]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Set spa_ccw_fail_time=0 when expanding a vdev.
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, Intel Corporation.
30 * Copyright (c) 2019, Datto Inc. All rights reserved.
31 * Copyright (c) 2021, Klara Inc.
32 * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP.
33 */
34
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa.h>
38 #include <sys/spa_impl.h>
39 #include <sys/bpobj.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/vdev_rebuild.h>
45 #include <sys/vdev_draid.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/space_map.h>
50 #include <sys/space_reftree.h>
51 #include <sys/zio.h>
52 #include <sys/zap.h>
53 #include <sys/fs/zfs.h>
54 #include <sys/arc.h>
55 #include <sys/zil.h>
56 #include <sys/dsl_scan.h>
57 #include <sys/vdev_raidz.h>
58 #include <sys/abd.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_trim.h>
61 #include <sys/zvol.h>
62 #include <sys/zfs_ratelimit.h>
63 #include "zfs_prop.h"
64
65 /*
66 * One metaslab from each (normal-class) vdev is used by the ZIL. These are
67 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
68 * part of the spa_embedded_log_class. The metaslab with the most free space
69 * in each vdev is selected for this purpose when the pool is opened (or a
70 * vdev is added). See vdev_metaslab_init().
71 *
72 * Log blocks can be allocated from the following locations. Each one is tried
73 * in order until the allocation succeeds:
74 * 1. dedicated log vdevs, aka "slog" (spa_log_class)
75 * 2. embedded slog metaslabs (spa_embedded_log_class)
76 * 3. other metaslabs in normal vdevs (spa_normal_class)
77 *
78 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
79 * than this number of metaslabs in the vdev. This ensures that we don't set
80 * aside an unreasonable amount of space for the ZIL. If set to less than
81 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
82 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
83 */
84 static uint_t zfs_embedded_slog_min_ms = 64;
85
86 /* default target for number of metaslabs per top-level vdev */
87 static uint_t zfs_vdev_default_ms_count = 200;
88
89 /* minimum number of metaslabs per top-level vdev */
90 static uint_t zfs_vdev_min_ms_count = 16;
91
92 /* practical upper limit of total metaslabs per top-level vdev */
93 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
94
95 /* lower limit for metaslab size (512M) */
96 static uint_t zfs_vdev_default_ms_shift = 29;
97
98 /* upper limit for metaslab size (16G) */
99 static uint_t zfs_vdev_max_ms_shift = 34;
100
101 int vdev_validate_skip = B_FALSE;
102
103 /*
104 * Since the DTL space map of a vdev is not expected to have a lot of
105 * entries, we default its block size to 4K.
106 */
107 int zfs_vdev_dtl_sm_blksz = (1 << 12);
108
109 /*
110 * Rate limit slow IO (delay) events to this many per second.
111 */
112 static unsigned int zfs_slow_io_events_per_second = 20;
113
114 /*
115 * Rate limit checksum events after this many checksum errors per second.
116 */
117 static unsigned int zfs_checksum_events_per_second = 20;
118
119 /*
120 * Ignore errors during scrub/resilver. Allows to work around resilver
121 * upon import when there are pool errors.
122 */
123 static int zfs_scan_ignore_errors = 0;
124
125 /*
126 * vdev-wide space maps that have lots of entries written to them at
127 * the end of each transaction can benefit from a higher I/O bandwidth
128 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
129 */
130 int zfs_vdev_standard_sm_blksz = (1 << 17);
131
132 /*
133 * Tunable parameter for debugging or performance analysis. Setting this
134 * will cause pool corruption on power loss if a volatile out-of-order
135 * write cache is enabled.
136 */
137 int zfs_nocacheflush = 0;
138
139 /*
140 * Maximum and minimum ashift values that can be automatically set based on
141 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX
142 * is higher than the maximum value, it is intentionally limited here to not
143 * excessively impact pool space efficiency. Higher ashift values may still
144 * be forced by vdev logical ashift or by user via ashift property, but won't
145 * be set automatically as a performance optimization.
146 */
147 uint_t zfs_vdev_max_auto_ashift = 14;
148 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
149
150 void
151 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
152 {
153 va_list adx;
154 char buf[256];
155
156 va_start(adx, fmt);
157 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
158 va_end(adx);
159
160 if (vd->vdev_path != NULL) {
161 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
162 vd->vdev_path, buf);
163 } else {
164 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
165 vd->vdev_ops->vdev_op_type,
166 (u_longlong_t)vd->vdev_id,
167 (u_longlong_t)vd->vdev_guid, buf);
168 }
169 }
170
171 void
172 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
173 {
174 char state[20];
175
176 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
177 zfs_dbgmsg("%*svdev %llu: %s", indent, "",
178 (u_longlong_t)vd->vdev_id,
179 vd->vdev_ops->vdev_op_type);
180 return;
181 }
182
183 switch (vd->vdev_state) {
184 case VDEV_STATE_UNKNOWN:
185 (void) snprintf(state, sizeof (state), "unknown");
186 break;
187 case VDEV_STATE_CLOSED:
188 (void) snprintf(state, sizeof (state), "closed");
189 break;
190 case VDEV_STATE_OFFLINE:
191 (void) snprintf(state, sizeof (state), "offline");
192 break;
193 case VDEV_STATE_REMOVED:
194 (void) snprintf(state, sizeof (state), "removed");
195 break;
196 case VDEV_STATE_CANT_OPEN:
197 (void) snprintf(state, sizeof (state), "can't open");
198 break;
199 case VDEV_STATE_FAULTED:
200 (void) snprintf(state, sizeof (state), "faulted");
201 break;
202 case VDEV_STATE_DEGRADED:
203 (void) snprintf(state, sizeof (state), "degraded");
204 break;
205 case VDEV_STATE_HEALTHY:
206 (void) snprintf(state, sizeof (state), "healthy");
207 break;
208 default:
209 (void) snprintf(state, sizeof (state), "<state %u>",
210 (uint_t)vd->vdev_state);
211 }
212
213 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
214 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
215 vd->vdev_islog ? " (log)" : "",
216 (u_longlong_t)vd->vdev_guid,
217 vd->vdev_path ? vd->vdev_path : "N/A", state);
218
219 for (uint64_t i = 0; i < vd->vdev_children; i++)
220 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
221 }
222
223 /*
224 * Virtual device management.
225 */
226
227 static vdev_ops_t *const vdev_ops_table[] = {
228 &vdev_root_ops,
229 &vdev_raidz_ops,
230 &vdev_draid_ops,
231 &vdev_draid_spare_ops,
232 &vdev_mirror_ops,
233 &vdev_replacing_ops,
234 &vdev_spare_ops,
235 &vdev_disk_ops,
236 &vdev_file_ops,
237 &vdev_missing_ops,
238 &vdev_hole_ops,
239 &vdev_indirect_ops,
240 NULL
241 };
242
243 /*
244 * Given a vdev type, return the appropriate ops vector.
245 */
246 static vdev_ops_t *
247 vdev_getops(const char *type)
248 {
249 vdev_ops_t *ops, *const *opspp;
250
251 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
252 if (strcmp(ops->vdev_op_type, type) == 0)
253 break;
254
255 return (ops);
256 }
257
258 /*
259 * Given a vdev and a metaslab class, find which metaslab group we're
260 * interested in. All vdevs may belong to two different metaslab classes.
261 * Dedicated slog devices use only the primary metaslab group, rather than a
262 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
263 */
264 metaslab_group_t *
265 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
266 {
267 if (mc == spa_embedded_log_class(vd->vdev_spa) &&
268 vd->vdev_log_mg != NULL)
269 return (vd->vdev_log_mg);
270 else
271 return (vd->vdev_mg);
272 }
273
274 void
275 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
276 range_seg64_t *physical_rs, range_seg64_t *remain_rs)
277 {
278 (void) vd, (void) remain_rs;
279
280 physical_rs->rs_start = logical_rs->rs_start;
281 physical_rs->rs_end = logical_rs->rs_end;
282 }
283
284 /*
285 * Derive the enumerated allocation bias from string input.
286 * String origin is either the per-vdev zap or zpool(8).
287 */
288 static vdev_alloc_bias_t
289 vdev_derive_alloc_bias(const char *bias)
290 {
291 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
292
293 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
294 alloc_bias = VDEV_BIAS_LOG;
295 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
296 alloc_bias = VDEV_BIAS_SPECIAL;
297 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
298 alloc_bias = VDEV_BIAS_DEDUP;
299
300 return (alloc_bias);
301 }
302
303 /*
304 * Default asize function: return the MAX of psize with the asize of
305 * all children. This is what's used by anything other than RAID-Z.
306 */
307 uint64_t
308 vdev_default_asize(vdev_t *vd, uint64_t psize)
309 {
310 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
311 uint64_t csize;
312
313 for (int c = 0; c < vd->vdev_children; c++) {
314 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
315 asize = MAX(asize, csize);
316 }
317
318 return (asize);
319 }
320
321 uint64_t
322 vdev_default_min_asize(vdev_t *vd)
323 {
324 return (vd->vdev_min_asize);
325 }
326
327 /*
328 * Get the minimum allocatable size. We define the allocatable size as
329 * the vdev's asize rounded to the nearest metaslab. This allows us to
330 * replace or attach devices which don't have the same physical size but
331 * can still satisfy the same number of allocations.
332 */
333 uint64_t
334 vdev_get_min_asize(vdev_t *vd)
335 {
336 vdev_t *pvd = vd->vdev_parent;
337
338 /*
339 * If our parent is NULL (inactive spare or cache) or is the root,
340 * just return our own asize.
341 */
342 if (pvd == NULL)
343 return (vd->vdev_asize);
344
345 /*
346 * The top-level vdev just returns the allocatable size rounded
347 * to the nearest metaslab.
348 */
349 if (vd == vd->vdev_top)
350 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
351
352 return (pvd->vdev_ops->vdev_op_min_asize(pvd));
353 }
354
355 void
356 vdev_set_min_asize(vdev_t *vd)
357 {
358 vd->vdev_min_asize = vdev_get_min_asize(vd);
359
360 for (int c = 0; c < vd->vdev_children; c++)
361 vdev_set_min_asize(vd->vdev_child[c]);
362 }
363
364 /*
365 * Get the minimal allocation size for the top-level vdev.
366 */
367 uint64_t
368 vdev_get_min_alloc(vdev_t *vd)
369 {
370 uint64_t min_alloc = 1ULL << vd->vdev_ashift;
371
372 if (vd->vdev_ops->vdev_op_min_alloc != NULL)
373 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
374
375 return (min_alloc);
376 }
377
378 /*
379 * Get the parity level for a top-level vdev.
380 */
381 uint64_t
382 vdev_get_nparity(vdev_t *vd)
383 {
384 uint64_t nparity = 0;
385
386 if (vd->vdev_ops->vdev_op_nparity != NULL)
387 nparity = vd->vdev_ops->vdev_op_nparity(vd);
388
389 return (nparity);
390 }
391
392 static int
393 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
394 {
395 spa_t *spa = vd->vdev_spa;
396 objset_t *mos = spa->spa_meta_objset;
397 uint64_t objid;
398 int err;
399
400 if (vd->vdev_root_zap != 0) {
401 objid = vd->vdev_root_zap;
402 } else if (vd->vdev_top_zap != 0) {
403 objid = vd->vdev_top_zap;
404 } else if (vd->vdev_leaf_zap != 0) {
405 objid = vd->vdev_leaf_zap;
406 } else {
407 return (EINVAL);
408 }
409
410 err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
411 sizeof (uint64_t), 1, value);
412
413 if (err == ENOENT)
414 *value = vdev_prop_default_numeric(prop);
415
416 return (err);
417 }
418
419 /*
420 * Get the number of data disks for a top-level vdev.
421 */
422 uint64_t
423 vdev_get_ndisks(vdev_t *vd)
424 {
425 uint64_t ndisks = 1;
426
427 if (vd->vdev_ops->vdev_op_ndisks != NULL)
428 ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
429
430 return (ndisks);
431 }
432
433 vdev_t *
434 vdev_lookup_top(spa_t *spa, uint64_t vdev)
435 {
436 vdev_t *rvd = spa->spa_root_vdev;
437
438 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
439
440 if (vdev < rvd->vdev_children) {
441 ASSERT(rvd->vdev_child[vdev] != NULL);
442 return (rvd->vdev_child[vdev]);
443 }
444
445 return (NULL);
446 }
447
448 vdev_t *
449 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
450 {
451 vdev_t *mvd;
452
453 if (vd->vdev_guid == guid)
454 return (vd);
455
456 for (int c = 0; c < vd->vdev_children; c++)
457 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
458 NULL)
459 return (mvd);
460
461 return (NULL);
462 }
463
464 static int
465 vdev_count_leaves_impl(vdev_t *vd)
466 {
467 int n = 0;
468
469 if (vd->vdev_ops->vdev_op_leaf)
470 return (1);
471
472 for (int c = 0; c < vd->vdev_children; c++)
473 n += vdev_count_leaves_impl(vd->vdev_child[c]);
474
475 return (n);
476 }
477
478 int
479 vdev_count_leaves(spa_t *spa)
480 {
481 int rc;
482
483 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
484 rc = vdev_count_leaves_impl(spa->spa_root_vdev);
485 spa_config_exit(spa, SCL_VDEV, FTAG);
486
487 return (rc);
488 }
489
490 void
491 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
492 {
493 size_t oldsize, newsize;
494 uint64_t id = cvd->vdev_id;
495 vdev_t **newchild;
496
497 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
498 ASSERT(cvd->vdev_parent == NULL);
499
500 cvd->vdev_parent = pvd;
501
502 if (pvd == NULL)
503 return;
504
505 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
506
507 oldsize = pvd->vdev_children * sizeof (vdev_t *);
508 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
509 newsize = pvd->vdev_children * sizeof (vdev_t *);
510
511 newchild = kmem_alloc(newsize, KM_SLEEP);
512 if (pvd->vdev_child != NULL) {
513 memcpy(newchild, pvd->vdev_child, oldsize);
514 kmem_free(pvd->vdev_child, oldsize);
515 }
516
517 pvd->vdev_child = newchild;
518 pvd->vdev_child[id] = cvd;
519
520 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
521 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
522
523 /*
524 * Walk up all ancestors to update guid sum.
525 */
526 for (; pvd != NULL; pvd = pvd->vdev_parent)
527 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
528
529 if (cvd->vdev_ops->vdev_op_leaf) {
530 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
531 cvd->vdev_spa->spa_leaf_list_gen++;
532 }
533 }
534
535 void
536 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
537 {
538 int c;
539 uint_t id = cvd->vdev_id;
540
541 ASSERT(cvd->vdev_parent == pvd);
542
543 if (pvd == NULL)
544 return;
545
546 ASSERT(id < pvd->vdev_children);
547 ASSERT(pvd->vdev_child[id] == cvd);
548
549 pvd->vdev_child[id] = NULL;
550 cvd->vdev_parent = NULL;
551
552 for (c = 0; c < pvd->vdev_children; c++)
553 if (pvd->vdev_child[c])
554 break;
555
556 if (c == pvd->vdev_children) {
557 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
558 pvd->vdev_child = NULL;
559 pvd->vdev_children = 0;
560 }
561
562 if (cvd->vdev_ops->vdev_op_leaf) {
563 spa_t *spa = cvd->vdev_spa;
564 list_remove(&spa->spa_leaf_list, cvd);
565 spa->spa_leaf_list_gen++;
566 }
567
568 /*
569 * Walk up all ancestors to update guid sum.
570 */
571 for (; pvd != NULL; pvd = pvd->vdev_parent)
572 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
573 }
574
575 /*
576 * Remove any holes in the child array.
577 */
578 void
579 vdev_compact_children(vdev_t *pvd)
580 {
581 vdev_t **newchild, *cvd;
582 int oldc = pvd->vdev_children;
583 int newc;
584
585 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
586
587 if (oldc == 0)
588 return;
589
590 for (int c = newc = 0; c < oldc; c++)
591 if (pvd->vdev_child[c])
592 newc++;
593
594 if (newc > 0) {
595 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
596
597 for (int c = newc = 0; c < oldc; c++) {
598 if ((cvd = pvd->vdev_child[c]) != NULL) {
599 newchild[newc] = cvd;
600 cvd->vdev_id = newc++;
601 }
602 }
603 } else {
604 newchild = NULL;
605 }
606
607 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
608 pvd->vdev_child = newchild;
609 pvd->vdev_children = newc;
610 }
611
612 /*
613 * Allocate and minimally initialize a vdev_t.
614 */
615 vdev_t *
616 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
617 {
618 vdev_t *vd;
619 vdev_indirect_config_t *vic;
620
621 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
622 vic = &vd->vdev_indirect_config;
623
624 if (spa->spa_root_vdev == NULL) {
625 ASSERT(ops == &vdev_root_ops);
626 spa->spa_root_vdev = vd;
627 spa->spa_load_guid = spa_generate_guid(NULL);
628 }
629
630 if (guid == 0 && ops != &vdev_hole_ops) {
631 if (spa->spa_root_vdev == vd) {
632 /*
633 * The root vdev's guid will also be the pool guid,
634 * which must be unique among all pools.
635 */
636 guid = spa_generate_guid(NULL);
637 } else {
638 /*
639 * Any other vdev's guid must be unique within the pool.
640 */
641 guid = spa_generate_guid(spa);
642 }
643 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
644 }
645
646 vd->vdev_spa = spa;
647 vd->vdev_id = id;
648 vd->vdev_guid = guid;
649 vd->vdev_guid_sum = guid;
650 vd->vdev_ops = ops;
651 vd->vdev_state = VDEV_STATE_CLOSED;
652 vd->vdev_ishole = (ops == &vdev_hole_ops);
653 vic->vic_prev_indirect_vdev = UINT64_MAX;
654
655 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
656 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
657 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
658 0, 0);
659
660 /*
661 * Initialize rate limit structs for events. We rate limit ZIO delay
662 * and checksum events so that we don't overwhelm ZED with thousands
663 * of events when a disk is acting up.
664 */
665 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
666 1);
667 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second,
668 1);
669 zfs_ratelimit_init(&vd->vdev_checksum_rl,
670 &zfs_checksum_events_per_second, 1);
671
672 /*
673 * Default Thresholds for tuning ZED
674 */
675 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
676 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
677 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
678 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
679
680 list_link_init(&vd->vdev_config_dirty_node);
681 list_link_init(&vd->vdev_state_dirty_node);
682 list_link_init(&vd->vdev_initialize_node);
683 list_link_init(&vd->vdev_leaf_node);
684 list_link_init(&vd->vdev_trim_node);
685
686 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
687 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
688 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
689 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
690
691 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
692 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
693 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
694 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
695
696 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
697 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
698 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
699 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
700 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
701 cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL);
702 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
703
704 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
705 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
706
707 for (int t = 0; t < DTL_TYPES; t++) {
708 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
709 0);
710 }
711
712 txg_list_create(&vd->vdev_ms_list, spa,
713 offsetof(struct metaslab, ms_txg_node));
714 txg_list_create(&vd->vdev_dtl_list, spa,
715 offsetof(struct vdev, vdev_dtl_node));
716 vd->vdev_stat.vs_timestamp = gethrtime();
717 vdev_queue_init(vd);
718
719 return (vd);
720 }
721
722 /*
723 * Allocate a new vdev. The 'alloctype' is used to control whether we are
724 * creating a new vdev or loading an existing one - the behavior is slightly
725 * different for each case.
726 */
727 int
728 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
729 int alloctype)
730 {
731 vdev_ops_t *ops;
732 const char *type;
733 uint64_t guid = 0, islog;
734 vdev_t *vd;
735 vdev_indirect_config_t *vic;
736 const char *tmp = NULL;
737 int rc;
738 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
739 boolean_t top_level = (parent && !parent->vdev_parent);
740
741 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
742
743 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
744 return (SET_ERROR(EINVAL));
745
746 if ((ops = vdev_getops(type)) == NULL)
747 return (SET_ERROR(EINVAL));
748
749 /*
750 * If this is a load, get the vdev guid from the nvlist.
751 * Otherwise, vdev_alloc_common() will generate one for us.
752 */
753 if (alloctype == VDEV_ALLOC_LOAD) {
754 uint64_t label_id;
755
756 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
757 label_id != id)
758 return (SET_ERROR(EINVAL));
759
760 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
761 return (SET_ERROR(EINVAL));
762 } else if (alloctype == VDEV_ALLOC_SPARE) {
763 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
764 return (SET_ERROR(EINVAL));
765 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
766 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
767 return (SET_ERROR(EINVAL));
768 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
769 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
770 return (SET_ERROR(EINVAL));
771 }
772
773 /*
774 * The first allocated vdev must be of type 'root'.
775 */
776 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
777 return (SET_ERROR(EINVAL));
778
779 /*
780 * Determine whether we're a log vdev.
781 */
782 islog = 0;
783 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
784 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
785 return (SET_ERROR(ENOTSUP));
786
787 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
788 return (SET_ERROR(ENOTSUP));
789
790 if (top_level && alloctype == VDEV_ALLOC_ADD) {
791 const char *bias;
792
793 /*
794 * If creating a top-level vdev, check for allocation
795 * classes input.
796 */
797 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
798 &bias) == 0) {
799 alloc_bias = vdev_derive_alloc_bias(bias);
800
801 /* spa_vdev_add() expects feature to be enabled */
802 if (spa->spa_load_state != SPA_LOAD_CREATE &&
803 !spa_feature_is_enabled(spa,
804 SPA_FEATURE_ALLOCATION_CLASSES)) {
805 return (SET_ERROR(ENOTSUP));
806 }
807 }
808
809 /* spa_vdev_add() expects feature to be enabled */
810 if (ops == &vdev_draid_ops &&
811 spa->spa_load_state != SPA_LOAD_CREATE &&
812 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
813 return (SET_ERROR(ENOTSUP));
814 }
815 }
816
817 /*
818 * Initialize the vdev specific data. This is done before calling
819 * vdev_alloc_common() since it may fail and this simplifies the
820 * error reporting and cleanup code paths.
821 */
822 void *tsd = NULL;
823 if (ops->vdev_op_init != NULL) {
824 rc = ops->vdev_op_init(spa, nv, &tsd);
825 if (rc != 0) {
826 return (rc);
827 }
828 }
829
830 vd = vdev_alloc_common(spa, id, guid, ops);
831 vd->vdev_tsd = tsd;
832 vd->vdev_islog = islog;
833
834 if (top_level && alloc_bias != VDEV_BIAS_NONE)
835 vd->vdev_alloc_bias = alloc_bias;
836
837 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0)
838 vd->vdev_path = spa_strdup(tmp);
839
840 /*
841 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
842 * fault on a vdev and want it to persist across imports (like with
843 * zpool offline -f).
844 */
845 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
846 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
847 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
848 vd->vdev_faulted = 1;
849 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
850 }
851
852 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0)
853 vd->vdev_devid = spa_strdup(tmp);
854 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0)
855 vd->vdev_physpath = spa_strdup(tmp);
856
857 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
858 &tmp) == 0)
859 vd->vdev_enc_sysfs_path = spa_strdup(tmp);
860
861 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0)
862 vd->vdev_fru = spa_strdup(tmp);
863
864 /*
865 * Set the whole_disk property. If it's not specified, leave the value
866 * as -1.
867 */
868 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
869 &vd->vdev_wholedisk) != 0)
870 vd->vdev_wholedisk = -1ULL;
871
872 vic = &vd->vdev_indirect_config;
873
874 ASSERT0(vic->vic_mapping_object);
875 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
876 &vic->vic_mapping_object);
877 ASSERT0(vic->vic_births_object);
878 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
879 &vic->vic_births_object);
880 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
881 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
882 &vic->vic_prev_indirect_vdev);
883
884 /*
885 * Look for the 'not present' flag. This will only be set if the device
886 * was not present at the time of import.
887 */
888 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
889 &vd->vdev_not_present);
890
891 /*
892 * Get the alignment requirement. Ignore pool ashift for vdev
893 * attach case.
894 */
895 if (alloctype != VDEV_ALLOC_ATTACH) {
896 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT,
897 &vd->vdev_ashift);
898 } else {
899 vd->vdev_attaching = B_TRUE;
900 }
901
902 /*
903 * Retrieve the vdev creation time.
904 */
905 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
906 &vd->vdev_crtxg);
907
908 if (vd->vdev_ops == &vdev_root_ops &&
909 (alloctype == VDEV_ALLOC_LOAD ||
910 alloctype == VDEV_ALLOC_SPLIT ||
911 alloctype == VDEV_ALLOC_ROOTPOOL)) {
912 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
913 &vd->vdev_root_zap);
914 }
915
916 /*
917 * If we're a top-level vdev, try to load the allocation parameters.
918 */
919 if (top_level &&
920 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
921 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
922 &vd->vdev_ms_array);
923 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
924 &vd->vdev_ms_shift);
925 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
926 &vd->vdev_asize);
927 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
928 &vd->vdev_noalloc);
929 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
930 &vd->vdev_removing);
931 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
932 &vd->vdev_top_zap);
933 } else {
934 ASSERT0(vd->vdev_top_zap);
935 }
936
937 if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
938 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
939 alloctype == VDEV_ALLOC_ADD ||
940 alloctype == VDEV_ALLOC_SPLIT ||
941 alloctype == VDEV_ALLOC_ROOTPOOL);
942 /* Note: metaslab_group_create() is now deferred */
943 }
944
945 if (vd->vdev_ops->vdev_op_leaf &&
946 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
947 (void) nvlist_lookup_uint64(nv,
948 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
949 } else {
950 ASSERT0(vd->vdev_leaf_zap);
951 }
952
953 /*
954 * If we're a leaf vdev, try to load the DTL object and other state.
955 */
956
957 if (vd->vdev_ops->vdev_op_leaf &&
958 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
959 alloctype == VDEV_ALLOC_ROOTPOOL)) {
960 if (alloctype == VDEV_ALLOC_LOAD) {
961 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
962 &vd->vdev_dtl_object);
963 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
964 &vd->vdev_unspare);
965 }
966
967 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
968 uint64_t spare = 0;
969
970 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
971 &spare) == 0 && spare)
972 spa_spare_add(vd);
973 }
974
975 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
976 &vd->vdev_offline);
977
978 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
979 &vd->vdev_resilver_txg);
980
981 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
982 &vd->vdev_rebuild_txg);
983
984 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
985 vdev_defer_resilver(vd);
986
987 /*
988 * In general, when importing a pool we want to ignore the
989 * persistent fault state, as the diagnosis made on another
990 * system may not be valid in the current context. The only
991 * exception is if we forced a vdev to a persistently faulted
992 * state with 'zpool offline -f'. The persistent fault will
993 * remain across imports until cleared.
994 *
995 * Local vdevs will remain in the faulted state.
996 */
997 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
998 spa_load_state(spa) == SPA_LOAD_IMPORT) {
999 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
1000 &vd->vdev_faulted);
1001 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
1002 &vd->vdev_degraded);
1003 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
1004 &vd->vdev_removed);
1005
1006 if (vd->vdev_faulted || vd->vdev_degraded) {
1007 const char *aux;
1008
1009 vd->vdev_label_aux =
1010 VDEV_AUX_ERR_EXCEEDED;
1011 if (nvlist_lookup_string(nv,
1012 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
1013 strcmp(aux, "external") == 0)
1014 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
1015 else
1016 vd->vdev_faulted = 0ULL;
1017 }
1018 }
1019 }
1020
1021 /*
1022 * Add ourselves to the parent's list of children.
1023 */
1024 vdev_add_child(parent, vd);
1025
1026 *vdp = vd;
1027
1028 return (0);
1029 }
1030
1031 void
1032 vdev_free(vdev_t *vd)
1033 {
1034 spa_t *spa = vd->vdev_spa;
1035
1036 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1037 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1038 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1039 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1040
1041 /*
1042 * Scan queues are normally destroyed at the end of a scan. If the
1043 * queue exists here, that implies the vdev is being removed while
1044 * the scan is still running.
1045 */
1046 if (vd->vdev_scan_io_queue != NULL) {
1047 mutex_enter(&vd->vdev_scan_io_queue_lock);
1048 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
1049 vd->vdev_scan_io_queue = NULL;
1050 mutex_exit(&vd->vdev_scan_io_queue_lock);
1051 }
1052
1053 /*
1054 * vdev_free() implies closing the vdev first. This is simpler than
1055 * trying to ensure complicated semantics for all callers.
1056 */
1057 vdev_close(vd);
1058
1059 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1060 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1061
1062 /*
1063 * Free all children.
1064 */
1065 for (int c = 0; c < vd->vdev_children; c++)
1066 vdev_free(vd->vdev_child[c]);
1067
1068 ASSERT(vd->vdev_child == NULL);
1069 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1070
1071 if (vd->vdev_ops->vdev_op_fini != NULL)
1072 vd->vdev_ops->vdev_op_fini(vd);
1073
1074 /*
1075 * Discard allocation state.
1076 */
1077 if (vd->vdev_mg != NULL) {
1078 vdev_metaslab_fini(vd);
1079 metaslab_group_destroy(vd->vdev_mg);
1080 vd->vdev_mg = NULL;
1081 }
1082 if (vd->vdev_log_mg != NULL) {
1083 ASSERT0(vd->vdev_ms_count);
1084 metaslab_group_destroy(vd->vdev_log_mg);
1085 vd->vdev_log_mg = NULL;
1086 }
1087
1088 ASSERT0(vd->vdev_stat.vs_space);
1089 ASSERT0(vd->vdev_stat.vs_dspace);
1090 ASSERT0(vd->vdev_stat.vs_alloc);
1091
1092 /*
1093 * Remove this vdev from its parent's child list.
1094 */
1095 vdev_remove_child(vd->vdev_parent, vd);
1096
1097 ASSERT(vd->vdev_parent == NULL);
1098 ASSERT(!list_link_active(&vd->vdev_leaf_node));
1099
1100 /*
1101 * Clean up vdev structure.
1102 */
1103 vdev_queue_fini(vd);
1104
1105 if (vd->vdev_path)
1106 spa_strfree(vd->vdev_path);
1107 if (vd->vdev_devid)
1108 spa_strfree(vd->vdev_devid);
1109 if (vd->vdev_physpath)
1110 spa_strfree(vd->vdev_physpath);
1111
1112 if (vd->vdev_enc_sysfs_path)
1113 spa_strfree(vd->vdev_enc_sysfs_path);
1114
1115 if (vd->vdev_fru)
1116 spa_strfree(vd->vdev_fru);
1117
1118 if (vd->vdev_isspare)
1119 spa_spare_remove(vd);
1120 if (vd->vdev_isl2cache)
1121 spa_l2cache_remove(vd);
1122
1123 txg_list_destroy(&vd->vdev_ms_list);
1124 txg_list_destroy(&vd->vdev_dtl_list);
1125
1126 mutex_enter(&vd->vdev_dtl_lock);
1127 space_map_close(vd->vdev_dtl_sm);
1128 for (int t = 0; t < DTL_TYPES; t++) {
1129 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1130 range_tree_destroy(vd->vdev_dtl[t]);
1131 }
1132 mutex_exit(&vd->vdev_dtl_lock);
1133
1134 EQUIV(vd->vdev_indirect_births != NULL,
1135 vd->vdev_indirect_mapping != NULL);
1136 if (vd->vdev_indirect_births != NULL) {
1137 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1138 vdev_indirect_births_close(vd->vdev_indirect_births);
1139 }
1140
1141 if (vd->vdev_obsolete_sm != NULL) {
1142 ASSERT(vd->vdev_removing ||
1143 vd->vdev_ops == &vdev_indirect_ops);
1144 space_map_close(vd->vdev_obsolete_sm);
1145 vd->vdev_obsolete_sm = NULL;
1146 }
1147 range_tree_destroy(vd->vdev_obsolete_segments);
1148 rw_destroy(&vd->vdev_indirect_rwlock);
1149 mutex_destroy(&vd->vdev_obsolete_lock);
1150
1151 mutex_destroy(&vd->vdev_dtl_lock);
1152 mutex_destroy(&vd->vdev_stat_lock);
1153 mutex_destroy(&vd->vdev_probe_lock);
1154 mutex_destroy(&vd->vdev_scan_io_queue_lock);
1155
1156 mutex_destroy(&vd->vdev_initialize_lock);
1157 mutex_destroy(&vd->vdev_initialize_io_lock);
1158 cv_destroy(&vd->vdev_initialize_io_cv);
1159 cv_destroy(&vd->vdev_initialize_cv);
1160
1161 mutex_destroy(&vd->vdev_trim_lock);
1162 mutex_destroy(&vd->vdev_autotrim_lock);
1163 mutex_destroy(&vd->vdev_trim_io_lock);
1164 cv_destroy(&vd->vdev_trim_cv);
1165 cv_destroy(&vd->vdev_autotrim_cv);
1166 cv_destroy(&vd->vdev_autotrim_kick_cv);
1167 cv_destroy(&vd->vdev_trim_io_cv);
1168
1169 mutex_destroy(&vd->vdev_rebuild_lock);
1170 cv_destroy(&vd->vdev_rebuild_cv);
1171
1172 zfs_ratelimit_fini(&vd->vdev_delay_rl);
1173 zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1174 zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1175
1176 if (vd == spa->spa_root_vdev)
1177 spa->spa_root_vdev = NULL;
1178
1179 kmem_free(vd, sizeof (vdev_t));
1180 }
1181
1182 /*
1183 * Transfer top-level vdev state from svd to tvd.
1184 */
1185 static void
1186 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1187 {
1188 spa_t *spa = svd->vdev_spa;
1189 metaslab_t *msp;
1190 vdev_t *vd;
1191 int t;
1192
1193 ASSERT(tvd == tvd->vdev_top);
1194
1195 tvd->vdev_ms_array = svd->vdev_ms_array;
1196 tvd->vdev_ms_shift = svd->vdev_ms_shift;
1197 tvd->vdev_ms_count = svd->vdev_ms_count;
1198 tvd->vdev_top_zap = svd->vdev_top_zap;
1199
1200 svd->vdev_ms_array = 0;
1201 svd->vdev_ms_shift = 0;
1202 svd->vdev_ms_count = 0;
1203 svd->vdev_top_zap = 0;
1204
1205 if (tvd->vdev_mg)
1206 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1207 if (tvd->vdev_log_mg)
1208 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1209 tvd->vdev_mg = svd->vdev_mg;
1210 tvd->vdev_log_mg = svd->vdev_log_mg;
1211 tvd->vdev_ms = svd->vdev_ms;
1212
1213 svd->vdev_mg = NULL;
1214 svd->vdev_log_mg = NULL;
1215 svd->vdev_ms = NULL;
1216
1217 if (tvd->vdev_mg != NULL)
1218 tvd->vdev_mg->mg_vd = tvd;
1219 if (tvd->vdev_log_mg != NULL)
1220 tvd->vdev_log_mg->mg_vd = tvd;
1221
1222 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1223 svd->vdev_checkpoint_sm = NULL;
1224
1225 tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1226 svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1227
1228 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1229 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1230 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1231
1232 svd->vdev_stat.vs_alloc = 0;
1233 svd->vdev_stat.vs_space = 0;
1234 svd->vdev_stat.vs_dspace = 0;
1235
1236 /*
1237 * State which may be set on a top-level vdev that's in the
1238 * process of being removed.
1239 */
1240 ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1241 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1242 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1243 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1244 ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1245 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1246 ASSERT0(tvd->vdev_noalloc);
1247 ASSERT0(tvd->vdev_removing);
1248 ASSERT0(tvd->vdev_rebuilding);
1249 tvd->vdev_noalloc = svd->vdev_noalloc;
1250 tvd->vdev_removing = svd->vdev_removing;
1251 tvd->vdev_rebuilding = svd->vdev_rebuilding;
1252 tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1253 tvd->vdev_indirect_config = svd->vdev_indirect_config;
1254 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1255 tvd->vdev_indirect_births = svd->vdev_indirect_births;
1256 range_tree_swap(&svd->vdev_obsolete_segments,
1257 &tvd->vdev_obsolete_segments);
1258 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1259 svd->vdev_indirect_config.vic_mapping_object = 0;
1260 svd->vdev_indirect_config.vic_births_object = 0;
1261 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1262 svd->vdev_indirect_mapping = NULL;
1263 svd->vdev_indirect_births = NULL;
1264 svd->vdev_obsolete_sm = NULL;
1265 svd->vdev_noalloc = 0;
1266 svd->vdev_removing = 0;
1267 svd->vdev_rebuilding = 0;
1268
1269 for (t = 0; t < TXG_SIZE; t++) {
1270 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1271 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1272 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1273 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1274 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1275 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1276 }
1277
1278 if (list_link_active(&svd->vdev_config_dirty_node)) {
1279 vdev_config_clean(svd);
1280 vdev_config_dirty(tvd);
1281 }
1282
1283 if (list_link_active(&svd->vdev_state_dirty_node)) {
1284 vdev_state_clean(svd);
1285 vdev_state_dirty(tvd);
1286 }
1287
1288 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1289 svd->vdev_deflate_ratio = 0;
1290
1291 tvd->vdev_islog = svd->vdev_islog;
1292 svd->vdev_islog = 0;
1293
1294 dsl_scan_io_queue_vdev_xfer(svd, tvd);
1295 }
1296
1297 static void
1298 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1299 {
1300 if (vd == NULL)
1301 return;
1302
1303 vd->vdev_top = tvd;
1304
1305 for (int c = 0; c < vd->vdev_children; c++)
1306 vdev_top_update(tvd, vd->vdev_child[c]);
1307 }
1308
1309 /*
1310 * Add a mirror/replacing vdev above an existing vdev. There is no need to
1311 * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1312 */
1313 vdev_t *
1314 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1315 {
1316 spa_t *spa = cvd->vdev_spa;
1317 vdev_t *pvd = cvd->vdev_parent;
1318 vdev_t *mvd;
1319
1320 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1321
1322 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1323
1324 mvd->vdev_asize = cvd->vdev_asize;
1325 mvd->vdev_min_asize = cvd->vdev_min_asize;
1326 mvd->vdev_max_asize = cvd->vdev_max_asize;
1327 mvd->vdev_psize = cvd->vdev_psize;
1328 mvd->vdev_ashift = cvd->vdev_ashift;
1329 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1330 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1331 mvd->vdev_state = cvd->vdev_state;
1332 mvd->vdev_crtxg = cvd->vdev_crtxg;
1333
1334 vdev_remove_child(pvd, cvd);
1335 vdev_add_child(pvd, mvd);
1336 cvd->vdev_id = mvd->vdev_children;
1337 vdev_add_child(mvd, cvd);
1338 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1339
1340 if (mvd == mvd->vdev_top)
1341 vdev_top_transfer(cvd, mvd);
1342
1343 return (mvd);
1344 }
1345
1346 /*
1347 * Remove a 1-way mirror/replacing vdev from the tree.
1348 */
1349 void
1350 vdev_remove_parent(vdev_t *cvd)
1351 {
1352 vdev_t *mvd = cvd->vdev_parent;
1353 vdev_t *pvd = mvd->vdev_parent;
1354
1355 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1356
1357 ASSERT(mvd->vdev_children == 1);
1358 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1359 mvd->vdev_ops == &vdev_replacing_ops ||
1360 mvd->vdev_ops == &vdev_spare_ops);
1361 cvd->vdev_ashift = mvd->vdev_ashift;
1362 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1363 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1364 vdev_remove_child(mvd, cvd);
1365 vdev_remove_child(pvd, mvd);
1366
1367 /*
1368 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1369 * Otherwise, we could have detached an offline device, and when we
1370 * go to import the pool we'll think we have two top-level vdevs,
1371 * instead of a different version of the same top-level vdev.
1372 */
1373 if (mvd->vdev_top == mvd) {
1374 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1375 cvd->vdev_orig_guid = cvd->vdev_guid;
1376 cvd->vdev_guid += guid_delta;
1377 cvd->vdev_guid_sum += guid_delta;
1378
1379 /*
1380 * If pool not set for autoexpand, we need to also preserve
1381 * mvd's asize to prevent automatic expansion of cvd.
1382 * Otherwise if we are adjusting the mirror by attaching and
1383 * detaching children of non-uniform sizes, the mirror could
1384 * autoexpand, unexpectedly requiring larger devices to
1385 * re-establish the mirror.
1386 */
1387 if (!cvd->vdev_spa->spa_autoexpand)
1388 cvd->vdev_asize = mvd->vdev_asize;
1389 }
1390 cvd->vdev_id = mvd->vdev_id;
1391 vdev_add_child(pvd, cvd);
1392 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1393
1394 if (cvd == cvd->vdev_top)
1395 vdev_top_transfer(mvd, cvd);
1396
1397 ASSERT(mvd->vdev_children == 0);
1398 vdev_free(mvd);
1399 }
1400
1401 /*
1402 * Choose GCD for spa_gcd_alloc.
1403 */
1404 static uint64_t
1405 vdev_gcd(uint64_t a, uint64_t b)
1406 {
1407 while (b != 0) {
1408 uint64_t t = b;
1409 b = a % b;
1410 a = t;
1411 }
1412 return (a);
1413 }
1414
1415 /*
1416 * Set spa_min_alloc and spa_gcd_alloc.
1417 */
1418 static void
1419 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc)
1420 {
1421 if (min_alloc < spa->spa_min_alloc)
1422 spa->spa_min_alloc = min_alloc;
1423 if (spa->spa_gcd_alloc == INT_MAX) {
1424 spa->spa_gcd_alloc = min_alloc;
1425 } else {
1426 spa->spa_gcd_alloc = vdev_gcd(min_alloc,
1427 spa->spa_gcd_alloc);
1428 }
1429 }
1430
1431 void
1432 vdev_metaslab_group_create(vdev_t *vd)
1433 {
1434 spa_t *spa = vd->vdev_spa;
1435
1436 /*
1437 * metaslab_group_create was delayed until allocation bias was available
1438 */
1439 if (vd->vdev_mg == NULL) {
1440 metaslab_class_t *mc;
1441
1442 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1443 vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1444
1445 ASSERT3U(vd->vdev_islog, ==,
1446 (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1447
1448 switch (vd->vdev_alloc_bias) {
1449 case VDEV_BIAS_LOG:
1450 mc = spa_log_class(spa);
1451 break;
1452 case VDEV_BIAS_SPECIAL:
1453 mc = spa_special_class(spa);
1454 break;
1455 case VDEV_BIAS_DEDUP:
1456 mc = spa_dedup_class(spa);
1457 break;
1458 default:
1459 mc = spa_normal_class(spa);
1460 }
1461
1462 vd->vdev_mg = metaslab_group_create(mc, vd,
1463 spa->spa_alloc_count);
1464
1465 if (!vd->vdev_islog) {
1466 vd->vdev_log_mg = metaslab_group_create(
1467 spa_embedded_log_class(spa), vd, 1);
1468 }
1469
1470 /*
1471 * The spa ashift min/max only apply for the normal metaslab
1472 * class. Class destination is late binding so ashift boundary
1473 * setting had to wait until now.
1474 */
1475 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1476 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1477 if (vd->vdev_ashift > spa->spa_max_ashift)
1478 spa->spa_max_ashift = vd->vdev_ashift;
1479 if (vd->vdev_ashift < spa->spa_min_ashift)
1480 spa->spa_min_ashift = vd->vdev_ashift;
1481
1482 uint64_t min_alloc = vdev_get_min_alloc(vd);
1483 vdev_spa_set_alloc(spa, min_alloc);
1484 }
1485 }
1486 }
1487
1488 int
1489 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1490 {
1491 spa_t *spa = vd->vdev_spa;
1492 uint64_t oldc = vd->vdev_ms_count;
1493 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1494 metaslab_t **mspp;
1495 int error;
1496 boolean_t expanding = (oldc != 0);
1497
1498 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1499
1500 /*
1501 * This vdev is not being allocated from yet or is a hole.
1502 */
1503 if (vd->vdev_ms_shift == 0)
1504 return (0);
1505
1506 ASSERT(!vd->vdev_ishole);
1507
1508 ASSERT(oldc <= newc);
1509
1510 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1511
1512 if (expanding) {
1513 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1514 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1515 }
1516
1517 vd->vdev_ms = mspp;
1518 vd->vdev_ms_count = newc;
1519
1520 for (uint64_t m = oldc; m < newc; m++) {
1521 uint64_t object = 0;
1522 /*
1523 * vdev_ms_array may be 0 if we are creating the "fake"
1524 * metaslabs for an indirect vdev for zdb's leak detection.
1525 * See zdb_leak_init().
1526 */
1527 if (txg == 0 && vd->vdev_ms_array != 0) {
1528 error = dmu_read(spa->spa_meta_objset,
1529 vd->vdev_ms_array,
1530 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1531 DMU_READ_PREFETCH);
1532 if (error != 0) {
1533 vdev_dbgmsg(vd, "unable to read the metaslab "
1534 "array [error=%d]", error);
1535 return (error);
1536 }
1537 }
1538
1539 error = metaslab_init(vd->vdev_mg, m, object, txg,
1540 &(vd->vdev_ms[m]));
1541 if (error != 0) {
1542 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1543 error);
1544 return (error);
1545 }
1546 }
1547
1548 /*
1549 * Find the emptiest metaslab on the vdev and mark it for use for
1550 * embedded slog by moving it from the regular to the log metaslab
1551 * group.
1552 */
1553 if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1554 vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1555 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1556 uint64_t slog_msid = 0;
1557 uint64_t smallest = UINT64_MAX;
1558
1559 /*
1560 * Note, we only search the new metaslabs, because the old
1561 * (pre-existing) ones may be active (e.g. have non-empty
1562 * range_tree's), and we don't move them to the new
1563 * metaslab_t.
1564 */
1565 for (uint64_t m = oldc; m < newc; m++) {
1566 uint64_t alloc =
1567 space_map_allocated(vd->vdev_ms[m]->ms_sm);
1568 if (alloc < smallest) {
1569 slog_msid = m;
1570 smallest = alloc;
1571 }
1572 }
1573 metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1574 /*
1575 * The metaslab was marked as dirty at the end of
1576 * metaslab_init(). Remove it from the dirty list so that we
1577 * can uninitialize and reinitialize it to the new class.
1578 */
1579 if (txg != 0) {
1580 (void) txg_list_remove_this(&vd->vdev_ms_list,
1581 slog_ms, txg);
1582 }
1583 uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1584 metaslab_fini(slog_ms);
1585 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1586 &vd->vdev_ms[slog_msid]));
1587 }
1588
1589 if (txg == 0)
1590 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1591
1592 /*
1593 * If the vdev is marked as non-allocating then don't
1594 * activate the metaslabs since we want to ensure that
1595 * no allocations are performed on this device.
1596 */
1597 if (vd->vdev_noalloc) {
1598 /* track non-allocating vdev space */
1599 spa->spa_nonallocating_dspace += spa_deflate(spa) ?
1600 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1601 } else if (!expanding) {
1602 metaslab_group_activate(vd->vdev_mg);
1603 if (vd->vdev_log_mg != NULL)
1604 metaslab_group_activate(vd->vdev_log_mg);
1605 }
1606
1607 if (txg == 0)
1608 spa_config_exit(spa, SCL_ALLOC, FTAG);
1609
1610 return (0);
1611 }
1612
1613 void
1614 vdev_metaslab_fini(vdev_t *vd)
1615 {
1616 if (vd->vdev_checkpoint_sm != NULL) {
1617 ASSERT(spa_feature_is_active(vd->vdev_spa,
1618 SPA_FEATURE_POOL_CHECKPOINT));
1619 space_map_close(vd->vdev_checkpoint_sm);
1620 /*
1621 * Even though we close the space map, we need to set its
1622 * pointer to NULL. The reason is that vdev_metaslab_fini()
1623 * may be called multiple times for certain operations
1624 * (i.e. when destroying a pool) so we need to ensure that
1625 * this clause never executes twice. This logic is similar
1626 * to the one used for the vdev_ms clause below.
1627 */
1628 vd->vdev_checkpoint_sm = NULL;
1629 }
1630
1631 if (vd->vdev_ms != NULL) {
1632 metaslab_group_t *mg = vd->vdev_mg;
1633
1634 metaslab_group_passivate(mg);
1635 if (vd->vdev_log_mg != NULL) {
1636 ASSERT(!vd->vdev_islog);
1637 metaslab_group_passivate(vd->vdev_log_mg);
1638 }
1639
1640 uint64_t count = vd->vdev_ms_count;
1641 for (uint64_t m = 0; m < count; m++) {
1642 metaslab_t *msp = vd->vdev_ms[m];
1643 if (msp != NULL)
1644 metaslab_fini(msp);
1645 }
1646 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1647 vd->vdev_ms = NULL;
1648 vd->vdev_ms_count = 0;
1649
1650 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1651 ASSERT0(mg->mg_histogram[i]);
1652 if (vd->vdev_log_mg != NULL)
1653 ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1654 }
1655 }
1656 ASSERT0(vd->vdev_ms_count);
1657 }
1658
1659 typedef struct vdev_probe_stats {
1660 boolean_t vps_readable;
1661 boolean_t vps_writeable;
1662 int vps_flags;
1663 } vdev_probe_stats_t;
1664
1665 static void
1666 vdev_probe_done(zio_t *zio)
1667 {
1668 spa_t *spa = zio->io_spa;
1669 vdev_t *vd = zio->io_vd;
1670 vdev_probe_stats_t *vps = zio->io_private;
1671
1672 ASSERT(vd->vdev_probe_zio != NULL);
1673
1674 if (zio->io_type == ZIO_TYPE_READ) {
1675 if (zio->io_error == 0)
1676 vps->vps_readable = 1;
1677 if (zio->io_error == 0 && spa_writeable(spa)) {
1678 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1679 zio->io_offset, zio->io_size, zio->io_abd,
1680 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1681 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1682 } else {
1683 abd_free(zio->io_abd);
1684 }
1685 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1686 if (zio->io_error == 0)
1687 vps->vps_writeable = 1;
1688 abd_free(zio->io_abd);
1689 } else if (zio->io_type == ZIO_TYPE_NULL) {
1690 zio_t *pio;
1691 zio_link_t *zl;
1692
1693 vd->vdev_cant_read |= !vps->vps_readable;
1694 vd->vdev_cant_write |= !vps->vps_writeable;
1695
1696 if (vdev_readable(vd) &&
1697 (vdev_writeable(vd) || !spa_writeable(spa))) {
1698 zio->io_error = 0;
1699 } else {
1700 ASSERT(zio->io_error != 0);
1701 vdev_dbgmsg(vd, "failed probe");
1702 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1703 spa, vd, NULL, NULL, 0);
1704 zio->io_error = SET_ERROR(ENXIO);
1705 }
1706
1707 mutex_enter(&vd->vdev_probe_lock);
1708 ASSERT(vd->vdev_probe_zio == zio);
1709 vd->vdev_probe_zio = NULL;
1710 mutex_exit(&vd->vdev_probe_lock);
1711
1712 zl = NULL;
1713 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1714 if (!vdev_accessible(vd, pio))
1715 pio->io_error = SET_ERROR(ENXIO);
1716
1717 kmem_free(vps, sizeof (*vps));
1718 }
1719 }
1720
1721 /*
1722 * Determine whether this device is accessible.
1723 *
1724 * Read and write to several known locations: the pad regions of each
1725 * vdev label but the first, which we leave alone in case it contains
1726 * a VTOC.
1727 */
1728 zio_t *
1729 vdev_probe(vdev_t *vd, zio_t *zio)
1730 {
1731 spa_t *spa = vd->vdev_spa;
1732 vdev_probe_stats_t *vps = NULL;
1733 zio_t *pio;
1734
1735 ASSERT(vd->vdev_ops->vdev_op_leaf);
1736
1737 /*
1738 * Don't probe the probe.
1739 */
1740 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1741 return (NULL);
1742
1743 /*
1744 * To prevent 'probe storms' when a device fails, we create
1745 * just one probe i/o at a time. All zios that want to probe
1746 * this vdev will become parents of the probe io.
1747 */
1748 mutex_enter(&vd->vdev_probe_lock);
1749
1750 if ((pio = vd->vdev_probe_zio) == NULL) {
1751 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1752
1753 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1754 ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD;
1755
1756 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1757 /*
1758 * vdev_cant_read and vdev_cant_write can only
1759 * transition from TRUE to FALSE when we have the
1760 * SCL_ZIO lock as writer; otherwise they can only
1761 * transition from FALSE to TRUE. This ensures that
1762 * any zio looking at these values can assume that
1763 * failures persist for the life of the I/O. That's
1764 * important because when a device has intermittent
1765 * connectivity problems, we want to ensure that
1766 * they're ascribed to the device (ENXIO) and not
1767 * the zio (EIO).
1768 *
1769 * Since we hold SCL_ZIO as writer here, clear both
1770 * values so the probe can reevaluate from first
1771 * principles.
1772 */
1773 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1774 vd->vdev_cant_read = B_FALSE;
1775 vd->vdev_cant_write = B_FALSE;
1776 }
1777
1778 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1779 vdev_probe_done, vps,
1780 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1781
1782 /*
1783 * We can't change the vdev state in this context, so we
1784 * kick off an async task to do it on our behalf.
1785 */
1786 if (zio != NULL) {
1787 vd->vdev_probe_wanted = B_TRUE;
1788 spa_async_request(spa, SPA_ASYNC_PROBE);
1789 }
1790 }
1791
1792 if (zio != NULL)
1793 zio_add_child(zio, pio);
1794
1795 mutex_exit(&vd->vdev_probe_lock);
1796
1797 if (vps == NULL) {
1798 ASSERT(zio != NULL);
1799 return (NULL);
1800 }
1801
1802 for (int l = 1; l < VDEV_LABELS; l++) {
1803 zio_nowait(zio_read_phys(pio, vd,
1804 vdev_label_offset(vd->vdev_psize, l,
1805 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1806 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1807 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1808 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1809 }
1810
1811 if (zio == NULL)
1812 return (pio);
1813
1814 zio_nowait(pio);
1815 return (NULL);
1816 }
1817
1818 static void
1819 vdev_load_child(void *arg)
1820 {
1821 vdev_t *vd = arg;
1822
1823 vd->vdev_load_error = vdev_load(vd);
1824 }
1825
1826 static void
1827 vdev_open_child(void *arg)
1828 {
1829 vdev_t *vd = arg;
1830
1831 vd->vdev_open_thread = curthread;
1832 vd->vdev_open_error = vdev_open(vd);
1833 vd->vdev_open_thread = NULL;
1834 }
1835
1836 static boolean_t
1837 vdev_uses_zvols(vdev_t *vd)
1838 {
1839 #ifdef _KERNEL
1840 if (zvol_is_zvol(vd->vdev_path))
1841 return (B_TRUE);
1842 #endif
1843
1844 for (int c = 0; c < vd->vdev_children; c++)
1845 if (vdev_uses_zvols(vd->vdev_child[c]))
1846 return (B_TRUE);
1847
1848 return (B_FALSE);
1849 }
1850
1851 /*
1852 * Returns B_TRUE if the passed child should be opened.
1853 */
1854 static boolean_t
1855 vdev_default_open_children_func(vdev_t *vd)
1856 {
1857 (void) vd;
1858 return (B_TRUE);
1859 }
1860
1861 /*
1862 * Open the requested child vdevs. If any of the leaf vdevs are using
1863 * a ZFS volume then do the opens in a single thread. This avoids a
1864 * deadlock when the current thread is holding the spa_namespace_lock.
1865 */
1866 static void
1867 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1868 {
1869 int children = vd->vdev_children;
1870
1871 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1872 children, children, TASKQ_PREPOPULATE);
1873 vd->vdev_nonrot = B_TRUE;
1874
1875 for (int c = 0; c < children; c++) {
1876 vdev_t *cvd = vd->vdev_child[c];
1877
1878 if (open_func(cvd) == B_FALSE)
1879 continue;
1880
1881 if (tq == NULL || vdev_uses_zvols(vd)) {
1882 cvd->vdev_open_error = vdev_open(cvd);
1883 } else {
1884 VERIFY(taskq_dispatch(tq, vdev_open_child,
1885 cvd, TQ_SLEEP) != TASKQID_INVALID);
1886 }
1887
1888 vd->vdev_nonrot &= cvd->vdev_nonrot;
1889 }
1890
1891 if (tq != NULL) {
1892 taskq_wait(tq);
1893 taskq_destroy(tq);
1894 }
1895 }
1896
1897 /*
1898 * Open all child vdevs.
1899 */
1900 void
1901 vdev_open_children(vdev_t *vd)
1902 {
1903 vdev_open_children_impl(vd, vdev_default_open_children_func);
1904 }
1905
1906 /*
1907 * Conditionally open a subset of child vdevs.
1908 */
1909 void
1910 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
1911 {
1912 vdev_open_children_impl(vd, open_func);
1913 }
1914
1915 /*
1916 * Compute the raidz-deflation ratio. Note, we hard-code
1917 * in 128k (1 << 17) because it is the "typical" blocksize.
1918 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1919 * otherwise it would inconsistently account for existing bp's.
1920 */
1921 static void
1922 vdev_set_deflate_ratio(vdev_t *vd)
1923 {
1924 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1925 vd->vdev_deflate_ratio = (1 << 17) /
1926 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1927 }
1928 }
1929
1930 /*
1931 * Choose the best of two ashifts, preferring one between logical ashift
1932 * (absolute minimum) and administrator defined maximum, otherwise take
1933 * the biggest of the two.
1934 */
1935 uint64_t
1936 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
1937 {
1938 if (a > logical && a <= zfs_vdev_max_auto_ashift) {
1939 if (b <= logical || b > zfs_vdev_max_auto_ashift)
1940 return (a);
1941 else
1942 return (MAX(a, b));
1943 } else if (b <= logical || b > zfs_vdev_max_auto_ashift)
1944 return (MAX(a, b));
1945 return (b);
1946 }
1947
1948 /*
1949 * Maximize performance by inflating the configured ashift for top level
1950 * vdevs to be as close to the physical ashift as possible while maintaining
1951 * administrator defined limits and ensuring it doesn't go below the
1952 * logical ashift.
1953 */
1954 static void
1955 vdev_ashift_optimize(vdev_t *vd)
1956 {
1957 ASSERT(vd == vd->vdev_top);
1958
1959 if (vd->vdev_ashift < vd->vdev_physical_ashift &&
1960 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
1961 vd->vdev_ashift = MIN(
1962 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
1963 MAX(zfs_vdev_min_auto_ashift,
1964 vd->vdev_physical_ashift));
1965 } else {
1966 /*
1967 * If the logical and physical ashifts are the same, then
1968 * we ensure that the top-level vdev's ashift is not smaller
1969 * than our minimum ashift value. For the unusual case
1970 * where logical ashift > physical ashift, we can't cap
1971 * the calculated ashift based on max ashift as that
1972 * would cause failures.
1973 * We still check if we need to increase it to match
1974 * the min ashift.
1975 */
1976 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
1977 vd->vdev_ashift);
1978 }
1979 }
1980
1981 /*
1982 * Prepare a virtual device for access.
1983 */
1984 int
1985 vdev_open(vdev_t *vd)
1986 {
1987 spa_t *spa = vd->vdev_spa;
1988 int error;
1989 uint64_t osize = 0;
1990 uint64_t max_osize = 0;
1991 uint64_t asize, max_asize, psize;
1992 uint64_t logical_ashift = 0;
1993 uint64_t physical_ashift = 0;
1994
1995 ASSERT(vd->vdev_open_thread == curthread ||
1996 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1997 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1998 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1999 vd->vdev_state == VDEV_STATE_OFFLINE);
2000
2001 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2002 vd->vdev_cant_read = B_FALSE;
2003 vd->vdev_cant_write = B_FALSE;
2004 vd->vdev_min_asize = vdev_get_min_asize(vd);
2005
2006 /*
2007 * If this vdev is not removed, check its fault status. If it's
2008 * faulted, bail out of the open.
2009 */
2010 if (!vd->vdev_removed && vd->vdev_faulted) {
2011 ASSERT(vd->vdev_children == 0);
2012 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2013 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2014 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2015 vd->vdev_label_aux);
2016 return (SET_ERROR(ENXIO));
2017 } else if (vd->vdev_offline) {
2018 ASSERT(vd->vdev_children == 0);
2019 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
2020 return (SET_ERROR(ENXIO));
2021 }
2022
2023 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
2024 &logical_ashift, &physical_ashift);
2025
2026 /* Keep the device in removed state if unplugged */
2027 if (error == ENOENT && vd->vdev_removed) {
2028 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
2029 VDEV_AUX_NONE);
2030 return (error);
2031 }
2032
2033 /*
2034 * Physical volume size should never be larger than its max size, unless
2035 * the disk has shrunk while we were reading it or the device is buggy
2036 * or damaged: either way it's not safe for use, bail out of the open.
2037 */
2038 if (osize > max_osize) {
2039 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2040 VDEV_AUX_OPEN_FAILED);
2041 return (SET_ERROR(ENXIO));
2042 }
2043
2044 /*
2045 * Reset the vdev_reopening flag so that we actually close
2046 * the vdev on error.
2047 */
2048 vd->vdev_reopening = B_FALSE;
2049 if (zio_injection_enabled && error == 0)
2050 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
2051
2052 if (error) {
2053 if (vd->vdev_removed &&
2054 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
2055 vd->vdev_removed = B_FALSE;
2056
2057 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
2058 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
2059 vd->vdev_stat.vs_aux);
2060 } else {
2061 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2062 vd->vdev_stat.vs_aux);
2063 }
2064 return (error);
2065 }
2066
2067 vd->vdev_removed = B_FALSE;
2068
2069 /*
2070 * Recheck the faulted flag now that we have confirmed that
2071 * the vdev is accessible. If we're faulted, bail.
2072 */
2073 if (vd->vdev_faulted) {
2074 ASSERT(vd->vdev_children == 0);
2075 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2076 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2077 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2078 vd->vdev_label_aux);
2079 return (SET_ERROR(ENXIO));
2080 }
2081
2082 if (vd->vdev_degraded) {
2083 ASSERT(vd->vdev_children == 0);
2084 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2085 VDEV_AUX_ERR_EXCEEDED);
2086 } else {
2087 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
2088 }
2089
2090 /*
2091 * For hole or missing vdevs we just return success.
2092 */
2093 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
2094 return (0);
2095
2096 for (int c = 0; c < vd->vdev_children; c++) {
2097 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
2098 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2099 VDEV_AUX_NONE);
2100 break;
2101 }
2102 }
2103
2104 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
2105 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
2106
2107 if (vd->vdev_children == 0) {
2108 if (osize < SPA_MINDEVSIZE) {
2109 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2110 VDEV_AUX_TOO_SMALL);
2111 return (SET_ERROR(EOVERFLOW));
2112 }
2113 psize = osize;
2114 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2115 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2116 VDEV_LABEL_END_SIZE);
2117 } else {
2118 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2119 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2120 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2121 VDEV_AUX_TOO_SMALL);
2122 return (SET_ERROR(EOVERFLOW));
2123 }
2124 psize = 0;
2125 asize = osize;
2126 max_asize = max_osize;
2127 }
2128
2129 /*
2130 * If the vdev was expanded, record this so that we can re-create the
2131 * uberblock rings in labels {2,3}, during the next sync.
2132 */
2133 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2134 vd->vdev_copy_uberblocks = B_TRUE;
2135
2136 vd->vdev_psize = psize;
2137
2138 /*
2139 * Make sure the allocatable size hasn't shrunk too much.
2140 */
2141 if (asize < vd->vdev_min_asize) {
2142 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2143 VDEV_AUX_BAD_LABEL);
2144 return (SET_ERROR(EINVAL));
2145 }
2146
2147 /*
2148 * We can always set the logical/physical ashift members since
2149 * their values are only used to calculate the vdev_ashift when
2150 * the device is first added to the config. These values should
2151 * not be used for anything else since they may change whenever
2152 * the device is reopened and we don't store them in the label.
2153 */
2154 vd->vdev_physical_ashift =
2155 MAX(physical_ashift, vd->vdev_physical_ashift);
2156 vd->vdev_logical_ashift = MAX(logical_ashift,
2157 vd->vdev_logical_ashift);
2158
2159 if (vd->vdev_asize == 0) {
2160 /*
2161 * This is the first-ever open, so use the computed values.
2162 * For compatibility, a different ashift can be requested.
2163 */
2164 vd->vdev_asize = asize;
2165 vd->vdev_max_asize = max_asize;
2166
2167 /*
2168 * If the vdev_ashift was not overridden at creation time,
2169 * then set it the logical ashift and optimize the ashift.
2170 */
2171 if (vd->vdev_ashift == 0) {
2172 vd->vdev_ashift = vd->vdev_logical_ashift;
2173
2174 if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2175 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2176 VDEV_AUX_ASHIFT_TOO_BIG);
2177 return (SET_ERROR(EDOM));
2178 }
2179
2180 if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE)
2181 vdev_ashift_optimize(vd);
2182 vd->vdev_attaching = B_FALSE;
2183 }
2184 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2185 vd->vdev_ashift > ASHIFT_MAX)) {
2186 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2187 VDEV_AUX_BAD_ASHIFT);
2188 return (SET_ERROR(EDOM));
2189 }
2190 } else {
2191 /*
2192 * Make sure the alignment required hasn't increased.
2193 */
2194 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2195 vd->vdev_ops->vdev_op_leaf) {
2196 (void) zfs_ereport_post(
2197 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2198 spa, vd, NULL, NULL, 0);
2199 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2200 VDEV_AUX_BAD_LABEL);
2201 return (SET_ERROR(EDOM));
2202 }
2203 vd->vdev_max_asize = max_asize;
2204 }
2205
2206 /*
2207 * If all children are healthy we update asize if either:
2208 * The asize has increased, due to a device expansion caused by dynamic
2209 * LUN growth or vdev replacement, and automatic expansion is enabled;
2210 * making the additional space available.
2211 *
2212 * The asize has decreased, due to a device shrink usually caused by a
2213 * vdev replace with a smaller device. This ensures that calculations
2214 * based of max_asize and asize e.g. esize are always valid. It's safe
2215 * to do this as we've already validated that asize is greater than
2216 * vdev_min_asize.
2217 */
2218 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2219 ((asize > vd->vdev_asize &&
2220 (vd->vdev_expanding || spa->spa_autoexpand)) ||
2221 (asize < vd->vdev_asize)))
2222 vd->vdev_asize = asize;
2223
2224 vdev_set_min_asize(vd);
2225
2226 /*
2227 * Ensure we can issue some IO before declaring the
2228 * vdev open for business.
2229 */
2230 if (vd->vdev_ops->vdev_op_leaf &&
2231 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2232 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2233 VDEV_AUX_ERR_EXCEEDED);
2234 return (error);
2235 }
2236
2237 /*
2238 * Track the minimum allocation size.
2239 */
2240 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2241 vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2242 uint64_t min_alloc = vdev_get_min_alloc(vd);
2243 vdev_spa_set_alloc(spa, min_alloc);
2244 }
2245
2246 /*
2247 * If this is a leaf vdev, assess whether a resilver is needed.
2248 * But don't do this if we are doing a reopen for a scrub, since
2249 * this would just restart the scrub we are already doing.
2250 */
2251 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2252 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2253
2254 return (0);
2255 }
2256
2257 static void
2258 vdev_validate_child(void *arg)
2259 {
2260 vdev_t *vd = arg;
2261
2262 vd->vdev_validate_thread = curthread;
2263 vd->vdev_validate_error = vdev_validate(vd);
2264 vd->vdev_validate_thread = NULL;
2265 }
2266
2267 /*
2268 * Called once the vdevs are all opened, this routine validates the label
2269 * contents. This needs to be done before vdev_load() so that we don't
2270 * inadvertently do repair I/Os to the wrong device.
2271 *
2272 * This function will only return failure if one of the vdevs indicates that it
2273 * has since been destroyed or exported. This is only possible if
2274 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
2275 * will be updated but the function will return 0.
2276 */
2277 int
2278 vdev_validate(vdev_t *vd)
2279 {
2280 spa_t *spa = vd->vdev_spa;
2281 taskq_t *tq = NULL;
2282 nvlist_t *label;
2283 uint64_t guid = 0, aux_guid = 0, top_guid;
2284 uint64_t state;
2285 nvlist_t *nvl;
2286 uint64_t txg;
2287 int children = vd->vdev_children;
2288
2289 if (vdev_validate_skip)
2290 return (0);
2291
2292 if (children > 0) {
2293 tq = taskq_create("vdev_validate", children, minclsyspri,
2294 children, children, TASKQ_PREPOPULATE);
2295 }
2296
2297 for (uint64_t c = 0; c < children; c++) {
2298 vdev_t *cvd = vd->vdev_child[c];
2299
2300 if (tq == NULL || vdev_uses_zvols(cvd)) {
2301 vdev_validate_child(cvd);
2302 } else {
2303 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2304 TQ_SLEEP) != TASKQID_INVALID);
2305 }
2306 }
2307 if (tq != NULL) {
2308 taskq_wait(tq);
2309 taskq_destroy(tq);
2310 }
2311 for (int c = 0; c < children; c++) {
2312 int error = vd->vdev_child[c]->vdev_validate_error;
2313
2314 if (error != 0)
2315 return (SET_ERROR(EBADF));
2316 }
2317
2318
2319 /*
2320 * If the device has already failed, or was marked offline, don't do
2321 * any further validation. Otherwise, label I/O will fail and we will
2322 * overwrite the previous state.
2323 */
2324 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2325 return (0);
2326
2327 /*
2328 * If we are performing an extreme rewind, we allow for a label that
2329 * was modified at a point after the current txg.
2330 * If config lock is not held do not check for the txg. spa_sync could
2331 * be updating the vdev's label before updating spa_last_synced_txg.
2332 */
2333 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2334 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2335 txg = UINT64_MAX;
2336 else
2337 txg = spa_last_synced_txg(spa);
2338
2339 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2340 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2341 VDEV_AUX_BAD_LABEL);
2342 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2343 "txg %llu", (u_longlong_t)txg);
2344 return (0);
2345 }
2346
2347 /*
2348 * Determine if this vdev has been split off into another
2349 * pool. If so, then refuse to open it.
2350 */
2351 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2352 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2353 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2354 VDEV_AUX_SPLIT_POOL);
2355 nvlist_free(label);
2356 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2357 return (0);
2358 }
2359
2360 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2361 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2362 VDEV_AUX_CORRUPT_DATA);
2363 nvlist_free(label);
2364 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2365 ZPOOL_CONFIG_POOL_GUID);
2366 return (0);
2367 }
2368
2369 /*
2370 * If config is not trusted then ignore the spa guid check. This is
2371 * necessary because if the machine crashed during a re-guid the new
2372 * guid might have been written to all of the vdev labels, but not the
2373 * cached config. The check will be performed again once we have the
2374 * trusted config from the MOS.
2375 */
2376 if (spa->spa_trust_config && guid != spa_guid(spa)) {
2377 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2378 VDEV_AUX_CORRUPT_DATA);
2379 nvlist_free(label);
2380 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2381 "match config (%llu != %llu)", (u_longlong_t)guid,
2382 (u_longlong_t)spa_guid(spa));
2383 return (0);
2384 }
2385
2386 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2387 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2388 &aux_guid) != 0)
2389 aux_guid = 0;
2390
2391 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2392 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2393 VDEV_AUX_CORRUPT_DATA);
2394 nvlist_free(label);
2395 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2396 ZPOOL_CONFIG_GUID);
2397 return (0);
2398 }
2399
2400 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2401 != 0) {
2402 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2403 VDEV_AUX_CORRUPT_DATA);
2404 nvlist_free(label);
2405 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2406 ZPOOL_CONFIG_TOP_GUID);
2407 return (0);
2408 }
2409
2410 /*
2411 * If this vdev just became a top-level vdev because its sibling was
2412 * detached, it will have adopted the parent's vdev guid -- but the
2413 * label may or may not be on disk yet. Fortunately, either version
2414 * of the label will have the same top guid, so if we're a top-level
2415 * vdev, we can safely compare to that instead.
2416 * However, if the config comes from a cachefile that failed to update
2417 * after the detach, a top-level vdev will appear as a non top-level
2418 * vdev in the config. Also relax the constraints if we perform an
2419 * extreme rewind.
2420 *
2421 * If we split this vdev off instead, then we also check the
2422 * original pool's guid. We don't want to consider the vdev
2423 * corrupt if it is partway through a split operation.
2424 */
2425 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2426 boolean_t mismatch = B_FALSE;
2427 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2428 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2429 mismatch = B_TRUE;
2430 } else {
2431 if (vd->vdev_guid != top_guid &&
2432 vd->vdev_top->vdev_guid != guid)
2433 mismatch = B_TRUE;
2434 }
2435
2436 if (mismatch) {
2437 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2438 VDEV_AUX_CORRUPT_DATA);
2439 nvlist_free(label);
2440 vdev_dbgmsg(vd, "vdev_validate: config guid "
2441 "doesn't match label guid");
2442 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2443 (u_longlong_t)vd->vdev_guid,
2444 (u_longlong_t)vd->vdev_top->vdev_guid);
2445 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2446 "aux_guid %llu", (u_longlong_t)guid,
2447 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2448 return (0);
2449 }
2450 }
2451
2452 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2453 &state) != 0) {
2454 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2455 VDEV_AUX_CORRUPT_DATA);
2456 nvlist_free(label);
2457 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2458 ZPOOL_CONFIG_POOL_STATE);
2459 return (0);
2460 }
2461
2462 nvlist_free(label);
2463
2464 /*
2465 * If this is a verbatim import, no need to check the
2466 * state of the pool.
2467 */
2468 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2469 spa_load_state(spa) == SPA_LOAD_OPEN &&
2470 state != POOL_STATE_ACTIVE) {
2471 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2472 "for spa %s", (u_longlong_t)state, spa->spa_name);
2473 return (SET_ERROR(EBADF));
2474 }
2475
2476 /*
2477 * If we were able to open and validate a vdev that was
2478 * previously marked permanently unavailable, clear that state
2479 * now.
2480 */
2481 if (vd->vdev_not_present)
2482 vd->vdev_not_present = 0;
2483
2484 return (0);
2485 }
2486
2487 static void
2488 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2489 {
2490 char *old, *new;
2491 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2492 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2493 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2494 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2495 dvd->vdev_path, svd->vdev_path);
2496 spa_strfree(dvd->vdev_path);
2497 dvd->vdev_path = spa_strdup(svd->vdev_path);
2498 }
2499 } else if (svd->vdev_path != NULL) {
2500 dvd->vdev_path = spa_strdup(svd->vdev_path);
2501 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2502 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2503 }
2504
2505 /*
2506 * Our enclosure sysfs path may have changed between imports
2507 */
2508 old = dvd->vdev_enc_sysfs_path;
2509 new = svd->vdev_enc_sysfs_path;
2510 if ((old != NULL && new == NULL) ||
2511 (old == NULL && new != NULL) ||
2512 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2513 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2514 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2515 old, new);
2516
2517 if (dvd->vdev_enc_sysfs_path)
2518 spa_strfree(dvd->vdev_enc_sysfs_path);
2519
2520 if (svd->vdev_enc_sysfs_path) {
2521 dvd->vdev_enc_sysfs_path = spa_strdup(
2522 svd->vdev_enc_sysfs_path);
2523 } else {
2524 dvd->vdev_enc_sysfs_path = NULL;
2525 }
2526 }
2527 }
2528
2529 /*
2530 * Recursively copy vdev paths from one vdev to another. Source and destination
2531 * vdev trees must have same geometry otherwise return error. Intended to copy
2532 * paths from userland config into MOS config.
2533 */
2534 int
2535 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2536 {
2537 if ((svd->vdev_ops == &vdev_missing_ops) ||
2538 (svd->vdev_ishole && dvd->vdev_ishole) ||
2539 (dvd->vdev_ops == &vdev_indirect_ops))
2540 return (0);
2541
2542 if (svd->vdev_ops != dvd->vdev_ops) {
2543 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2544 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2545 return (SET_ERROR(EINVAL));
2546 }
2547
2548 if (svd->vdev_guid != dvd->vdev_guid) {
2549 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2550 "%llu)", (u_longlong_t)svd->vdev_guid,
2551 (u_longlong_t)dvd->vdev_guid);
2552 return (SET_ERROR(EINVAL));
2553 }
2554
2555 if (svd->vdev_children != dvd->vdev_children) {
2556 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2557 "%llu != %llu", (u_longlong_t)svd->vdev_children,
2558 (u_longlong_t)dvd->vdev_children);
2559 return (SET_ERROR(EINVAL));
2560 }
2561
2562 for (uint64_t i = 0; i < svd->vdev_children; i++) {
2563 int error = vdev_copy_path_strict(svd->vdev_child[i],
2564 dvd->vdev_child[i]);
2565 if (error != 0)
2566 return (error);
2567 }
2568
2569 if (svd->vdev_ops->vdev_op_leaf)
2570 vdev_copy_path_impl(svd, dvd);
2571
2572 return (0);
2573 }
2574
2575 static void
2576 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2577 {
2578 ASSERT(stvd->vdev_top == stvd);
2579 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2580
2581 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2582 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2583 }
2584
2585 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2586 return;
2587
2588 /*
2589 * The idea here is that while a vdev can shift positions within
2590 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2591 * step outside of it.
2592 */
2593 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2594
2595 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2596 return;
2597
2598 ASSERT(vd->vdev_ops->vdev_op_leaf);
2599
2600 vdev_copy_path_impl(vd, dvd);
2601 }
2602
2603 /*
2604 * Recursively copy vdev paths from one root vdev to another. Source and
2605 * destination vdev trees may differ in geometry. For each destination leaf
2606 * vdev, search a vdev with the same guid and top vdev id in the source.
2607 * Intended to copy paths from userland config into MOS config.
2608 */
2609 void
2610 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2611 {
2612 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2613 ASSERT(srvd->vdev_ops == &vdev_root_ops);
2614 ASSERT(drvd->vdev_ops == &vdev_root_ops);
2615
2616 for (uint64_t i = 0; i < children; i++) {
2617 vdev_copy_path_search(srvd->vdev_child[i],
2618 drvd->vdev_child[i]);
2619 }
2620 }
2621
2622 /*
2623 * Close a virtual device.
2624 */
2625 void
2626 vdev_close(vdev_t *vd)
2627 {
2628 vdev_t *pvd = vd->vdev_parent;
2629 spa_t *spa __maybe_unused = vd->vdev_spa;
2630
2631 ASSERT(vd != NULL);
2632 ASSERT(vd->vdev_open_thread == curthread ||
2633 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2634
2635 /*
2636 * If our parent is reopening, then we are as well, unless we are
2637 * going offline.
2638 */
2639 if (pvd != NULL && pvd->vdev_reopening)
2640 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2641
2642 vd->vdev_ops->vdev_op_close(vd);
2643
2644 /*
2645 * We record the previous state before we close it, so that if we are
2646 * doing a reopen(), we don't generate FMA ereports if we notice that
2647 * it's still faulted.
2648 */
2649 vd->vdev_prevstate = vd->vdev_state;
2650
2651 if (vd->vdev_offline)
2652 vd->vdev_state = VDEV_STATE_OFFLINE;
2653 else
2654 vd->vdev_state = VDEV_STATE_CLOSED;
2655 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2656 }
2657
2658 void
2659 vdev_hold(vdev_t *vd)
2660 {
2661 spa_t *spa = vd->vdev_spa;
2662
2663 ASSERT(spa_is_root(spa));
2664 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2665 return;
2666
2667 for (int c = 0; c < vd->vdev_children; c++)
2668 vdev_hold(vd->vdev_child[c]);
2669
2670 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2671 vd->vdev_ops->vdev_op_hold(vd);
2672 }
2673
2674 void
2675 vdev_rele(vdev_t *vd)
2676 {
2677 ASSERT(spa_is_root(vd->vdev_spa));
2678 for (int c = 0; c < vd->vdev_children; c++)
2679 vdev_rele(vd->vdev_child[c]);
2680
2681 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2682 vd->vdev_ops->vdev_op_rele(vd);
2683 }
2684
2685 /*
2686 * Reopen all interior vdevs and any unopened leaves. We don't actually
2687 * reopen leaf vdevs which had previously been opened as they might deadlock
2688 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
2689 * If the leaf has never been opened then open it, as usual.
2690 */
2691 void
2692 vdev_reopen(vdev_t *vd)
2693 {
2694 spa_t *spa = vd->vdev_spa;
2695
2696 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2697
2698 /* set the reopening flag unless we're taking the vdev offline */
2699 vd->vdev_reopening = !vd->vdev_offline;
2700 vdev_close(vd);
2701 (void) vdev_open(vd);
2702
2703 /*
2704 * Call vdev_validate() here to make sure we have the same device.
2705 * Otherwise, a device with an invalid label could be successfully
2706 * opened in response to vdev_reopen().
2707 */
2708 if (vd->vdev_aux) {
2709 (void) vdev_validate_aux(vd);
2710 if (vdev_readable(vd) && vdev_writeable(vd) &&
2711 vd->vdev_aux == &spa->spa_l2cache) {
2712 /*
2713 * In case the vdev is present we should evict all ARC
2714 * buffers and pointers to log blocks and reclaim their
2715 * space before restoring its contents to L2ARC.
2716 */
2717 if (l2arc_vdev_present(vd)) {
2718 l2arc_rebuild_vdev(vd, B_TRUE);
2719 } else {
2720 l2arc_add_vdev(spa, vd);
2721 }
2722 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2723 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2724 }
2725 } else {
2726 (void) vdev_validate(vd);
2727 }
2728
2729 /*
2730 * Recheck if resilver is still needed and cancel any
2731 * scheduled resilver if resilver is unneeded.
2732 */
2733 if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) &&
2734 spa->spa_async_tasks & SPA_ASYNC_RESILVER) {
2735 mutex_enter(&spa->spa_async_lock);
2736 spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER;
2737 mutex_exit(&spa->spa_async_lock);
2738 }
2739
2740 /*
2741 * Reassess parent vdev's health.
2742 */
2743 vdev_propagate_state(vd);
2744 }
2745
2746 int
2747 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2748 {
2749 int error;
2750
2751 /*
2752 * Normally, partial opens (e.g. of a mirror) are allowed.
2753 * For a create, however, we want to fail the request if
2754 * there are any components we can't open.
2755 */
2756 error = vdev_open(vd);
2757
2758 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2759 vdev_close(vd);
2760 return (error ? error : SET_ERROR(ENXIO));
2761 }
2762
2763 /*
2764 * Recursively load DTLs and initialize all labels.
2765 */
2766 if ((error = vdev_dtl_load(vd)) != 0 ||
2767 (error = vdev_label_init(vd, txg, isreplacing ?
2768 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2769 vdev_close(vd);
2770 return (error);
2771 }
2772
2773 return (0);
2774 }
2775
2776 void
2777 vdev_metaslab_set_size(vdev_t *vd)
2778 {
2779 uint64_t asize = vd->vdev_asize;
2780 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2781 uint64_t ms_shift;
2782
2783 /*
2784 * There are two dimensions to the metaslab sizing calculation:
2785 * the size of the metaslab and the count of metaslabs per vdev.
2786 *
2787 * The default values used below are a good balance between memory
2788 * usage (larger metaslab size means more memory needed for loaded
2789 * metaslabs; more metaslabs means more memory needed for the
2790 * metaslab_t structs), metaslab load time (larger metaslabs take
2791 * longer to load), and metaslab sync time (more metaslabs means
2792 * more time spent syncing all of them).
2793 *
2794 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2795 * The range of the dimensions are as follows:
2796 *
2797 * 2^29 <= ms_size <= 2^34
2798 * 16 <= ms_count <= 131,072
2799 *
2800 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2801 * at least 512MB (2^29) to minimize fragmentation effects when
2802 * testing with smaller devices. However, the count constraint
2803 * of at least 16 metaslabs will override this minimum size goal.
2804 *
2805 * On the upper end of vdev sizes, we aim for a maximum metaslab
2806 * size of 16GB. However, we will cap the total count to 2^17
2807 * metaslabs to keep our memory footprint in check and let the
2808 * metaslab size grow from there if that limit is hit.
2809 *
2810 * The net effect of applying above constrains is summarized below.
2811 *
2812 * vdev size metaslab count
2813 * --------------|-----------------
2814 * < 8GB ~16
2815 * 8GB - 100GB one per 512MB
2816 * 100GB - 3TB ~200
2817 * 3TB - 2PB one per 16GB
2818 * > 2PB ~131,072
2819 * --------------------------------
2820 *
2821 * Finally, note that all of the above calculate the initial
2822 * number of metaslabs. Expanding a top-level vdev will result
2823 * in additional metaslabs being allocated making it possible
2824 * to exceed the zfs_vdev_ms_count_limit.
2825 */
2826
2827 if (ms_count < zfs_vdev_min_ms_count)
2828 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2829 else if (ms_count > zfs_vdev_default_ms_count)
2830 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2831 else
2832 ms_shift = zfs_vdev_default_ms_shift;
2833
2834 if (ms_shift < SPA_MAXBLOCKSHIFT) {
2835 ms_shift = SPA_MAXBLOCKSHIFT;
2836 } else if (ms_shift > zfs_vdev_max_ms_shift) {
2837 ms_shift = zfs_vdev_max_ms_shift;
2838 /* cap the total count to constrain memory footprint */
2839 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2840 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2841 }
2842
2843 vd->vdev_ms_shift = ms_shift;
2844 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2845 }
2846
2847 void
2848 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2849 {
2850 ASSERT(vd == vd->vdev_top);
2851 /* indirect vdevs don't have metaslabs or dtls */
2852 ASSERT(vdev_is_concrete(vd) || flags == 0);
2853 ASSERT(ISP2(flags));
2854 ASSERT(spa_writeable(vd->vdev_spa));
2855
2856 if (flags & VDD_METASLAB)
2857 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2858
2859 if (flags & VDD_DTL)
2860 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2861
2862 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2863 }
2864
2865 void
2866 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2867 {
2868 for (int c = 0; c < vd->vdev_children; c++)
2869 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2870
2871 if (vd->vdev_ops->vdev_op_leaf)
2872 vdev_dirty(vd->vdev_top, flags, vd, txg);
2873 }
2874
2875 /*
2876 * DTLs.
2877 *
2878 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2879 * the vdev has less than perfect replication. There are four kinds of DTL:
2880 *
2881 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2882 *
2883 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2884 *
2885 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2886 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2887 * txgs that was scrubbed.
2888 *
2889 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2890 * persistent errors or just some device being offline.
2891 * Unlike the other three, the DTL_OUTAGE map is not generally
2892 * maintained; it's only computed when needed, typically to
2893 * determine whether a device can be detached.
2894 *
2895 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2896 * either has the data or it doesn't.
2897 *
2898 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2899 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2900 * if any child is less than fully replicated, then so is its parent.
2901 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2902 * comprising only those txgs which appear in 'maxfaults' or more children;
2903 * those are the txgs we don't have enough replication to read. For example,
2904 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2905 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2906 * two child DTL_MISSING maps.
2907 *
2908 * It should be clear from the above that to compute the DTLs and outage maps
2909 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2910 * Therefore, that is all we keep on disk. When loading the pool, or after
2911 * a configuration change, we generate all other DTLs from first principles.
2912 */
2913 void
2914 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2915 {
2916 range_tree_t *rt = vd->vdev_dtl[t];
2917
2918 ASSERT(t < DTL_TYPES);
2919 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2920 ASSERT(spa_writeable(vd->vdev_spa));
2921
2922 mutex_enter(&vd->vdev_dtl_lock);
2923 if (!range_tree_contains(rt, txg, size))
2924 range_tree_add(rt, txg, size);
2925 mutex_exit(&vd->vdev_dtl_lock);
2926 }
2927
2928 boolean_t
2929 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2930 {
2931 range_tree_t *rt = vd->vdev_dtl[t];
2932 boolean_t dirty = B_FALSE;
2933
2934 ASSERT(t < DTL_TYPES);
2935 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2936
2937 /*
2938 * While we are loading the pool, the DTLs have not been loaded yet.
2939 * This isn't a problem but it can result in devices being tried
2940 * which are known to not have the data. In which case, the import
2941 * is relying on the checksum to ensure that we get the right data.
2942 * Note that while importing we are only reading the MOS, which is
2943 * always checksummed.
2944 */
2945 mutex_enter(&vd->vdev_dtl_lock);
2946 if (!range_tree_is_empty(rt))
2947 dirty = range_tree_contains(rt, txg, size);
2948 mutex_exit(&vd->vdev_dtl_lock);
2949
2950 return (dirty);
2951 }
2952
2953 boolean_t
2954 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2955 {
2956 range_tree_t *rt = vd->vdev_dtl[t];
2957 boolean_t empty;
2958
2959 mutex_enter(&vd->vdev_dtl_lock);
2960 empty = range_tree_is_empty(rt);
2961 mutex_exit(&vd->vdev_dtl_lock);
2962
2963 return (empty);
2964 }
2965
2966 /*
2967 * Check if the txg falls within the range which must be
2968 * resilvered. DVAs outside this range can always be skipped.
2969 */
2970 boolean_t
2971 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2972 uint64_t phys_birth)
2973 {
2974 (void) dva, (void) psize;
2975
2976 /* Set by sequential resilver. */
2977 if (phys_birth == TXG_UNKNOWN)
2978 return (B_TRUE);
2979
2980 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
2981 }
2982
2983 /*
2984 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
2985 */
2986 boolean_t
2987 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2988 uint64_t phys_birth)
2989 {
2990 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2991
2992 if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2993 vd->vdev_ops->vdev_op_leaf)
2994 return (B_TRUE);
2995
2996 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
2997 phys_birth));
2998 }
2999
3000 /*
3001 * Returns the lowest txg in the DTL range.
3002 */
3003 static uint64_t
3004 vdev_dtl_min(vdev_t *vd)
3005 {
3006 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3007 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3008 ASSERT0(vd->vdev_children);
3009
3010 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
3011 }
3012
3013 /*
3014 * Returns the highest txg in the DTL.
3015 */
3016 static uint64_t
3017 vdev_dtl_max(vdev_t *vd)
3018 {
3019 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3020 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3021 ASSERT0(vd->vdev_children);
3022
3023 return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
3024 }
3025
3026 /*
3027 * Determine if a resilvering vdev should remove any DTL entries from
3028 * its range. If the vdev was resilvering for the entire duration of the
3029 * scan then it should excise that range from its DTLs. Otherwise, this
3030 * vdev is considered partially resilvered and should leave its DTL
3031 * entries intact. The comment in vdev_dtl_reassess() describes how we
3032 * excise the DTLs.
3033 */
3034 static boolean_t
3035 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
3036 {
3037 ASSERT0(vd->vdev_children);
3038
3039 if (vd->vdev_state < VDEV_STATE_DEGRADED)
3040 return (B_FALSE);
3041
3042 if (vd->vdev_resilver_deferred)
3043 return (B_FALSE);
3044
3045 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
3046 return (B_TRUE);
3047
3048 if (rebuild_done) {
3049 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3050 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
3051
3052 /* Rebuild not initiated by attach */
3053 if (vd->vdev_rebuild_txg == 0)
3054 return (B_TRUE);
3055
3056 /*
3057 * When a rebuild completes without error then all missing data
3058 * up to the rebuild max txg has been reconstructed and the DTL
3059 * is eligible for excision.
3060 */
3061 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
3062 vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
3063 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
3064 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
3065 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
3066 return (B_TRUE);
3067 }
3068 } else {
3069 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3070 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
3071
3072 /* Resilver not initiated by attach */
3073 if (vd->vdev_resilver_txg == 0)
3074 return (B_TRUE);
3075
3076 /*
3077 * When a resilver is initiated the scan will assign the
3078 * scn_max_txg value to the highest txg value that exists
3079 * in all DTLs. If this device's max DTL is not part of this
3080 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3081 * then it is not eligible for excision.
3082 */
3083 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
3084 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
3085 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
3086 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
3087 return (B_TRUE);
3088 }
3089 }
3090
3091 return (B_FALSE);
3092 }
3093
3094 /*
3095 * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3096 * write operations will be issued to the pool.
3097 */
3098 void
3099 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3100 boolean_t scrub_done, boolean_t rebuild_done)
3101 {
3102 spa_t *spa = vd->vdev_spa;
3103 avl_tree_t reftree;
3104 int minref;
3105
3106 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3107
3108 for (int c = 0; c < vd->vdev_children; c++)
3109 vdev_dtl_reassess(vd->vdev_child[c], txg,
3110 scrub_txg, scrub_done, rebuild_done);
3111
3112 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3113 return;
3114
3115 if (vd->vdev_ops->vdev_op_leaf) {
3116 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3117 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3118 boolean_t check_excise = B_FALSE;
3119 boolean_t wasempty = B_TRUE;
3120
3121 mutex_enter(&vd->vdev_dtl_lock);
3122
3123 /*
3124 * If requested, pretend the scan or rebuild completed cleanly.
3125 */
3126 if (zfs_scan_ignore_errors) {
3127 if (scn != NULL)
3128 scn->scn_phys.scn_errors = 0;
3129 if (vr != NULL)
3130 vr->vr_rebuild_phys.vrp_errors = 0;
3131 }
3132
3133 if (scrub_txg != 0 &&
3134 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3135 wasempty = B_FALSE;
3136 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3137 "dtl:%llu/%llu errors:%llu",
3138 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3139 (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3140 (u_longlong_t)vdev_dtl_min(vd),
3141 (u_longlong_t)vdev_dtl_max(vd),
3142 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3143 }
3144
3145 /*
3146 * If we've completed a scrub/resilver or a rebuild cleanly
3147 * then determine if this vdev should remove any DTLs. We
3148 * only want to excise regions on vdevs that were available
3149 * during the entire duration of this scan.
3150 */
3151 if (rebuild_done &&
3152 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3153 check_excise = B_TRUE;
3154 } else {
3155 if (spa->spa_scrub_started ||
3156 (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3157 check_excise = B_TRUE;
3158 }
3159 }
3160
3161 if (scrub_txg && check_excise &&
3162 vdev_dtl_should_excise(vd, rebuild_done)) {
3163 /*
3164 * We completed a scrub, resilver or rebuild up to
3165 * scrub_txg. If we did it without rebooting, then
3166 * the scrub dtl will be valid, so excise the old
3167 * region and fold in the scrub dtl. Otherwise,
3168 * leave the dtl as-is if there was an error.
3169 *
3170 * There's little trick here: to excise the beginning
3171 * of the DTL_MISSING map, we put it into a reference
3172 * tree and then add a segment with refcnt -1 that
3173 * covers the range [0, scrub_txg). This means
3174 * that each txg in that range has refcnt -1 or 0.
3175 * We then add DTL_SCRUB with a refcnt of 2, so that
3176 * entries in the range [0, scrub_txg) will have a
3177 * positive refcnt -- either 1 or 2. We then convert
3178 * the reference tree into the new DTL_MISSING map.
3179 */
3180 space_reftree_create(&reftree);
3181 space_reftree_add_map(&reftree,
3182 vd->vdev_dtl[DTL_MISSING], 1);
3183 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3184 space_reftree_add_map(&reftree,
3185 vd->vdev_dtl[DTL_SCRUB], 2);
3186 space_reftree_generate_map(&reftree,
3187 vd->vdev_dtl[DTL_MISSING], 1);
3188 space_reftree_destroy(&reftree);
3189
3190 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3191 zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3192 (u_longlong_t)vdev_dtl_min(vd),
3193 (u_longlong_t)vdev_dtl_max(vd));
3194 } else if (!wasempty) {
3195 zfs_dbgmsg("DTL_MISSING is now empty");
3196 }
3197 }
3198 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3199 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3200 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3201 if (scrub_done)
3202 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
3203 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3204 if (!vdev_readable(vd))
3205 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3206 else
3207 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3208 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3209
3210 /*
3211 * If the vdev was resilvering or rebuilding and no longer
3212 * has any DTLs then reset the appropriate flag and dirty
3213 * the top level so that we persist the change.
3214 */
3215 if (txg != 0 &&
3216 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3217 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3218 if (vd->vdev_rebuild_txg != 0) {
3219 vd->vdev_rebuild_txg = 0;
3220 vdev_config_dirty(vd->vdev_top);
3221 } else if (vd->vdev_resilver_txg != 0) {
3222 vd->vdev_resilver_txg = 0;
3223 vdev_config_dirty(vd->vdev_top);
3224 }
3225 }
3226
3227 mutex_exit(&vd->vdev_dtl_lock);
3228
3229 if (txg != 0)
3230 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3231 return;
3232 }
3233
3234 mutex_enter(&vd->vdev_dtl_lock);
3235 for (int t = 0; t < DTL_TYPES; t++) {
3236 /* account for child's outage in parent's missing map */
3237 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3238 if (t == DTL_SCRUB)
3239 continue; /* leaf vdevs only */
3240 if (t == DTL_PARTIAL)
3241 minref = 1; /* i.e. non-zero */
3242 else if (vdev_get_nparity(vd) != 0)
3243 minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */
3244 else
3245 minref = vd->vdev_children; /* any kind of mirror */
3246 space_reftree_create(&reftree);
3247 for (int c = 0; c < vd->vdev_children; c++) {
3248 vdev_t *cvd = vd->vdev_child[c];
3249 mutex_enter(&cvd->vdev_dtl_lock);
3250 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
3251 mutex_exit(&cvd->vdev_dtl_lock);
3252 }
3253 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
3254 space_reftree_destroy(&reftree);
3255 }
3256 mutex_exit(&vd->vdev_dtl_lock);
3257 }
3258
3259 /*
3260 * Iterate over all the vdevs except spare, and post kobj events
3261 */
3262 void
3263 vdev_post_kobj_evt(vdev_t *vd)
3264 {
3265 if (vd->vdev_ops->vdev_op_kobj_evt_post &&
3266 vd->vdev_kobj_flag == B_FALSE) {
3267 vd->vdev_kobj_flag = B_TRUE;
3268 vd->vdev_ops->vdev_op_kobj_evt_post(vd);
3269 }
3270
3271 for (int c = 0; c < vd->vdev_children; c++)
3272 vdev_post_kobj_evt(vd->vdev_child[c]);
3273 }
3274
3275 /*
3276 * Iterate over all the vdevs except spare, and clear kobj events
3277 */
3278 void
3279 vdev_clear_kobj_evt(vdev_t *vd)
3280 {
3281 vd->vdev_kobj_flag = B_FALSE;
3282
3283 for (int c = 0; c < vd->vdev_children; c++)
3284 vdev_clear_kobj_evt(vd->vdev_child[c]);
3285 }
3286
3287 int
3288 vdev_dtl_load(vdev_t *vd)
3289 {
3290 spa_t *spa = vd->vdev_spa;
3291 objset_t *mos = spa->spa_meta_objset;
3292 range_tree_t *rt;
3293 int error = 0;
3294
3295 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3296 ASSERT(vdev_is_concrete(vd));
3297
3298 /*
3299 * If the dtl cannot be sync'd there is no need to open it.
3300 */
3301 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3302 return (0);
3303
3304 error = space_map_open(&vd->vdev_dtl_sm, mos,
3305 vd->vdev_dtl_object, 0, -1ULL, 0);
3306 if (error)
3307 return (error);
3308 ASSERT(vd->vdev_dtl_sm != NULL);
3309
3310 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3311 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3312 if (error == 0) {
3313 mutex_enter(&vd->vdev_dtl_lock);
3314 range_tree_walk(rt, range_tree_add,
3315 vd->vdev_dtl[DTL_MISSING]);
3316 mutex_exit(&vd->vdev_dtl_lock);
3317 }
3318
3319 range_tree_vacate(rt, NULL, NULL);
3320 range_tree_destroy(rt);
3321
3322 return (error);
3323 }
3324
3325 for (int c = 0; c < vd->vdev_children; c++) {
3326 error = vdev_dtl_load(vd->vdev_child[c]);
3327 if (error != 0)
3328 break;
3329 }
3330
3331 return (error);
3332 }
3333
3334 static void
3335 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3336 {
3337 spa_t *spa = vd->vdev_spa;
3338 objset_t *mos = spa->spa_meta_objset;
3339 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3340 const char *string;
3341
3342 ASSERT(alloc_bias != VDEV_BIAS_NONE);
3343
3344 string =
3345 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3346 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3347 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3348
3349 ASSERT(string != NULL);
3350 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3351 1, strlen(string) + 1, string, tx));
3352
3353 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3354 spa_activate_allocation_classes(spa, tx);
3355 }
3356 }
3357
3358 void
3359 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3360 {
3361 spa_t *spa = vd->vdev_spa;
3362
3363 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3364 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3365 zapobj, tx));
3366 }
3367
3368 uint64_t
3369 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3370 {
3371 spa_t *spa = vd->vdev_spa;
3372 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3373 DMU_OT_NONE, 0, tx);
3374
3375 ASSERT(zap != 0);
3376 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3377 zap, tx));
3378
3379 return (zap);
3380 }
3381
3382 void
3383 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3384 {
3385 if (vd->vdev_ops != &vdev_hole_ops &&
3386 vd->vdev_ops != &vdev_missing_ops &&
3387 vd->vdev_ops != &vdev_root_ops &&
3388 !vd->vdev_top->vdev_removing) {
3389 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3390 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3391 }
3392 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3393 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3394 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3395 vdev_zap_allocation_data(vd, tx);
3396 }
3397 }
3398 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 &&
3399 spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
3400 if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2))
3401 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx);
3402 vd->vdev_root_zap = vdev_create_link_zap(vd, tx);
3403 }
3404
3405 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3406 vdev_construct_zaps(vd->vdev_child[i], tx);
3407 }
3408 }
3409
3410 static void
3411 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3412 {
3413 spa_t *spa = vd->vdev_spa;
3414 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3415 objset_t *mos = spa->spa_meta_objset;
3416 range_tree_t *rtsync;
3417 dmu_tx_t *tx;
3418 uint64_t object = space_map_object(vd->vdev_dtl_sm);
3419
3420 ASSERT(vdev_is_concrete(vd));
3421 ASSERT(vd->vdev_ops->vdev_op_leaf);
3422
3423 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3424
3425 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3426 mutex_enter(&vd->vdev_dtl_lock);
3427 space_map_free(vd->vdev_dtl_sm, tx);
3428 space_map_close(vd->vdev_dtl_sm);
3429 vd->vdev_dtl_sm = NULL;
3430 mutex_exit(&vd->vdev_dtl_lock);
3431
3432 /*
3433 * We only destroy the leaf ZAP for detached leaves or for
3434 * removed log devices. Removed data devices handle leaf ZAP
3435 * cleanup later, once cancellation is no longer possible.
3436 */
3437 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3438 vd->vdev_top->vdev_islog)) {
3439 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3440 vd->vdev_leaf_zap = 0;
3441 }
3442
3443 dmu_tx_commit(tx);
3444 return;
3445 }
3446
3447 if (vd->vdev_dtl_sm == NULL) {
3448 uint64_t new_object;
3449
3450 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3451 VERIFY3U(new_object, !=, 0);
3452
3453 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3454 0, -1ULL, 0));
3455 ASSERT(vd->vdev_dtl_sm != NULL);
3456 }
3457
3458 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3459
3460 mutex_enter(&vd->vdev_dtl_lock);
3461 range_tree_walk(rt, range_tree_add, rtsync);
3462 mutex_exit(&vd->vdev_dtl_lock);
3463
3464 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3465 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3466 range_tree_vacate(rtsync, NULL, NULL);
3467
3468 range_tree_destroy(rtsync);
3469
3470 /*
3471 * If the object for the space map has changed then dirty
3472 * the top level so that we update the config.
3473 */
3474 if (object != space_map_object(vd->vdev_dtl_sm)) {
3475 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3476 "new object %llu", (u_longlong_t)txg, spa_name(spa),
3477 (u_longlong_t)object,
3478 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3479 vdev_config_dirty(vd->vdev_top);
3480 }
3481
3482 dmu_tx_commit(tx);
3483 }
3484
3485 /*
3486 * Determine whether the specified vdev can be offlined/detached/removed
3487 * without losing data.
3488 */
3489 boolean_t
3490 vdev_dtl_required(vdev_t *vd)
3491 {
3492 spa_t *spa = vd->vdev_spa;
3493 vdev_t *tvd = vd->vdev_top;
3494 uint8_t cant_read = vd->vdev_cant_read;
3495 boolean_t required;
3496
3497 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3498
3499 if (vd == spa->spa_root_vdev || vd == tvd)
3500 return (B_TRUE);
3501
3502 /*
3503 * Temporarily mark the device as unreadable, and then determine
3504 * whether this results in any DTL outages in the top-level vdev.
3505 * If not, we can safely offline/detach/remove the device.
3506 */
3507 vd->vdev_cant_read = B_TRUE;
3508 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3509 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3510 vd->vdev_cant_read = cant_read;
3511 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3512
3513 if (!required && zio_injection_enabled) {
3514 required = !!zio_handle_device_injection(vd, NULL,
3515 SET_ERROR(ECHILD));
3516 }
3517
3518 return (required);
3519 }
3520
3521 /*
3522 * Determine if resilver is needed, and if so the txg range.
3523 */
3524 boolean_t
3525 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3526 {
3527 boolean_t needed = B_FALSE;
3528 uint64_t thismin = UINT64_MAX;
3529 uint64_t thismax = 0;
3530
3531 if (vd->vdev_children == 0) {
3532 mutex_enter(&vd->vdev_dtl_lock);
3533 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3534 vdev_writeable(vd)) {
3535
3536 thismin = vdev_dtl_min(vd);
3537 thismax = vdev_dtl_max(vd);
3538 needed = B_TRUE;
3539 }
3540 mutex_exit(&vd->vdev_dtl_lock);
3541 } else {
3542 for (int c = 0; c < vd->vdev_children; c++) {
3543 vdev_t *cvd = vd->vdev_child[c];
3544 uint64_t cmin, cmax;
3545
3546 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3547 thismin = MIN(thismin, cmin);
3548 thismax = MAX(thismax, cmax);
3549 needed = B_TRUE;
3550 }
3551 }
3552 }
3553
3554 if (needed && minp) {
3555 *minp = thismin;
3556 *maxp = thismax;
3557 }
3558 return (needed);
3559 }
3560
3561 /*
3562 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
3563 * will contain either the checkpoint spacemap object or zero if none exists.
3564 * All other errors are returned to the caller.
3565 */
3566 int
3567 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3568 {
3569 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3570
3571 if (vd->vdev_top_zap == 0) {
3572 *sm_obj = 0;
3573 return (0);
3574 }
3575
3576 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3577 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3578 if (error == ENOENT) {
3579 *sm_obj = 0;
3580 error = 0;
3581 }
3582
3583 return (error);
3584 }
3585
3586 int
3587 vdev_load(vdev_t *vd)
3588 {
3589 int children = vd->vdev_children;
3590 int error = 0;
3591 taskq_t *tq = NULL;
3592
3593 /*
3594 * It's only worthwhile to use the taskq for the root vdev, because the
3595 * slow part is metaslab_init, and that only happens for top-level
3596 * vdevs.
3597 */
3598 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3599 tq = taskq_create("vdev_load", children, minclsyspri,
3600 children, children, TASKQ_PREPOPULATE);
3601 }
3602
3603 /*
3604 * Recursively load all children.
3605 */
3606 for (int c = 0; c < vd->vdev_children; c++) {
3607 vdev_t *cvd = vd->vdev_child[c];
3608
3609 if (tq == NULL || vdev_uses_zvols(cvd)) {
3610 cvd->vdev_load_error = vdev_load(cvd);
3611 } else {
3612 VERIFY(taskq_dispatch(tq, vdev_load_child,
3613 cvd, TQ_SLEEP) != TASKQID_INVALID);
3614 }
3615 }
3616
3617 if (tq != NULL) {
3618 taskq_wait(tq);
3619 taskq_destroy(tq);
3620 }
3621
3622 for (int c = 0; c < vd->vdev_children; c++) {
3623 int error = vd->vdev_child[c]->vdev_load_error;
3624
3625 if (error != 0)
3626 return (error);
3627 }
3628
3629 vdev_set_deflate_ratio(vd);
3630
3631 /*
3632 * On spa_load path, grab the allocation bias from our zap
3633 */
3634 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3635 spa_t *spa = vd->vdev_spa;
3636 char bias_str[64];
3637
3638 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3639 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3640 bias_str);
3641 if (error == 0) {
3642 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3643 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3644 } else if (error != ENOENT) {
3645 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3646 VDEV_AUX_CORRUPT_DATA);
3647 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3648 "failed [error=%d]",
3649 (u_longlong_t)vd->vdev_top_zap, error);
3650 return (error);
3651 }
3652 }
3653
3654 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3655 spa_t *spa = vd->vdev_spa;
3656 uint64_t failfast;
3657
3658 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3659 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
3660 1, &failfast);
3661 if (error == 0) {
3662 vd->vdev_failfast = failfast & 1;
3663 } else if (error == ENOENT) {
3664 vd->vdev_failfast = vdev_prop_default_numeric(
3665 VDEV_PROP_FAILFAST);
3666 } else {
3667 vdev_dbgmsg(vd,
3668 "vdev_load: zap_lookup(top_zap=%llu) "
3669 "failed [error=%d]",
3670 (u_longlong_t)vd->vdev_top_zap, error);
3671 }
3672 }
3673
3674 /*
3675 * Load any rebuild state from the top-level vdev zap.
3676 */
3677 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3678 error = vdev_rebuild_load(vd);
3679 if (error && error != ENOTSUP) {
3680 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3681 VDEV_AUX_CORRUPT_DATA);
3682 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3683 "failed [error=%d]", error);
3684 return (error);
3685 }
3686 }
3687
3688 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
3689 uint64_t zapobj;
3690
3691 if (vd->vdev_top_zap != 0)
3692 zapobj = vd->vdev_top_zap;
3693 else
3694 zapobj = vd->vdev_leaf_zap;
3695
3696 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
3697 &vd->vdev_checksum_n);
3698 if (error && error != ENOENT)
3699 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3700 "failed [error=%d]", (u_longlong_t)zapobj, error);
3701
3702 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
3703 &vd->vdev_checksum_t);
3704 if (error && error != ENOENT)
3705 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3706 "failed [error=%d]", (u_longlong_t)zapobj, error);
3707
3708 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
3709 &vd->vdev_io_n);
3710 if (error && error != ENOENT)
3711 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3712 "failed [error=%d]", (u_longlong_t)zapobj, error);
3713
3714 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
3715 &vd->vdev_io_t);
3716 if (error && error != ENOENT)
3717 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3718 "failed [error=%d]", (u_longlong_t)zapobj, error);
3719 }
3720
3721 /*
3722 * If this is a top-level vdev, initialize its metaslabs.
3723 */
3724 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3725 vdev_metaslab_group_create(vd);
3726
3727 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3728 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3729 VDEV_AUX_CORRUPT_DATA);
3730 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3731 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3732 (u_longlong_t)vd->vdev_asize);
3733 return (SET_ERROR(ENXIO));
3734 }
3735
3736 error = vdev_metaslab_init(vd, 0);
3737 if (error != 0) {
3738 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3739 "[error=%d]", error);
3740 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3741 VDEV_AUX_CORRUPT_DATA);
3742 return (error);
3743 }
3744
3745 uint64_t checkpoint_sm_obj;
3746 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3747 if (error == 0 && checkpoint_sm_obj != 0) {
3748 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3749 ASSERT(vd->vdev_asize != 0);
3750 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3751
3752 error = space_map_open(&vd->vdev_checkpoint_sm,
3753 mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3754 vd->vdev_ashift);
3755 if (error != 0) {
3756 vdev_dbgmsg(vd, "vdev_load: space_map_open "
3757 "failed for checkpoint spacemap (obj %llu) "
3758 "[error=%d]",
3759 (u_longlong_t)checkpoint_sm_obj, error);
3760 return (error);
3761 }
3762 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3763
3764 /*
3765 * Since the checkpoint_sm contains free entries
3766 * exclusively we can use space_map_allocated() to
3767 * indicate the cumulative checkpointed space that
3768 * has been freed.
3769 */
3770 vd->vdev_stat.vs_checkpoint_space =
3771 -space_map_allocated(vd->vdev_checkpoint_sm);
3772 vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3773 vd->vdev_stat.vs_checkpoint_space;
3774 } else if (error != 0) {
3775 vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3776 "checkpoint space map object from vdev ZAP "
3777 "[error=%d]", error);
3778 return (error);
3779 }
3780 }
3781
3782 /*
3783 * If this is a leaf vdev, load its DTL.
3784 */
3785 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3786 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3787 VDEV_AUX_CORRUPT_DATA);
3788 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3789 "[error=%d]", error);
3790 return (error);
3791 }
3792
3793 uint64_t obsolete_sm_object;
3794 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3795 if (error == 0 && obsolete_sm_object != 0) {
3796 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3797 ASSERT(vd->vdev_asize != 0);
3798 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3799
3800 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3801 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3802 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3803 VDEV_AUX_CORRUPT_DATA);
3804 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3805 "obsolete spacemap (obj %llu) [error=%d]",
3806 (u_longlong_t)obsolete_sm_object, error);
3807 return (error);
3808 }
3809 } else if (error != 0) {
3810 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3811 "space map object from vdev ZAP [error=%d]", error);
3812 return (error);
3813 }
3814
3815 return (0);
3816 }
3817
3818 /*
3819 * The special vdev case is used for hot spares and l2cache devices. Its
3820 * sole purpose it to set the vdev state for the associated vdev. To do this,
3821 * we make sure that we can open the underlying device, then try to read the
3822 * label, and make sure that the label is sane and that it hasn't been
3823 * repurposed to another pool.
3824 */
3825 int
3826 vdev_validate_aux(vdev_t *vd)
3827 {
3828 nvlist_t *label;
3829 uint64_t guid, version;
3830 uint64_t state;
3831
3832 if (!vdev_readable(vd))
3833 return (0);
3834
3835 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3836 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3837 VDEV_AUX_CORRUPT_DATA);
3838 return (-1);
3839 }
3840
3841 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3842 !SPA_VERSION_IS_SUPPORTED(version) ||
3843 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3844 guid != vd->vdev_guid ||
3845 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3846 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3847 VDEV_AUX_CORRUPT_DATA);
3848 nvlist_free(label);
3849 return (-1);
3850 }
3851
3852 /*
3853 * We don't actually check the pool state here. If it's in fact in
3854 * use by another pool, we update this fact on the fly when requested.
3855 */
3856 nvlist_free(label);
3857 return (0);
3858 }
3859
3860 static void
3861 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3862 {
3863 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3864
3865 if (vd->vdev_top_zap == 0)
3866 return;
3867
3868 uint64_t object = 0;
3869 int err = zap_lookup(mos, vd->vdev_top_zap,
3870 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3871 if (err == ENOENT)
3872 return;
3873 VERIFY0(err);
3874
3875 VERIFY0(dmu_object_free(mos, object, tx));
3876 VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3877 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3878 }
3879
3880 /*
3881 * Free the objects used to store this vdev's spacemaps, and the array
3882 * that points to them.
3883 */
3884 void
3885 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3886 {
3887 if (vd->vdev_ms_array == 0)
3888 return;
3889
3890 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3891 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3892 size_t array_bytes = array_count * sizeof (uint64_t);
3893 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3894 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3895 array_bytes, smobj_array, 0));
3896
3897 for (uint64_t i = 0; i < array_count; i++) {
3898 uint64_t smobj = smobj_array[i];
3899 if (smobj == 0)
3900 continue;
3901
3902 space_map_free_obj(mos, smobj, tx);
3903 }
3904
3905 kmem_free(smobj_array, array_bytes);
3906 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3907 vdev_destroy_ms_flush_data(vd, tx);
3908 vd->vdev_ms_array = 0;
3909 }
3910
3911 static void
3912 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3913 {
3914 spa_t *spa = vd->vdev_spa;
3915
3916 ASSERT(vd->vdev_islog);
3917 ASSERT(vd == vd->vdev_top);
3918 ASSERT3U(txg, ==, spa_syncing_txg(spa));
3919
3920 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3921
3922 vdev_destroy_spacemaps(vd, tx);
3923 if (vd->vdev_top_zap != 0) {
3924 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3925 vd->vdev_top_zap = 0;
3926 }
3927
3928 dmu_tx_commit(tx);
3929 }
3930
3931 void
3932 vdev_sync_done(vdev_t *vd, uint64_t txg)
3933 {
3934 metaslab_t *msp;
3935 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3936
3937 ASSERT(vdev_is_concrete(vd));
3938
3939 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3940 != NULL)
3941 metaslab_sync_done(msp, txg);
3942
3943 if (reassess) {
3944 metaslab_sync_reassess(vd->vdev_mg);
3945 if (vd->vdev_log_mg != NULL)
3946 metaslab_sync_reassess(vd->vdev_log_mg);
3947 }
3948 }
3949
3950 void
3951 vdev_sync(vdev_t *vd, uint64_t txg)
3952 {
3953 spa_t *spa = vd->vdev_spa;
3954 vdev_t *lvd;
3955 metaslab_t *msp;
3956
3957 ASSERT3U(txg, ==, spa->spa_syncing_txg);
3958 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3959 if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3960 ASSERT(vd->vdev_removing ||
3961 vd->vdev_ops == &vdev_indirect_ops);
3962
3963 vdev_indirect_sync_obsolete(vd, tx);
3964
3965 /*
3966 * If the vdev is indirect, it can't have dirty
3967 * metaslabs or DTLs.
3968 */
3969 if (vd->vdev_ops == &vdev_indirect_ops) {
3970 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3971 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3972 dmu_tx_commit(tx);
3973 return;
3974 }
3975 }
3976
3977 ASSERT(vdev_is_concrete(vd));
3978
3979 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3980 !vd->vdev_removing) {
3981 ASSERT(vd == vd->vdev_top);
3982 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3983 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3984 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3985 ASSERT(vd->vdev_ms_array != 0);
3986 vdev_config_dirty(vd);
3987 }
3988
3989 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3990 metaslab_sync(msp, txg);
3991 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3992 }
3993
3994 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3995 vdev_dtl_sync(lvd, txg);
3996
3997 /*
3998 * If this is an empty log device being removed, destroy the
3999 * metadata associated with it.
4000 */
4001 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
4002 vdev_remove_empty_log(vd, txg);
4003
4004 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
4005 dmu_tx_commit(tx);
4006 }
4007
4008 uint64_t
4009 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
4010 {
4011 return (vd->vdev_ops->vdev_op_asize(vd, psize));
4012 }
4013
4014 /*
4015 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
4016 * not be opened, and no I/O is attempted.
4017 */
4018 int
4019 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4020 {
4021 vdev_t *vd, *tvd;
4022
4023 spa_vdev_state_enter(spa, SCL_NONE);
4024
4025 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4026 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4027
4028 if (!vd->vdev_ops->vdev_op_leaf)
4029 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4030
4031 tvd = vd->vdev_top;
4032
4033 /*
4034 * If user did a 'zpool offline -f' then make the fault persist across
4035 * reboots.
4036 */
4037 if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
4038 /*
4039 * There are two kinds of forced faults: temporary and
4040 * persistent. Temporary faults go away at pool import, while
4041 * persistent faults stay set. Both types of faults can be
4042 * cleared with a zpool clear.
4043 *
4044 * We tell if a vdev is persistently faulted by looking at the
4045 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
4046 * import then it's a persistent fault. Otherwise, it's
4047 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
4048 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
4049 * tells vdev_config_generate() (which gets run later) to set
4050 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
4051 */
4052 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
4053 vd->vdev_tmpoffline = B_FALSE;
4054 aux = VDEV_AUX_EXTERNAL;
4055 } else {
4056 vd->vdev_tmpoffline = B_TRUE;
4057 }
4058
4059 /*
4060 * We don't directly use the aux state here, but if we do a
4061 * vdev_reopen(), we need this value to be present to remember why we
4062 * were faulted.
4063 */
4064 vd->vdev_label_aux = aux;
4065
4066 /*
4067 * Faulted state takes precedence over degraded.
4068 */
4069 vd->vdev_delayed_close = B_FALSE;
4070 vd->vdev_faulted = 1ULL;
4071 vd->vdev_degraded = 0ULL;
4072 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
4073
4074 /*
4075 * If this device has the only valid copy of the data, then
4076 * back off and simply mark the vdev as degraded instead.
4077 */
4078 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
4079 vd->vdev_degraded = 1ULL;
4080 vd->vdev_faulted = 0ULL;
4081
4082 /*
4083 * If we reopen the device and it's not dead, only then do we
4084 * mark it degraded.
4085 */
4086 vdev_reopen(tvd);
4087
4088 if (vdev_readable(vd))
4089 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
4090 }
4091
4092 return (spa_vdev_state_exit(spa, vd, 0));
4093 }
4094
4095 /*
4096 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
4097 * user that something is wrong. The vdev continues to operate as normal as far
4098 * as I/O is concerned.
4099 */
4100 int
4101 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4102 {
4103 vdev_t *vd;
4104
4105 spa_vdev_state_enter(spa, SCL_NONE);
4106
4107 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4108 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4109
4110 if (!vd->vdev_ops->vdev_op_leaf)
4111 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4112
4113 /*
4114 * If the vdev is already faulted, then don't do anything.
4115 */
4116 if (vd->vdev_faulted || vd->vdev_degraded)
4117 return (spa_vdev_state_exit(spa, NULL, 0));
4118
4119 vd->vdev_degraded = 1ULL;
4120 if (!vdev_is_dead(vd))
4121 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
4122 aux);
4123
4124 return (spa_vdev_state_exit(spa, vd, 0));
4125 }
4126
4127 int
4128 vdev_remove_wanted(spa_t *spa, uint64_t guid)
4129 {
4130 vdev_t *vd;
4131
4132 spa_vdev_state_enter(spa, SCL_NONE);
4133
4134 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4135 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4136
4137 /*
4138 * If the vdev is already removed, or expanding which can trigger
4139 * repartition add/remove events, then don't do anything.
4140 */
4141 if (vd->vdev_removed || vd->vdev_expanding)
4142 return (spa_vdev_state_exit(spa, NULL, 0));
4143
4144 /*
4145 * Confirm the vdev has been removed, otherwise don't do anything.
4146 */
4147 if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL)))
4148 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST)));
4149
4150 vd->vdev_remove_wanted = B_TRUE;
4151 spa_async_request(spa, SPA_ASYNC_REMOVE);
4152
4153 return (spa_vdev_state_exit(spa, vd, 0));
4154 }
4155
4156
4157 /*
4158 * Online the given vdev.
4159 *
4160 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
4161 * spare device should be detached when the device finishes resilvering.
4162 * Second, the online should be treated like a 'test' online case, so no FMA
4163 * events are generated if the device fails to open.
4164 */
4165 int
4166 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
4167 {
4168 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
4169 boolean_t wasoffline;
4170 vdev_state_t oldstate;
4171
4172 spa_vdev_state_enter(spa, SCL_NONE);
4173
4174 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4175 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4176
4177 if (!vd->vdev_ops->vdev_op_leaf)
4178 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4179
4180 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
4181 oldstate = vd->vdev_state;
4182
4183 tvd = vd->vdev_top;
4184 vd->vdev_offline = B_FALSE;
4185 vd->vdev_tmpoffline = B_FALSE;
4186 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
4187 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
4188
4189 /* XXX - L2ARC 1.0 does not support expansion */
4190 if (!vd->vdev_aux) {
4191 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4192 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
4193 spa->spa_autoexpand);
4194 vd->vdev_expansion_time = gethrestime_sec();
4195 }
4196
4197 vdev_reopen(tvd);
4198 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
4199
4200 if (!vd->vdev_aux) {
4201 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4202 pvd->vdev_expanding = B_FALSE;
4203 }
4204
4205 if (newstate)
4206 *newstate = vd->vdev_state;
4207 if ((flags & ZFS_ONLINE_UNSPARE) &&
4208 !vdev_is_dead(vd) && vd->vdev_parent &&
4209 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4210 vd->vdev_parent->vdev_child[0] == vd)
4211 vd->vdev_unspare = B_TRUE;
4212
4213 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
4214
4215 /* XXX - L2ARC 1.0 does not support expansion */
4216 if (vd->vdev_aux)
4217 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
4218 spa->spa_ccw_fail_time = 0;
4219 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4220 }
4221
4222 /* Restart initializing if necessary */
4223 mutex_enter(&vd->vdev_initialize_lock);
4224 if (vdev_writeable(vd) &&
4225 vd->vdev_initialize_thread == NULL &&
4226 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
4227 (void) vdev_initialize(vd);
4228 }
4229 mutex_exit(&vd->vdev_initialize_lock);
4230
4231 /*
4232 * Restart trimming if necessary. We do not restart trimming for cache
4233 * devices here. This is triggered by l2arc_rebuild_vdev()
4234 * asynchronously for the whole device or in l2arc_evict() as it evicts
4235 * space for upcoming writes.
4236 */
4237 mutex_enter(&vd->vdev_trim_lock);
4238 if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4239 vd->vdev_trim_thread == NULL &&
4240 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4241 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4242 vd->vdev_trim_secure);
4243 }
4244 mutex_exit(&vd->vdev_trim_lock);
4245
4246 if (wasoffline ||
4247 (oldstate < VDEV_STATE_DEGRADED &&
4248 vd->vdev_state >= VDEV_STATE_DEGRADED)) {
4249 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4250
4251 /*
4252 * Asynchronously detach spare vdev if resilver or
4253 * rebuild is not required
4254 */
4255 if (vd->vdev_unspare &&
4256 !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4257 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) &&
4258 !vdev_rebuild_active(tvd))
4259 spa_async_request(spa, SPA_ASYNC_DETACH_SPARE);
4260 }
4261 return (spa_vdev_state_exit(spa, vd, 0));
4262 }
4263
4264 static int
4265 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4266 {
4267 vdev_t *vd, *tvd;
4268 int error = 0;
4269 uint64_t generation;
4270 metaslab_group_t *mg;
4271
4272 top:
4273 spa_vdev_state_enter(spa, SCL_ALLOC);
4274
4275 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4276 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4277
4278 if (!vd->vdev_ops->vdev_op_leaf)
4279 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4280
4281 if (vd->vdev_ops == &vdev_draid_spare_ops)
4282 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4283
4284 tvd = vd->vdev_top;
4285 mg = tvd->vdev_mg;
4286 generation = spa->spa_config_generation + 1;
4287
4288 /*
4289 * If the device isn't already offline, try to offline it.
4290 */
4291 if (!vd->vdev_offline) {
4292 /*
4293 * If this device has the only valid copy of some data,
4294 * don't allow it to be offlined. Log devices are always
4295 * expendable.
4296 */
4297 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4298 vdev_dtl_required(vd))
4299 return (spa_vdev_state_exit(spa, NULL,
4300 SET_ERROR(EBUSY)));
4301
4302 /*
4303 * If the top-level is a slog and it has had allocations
4304 * then proceed. We check that the vdev's metaslab group
4305 * is not NULL since it's possible that we may have just
4306 * added this vdev but not yet initialized its metaslabs.
4307 */
4308 if (tvd->vdev_islog && mg != NULL) {
4309 /*
4310 * Prevent any future allocations.
4311 */
4312 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4313 metaslab_group_passivate(mg);
4314 (void) spa_vdev_state_exit(spa, vd, 0);
4315
4316 error = spa_reset_logs(spa);
4317
4318 /*
4319 * If the log device was successfully reset but has
4320 * checkpointed data, do not offline it.
4321 */
4322 if (error == 0 &&
4323 tvd->vdev_checkpoint_sm != NULL) {
4324 ASSERT3U(space_map_allocated(
4325 tvd->vdev_checkpoint_sm), !=, 0);
4326 error = ZFS_ERR_CHECKPOINT_EXISTS;
4327 }
4328
4329 spa_vdev_state_enter(spa, SCL_ALLOC);
4330
4331 /*
4332 * Check to see if the config has changed.
4333 */
4334 if (error || generation != spa->spa_config_generation) {
4335 metaslab_group_activate(mg);
4336 if (error)
4337 return (spa_vdev_state_exit(spa,
4338 vd, error));
4339 (void) spa_vdev_state_exit(spa, vd, 0);
4340 goto top;
4341 }
4342 ASSERT0(tvd->vdev_stat.vs_alloc);
4343 }
4344
4345 /*
4346 * Offline this device and reopen its top-level vdev.
4347 * If the top-level vdev is a log device then just offline
4348 * it. Otherwise, if this action results in the top-level
4349 * vdev becoming unusable, undo it and fail the request.
4350 */
4351 vd->vdev_offline = B_TRUE;
4352 vdev_reopen(tvd);
4353
4354 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4355 vdev_is_dead(tvd)) {
4356 vd->vdev_offline = B_FALSE;
4357 vdev_reopen(tvd);
4358 return (spa_vdev_state_exit(spa, NULL,
4359 SET_ERROR(EBUSY)));
4360 }
4361
4362 /*
4363 * Add the device back into the metaslab rotor so that
4364 * once we online the device it's open for business.
4365 */
4366 if (tvd->vdev_islog && mg != NULL)
4367 metaslab_group_activate(mg);
4368 }
4369
4370 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4371
4372 return (spa_vdev_state_exit(spa, vd, 0));
4373 }
4374
4375 int
4376 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4377 {
4378 int error;
4379
4380 mutex_enter(&spa->spa_vdev_top_lock);
4381 error = vdev_offline_locked(spa, guid, flags);
4382 mutex_exit(&spa->spa_vdev_top_lock);
4383
4384 return (error);
4385 }
4386
4387 /*
4388 * Clear the error counts associated with this vdev. Unlike vdev_online() and
4389 * vdev_offline(), we assume the spa config is locked. We also clear all
4390 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
4391 */
4392 void
4393 vdev_clear(spa_t *spa, vdev_t *vd)
4394 {
4395 vdev_t *rvd = spa->spa_root_vdev;
4396
4397 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4398
4399 if (vd == NULL)
4400 vd = rvd;
4401
4402 vd->vdev_stat.vs_read_errors = 0;
4403 vd->vdev_stat.vs_write_errors = 0;
4404 vd->vdev_stat.vs_checksum_errors = 0;
4405 vd->vdev_stat.vs_slow_ios = 0;
4406
4407 for (int c = 0; c < vd->vdev_children; c++)
4408 vdev_clear(spa, vd->vdev_child[c]);
4409
4410 /*
4411 * It makes no sense to "clear" an indirect or removed vdev.
4412 */
4413 if (!vdev_is_concrete(vd) || vd->vdev_removed)
4414 return;
4415
4416 /*
4417 * If we're in the FAULTED state or have experienced failed I/O, then
4418 * clear the persistent state and attempt to reopen the device. We
4419 * also mark the vdev config dirty, so that the new faulted state is
4420 * written out to disk.
4421 */
4422 if (vd->vdev_faulted || vd->vdev_degraded ||
4423 !vdev_readable(vd) || !vdev_writeable(vd)) {
4424 /*
4425 * When reopening in response to a clear event, it may be due to
4426 * a fmadm repair request. In this case, if the device is
4427 * still broken, we want to still post the ereport again.
4428 */
4429 vd->vdev_forcefault = B_TRUE;
4430
4431 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4432 vd->vdev_cant_read = B_FALSE;
4433 vd->vdev_cant_write = B_FALSE;
4434 vd->vdev_stat.vs_aux = 0;
4435
4436 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4437
4438 vd->vdev_forcefault = B_FALSE;
4439
4440 if (vd != rvd && vdev_writeable(vd->vdev_top))
4441 vdev_state_dirty(vd->vdev_top);
4442
4443 /* If a resilver isn't required, check if vdevs can be culled */
4444 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4445 !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4446 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4447 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4448
4449 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4450 }
4451
4452 /*
4453 * When clearing a FMA-diagnosed fault, we always want to
4454 * unspare the device, as we assume that the original spare was
4455 * done in response to the FMA fault.
4456 */
4457 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4458 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4459 vd->vdev_parent->vdev_child[0] == vd)
4460 vd->vdev_unspare = B_TRUE;
4461
4462 /* Clear recent error events cache (i.e. duplicate events tracking) */
4463 zfs_ereport_clear(spa, vd);
4464 }
4465
4466 boolean_t
4467 vdev_is_dead(vdev_t *vd)
4468 {
4469 /*
4470 * Holes and missing devices are always considered "dead".
4471 * This simplifies the code since we don't have to check for
4472 * these types of devices in the various code paths.
4473 * Instead we rely on the fact that we skip over dead devices
4474 * before issuing I/O to them.
4475 */
4476 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4477 vd->vdev_ops == &vdev_hole_ops ||
4478 vd->vdev_ops == &vdev_missing_ops);
4479 }
4480
4481 boolean_t
4482 vdev_readable(vdev_t *vd)
4483 {
4484 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4485 }
4486
4487 boolean_t
4488 vdev_writeable(vdev_t *vd)
4489 {
4490 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4491 vdev_is_concrete(vd));
4492 }
4493
4494 boolean_t
4495 vdev_allocatable(vdev_t *vd)
4496 {
4497 uint64_t state = vd->vdev_state;
4498
4499 /*
4500 * We currently allow allocations from vdevs which may be in the
4501 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4502 * fails to reopen then we'll catch it later when we're holding
4503 * the proper locks. Note that we have to get the vdev state
4504 * in a local variable because although it changes atomically,
4505 * we're asking two separate questions about it.
4506 */
4507 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4508 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4509 vd->vdev_mg->mg_initialized);
4510 }
4511
4512 boolean_t
4513 vdev_accessible(vdev_t *vd, zio_t *zio)
4514 {
4515 ASSERT(zio->io_vd == vd);
4516
4517 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4518 return (B_FALSE);
4519
4520 if (zio->io_type == ZIO_TYPE_READ)
4521 return (!vd->vdev_cant_read);
4522
4523 if (zio->io_type == ZIO_TYPE_WRITE)
4524 return (!vd->vdev_cant_write);
4525
4526 return (B_TRUE);
4527 }
4528
4529 static void
4530 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4531 {
4532 /*
4533 * Exclude the dRAID spare when aggregating to avoid double counting
4534 * the ops and bytes. These IOs are counted by the physical leaves.
4535 */
4536 if (cvd->vdev_ops == &vdev_draid_spare_ops)
4537 return;
4538
4539 for (int t = 0; t < VS_ZIO_TYPES; t++) {
4540 vs->vs_ops[t] += cvs->vs_ops[t];
4541 vs->vs_bytes[t] += cvs->vs_bytes[t];
4542 }
4543
4544 cvs->vs_scan_removing = cvd->vdev_removing;
4545 }
4546
4547 /*
4548 * Get extended stats
4549 */
4550 static void
4551 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4552 {
4553 (void) cvd;
4554
4555 int t, b;
4556 for (t = 0; t < ZIO_TYPES; t++) {
4557 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4558 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4559
4560 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4561 vsx->vsx_total_histo[t][b] +=
4562 cvsx->vsx_total_histo[t][b];
4563 }
4564 }
4565
4566 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4567 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4568 vsx->vsx_queue_histo[t][b] +=
4569 cvsx->vsx_queue_histo[t][b];
4570 }
4571 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4572 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4573
4574 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4575 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4576
4577 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4578 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4579 }
4580
4581 }
4582
4583 boolean_t
4584 vdev_is_spacemap_addressable(vdev_t *vd)
4585 {
4586 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4587 return (B_TRUE);
4588
4589 /*
4590 * If double-word space map entries are not enabled we assume
4591 * 47 bits of the space map entry are dedicated to the entry's
4592 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4593 * to calculate the maximum address that can be described by a
4594 * space map entry for the given device.
4595 */
4596 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4597
4598 if (shift >= 63) /* detect potential overflow */
4599 return (B_TRUE);
4600
4601 return (vd->vdev_asize < (1ULL << shift));
4602 }
4603
4604 /*
4605 * Get statistics for the given vdev.
4606 */
4607 static void
4608 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4609 {
4610 int t;
4611 /*
4612 * If we're getting stats on the root vdev, aggregate the I/O counts
4613 * over all top-level vdevs (i.e. the direct children of the root).
4614 */
4615 if (!vd->vdev_ops->vdev_op_leaf) {
4616 if (vs) {
4617 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4618 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4619 }
4620 if (vsx)
4621 memset(vsx, 0, sizeof (*vsx));
4622
4623 for (int c = 0; c < vd->vdev_children; c++) {
4624 vdev_t *cvd = vd->vdev_child[c];
4625 vdev_stat_t *cvs = &cvd->vdev_stat;
4626 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4627
4628 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4629 if (vs)
4630 vdev_get_child_stat(cvd, vs, cvs);
4631 if (vsx)
4632 vdev_get_child_stat_ex(cvd, vsx, cvsx);
4633 }
4634 } else {
4635 /*
4636 * We're a leaf. Just copy our ZIO active queue stats in. The
4637 * other leaf stats are updated in vdev_stat_update().
4638 */
4639 if (!vsx)
4640 return;
4641
4642 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4643
4644 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4645 vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t];
4646 vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t);
4647 }
4648 }
4649 }
4650
4651 void
4652 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4653 {
4654 vdev_t *tvd = vd->vdev_top;
4655 mutex_enter(&vd->vdev_stat_lock);
4656 if (vs) {
4657 memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4658 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4659 vs->vs_state = vd->vdev_state;
4660 vs->vs_rsize = vdev_get_min_asize(vd);
4661
4662 if (vd->vdev_ops->vdev_op_leaf) {
4663 vs->vs_pspace = vd->vdev_psize;
4664 vs->vs_rsize += VDEV_LABEL_START_SIZE +
4665 VDEV_LABEL_END_SIZE;
4666 /*
4667 * Report initializing progress. Since we don't
4668 * have the initializing locks held, this is only
4669 * an estimate (although a fairly accurate one).
4670 */
4671 vs->vs_initialize_bytes_done =
4672 vd->vdev_initialize_bytes_done;
4673 vs->vs_initialize_bytes_est =
4674 vd->vdev_initialize_bytes_est;
4675 vs->vs_initialize_state = vd->vdev_initialize_state;
4676 vs->vs_initialize_action_time =
4677 vd->vdev_initialize_action_time;
4678
4679 /*
4680 * Report manual TRIM progress. Since we don't have
4681 * the manual TRIM locks held, this is only an
4682 * estimate (although fairly accurate one).
4683 */
4684 vs->vs_trim_notsup = !vd->vdev_has_trim;
4685 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4686 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4687 vs->vs_trim_state = vd->vdev_trim_state;
4688 vs->vs_trim_action_time = vd->vdev_trim_action_time;
4689
4690 /* Set when there is a deferred resilver. */
4691 vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4692 }
4693
4694 /*
4695 * Report expandable space on top-level, non-auxiliary devices
4696 * only. The expandable space is reported in terms of metaslab
4697 * sized units since that determines how much space the pool
4698 * can expand.
4699 */
4700 if (vd->vdev_aux == NULL && tvd != NULL) {
4701 vs->vs_esize = P2ALIGN(
4702 vd->vdev_max_asize - vd->vdev_asize,
4703 1ULL << tvd->vdev_ms_shift);
4704 }
4705
4706 vs->vs_configured_ashift = vd->vdev_top != NULL
4707 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4708 vs->vs_logical_ashift = vd->vdev_logical_ashift;
4709 if (vd->vdev_physical_ashift <= ASHIFT_MAX)
4710 vs->vs_physical_ashift = vd->vdev_physical_ashift;
4711 else
4712 vs->vs_physical_ashift = 0;
4713
4714 /*
4715 * Report fragmentation and rebuild progress for top-level,
4716 * non-auxiliary, concrete devices.
4717 */
4718 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4719 vdev_is_concrete(vd)) {
4720 /*
4721 * The vdev fragmentation rating doesn't take into
4722 * account the embedded slog metaslab (vdev_log_mg).
4723 * Since it's only one metaslab, it would have a tiny
4724 * impact on the overall fragmentation.
4725 */
4726 vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4727 vd->vdev_mg->mg_fragmentation : 0;
4728 }
4729 vs->vs_noalloc = MAX(vd->vdev_noalloc,
4730 tvd ? tvd->vdev_noalloc : 0);
4731 }
4732
4733 vdev_get_stats_ex_impl(vd, vs, vsx);
4734 mutex_exit(&vd->vdev_stat_lock);
4735 }
4736
4737 void
4738 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4739 {
4740 return (vdev_get_stats_ex(vd, vs, NULL));
4741 }
4742
4743 void
4744 vdev_clear_stats(vdev_t *vd)
4745 {
4746 mutex_enter(&vd->vdev_stat_lock);
4747 vd->vdev_stat.vs_space = 0;
4748 vd->vdev_stat.vs_dspace = 0;
4749 vd->vdev_stat.vs_alloc = 0;
4750 mutex_exit(&vd->vdev_stat_lock);
4751 }
4752
4753 void
4754 vdev_scan_stat_init(vdev_t *vd)
4755 {
4756 vdev_stat_t *vs = &vd->vdev_stat;
4757
4758 for (int c = 0; c < vd->vdev_children; c++)
4759 vdev_scan_stat_init(vd->vdev_child[c]);
4760
4761 mutex_enter(&vd->vdev_stat_lock);
4762 vs->vs_scan_processed = 0;
4763 mutex_exit(&vd->vdev_stat_lock);
4764 }
4765
4766 void
4767 vdev_stat_update(zio_t *zio, uint64_t psize)
4768 {
4769 spa_t *spa = zio->io_spa;
4770 vdev_t *rvd = spa->spa_root_vdev;
4771 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4772 vdev_t *pvd;
4773 uint64_t txg = zio->io_txg;
4774 /* Suppress ASAN false positive */
4775 #ifdef __SANITIZE_ADDRESS__
4776 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
4777 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
4778 #else
4779 vdev_stat_t *vs = &vd->vdev_stat;
4780 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4781 #endif
4782 zio_type_t type = zio->io_type;
4783 int flags = zio->io_flags;
4784
4785 /*
4786 * If this i/o is a gang leader, it didn't do any actual work.
4787 */
4788 if (zio->io_gang_tree)
4789 return;
4790
4791 if (zio->io_error == 0) {
4792 /*
4793 * If this is a root i/o, don't count it -- we've already
4794 * counted the top-level vdevs, and vdev_get_stats() will
4795 * aggregate them when asked. This reduces contention on
4796 * the root vdev_stat_lock and implicitly handles blocks
4797 * that compress away to holes, for which there is no i/o.
4798 * (Holes never create vdev children, so all the counters
4799 * remain zero, which is what we want.)
4800 *
4801 * Note: this only applies to successful i/o (io_error == 0)
4802 * because unlike i/o counts, errors are not additive.
4803 * When reading a ditto block, for example, failure of
4804 * one top-level vdev does not imply a root-level error.
4805 */
4806 if (vd == rvd)
4807 return;
4808
4809 ASSERT(vd == zio->io_vd);
4810
4811 if (flags & ZIO_FLAG_IO_BYPASS)
4812 return;
4813
4814 mutex_enter(&vd->vdev_stat_lock);
4815
4816 if (flags & ZIO_FLAG_IO_REPAIR) {
4817 /*
4818 * Repair is the result of a resilver issued by the
4819 * scan thread (spa_sync).
4820 */
4821 if (flags & ZIO_FLAG_SCAN_THREAD) {
4822 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4823 dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4824 uint64_t *processed = &scn_phys->scn_processed;
4825
4826 if (vd->vdev_ops->vdev_op_leaf)
4827 atomic_add_64(processed, psize);
4828 vs->vs_scan_processed += psize;
4829 }
4830
4831 /*
4832 * Repair is the result of a rebuild issued by the
4833 * rebuild thread (vdev_rebuild_thread). To avoid
4834 * double counting repaired bytes the virtual dRAID
4835 * spare vdev is excluded from the processed bytes.
4836 */
4837 if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4838 vdev_t *tvd = vd->vdev_top;
4839 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4840 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4841 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4842
4843 if (vd->vdev_ops->vdev_op_leaf &&
4844 vd->vdev_ops != &vdev_draid_spare_ops) {
4845 atomic_add_64(rebuilt, psize);
4846 }
4847 vs->vs_rebuild_processed += psize;
4848 }
4849
4850 if (flags & ZIO_FLAG_SELF_HEAL)
4851 vs->vs_self_healed += psize;
4852 }
4853
4854 /*
4855 * The bytes/ops/histograms are recorded at the leaf level and
4856 * aggregated into the higher level vdevs in vdev_get_stats().
4857 */
4858 if (vd->vdev_ops->vdev_op_leaf &&
4859 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4860 zio_type_t vs_type = type;
4861 zio_priority_t priority = zio->io_priority;
4862
4863 /*
4864 * TRIM ops and bytes are reported to user space as
4865 * ZIO_TYPE_IOCTL. This is done to preserve the
4866 * vdev_stat_t structure layout for user space.
4867 */
4868 if (type == ZIO_TYPE_TRIM)
4869 vs_type = ZIO_TYPE_IOCTL;
4870
4871 /*
4872 * Solely for the purposes of 'zpool iostat -lqrw'
4873 * reporting use the priority to categorize the IO.
4874 * Only the following are reported to user space:
4875 *
4876 * ZIO_PRIORITY_SYNC_READ,
4877 * ZIO_PRIORITY_SYNC_WRITE,
4878 * ZIO_PRIORITY_ASYNC_READ,
4879 * ZIO_PRIORITY_ASYNC_WRITE,
4880 * ZIO_PRIORITY_SCRUB,
4881 * ZIO_PRIORITY_TRIM,
4882 * ZIO_PRIORITY_REBUILD.
4883 */
4884 if (priority == ZIO_PRIORITY_INITIALIZING) {
4885 ASSERT3U(type, ==, ZIO_TYPE_WRITE);
4886 priority = ZIO_PRIORITY_ASYNC_WRITE;
4887 } else if (priority == ZIO_PRIORITY_REMOVAL) {
4888 priority = ((type == ZIO_TYPE_WRITE) ?
4889 ZIO_PRIORITY_ASYNC_WRITE :
4890 ZIO_PRIORITY_ASYNC_READ);
4891 }
4892
4893 vs->vs_ops[vs_type]++;
4894 vs->vs_bytes[vs_type] += psize;
4895
4896 if (flags & ZIO_FLAG_DELEGATED) {
4897 vsx->vsx_agg_histo[priority]
4898 [RQ_HISTO(zio->io_size)]++;
4899 } else {
4900 vsx->vsx_ind_histo[priority]
4901 [RQ_HISTO(zio->io_size)]++;
4902 }
4903
4904 if (zio->io_delta && zio->io_delay) {
4905 vsx->vsx_queue_histo[priority]
4906 [L_HISTO(zio->io_delta - zio->io_delay)]++;
4907 vsx->vsx_disk_histo[type]
4908 [L_HISTO(zio->io_delay)]++;
4909 vsx->vsx_total_histo[type]
4910 [L_HISTO(zio->io_delta)]++;
4911 }
4912 }
4913
4914 mutex_exit(&vd->vdev_stat_lock);
4915 return;
4916 }
4917
4918 if (flags & ZIO_FLAG_SPECULATIVE)
4919 return;
4920
4921 /*
4922 * If this is an I/O error that is going to be retried, then ignore the
4923 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
4924 * hard errors, when in reality they can happen for any number of
4925 * innocuous reasons (bus resets, MPxIO link failure, etc).
4926 */
4927 if (zio->io_error == EIO &&
4928 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4929 return;
4930
4931 /*
4932 * Intent logs writes won't propagate their error to the root
4933 * I/O so don't mark these types of failures as pool-level
4934 * errors.
4935 */
4936 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4937 return;
4938
4939 if (type == ZIO_TYPE_WRITE && txg != 0 &&
4940 (!(flags & ZIO_FLAG_IO_REPAIR) ||
4941 (flags & ZIO_FLAG_SCAN_THREAD) ||
4942 spa->spa_claiming)) {
4943 /*
4944 * This is either a normal write (not a repair), or it's
4945 * a repair induced by the scrub thread, or it's a repair
4946 * made by zil_claim() during spa_load() in the first txg.
4947 * In the normal case, we commit the DTL change in the same
4948 * txg as the block was born. In the scrub-induced repair
4949 * case, we know that scrubs run in first-pass syncing context,
4950 * so we commit the DTL change in spa_syncing_txg(spa).
4951 * In the zil_claim() case, we commit in spa_first_txg(spa).
4952 *
4953 * We currently do not make DTL entries for failed spontaneous
4954 * self-healing writes triggered by normal (non-scrubbing)
4955 * reads, because we have no transactional context in which to
4956 * do so -- and it's not clear that it'd be desirable anyway.
4957 */
4958 if (vd->vdev_ops->vdev_op_leaf) {
4959 uint64_t commit_txg = txg;
4960 if (flags & ZIO_FLAG_SCAN_THREAD) {
4961 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4962 ASSERT(spa_sync_pass(spa) == 1);
4963 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4964 commit_txg = spa_syncing_txg(spa);
4965 } else if (spa->spa_claiming) {
4966 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4967 commit_txg = spa_first_txg(spa);
4968 }
4969 ASSERT(commit_txg >= spa_syncing_txg(spa));
4970 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4971 return;
4972 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4973 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4974 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4975 }
4976 if (vd != rvd)
4977 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4978 }
4979 }
4980
4981 int64_t
4982 vdev_deflated_space(vdev_t *vd, int64_t space)
4983 {
4984 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4985 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4986
4987 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4988 }
4989
4990 /*
4991 * Update the in-core space usage stats for this vdev, its metaslab class,
4992 * and the root vdev.
4993 */
4994 void
4995 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4996 int64_t space_delta)
4997 {
4998 (void) defer_delta;
4999 int64_t dspace_delta;
5000 spa_t *spa = vd->vdev_spa;
5001 vdev_t *rvd = spa->spa_root_vdev;
5002
5003 ASSERT(vd == vd->vdev_top);
5004
5005 /*
5006 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
5007 * factor. We must calculate this here and not at the root vdev
5008 * because the root vdev's psize-to-asize is simply the max of its
5009 * children's, thus not accurate enough for us.
5010 */
5011 dspace_delta = vdev_deflated_space(vd, space_delta);
5012
5013 mutex_enter(&vd->vdev_stat_lock);
5014 /* ensure we won't underflow */
5015 if (alloc_delta < 0) {
5016 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
5017 }
5018
5019 vd->vdev_stat.vs_alloc += alloc_delta;
5020 vd->vdev_stat.vs_space += space_delta;
5021 vd->vdev_stat.vs_dspace += dspace_delta;
5022 mutex_exit(&vd->vdev_stat_lock);
5023
5024 /* every class but log contributes to root space stats */
5025 if (vd->vdev_mg != NULL && !vd->vdev_islog) {
5026 ASSERT(!vd->vdev_isl2cache);
5027 mutex_enter(&rvd->vdev_stat_lock);
5028 rvd->vdev_stat.vs_alloc += alloc_delta;
5029 rvd->vdev_stat.vs_space += space_delta;
5030 rvd->vdev_stat.vs_dspace += dspace_delta;
5031 mutex_exit(&rvd->vdev_stat_lock);
5032 }
5033 /* Note: metaslab_class_space_update moved to metaslab_space_update */
5034 }
5035
5036 /*
5037 * Mark a top-level vdev's config as dirty, placing it on the dirty list
5038 * so that it will be written out next time the vdev configuration is synced.
5039 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
5040 */
5041 void
5042 vdev_config_dirty(vdev_t *vd)
5043 {
5044 spa_t *spa = vd->vdev_spa;
5045 vdev_t *rvd = spa->spa_root_vdev;
5046 int c;
5047
5048 ASSERT(spa_writeable(spa));
5049
5050 /*
5051 * If this is an aux vdev (as with l2cache and spare devices), then we
5052 * update the vdev config manually and set the sync flag.
5053 */
5054 if (vd->vdev_aux != NULL) {
5055 spa_aux_vdev_t *sav = vd->vdev_aux;
5056 nvlist_t **aux;
5057 uint_t naux;
5058
5059 for (c = 0; c < sav->sav_count; c++) {
5060 if (sav->sav_vdevs[c] == vd)
5061 break;
5062 }
5063
5064 if (c == sav->sav_count) {
5065 /*
5066 * We're being removed. There's nothing more to do.
5067 */
5068 ASSERT(sav->sav_sync == B_TRUE);
5069 return;
5070 }
5071
5072 sav->sav_sync = B_TRUE;
5073
5074 if (nvlist_lookup_nvlist_array(sav->sav_config,
5075 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
5076 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
5077 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
5078 }
5079
5080 ASSERT(c < naux);
5081
5082 /*
5083 * Setting the nvlist in the middle if the array is a little
5084 * sketchy, but it will work.
5085 */
5086 nvlist_free(aux[c]);
5087 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
5088
5089 return;
5090 }
5091
5092 /*
5093 * The dirty list is protected by the SCL_CONFIG lock. The caller
5094 * must either hold SCL_CONFIG as writer, or must be the sync thread
5095 * (which holds SCL_CONFIG as reader). There's only one sync thread,
5096 * so this is sufficient to ensure mutual exclusion.
5097 */
5098 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5099 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5100 spa_config_held(spa, SCL_CONFIG, RW_READER)));
5101
5102 if (vd == rvd) {
5103 for (c = 0; c < rvd->vdev_children; c++)
5104 vdev_config_dirty(rvd->vdev_child[c]);
5105 } else {
5106 ASSERT(vd == vd->vdev_top);
5107
5108 if (!list_link_active(&vd->vdev_config_dirty_node) &&
5109 vdev_is_concrete(vd)) {
5110 list_insert_head(&spa->spa_config_dirty_list, vd);
5111 }
5112 }
5113 }
5114
5115 void
5116 vdev_config_clean(vdev_t *vd)
5117 {
5118 spa_t *spa = vd->vdev_spa;
5119
5120 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5121 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5122 spa_config_held(spa, SCL_CONFIG, RW_READER)));
5123
5124 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
5125 list_remove(&spa->spa_config_dirty_list, vd);
5126 }
5127
5128 /*
5129 * Mark a top-level vdev's state as dirty, so that the next pass of
5130 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
5131 * the state changes from larger config changes because they require
5132 * much less locking, and are often needed for administrative actions.
5133 */
5134 void
5135 vdev_state_dirty(vdev_t *vd)
5136 {
5137 spa_t *spa = vd->vdev_spa;
5138
5139 ASSERT(spa_writeable(spa));
5140 ASSERT(vd == vd->vdev_top);
5141
5142 /*
5143 * The state list is protected by the SCL_STATE lock. The caller
5144 * must either hold SCL_STATE as writer, or must be the sync thread
5145 * (which holds SCL_STATE as reader). There's only one sync thread,
5146 * so this is sufficient to ensure mutual exclusion.
5147 */
5148 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5149 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5150 spa_config_held(spa, SCL_STATE, RW_READER)));
5151
5152 if (!list_link_active(&vd->vdev_state_dirty_node) &&
5153 vdev_is_concrete(vd))
5154 list_insert_head(&spa->spa_state_dirty_list, vd);
5155 }
5156
5157 void
5158 vdev_state_clean(vdev_t *vd)
5159 {
5160 spa_t *spa = vd->vdev_spa;
5161
5162 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5163 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5164 spa_config_held(spa, SCL_STATE, RW_READER)));
5165
5166 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
5167 list_remove(&spa->spa_state_dirty_list, vd);
5168 }
5169
5170 /*
5171 * Propagate vdev state up from children to parent.
5172 */
5173 void
5174 vdev_propagate_state(vdev_t *vd)
5175 {
5176 spa_t *spa = vd->vdev_spa;
5177 vdev_t *rvd = spa->spa_root_vdev;
5178 int degraded = 0, faulted = 0;
5179 int corrupted = 0;
5180 vdev_t *child;
5181
5182 if (vd->vdev_children > 0) {
5183 for (int c = 0; c < vd->vdev_children; c++) {
5184 child = vd->vdev_child[c];
5185
5186 /*
5187 * Don't factor holes or indirect vdevs into the
5188 * decision.
5189 */
5190 if (!vdev_is_concrete(child))
5191 continue;
5192
5193 if (!vdev_readable(child) ||
5194 (!vdev_writeable(child) && spa_writeable(spa))) {
5195 /*
5196 * Root special: if there is a top-level log
5197 * device, treat the root vdev as if it were
5198 * degraded.
5199 */
5200 if (child->vdev_islog && vd == rvd)
5201 degraded++;
5202 else
5203 faulted++;
5204 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
5205 degraded++;
5206 }
5207
5208 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
5209 corrupted++;
5210 }
5211
5212 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
5213
5214 /*
5215 * Root special: if there is a top-level vdev that cannot be
5216 * opened due to corrupted metadata, then propagate the root
5217 * vdev's aux state as 'corrupt' rather than 'insufficient
5218 * replicas'.
5219 */
5220 if (corrupted && vd == rvd &&
5221 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
5222 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
5223 VDEV_AUX_CORRUPT_DATA);
5224 }
5225
5226 if (vd->vdev_parent)
5227 vdev_propagate_state(vd->vdev_parent);
5228 }
5229
5230 /*
5231 * Set a vdev's state. If this is during an open, we don't update the parent
5232 * state, because we're in the process of opening children depth-first.
5233 * Otherwise, we propagate the change to the parent.
5234 *
5235 * If this routine places a device in a faulted state, an appropriate ereport is
5236 * generated.
5237 */
5238 void
5239 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
5240 {
5241 uint64_t save_state;
5242 spa_t *spa = vd->vdev_spa;
5243
5244 if (state == vd->vdev_state) {
5245 /*
5246 * Since vdev_offline() code path is already in an offline
5247 * state we can miss a statechange event to OFFLINE. Check
5248 * the previous state to catch this condition.
5249 */
5250 if (vd->vdev_ops->vdev_op_leaf &&
5251 (state == VDEV_STATE_OFFLINE) &&
5252 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5253 /* post an offline state change */
5254 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5255 }
5256 vd->vdev_stat.vs_aux = aux;
5257 return;
5258 }
5259
5260 save_state = vd->vdev_state;
5261
5262 vd->vdev_state = state;
5263 vd->vdev_stat.vs_aux = aux;
5264
5265 /*
5266 * If we are setting the vdev state to anything but an open state, then
5267 * always close the underlying device unless the device has requested
5268 * a delayed close (i.e. we're about to remove or fault the device).
5269 * Otherwise, we keep accessible but invalid devices open forever.
5270 * We don't call vdev_close() itself, because that implies some extra
5271 * checks (offline, etc) that we don't want here. This is limited to
5272 * leaf devices, because otherwise closing the device will affect other
5273 * children.
5274 */
5275 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5276 vd->vdev_ops->vdev_op_leaf)
5277 vd->vdev_ops->vdev_op_close(vd);
5278
5279 if (vd->vdev_removed &&
5280 state == VDEV_STATE_CANT_OPEN &&
5281 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5282 /*
5283 * If the previous state is set to VDEV_STATE_REMOVED, then this
5284 * device was previously marked removed and someone attempted to
5285 * reopen it. If this failed due to a nonexistent device, then
5286 * keep the device in the REMOVED state. We also let this be if
5287 * it is one of our special test online cases, which is only
5288 * attempting to online the device and shouldn't generate an FMA
5289 * fault.
5290 */
5291 vd->vdev_state = VDEV_STATE_REMOVED;
5292 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5293 } else if (state == VDEV_STATE_REMOVED) {
5294 vd->vdev_removed = B_TRUE;
5295 } else if (state == VDEV_STATE_CANT_OPEN) {
5296 /*
5297 * If we fail to open a vdev during an import or recovery, we
5298 * mark it as "not available", which signifies that it was
5299 * never there to begin with. Failure to open such a device
5300 * is not considered an error.
5301 */
5302 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5303 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5304 vd->vdev_ops->vdev_op_leaf)
5305 vd->vdev_not_present = 1;
5306
5307 /*
5308 * Post the appropriate ereport. If the 'prevstate' field is
5309 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5310 * that this is part of a vdev_reopen(). In this case, we don't
5311 * want to post the ereport if the device was already in the
5312 * CANT_OPEN state beforehand.
5313 *
5314 * If the 'checkremove' flag is set, then this is an attempt to
5315 * online the device in response to an insertion event. If we
5316 * hit this case, then we have detected an insertion event for a
5317 * faulted or offline device that wasn't in the removed state.
5318 * In this scenario, we don't post an ereport because we are
5319 * about to replace the device, or attempt an online with
5320 * vdev_forcefault, which will generate the fault for us.
5321 */
5322 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5323 !vd->vdev_not_present && !vd->vdev_checkremove &&
5324 vd != spa->spa_root_vdev) {
5325 const char *class;
5326
5327 switch (aux) {
5328 case VDEV_AUX_OPEN_FAILED:
5329 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5330 break;
5331 case VDEV_AUX_CORRUPT_DATA:
5332 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5333 break;
5334 case VDEV_AUX_NO_REPLICAS:
5335 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5336 break;
5337 case VDEV_AUX_BAD_GUID_SUM:
5338 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5339 break;
5340 case VDEV_AUX_TOO_SMALL:
5341 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5342 break;
5343 case VDEV_AUX_BAD_LABEL:
5344 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5345 break;
5346 case VDEV_AUX_BAD_ASHIFT:
5347 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5348 break;
5349 default:
5350 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5351 }
5352
5353 (void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5354 save_state);
5355 }
5356
5357 /* Erase any notion of persistent removed state */
5358 vd->vdev_removed = B_FALSE;
5359 } else {
5360 vd->vdev_removed = B_FALSE;
5361 }
5362
5363 /*
5364 * Notify ZED of any significant state-change on a leaf vdev.
5365 *
5366 */
5367 if (vd->vdev_ops->vdev_op_leaf) {
5368 /* preserve original state from a vdev_reopen() */
5369 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5370 (vd->vdev_prevstate != vd->vdev_state) &&
5371 (save_state <= VDEV_STATE_CLOSED))
5372 save_state = vd->vdev_prevstate;
5373
5374 /* filter out state change due to initial vdev_open */
5375 if (save_state > VDEV_STATE_CLOSED)
5376 zfs_post_state_change(spa, vd, save_state);
5377 }
5378
5379 if (!isopen && vd->vdev_parent)
5380 vdev_propagate_state(vd->vdev_parent);
5381 }
5382
5383 boolean_t
5384 vdev_children_are_offline(vdev_t *vd)
5385 {
5386 ASSERT(!vd->vdev_ops->vdev_op_leaf);
5387
5388 for (uint64_t i = 0; i < vd->vdev_children; i++) {
5389 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5390 return (B_FALSE);
5391 }
5392
5393 return (B_TRUE);
5394 }
5395
5396 /*
5397 * Check the vdev configuration to ensure that it's capable of supporting
5398 * a root pool. We do not support partial configuration.
5399 */
5400 boolean_t
5401 vdev_is_bootable(vdev_t *vd)
5402 {
5403 if (!vd->vdev_ops->vdev_op_leaf) {
5404 const char *vdev_type = vd->vdev_ops->vdev_op_type;
5405
5406 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5407 return (B_FALSE);
5408 }
5409
5410 for (int c = 0; c < vd->vdev_children; c++) {
5411 if (!vdev_is_bootable(vd->vdev_child[c]))
5412 return (B_FALSE);
5413 }
5414 return (B_TRUE);
5415 }
5416
5417 boolean_t
5418 vdev_is_concrete(vdev_t *vd)
5419 {
5420 vdev_ops_t *ops = vd->vdev_ops;
5421 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5422 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5423 return (B_FALSE);
5424 } else {
5425 return (B_TRUE);
5426 }
5427 }
5428
5429 /*
5430 * Determine if a log device has valid content. If the vdev was
5431 * removed or faulted in the MOS config then we know that
5432 * the content on the log device has already been written to the pool.
5433 */
5434 boolean_t
5435 vdev_log_state_valid(vdev_t *vd)
5436 {
5437 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5438 !vd->vdev_removed)
5439 return (B_TRUE);
5440
5441 for (int c = 0; c < vd->vdev_children; c++)
5442 if (vdev_log_state_valid(vd->vdev_child[c]))
5443 return (B_TRUE);
5444
5445 return (B_FALSE);
5446 }
5447
5448 /*
5449 * Expand a vdev if possible.
5450 */
5451 void
5452 vdev_expand(vdev_t *vd, uint64_t txg)
5453 {
5454 ASSERT(vd->vdev_top == vd);
5455 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5456 ASSERT(vdev_is_concrete(vd));
5457
5458 vdev_set_deflate_ratio(vd);
5459
5460 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5461 vdev_is_concrete(vd)) {
5462 vdev_metaslab_group_create(vd);
5463 VERIFY(vdev_metaslab_init(vd, txg) == 0);
5464 vdev_config_dirty(vd);
5465 }
5466 }
5467
5468 /*
5469 * Split a vdev.
5470 */
5471 void
5472 vdev_split(vdev_t *vd)
5473 {
5474 vdev_t *cvd, *pvd = vd->vdev_parent;
5475
5476 VERIFY3U(pvd->vdev_children, >, 1);
5477
5478 vdev_remove_child(pvd, vd);
5479 vdev_compact_children(pvd);
5480
5481 ASSERT3P(pvd->vdev_child, !=, NULL);
5482
5483 cvd = pvd->vdev_child[0];
5484 if (pvd->vdev_children == 1) {
5485 vdev_remove_parent(cvd);
5486 cvd->vdev_splitting = B_TRUE;
5487 }
5488 vdev_propagate_state(cvd);
5489 }
5490
5491 void
5492 vdev_deadman(vdev_t *vd, const char *tag)
5493 {
5494 for (int c = 0; c < vd->vdev_children; c++) {
5495 vdev_t *cvd = vd->vdev_child[c];
5496
5497 vdev_deadman(cvd, tag);
5498 }
5499
5500 if (vd->vdev_ops->vdev_op_leaf) {
5501 vdev_queue_t *vq = &vd->vdev_queue;
5502
5503 mutex_enter(&vq->vq_lock);
5504 if (vq->vq_active > 0) {
5505 spa_t *spa = vd->vdev_spa;
5506 zio_t *fio;
5507 uint64_t delta;
5508
5509 zfs_dbgmsg("slow vdev: %s has %u active IOs",
5510 vd->vdev_path, vq->vq_active);
5511
5512 /*
5513 * Look at the head of all the pending queues,
5514 * if any I/O has been outstanding for longer than
5515 * the spa_deadman_synctime invoke the deadman logic.
5516 */
5517 fio = list_head(&vq->vq_active_list);
5518 delta = gethrtime() - fio->io_timestamp;
5519 if (delta > spa_deadman_synctime(spa))
5520 zio_deadman(fio, tag);
5521 }
5522 mutex_exit(&vq->vq_lock);
5523 }
5524 }
5525
5526 void
5527 vdev_defer_resilver(vdev_t *vd)
5528 {
5529 ASSERT(vd->vdev_ops->vdev_op_leaf);
5530
5531 vd->vdev_resilver_deferred = B_TRUE;
5532 vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5533 }
5534
5535 /*
5536 * Clears the resilver deferred flag on all leaf devs under vd. Returns
5537 * B_TRUE if we have devices that need to be resilvered and are available to
5538 * accept resilver I/Os.
5539 */
5540 boolean_t
5541 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5542 {
5543 boolean_t resilver_needed = B_FALSE;
5544 spa_t *spa = vd->vdev_spa;
5545
5546 for (int c = 0; c < vd->vdev_children; c++) {
5547 vdev_t *cvd = vd->vdev_child[c];
5548 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5549 }
5550
5551 if (vd == spa->spa_root_vdev &&
5552 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5553 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5554 vdev_config_dirty(vd);
5555 spa->spa_resilver_deferred = B_FALSE;
5556 return (resilver_needed);
5557 }
5558
5559 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5560 !vd->vdev_ops->vdev_op_leaf)
5561 return (resilver_needed);
5562
5563 vd->vdev_resilver_deferred = B_FALSE;
5564
5565 return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5566 vdev_resilver_needed(vd, NULL, NULL));
5567 }
5568
5569 boolean_t
5570 vdev_xlate_is_empty(range_seg64_t *rs)
5571 {
5572 return (rs->rs_start == rs->rs_end);
5573 }
5574
5575 /*
5576 * Translate a logical range to the first contiguous physical range for the
5577 * specified vdev_t. This function is initially called with a leaf vdev and
5578 * will walk each parent vdev until it reaches a top-level vdev. Once the
5579 * top-level is reached the physical range is initialized and the recursive
5580 * function begins to unwind. As it unwinds it calls the parent's vdev
5581 * specific translation function to do the real conversion.
5582 */
5583 void
5584 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
5585 range_seg64_t *physical_rs, range_seg64_t *remain_rs)
5586 {
5587 /*
5588 * Walk up the vdev tree
5589 */
5590 if (vd != vd->vdev_top) {
5591 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5592 remain_rs);
5593 } else {
5594 /*
5595 * We've reached the top-level vdev, initialize the physical
5596 * range to the logical range and set an empty remaining
5597 * range then start to unwind.
5598 */
5599 physical_rs->rs_start = logical_rs->rs_start;
5600 physical_rs->rs_end = logical_rs->rs_end;
5601
5602 remain_rs->rs_start = logical_rs->rs_start;
5603 remain_rs->rs_end = logical_rs->rs_start;
5604
5605 return;
5606 }
5607
5608 vdev_t *pvd = vd->vdev_parent;
5609 ASSERT3P(pvd, !=, NULL);
5610 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5611
5612 /*
5613 * As this recursive function unwinds, translate the logical
5614 * range into its physical and any remaining components by calling
5615 * the vdev specific translate function.
5616 */
5617 range_seg64_t intermediate = { 0 };
5618 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5619
5620 physical_rs->rs_start = intermediate.rs_start;
5621 physical_rs->rs_end = intermediate.rs_end;
5622 }
5623
5624 void
5625 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
5626 vdev_xlate_func_t *func, void *arg)
5627 {
5628 range_seg64_t iter_rs = *logical_rs;
5629 range_seg64_t physical_rs;
5630 range_seg64_t remain_rs;
5631
5632 while (!vdev_xlate_is_empty(&iter_rs)) {
5633
5634 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5635
5636 /*
5637 * With raidz and dRAID, it's possible that the logical range
5638 * does not live on this leaf vdev. Only when there is a non-
5639 * zero physical size call the provided function.
5640 */
5641 if (!vdev_xlate_is_empty(&physical_rs))
5642 func(arg, &physical_rs);
5643
5644 iter_rs = remain_rs;
5645 }
5646 }
5647
5648 static char *
5649 vdev_name(vdev_t *vd, char *buf, int buflen)
5650 {
5651 if (vd->vdev_path == NULL) {
5652 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5653 strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5654 } else if (!vd->vdev_ops->vdev_op_leaf) {
5655 snprintf(buf, buflen, "%s-%llu",
5656 vd->vdev_ops->vdev_op_type,
5657 (u_longlong_t)vd->vdev_id);
5658 }
5659 } else {
5660 strlcpy(buf, vd->vdev_path, buflen);
5661 }
5662 return (buf);
5663 }
5664
5665 /*
5666 * Look at the vdev tree and determine whether any devices are currently being
5667 * replaced.
5668 */
5669 boolean_t
5670 vdev_replace_in_progress(vdev_t *vdev)
5671 {
5672 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5673
5674 if (vdev->vdev_ops == &vdev_replacing_ops)
5675 return (B_TRUE);
5676
5677 /*
5678 * A 'spare' vdev indicates that we have a replace in progress, unless
5679 * it has exactly two children, and the second, the hot spare, has
5680 * finished being resilvered.
5681 */
5682 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5683 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5684 return (B_TRUE);
5685
5686 for (int i = 0; i < vdev->vdev_children; i++) {
5687 if (vdev_replace_in_progress(vdev->vdev_child[i]))
5688 return (B_TRUE);
5689 }
5690
5691 return (B_FALSE);
5692 }
5693
5694 /*
5695 * Add a (source=src, propname=propval) list to an nvlist.
5696 */
5697 static void
5698 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval,
5699 uint64_t intval, zprop_source_t src)
5700 {
5701 nvlist_t *propval;
5702
5703 propval = fnvlist_alloc();
5704 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5705
5706 if (strval != NULL)
5707 fnvlist_add_string(propval, ZPROP_VALUE, strval);
5708 else
5709 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5710
5711 fnvlist_add_nvlist(nvl, propname, propval);
5712 nvlist_free(propval);
5713 }
5714
5715 static void
5716 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5717 {
5718 vdev_t *vd;
5719 nvlist_t *nvp = arg;
5720 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5721 objset_t *mos = spa->spa_meta_objset;
5722 nvpair_t *elem = NULL;
5723 uint64_t vdev_guid;
5724 uint64_t objid;
5725 nvlist_t *nvprops;
5726
5727 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
5728 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
5729 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
5730
5731 /* this vdev could get removed while waiting for this sync task */
5732 if (vd == NULL)
5733 return;
5734
5735 /*
5736 * Set vdev property values in the vdev props mos object.
5737 */
5738 if (vd->vdev_root_zap != 0) {
5739 objid = vd->vdev_root_zap;
5740 } else if (vd->vdev_top_zap != 0) {
5741 objid = vd->vdev_top_zap;
5742 } else if (vd->vdev_leaf_zap != 0) {
5743 objid = vd->vdev_leaf_zap;
5744 } else {
5745 panic("unexpected vdev type");
5746 }
5747
5748 mutex_enter(&spa->spa_props_lock);
5749
5750 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5751 uint64_t intval;
5752 const char *strval;
5753 vdev_prop_t prop;
5754 const char *propname = nvpair_name(elem);
5755 zprop_type_t proptype;
5756
5757 switch (prop = vdev_name_to_prop(propname)) {
5758 case VDEV_PROP_USERPROP:
5759 if (vdev_prop_user(propname)) {
5760 strval = fnvpair_value_string(elem);
5761 if (strlen(strval) == 0) {
5762 /* remove the property if value == "" */
5763 (void) zap_remove(mos, objid, propname,
5764 tx);
5765 } else {
5766 VERIFY0(zap_update(mos, objid, propname,
5767 1, strlen(strval) + 1, strval, tx));
5768 }
5769 spa_history_log_internal(spa, "vdev set", tx,
5770 "vdev_guid=%llu: %s=%s",
5771 (u_longlong_t)vdev_guid, nvpair_name(elem),
5772 strval);
5773 }
5774 break;
5775 default:
5776 /* normalize the property name */
5777 propname = vdev_prop_to_name(prop);
5778 proptype = vdev_prop_get_type(prop);
5779
5780 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5781 ASSERT(proptype == PROP_TYPE_STRING);
5782 strval = fnvpair_value_string(elem);
5783 VERIFY0(zap_update(mos, objid, propname,
5784 1, strlen(strval) + 1, strval, tx));
5785 spa_history_log_internal(spa, "vdev set", tx,
5786 "vdev_guid=%llu: %s=%s",
5787 (u_longlong_t)vdev_guid, nvpair_name(elem),
5788 strval);
5789 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5790 intval = fnvpair_value_uint64(elem);
5791
5792 if (proptype == PROP_TYPE_INDEX) {
5793 const char *unused;
5794 VERIFY0(vdev_prop_index_to_string(
5795 prop, intval, &unused));
5796 }
5797 VERIFY0(zap_update(mos, objid, propname,
5798 sizeof (uint64_t), 1, &intval, tx));
5799 spa_history_log_internal(spa, "vdev set", tx,
5800 "vdev_guid=%llu: %s=%lld",
5801 (u_longlong_t)vdev_guid,
5802 nvpair_name(elem), (longlong_t)intval);
5803 } else {
5804 panic("invalid vdev property type %u",
5805 nvpair_type(elem));
5806 }
5807 }
5808
5809 }
5810
5811 mutex_exit(&spa->spa_props_lock);
5812 }
5813
5814 int
5815 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5816 {
5817 spa_t *spa = vd->vdev_spa;
5818 nvpair_t *elem = NULL;
5819 uint64_t vdev_guid;
5820 nvlist_t *nvprops;
5821 int error = 0;
5822
5823 ASSERT(vd != NULL);
5824
5825 /* Check that vdev has a zap we can use */
5826 if (vd->vdev_root_zap == 0 &&
5827 vd->vdev_top_zap == 0 &&
5828 vd->vdev_leaf_zap == 0)
5829 return (SET_ERROR(EINVAL));
5830
5831 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
5832 &vdev_guid) != 0)
5833 return (SET_ERROR(EINVAL));
5834
5835 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
5836 &nvprops) != 0)
5837 return (SET_ERROR(EINVAL));
5838
5839 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
5840 return (SET_ERROR(EINVAL));
5841
5842 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5843 const char *propname = nvpair_name(elem);
5844 vdev_prop_t prop = vdev_name_to_prop(propname);
5845 uint64_t intval = 0;
5846 const char *strval = NULL;
5847
5848 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
5849 error = EINVAL;
5850 goto end;
5851 }
5852
5853 if (vdev_prop_readonly(prop)) {
5854 error = EROFS;
5855 goto end;
5856 }
5857
5858 /* Special Processing */
5859 switch (prop) {
5860 case VDEV_PROP_PATH:
5861 if (vd->vdev_path == NULL) {
5862 error = EROFS;
5863 break;
5864 }
5865 if (nvpair_value_string(elem, &strval) != 0) {
5866 error = EINVAL;
5867 break;
5868 }
5869 /* New path must start with /dev/ */
5870 if (strncmp(strval, "/dev/", 5)) {
5871 error = EINVAL;
5872 break;
5873 }
5874 error = spa_vdev_setpath(spa, vdev_guid, strval);
5875 break;
5876 case VDEV_PROP_ALLOCATING:
5877 if (nvpair_value_uint64(elem, &intval) != 0) {
5878 error = EINVAL;
5879 break;
5880 }
5881 if (intval != vd->vdev_noalloc)
5882 break;
5883 if (intval == 0)
5884 error = spa_vdev_noalloc(spa, vdev_guid);
5885 else
5886 error = spa_vdev_alloc(spa, vdev_guid);
5887 break;
5888 case VDEV_PROP_FAILFAST:
5889 if (nvpair_value_uint64(elem, &intval) != 0) {
5890 error = EINVAL;
5891 break;
5892 }
5893 vd->vdev_failfast = intval & 1;
5894 break;
5895 case VDEV_PROP_CHECKSUM_N:
5896 if (nvpair_value_uint64(elem, &intval) != 0) {
5897 error = EINVAL;
5898 break;
5899 }
5900 vd->vdev_checksum_n = intval;
5901 break;
5902 case VDEV_PROP_CHECKSUM_T:
5903 if (nvpair_value_uint64(elem, &intval) != 0) {
5904 error = EINVAL;
5905 break;
5906 }
5907 vd->vdev_checksum_t = intval;
5908 break;
5909 case VDEV_PROP_IO_N:
5910 if (nvpair_value_uint64(elem, &intval) != 0) {
5911 error = EINVAL;
5912 break;
5913 }
5914 vd->vdev_io_n = intval;
5915 break;
5916 case VDEV_PROP_IO_T:
5917 if (nvpair_value_uint64(elem, &intval) != 0) {
5918 error = EINVAL;
5919 break;
5920 }
5921 vd->vdev_io_t = intval;
5922 break;
5923 default:
5924 /* Most processing is done in vdev_props_set_sync */
5925 break;
5926 }
5927 end:
5928 if (error != 0) {
5929 intval = error;
5930 vdev_prop_add_list(outnvl, propname, strval, intval, 0);
5931 return (error);
5932 }
5933 }
5934
5935 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
5936 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
5937 }
5938
5939 int
5940 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5941 {
5942 spa_t *spa = vd->vdev_spa;
5943 objset_t *mos = spa->spa_meta_objset;
5944 int err = 0;
5945 uint64_t objid;
5946 uint64_t vdev_guid;
5947 nvpair_t *elem = NULL;
5948 nvlist_t *nvprops = NULL;
5949 uint64_t intval = 0;
5950 char *strval = NULL;
5951 const char *propname = NULL;
5952 vdev_prop_t prop;
5953
5954 ASSERT(vd != NULL);
5955 ASSERT(mos != NULL);
5956
5957 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
5958 &vdev_guid) != 0)
5959 return (SET_ERROR(EINVAL));
5960
5961 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
5962
5963 if (vd->vdev_root_zap != 0) {
5964 objid = vd->vdev_root_zap;
5965 } else if (vd->vdev_top_zap != 0) {
5966 objid = vd->vdev_top_zap;
5967 } else if (vd->vdev_leaf_zap != 0) {
5968 objid = vd->vdev_leaf_zap;
5969 } else {
5970 return (SET_ERROR(EINVAL));
5971 }
5972 ASSERT(objid != 0);
5973
5974 mutex_enter(&spa->spa_props_lock);
5975
5976 if (nvprops != NULL) {
5977 char namebuf[64] = { 0 };
5978
5979 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5980 intval = 0;
5981 strval = NULL;
5982 propname = nvpair_name(elem);
5983 prop = vdev_name_to_prop(propname);
5984 zprop_source_t src = ZPROP_SRC_DEFAULT;
5985 uint64_t integer_size, num_integers;
5986
5987 switch (prop) {
5988 /* Special Read-only Properties */
5989 case VDEV_PROP_NAME:
5990 strval = vdev_name(vd, namebuf,
5991 sizeof (namebuf));
5992 if (strval == NULL)
5993 continue;
5994 vdev_prop_add_list(outnvl, propname, strval, 0,
5995 ZPROP_SRC_NONE);
5996 continue;
5997 case VDEV_PROP_CAPACITY:
5998 /* percent used */
5999 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
6000 (vd->vdev_stat.vs_alloc * 100 /
6001 vd->vdev_stat.vs_dspace);
6002 vdev_prop_add_list(outnvl, propname, NULL,
6003 intval, ZPROP_SRC_NONE);
6004 continue;
6005 case VDEV_PROP_STATE:
6006 vdev_prop_add_list(outnvl, propname, NULL,
6007 vd->vdev_state, ZPROP_SRC_NONE);
6008 continue;
6009 case VDEV_PROP_GUID:
6010 vdev_prop_add_list(outnvl, propname, NULL,
6011 vd->vdev_guid, ZPROP_SRC_NONE);
6012 continue;
6013 case VDEV_PROP_ASIZE:
6014 vdev_prop_add_list(outnvl, propname, NULL,
6015 vd->vdev_asize, ZPROP_SRC_NONE);
6016 continue;
6017 case VDEV_PROP_PSIZE:
6018 vdev_prop_add_list(outnvl, propname, NULL,
6019 vd->vdev_psize, ZPROP_SRC_NONE);
6020 continue;
6021 case VDEV_PROP_ASHIFT:
6022 vdev_prop_add_list(outnvl, propname, NULL,
6023 vd->vdev_ashift, ZPROP_SRC_NONE);
6024 continue;
6025 case VDEV_PROP_SIZE:
6026 vdev_prop_add_list(outnvl, propname, NULL,
6027 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
6028 continue;
6029 case VDEV_PROP_FREE:
6030 vdev_prop_add_list(outnvl, propname, NULL,
6031 vd->vdev_stat.vs_dspace -
6032 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6033 continue;
6034 case VDEV_PROP_ALLOCATED:
6035 vdev_prop_add_list(outnvl, propname, NULL,
6036 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6037 continue;
6038 case VDEV_PROP_EXPANDSZ:
6039 vdev_prop_add_list(outnvl, propname, NULL,
6040 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
6041 continue;
6042 case VDEV_PROP_FRAGMENTATION:
6043 vdev_prop_add_list(outnvl, propname, NULL,
6044 vd->vdev_stat.vs_fragmentation,
6045 ZPROP_SRC_NONE);
6046 continue;
6047 case VDEV_PROP_PARITY:
6048 vdev_prop_add_list(outnvl, propname, NULL,
6049 vdev_get_nparity(vd), ZPROP_SRC_NONE);
6050 continue;
6051 case VDEV_PROP_PATH:
6052 if (vd->vdev_path == NULL)
6053 continue;
6054 vdev_prop_add_list(outnvl, propname,
6055 vd->vdev_path, 0, ZPROP_SRC_NONE);
6056 continue;
6057 case VDEV_PROP_DEVID:
6058 if (vd->vdev_devid == NULL)
6059 continue;
6060 vdev_prop_add_list(outnvl, propname,
6061 vd->vdev_devid, 0, ZPROP_SRC_NONE);
6062 continue;
6063 case VDEV_PROP_PHYS_PATH:
6064 if (vd->vdev_physpath == NULL)
6065 continue;
6066 vdev_prop_add_list(outnvl, propname,
6067 vd->vdev_physpath, 0, ZPROP_SRC_NONE);
6068 continue;
6069 case VDEV_PROP_ENC_PATH:
6070 if (vd->vdev_enc_sysfs_path == NULL)
6071 continue;
6072 vdev_prop_add_list(outnvl, propname,
6073 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
6074 continue;
6075 case VDEV_PROP_FRU:
6076 if (vd->vdev_fru == NULL)
6077 continue;
6078 vdev_prop_add_list(outnvl, propname,
6079 vd->vdev_fru, 0, ZPROP_SRC_NONE);
6080 continue;
6081 case VDEV_PROP_PARENT:
6082 if (vd->vdev_parent != NULL) {
6083 strval = vdev_name(vd->vdev_parent,
6084 namebuf, sizeof (namebuf));
6085 vdev_prop_add_list(outnvl, propname,
6086 strval, 0, ZPROP_SRC_NONE);
6087 }
6088 continue;
6089 case VDEV_PROP_CHILDREN:
6090 if (vd->vdev_children > 0)
6091 strval = kmem_zalloc(ZAP_MAXVALUELEN,
6092 KM_SLEEP);
6093 for (uint64_t i = 0; i < vd->vdev_children;
6094 i++) {
6095 const char *vname;
6096
6097 vname = vdev_name(vd->vdev_child[i],
6098 namebuf, sizeof (namebuf));
6099 if (vname == NULL)
6100 vname = "(unknown)";
6101 if (strlen(strval) > 0)
6102 strlcat(strval, ",",
6103 ZAP_MAXVALUELEN);
6104 strlcat(strval, vname, ZAP_MAXVALUELEN);
6105 }
6106 if (strval != NULL) {
6107 vdev_prop_add_list(outnvl, propname,
6108 strval, 0, ZPROP_SRC_NONE);
6109 kmem_free(strval, ZAP_MAXVALUELEN);
6110 }
6111 continue;
6112 case VDEV_PROP_NUMCHILDREN:
6113 vdev_prop_add_list(outnvl, propname, NULL,
6114 vd->vdev_children, ZPROP_SRC_NONE);
6115 continue;
6116 case VDEV_PROP_READ_ERRORS:
6117 vdev_prop_add_list(outnvl, propname, NULL,
6118 vd->vdev_stat.vs_read_errors,
6119 ZPROP_SRC_NONE);
6120 continue;
6121 case VDEV_PROP_WRITE_ERRORS:
6122 vdev_prop_add_list(outnvl, propname, NULL,
6123 vd->vdev_stat.vs_write_errors,
6124 ZPROP_SRC_NONE);
6125 continue;
6126 case VDEV_PROP_CHECKSUM_ERRORS:
6127 vdev_prop_add_list(outnvl, propname, NULL,
6128 vd->vdev_stat.vs_checksum_errors,
6129 ZPROP_SRC_NONE);
6130 continue;
6131 case VDEV_PROP_INITIALIZE_ERRORS:
6132 vdev_prop_add_list(outnvl, propname, NULL,
6133 vd->vdev_stat.vs_initialize_errors,
6134 ZPROP_SRC_NONE);
6135 continue;
6136 case VDEV_PROP_OPS_NULL:
6137 vdev_prop_add_list(outnvl, propname, NULL,
6138 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
6139 ZPROP_SRC_NONE);
6140 continue;
6141 case VDEV_PROP_OPS_READ:
6142 vdev_prop_add_list(outnvl, propname, NULL,
6143 vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
6144 ZPROP_SRC_NONE);
6145 continue;
6146 case VDEV_PROP_OPS_WRITE:
6147 vdev_prop_add_list(outnvl, propname, NULL,
6148 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
6149 ZPROP_SRC_NONE);
6150 continue;
6151 case VDEV_PROP_OPS_FREE:
6152 vdev_prop_add_list(outnvl, propname, NULL,
6153 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
6154 ZPROP_SRC_NONE);
6155 continue;
6156 case VDEV_PROP_OPS_CLAIM:
6157 vdev_prop_add_list(outnvl, propname, NULL,
6158 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
6159 ZPROP_SRC_NONE);
6160 continue;
6161 case VDEV_PROP_OPS_TRIM:
6162 /*
6163 * TRIM ops and bytes are reported to user
6164 * space as ZIO_TYPE_IOCTL. This is done to
6165 * preserve the vdev_stat_t structure layout
6166 * for user space.
6167 */
6168 vdev_prop_add_list(outnvl, propname, NULL,
6169 vd->vdev_stat.vs_ops[ZIO_TYPE_IOCTL],
6170 ZPROP_SRC_NONE);
6171 continue;
6172 case VDEV_PROP_BYTES_NULL:
6173 vdev_prop_add_list(outnvl, propname, NULL,
6174 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
6175 ZPROP_SRC_NONE);
6176 continue;
6177 case VDEV_PROP_BYTES_READ:
6178 vdev_prop_add_list(outnvl, propname, NULL,
6179 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
6180 ZPROP_SRC_NONE);
6181 continue;
6182 case VDEV_PROP_BYTES_WRITE:
6183 vdev_prop_add_list(outnvl, propname, NULL,
6184 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
6185 ZPROP_SRC_NONE);
6186 continue;
6187 case VDEV_PROP_BYTES_FREE:
6188 vdev_prop_add_list(outnvl, propname, NULL,
6189 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
6190 ZPROP_SRC_NONE);
6191 continue;
6192 case VDEV_PROP_BYTES_CLAIM:
6193 vdev_prop_add_list(outnvl, propname, NULL,
6194 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
6195 ZPROP_SRC_NONE);
6196 continue;
6197 case VDEV_PROP_BYTES_TRIM:
6198 /*
6199 * TRIM ops and bytes are reported to user
6200 * space as ZIO_TYPE_IOCTL. This is done to
6201 * preserve the vdev_stat_t structure layout
6202 * for user space.
6203 */
6204 vdev_prop_add_list(outnvl, propname, NULL,
6205 vd->vdev_stat.vs_bytes[ZIO_TYPE_IOCTL],
6206 ZPROP_SRC_NONE);
6207 continue;
6208 case VDEV_PROP_REMOVING:
6209 vdev_prop_add_list(outnvl, propname, NULL,
6210 vd->vdev_removing, ZPROP_SRC_NONE);
6211 continue;
6212 /* Numeric Properites */
6213 case VDEV_PROP_ALLOCATING:
6214 /* Leaf vdevs cannot have this property */
6215 if (vd->vdev_mg == NULL &&
6216 vd->vdev_top != NULL) {
6217 src = ZPROP_SRC_NONE;
6218 intval = ZPROP_BOOLEAN_NA;
6219 } else {
6220 err = vdev_prop_get_int(vd, prop,
6221 &intval);
6222 if (err && err != ENOENT)
6223 break;
6224
6225 if (intval ==
6226 vdev_prop_default_numeric(prop))
6227 src = ZPROP_SRC_DEFAULT;
6228 else
6229 src = ZPROP_SRC_LOCAL;
6230 }
6231
6232 vdev_prop_add_list(outnvl, propname, NULL,
6233 intval, src);
6234 break;
6235 case VDEV_PROP_FAILFAST:
6236 src = ZPROP_SRC_LOCAL;
6237 strval = NULL;
6238
6239 err = zap_lookup(mos, objid, nvpair_name(elem),
6240 sizeof (uint64_t), 1, &intval);
6241 if (err == ENOENT) {
6242 intval = vdev_prop_default_numeric(
6243 prop);
6244 err = 0;
6245 } else if (err) {
6246 break;
6247 }
6248 if (intval == vdev_prop_default_numeric(prop))
6249 src = ZPROP_SRC_DEFAULT;
6250
6251 vdev_prop_add_list(outnvl, propname, strval,
6252 intval, src);
6253 break;
6254 case VDEV_PROP_CHECKSUM_N:
6255 case VDEV_PROP_CHECKSUM_T:
6256 case VDEV_PROP_IO_N:
6257 case VDEV_PROP_IO_T:
6258 err = vdev_prop_get_int(vd, prop, &intval);
6259 if (err && err != ENOENT)
6260 break;
6261
6262 if (intval == vdev_prop_default_numeric(prop))
6263 src = ZPROP_SRC_DEFAULT;
6264 else
6265 src = ZPROP_SRC_LOCAL;
6266
6267 vdev_prop_add_list(outnvl, propname, NULL,
6268 intval, src);
6269 break;
6270 /* Text Properties */
6271 case VDEV_PROP_COMMENT:
6272 /* Exists in the ZAP below */
6273 /* FALLTHRU */
6274 case VDEV_PROP_USERPROP:
6275 /* User Properites */
6276 src = ZPROP_SRC_LOCAL;
6277
6278 err = zap_length(mos, objid, nvpair_name(elem),
6279 &integer_size, &num_integers);
6280 if (err)
6281 break;
6282
6283 switch (integer_size) {
6284 case 8:
6285 /* User properties cannot be integers */
6286 err = EINVAL;
6287 break;
6288 case 1:
6289 /* string property */
6290 strval = kmem_alloc(num_integers,
6291 KM_SLEEP);
6292 err = zap_lookup(mos, objid,
6293 nvpair_name(elem), 1,
6294 num_integers, strval);
6295 if (err) {
6296 kmem_free(strval,
6297 num_integers);
6298 break;
6299 }
6300 vdev_prop_add_list(outnvl, propname,
6301 strval, 0, src);
6302 kmem_free(strval, num_integers);
6303 break;
6304 }
6305 break;
6306 default:
6307 err = ENOENT;
6308 break;
6309 }
6310 if (err)
6311 break;
6312 }
6313 } else {
6314 /*
6315 * Get all properties from the MOS vdev property object.
6316 */
6317 zap_cursor_t zc;
6318 zap_attribute_t za;
6319 for (zap_cursor_init(&zc, mos, objid);
6320 (err = zap_cursor_retrieve(&zc, &za)) == 0;
6321 zap_cursor_advance(&zc)) {
6322 intval = 0;
6323 strval = NULL;
6324 zprop_source_t src = ZPROP_SRC_DEFAULT;
6325 propname = za.za_name;
6326
6327 switch (za.za_integer_length) {
6328 case 8:
6329 /* We do not allow integer user properties */
6330 /* This is likely an internal value */
6331 break;
6332 case 1:
6333 /* string property */
6334 strval = kmem_alloc(za.za_num_integers,
6335 KM_SLEEP);
6336 err = zap_lookup(mos, objid, za.za_name, 1,
6337 za.za_num_integers, strval);
6338 if (err) {
6339 kmem_free(strval, za.za_num_integers);
6340 break;
6341 }
6342 vdev_prop_add_list(outnvl, propname, strval, 0,
6343 src);
6344 kmem_free(strval, za.za_num_integers);
6345 break;
6346
6347 default:
6348 break;
6349 }
6350 }
6351 zap_cursor_fini(&zc);
6352 }
6353
6354 mutex_exit(&spa->spa_props_lock);
6355 if (err && err != ENOENT) {
6356 return (err);
6357 }
6358
6359 return (0);
6360 }
6361
6362 EXPORT_SYMBOL(vdev_fault);
6363 EXPORT_SYMBOL(vdev_degrade);
6364 EXPORT_SYMBOL(vdev_online);
6365 EXPORT_SYMBOL(vdev_offline);
6366 EXPORT_SYMBOL(vdev_clear);
6367
6368 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
6369 "Target number of metaslabs per top-level vdev");
6370
6371 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
6372 "Default lower limit for metaslab size");
6373
6374 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW,
6375 "Default upper limit for metaslab size");
6376
6377 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
6378 "Minimum number of metaslabs per top-level vdev");
6379
6380 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
6381 "Practical upper limit of total metaslabs per top-level vdev");
6382
6383 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6384 "Rate limit slow IO (delay) events to this many per second");
6385
6386 /* BEGIN CSTYLED */
6387 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6388 "Rate limit checksum events to this many checksum errors per second "
6389 "(do not set below ZED threshold).");
6390 /* END CSTYLED */
6391
6392 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6393 "Ignore errors during resilver/scrub");
6394
6395 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6396 "Bypass vdev_validate()");
6397
6398 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6399 "Disable cache flushes");
6400
6401 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
6402 "Minimum number of metaslabs required to dedicate one for log blocks");
6403
6404 /* BEGIN CSTYLED */
6405 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6406 param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
6407 "Minimum ashift used when creating new top-level vdevs");
6408
6409 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6410 param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
6411 "Maximum ashift used when optimizing for logical -> physical sector "
6412 "size on new top-level vdevs");
6413 /* END CSTYLED */