */
1355 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1356 &guid) != 0 ||
1357 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1358 &top_guid) != 0 ||
1359 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1360 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1361 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1362 VDEV_AUX_CORRUPT_DATA);
1363 nvlist_free(label);
1364 return (0);
1365 }
1366
1367 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1368 &state) != 0) {
1369 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1370 VDEV_AUX_CORRUPT_DATA);
1371 nvlist_free(label);
1372 return (0);
1373 }
1374
1375 nvlist_free(label);
1376
1377 /*
1378 * If spa->spa_load_verbatim is true, no need to check the
1379 * state of the pool.
1380 */
1381 if (!spa->spa_load_verbatim &&
1382 spa_load_state(spa) == SPA_LOAD_OPEN &&
1383 state != POOL_STATE_ACTIVE)
1384 return (EBADF);
1385
1386 /*
1387 * If we were able to open and validate a vdev that was
1388 * previously marked permanently unavailable, clear that state
1389 * now.
1390 */
1391 if (vd->vdev_not_present)
1392 vd->vdev_not_present = 0;
1393 }
1394
1395 return (0);
1396 }
1397
1398 /*
1399 * Close a virtual device.
1400 */
1401 void
1402 vdev_close(vdev_t *vd)
1403 {
1404 spa_t *spa = vd->vdev_spa;
1405 vdev_t *pvd = vd->vdev_parent;
1406
1407 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1408
1409 /*
1410 * If our parent is reopening, then we are as well, unless we are
1411 * going offline.
1412 */
1413 if (pvd != NULL && pvd->vdev_reopening)
1414 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1415
1416 vd->vdev_ops->vdev_op_close(vd);
1417
1418 vdev_cache_purge(vd);
1419
1420 /*
1421 * We record the previous state before we close it, so that if we are
1422 * doing a reopen(), we don't generate FMA ereports if we notice that
1423 * it's still faulted.
1424 */
1425 vd->vdev_prevstate = vd->vdev_state;
1426
1427 if (vd->vdev_offline)
1428 vd->vdev_state = VDEV_STATE_OFFLINE;
1429 else
1430 vd->vdev_state = VDEV_STATE_CLOSED;
1431 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1432 }
1433
1434 void
1435 vdev_hold(vdev_t *vd)
1436 {
1437 spa_t *spa = vd->vdev_spa;
1438
1439 ASSERT(spa_is_root(spa));
1440 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1441 return;
1442
1443 for (int c = 0; c < vd->vdev_children; c++)
1444 vdev_hold(vd->vdev_child[c]);
1445
1446 if (vd->vdev_ops->vdev_op_leaf)
1447 vd->vdev_ops->vdev_op_hold(vd);
1448 }
1449
1450 void
1451 vdev_rele(vdev_t *vd)
1452 {
1453 spa_t *spa = vd->vdev_spa;
1454
1455 ASSERT(spa_is_root(spa));
1456 for (int c = 0; c < vd->vdev_children; c++)
1457 vdev_rele(vd->vdev_child[c]);
1458
1459 if (vd->vdev_ops->vdev_op_leaf)
1460 vd->vdev_ops->vdev_op_rele(vd);
1461 }
1462
1463 /*
1464 * Reopen all interior vdevs and any unopened leaves. We don't actually
1465 * reopen leaf vdevs which had previously been opened as they might deadlock
1466 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1467 * If the leaf has never been opened then open it, as usual.
1468 */
1469 void
1470 vdev_reopen(vdev_t *vd)
1471 {
1472 spa_t *spa = vd->vdev_spa;
1473
1474 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1475
1476 /* set the reopening flag unless we're taking the vdev offline */
1477 vd->vdev_reopening = !vd->vdev_offline;
1478 vdev_close(vd);
1479 (void) vdev_open(vd);
1480
1481 /*
1482 * Call vdev_validate() here to make sure we have the same device.
1483 * Otherwise, a device with an invalid label could be successfully
1484 * opened in response to vdev_reopen().
1485 */
1486 if (vd->vdev_aux) {
1487 (void) vdev_validate_aux(vd);
1488 if (vdev_readable(vd) && vdev_writeable(vd) &&
1489 vd->vdev_aux == &spa->spa_l2cache &&
1490 !l2arc_vdev_present(vd))
1491 l2arc_add_vdev(spa, vd);
1492 } else {
1493 (void) vdev_validate(vd);
1494 }
1495
1496 /*
1497 * Reassess parent vdev's health.
1498 */
1499 vdev_propagate_state(vd);
1500 }
1501
1502 int
1503 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1504 {
1505 int error;
1506
1507 /*
1508 * Normally, partial opens (e.g. of a mirror) are allowed.
1509 * For a create, however, we want to fail the request if
1510 * there are any components we can't open.
1511 */
1512 error = vdev_open(vd);
1513
1514 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1515 vdev_close(vd);
1516 return (error ? error : ENXIO);
1517 }
1518
1519 /*
1520 * Recursively initialize all labels.
1521 */
1522 if ((error = vdev_label_init(vd, txg, isreplacing ?
1523 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1524 vdev_close(vd);
1525 return (error);
1526 }
1527
1528 return (0);
1529 }
1530
1531 void
1532 vdev_metaslab_set_size(vdev_t *vd)
1533 {
1534 /*
1535 * Aim for roughly 200 metaslabs per vdev.
1536 */
1537 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1538 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1539 }
1540
1541 void
1542 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1543 {
1544 ASSERT(vd == vd->vdev_top);
1545 ASSERT(!vd->vdev_ishole);
1546 ASSERT(ISP2(flags));
1547
1548 if (flags & VDD_METASLAB)
1549 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1550
1551 if (flags & VDD_DTL)
1552 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1553
1554 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1555 }
1556
1557 /*
1558 * DTLs.
1559 *
1560 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1561 * the vdev has less than perfect replication. There are four kinds of DTL:
1562 *
1563 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1564 *
1565 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1566 *
1567 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1568 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1569 * txgs that was scrubbed.
1570 *
1571 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1572 * persistent errors or just some device being offline.
1573 * Unlike the other three, the DTL_OUTAGE map is not generally
1574 * maintained; it's only computed when needed, typically to
1575 * determine whether a device can be detached.
1576 *
1577 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1578 * either has the data or it doesn't.
1579 *
1580 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1581 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1582 * if any child is less than fully replicated, then so is its parent.
1583 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1584 * comprising only those txgs which appear in 'maxfaults' or more children;
1585 * those are the txgs we don't have enough replication to read. For example,
1586 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1587 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1588 * two child DTL_MISSING maps.
1589 *
1590 * It should be clear from the above that to compute the DTLs and outage maps
1591 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1592 * Therefore, that is all we keep on disk. When loading the pool, or after
1593 * a configuration change, we generate all other DTLs from first principles.
1594 */
1595 void
1596 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1597 {
1598 space_map_t *sm = &vd->vdev_dtl[t];
1599
1600 ASSERT(t < DTL_TYPES);
1601 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1602
1603 mutex_enter(sm->sm_lock);
1604 if (!space_map_contains(sm, txg, size))
1605 space_map_add(sm, txg, size);
1606 mutex_exit(sm->sm_lock);
1607 }
1608
1609 boolean_t
1610 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1611 {
1612 space_map_t *sm = &vd->vdev_dtl[t];
1613 boolean_t dirty = B_FALSE;
1614
1615 ASSERT(t < DTL_TYPES);
1616 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1617
1618 mutex_enter(sm->sm_lock);
1619 if (sm->sm_space != 0)
1620 dirty = space_map_contains(sm, txg, size);
1621 mutex_exit(sm->sm_lock);
1622
1623 return (dirty);
1624 }
1625
1626 boolean_t
1627 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1628 {
1629 space_map_t *sm = &vd->vdev_dtl[t];
1630 boolean_t empty;
1631
1632 mutex_enter(sm->sm_lock);
1633 empty = (sm->sm_space == 0);
1634 mutex_exit(sm->sm_lock);
1635
1636 return (empty);
1637 }
1638
1639 /*
1640 * Reassess DTLs after a config change or scrub completion.
1641 */
1642 void
1643 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1644 {
1645 spa_t *spa = vd->vdev_spa;
1646 avl_tree_t reftree;
1647 int minref;
1648
1649 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1650
1651 for (int c = 0; c < vd->vdev_children; c++)
1652 vdev_dtl_reassess(vd->vdev_child[c], txg,
1653 scrub_txg, scrub_done);
1654
1655 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1656 return;
1657
1658 if (vd->vdev_ops->vdev_op_leaf) {
1659 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1660
1661 mutex_enter(&vd->vdev_dtl_lock);
1662 if (scrub_txg != 0 &&
1663 (spa->spa_scrub_started ||
1664 (scn && scn->scn_phys.scn_errors == 0))) {
1665 /*
1666 * We completed a scrub up to scrub_txg. If we
1667 * did it without rebooting, then the scrub dtl
1668 * will be valid, so excise the old region and
1669 * fold in the scrub dtl. Otherwise, leave the
1670 * dtl as-is if there was an error.
1671 *
1672 * There's little trick here: to excise the beginning
1673 * of the DTL_MISSING map, we put it into a reference
1674 * tree and then add a segment with refcnt -1 that
1675 * covers the range [0, scrub_txg). This means
1676 * that each txg in that range has refcnt -1 or 0.
1677 * We then add DTL_SCRUB with a refcnt of 2, so that
1678 * entries in the range [0, scrub_txg) will have a
1679 * positive refcnt -- either 1 or 2. We then convert
1680 * the reference tree into the new DTL_MISSING map.
1681 */
1682 space_map_ref_create(&reftree);
1683 space_map_ref_add_map(&reftree,
1684 &vd->vdev_dtl[DTL_MISSING], 1);
1685 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1686 space_map_ref_add_map(&reftree,
1687 &vd->vdev_dtl[DTL_SCRUB], 2);
1688 space_map_ref_generate_map(&reftree,
1689 &vd->vdev_dtl[DTL_MISSING], 1);
1690 space_map_ref_destroy(&reftree);
1691 }
1692 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1693 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1694 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1695 if (scrub_done)
1696 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1697 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1698 if (!vdev_readable(vd))
1699 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1700 else
1701 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1702 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1703 mutex_exit(&vd->vdev_dtl_lock);
1704
1705 if (txg != 0)
1706 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1707 return;
1708 }
1709
1710 mutex_enter(&vd->vdev_dtl_lock);
1711 for (int t = 0; t < DTL_TYPES; t++) {
1712 /* account for child's outage in parent's missing map */
1713 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1714 if (t == DTL_SCRUB)
1715 continue; /* leaf vdevs only */
1716 if (t == DTL_PARTIAL)
1717 minref = 1; /* i.e. non-zero */
1718 else if (vd->vdev_nparity != 0)
1719 minref = vd->vdev_nparity + 1; /* RAID-Z */
1720 else
1721 minref = vd->vdev_children; /* any kind of mirror */
1722 space_map_ref_create(&reftree);
1723 for (int c = 0; c < vd->vdev_children; c++) {
1724 vdev_t *cvd = vd->vdev_child[c];
1725 mutex_enter(&cvd->vdev_dtl_lock);
1726 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1727 mutex_exit(&cvd->vdev_dtl_lock);
1728 }
1729 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1730 space_map_ref_destroy(&reftree);
1731 }
1732 mutex_exit(&vd->vdev_dtl_lock);
1733 }
1734
1735 static int
1736 vdev_dtl_load(vdev_t *vd)
1737 {
1738 spa_t *spa = vd->vdev_spa;
1739 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1740 objset_t *mos = spa->spa_meta_objset;
1741 dmu_buf_t *db;
1742 int error;
1743
1744 ASSERT(vd->vdev_children == 0);
1745
1746 if (smo->smo_object == 0)
1747 return (0);
1748
1749 ASSERT(!vd->vdev_ishole);
1750
1751 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1752 return (error);
1753
1754 ASSERT3U(db->db_size, >=, sizeof (*smo));
1755 bcopy(db->db_data, smo, sizeof (*smo));
1756 dmu_buf_rele(db, FTAG);
1757
1758 mutex_enter(&vd->vdev_dtl_lock);
1759 error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1760 NULL, SM_ALLOC, smo, mos);
1761 mutex_exit(&vd->vdev_dtl_lock);
1762
1763 return (error);
1764 }
1765
1766 void
1767 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1768 {
1769 spa_t *spa = vd->vdev_spa;
1770 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1771 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1772 objset_t *mos = spa->spa_meta_objset;
1773 space_map_t smsync;
1774 kmutex_t smlock;
1775 dmu_buf_t *db;
1776 dmu_tx_t *tx;
1777
1778 ASSERT(!vd->vdev_ishole);
1779
1780 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1781
1782 if (vd->vdev_detached) {
1783 if (smo->smo_object != 0) {
1784 int err = dmu_object_free(mos, smo->smo_object, tx);
1785 ASSERT3U(err, ==, 0);
1786 smo->smo_object = 0;
1787 }
1788 dmu_tx_commit(tx);
1789 return;
1790 }
1791
1792 if (smo->smo_object == 0) {
1793 ASSERT(smo->smo_objsize == 0);
1794 ASSERT(smo->smo_alloc == 0);
1795 smo->smo_object = dmu_object_alloc(mos,
1796 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1797 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1798 ASSERT(smo->smo_object != 0);
1799 vdev_config_dirty(vd->vdev_top);
1800 }
1801
1802 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1803
1804 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1805 &smlock);
1806
1807 mutex_enter(&smlock);
1808
1809 mutex_enter(&vd->vdev_dtl_lock);
1810 space_map_walk(sm, space_map_add, &smsync);
1811 mutex_exit(&vd->vdev_dtl_lock);
1812
1813 space_map_truncate(smo, mos, tx);
1814 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1815
1816 space_map_destroy(&smsync);
1817
1818 mutex_exit(&smlock);
1819 mutex_destroy(&smlock);
1820
1821 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1822 dmu_buf_will_dirty(db, tx);
1823 ASSERT3U(db->db_size, >=, sizeof (*smo));
1824 bcopy(smo, db->db_data, sizeof (*smo));
1825 dmu_buf_rele(db, FTAG);
1826
1827 dmu_tx_commit(tx);
1828 }
1829
1830 /*
1831 * Determine whether the specified vdev can be offlined/detached/removed
1832 * without losing data.
1833 */
1834 boolean_t
1835 vdev_dtl_required(vdev_t *vd)
1836 {
1837 spa_t *spa = vd->vdev_spa;
1838 vdev_t *tvd = vd->vdev_top;
1839 uint8_t cant_read = vd->vdev_cant_read;
1840 boolean_t required;
1841
1842 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1843
1844 if (vd == spa->spa_root_vdev || vd == tvd)
1845 return (B_TRUE);
1846
1847 /*
1848 * Temporarily mark the device as unreadable, and then determine
1849 * whether this results in any DTL outages in the top-level vdev.
1850 * If not, we can safely offline/detach/remove the device.
1851 */
1852 vd->vdev_cant_read = B_TRUE;
1853 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1854 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1855 vd->vdev_cant_read = cant_read;
1856 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1857
1858 return (required);
1859 }
1860
1861 /*
1862 * Determine if resilver is needed, and if so the txg range.
1863 */
1864 boolean_t
1865 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1866 {
1867 boolean_t needed = B_FALSE;
1868 uint64_t thismin = UINT64_MAX;
1869 uint64_t thismax = 0;
1870
1871 if (vd->vdev_children == 0) {
1872 mutex_enter(&vd->vdev_dtl_lock);
1873 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1874 vdev_writeable(vd)) {
1875 space_seg_t *ss;
1876
1877 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1878 thismin = ss->ss_start - 1;
1879 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1880 thismax = ss->ss_end;
1881 needed = B_TRUE;
1882 }
1883 mutex_exit(&vd->vdev_dtl_lock);
1884 } else {
1885 for (int c = 0; c < vd->vdev_children; c++) {
1886 vdev_t *cvd = vd->vdev_child[c];
1887 uint64_t cmin, cmax;
1888
1889 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1890 thismin = MIN(thismin, cmin);
1891 thismax = MAX(thismax, cmax);
1892 needed = B_TRUE;
1893 }
1894 }
1895 }
1896
1897 if (needed && minp) {
1898 *minp = thismin;
1899 *maxp = thismax;
1900 }
1901 return (needed);
1902 }
1903
1904 void
1905 vdev_load(vdev_t *vd)
1906 {
1907 /*
1908 * Recursively load all children.
1909 */
1910 for (int c = 0; c < vd->vdev_children; c++)
1911 vdev_load(vd->vdev_child[c]);
1912
1913 /*
1914 * If this is a top-level vdev, initialize its metaslabs.
1915 */
1916 if (vd == vd->vdev_top && !vd->vdev_ishole &&
1917 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1918 vdev_metaslab_init(vd, 0) != 0))
1919 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1920 VDEV_AUX_CORRUPT_DATA);
1921
1922 /*
1923 * If this is a leaf vdev, load its DTL.
1924 */
1925 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1926 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1927 VDEV_AUX_CORRUPT_DATA);
1928 }
1929
1930 /*
1931 * The special vdev case is used for hot spares and l2cache devices. Its
1932 * sole purpose it to set the vdev state for the associated vdev. To do this,
1933 * we make sure that we can open the underlying device, then try to read the
1934 * label, and make sure that the label is sane and that it hasn't been
1935 * repurposed to another pool.
1936 */
1937 int
1938 vdev_validate_aux(vdev_t *vd)
1939 {
1940 nvlist_t *label;
1941 uint64_t guid, version;
1942 uint64_t state;
1943
1944 if (!vdev_readable(vd))
1945 return (0);
1946
1947 if ((label = vdev_label_read_config(vd)) == NULL) {
1948 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1949 VDEV_AUX_CORRUPT_DATA);
1950 return (-1);
1951 }
1952
1953 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1954 version > SPA_VERSION ||
1955 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1956 guid != vd->vdev_guid ||
1957 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1958 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1959 VDEV_AUX_CORRUPT_DATA);
1960 nvlist_free(label);
1961 return (-1);
1962 }
1963
1964 /*
1965 * We don't actually check the pool state here. If it's in fact in
1966 * use by another pool, we update this fact on the fly when requested.
1967 */
1968 nvlist_free(label);
1969 return (0);
1970 }
1971
1972 void
1973 vdev_remove(vdev_t *vd, uint64_t txg)
1974 {
1975 spa_t *spa = vd->vdev_spa;
1976 objset_t *mos = spa->spa_meta_objset;
1977 dmu_tx_t *tx;
1978
1979 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1980
1981 if (vd->vdev_dtl_smo.smo_object) {
1982 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
1983 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
1984 vd->vdev_dtl_smo.smo_object = 0;
1985 }
1986
1987 if (vd->vdev_ms != NULL) {
1988 for (int m = 0; m < vd->vdev_ms_count; m++) {
1989 metaslab_t *msp = vd->vdev_ms[m];
1990
1991 if (msp == NULL || msp->ms_smo.smo_object == 0)
1992 continue;
1993
1994 ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
1995 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
1996 msp->ms_smo.smo_object = 0;
1997 }
1998 }
1999
2000 if (vd->vdev_ms_array) {
2001 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2002 vd->vdev_ms_array = 0;
2003 vd->vdev_ms_shift = 0;
2004 }
2005 dmu_tx_commit(tx);
2006 }
2007
2008 void
2009 vdev_sync_done(vdev_t *vd, uint64_t txg)
2010 {
2011 metaslab_t *msp;
2012 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2013
2014 ASSERT(!vd->vdev_ishole);
2015
2016 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2017 metaslab_sync_done(msp, txg);
2018
2019 if (reassess)
2020 metaslab_sync_reassess(vd->vdev_mg);
2021 }
2022
2023 void
2024 vdev_sync(vdev_t *vd, uint64_t txg)
2025 {
2026 spa_t *spa = vd->vdev_spa;
2027 vdev_t *lvd;
2028 metaslab_t *msp;
2029 dmu_tx_t *tx;
2030
2031 ASSERT(!vd->vdev_ishole);
2032
2033 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2034 ASSERT(vd == vd->vdev_top);
2035 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2036 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2037 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2038 ASSERT(vd->vdev_ms_array != 0);
2039 vdev_config_dirty(vd);
2040 dmu_tx_commit(tx);
2041 }
2042
2043 /*
2044 * Remove the metadata associated with this vdev once it's empty.
2045 */
2046 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2047 vdev_remove(vd, txg);
2048
2049 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2050 metaslab_sync(msp, txg);
2051 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2052 }
2053
2054 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2055 vdev_dtl_sync(lvd, txg);
2056
2057 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2058 }
2059
2060 uint64_t
2061 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2062 {
2063 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2064 }
2065
2066 /*
2067 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2068 * not be opened, and no I/O is attempted.
2069 */
2070 int
2071 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2072 {
2073 vdev_t *vd;
2074
2075 spa_vdev_state_enter(spa, SCL_NONE);
2076
2077 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2078 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2079
2080 if (!vd->vdev_ops->vdev_op_leaf)
2081 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2082
2083 /*
2084 * We don't directly use the aux state here, but if we do a
2085 * vdev_reopen(), we need this value to be present to remember why we
2086 * were faulted.
2087 */
2088 vd->vdev_label_aux = aux;
2089
2090 /*
2091 * Faulted state takes precedence over degraded.
2092 */
2093 vd->vdev_delayed_close = B_FALSE;
2094 vd->vdev_faulted = 1ULL;
2095 vd->vdev_degraded = 0ULL;
2096 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2097
2098 /*
2099 * If this device has the only valid copy of the data, then
2100 * back off and simply mark the vdev as degraded instead.
2101 */
2102 if (!vd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2103 vd->vdev_degraded = 1ULL;
2104 vd->vdev_faulted = 0ULL;
2105
2106 /*
2107 * If we reopen the device and it's not dead, only then do we
2108 * mark it degraded.
2109 */
2110 vdev_reopen(vd);
2111
2112 if (vdev_readable(vd))
2113 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2114 }
2115
2116 return (spa_vdev_state_exit(spa, vd, 0));
2117 }
2118
2119 /*
2120 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2121 * user that something is wrong. The vdev continues to operate as normal as far
2122 * as I/O is concerned.
2123 */
2124 int
2125 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2126 {
2127 vdev_t *vd;
2128
2129 spa_vdev_state_enter(spa, SCL_NONE);
2130
2131 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2132 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2133
2134 if (!vd->vdev_ops->vdev_op_leaf)
2135 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2136
2137 /*
2138 * If the vdev is already faulted, then don't do anything.
2139 */
2140 if (vd->vdev_faulted || vd->vdev_degraded)
2141 return (spa_vdev_state_exit(spa, NULL, 0));
2142
2143 vd->vdev_degraded = 1ULL;
2144 if (!vdev_is_dead(vd))
2145 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2146 aux);
2147
2148 return (spa_vdev_state_exit(spa, vd, 0));
2149 }
2150
2151 /*
2152 * Online the given vdev. If 'unspare' is set, it implies two things. First,
2153 * any attached spare device should be detached when the device finishes
2154 * resilvering. Second, the online should be treated like a 'test' online case,
2155 * so no FMA events are generated if the device fails to open.
2156 */
2157 int
2158 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2159 {
2160 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2161
2162 spa_vdev_state_enter(spa, SCL_NONE);
2163
2164 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2165 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2166
2167 if (!vd->vdev_ops->vdev_op_leaf)
2168 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2169
2170 tvd = vd->vdev_top;
2171 vd->vdev_offline = B_FALSE;
2172 vd->vdev_tmpoffline = B_FALSE;
2173 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2174 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2175
2176 /* XXX - L2ARC 1.0 does not support expansion */
2177 if (!vd->vdev_aux) {
2178 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2179 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2180 }
2181
2182 vdev_reopen(tvd);
2183 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2184
2185 if (!vd->vdev_aux) {
2186 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2187 pvd->vdev_expanding = B_FALSE;
2188 }
2189
2190 if (newstate)
2191 *newstate = vd->vdev_state;
2192 if ((flags & ZFS_ONLINE_UNSPARE) &&
2193 !vdev_is_dead(vd) && vd->vdev_parent &&
2194 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2195 vd->vdev_parent->vdev_child[0] == vd)
2196 vd->vdev_unspare = B_TRUE;
2197
2198 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2199
2200 /* XXX - L2ARC 1.0 does not support expansion */
2201 if (vd->vdev_aux)
2202 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2203 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2204 }
2205 return (spa_vdev_state_exit(spa, vd, 0));
2206 }
2207
2208 static int
2209 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2210 {
2211 vdev_t *vd, *tvd;
2212 int error = 0;
2213 uint64_t generation;
2214 metaslab_group_t *mg;
2215
2216 top:
2217 spa_vdev_state_enter(spa, SCL_ALLOC);
2218
2219 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2220 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2221
2222 if (!vd->vdev_ops->vdev_op_leaf)
2223 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2224
2225 tvd = vd->vdev_top;
2226 mg = tvd->vdev_mg;
2227 generation = spa->spa_config_generation + 1;
2228
2229 /*
2230 * If the device isn't already offline, try to offline it.
2231 */
2232 if (!vd->vdev_offline) {
2233 /*
2234 * If this device has the only valid copy of some data,
2235 * don't allow it to be offlined. Log devices are always
2236 * expendable.
2237 */
2238 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2239 vdev_dtl_required(vd))
2240 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2241
2242 /*
2243 * If the top-level is a slog and it has had allocations
2244 * then proceed. We check that the vdev's metaslab group
2245 * is not NULL since it's possible that we may have just
2246 * added this vdev but not yet initialized its metaslabs.
2247 */
2248 if (tvd->vdev_islog && mg != NULL) {
2249 /*
2250 * Prevent any future allocations.
2251 */
2252 metaslab_group_passivate(mg);
2253 (void) spa_vdev_state_exit(spa, vd, 0);
2254
2255 error = spa_offline_log(spa);
2256
2257 spa_vdev_state_enter(spa, SCL_ALLOC);
2258
2259 /*
2260 * Check to see if the config has changed.
2261 */
2262 if (error || generation != spa->spa_config_generation) {
2263 metaslab_group_activate(mg);
2264 if (error)
2265 return (spa_vdev_state_exit(spa,
2266 vd, error));
2267 (void) spa_vdev_state_exit(spa, vd, 0);
2268 goto top;
2269 }
2270 ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2271 }
2272
2273 /*
2274 * Offline this device and reopen its top-level vdev.
2275 * If the top-level vdev is a log device then just offline
2276 * it. Otherwise, if this action results in the top-level
2277 * vdev becoming unusable, undo it and fail the request.
2278 */
2279 vd->vdev_offline = B_TRUE;
2280 vdev_reopen(tvd);
2281
2282 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2283 vdev_is_dead(tvd)) {
2284 vd->vdev_offline = B_FALSE;
2285 vdev_reopen(tvd);
2286 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2287 }
2288
2289 /*
2290 * Add the device back into the metaslab rotor so that
2291 * once we online the device it's open for business.
2292 */
2293 if (tvd->vdev_islog && mg != NULL)
2294 metaslab_group_activate(mg);
2295 }
2296
2297 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2298
2299 return (spa_vdev_state_exit(spa, vd, 0));
2300 }
2301
2302 int
2303 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2304 {
2305 int error;
2306
2307 mutex_enter(&spa->spa_vdev_top_lock);
2308 error = vdev_offline_locked(spa, guid, flags);
2309 mutex_exit(&spa->spa_vdev_top_lock);
2310
2311 return (error);
2312 }
2313
2314 /*
2315 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2316 * vdev_offline(), we assume the spa config is locked. We also clear all
2317 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2318 */
2319 void
2320 vdev_clear(spa_t *spa, vdev_t *vd)
2321 {
2322 vdev_t *rvd = spa->spa_root_vdev;
2323
2324 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2325
2326 if (vd == NULL)
2327 vd = rvd;
2328
2329 vd->vdev_stat.vs_read_errors = 0;
2330 vd->vdev_stat.vs_write_errors = 0;
2331 vd->vdev_stat.vs_checksum_errors = 0;
2332
2333 for (int c = 0; c < vd->vdev_children; c++)
2334 vdev_clear(spa, vd->vdev_child[c]);
2335
2336 /*
2337 * If we're in the FAULTED state or have experienced failed I/O, then
2338 * clear the persistent state and attempt to reopen the device. We
2339 * also mark the vdev config dirty, so that the new faulted state is
2340 * written out to disk.
2341 */
2342 if (vd->vdev_faulted || vd->vdev_degraded ||
2343 !vdev_readable(vd) || !vdev_writeable(vd)) {
2344
2345 /*
2346 * When reopening in reponse to a clear event, it may be due to
2347 * a fmadm repair request. In this case, if the device is
2348 * still broken, we want to still post the ereport again.
2349 */
2350 vd->vdev_forcefault = B_TRUE;
2351
2352 vd->vdev_faulted = vd->vdev_degraded = 0;
2353 vd->vdev_cant_read = B_FALSE;
2354 vd->vdev_cant_write = B_FALSE;
2355
2356 vdev_reopen(vd);
2357
2358 vd->vdev_forcefault = B_FALSE;
2359
2360 if (vd != rvd)
2361 vdev_state_dirty(vd->vdev_top);
2362
2363 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2364 spa_async_request(spa, SPA_ASYNC_RESILVER);
2365
2366 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2367 }
2368
2369 /*
2370 * When clearing a FMA-diagnosed fault, we always want to
2371 * unspare the device, as we assume that the original spare was
2372 * done in response to the FMA fault.
2373 */
2374 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2375 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2376 vd->vdev_parent->vdev_child[0] == vd)
2377 vd->vdev_unspare = B_TRUE;
2378 }
2379
2380 boolean_t
2381 vdev_is_dead(vdev_t *vd)
2382 {
2383 /*
2384 * Holes and missing devices are always considered "dead".
2385 * This simplifies the code since we don't have to check for
2386 * these types of devices in the various code paths.
2387 * Instead we rely on the fact that we skip over dead devices
2388 * before issuing I/O to them.
2389 */
2390 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2391 vd->vdev_ops == &vdev_missing_ops);
2392 }
2393
2394 boolean_t
2395 vdev_readable(vdev_t *vd)
2396 {
2397 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2398 }
2399
2400 boolean_t
2401 vdev_writeable(vdev_t *vd)
2402 {
2403 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2404 }
2405
2406 boolean_t
2407 vdev_allocatable(vdev_t *vd)
2408 {
2409 uint64_t state = vd->vdev_state;
2410
2411 /*
2412 * We currently allow allocations from vdevs which may be in the
2413 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2414 * fails to reopen then we'll catch it later when we're holding
2415 * the proper locks. Note that we have to get the vdev state
2416 * in a local variable because although it changes atomically,
2417 * we're asking two separate questions about it.
2418 */
2419 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2420 !vd->vdev_cant_write && !vd->vdev_ishole);
2421 }
2422
2423 boolean_t
2424 vdev_accessible(vdev_t *vd, zio_t *zio)
2425 {
2426 ASSERT(zio->io_vd == vd);
2427
2428 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2429 return (B_FALSE);
2430
2431 if (zio->io_type == ZIO_TYPE_READ)
2432 return (!vd->vdev_cant_read);
2433
2434 if (zio->io_type == ZIO_TYPE_WRITE)
2435 return (!vd->vdev_cant_write);
2436
2437 return (B_TRUE);
2438 }
2439
2440 /*
2441 * Get statistics for the given vdev.
2442 */
2443 void
2444 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2445 {
2446 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2447
2448 mutex_enter(&vd->vdev_stat_lock);
2449 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2450 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2451 vs->vs_state = vd->vdev_state;
2452 vs->vs_rsize = vdev_get_min_asize(vd);
2453 if (vd->vdev_ops->vdev_op_leaf)
2454 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2455 mutex_exit(&vd->vdev_stat_lock);
2456
2457 /*
2458 * If we're getting stats on the root vdev, aggregate the I/O counts
2459 * over all top-level vdevs (i.e. the direct children of the root).
2460 */
2461 if (vd == rvd) {
2462 for (int c = 0; c < rvd->vdev_children; c++) {
2463 vdev_t *cvd = rvd->vdev_child[c];
2464 vdev_stat_t *cvs = &cvd->vdev_stat;
2465
2466 mutex_enter(&vd->vdev_stat_lock);
2467 for (int t = 0; t < ZIO_TYPES; t++) {
2468 vs->vs_ops[t] += cvs->vs_ops[t];
2469 vs->vs_bytes[t] += cvs->vs_bytes[t];
2470 }
2471 cvs->vs_scan_removing = cvd->vdev_removing;
2472 mutex_exit(&vd->vdev_stat_lock);
2473 }
2474 }
2475 }
2476
2477 void
2478 vdev_clear_stats(vdev_t *vd)
2479 {
2480 mutex_enter(&vd->vdev_stat_lock);
2481 vd->vdev_stat.vs_space = 0;
2482 vd->vdev_stat.vs_dspace = 0;
2483 vd->vdev_stat.vs_alloc = 0;
2484 mutex_exit(&vd->vdev_stat_lock);
2485 }
2486
2487 void
2488 vdev_scan_stat_init(vdev_t *vd)
2489 {
2490 vdev_stat_t *vs = &vd->vdev_stat;
2491
2492 for (int c = 0; c < vd->vdev_children; c++)
2493 vdev_scan_stat_init(vd->vdev_child[c]);
2494
2495 mutex_enter(&vd->vdev_stat_lock);
2496 vs->vs_scan_processed = 0;
2497 mutex_exit(&vd->vdev_stat_lock);
2498 }
2499
2500 void
2501 vdev_stat_update(zio_t *zio, uint64_t psize)
2502 {
2503 spa_t *spa = zio->io_spa;
2504 vdev_t *rvd = spa->spa_root_vdev;
2505 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2506 vdev_t *pvd;
2507 uint64_t txg = zio->io_txg;
2508 vdev_stat_t *vs = &vd->vdev_stat;
2509 zio_type_t type = zio->io_type;
2510 int flags = zio->io_flags;
2511
2512 /*
2513 * If this i/o is a gang leader, it didn't do any actual work.
2514 */
2515 if (zio->io_gang_tree)
2516 return;
2517
2518 if (zio->io_error == 0) {
2519 /*
2520 * If this is a root i/o, don't count it -- we've already
2521 * counted the top-level vdevs, and vdev_get_stats() will
2522 * aggregate them when asked. This reduces contention on
2523 * the root vdev_stat_lock and implicitly handles blocks
2524 * that compress away to holes, for which there is no i/o.
2525 * (Holes never create vdev children, so all the counters
2526 * remain zero, which is what we want.)
2527 *
2528 * Note: this only applies to successful i/o (io_error == 0)
2529 * because unlike i/o counts, errors are not additive.
2530 * When reading a ditto block, for example, failure of
2531 * one top-level vdev does not imply a root-level error.
2532 */
2533 if (vd == rvd)
2534 return;
2535
2536 ASSERT(vd == zio->io_vd);
2537
2538 if (flags & ZIO_FLAG_IO_BYPASS)
2539 return;
2540
2541 mutex_enter(&vd->vdev_stat_lock);
2542
2543 if (flags & ZIO_FLAG_IO_REPAIR) {
2544 if (flags & ZIO_FLAG_SCRUB_THREAD) {
2545 dsl_scan_phys_t *scn_phys =
2546 &spa->spa_dsl_pool->dp_scan->scn_phys;
2547 uint64_t *processed = &scn_phys->scn_processed;
2548
2549 /* XXX cleanup? */
2550 if (vd->vdev_ops->vdev_op_leaf)
2551 atomic_add_64(processed, psize);
2552 vs->vs_scan_processed += psize;
2553 }
2554
2555 if (flags & ZIO_FLAG_SELF_HEAL)
2556 vs->vs_self_healed += psize;
2557 }
2558
2559 vs->vs_ops[type]++;
2560 vs->vs_bytes[type] += psize;
2561
2562 mutex_exit(&vd->vdev_stat_lock);
2563 return;
2564 }
2565
2566 if (flags & ZIO_FLAG_SPECULATIVE)
2567 return;
2568
2569 /*
2570 * If this is an I/O error that is going to be retried, then ignore the
2571 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2572 * hard errors, when in reality they can happen for any number of
2573 * innocuous reasons (bus resets, MPxIO link failure, etc).
2574 */
2575 if (zio->io_error == EIO &&
2576 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2577 return;
2578
2579 /*
2580 * Intent logs writes won't propagate their error to the root
2581 * I/O so don't mark these types of failures as pool-level
2582 * errors.
2583 */
2584 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2585 return;
2586
2587 mutex_enter(&vd->vdev_stat_lock);
2588 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2589 if (zio->io_error == ECKSUM)
2590 vs->vs_checksum_errors++;
2591 else
2592 vs->vs_read_errors++;
2593 }
2594 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2595 vs->vs_write_errors++;
2596 mutex_exit(&vd->vdev_stat_lock);
2597
2598 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2599 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2600 (flags & ZIO_FLAG_SCRUB_THREAD) ||
2601 spa->spa_claiming)) {
2602 /*
2603 * This is either a normal write (not a repair), or it's
2604 * a repair induced by the scrub thread, or it's a repair
2605 * made by zil_claim() during spa_load() in the first txg.
2606 * In the normal case, we commit the DTL change in the same
2607 * txg as the block was born. In the scrub-induced repair
2608 * case, we know that scrubs run in first-pass syncing context,
2609 * so we commit the DTL change in spa_syncing_txg(spa).
2610 * In the zil_claim() case, we commit in spa_first_txg(spa).
2611 *
2612 * We currently do not make DTL entries for failed spontaneous
2613 * self-healing writes triggered by normal (non-scrubbing)
2614 * reads, because we have no transactional context in which to
2615 * do so -- and it's not clear that it'd be desirable anyway.
2616 */
2617 if (vd->vdev_ops->vdev_op_leaf) {
2618 uint64_t commit_txg = txg;
2619 if (flags & ZIO_FLAG_SCRUB_THREAD) {
2620 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2621 ASSERT(spa_sync_pass(spa) == 1);
2622 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2623 commit_txg = spa_syncing_txg(spa);
2624 } else if (spa->spa_claiming) {
2625 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2626 commit_txg = spa_first_txg(spa);
2627 }
2628 ASSERT(commit_txg >= spa_syncing_txg(spa));
2629 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2630 return;
2631 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2632 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2633 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2634 }
2635 if (vd != rvd)
2636 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2637 }
2638 }
2639
2640 /*
2641 * Update the in-core space usage stats for this vdev, its metaslab class,
2642 * and the root vdev.
2643 */
2644 void
2645 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2646 int64_t space_delta)
2647 {
2648 int64_t dspace_delta = space_delta;
2649 spa_t *spa = vd->vdev_spa;
2650 vdev_t *rvd = spa->spa_root_vdev;
2651 metaslab_group_t *mg = vd->vdev_mg;
2652 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2653
2654 ASSERT(vd == vd->vdev_top);
2655
2656 /*
2657 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2658 * factor. We must calculate this here and not at the root vdev
2659 * because the root vdev's psize-to-asize is simply the max of its
2660 * childrens', thus not accurate enough for us.
2661 */
2662 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2663 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2664 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2665 vd->vdev_deflate_ratio;
2666
2667 mutex_enter(&vd->vdev_stat_lock);
2668 vd->vdev_stat.vs_alloc += alloc_delta;
2669 vd->vdev_stat.vs_space += space_delta;
2670 vd->vdev_stat.vs_dspace += dspace_delta;
2671 mutex_exit(&vd->vdev_stat_lock);
2672
2673 if (mc == spa_normal_class(spa)) {
2674 mutex_enter(&rvd->vdev_stat_lock);
2675 rvd->vdev_stat.vs_alloc += alloc_delta;
2676 rvd->vdev_stat.vs_space += space_delta;
2677 rvd->vdev_stat.vs_dspace += dspace_delta;
2678 mutex_exit(&rvd->vdev_stat_lock);
2679 }
2680
2681 if (mc != NULL) {
2682 ASSERT(rvd == vd->vdev_parent);
2683 ASSERT(vd->vdev_ms_count != 0);
2684
2685 metaslab_class_space_update(mc,
2686 alloc_delta, defer_delta, space_delta, dspace_delta);
2687 }
2688 }
2689
2690 /*
2691 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2692 * so that it will be written out next time the vdev configuration is synced.
2693 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2694 */
2695 void
2696 vdev_config_dirty(vdev_t *vd)
2697 {
2698 spa_t *spa = vd->vdev_spa;
2699 vdev_t *rvd = spa->spa_root_vdev;
2700 int c;
2701
2702 /*
2703 * If this is an aux vdev (as with l2cache and spare devices), then we
2704 * update the vdev config manually and set the sync flag.
2705 */
2706 if (vd->vdev_aux != NULL) {
2707 spa_aux_vdev_t *sav = vd->vdev_aux;
2708 nvlist_t **aux;
2709 uint_t naux;
2710
2711 for (c = 0; c < sav->sav_count; c++) {
2712 if (sav->sav_vdevs[c] == vd)
2713 break;
2714 }
2715
2716 if (c == sav->sav_count) {
2717 /*
2718 * We're being removed. There's nothing more to do.
2719 */
2720 ASSERT(sav->sav_sync == B_TRUE);
2721 return;
2722 }
2723
2724 sav->sav_sync = B_TRUE;
2725
2726 if (nvlist_lookup_nvlist_array(sav->sav_config,
2727 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2728 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2729 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2730 }
2731
2732 ASSERT(c < naux);
2733
2734 /*
2735 * Setting the nvlist in the middle if the array is a little
2736 * sketchy, but it will work.
2737 */
2738 nvlist_free(aux[c]);
2739 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2740
2741 return;
2742 }
2743
2744 /*
2745 * The dirty list is protected by the SCL_CONFIG lock. The caller
2746 * must either hold SCL_CONFIG as writer, or must be the sync thread
2747 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2748 * so this is sufficient to ensure mutual exclusion.
2749 */
2750 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2751 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2752 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2753
2754 if (vd == rvd) {
2755 for (c = 0; c < rvd->vdev_children; c++)
2756 vdev_config_dirty(rvd->vdev_child[c]);
2757 } else {
2758 ASSERT(vd == vd->vdev_top);
2759
2760 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2761 !vd->vdev_ishole)
2762 list_insert_head(&spa->spa_config_dirty_list, vd);
2763 }
2764 }
2765
2766 void
2767 vdev_config_clean(vdev_t *vd)
2768 {
2769 spa_t *spa = vd->vdev_spa;
2770
2771 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2772 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2773 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2774
2775 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2776 list_remove(&spa->spa_config_dirty_list, vd);
2777 }
2778
2779 /*
2780 * Mark a top-level vdev's state as dirty, so that the next pass of
2781 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2782 * the state changes from larger config changes because they require
2783 * much less locking, and are often needed for administrative actions.
2784 */
2785 void
2786 vdev_state_dirty(vdev_t *vd)
2787 {
2788 spa_t *spa = vd->vdev_spa;
2789
2790 ASSERT(vd == vd->vdev_top);
2791
2792 /*
2793 * The state list is protected by the SCL_STATE lock. The caller
2794 * must either hold SCL_STATE as writer, or must be the sync thread
2795 * (which holds SCL_STATE as reader). There's only one sync thread,
2796 * so this is sufficient to ensure mutual exclusion.
2797 */
2798 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2799 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2800 spa_config_held(spa, SCL_STATE, RW_READER)));
2801
2802 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2803 list_insert_head(&spa->spa_state_dirty_list, vd);
2804 }
2805
2806 void
2807 vdev_state_clean(vdev_t *vd)
2808 {
2809 spa_t *spa = vd->vdev_spa;
2810
2811 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2812 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2813 spa_config_held(spa, SCL_STATE, RW_READER)));
2814
2815 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2816 list_remove(&spa->spa_state_dirty_list, vd);
2817 }
2818
2819 /*
2820 * Propagate vdev state up from children to parent.
2821 */
2822 void
2823 vdev_propagate_state(vdev_t *vd)
2824 {
2825 spa_t *spa = vd->vdev_spa;
2826 vdev_t *rvd = spa->spa_root_vdev;
2827 int degraded = 0, faulted = 0;
2828 int corrupted = 0;
2829 vdev_t *child;
2830
2831 if (vd->vdev_children > 0) {
2832 for (int c = 0; c < vd->vdev_children; c++) {
2833 child = vd->vdev_child[c];
2834
2835 /*
2836 * Don't factor holes into the decision.
2837 */
2838 if (child->vdev_ishole)
2839 continue;
2840
2841 if (!vdev_readable(child) ||
2842 (!vdev_writeable(child) && spa_writeable(spa))) {
2843 /*
2844 * Root special: if there is a top-level log
2845 * device, treat the root vdev as if it were
2846 * degraded.
2847 */
2848 if (child->vdev_islog && vd == rvd)
2849 degraded++;
2850 else
2851 faulted++;
2852 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2853 degraded++;
2854 }
2855
2856 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2857 corrupted++;
2858 }
2859
2860 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2861
2862 /*
2863 * Root special: if there is a top-level vdev that cannot be
2864 * opened due to corrupted metadata, then propagate the root
2865 * vdev's aux state as 'corrupt' rather than 'insufficient
2866 * replicas'.
2867 */
2868 if (corrupted && vd == rvd &&
2869 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2870 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2871 VDEV_AUX_CORRUPT_DATA);
2872 }
2873
2874 if (vd->vdev_parent)
2875 vdev_propagate_state(vd->vdev_parent);
2876 }
2877
2878 /*
2879 * Set a vdev's state. If this is during an open, we don't update the parent
2880 * state, because we're in the process of opening children depth-first.
2881 * Otherwise, we propagate the change to the parent.
2882 *
2883 * If this routine places a device in a faulted state, an appropriate ereport is
2884 * generated.
2885 */
2886 void
2887 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2888 {
2889 uint64_t save_state;
2890 spa_t *spa = vd->vdev_spa;
2891
2892 if (state == vd->vdev_state) {
2893 vd->vdev_stat.vs_aux = aux;
2894 return;
2895 }
2896
2897 save_state = vd->vdev_state;
2898
2899 vd->vdev_state = state;
2900 vd->vdev_stat.vs_aux = aux;
2901
2902 /*
2903 * If we are setting the vdev state to anything but an open state, then
2904 * always close the underlying device unless the device has requested
2905 * a delayed close (i.e. we're about to remove or fault the device).
2906 * Otherwise, we keep accessible but invalid devices open forever.
2907 * We don't call vdev_close() itself, because that implies some extra
2908 * checks (offline, etc) that we don't want here. This is limited to
2909 * leaf devices, because otherwise closing the device will affect other
2910 * children.
2911 */
2912 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2913 vd->vdev_ops->vdev_op_leaf)
2914 vd->vdev_ops->vdev_op_close(vd);
2915
2916 /*
2917 * If we have brought this vdev back into service, we need
2918 * to notify fmd so that it can gracefully repair any outstanding
2919 * cases due to a missing device. We do this in all cases, even those
2920 * that probably don't correlate to a repaired fault. This is sure to
2921 * catch all cases, and we let the zfs-retire agent sort it out. If
2922 * this is a transient state it's OK, as the retire agent will
2923 * double-check the state of the vdev before repairing it.
2924 */
2925 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2926 vd->vdev_prevstate != state)
2927 zfs_post_state_change(spa, vd);
2928
2929 if (vd->vdev_removed &&
2930 state == VDEV_STATE_CANT_OPEN &&
2931 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2932 /*
2933 * If the previous state is set to VDEV_STATE_REMOVED, then this
2934 * device was previously marked removed and someone attempted to
2935 * reopen it. If this failed due to a nonexistent device, then
2936 * keep the device in the REMOVED state. We also let this be if
2937 * it is one of our special test online cases, which is only
2938 * attempting to online the device and shouldn't generate an FMA
2939 * fault.
2940 */
2941 vd->vdev_state = VDEV_STATE_REMOVED;
2942 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2943 } else if (state == VDEV_STATE_REMOVED) {
2944 vd->vdev_removed = B_TRUE;
2945 } else if (state == VDEV_STATE_CANT_OPEN) {
2946 /*
2947 * If we fail to open a vdev during an import, we mark it as
2948 * "not available", which signifies that it was never there to
2949 * begin with. Failure to open such a device is not considered
2950 * an error.
2951 */
2952 if (spa_load_state(spa) == SPA_LOAD_IMPORT &&
2953 vd->vdev_ops->vdev_op_leaf)
2954 vd->vdev_not_present = 1;
2955
2956 /*
2957 * Post the appropriate ereport. If the 'prevstate' field is
2958 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2959 * that this is part of a vdev_reopen(). In this case, we don't
2960 * want to post the ereport if the device was already in the
2961 * CANT_OPEN state beforehand.
2962 *
2963 * If the 'checkremove' flag is set, then this is an attempt to
2964 * online the device in response to an insertion event. If we
2965 * hit this case, then we have detected an insertion event for a
2966 * faulted or offline device that wasn't in the removed state.
2967 * In this scenario, we don't post an ereport because we are
2968 * about to replace the device, or attempt an online with
2969 * vdev_forcefault, which will generate the fault for us.
2970 */
2971 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2972 !vd->vdev_not_present && !vd->vdev_checkremove &&
2973 vd != spa->spa_root_vdev) {
2974 const char *class;
2975
2976 switch (aux) {
2977 case VDEV_AUX_OPEN_FAILED:
2978 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2979 break;
2980 case VDEV_AUX_CORRUPT_DATA:
2981 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2982 break;
2983 case VDEV_AUX_NO_REPLICAS:
2984 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2985 break;
2986 case VDEV_AUX_BAD_GUID_SUM:
2987 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2988 break;
2989 case VDEV_AUX_TOO_SMALL:
2990 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2991 break;
2992 case VDEV_AUX_BAD_LABEL:
2993 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2994 break;
2995 default:
2996 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2997 }
2998
2999 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3000 }
3001
3002 /* Erase any notion of persistent removed state */
3003 vd->vdev_removed = B_FALSE;
3004 } else {
3005 vd->vdev_removed = B_FALSE;
3006 }
3007
3008 if (!isopen && vd->vdev_parent)
3009 vdev_propagate_state(vd->vdev_parent);
3010 }
3011
3012 /*
3013 * Check the vdev configuration to ensure that it's capable of supporting
3014 * a root pool. Currently, we do not support RAID-Z or partial configuration.
3015 * In addition, only a single top-level vdev is allowed and none of the leaves
3016 * can be wholedisks.
3017 */
3018 boolean_t
3019 vdev_is_bootable(vdev_t *vd)
3020 {
3021 if (!vd->vdev_ops->vdev_op_leaf) {
3022 char *vdev_type = vd->vdev_ops->vdev_op_type;
3023
3024 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3025 vd->vdev_children > 1) {
3026 return (B_FALSE);
3027 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3028 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3029 return (B_FALSE);
3030 }
3031 } else if (vd->vdev_wholedisk == 1) {
3032 return (B_FALSE);
3033 }
3034
3035 for (int c = 0; c < vd->vdev_children; c++) {
3036 if (!vdev_is_bootable(vd->vdev_child[c]))
3037 return (B_FALSE);
3038 }
3039 return (B_TRUE);
3040 }
3041
3042 /*
3043 * Load the state from the original vdev tree (ovd) which
3044 * we've retrieved from the MOS config object. If the original
3045 * vdev was offline then we transfer that state to the device
3046 * in the current vdev tree (nvd).
3047 */
3048 void
3049 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3050 {
3051 spa_t *spa = nvd->vdev_spa;
3052
3053 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3054 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3055
3056 for (int c = 0; c < nvd->vdev_children; c++)
3057 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3058
3059 if (nvd->vdev_ops->vdev_op_leaf && ovd->vdev_offline) {
3060 /*
3061 * It would be nice to call vdev_offline()
3062 * directly but the pool isn't fully loaded and
3063 * the txg threads have not been started yet.
3064 */
3065 nvd->vdev_offline = ovd->vdev_offline;
3066 vdev_reopen(nvd->vdev_top);
3067 }
3068 }
3069
3070 /*
3071 * Expand a vdev if possible.
3072 */
3073 void
3074 vdev_expand(vdev_t *vd, uint64_t txg)
3075 {
3076 ASSERT(vd->vdev_top == vd);
3077 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3078
3079 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3080 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3081 vdev_config_dirty(vd);
3082 }
3083 }
3084
3085 /*
3086 * Split a vdev.
3087 */
3088 void
3089 vdev_split(vdev_t *vd)
3090 {
3091 vdev_t *cvd, *pvd = vd->vdev_parent;
3092
3093 vdev_remove_child(pvd, vd);
3094 vdev_compact_children(pvd);
3095
3096 cvd = pvd->vdev_child[0];
3097 if (pvd->vdev_children == 1) {
3098 vdev_remove_parent(cvd);
3099 cvd->vdev_splitting = B_TRUE;
3100 }
3101 vdev_propagate_state(cvd);
3102 }