]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Remove bcopy(), bzero(), bcmp()
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, Intel Corporation.
30 * Copyright (c) 2019, Datto Inc. All rights reserved.
31 * Copyright (c) 2021, Klara Inc.
32 * Copyright [2021] Hewlett Packard Enterprise Development LP
33 */
34
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa.h>
38 #include <sys/spa_impl.h>
39 #include <sys/bpobj.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/vdev_rebuild.h>
45 #include <sys/vdev_draid.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/space_map.h>
50 #include <sys/space_reftree.h>
51 #include <sys/zio.h>
52 #include <sys/zap.h>
53 #include <sys/fs/zfs.h>
54 #include <sys/arc.h>
55 #include <sys/zil.h>
56 #include <sys/dsl_scan.h>
57 #include <sys/vdev_raidz.h>
58 #include <sys/abd.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_trim.h>
61 #include <sys/zvol.h>
62 #include <sys/zfs_ratelimit.h>
63 #include "zfs_prop.h"
64
65 /*
66 * One metaslab from each (normal-class) vdev is used by the ZIL. These are
67 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
68 * part of the spa_embedded_log_class. The metaslab with the most free space
69 * in each vdev is selected for this purpose when the pool is opened (or a
70 * vdev is added). See vdev_metaslab_init().
71 *
72 * Log blocks can be allocated from the following locations. Each one is tried
73 * in order until the allocation succeeds:
74 * 1. dedicated log vdevs, aka "slog" (spa_log_class)
75 * 2. embedded slog metaslabs (spa_embedded_log_class)
76 * 3. other metaslabs in normal vdevs (spa_normal_class)
77 *
78 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
79 * than this number of metaslabs in the vdev. This ensures that we don't set
80 * aside an unreasonable amount of space for the ZIL. If set to less than
81 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
82 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
83 */
84 static int zfs_embedded_slog_min_ms = 64;
85
86 /* default target for number of metaslabs per top-level vdev */
87 static int zfs_vdev_default_ms_count = 200;
88
89 /* minimum number of metaslabs per top-level vdev */
90 static int zfs_vdev_min_ms_count = 16;
91
92 /* practical upper limit of total metaslabs per top-level vdev */
93 static int zfs_vdev_ms_count_limit = 1ULL << 17;
94
95 /* lower limit for metaslab size (512M) */
96 static int zfs_vdev_default_ms_shift = 29;
97
98 /* upper limit for metaslab size (16G) */
99 static const int zfs_vdev_max_ms_shift = 34;
100
101 int vdev_validate_skip = B_FALSE;
102
103 /*
104 * Since the DTL space map of a vdev is not expected to have a lot of
105 * entries, we default its block size to 4K.
106 */
107 int zfs_vdev_dtl_sm_blksz = (1 << 12);
108
109 /*
110 * Rate limit slow IO (delay) events to this many per second.
111 */
112 static unsigned int zfs_slow_io_events_per_second = 20;
113
114 /*
115 * Rate limit checksum events after this many checksum errors per second.
116 */
117 static unsigned int zfs_checksum_events_per_second = 20;
118
119 /*
120 * Ignore errors during scrub/resilver. Allows to work around resilver
121 * upon import when there are pool errors.
122 */
123 static int zfs_scan_ignore_errors = 0;
124
125 /*
126 * vdev-wide space maps that have lots of entries written to them at
127 * the end of each transaction can benefit from a higher I/O bandwidth
128 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
129 */
130 int zfs_vdev_standard_sm_blksz = (1 << 17);
131
132 /*
133 * Tunable parameter for debugging or performance analysis. Setting this
134 * will cause pool corruption on power loss if a volatile out-of-order
135 * write cache is enabled.
136 */
137 int zfs_nocacheflush = 0;
138
139 uint64_t zfs_vdev_max_auto_ashift = ASHIFT_MAX;
140 uint64_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
141
142 void
143 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
144 {
145 va_list adx;
146 char buf[256];
147
148 va_start(adx, fmt);
149 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
150 va_end(adx);
151
152 if (vd->vdev_path != NULL) {
153 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
154 vd->vdev_path, buf);
155 } else {
156 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
157 vd->vdev_ops->vdev_op_type,
158 (u_longlong_t)vd->vdev_id,
159 (u_longlong_t)vd->vdev_guid, buf);
160 }
161 }
162
163 void
164 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
165 {
166 char state[20];
167
168 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
169 zfs_dbgmsg("%*svdev %llu: %s", indent, "",
170 (u_longlong_t)vd->vdev_id,
171 vd->vdev_ops->vdev_op_type);
172 return;
173 }
174
175 switch (vd->vdev_state) {
176 case VDEV_STATE_UNKNOWN:
177 (void) snprintf(state, sizeof (state), "unknown");
178 break;
179 case VDEV_STATE_CLOSED:
180 (void) snprintf(state, sizeof (state), "closed");
181 break;
182 case VDEV_STATE_OFFLINE:
183 (void) snprintf(state, sizeof (state), "offline");
184 break;
185 case VDEV_STATE_REMOVED:
186 (void) snprintf(state, sizeof (state), "removed");
187 break;
188 case VDEV_STATE_CANT_OPEN:
189 (void) snprintf(state, sizeof (state), "can't open");
190 break;
191 case VDEV_STATE_FAULTED:
192 (void) snprintf(state, sizeof (state), "faulted");
193 break;
194 case VDEV_STATE_DEGRADED:
195 (void) snprintf(state, sizeof (state), "degraded");
196 break;
197 case VDEV_STATE_HEALTHY:
198 (void) snprintf(state, sizeof (state), "healthy");
199 break;
200 default:
201 (void) snprintf(state, sizeof (state), "<state %u>",
202 (uint_t)vd->vdev_state);
203 }
204
205 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
206 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
207 vd->vdev_islog ? " (log)" : "",
208 (u_longlong_t)vd->vdev_guid,
209 vd->vdev_path ? vd->vdev_path : "N/A", state);
210
211 for (uint64_t i = 0; i < vd->vdev_children; i++)
212 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
213 }
214
215 /*
216 * Virtual device management.
217 */
218
219 static const vdev_ops_t *const vdev_ops_table[] = {
220 &vdev_root_ops,
221 &vdev_raidz_ops,
222 &vdev_draid_ops,
223 &vdev_draid_spare_ops,
224 &vdev_mirror_ops,
225 &vdev_replacing_ops,
226 &vdev_spare_ops,
227 &vdev_disk_ops,
228 &vdev_file_ops,
229 &vdev_missing_ops,
230 &vdev_hole_ops,
231 &vdev_indirect_ops,
232 NULL
233 };
234
235 /*
236 * Given a vdev type, return the appropriate ops vector.
237 */
238 static vdev_ops_t *
239 vdev_getops(const char *type)
240 {
241 const vdev_ops_t *ops, *const *opspp;
242
243 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
244 if (strcmp(ops->vdev_op_type, type) == 0)
245 break;
246
247 return (ops);
248 }
249
250 /*
251 * Given a vdev and a metaslab class, find which metaslab group we're
252 * interested in. All vdevs may belong to two different metaslab classes.
253 * Dedicated slog devices use only the primary metaslab group, rather than a
254 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
255 */
256 metaslab_group_t *
257 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
258 {
259 if (mc == spa_embedded_log_class(vd->vdev_spa) &&
260 vd->vdev_log_mg != NULL)
261 return (vd->vdev_log_mg);
262 else
263 return (vd->vdev_mg);
264 }
265
266 void
267 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
268 range_seg64_t *physical_rs, range_seg64_t *remain_rs)
269 {
270 (void) vd, (void) remain_rs;
271
272 physical_rs->rs_start = logical_rs->rs_start;
273 physical_rs->rs_end = logical_rs->rs_end;
274 }
275
276 /*
277 * Derive the enumerated allocation bias from string input.
278 * String origin is either the per-vdev zap or zpool(8).
279 */
280 static vdev_alloc_bias_t
281 vdev_derive_alloc_bias(const char *bias)
282 {
283 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
284
285 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
286 alloc_bias = VDEV_BIAS_LOG;
287 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
288 alloc_bias = VDEV_BIAS_SPECIAL;
289 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
290 alloc_bias = VDEV_BIAS_DEDUP;
291
292 return (alloc_bias);
293 }
294
295 /*
296 * Default asize function: return the MAX of psize with the asize of
297 * all children. This is what's used by anything other than RAID-Z.
298 */
299 uint64_t
300 vdev_default_asize(vdev_t *vd, uint64_t psize)
301 {
302 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
303 uint64_t csize;
304
305 for (int c = 0; c < vd->vdev_children; c++) {
306 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
307 asize = MAX(asize, csize);
308 }
309
310 return (asize);
311 }
312
313 uint64_t
314 vdev_default_min_asize(vdev_t *vd)
315 {
316 return (vd->vdev_min_asize);
317 }
318
319 /*
320 * Get the minimum allocatable size. We define the allocatable size as
321 * the vdev's asize rounded to the nearest metaslab. This allows us to
322 * replace or attach devices which don't have the same physical size but
323 * can still satisfy the same number of allocations.
324 */
325 uint64_t
326 vdev_get_min_asize(vdev_t *vd)
327 {
328 vdev_t *pvd = vd->vdev_parent;
329
330 /*
331 * If our parent is NULL (inactive spare or cache) or is the root,
332 * just return our own asize.
333 */
334 if (pvd == NULL)
335 return (vd->vdev_asize);
336
337 /*
338 * The top-level vdev just returns the allocatable size rounded
339 * to the nearest metaslab.
340 */
341 if (vd == vd->vdev_top)
342 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
343
344 return (pvd->vdev_ops->vdev_op_min_asize(pvd));
345 }
346
347 void
348 vdev_set_min_asize(vdev_t *vd)
349 {
350 vd->vdev_min_asize = vdev_get_min_asize(vd);
351
352 for (int c = 0; c < vd->vdev_children; c++)
353 vdev_set_min_asize(vd->vdev_child[c]);
354 }
355
356 /*
357 * Get the minimal allocation size for the top-level vdev.
358 */
359 uint64_t
360 vdev_get_min_alloc(vdev_t *vd)
361 {
362 uint64_t min_alloc = 1ULL << vd->vdev_ashift;
363
364 if (vd->vdev_ops->vdev_op_min_alloc != NULL)
365 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
366
367 return (min_alloc);
368 }
369
370 /*
371 * Get the parity level for a top-level vdev.
372 */
373 uint64_t
374 vdev_get_nparity(vdev_t *vd)
375 {
376 uint64_t nparity = 0;
377
378 if (vd->vdev_ops->vdev_op_nparity != NULL)
379 nparity = vd->vdev_ops->vdev_op_nparity(vd);
380
381 return (nparity);
382 }
383
384 /*
385 * Get the number of data disks for a top-level vdev.
386 */
387 uint64_t
388 vdev_get_ndisks(vdev_t *vd)
389 {
390 uint64_t ndisks = 1;
391
392 if (vd->vdev_ops->vdev_op_ndisks != NULL)
393 ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
394
395 return (ndisks);
396 }
397
398 vdev_t *
399 vdev_lookup_top(spa_t *spa, uint64_t vdev)
400 {
401 vdev_t *rvd = spa->spa_root_vdev;
402
403 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
404
405 if (vdev < rvd->vdev_children) {
406 ASSERT(rvd->vdev_child[vdev] != NULL);
407 return (rvd->vdev_child[vdev]);
408 }
409
410 return (NULL);
411 }
412
413 vdev_t *
414 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
415 {
416 vdev_t *mvd;
417
418 if (vd->vdev_guid == guid)
419 return (vd);
420
421 for (int c = 0; c < vd->vdev_children; c++)
422 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
423 NULL)
424 return (mvd);
425
426 return (NULL);
427 }
428
429 static int
430 vdev_count_leaves_impl(vdev_t *vd)
431 {
432 int n = 0;
433
434 if (vd->vdev_ops->vdev_op_leaf)
435 return (1);
436
437 for (int c = 0; c < vd->vdev_children; c++)
438 n += vdev_count_leaves_impl(vd->vdev_child[c]);
439
440 return (n);
441 }
442
443 int
444 vdev_count_leaves(spa_t *spa)
445 {
446 int rc;
447
448 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
449 rc = vdev_count_leaves_impl(spa->spa_root_vdev);
450 spa_config_exit(spa, SCL_VDEV, FTAG);
451
452 return (rc);
453 }
454
455 void
456 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
457 {
458 size_t oldsize, newsize;
459 uint64_t id = cvd->vdev_id;
460 vdev_t **newchild;
461
462 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
463 ASSERT(cvd->vdev_parent == NULL);
464
465 cvd->vdev_parent = pvd;
466
467 if (pvd == NULL)
468 return;
469
470 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
471
472 oldsize = pvd->vdev_children * sizeof (vdev_t *);
473 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
474 newsize = pvd->vdev_children * sizeof (vdev_t *);
475
476 newchild = kmem_alloc(newsize, KM_SLEEP);
477 if (pvd->vdev_child != NULL) {
478 memcpy(newchild, pvd->vdev_child, oldsize);
479 kmem_free(pvd->vdev_child, oldsize);
480 }
481
482 pvd->vdev_child = newchild;
483 pvd->vdev_child[id] = cvd;
484
485 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
486 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
487
488 /*
489 * Walk up all ancestors to update guid sum.
490 */
491 for (; pvd != NULL; pvd = pvd->vdev_parent)
492 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
493
494 if (cvd->vdev_ops->vdev_op_leaf) {
495 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
496 cvd->vdev_spa->spa_leaf_list_gen++;
497 }
498 }
499
500 void
501 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
502 {
503 int c;
504 uint_t id = cvd->vdev_id;
505
506 ASSERT(cvd->vdev_parent == pvd);
507
508 if (pvd == NULL)
509 return;
510
511 ASSERT(id < pvd->vdev_children);
512 ASSERT(pvd->vdev_child[id] == cvd);
513
514 pvd->vdev_child[id] = NULL;
515 cvd->vdev_parent = NULL;
516
517 for (c = 0; c < pvd->vdev_children; c++)
518 if (pvd->vdev_child[c])
519 break;
520
521 if (c == pvd->vdev_children) {
522 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
523 pvd->vdev_child = NULL;
524 pvd->vdev_children = 0;
525 }
526
527 if (cvd->vdev_ops->vdev_op_leaf) {
528 spa_t *spa = cvd->vdev_spa;
529 list_remove(&spa->spa_leaf_list, cvd);
530 spa->spa_leaf_list_gen++;
531 }
532
533 /*
534 * Walk up all ancestors to update guid sum.
535 */
536 for (; pvd != NULL; pvd = pvd->vdev_parent)
537 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
538 }
539
540 /*
541 * Remove any holes in the child array.
542 */
543 void
544 vdev_compact_children(vdev_t *pvd)
545 {
546 vdev_t **newchild, *cvd;
547 int oldc = pvd->vdev_children;
548 int newc;
549
550 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
551
552 if (oldc == 0)
553 return;
554
555 for (int c = newc = 0; c < oldc; c++)
556 if (pvd->vdev_child[c])
557 newc++;
558
559 if (newc > 0) {
560 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
561
562 for (int c = newc = 0; c < oldc; c++) {
563 if ((cvd = pvd->vdev_child[c]) != NULL) {
564 newchild[newc] = cvd;
565 cvd->vdev_id = newc++;
566 }
567 }
568 } else {
569 newchild = NULL;
570 }
571
572 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
573 pvd->vdev_child = newchild;
574 pvd->vdev_children = newc;
575 }
576
577 /*
578 * Allocate and minimally initialize a vdev_t.
579 */
580 vdev_t *
581 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
582 {
583 vdev_t *vd;
584 vdev_indirect_config_t *vic;
585
586 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
587 vic = &vd->vdev_indirect_config;
588
589 if (spa->spa_root_vdev == NULL) {
590 ASSERT(ops == &vdev_root_ops);
591 spa->spa_root_vdev = vd;
592 spa->spa_load_guid = spa_generate_guid(NULL);
593 }
594
595 if (guid == 0 && ops != &vdev_hole_ops) {
596 if (spa->spa_root_vdev == vd) {
597 /*
598 * The root vdev's guid will also be the pool guid,
599 * which must be unique among all pools.
600 */
601 guid = spa_generate_guid(NULL);
602 } else {
603 /*
604 * Any other vdev's guid must be unique within the pool.
605 */
606 guid = spa_generate_guid(spa);
607 }
608 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
609 }
610
611 vd->vdev_spa = spa;
612 vd->vdev_id = id;
613 vd->vdev_guid = guid;
614 vd->vdev_guid_sum = guid;
615 vd->vdev_ops = ops;
616 vd->vdev_state = VDEV_STATE_CLOSED;
617 vd->vdev_ishole = (ops == &vdev_hole_ops);
618 vic->vic_prev_indirect_vdev = UINT64_MAX;
619
620 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
621 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
622 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
623 0, 0);
624
625 /*
626 * Initialize rate limit structs for events. We rate limit ZIO delay
627 * and checksum events so that we don't overwhelm ZED with thousands
628 * of events when a disk is acting up.
629 */
630 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
631 1);
632 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second,
633 1);
634 zfs_ratelimit_init(&vd->vdev_checksum_rl,
635 &zfs_checksum_events_per_second, 1);
636
637 list_link_init(&vd->vdev_config_dirty_node);
638 list_link_init(&vd->vdev_state_dirty_node);
639 list_link_init(&vd->vdev_initialize_node);
640 list_link_init(&vd->vdev_leaf_node);
641 list_link_init(&vd->vdev_trim_node);
642
643 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
644 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
645 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
646 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
647
648 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
649 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
650 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
651 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
652
653 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
654 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
655 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
656 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
657 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
658 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
659
660 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
661 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
662
663 for (int t = 0; t < DTL_TYPES; t++) {
664 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
665 0);
666 }
667
668 txg_list_create(&vd->vdev_ms_list, spa,
669 offsetof(struct metaslab, ms_txg_node));
670 txg_list_create(&vd->vdev_dtl_list, spa,
671 offsetof(struct vdev, vdev_dtl_node));
672 vd->vdev_stat.vs_timestamp = gethrtime();
673 vdev_queue_init(vd);
674 vdev_cache_init(vd);
675
676 return (vd);
677 }
678
679 /*
680 * Allocate a new vdev. The 'alloctype' is used to control whether we are
681 * creating a new vdev or loading an existing one - the behavior is slightly
682 * different for each case.
683 */
684 int
685 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
686 int alloctype)
687 {
688 vdev_ops_t *ops;
689 char *type;
690 uint64_t guid = 0, islog;
691 vdev_t *vd;
692 vdev_indirect_config_t *vic;
693 char *tmp = NULL;
694 int rc;
695 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
696 boolean_t top_level = (parent && !parent->vdev_parent);
697
698 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
699
700 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
701 return (SET_ERROR(EINVAL));
702
703 if ((ops = vdev_getops(type)) == NULL)
704 return (SET_ERROR(EINVAL));
705
706 /*
707 * If this is a load, get the vdev guid from the nvlist.
708 * Otherwise, vdev_alloc_common() will generate one for us.
709 */
710 if (alloctype == VDEV_ALLOC_LOAD) {
711 uint64_t label_id;
712
713 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
714 label_id != id)
715 return (SET_ERROR(EINVAL));
716
717 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
718 return (SET_ERROR(EINVAL));
719 } else if (alloctype == VDEV_ALLOC_SPARE) {
720 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
721 return (SET_ERROR(EINVAL));
722 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
723 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
724 return (SET_ERROR(EINVAL));
725 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
726 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
727 return (SET_ERROR(EINVAL));
728 }
729
730 /*
731 * The first allocated vdev must be of type 'root'.
732 */
733 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
734 return (SET_ERROR(EINVAL));
735
736 /*
737 * Determine whether we're a log vdev.
738 */
739 islog = 0;
740 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
741 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
742 return (SET_ERROR(ENOTSUP));
743
744 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
745 return (SET_ERROR(ENOTSUP));
746
747 if (top_level && alloctype == VDEV_ALLOC_ADD) {
748 char *bias;
749
750 /*
751 * If creating a top-level vdev, check for allocation
752 * classes input.
753 */
754 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
755 &bias) == 0) {
756 alloc_bias = vdev_derive_alloc_bias(bias);
757
758 /* spa_vdev_add() expects feature to be enabled */
759 if (spa->spa_load_state != SPA_LOAD_CREATE &&
760 !spa_feature_is_enabled(spa,
761 SPA_FEATURE_ALLOCATION_CLASSES)) {
762 return (SET_ERROR(ENOTSUP));
763 }
764 }
765
766 /* spa_vdev_add() expects feature to be enabled */
767 if (ops == &vdev_draid_ops &&
768 spa->spa_load_state != SPA_LOAD_CREATE &&
769 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
770 return (SET_ERROR(ENOTSUP));
771 }
772 }
773
774 /*
775 * Initialize the vdev specific data. This is done before calling
776 * vdev_alloc_common() since it may fail and this simplifies the
777 * error reporting and cleanup code paths.
778 */
779 void *tsd = NULL;
780 if (ops->vdev_op_init != NULL) {
781 rc = ops->vdev_op_init(spa, nv, &tsd);
782 if (rc != 0) {
783 return (rc);
784 }
785 }
786
787 vd = vdev_alloc_common(spa, id, guid, ops);
788 vd->vdev_tsd = tsd;
789 vd->vdev_islog = islog;
790
791 if (top_level && alloc_bias != VDEV_BIAS_NONE)
792 vd->vdev_alloc_bias = alloc_bias;
793
794 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
795 vd->vdev_path = spa_strdup(vd->vdev_path);
796
797 /*
798 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
799 * fault on a vdev and want it to persist across imports (like with
800 * zpool offline -f).
801 */
802 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
803 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
804 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
805 vd->vdev_faulted = 1;
806 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
807 }
808
809 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
810 vd->vdev_devid = spa_strdup(vd->vdev_devid);
811 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
812 &vd->vdev_physpath) == 0)
813 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
814
815 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
816 &vd->vdev_enc_sysfs_path) == 0)
817 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
818
819 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
820 vd->vdev_fru = spa_strdup(vd->vdev_fru);
821
822 /*
823 * Set the whole_disk property. If it's not specified, leave the value
824 * as -1.
825 */
826 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
827 &vd->vdev_wholedisk) != 0)
828 vd->vdev_wholedisk = -1ULL;
829
830 vic = &vd->vdev_indirect_config;
831
832 ASSERT0(vic->vic_mapping_object);
833 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
834 &vic->vic_mapping_object);
835 ASSERT0(vic->vic_births_object);
836 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
837 &vic->vic_births_object);
838 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
839 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
840 &vic->vic_prev_indirect_vdev);
841
842 /*
843 * Look for the 'not present' flag. This will only be set if the device
844 * was not present at the time of import.
845 */
846 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
847 &vd->vdev_not_present);
848
849 /*
850 * Get the alignment requirement.
851 */
852 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
853
854 /*
855 * Retrieve the vdev creation time.
856 */
857 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
858 &vd->vdev_crtxg);
859
860 /*
861 * If we're a top-level vdev, try to load the allocation parameters.
862 */
863 if (top_level &&
864 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
865 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
866 &vd->vdev_ms_array);
867 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
868 &vd->vdev_ms_shift);
869 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
870 &vd->vdev_asize);
871 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
872 &vd->vdev_noalloc);
873 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
874 &vd->vdev_removing);
875 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
876 &vd->vdev_top_zap);
877 } else {
878 ASSERT0(vd->vdev_top_zap);
879 }
880
881 if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
882 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
883 alloctype == VDEV_ALLOC_ADD ||
884 alloctype == VDEV_ALLOC_SPLIT ||
885 alloctype == VDEV_ALLOC_ROOTPOOL);
886 /* Note: metaslab_group_create() is now deferred */
887 }
888
889 if (vd->vdev_ops->vdev_op_leaf &&
890 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
891 (void) nvlist_lookup_uint64(nv,
892 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
893 } else {
894 ASSERT0(vd->vdev_leaf_zap);
895 }
896
897 /*
898 * If we're a leaf vdev, try to load the DTL object and other state.
899 */
900
901 if (vd->vdev_ops->vdev_op_leaf &&
902 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
903 alloctype == VDEV_ALLOC_ROOTPOOL)) {
904 if (alloctype == VDEV_ALLOC_LOAD) {
905 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
906 &vd->vdev_dtl_object);
907 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
908 &vd->vdev_unspare);
909 }
910
911 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
912 uint64_t spare = 0;
913
914 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
915 &spare) == 0 && spare)
916 spa_spare_add(vd);
917 }
918
919 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
920 &vd->vdev_offline);
921
922 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
923 &vd->vdev_resilver_txg);
924
925 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
926 &vd->vdev_rebuild_txg);
927
928 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
929 vdev_defer_resilver(vd);
930
931 /*
932 * In general, when importing a pool we want to ignore the
933 * persistent fault state, as the diagnosis made on another
934 * system may not be valid in the current context. The only
935 * exception is if we forced a vdev to a persistently faulted
936 * state with 'zpool offline -f'. The persistent fault will
937 * remain across imports until cleared.
938 *
939 * Local vdevs will remain in the faulted state.
940 */
941 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
942 spa_load_state(spa) == SPA_LOAD_IMPORT) {
943 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
944 &vd->vdev_faulted);
945 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
946 &vd->vdev_degraded);
947 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
948 &vd->vdev_removed);
949
950 if (vd->vdev_faulted || vd->vdev_degraded) {
951 char *aux;
952
953 vd->vdev_label_aux =
954 VDEV_AUX_ERR_EXCEEDED;
955 if (nvlist_lookup_string(nv,
956 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
957 strcmp(aux, "external") == 0)
958 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
959 else
960 vd->vdev_faulted = 0ULL;
961 }
962 }
963 }
964
965 /*
966 * Add ourselves to the parent's list of children.
967 */
968 vdev_add_child(parent, vd);
969
970 *vdp = vd;
971
972 return (0);
973 }
974
975 void
976 vdev_free(vdev_t *vd)
977 {
978 spa_t *spa = vd->vdev_spa;
979
980 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
981 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
982 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
983 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
984
985 /*
986 * Scan queues are normally destroyed at the end of a scan. If the
987 * queue exists here, that implies the vdev is being removed while
988 * the scan is still running.
989 */
990 if (vd->vdev_scan_io_queue != NULL) {
991 mutex_enter(&vd->vdev_scan_io_queue_lock);
992 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
993 vd->vdev_scan_io_queue = NULL;
994 mutex_exit(&vd->vdev_scan_io_queue_lock);
995 }
996
997 /*
998 * vdev_free() implies closing the vdev first. This is simpler than
999 * trying to ensure complicated semantics for all callers.
1000 */
1001 vdev_close(vd);
1002
1003 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1004 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1005
1006 /*
1007 * Free all children.
1008 */
1009 for (int c = 0; c < vd->vdev_children; c++)
1010 vdev_free(vd->vdev_child[c]);
1011
1012 ASSERT(vd->vdev_child == NULL);
1013 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1014
1015 if (vd->vdev_ops->vdev_op_fini != NULL)
1016 vd->vdev_ops->vdev_op_fini(vd);
1017
1018 /*
1019 * Discard allocation state.
1020 */
1021 if (vd->vdev_mg != NULL) {
1022 vdev_metaslab_fini(vd);
1023 metaslab_group_destroy(vd->vdev_mg);
1024 vd->vdev_mg = NULL;
1025 }
1026 if (vd->vdev_log_mg != NULL) {
1027 ASSERT0(vd->vdev_ms_count);
1028 metaslab_group_destroy(vd->vdev_log_mg);
1029 vd->vdev_log_mg = NULL;
1030 }
1031
1032 ASSERT0(vd->vdev_stat.vs_space);
1033 ASSERT0(vd->vdev_stat.vs_dspace);
1034 ASSERT0(vd->vdev_stat.vs_alloc);
1035
1036 /*
1037 * Remove this vdev from its parent's child list.
1038 */
1039 vdev_remove_child(vd->vdev_parent, vd);
1040
1041 ASSERT(vd->vdev_parent == NULL);
1042 ASSERT(!list_link_active(&vd->vdev_leaf_node));
1043
1044 /*
1045 * Clean up vdev structure.
1046 */
1047 vdev_queue_fini(vd);
1048 vdev_cache_fini(vd);
1049
1050 if (vd->vdev_path)
1051 spa_strfree(vd->vdev_path);
1052 if (vd->vdev_devid)
1053 spa_strfree(vd->vdev_devid);
1054 if (vd->vdev_physpath)
1055 spa_strfree(vd->vdev_physpath);
1056
1057 if (vd->vdev_enc_sysfs_path)
1058 spa_strfree(vd->vdev_enc_sysfs_path);
1059
1060 if (vd->vdev_fru)
1061 spa_strfree(vd->vdev_fru);
1062
1063 if (vd->vdev_isspare)
1064 spa_spare_remove(vd);
1065 if (vd->vdev_isl2cache)
1066 spa_l2cache_remove(vd);
1067
1068 txg_list_destroy(&vd->vdev_ms_list);
1069 txg_list_destroy(&vd->vdev_dtl_list);
1070
1071 mutex_enter(&vd->vdev_dtl_lock);
1072 space_map_close(vd->vdev_dtl_sm);
1073 for (int t = 0; t < DTL_TYPES; t++) {
1074 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1075 range_tree_destroy(vd->vdev_dtl[t]);
1076 }
1077 mutex_exit(&vd->vdev_dtl_lock);
1078
1079 EQUIV(vd->vdev_indirect_births != NULL,
1080 vd->vdev_indirect_mapping != NULL);
1081 if (vd->vdev_indirect_births != NULL) {
1082 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1083 vdev_indirect_births_close(vd->vdev_indirect_births);
1084 }
1085
1086 if (vd->vdev_obsolete_sm != NULL) {
1087 ASSERT(vd->vdev_removing ||
1088 vd->vdev_ops == &vdev_indirect_ops);
1089 space_map_close(vd->vdev_obsolete_sm);
1090 vd->vdev_obsolete_sm = NULL;
1091 }
1092 range_tree_destroy(vd->vdev_obsolete_segments);
1093 rw_destroy(&vd->vdev_indirect_rwlock);
1094 mutex_destroy(&vd->vdev_obsolete_lock);
1095
1096 mutex_destroy(&vd->vdev_dtl_lock);
1097 mutex_destroy(&vd->vdev_stat_lock);
1098 mutex_destroy(&vd->vdev_probe_lock);
1099 mutex_destroy(&vd->vdev_scan_io_queue_lock);
1100
1101 mutex_destroy(&vd->vdev_initialize_lock);
1102 mutex_destroy(&vd->vdev_initialize_io_lock);
1103 cv_destroy(&vd->vdev_initialize_io_cv);
1104 cv_destroy(&vd->vdev_initialize_cv);
1105
1106 mutex_destroy(&vd->vdev_trim_lock);
1107 mutex_destroy(&vd->vdev_autotrim_lock);
1108 mutex_destroy(&vd->vdev_trim_io_lock);
1109 cv_destroy(&vd->vdev_trim_cv);
1110 cv_destroy(&vd->vdev_autotrim_cv);
1111 cv_destroy(&vd->vdev_trim_io_cv);
1112
1113 mutex_destroy(&vd->vdev_rebuild_lock);
1114 cv_destroy(&vd->vdev_rebuild_cv);
1115
1116 zfs_ratelimit_fini(&vd->vdev_delay_rl);
1117 zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1118 zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1119
1120 if (vd == spa->spa_root_vdev)
1121 spa->spa_root_vdev = NULL;
1122
1123 kmem_free(vd, sizeof (vdev_t));
1124 }
1125
1126 /*
1127 * Transfer top-level vdev state from svd to tvd.
1128 */
1129 static void
1130 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1131 {
1132 spa_t *spa = svd->vdev_spa;
1133 metaslab_t *msp;
1134 vdev_t *vd;
1135 int t;
1136
1137 ASSERT(tvd == tvd->vdev_top);
1138
1139 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
1140 tvd->vdev_ms_array = svd->vdev_ms_array;
1141 tvd->vdev_ms_shift = svd->vdev_ms_shift;
1142 tvd->vdev_ms_count = svd->vdev_ms_count;
1143 tvd->vdev_top_zap = svd->vdev_top_zap;
1144
1145 svd->vdev_ms_array = 0;
1146 svd->vdev_ms_shift = 0;
1147 svd->vdev_ms_count = 0;
1148 svd->vdev_top_zap = 0;
1149
1150 if (tvd->vdev_mg)
1151 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1152 if (tvd->vdev_log_mg)
1153 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1154 tvd->vdev_mg = svd->vdev_mg;
1155 tvd->vdev_log_mg = svd->vdev_log_mg;
1156 tvd->vdev_ms = svd->vdev_ms;
1157
1158 svd->vdev_mg = NULL;
1159 svd->vdev_log_mg = NULL;
1160 svd->vdev_ms = NULL;
1161
1162 if (tvd->vdev_mg != NULL)
1163 tvd->vdev_mg->mg_vd = tvd;
1164 if (tvd->vdev_log_mg != NULL)
1165 tvd->vdev_log_mg->mg_vd = tvd;
1166
1167 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1168 svd->vdev_checkpoint_sm = NULL;
1169
1170 tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1171 svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1172
1173 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1174 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1175 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1176
1177 svd->vdev_stat.vs_alloc = 0;
1178 svd->vdev_stat.vs_space = 0;
1179 svd->vdev_stat.vs_dspace = 0;
1180
1181 /*
1182 * State which may be set on a top-level vdev that's in the
1183 * process of being removed.
1184 */
1185 ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1186 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1187 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1188 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1189 ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1190 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1191 ASSERT0(tvd->vdev_noalloc);
1192 ASSERT0(tvd->vdev_removing);
1193 ASSERT0(tvd->vdev_rebuilding);
1194 tvd->vdev_noalloc = svd->vdev_noalloc;
1195 tvd->vdev_removing = svd->vdev_removing;
1196 tvd->vdev_rebuilding = svd->vdev_rebuilding;
1197 tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1198 tvd->vdev_indirect_config = svd->vdev_indirect_config;
1199 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1200 tvd->vdev_indirect_births = svd->vdev_indirect_births;
1201 range_tree_swap(&svd->vdev_obsolete_segments,
1202 &tvd->vdev_obsolete_segments);
1203 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1204 svd->vdev_indirect_config.vic_mapping_object = 0;
1205 svd->vdev_indirect_config.vic_births_object = 0;
1206 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1207 svd->vdev_indirect_mapping = NULL;
1208 svd->vdev_indirect_births = NULL;
1209 svd->vdev_obsolete_sm = NULL;
1210 svd->vdev_noalloc = 0;
1211 svd->vdev_removing = 0;
1212 svd->vdev_rebuilding = 0;
1213
1214 for (t = 0; t < TXG_SIZE; t++) {
1215 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1216 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1217 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1218 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1219 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1220 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1221 }
1222
1223 if (list_link_active(&svd->vdev_config_dirty_node)) {
1224 vdev_config_clean(svd);
1225 vdev_config_dirty(tvd);
1226 }
1227
1228 if (list_link_active(&svd->vdev_state_dirty_node)) {
1229 vdev_state_clean(svd);
1230 vdev_state_dirty(tvd);
1231 }
1232
1233 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1234 svd->vdev_deflate_ratio = 0;
1235
1236 tvd->vdev_islog = svd->vdev_islog;
1237 svd->vdev_islog = 0;
1238
1239 dsl_scan_io_queue_vdev_xfer(svd, tvd);
1240 }
1241
1242 static void
1243 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1244 {
1245 if (vd == NULL)
1246 return;
1247
1248 vd->vdev_top = tvd;
1249
1250 for (int c = 0; c < vd->vdev_children; c++)
1251 vdev_top_update(tvd, vd->vdev_child[c]);
1252 }
1253
1254 /*
1255 * Add a mirror/replacing vdev above an existing vdev. There is no need to
1256 * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1257 */
1258 vdev_t *
1259 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1260 {
1261 spa_t *spa = cvd->vdev_spa;
1262 vdev_t *pvd = cvd->vdev_parent;
1263 vdev_t *mvd;
1264
1265 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1266
1267 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1268
1269 mvd->vdev_asize = cvd->vdev_asize;
1270 mvd->vdev_min_asize = cvd->vdev_min_asize;
1271 mvd->vdev_max_asize = cvd->vdev_max_asize;
1272 mvd->vdev_psize = cvd->vdev_psize;
1273 mvd->vdev_ashift = cvd->vdev_ashift;
1274 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1275 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1276 mvd->vdev_state = cvd->vdev_state;
1277 mvd->vdev_crtxg = cvd->vdev_crtxg;
1278
1279 vdev_remove_child(pvd, cvd);
1280 vdev_add_child(pvd, mvd);
1281 cvd->vdev_id = mvd->vdev_children;
1282 vdev_add_child(mvd, cvd);
1283 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1284
1285 if (mvd == mvd->vdev_top)
1286 vdev_top_transfer(cvd, mvd);
1287
1288 return (mvd);
1289 }
1290
1291 /*
1292 * Remove a 1-way mirror/replacing vdev from the tree.
1293 */
1294 void
1295 vdev_remove_parent(vdev_t *cvd)
1296 {
1297 vdev_t *mvd = cvd->vdev_parent;
1298 vdev_t *pvd = mvd->vdev_parent;
1299
1300 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1301
1302 ASSERT(mvd->vdev_children == 1);
1303 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1304 mvd->vdev_ops == &vdev_replacing_ops ||
1305 mvd->vdev_ops == &vdev_spare_ops);
1306 cvd->vdev_ashift = mvd->vdev_ashift;
1307 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1308 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1309 vdev_remove_child(mvd, cvd);
1310 vdev_remove_child(pvd, mvd);
1311
1312 /*
1313 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1314 * Otherwise, we could have detached an offline device, and when we
1315 * go to import the pool we'll think we have two top-level vdevs,
1316 * instead of a different version of the same top-level vdev.
1317 */
1318 if (mvd->vdev_top == mvd) {
1319 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1320 cvd->vdev_orig_guid = cvd->vdev_guid;
1321 cvd->vdev_guid += guid_delta;
1322 cvd->vdev_guid_sum += guid_delta;
1323
1324 /*
1325 * If pool not set for autoexpand, we need to also preserve
1326 * mvd's asize to prevent automatic expansion of cvd.
1327 * Otherwise if we are adjusting the mirror by attaching and
1328 * detaching children of non-uniform sizes, the mirror could
1329 * autoexpand, unexpectedly requiring larger devices to
1330 * re-establish the mirror.
1331 */
1332 if (!cvd->vdev_spa->spa_autoexpand)
1333 cvd->vdev_asize = mvd->vdev_asize;
1334 }
1335 cvd->vdev_id = mvd->vdev_id;
1336 vdev_add_child(pvd, cvd);
1337 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1338
1339 if (cvd == cvd->vdev_top)
1340 vdev_top_transfer(mvd, cvd);
1341
1342 ASSERT(mvd->vdev_children == 0);
1343 vdev_free(mvd);
1344 }
1345
1346 void
1347 vdev_metaslab_group_create(vdev_t *vd)
1348 {
1349 spa_t *spa = vd->vdev_spa;
1350
1351 /*
1352 * metaslab_group_create was delayed until allocation bias was available
1353 */
1354 if (vd->vdev_mg == NULL) {
1355 metaslab_class_t *mc;
1356
1357 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1358 vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1359
1360 ASSERT3U(vd->vdev_islog, ==,
1361 (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1362
1363 switch (vd->vdev_alloc_bias) {
1364 case VDEV_BIAS_LOG:
1365 mc = spa_log_class(spa);
1366 break;
1367 case VDEV_BIAS_SPECIAL:
1368 mc = spa_special_class(spa);
1369 break;
1370 case VDEV_BIAS_DEDUP:
1371 mc = spa_dedup_class(spa);
1372 break;
1373 default:
1374 mc = spa_normal_class(spa);
1375 }
1376
1377 vd->vdev_mg = metaslab_group_create(mc, vd,
1378 spa->spa_alloc_count);
1379
1380 if (!vd->vdev_islog) {
1381 vd->vdev_log_mg = metaslab_group_create(
1382 spa_embedded_log_class(spa), vd, 1);
1383 }
1384
1385 /*
1386 * The spa ashift min/max only apply for the normal metaslab
1387 * class. Class destination is late binding so ashift boundary
1388 * setting had to wait until now.
1389 */
1390 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1391 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1392 if (vd->vdev_ashift > spa->spa_max_ashift)
1393 spa->spa_max_ashift = vd->vdev_ashift;
1394 if (vd->vdev_ashift < spa->spa_min_ashift)
1395 spa->spa_min_ashift = vd->vdev_ashift;
1396
1397 uint64_t min_alloc = vdev_get_min_alloc(vd);
1398 if (min_alloc < spa->spa_min_alloc)
1399 spa->spa_min_alloc = min_alloc;
1400 }
1401 }
1402 }
1403
1404 int
1405 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1406 {
1407 spa_t *spa = vd->vdev_spa;
1408 uint64_t oldc = vd->vdev_ms_count;
1409 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1410 metaslab_t **mspp;
1411 int error;
1412 boolean_t expanding = (oldc != 0);
1413
1414 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1415
1416 /*
1417 * This vdev is not being allocated from yet or is a hole.
1418 */
1419 if (vd->vdev_ms_shift == 0)
1420 return (0);
1421
1422 ASSERT(!vd->vdev_ishole);
1423
1424 ASSERT(oldc <= newc);
1425
1426 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1427
1428 if (expanding) {
1429 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1430 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1431 }
1432
1433 vd->vdev_ms = mspp;
1434 vd->vdev_ms_count = newc;
1435
1436 for (uint64_t m = oldc; m < newc; m++) {
1437 uint64_t object = 0;
1438 /*
1439 * vdev_ms_array may be 0 if we are creating the "fake"
1440 * metaslabs for an indirect vdev for zdb's leak detection.
1441 * See zdb_leak_init().
1442 */
1443 if (txg == 0 && vd->vdev_ms_array != 0) {
1444 error = dmu_read(spa->spa_meta_objset,
1445 vd->vdev_ms_array,
1446 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1447 DMU_READ_PREFETCH);
1448 if (error != 0) {
1449 vdev_dbgmsg(vd, "unable to read the metaslab "
1450 "array [error=%d]", error);
1451 return (error);
1452 }
1453 }
1454
1455 error = metaslab_init(vd->vdev_mg, m, object, txg,
1456 &(vd->vdev_ms[m]));
1457 if (error != 0) {
1458 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1459 error);
1460 return (error);
1461 }
1462 }
1463
1464 /*
1465 * Find the emptiest metaslab on the vdev and mark it for use for
1466 * embedded slog by moving it from the regular to the log metaslab
1467 * group.
1468 */
1469 if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1470 vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1471 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1472 uint64_t slog_msid = 0;
1473 uint64_t smallest = UINT64_MAX;
1474
1475 /*
1476 * Note, we only search the new metaslabs, because the old
1477 * (pre-existing) ones may be active (e.g. have non-empty
1478 * range_tree's), and we don't move them to the new
1479 * metaslab_t.
1480 */
1481 for (uint64_t m = oldc; m < newc; m++) {
1482 uint64_t alloc =
1483 space_map_allocated(vd->vdev_ms[m]->ms_sm);
1484 if (alloc < smallest) {
1485 slog_msid = m;
1486 smallest = alloc;
1487 }
1488 }
1489 metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1490 /*
1491 * The metaslab was marked as dirty at the end of
1492 * metaslab_init(). Remove it from the dirty list so that we
1493 * can uninitialize and reinitialize it to the new class.
1494 */
1495 if (txg != 0) {
1496 (void) txg_list_remove_this(&vd->vdev_ms_list,
1497 slog_ms, txg);
1498 }
1499 uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1500 metaslab_fini(slog_ms);
1501 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1502 &vd->vdev_ms[slog_msid]));
1503 }
1504
1505 if (txg == 0)
1506 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1507
1508 /*
1509 * If the vdev is marked as non-allocating then don't
1510 * activate the metaslabs since we want to ensure that
1511 * no allocations are performed on this device.
1512 */
1513 if (vd->vdev_noalloc) {
1514 /* track non-allocating vdev space */
1515 spa->spa_nonallocating_dspace += spa_deflate(spa) ?
1516 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1517 } else if (!expanding) {
1518 metaslab_group_activate(vd->vdev_mg);
1519 if (vd->vdev_log_mg != NULL)
1520 metaslab_group_activate(vd->vdev_log_mg);
1521 }
1522
1523 if (txg == 0)
1524 spa_config_exit(spa, SCL_ALLOC, FTAG);
1525
1526 /*
1527 * Regardless whether this vdev was just added or it is being
1528 * expanded, the metaslab count has changed. Recalculate the
1529 * block limit.
1530 */
1531 spa_log_sm_set_blocklimit(spa);
1532
1533 return (0);
1534 }
1535
1536 void
1537 vdev_metaslab_fini(vdev_t *vd)
1538 {
1539 if (vd->vdev_checkpoint_sm != NULL) {
1540 ASSERT(spa_feature_is_active(vd->vdev_spa,
1541 SPA_FEATURE_POOL_CHECKPOINT));
1542 space_map_close(vd->vdev_checkpoint_sm);
1543 /*
1544 * Even though we close the space map, we need to set its
1545 * pointer to NULL. The reason is that vdev_metaslab_fini()
1546 * may be called multiple times for certain operations
1547 * (i.e. when destroying a pool) so we need to ensure that
1548 * this clause never executes twice. This logic is similar
1549 * to the one used for the vdev_ms clause below.
1550 */
1551 vd->vdev_checkpoint_sm = NULL;
1552 }
1553
1554 if (vd->vdev_ms != NULL) {
1555 metaslab_group_t *mg = vd->vdev_mg;
1556
1557 metaslab_group_passivate(mg);
1558 if (vd->vdev_log_mg != NULL) {
1559 ASSERT(!vd->vdev_islog);
1560 metaslab_group_passivate(vd->vdev_log_mg);
1561 }
1562
1563 uint64_t count = vd->vdev_ms_count;
1564 for (uint64_t m = 0; m < count; m++) {
1565 metaslab_t *msp = vd->vdev_ms[m];
1566 if (msp != NULL)
1567 metaslab_fini(msp);
1568 }
1569 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1570 vd->vdev_ms = NULL;
1571 vd->vdev_ms_count = 0;
1572
1573 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1574 ASSERT0(mg->mg_histogram[i]);
1575 if (vd->vdev_log_mg != NULL)
1576 ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1577 }
1578 }
1579 ASSERT0(vd->vdev_ms_count);
1580 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1581 }
1582
1583 typedef struct vdev_probe_stats {
1584 boolean_t vps_readable;
1585 boolean_t vps_writeable;
1586 int vps_flags;
1587 } vdev_probe_stats_t;
1588
1589 static void
1590 vdev_probe_done(zio_t *zio)
1591 {
1592 spa_t *spa = zio->io_spa;
1593 vdev_t *vd = zio->io_vd;
1594 vdev_probe_stats_t *vps = zio->io_private;
1595
1596 ASSERT(vd->vdev_probe_zio != NULL);
1597
1598 if (zio->io_type == ZIO_TYPE_READ) {
1599 if (zio->io_error == 0)
1600 vps->vps_readable = 1;
1601 if (zio->io_error == 0 && spa_writeable(spa)) {
1602 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1603 zio->io_offset, zio->io_size, zio->io_abd,
1604 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1605 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1606 } else {
1607 abd_free(zio->io_abd);
1608 }
1609 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1610 if (zio->io_error == 0)
1611 vps->vps_writeable = 1;
1612 abd_free(zio->io_abd);
1613 } else if (zio->io_type == ZIO_TYPE_NULL) {
1614 zio_t *pio;
1615 zio_link_t *zl;
1616
1617 vd->vdev_cant_read |= !vps->vps_readable;
1618 vd->vdev_cant_write |= !vps->vps_writeable;
1619
1620 if (vdev_readable(vd) &&
1621 (vdev_writeable(vd) || !spa_writeable(spa))) {
1622 zio->io_error = 0;
1623 } else {
1624 ASSERT(zio->io_error != 0);
1625 vdev_dbgmsg(vd, "failed probe");
1626 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1627 spa, vd, NULL, NULL, 0);
1628 zio->io_error = SET_ERROR(ENXIO);
1629 }
1630
1631 mutex_enter(&vd->vdev_probe_lock);
1632 ASSERT(vd->vdev_probe_zio == zio);
1633 vd->vdev_probe_zio = NULL;
1634 mutex_exit(&vd->vdev_probe_lock);
1635
1636 zl = NULL;
1637 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1638 if (!vdev_accessible(vd, pio))
1639 pio->io_error = SET_ERROR(ENXIO);
1640
1641 kmem_free(vps, sizeof (*vps));
1642 }
1643 }
1644
1645 /*
1646 * Determine whether this device is accessible.
1647 *
1648 * Read and write to several known locations: the pad regions of each
1649 * vdev label but the first, which we leave alone in case it contains
1650 * a VTOC.
1651 */
1652 zio_t *
1653 vdev_probe(vdev_t *vd, zio_t *zio)
1654 {
1655 spa_t *spa = vd->vdev_spa;
1656 vdev_probe_stats_t *vps = NULL;
1657 zio_t *pio;
1658
1659 ASSERT(vd->vdev_ops->vdev_op_leaf);
1660
1661 /*
1662 * Don't probe the probe.
1663 */
1664 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1665 return (NULL);
1666
1667 /*
1668 * To prevent 'probe storms' when a device fails, we create
1669 * just one probe i/o at a time. All zios that want to probe
1670 * this vdev will become parents of the probe io.
1671 */
1672 mutex_enter(&vd->vdev_probe_lock);
1673
1674 if ((pio = vd->vdev_probe_zio) == NULL) {
1675 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1676
1677 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1678 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1679 ZIO_FLAG_TRYHARD;
1680
1681 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1682 /*
1683 * vdev_cant_read and vdev_cant_write can only
1684 * transition from TRUE to FALSE when we have the
1685 * SCL_ZIO lock as writer; otherwise they can only
1686 * transition from FALSE to TRUE. This ensures that
1687 * any zio looking at these values can assume that
1688 * failures persist for the life of the I/O. That's
1689 * important because when a device has intermittent
1690 * connectivity problems, we want to ensure that
1691 * they're ascribed to the device (ENXIO) and not
1692 * the zio (EIO).
1693 *
1694 * Since we hold SCL_ZIO as writer here, clear both
1695 * values so the probe can reevaluate from first
1696 * principles.
1697 */
1698 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1699 vd->vdev_cant_read = B_FALSE;
1700 vd->vdev_cant_write = B_FALSE;
1701 }
1702
1703 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1704 vdev_probe_done, vps,
1705 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1706
1707 /*
1708 * We can't change the vdev state in this context, so we
1709 * kick off an async task to do it on our behalf.
1710 */
1711 if (zio != NULL) {
1712 vd->vdev_probe_wanted = B_TRUE;
1713 spa_async_request(spa, SPA_ASYNC_PROBE);
1714 }
1715 }
1716
1717 if (zio != NULL)
1718 zio_add_child(zio, pio);
1719
1720 mutex_exit(&vd->vdev_probe_lock);
1721
1722 if (vps == NULL) {
1723 ASSERT(zio != NULL);
1724 return (NULL);
1725 }
1726
1727 for (int l = 1; l < VDEV_LABELS; l++) {
1728 zio_nowait(zio_read_phys(pio, vd,
1729 vdev_label_offset(vd->vdev_psize, l,
1730 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1731 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1732 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1733 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1734 }
1735
1736 if (zio == NULL)
1737 return (pio);
1738
1739 zio_nowait(pio);
1740 return (NULL);
1741 }
1742
1743 static void
1744 vdev_load_child(void *arg)
1745 {
1746 vdev_t *vd = arg;
1747
1748 vd->vdev_load_error = vdev_load(vd);
1749 }
1750
1751 static void
1752 vdev_open_child(void *arg)
1753 {
1754 vdev_t *vd = arg;
1755
1756 vd->vdev_open_thread = curthread;
1757 vd->vdev_open_error = vdev_open(vd);
1758 vd->vdev_open_thread = NULL;
1759 }
1760
1761 static boolean_t
1762 vdev_uses_zvols(vdev_t *vd)
1763 {
1764 #ifdef _KERNEL
1765 if (zvol_is_zvol(vd->vdev_path))
1766 return (B_TRUE);
1767 #endif
1768
1769 for (int c = 0; c < vd->vdev_children; c++)
1770 if (vdev_uses_zvols(vd->vdev_child[c]))
1771 return (B_TRUE);
1772
1773 return (B_FALSE);
1774 }
1775
1776 /*
1777 * Returns B_TRUE if the passed child should be opened.
1778 */
1779 static boolean_t
1780 vdev_default_open_children_func(vdev_t *vd)
1781 {
1782 (void) vd;
1783 return (B_TRUE);
1784 }
1785
1786 /*
1787 * Open the requested child vdevs. If any of the leaf vdevs are using
1788 * a ZFS volume then do the opens in a single thread. This avoids a
1789 * deadlock when the current thread is holding the spa_namespace_lock.
1790 */
1791 static void
1792 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1793 {
1794 int children = vd->vdev_children;
1795
1796 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1797 children, children, TASKQ_PREPOPULATE);
1798 vd->vdev_nonrot = B_TRUE;
1799
1800 for (int c = 0; c < children; c++) {
1801 vdev_t *cvd = vd->vdev_child[c];
1802
1803 if (open_func(cvd) == B_FALSE)
1804 continue;
1805
1806 if (tq == NULL || vdev_uses_zvols(vd)) {
1807 cvd->vdev_open_error = vdev_open(cvd);
1808 } else {
1809 VERIFY(taskq_dispatch(tq, vdev_open_child,
1810 cvd, TQ_SLEEP) != TASKQID_INVALID);
1811 }
1812
1813 vd->vdev_nonrot &= cvd->vdev_nonrot;
1814 }
1815
1816 if (tq != NULL) {
1817 taskq_wait(tq);
1818 taskq_destroy(tq);
1819 }
1820 }
1821
1822 /*
1823 * Open all child vdevs.
1824 */
1825 void
1826 vdev_open_children(vdev_t *vd)
1827 {
1828 vdev_open_children_impl(vd, vdev_default_open_children_func);
1829 }
1830
1831 /*
1832 * Conditionally open a subset of child vdevs.
1833 */
1834 void
1835 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
1836 {
1837 vdev_open_children_impl(vd, open_func);
1838 }
1839
1840 /*
1841 * Compute the raidz-deflation ratio. Note, we hard-code
1842 * in 128k (1 << 17) because it is the "typical" blocksize.
1843 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1844 * otherwise it would inconsistently account for existing bp's.
1845 */
1846 static void
1847 vdev_set_deflate_ratio(vdev_t *vd)
1848 {
1849 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1850 vd->vdev_deflate_ratio = (1 << 17) /
1851 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1852 }
1853 }
1854
1855 /*
1856 * Maximize performance by inflating the configured ashift for top level
1857 * vdevs to be as close to the physical ashift as possible while maintaining
1858 * administrator defined limits and ensuring it doesn't go below the
1859 * logical ashift.
1860 */
1861 static void
1862 vdev_ashift_optimize(vdev_t *vd)
1863 {
1864 ASSERT(vd == vd->vdev_top);
1865
1866 if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1867 vd->vdev_ashift = MIN(
1868 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
1869 MAX(zfs_vdev_min_auto_ashift,
1870 vd->vdev_physical_ashift));
1871 } else {
1872 /*
1873 * If the logical and physical ashifts are the same, then
1874 * we ensure that the top-level vdev's ashift is not smaller
1875 * than our minimum ashift value. For the unusual case
1876 * where logical ashift > physical ashift, we can't cap
1877 * the calculated ashift based on max ashift as that
1878 * would cause failures.
1879 * We still check if we need to increase it to match
1880 * the min ashift.
1881 */
1882 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
1883 vd->vdev_ashift);
1884 }
1885 }
1886
1887 /*
1888 * Prepare a virtual device for access.
1889 */
1890 int
1891 vdev_open(vdev_t *vd)
1892 {
1893 spa_t *spa = vd->vdev_spa;
1894 int error;
1895 uint64_t osize = 0;
1896 uint64_t max_osize = 0;
1897 uint64_t asize, max_asize, psize;
1898 uint64_t logical_ashift = 0;
1899 uint64_t physical_ashift = 0;
1900
1901 ASSERT(vd->vdev_open_thread == curthread ||
1902 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1903 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1904 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1905 vd->vdev_state == VDEV_STATE_OFFLINE);
1906
1907 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1908 vd->vdev_cant_read = B_FALSE;
1909 vd->vdev_cant_write = B_FALSE;
1910 vd->vdev_min_asize = vdev_get_min_asize(vd);
1911
1912 /*
1913 * If this vdev is not removed, check its fault status. If it's
1914 * faulted, bail out of the open.
1915 */
1916 if (!vd->vdev_removed && vd->vdev_faulted) {
1917 ASSERT(vd->vdev_children == 0);
1918 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1919 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1920 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1921 vd->vdev_label_aux);
1922 return (SET_ERROR(ENXIO));
1923 } else if (vd->vdev_offline) {
1924 ASSERT(vd->vdev_children == 0);
1925 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1926 return (SET_ERROR(ENXIO));
1927 }
1928
1929 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1930 &logical_ashift, &physical_ashift);
1931 /*
1932 * Physical volume size should never be larger than its max size, unless
1933 * the disk has shrunk while we were reading it or the device is buggy
1934 * or damaged: either way it's not safe for use, bail out of the open.
1935 */
1936 if (osize > max_osize) {
1937 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1938 VDEV_AUX_OPEN_FAILED);
1939 return (SET_ERROR(ENXIO));
1940 }
1941
1942 /*
1943 * Reset the vdev_reopening flag so that we actually close
1944 * the vdev on error.
1945 */
1946 vd->vdev_reopening = B_FALSE;
1947 if (zio_injection_enabled && error == 0)
1948 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
1949
1950 if (error) {
1951 if (vd->vdev_removed &&
1952 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1953 vd->vdev_removed = B_FALSE;
1954
1955 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1956 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1957 vd->vdev_stat.vs_aux);
1958 } else {
1959 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1960 vd->vdev_stat.vs_aux);
1961 }
1962 return (error);
1963 }
1964
1965 vd->vdev_removed = B_FALSE;
1966
1967 /*
1968 * Recheck the faulted flag now that we have confirmed that
1969 * the vdev is accessible. If we're faulted, bail.
1970 */
1971 if (vd->vdev_faulted) {
1972 ASSERT(vd->vdev_children == 0);
1973 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1974 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1975 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1976 vd->vdev_label_aux);
1977 return (SET_ERROR(ENXIO));
1978 }
1979
1980 if (vd->vdev_degraded) {
1981 ASSERT(vd->vdev_children == 0);
1982 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1983 VDEV_AUX_ERR_EXCEEDED);
1984 } else {
1985 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1986 }
1987
1988 /*
1989 * For hole or missing vdevs we just return success.
1990 */
1991 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1992 return (0);
1993
1994 for (int c = 0; c < vd->vdev_children; c++) {
1995 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1996 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1997 VDEV_AUX_NONE);
1998 break;
1999 }
2000 }
2001
2002 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
2003 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
2004
2005 if (vd->vdev_children == 0) {
2006 if (osize < SPA_MINDEVSIZE) {
2007 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2008 VDEV_AUX_TOO_SMALL);
2009 return (SET_ERROR(EOVERFLOW));
2010 }
2011 psize = osize;
2012 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2013 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2014 VDEV_LABEL_END_SIZE);
2015 } else {
2016 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2017 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2018 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2019 VDEV_AUX_TOO_SMALL);
2020 return (SET_ERROR(EOVERFLOW));
2021 }
2022 psize = 0;
2023 asize = osize;
2024 max_asize = max_osize;
2025 }
2026
2027 /*
2028 * If the vdev was expanded, record this so that we can re-create the
2029 * uberblock rings in labels {2,3}, during the next sync.
2030 */
2031 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2032 vd->vdev_copy_uberblocks = B_TRUE;
2033
2034 vd->vdev_psize = psize;
2035
2036 /*
2037 * Make sure the allocatable size hasn't shrunk too much.
2038 */
2039 if (asize < vd->vdev_min_asize) {
2040 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2041 VDEV_AUX_BAD_LABEL);
2042 return (SET_ERROR(EINVAL));
2043 }
2044
2045 /*
2046 * We can always set the logical/physical ashift members since
2047 * their values are only used to calculate the vdev_ashift when
2048 * the device is first added to the config. These values should
2049 * not be used for anything else since they may change whenever
2050 * the device is reopened and we don't store them in the label.
2051 */
2052 vd->vdev_physical_ashift =
2053 MAX(physical_ashift, vd->vdev_physical_ashift);
2054 vd->vdev_logical_ashift = MAX(logical_ashift,
2055 vd->vdev_logical_ashift);
2056
2057 if (vd->vdev_asize == 0) {
2058 /*
2059 * This is the first-ever open, so use the computed values.
2060 * For compatibility, a different ashift can be requested.
2061 */
2062 vd->vdev_asize = asize;
2063 vd->vdev_max_asize = max_asize;
2064
2065 /*
2066 * If the vdev_ashift was not overridden at creation time,
2067 * then set it the logical ashift and optimize the ashift.
2068 */
2069 if (vd->vdev_ashift == 0) {
2070 vd->vdev_ashift = vd->vdev_logical_ashift;
2071
2072 if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2073 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2074 VDEV_AUX_ASHIFT_TOO_BIG);
2075 return (SET_ERROR(EDOM));
2076 }
2077
2078 if (vd->vdev_top == vd) {
2079 vdev_ashift_optimize(vd);
2080 }
2081 }
2082 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2083 vd->vdev_ashift > ASHIFT_MAX)) {
2084 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2085 VDEV_AUX_BAD_ASHIFT);
2086 return (SET_ERROR(EDOM));
2087 }
2088 } else {
2089 /*
2090 * Make sure the alignment required hasn't increased.
2091 */
2092 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2093 vd->vdev_ops->vdev_op_leaf) {
2094 (void) zfs_ereport_post(
2095 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2096 spa, vd, NULL, NULL, 0);
2097 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2098 VDEV_AUX_BAD_LABEL);
2099 return (SET_ERROR(EDOM));
2100 }
2101 vd->vdev_max_asize = max_asize;
2102 }
2103
2104 /*
2105 * If all children are healthy we update asize if either:
2106 * The asize has increased, due to a device expansion caused by dynamic
2107 * LUN growth or vdev replacement, and automatic expansion is enabled;
2108 * making the additional space available.
2109 *
2110 * The asize has decreased, due to a device shrink usually caused by a
2111 * vdev replace with a smaller device. This ensures that calculations
2112 * based of max_asize and asize e.g. esize are always valid. It's safe
2113 * to do this as we've already validated that asize is greater than
2114 * vdev_min_asize.
2115 */
2116 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2117 ((asize > vd->vdev_asize &&
2118 (vd->vdev_expanding || spa->spa_autoexpand)) ||
2119 (asize < vd->vdev_asize)))
2120 vd->vdev_asize = asize;
2121
2122 vdev_set_min_asize(vd);
2123
2124 /*
2125 * Ensure we can issue some IO before declaring the
2126 * vdev open for business.
2127 */
2128 if (vd->vdev_ops->vdev_op_leaf &&
2129 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2130 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2131 VDEV_AUX_ERR_EXCEEDED);
2132 return (error);
2133 }
2134
2135 /*
2136 * Track the minimum allocation size.
2137 */
2138 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2139 vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2140 uint64_t min_alloc = vdev_get_min_alloc(vd);
2141 if (min_alloc < spa->spa_min_alloc)
2142 spa->spa_min_alloc = min_alloc;
2143 }
2144
2145 /*
2146 * If this is a leaf vdev, assess whether a resilver is needed.
2147 * But don't do this if we are doing a reopen for a scrub, since
2148 * this would just restart the scrub we are already doing.
2149 */
2150 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2151 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2152
2153 return (0);
2154 }
2155
2156 static void
2157 vdev_validate_child(void *arg)
2158 {
2159 vdev_t *vd = arg;
2160
2161 vd->vdev_validate_thread = curthread;
2162 vd->vdev_validate_error = vdev_validate(vd);
2163 vd->vdev_validate_thread = NULL;
2164 }
2165
2166 /*
2167 * Called once the vdevs are all opened, this routine validates the label
2168 * contents. This needs to be done before vdev_load() so that we don't
2169 * inadvertently do repair I/Os to the wrong device.
2170 *
2171 * This function will only return failure if one of the vdevs indicates that it
2172 * has since been destroyed or exported. This is only possible if
2173 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
2174 * will be updated but the function will return 0.
2175 */
2176 int
2177 vdev_validate(vdev_t *vd)
2178 {
2179 spa_t *spa = vd->vdev_spa;
2180 taskq_t *tq = NULL;
2181 nvlist_t *label;
2182 uint64_t guid = 0, aux_guid = 0, top_guid;
2183 uint64_t state;
2184 nvlist_t *nvl;
2185 uint64_t txg;
2186 int children = vd->vdev_children;
2187
2188 if (vdev_validate_skip)
2189 return (0);
2190
2191 if (children > 0) {
2192 tq = taskq_create("vdev_validate", children, minclsyspri,
2193 children, children, TASKQ_PREPOPULATE);
2194 }
2195
2196 for (uint64_t c = 0; c < children; c++) {
2197 vdev_t *cvd = vd->vdev_child[c];
2198
2199 if (tq == NULL || vdev_uses_zvols(cvd)) {
2200 vdev_validate_child(cvd);
2201 } else {
2202 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2203 TQ_SLEEP) != TASKQID_INVALID);
2204 }
2205 }
2206 if (tq != NULL) {
2207 taskq_wait(tq);
2208 taskq_destroy(tq);
2209 }
2210 for (int c = 0; c < children; c++) {
2211 int error = vd->vdev_child[c]->vdev_validate_error;
2212
2213 if (error != 0)
2214 return (SET_ERROR(EBADF));
2215 }
2216
2217
2218 /*
2219 * If the device has already failed, or was marked offline, don't do
2220 * any further validation. Otherwise, label I/O will fail and we will
2221 * overwrite the previous state.
2222 */
2223 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2224 return (0);
2225
2226 /*
2227 * If we are performing an extreme rewind, we allow for a label that
2228 * was modified at a point after the current txg.
2229 * If config lock is not held do not check for the txg. spa_sync could
2230 * be updating the vdev's label before updating spa_last_synced_txg.
2231 */
2232 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2233 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2234 txg = UINT64_MAX;
2235 else
2236 txg = spa_last_synced_txg(spa);
2237
2238 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2239 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2240 VDEV_AUX_BAD_LABEL);
2241 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2242 "txg %llu", (u_longlong_t)txg);
2243 return (0);
2244 }
2245
2246 /*
2247 * Determine if this vdev has been split off into another
2248 * pool. If so, then refuse to open it.
2249 */
2250 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2251 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2252 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2253 VDEV_AUX_SPLIT_POOL);
2254 nvlist_free(label);
2255 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2256 return (0);
2257 }
2258
2259 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2260 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2261 VDEV_AUX_CORRUPT_DATA);
2262 nvlist_free(label);
2263 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2264 ZPOOL_CONFIG_POOL_GUID);
2265 return (0);
2266 }
2267
2268 /*
2269 * If config is not trusted then ignore the spa guid check. This is
2270 * necessary because if the machine crashed during a re-guid the new
2271 * guid might have been written to all of the vdev labels, but not the
2272 * cached config. The check will be performed again once we have the
2273 * trusted config from the MOS.
2274 */
2275 if (spa->spa_trust_config && guid != spa_guid(spa)) {
2276 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2277 VDEV_AUX_CORRUPT_DATA);
2278 nvlist_free(label);
2279 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2280 "match config (%llu != %llu)", (u_longlong_t)guid,
2281 (u_longlong_t)spa_guid(spa));
2282 return (0);
2283 }
2284
2285 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2286 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2287 &aux_guid) != 0)
2288 aux_guid = 0;
2289
2290 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2291 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2292 VDEV_AUX_CORRUPT_DATA);
2293 nvlist_free(label);
2294 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2295 ZPOOL_CONFIG_GUID);
2296 return (0);
2297 }
2298
2299 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2300 != 0) {
2301 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2302 VDEV_AUX_CORRUPT_DATA);
2303 nvlist_free(label);
2304 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2305 ZPOOL_CONFIG_TOP_GUID);
2306 return (0);
2307 }
2308
2309 /*
2310 * If this vdev just became a top-level vdev because its sibling was
2311 * detached, it will have adopted the parent's vdev guid -- but the
2312 * label may or may not be on disk yet. Fortunately, either version
2313 * of the label will have the same top guid, so if we're a top-level
2314 * vdev, we can safely compare to that instead.
2315 * However, if the config comes from a cachefile that failed to update
2316 * after the detach, a top-level vdev will appear as a non top-level
2317 * vdev in the config. Also relax the constraints if we perform an
2318 * extreme rewind.
2319 *
2320 * If we split this vdev off instead, then we also check the
2321 * original pool's guid. We don't want to consider the vdev
2322 * corrupt if it is partway through a split operation.
2323 */
2324 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2325 boolean_t mismatch = B_FALSE;
2326 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2327 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2328 mismatch = B_TRUE;
2329 } else {
2330 if (vd->vdev_guid != top_guid &&
2331 vd->vdev_top->vdev_guid != guid)
2332 mismatch = B_TRUE;
2333 }
2334
2335 if (mismatch) {
2336 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2337 VDEV_AUX_CORRUPT_DATA);
2338 nvlist_free(label);
2339 vdev_dbgmsg(vd, "vdev_validate: config guid "
2340 "doesn't match label guid");
2341 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2342 (u_longlong_t)vd->vdev_guid,
2343 (u_longlong_t)vd->vdev_top->vdev_guid);
2344 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2345 "aux_guid %llu", (u_longlong_t)guid,
2346 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2347 return (0);
2348 }
2349 }
2350
2351 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2352 &state) != 0) {
2353 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2354 VDEV_AUX_CORRUPT_DATA);
2355 nvlist_free(label);
2356 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2357 ZPOOL_CONFIG_POOL_STATE);
2358 return (0);
2359 }
2360
2361 nvlist_free(label);
2362
2363 /*
2364 * If this is a verbatim import, no need to check the
2365 * state of the pool.
2366 */
2367 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2368 spa_load_state(spa) == SPA_LOAD_OPEN &&
2369 state != POOL_STATE_ACTIVE) {
2370 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2371 "for spa %s", (u_longlong_t)state, spa->spa_name);
2372 return (SET_ERROR(EBADF));
2373 }
2374
2375 /*
2376 * If we were able to open and validate a vdev that was
2377 * previously marked permanently unavailable, clear that state
2378 * now.
2379 */
2380 if (vd->vdev_not_present)
2381 vd->vdev_not_present = 0;
2382
2383 return (0);
2384 }
2385
2386 static void
2387 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2388 {
2389 char *old, *new;
2390 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2391 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2392 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2393 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2394 dvd->vdev_path, svd->vdev_path);
2395 spa_strfree(dvd->vdev_path);
2396 dvd->vdev_path = spa_strdup(svd->vdev_path);
2397 }
2398 } else if (svd->vdev_path != NULL) {
2399 dvd->vdev_path = spa_strdup(svd->vdev_path);
2400 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2401 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2402 }
2403
2404 /*
2405 * Our enclosure sysfs path may have changed between imports
2406 */
2407 old = dvd->vdev_enc_sysfs_path;
2408 new = svd->vdev_enc_sysfs_path;
2409 if ((old != NULL && new == NULL) ||
2410 (old == NULL && new != NULL) ||
2411 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2412 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2413 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2414 old, new);
2415
2416 if (dvd->vdev_enc_sysfs_path)
2417 spa_strfree(dvd->vdev_enc_sysfs_path);
2418
2419 if (svd->vdev_enc_sysfs_path) {
2420 dvd->vdev_enc_sysfs_path = spa_strdup(
2421 svd->vdev_enc_sysfs_path);
2422 } else {
2423 dvd->vdev_enc_sysfs_path = NULL;
2424 }
2425 }
2426 }
2427
2428 /*
2429 * Recursively copy vdev paths from one vdev to another. Source and destination
2430 * vdev trees must have same geometry otherwise return error. Intended to copy
2431 * paths from userland config into MOS config.
2432 */
2433 int
2434 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2435 {
2436 if ((svd->vdev_ops == &vdev_missing_ops) ||
2437 (svd->vdev_ishole && dvd->vdev_ishole) ||
2438 (dvd->vdev_ops == &vdev_indirect_ops))
2439 return (0);
2440
2441 if (svd->vdev_ops != dvd->vdev_ops) {
2442 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2443 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2444 return (SET_ERROR(EINVAL));
2445 }
2446
2447 if (svd->vdev_guid != dvd->vdev_guid) {
2448 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2449 "%llu)", (u_longlong_t)svd->vdev_guid,
2450 (u_longlong_t)dvd->vdev_guid);
2451 return (SET_ERROR(EINVAL));
2452 }
2453
2454 if (svd->vdev_children != dvd->vdev_children) {
2455 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2456 "%llu != %llu", (u_longlong_t)svd->vdev_children,
2457 (u_longlong_t)dvd->vdev_children);
2458 return (SET_ERROR(EINVAL));
2459 }
2460
2461 for (uint64_t i = 0; i < svd->vdev_children; i++) {
2462 int error = vdev_copy_path_strict(svd->vdev_child[i],
2463 dvd->vdev_child[i]);
2464 if (error != 0)
2465 return (error);
2466 }
2467
2468 if (svd->vdev_ops->vdev_op_leaf)
2469 vdev_copy_path_impl(svd, dvd);
2470
2471 return (0);
2472 }
2473
2474 static void
2475 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2476 {
2477 ASSERT(stvd->vdev_top == stvd);
2478 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2479
2480 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2481 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2482 }
2483
2484 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2485 return;
2486
2487 /*
2488 * The idea here is that while a vdev can shift positions within
2489 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2490 * step outside of it.
2491 */
2492 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2493
2494 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2495 return;
2496
2497 ASSERT(vd->vdev_ops->vdev_op_leaf);
2498
2499 vdev_copy_path_impl(vd, dvd);
2500 }
2501
2502 /*
2503 * Recursively copy vdev paths from one root vdev to another. Source and
2504 * destination vdev trees may differ in geometry. For each destination leaf
2505 * vdev, search a vdev with the same guid and top vdev id in the source.
2506 * Intended to copy paths from userland config into MOS config.
2507 */
2508 void
2509 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2510 {
2511 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2512 ASSERT(srvd->vdev_ops == &vdev_root_ops);
2513 ASSERT(drvd->vdev_ops == &vdev_root_ops);
2514
2515 for (uint64_t i = 0; i < children; i++) {
2516 vdev_copy_path_search(srvd->vdev_child[i],
2517 drvd->vdev_child[i]);
2518 }
2519 }
2520
2521 /*
2522 * Close a virtual device.
2523 */
2524 void
2525 vdev_close(vdev_t *vd)
2526 {
2527 vdev_t *pvd = vd->vdev_parent;
2528 spa_t *spa __maybe_unused = vd->vdev_spa;
2529
2530 ASSERT(vd != NULL);
2531 ASSERT(vd->vdev_open_thread == curthread ||
2532 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2533
2534 /*
2535 * If our parent is reopening, then we are as well, unless we are
2536 * going offline.
2537 */
2538 if (pvd != NULL && pvd->vdev_reopening)
2539 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2540
2541 vd->vdev_ops->vdev_op_close(vd);
2542
2543 vdev_cache_purge(vd);
2544
2545 /*
2546 * We record the previous state before we close it, so that if we are
2547 * doing a reopen(), we don't generate FMA ereports if we notice that
2548 * it's still faulted.
2549 */
2550 vd->vdev_prevstate = vd->vdev_state;
2551
2552 if (vd->vdev_offline)
2553 vd->vdev_state = VDEV_STATE_OFFLINE;
2554 else
2555 vd->vdev_state = VDEV_STATE_CLOSED;
2556 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2557 }
2558
2559 void
2560 vdev_hold(vdev_t *vd)
2561 {
2562 spa_t *spa = vd->vdev_spa;
2563
2564 ASSERT(spa_is_root(spa));
2565 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2566 return;
2567
2568 for (int c = 0; c < vd->vdev_children; c++)
2569 vdev_hold(vd->vdev_child[c]);
2570
2571 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2572 vd->vdev_ops->vdev_op_hold(vd);
2573 }
2574
2575 void
2576 vdev_rele(vdev_t *vd)
2577 {
2578 ASSERT(spa_is_root(vd->vdev_spa));
2579 for (int c = 0; c < vd->vdev_children; c++)
2580 vdev_rele(vd->vdev_child[c]);
2581
2582 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2583 vd->vdev_ops->vdev_op_rele(vd);
2584 }
2585
2586 /*
2587 * Reopen all interior vdevs and any unopened leaves. We don't actually
2588 * reopen leaf vdevs which had previously been opened as they might deadlock
2589 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
2590 * If the leaf has never been opened then open it, as usual.
2591 */
2592 void
2593 vdev_reopen(vdev_t *vd)
2594 {
2595 spa_t *spa = vd->vdev_spa;
2596
2597 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2598
2599 /* set the reopening flag unless we're taking the vdev offline */
2600 vd->vdev_reopening = !vd->vdev_offline;
2601 vdev_close(vd);
2602 (void) vdev_open(vd);
2603
2604 /*
2605 * Call vdev_validate() here to make sure we have the same device.
2606 * Otherwise, a device with an invalid label could be successfully
2607 * opened in response to vdev_reopen().
2608 */
2609 if (vd->vdev_aux) {
2610 (void) vdev_validate_aux(vd);
2611 if (vdev_readable(vd) && vdev_writeable(vd) &&
2612 vd->vdev_aux == &spa->spa_l2cache) {
2613 /*
2614 * In case the vdev is present we should evict all ARC
2615 * buffers and pointers to log blocks and reclaim their
2616 * space before restoring its contents to L2ARC.
2617 */
2618 if (l2arc_vdev_present(vd)) {
2619 l2arc_rebuild_vdev(vd, B_TRUE);
2620 } else {
2621 l2arc_add_vdev(spa, vd);
2622 }
2623 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2624 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2625 }
2626 } else {
2627 (void) vdev_validate(vd);
2628 }
2629
2630 /*
2631 * Reassess parent vdev's health.
2632 */
2633 vdev_propagate_state(vd);
2634 }
2635
2636 int
2637 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2638 {
2639 int error;
2640
2641 /*
2642 * Normally, partial opens (e.g. of a mirror) are allowed.
2643 * For a create, however, we want to fail the request if
2644 * there are any components we can't open.
2645 */
2646 error = vdev_open(vd);
2647
2648 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2649 vdev_close(vd);
2650 return (error ? error : SET_ERROR(ENXIO));
2651 }
2652
2653 /*
2654 * Recursively load DTLs and initialize all labels.
2655 */
2656 if ((error = vdev_dtl_load(vd)) != 0 ||
2657 (error = vdev_label_init(vd, txg, isreplacing ?
2658 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2659 vdev_close(vd);
2660 return (error);
2661 }
2662
2663 return (0);
2664 }
2665
2666 void
2667 vdev_metaslab_set_size(vdev_t *vd)
2668 {
2669 uint64_t asize = vd->vdev_asize;
2670 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2671 uint64_t ms_shift;
2672
2673 /*
2674 * There are two dimensions to the metaslab sizing calculation:
2675 * the size of the metaslab and the count of metaslabs per vdev.
2676 *
2677 * The default values used below are a good balance between memory
2678 * usage (larger metaslab size means more memory needed for loaded
2679 * metaslabs; more metaslabs means more memory needed for the
2680 * metaslab_t structs), metaslab load time (larger metaslabs take
2681 * longer to load), and metaslab sync time (more metaslabs means
2682 * more time spent syncing all of them).
2683 *
2684 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2685 * The range of the dimensions are as follows:
2686 *
2687 * 2^29 <= ms_size <= 2^34
2688 * 16 <= ms_count <= 131,072
2689 *
2690 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2691 * at least 512MB (2^29) to minimize fragmentation effects when
2692 * testing with smaller devices. However, the count constraint
2693 * of at least 16 metaslabs will override this minimum size goal.
2694 *
2695 * On the upper end of vdev sizes, we aim for a maximum metaslab
2696 * size of 16GB. However, we will cap the total count to 2^17
2697 * metaslabs to keep our memory footprint in check and let the
2698 * metaslab size grow from there if that limit is hit.
2699 *
2700 * The net effect of applying above constrains is summarized below.
2701 *
2702 * vdev size metaslab count
2703 * --------------|-----------------
2704 * < 8GB ~16
2705 * 8GB - 100GB one per 512MB
2706 * 100GB - 3TB ~200
2707 * 3TB - 2PB one per 16GB
2708 * > 2PB ~131,072
2709 * --------------------------------
2710 *
2711 * Finally, note that all of the above calculate the initial
2712 * number of metaslabs. Expanding a top-level vdev will result
2713 * in additional metaslabs being allocated making it possible
2714 * to exceed the zfs_vdev_ms_count_limit.
2715 */
2716
2717 if (ms_count < zfs_vdev_min_ms_count)
2718 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2719 else if (ms_count > zfs_vdev_default_ms_count)
2720 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2721 else
2722 ms_shift = zfs_vdev_default_ms_shift;
2723
2724 if (ms_shift < SPA_MAXBLOCKSHIFT) {
2725 ms_shift = SPA_MAXBLOCKSHIFT;
2726 } else if (ms_shift > zfs_vdev_max_ms_shift) {
2727 ms_shift = zfs_vdev_max_ms_shift;
2728 /* cap the total count to constrain memory footprint */
2729 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2730 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2731 }
2732
2733 vd->vdev_ms_shift = ms_shift;
2734 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2735 }
2736
2737 void
2738 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2739 {
2740 ASSERT(vd == vd->vdev_top);
2741 /* indirect vdevs don't have metaslabs or dtls */
2742 ASSERT(vdev_is_concrete(vd) || flags == 0);
2743 ASSERT(ISP2(flags));
2744 ASSERT(spa_writeable(vd->vdev_spa));
2745
2746 if (flags & VDD_METASLAB)
2747 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2748
2749 if (flags & VDD_DTL)
2750 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2751
2752 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2753 }
2754
2755 void
2756 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2757 {
2758 for (int c = 0; c < vd->vdev_children; c++)
2759 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2760
2761 if (vd->vdev_ops->vdev_op_leaf)
2762 vdev_dirty(vd->vdev_top, flags, vd, txg);
2763 }
2764
2765 /*
2766 * DTLs.
2767 *
2768 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2769 * the vdev has less than perfect replication. There are four kinds of DTL:
2770 *
2771 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2772 *
2773 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2774 *
2775 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2776 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2777 * txgs that was scrubbed.
2778 *
2779 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2780 * persistent errors or just some device being offline.
2781 * Unlike the other three, the DTL_OUTAGE map is not generally
2782 * maintained; it's only computed when needed, typically to
2783 * determine whether a device can be detached.
2784 *
2785 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2786 * either has the data or it doesn't.
2787 *
2788 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2789 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2790 * if any child is less than fully replicated, then so is its parent.
2791 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2792 * comprising only those txgs which appear in 'maxfaults' or more children;
2793 * those are the txgs we don't have enough replication to read. For example,
2794 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2795 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2796 * two child DTL_MISSING maps.
2797 *
2798 * It should be clear from the above that to compute the DTLs and outage maps
2799 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2800 * Therefore, that is all we keep on disk. When loading the pool, or after
2801 * a configuration change, we generate all other DTLs from first principles.
2802 */
2803 void
2804 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2805 {
2806 range_tree_t *rt = vd->vdev_dtl[t];
2807
2808 ASSERT(t < DTL_TYPES);
2809 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2810 ASSERT(spa_writeable(vd->vdev_spa));
2811
2812 mutex_enter(&vd->vdev_dtl_lock);
2813 if (!range_tree_contains(rt, txg, size))
2814 range_tree_add(rt, txg, size);
2815 mutex_exit(&vd->vdev_dtl_lock);
2816 }
2817
2818 boolean_t
2819 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2820 {
2821 range_tree_t *rt = vd->vdev_dtl[t];
2822 boolean_t dirty = B_FALSE;
2823
2824 ASSERT(t < DTL_TYPES);
2825 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2826
2827 /*
2828 * While we are loading the pool, the DTLs have not been loaded yet.
2829 * This isn't a problem but it can result in devices being tried
2830 * which are known to not have the data. In which case, the import
2831 * is relying on the checksum to ensure that we get the right data.
2832 * Note that while importing we are only reading the MOS, which is
2833 * always checksummed.
2834 */
2835 mutex_enter(&vd->vdev_dtl_lock);
2836 if (!range_tree_is_empty(rt))
2837 dirty = range_tree_contains(rt, txg, size);
2838 mutex_exit(&vd->vdev_dtl_lock);
2839
2840 return (dirty);
2841 }
2842
2843 boolean_t
2844 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2845 {
2846 range_tree_t *rt = vd->vdev_dtl[t];
2847 boolean_t empty;
2848
2849 mutex_enter(&vd->vdev_dtl_lock);
2850 empty = range_tree_is_empty(rt);
2851 mutex_exit(&vd->vdev_dtl_lock);
2852
2853 return (empty);
2854 }
2855
2856 /*
2857 * Check if the txg falls within the range which must be
2858 * resilvered. DVAs outside this range can always be skipped.
2859 */
2860 boolean_t
2861 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2862 uint64_t phys_birth)
2863 {
2864 (void) dva, (void) psize;
2865
2866 /* Set by sequential resilver. */
2867 if (phys_birth == TXG_UNKNOWN)
2868 return (B_TRUE);
2869
2870 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
2871 }
2872
2873 /*
2874 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
2875 */
2876 boolean_t
2877 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2878 uint64_t phys_birth)
2879 {
2880 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2881
2882 if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2883 vd->vdev_ops->vdev_op_leaf)
2884 return (B_TRUE);
2885
2886 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
2887 phys_birth));
2888 }
2889
2890 /*
2891 * Returns the lowest txg in the DTL range.
2892 */
2893 static uint64_t
2894 vdev_dtl_min(vdev_t *vd)
2895 {
2896 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2897 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2898 ASSERT0(vd->vdev_children);
2899
2900 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
2901 }
2902
2903 /*
2904 * Returns the highest txg in the DTL.
2905 */
2906 static uint64_t
2907 vdev_dtl_max(vdev_t *vd)
2908 {
2909 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2910 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2911 ASSERT0(vd->vdev_children);
2912
2913 return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
2914 }
2915
2916 /*
2917 * Determine if a resilvering vdev should remove any DTL entries from
2918 * its range. If the vdev was resilvering for the entire duration of the
2919 * scan then it should excise that range from its DTLs. Otherwise, this
2920 * vdev is considered partially resilvered and should leave its DTL
2921 * entries intact. The comment in vdev_dtl_reassess() describes how we
2922 * excise the DTLs.
2923 */
2924 static boolean_t
2925 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
2926 {
2927 ASSERT0(vd->vdev_children);
2928
2929 if (vd->vdev_state < VDEV_STATE_DEGRADED)
2930 return (B_FALSE);
2931
2932 if (vd->vdev_resilver_deferred)
2933 return (B_FALSE);
2934
2935 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2936 return (B_TRUE);
2937
2938 if (rebuild_done) {
2939 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2940 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
2941
2942 /* Rebuild not initiated by attach */
2943 if (vd->vdev_rebuild_txg == 0)
2944 return (B_TRUE);
2945
2946 /*
2947 * When a rebuild completes without error then all missing data
2948 * up to the rebuild max txg has been reconstructed and the DTL
2949 * is eligible for excision.
2950 */
2951 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
2952 vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
2953 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
2954 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
2955 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
2956 return (B_TRUE);
2957 }
2958 } else {
2959 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
2960 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
2961
2962 /* Resilver not initiated by attach */
2963 if (vd->vdev_resilver_txg == 0)
2964 return (B_TRUE);
2965
2966 /*
2967 * When a resilver is initiated the scan will assign the
2968 * scn_max_txg value to the highest txg value that exists
2969 * in all DTLs. If this device's max DTL is not part of this
2970 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
2971 * then it is not eligible for excision.
2972 */
2973 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2974 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
2975 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
2976 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
2977 return (B_TRUE);
2978 }
2979 }
2980
2981 return (B_FALSE);
2982 }
2983
2984 /*
2985 * Reassess DTLs after a config change or scrub completion. If txg == 0 no
2986 * write operations will be issued to the pool.
2987 */
2988 void
2989 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
2990 boolean_t scrub_done, boolean_t rebuild_done)
2991 {
2992 spa_t *spa = vd->vdev_spa;
2993 avl_tree_t reftree;
2994 int minref;
2995
2996 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2997
2998 for (int c = 0; c < vd->vdev_children; c++)
2999 vdev_dtl_reassess(vd->vdev_child[c], txg,
3000 scrub_txg, scrub_done, rebuild_done);
3001
3002 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3003 return;
3004
3005 if (vd->vdev_ops->vdev_op_leaf) {
3006 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3007 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3008 boolean_t check_excise = B_FALSE;
3009 boolean_t wasempty = B_TRUE;
3010
3011 mutex_enter(&vd->vdev_dtl_lock);
3012
3013 /*
3014 * If requested, pretend the scan or rebuild completed cleanly.
3015 */
3016 if (zfs_scan_ignore_errors) {
3017 if (scn != NULL)
3018 scn->scn_phys.scn_errors = 0;
3019 if (vr != NULL)
3020 vr->vr_rebuild_phys.vrp_errors = 0;
3021 }
3022
3023 if (scrub_txg != 0 &&
3024 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3025 wasempty = B_FALSE;
3026 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3027 "dtl:%llu/%llu errors:%llu",
3028 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3029 (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3030 (u_longlong_t)vdev_dtl_min(vd),
3031 (u_longlong_t)vdev_dtl_max(vd),
3032 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3033 }
3034
3035 /*
3036 * If we've completed a scrub/resilver or a rebuild cleanly
3037 * then determine if this vdev should remove any DTLs. We
3038 * only want to excise regions on vdevs that were available
3039 * during the entire duration of this scan.
3040 */
3041 if (rebuild_done &&
3042 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3043 check_excise = B_TRUE;
3044 } else {
3045 if (spa->spa_scrub_started ||
3046 (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3047 check_excise = B_TRUE;
3048 }
3049 }
3050
3051 if (scrub_txg && check_excise &&
3052 vdev_dtl_should_excise(vd, rebuild_done)) {
3053 /*
3054 * We completed a scrub, resilver or rebuild up to
3055 * scrub_txg. If we did it without rebooting, then
3056 * the scrub dtl will be valid, so excise the old
3057 * region and fold in the scrub dtl. Otherwise,
3058 * leave the dtl as-is if there was an error.
3059 *
3060 * There's little trick here: to excise the beginning
3061 * of the DTL_MISSING map, we put it into a reference
3062 * tree and then add a segment with refcnt -1 that
3063 * covers the range [0, scrub_txg). This means
3064 * that each txg in that range has refcnt -1 or 0.
3065 * We then add DTL_SCRUB with a refcnt of 2, so that
3066 * entries in the range [0, scrub_txg) will have a
3067 * positive refcnt -- either 1 or 2. We then convert
3068 * the reference tree into the new DTL_MISSING map.
3069 */
3070 space_reftree_create(&reftree);
3071 space_reftree_add_map(&reftree,
3072 vd->vdev_dtl[DTL_MISSING], 1);
3073 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3074 space_reftree_add_map(&reftree,
3075 vd->vdev_dtl[DTL_SCRUB], 2);
3076 space_reftree_generate_map(&reftree,
3077 vd->vdev_dtl[DTL_MISSING], 1);
3078 space_reftree_destroy(&reftree);
3079
3080 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3081 zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3082 (u_longlong_t)vdev_dtl_min(vd),
3083 (u_longlong_t)vdev_dtl_max(vd));
3084 } else if (!wasempty) {
3085 zfs_dbgmsg("DTL_MISSING is now empty");
3086 }
3087 }
3088 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3089 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3090 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3091 if (scrub_done)
3092 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
3093 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3094 if (!vdev_readable(vd))
3095 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3096 else
3097 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3098 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3099
3100 /*
3101 * If the vdev was resilvering or rebuilding and no longer
3102 * has any DTLs then reset the appropriate flag and dirty
3103 * the top level so that we persist the change.
3104 */
3105 if (txg != 0 &&
3106 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3107 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3108 if (vd->vdev_rebuild_txg != 0) {
3109 vd->vdev_rebuild_txg = 0;
3110 vdev_config_dirty(vd->vdev_top);
3111 } else if (vd->vdev_resilver_txg != 0) {
3112 vd->vdev_resilver_txg = 0;
3113 vdev_config_dirty(vd->vdev_top);
3114 }
3115 }
3116
3117 mutex_exit(&vd->vdev_dtl_lock);
3118
3119 if (txg != 0)
3120 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3121 return;
3122 }
3123
3124 mutex_enter(&vd->vdev_dtl_lock);
3125 for (int t = 0; t < DTL_TYPES; t++) {
3126 /* account for child's outage in parent's missing map */
3127 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3128 if (t == DTL_SCRUB)
3129 continue; /* leaf vdevs only */
3130 if (t == DTL_PARTIAL)
3131 minref = 1; /* i.e. non-zero */
3132 else if (vdev_get_nparity(vd) != 0)
3133 minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */
3134 else
3135 minref = vd->vdev_children; /* any kind of mirror */
3136 space_reftree_create(&reftree);
3137 for (int c = 0; c < vd->vdev_children; c++) {
3138 vdev_t *cvd = vd->vdev_child[c];
3139 mutex_enter(&cvd->vdev_dtl_lock);
3140 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
3141 mutex_exit(&cvd->vdev_dtl_lock);
3142 }
3143 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
3144 space_reftree_destroy(&reftree);
3145 }
3146 mutex_exit(&vd->vdev_dtl_lock);
3147 }
3148
3149 int
3150 vdev_dtl_load(vdev_t *vd)
3151 {
3152 spa_t *spa = vd->vdev_spa;
3153 objset_t *mos = spa->spa_meta_objset;
3154 range_tree_t *rt;
3155 int error = 0;
3156
3157 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3158 ASSERT(vdev_is_concrete(vd));
3159
3160 /*
3161 * If the dtl cannot be sync'd there is no need to open it.
3162 */
3163 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3164 return (0);
3165
3166 error = space_map_open(&vd->vdev_dtl_sm, mos,
3167 vd->vdev_dtl_object, 0, -1ULL, 0);
3168 if (error)
3169 return (error);
3170 ASSERT(vd->vdev_dtl_sm != NULL);
3171
3172 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3173 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3174 if (error == 0) {
3175 mutex_enter(&vd->vdev_dtl_lock);
3176 range_tree_walk(rt, range_tree_add,
3177 vd->vdev_dtl[DTL_MISSING]);
3178 mutex_exit(&vd->vdev_dtl_lock);
3179 }
3180
3181 range_tree_vacate(rt, NULL, NULL);
3182 range_tree_destroy(rt);
3183
3184 return (error);
3185 }
3186
3187 for (int c = 0; c < vd->vdev_children; c++) {
3188 error = vdev_dtl_load(vd->vdev_child[c]);
3189 if (error != 0)
3190 break;
3191 }
3192
3193 return (error);
3194 }
3195
3196 static void
3197 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3198 {
3199 spa_t *spa = vd->vdev_spa;
3200 objset_t *mos = spa->spa_meta_objset;
3201 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3202 const char *string;
3203
3204 ASSERT(alloc_bias != VDEV_BIAS_NONE);
3205
3206 string =
3207 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3208 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3209 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3210
3211 ASSERT(string != NULL);
3212 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3213 1, strlen(string) + 1, string, tx));
3214
3215 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3216 spa_activate_allocation_classes(spa, tx);
3217 }
3218 }
3219
3220 void
3221 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3222 {
3223 spa_t *spa = vd->vdev_spa;
3224
3225 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3226 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3227 zapobj, tx));
3228 }
3229
3230 uint64_t
3231 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3232 {
3233 spa_t *spa = vd->vdev_spa;
3234 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3235 DMU_OT_NONE, 0, tx);
3236
3237 ASSERT(zap != 0);
3238 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3239 zap, tx));
3240
3241 return (zap);
3242 }
3243
3244 void
3245 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3246 {
3247 if (vd->vdev_ops != &vdev_hole_ops &&
3248 vd->vdev_ops != &vdev_missing_ops &&
3249 vd->vdev_ops != &vdev_root_ops &&
3250 !vd->vdev_top->vdev_removing) {
3251 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3252 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3253 }
3254 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3255 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3256 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3257 vdev_zap_allocation_data(vd, tx);
3258 }
3259 }
3260
3261 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3262 vdev_construct_zaps(vd->vdev_child[i], tx);
3263 }
3264 }
3265
3266 static void
3267 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3268 {
3269 spa_t *spa = vd->vdev_spa;
3270 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3271 objset_t *mos = spa->spa_meta_objset;
3272 range_tree_t *rtsync;
3273 dmu_tx_t *tx;
3274 uint64_t object = space_map_object(vd->vdev_dtl_sm);
3275
3276 ASSERT(vdev_is_concrete(vd));
3277 ASSERT(vd->vdev_ops->vdev_op_leaf);
3278
3279 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3280
3281 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3282 mutex_enter(&vd->vdev_dtl_lock);
3283 space_map_free(vd->vdev_dtl_sm, tx);
3284 space_map_close(vd->vdev_dtl_sm);
3285 vd->vdev_dtl_sm = NULL;
3286 mutex_exit(&vd->vdev_dtl_lock);
3287
3288 /*
3289 * We only destroy the leaf ZAP for detached leaves or for
3290 * removed log devices. Removed data devices handle leaf ZAP
3291 * cleanup later, once cancellation is no longer possible.
3292 */
3293 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3294 vd->vdev_top->vdev_islog)) {
3295 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3296 vd->vdev_leaf_zap = 0;
3297 }
3298
3299 dmu_tx_commit(tx);
3300 return;
3301 }
3302
3303 if (vd->vdev_dtl_sm == NULL) {
3304 uint64_t new_object;
3305
3306 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3307 VERIFY3U(new_object, !=, 0);
3308
3309 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3310 0, -1ULL, 0));
3311 ASSERT(vd->vdev_dtl_sm != NULL);
3312 }
3313
3314 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3315
3316 mutex_enter(&vd->vdev_dtl_lock);
3317 range_tree_walk(rt, range_tree_add, rtsync);
3318 mutex_exit(&vd->vdev_dtl_lock);
3319
3320 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3321 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3322 range_tree_vacate(rtsync, NULL, NULL);
3323
3324 range_tree_destroy(rtsync);
3325
3326 /*
3327 * If the object for the space map has changed then dirty
3328 * the top level so that we update the config.
3329 */
3330 if (object != space_map_object(vd->vdev_dtl_sm)) {
3331 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3332 "new object %llu", (u_longlong_t)txg, spa_name(spa),
3333 (u_longlong_t)object,
3334 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3335 vdev_config_dirty(vd->vdev_top);
3336 }
3337
3338 dmu_tx_commit(tx);
3339 }
3340
3341 /*
3342 * Determine whether the specified vdev can be offlined/detached/removed
3343 * without losing data.
3344 */
3345 boolean_t
3346 vdev_dtl_required(vdev_t *vd)
3347 {
3348 spa_t *spa = vd->vdev_spa;
3349 vdev_t *tvd = vd->vdev_top;
3350 uint8_t cant_read = vd->vdev_cant_read;
3351 boolean_t required;
3352
3353 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3354
3355 if (vd == spa->spa_root_vdev || vd == tvd)
3356 return (B_TRUE);
3357
3358 /*
3359 * Temporarily mark the device as unreadable, and then determine
3360 * whether this results in any DTL outages in the top-level vdev.
3361 * If not, we can safely offline/detach/remove the device.
3362 */
3363 vd->vdev_cant_read = B_TRUE;
3364 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3365 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3366 vd->vdev_cant_read = cant_read;
3367 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3368
3369 if (!required && zio_injection_enabled) {
3370 required = !!zio_handle_device_injection(vd, NULL,
3371 SET_ERROR(ECHILD));
3372 }
3373
3374 return (required);
3375 }
3376
3377 /*
3378 * Determine if resilver is needed, and if so the txg range.
3379 */
3380 boolean_t
3381 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3382 {
3383 boolean_t needed = B_FALSE;
3384 uint64_t thismin = UINT64_MAX;
3385 uint64_t thismax = 0;
3386
3387 if (vd->vdev_children == 0) {
3388 mutex_enter(&vd->vdev_dtl_lock);
3389 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3390 vdev_writeable(vd)) {
3391
3392 thismin = vdev_dtl_min(vd);
3393 thismax = vdev_dtl_max(vd);
3394 needed = B_TRUE;
3395 }
3396 mutex_exit(&vd->vdev_dtl_lock);
3397 } else {
3398 for (int c = 0; c < vd->vdev_children; c++) {
3399 vdev_t *cvd = vd->vdev_child[c];
3400 uint64_t cmin, cmax;
3401
3402 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3403 thismin = MIN(thismin, cmin);
3404 thismax = MAX(thismax, cmax);
3405 needed = B_TRUE;
3406 }
3407 }
3408 }
3409
3410 if (needed && minp) {
3411 *minp = thismin;
3412 *maxp = thismax;
3413 }
3414 return (needed);
3415 }
3416
3417 /*
3418 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
3419 * will contain either the checkpoint spacemap object or zero if none exists.
3420 * All other errors are returned to the caller.
3421 */
3422 int
3423 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3424 {
3425 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3426
3427 if (vd->vdev_top_zap == 0) {
3428 *sm_obj = 0;
3429 return (0);
3430 }
3431
3432 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3433 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3434 if (error == ENOENT) {
3435 *sm_obj = 0;
3436 error = 0;
3437 }
3438
3439 return (error);
3440 }
3441
3442 int
3443 vdev_load(vdev_t *vd)
3444 {
3445 int children = vd->vdev_children;
3446 int error = 0;
3447 taskq_t *tq = NULL;
3448
3449 /*
3450 * It's only worthwhile to use the taskq for the root vdev, because the
3451 * slow part is metaslab_init, and that only happens for top-level
3452 * vdevs.
3453 */
3454 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3455 tq = taskq_create("vdev_load", children, minclsyspri,
3456 children, children, TASKQ_PREPOPULATE);
3457 }
3458
3459 /*
3460 * Recursively load all children.
3461 */
3462 for (int c = 0; c < vd->vdev_children; c++) {
3463 vdev_t *cvd = vd->vdev_child[c];
3464
3465 if (tq == NULL || vdev_uses_zvols(cvd)) {
3466 cvd->vdev_load_error = vdev_load(cvd);
3467 } else {
3468 VERIFY(taskq_dispatch(tq, vdev_load_child,
3469 cvd, TQ_SLEEP) != TASKQID_INVALID);
3470 }
3471 }
3472
3473 if (tq != NULL) {
3474 taskq_wait(tq);
3475 taskq_destroy(tq);
3476 }
3477
3478 for (int c = 0; c < vd->vdev_children; c++) {
3479 int error = vd->vdev_child[c]->vdev_load_error;
3480
3481 if (error != 0)
3482 return (error);
3483 }
3484
3485 vdev_set_deflate_ratio(vd);
3486
3487 /*
3488 * On spa_load path, grab the allocation bias from our zap
3489 */
3490 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3491 spa_t *spa = vd->vdev_spa;
3492 char bias_str[64];
3493
3494 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3495 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3496 bias_str);
3497 if (error == 0) {
3498 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3499 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3500 } else if (error != ENOENT) {
3501 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3502 VDEV_AUX_CORRUPT_DATA);
3503 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3504 "failed [error=%d]",
3505 (u_longlong_t)vd->vdev_top_zap, error);
3506 return (error);
3507 }
3508 }
3509
3510 /*
3511 * Load any rebuild state from the top-level vdev zap.
3512 */
3513 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3514 error = vdev_rebuild_load(vd);
3515 if (error && error != ENOTSUP) {
3516 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3517 VDEV_AUX_CORRUPT_DATA);
3518 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3519 "failed [error=%d]", error);
3520 return (error);
3521 }
3522 }
3523
3524 /*
3525 * If this is a top-level vdev, initialize its metaslabs.
3526 */
3527 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3528 vdev_metaslab_group_create(vd);
3529
3530 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3531 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3532 VDEV_AUX_CORRUPT_DATA);
3533 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3534 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3535 (u_longlong_t)vd->vdev_asize);
3536 return (SET_ERROR(ENXIO));
3537 }
3538
3539 error = vdev_metaslab_init(vd, 0);
3540 if (error != 0) {
3541 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3542 "[error=%d]", error);
3543 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3544 VDEV_AUX_CORRUPT_DATA);
3545 return (error);
3546 }
3547
3548 uint64_t checkpoint_sm_obj;
3549 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3550 if (error == 0 && checkpoint_sm_obj != 0) {
3551 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3552 ASSERT(vd->vdev_asize != 0);
3553 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3554
3555 error = space_map_open(&vd->vdev_checkpoint_sm,
3556 mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3557 vd->vdev_ashift);
3558 if (error != 0) {
3559 vdev_dbgmsg(vd, "vdev_load: space_map_open "
3560 "failed for checkpoint spacemap (obj %llu) "
3561 "[error=%d]",
3562 (u_longlong_t)checkpoint_sm_obj, error);
3563 return (error);
3564 }
3565 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3566
3567 /*
3568 * Since the checkpoint_sm contains free entries
3569 * exclusively we can use space_map_allocated() to
3570 * indicate the cumulative checkpointed space that
3571 * has been freed.
3572 */
3573 vd->vdev_stat.vs_checkpoint_space =
3574 -space_map_allocated(vd->vdev_checkpoint_sm);
3575 vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3576 vd->vdev_stat.vs_checkpoint_space;
3577 } else if (error != 0) {
3578 vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3579 "checkpoint space map object from vdev ZAP "
3580 "[error=%d]", error);
3581 return (error);
3582 }
3583 }
3584
3585 /*
3586 * If this is a leaf vdev, load its DTL.
3587 */
3588 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3589 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3590 VDEV_AUX_CORRUPT_DATA);
3591 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3592 "[error=%d]", error);
3593 return (error);
3594 }
3595
3596 uint64_t obsolete_sm_object;
3597 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3598 if (error == 0 && obsolete_sm_object != 0) {
3599 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3600 ASSERT(vd->vdev_asize != 0);
3601 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3602
3603 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3604 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3605 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3606 VDEV_AUX_CORRUPT_DATA);
3607 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3608 "obsolete spacemap (obj %llu) [error=%d]",
3609 (u_longlong_t)obsolete_sm_object, error);
3610 return (error);
3611 }
3612 } else if (error != 0) {
3613 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3614 "space map object from vdev ZAP [error=%d]", error);
3615 return (error);
3616 }
3617
3618 return (0);
3619 }
3620
3621 /*
3622 * The special vdev case is used for hot spares and l2cache devices. Its
3623 * sole purpose it to set the vdev state for the associated vdev. To do this,
3624 * we make sure that we can open the underlying device, then try to read the
3625 * label, and make sure that the label is sane and that it hasn't been
3626 * repurposed to another pool.
3627 */
3628 int
3629 vdev_validate_aux(vdev_t *vd)
3630 {
3631 nvlist_t *label;
3632 uint64_t guid, version;
3633 uint64_t state;
3634
3635 if (!vdev_readable(vd))
3636 return (0);
3637
3638 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3639 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3640 VDEV_AUX_CORRUPT_DATA);
3641 return (-1);
3642 }
3643
3644 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3645 !SPA_VERSION_IS_SUPPORTED(version) ||
3646 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3647 guid != vd->vdev_guid ||
3648 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3649 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3650 VDEV_AUX_CORRUPT_DATA);
3651 nvlist_free(label);
3652 return (-1);
3653 }
3654
3655 /*
3656 * We don't actually check the pool state here. If it's in fact in
3657 * use by another pool, we update this fact on the fly when requested.
3658 */
3659 nvlist_free(label);
3660 return (0);
3661 }
3662
3663 static void
3664 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3665 {
3666 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3667
3668 if (vd->vdev_top_zap == 0)
3669 return;
3670
3671 uint64_t object = 0;
3672 int err = zap_lookup(mos, vd->vdev_top_zap,
3673 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3674 if (err == ENOENT)
3675 return;
3676 VERIFY0(err);
3677
3678 VERIFY0(dmu_object_free(mos, object, tx));
3679 VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3680 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3681 }
3682
3683 /*
3684 * Free the objects used to store this vdev's spacemaps, and the array
3685 * that points to them.
3686 */
3687 void
3688 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3689 {
3690 if (vd->vdev_ms_array == 0)
3691 return;
3692
3693 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3694 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3695 size_t array_bytes = array_count * sizeof (uint64_t);
3696 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3697 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3698 array_bytes, smobj_array, 0));
3699
3700 for (uint64_t i = 0; i < array_count; i++) {
3701 uint64_t smobj = smobj_array[i];
3702 if (smobj == 0)
3703 continue;
3704
3705 space_map_free_obj(mos, smobj, tx);
3706 }
3707
3708 kmem_free(smobj_array, array_bytes);
3709 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3710 vdev_destroy_ms_flush_data(vd, tx);
3711 vd->vdev_ms_array = 0;
3712 }
3713
3714 static void
3715 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3716 {
3717 spa_t *spa = vd->vdev_spa;
3718
3719 ASSERT(vd->vdev_islog);
3720 ASSERT(vd == vd->vdev_top);
3721 ASSERT3U(txg, ==, spa_syncing_txg(spa));
3722
3723 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3724
3725 vdev_destroy_spacemaps(vd, tx);
3726 if (vd->vdev_top_zap != 0) {
3727 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3728 vd->vdev_top_zap = 0;
3729 }
3730
3731 dmu_tx_commit(tx);
3732 }
3733
3734 void
3735 vdev_sync_done(vdev_t *vd, uint64_t txg)
3736 {
3737 metaslab_t *msp;
3738 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3739
3740 ASSERT(vdev_is_concrete(vd));
3741
3742 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3743 != NULL)
3744 metaslab_sync_done(msp, txg);
3745
3746 if (reassess) {
3747 metaslab_sync_reassess(vd->vdev_mg);
3748 if (vd->vdev_log_mg != NULL)
3749 metaslab_sync_reassess(vd->vdev_log_mg);
3750 }
3751 }
3752
3753 void
3754 vdev_sync(vdev_t *vd, uint64_t txg)
3755 {
3756 spa_t *spa = vd->vdev_spa;
3757 vdev_t *lvd;
3758 metaslab_t *msp;
3759
3760 ASSERT3U(txg, ==, spa->spa_syncing_txg);
3761 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3762 if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3763 ASSERT(vd->vdev_removing ||
3764 vd->vdev_ops == &vdev_indirect_ops);
3765
3766 vdev_indirect_sync_obsolete(vd, tx);
3767
3768 /*
3769 * If the vdev is indirect, it can't have dirty
3770 * metaslabs or DTLs.
3771 */
3772 if (vd->vdev_ops == &vdev_indirect_ops) {
3773 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3774 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3775 dmu_tx_commit(tx);
3776 return;
3777 }
3778 }
3779
3780 ASSERT(vdev_is_concrete(vd));
3781
3782 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3783 !vd->vdev_removing) {
3784 ASSERT(vd == vd->vdev_top);
3785 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3786 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3787 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3788 ASSERT(vd->vdev_ms_array != 0);
3789 vdev_config_dirty(vd);
3790 }
3791
3792 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3793 metaslab_sync(msp, txg);
3794 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3795 }
3796
3797 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3798 vdev_dtl_sync(lvd, txg);
3799
3800 /*
3801 * If this is an empty log device being removed, destroy the
3802 * metadata associated with it.
3803 */
3804 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3805 vdev_remove_empty_log(vd, txg);
3806
3807 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3808 dmu_tx_commit(tx);
3809 }
3810
3811 uint64_t
3812 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3813 {
3814 return (vd->vdev_ops->vdev_op_asize(vd, psize));
3815 }
3816
3817 /*
3818 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
3819 * not be opened, and no I/O is attempted.
3820 */
3821 int
3822 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3823 {
3824 vdev_t *vd, *tvd;
3825
3826 spa_vdev_state_enter(spa, SCL_NONE);
3827
3828 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3829 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3830
3831 if (!vd->vdev_ops->vdev_op_leaf)
3832 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3833
3834 tvd = vd->vdev_top;
3835
3836 /*
3837 * If user did a 'zpool offline -f' then make the fault persist across
3838 * reboots.
3839 */
3840 if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
3841 /*
3842 * There are two kinds of forced faults: temporary and
3843 * persistent. Temporary faults go away at pool import, while
3844 * persistent faults stay set. Both types of faults can be
3845 * cleared with a zpool clear.
3846 *
3847 * We tell if a vdev is persistently faulted by looking at the
3848 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
3849 * import then it's a persistent fault. Otherwise, it's
3850 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
3851 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
3852 * tells vdev_config_generate() (which gets run later) to set
3853 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
3854 */
3855 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
3856 vd->vdev_tmpoffline = B_FALSE;
3857 aux = VDEV_AUX_EXTERNAL;
3858 } else {
3859 vd->vdev_tmpoffline = B_TRUE;
3860 }
3861
3862 /*
3863 * We don't directly use the aux state here, but if we do a
3864 * vdev_reopen(), we need this value to be present to remember why we
3865 * were faulted.
3866 */
3867 vd->vdev_label_aux = aux;
3868
3869 /*
3870 * Faulted state takes precedence over degraded.
3871 */
3872 vd->vdev_delayed_close = B_FALSE;
3873 vd->vdev_faulted = 1ULL;
3874 vd->vdev_degraded = 0ULL;
3875 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3876
3877 /*
3878 * If this device has the only valid copy of the data, then
3879 * back off and simply mark the vdev as degraded instead.
3880 */
3881 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3882 vd->vdev_degraded = 1ULL;
3883 vd->vdev_faulted = 0ULL;
3884
3885 /*
3886 * If we reopen the device and it's not dead, only then do we
3887 * mark it degraded.
3888 */
3889 vdev_reopen(tvd);
3890
3891 if (vdev_readable(vd))
3892 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3893 }
3894
3895 return (spa_vdev_state_exit(spa, vd, 0));
3896 }
3897
3898 /*
3899 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
3900 * user that something is wrong. The vdev continues to operate as normal as far
3901 * as I/O is concerned.
3902 */
3903 int
3904 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3905 {
3906 vdev_t *vd;
3907
3908 spa_vdev_state_enter(spa, SCL_NONE);
3909
3910 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3911 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3912
3913 if (!vd->vdev_ops->vdev_op_leaf)
3914 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3915
3916 /*
3917 * If the vdev is already faulted, then don't do anything.
3918 */
3919 if (vd->vdev_faulted || vd->vdev_degraded)
3920 return (spa_vdev_state_exit(spa, NULL, 0));
3921
3922 vd->vdev_degraded = 1ULL;
3923 if (!vdev_is_dead(vd))
3924 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3925 aux);
3926
3927 return (spa_vdev_state_exit(spa, vd, 0));
3928 }
3929
3930 /*
3931 * Online the given vdev.
3932 *
3933 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
3934 * spare device should be detached when the device finishes resilvering.
3935 * Second, the online should be treated like a 'test' online case, so no FMA
3936 * events are generated if the device fails to open.
3937 */
3938 int
3939 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3940 {
3941 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3942 boolean_t wasoffline;
3943 vdev_state_t oldstate;
3944
3945 spa_vdev_state_enter(spa, SCL_NONE);
3946
3947 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3948 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3949
3950 if (!vd->vdev_ops->vdev_op_leaf)
3951 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3952
3953 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3954 oldstate = vd->vdev_state;
3955
3956 tvd = vd->vdev_top;
3957 vd->vdev_offline = B_FALSE;
3958 vd->vdev_tmpoffline = B_FALSE;
3959 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3960 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3961
3962 /* XXX - L2ARC 1.0 does not support expansion */
3963 if (!vd->vdev_aux) {
3964 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3965 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
3966 spa->spa_autoexpand);
3967 vd->vdev_expansion_time = gethrestime_sec();
3968 }
3969
3970 vdev_reopen(tvd);
3971 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3972
3973 if (!vd->vdev_aux) {
3974 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3975 pvd->vdev_expanding = B_FALSE;
3976 }
3977
3978 if (newstate)
3979 *newstate = vd->vdev_state;
3980 if ((flags & ZFS_ONLINE_UNSPARE) &&
3981 !vdev_is_dead(vd) && vd->vdev_parent &&
3982 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3983 vd->vdev_parent->vdev_child[0] == vd)
3984 vd->vdev_unspare = B_TRUE;
3985
3986 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3987
3988 /* XXX - L2ARC 1.0 does not support expansion */
3989 if (vd->vdev_aux)
3990 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3991 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3992 }
3993
3994 /* Restart initializing if necessary */
3995 mutex_enter(&vd->vdev_initialize_lock);
3996 if (vdev_writeable(vd) &&
3997 vd->vdev_initialize_thread == NULL &&
3998 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3999 (void) vdev_initialize(vd);
4000 }
4001 mutex_exit(&vd->vdev_initialize_lock);
4002
4003 /*
4004 * Restart trimming if necessary. We do not restart trimming for cache
4005 * devices here. This is triggered by l2arc_rebuild_vdev()
4006 * asynchronously for the whole device or in l2arc_evict() as it evicts
4007 * space for upcoming writes.
4008 */
4009 mutex_enter(&vd->vdev_trim_lock);
4010 if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4011 vd->vdev_trim_thread == NULL &&
4012 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4013 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4014 vd->vdev_trim_secure);
4015 }
4016 mutex_exit(&vd->vdev_trim_lock);
4017
4018 if (wasoffline ||
4019 (oldstate < VDEV_STATE_DEGRADED &&
4020 vd->vdev_state >= VDEV_STATE_DEGRADED))
4021 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4022
4023 return (spa_vdev_state_exit(spa, vd, 0));
4024 }
4025
4026 static int
4027 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4028 {
4029 vdev_t *vd, *tvd;
4030 int error = 0;
4031 uint64_t generation;
4032 metaslab_group_t *mg;
4033
4034 top:
4035 spa_vdev_state_enter(spa, SCL_ALLOC);
4036
4037 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4038 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4039
4040 if (!vd->vdev_ops->vdev_op_leaf)
4041 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4042
4043 if (vd->vdev_ops == &vdev_draid_spare_ops)
4044 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4045
4046 tvd = vd->vdev_top;
4047 mg = tvd->vdev_mg;
4048 generation = spa->spa_config_generation + 1;
4049
4050 /*
4051 * If the device isn't already offline, try to offline it.
4052 */
4053 if (!vd->vdev_offline) {
4054 /*
4055 * If this device has the only valid copy of some data,
4056 * don't allow it to be offlined. Log devices are always
4057 * expendable.
4058 */
4059 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4060 vdev_dtl_required(vd))
4061 return (spa_vdev_state_exit(spa, NULL,
4062 SET_ERROR(EBUSY)));
4063
4064 /*
4065 * If the top-level is a slog and it has had allocations
4066 * then proceed. We check that the vdev's metaslab group
4067 * is not NULL since it's possible that we may have just
4068 * added this vdev but not yet initialized its metaslabs.
4069 */
4070 if (tvd->vdev_islog && mg != NULL) {
4071 /*
4072 * Prevent any future allocations.
4073 */
4074 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4075 metaslab_group_passivate(mg);
4076 (void) spa_vdev_state_exit(spa, vd, 0);
4077
4078 error = spa_reset_logs(spa);
4079
4080 /*
4081 * If the log device was successfully reset but has
4082 * checkpointed data, do not offline it.
4083 */
4084 if (error == 0 &&
4085 tvd->vdev_checkpoint_sm != NULL) {
4086 ASSERT3U(space_map_allocated(
4087 tvd->vdev_checkpoint_sm), !=, 0);
4088 error = ZFS_ERR_CHECKPOINT_EXISTS;
4089 }
4090
4091 spa_vdev_state_enter(spa, SCL_ALLOC);
4092
4093 /*
4094 * Check to see if the config has changed.
4095 */
4096 if (error || generation != spa->spa_config_generation) {
4097 metaslab_group_activate(mg);
4098 if (error)
4099 return (spa_vdev_state_exit(spa,
4100 vd, error));
4101 (void) spa_vdev_state_exit(spa, vd, 0);
4102 goto top;
4103 }
4104 ASSERT0(tvd->vdev_stat.vs_alloc);
4105 }
4106
4107 /*
4108 * Offline this device and reopen its top-level vdev.
4109 * If the top-level vdev is a log device then just offline
4110 * it. Otherwise, if this action results in the top-level
4111 * vdev becoming unusable, undo it and fail the request.
4112 */
4113 vd->vdev_offline = B_TRUE;
4114 vdev_reopen(tvd);
4115
4116 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4117 vdev_is_dead(tvd)) {
4118 vd->vdev_offline = B_FALSE;
4119 vdev_reopen(tvd);
4120 return (spa_vdev_state_exit(spa, NULL,
4121 SET_ERROR(EBUSY)));
4122 }
4123
4124 /*
4125 * Add the device back into the metaslab rotor so that
4126 * once we online the device it's open for business.
4127 */
4128 if (tvd->vdev_islog && mg != NULL)
4129 metaslab_group_activate(mg);
4130 }
4131
4132 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4133
4134 return (spa_vdev_state_exit(spa, vd, 0));
4135 }
4136
4137 int
4138 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4139 {
4140 int error;
4141
4142 mutex_enter(&spa->spa_vdev_top_lock);
4143 error = vdev_offline_locked(spa, guid, flags);
4144 mutex_exit(&spa->spa_vdev_top_lock);
4145
4146 return (error);
4147 }
4148
4149 /*
4150 * Clear the error counts associated with this vdev. Unlike vdev_online() and
4151 * vdev_offline(), we assume the spa config is locked. We also clear all
4152 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
4153 */
4154 void
4155 vdev_clear(spa_t *spa, vdev_t *vd)
4156 {
4157 vdev_t *rvd = spa->spa_root_vdev;
4158
4159 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4160
4161 if (vd == NULL)
4162 vd = rvd;
4163
4164 vd->vdev_stat.vs_read_errors = 0;
4165 vd->vdev_stat.vs_write_errors = 0;
4166 vd->vdev_stat.vs_checksum_errors = 0;
4167 vd->vdev_stat.vs_slow_ios = 0;
4168
4169 for (int c = 0; c < vd->vdev_children; c++)
4170 vdev_clear(spa, vd->vdev_child[c]);
4171
4172 /*
4173 * It makes no sense to "clear" an indirect vdev.
4174 */
4175 if (!vdev_is_concrete(vd))
4176 return;
4177
4178 /*
4179 * If we're in the FAULTED state or have experienced failed I/O, then
4180 * clear the persistent state and attempt to reopen the device. We
4181 * also mark the vdev config dirty, so that the new faulted state is
4182 * written out to disk.
4183 */
4184 if (vd->vdev_faulted || vd->vdev_degraded ||
4185 !vdev_readable(vd) || !vdev_writeable(vd)) {
4186 /*
4187 * When reopening in response to a clear event, it may be due to
4188 * a fmadm repair request. In this case, if the device is
4189 * still broken, we want to still post the ereport again.
4190 */
4191 vd->vdev_forcefault = B_TRUE;
4192
4193 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4194 vd->vdev_cant_read = B_FALSE;
4195 vd->vdev_cant_write = B_FALSE;
4196 vd->vdev_stat.vs_aux = 0;
4197
4198 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4199
4200 vd->vdev_forcefault = B_FALSE;
4201
4202 if (vd != rvd && vdev_writeable(vd->vdev_top))
4203 vdev_state_dirty(vd->vdev_top);
4204
4205 /* If a resilver isn't required, check if vdevs can be culled */
4206 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4207 !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4208 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4209 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4210
4211 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4212 }
4213
4214 /*
4215 * When clearing a FMA-diagnosed fault, we always want to
4216 * unspare the device, as we assume that the original spare was
4217 * done in response to the FMA fault.
4218 */
4219 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4220 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4221 vd->vdev_parent->vdev_child[0] == vd)
4222 vd->vdev_unspare = B_TRUE;
4223
4224 /* Clear recent error events cache (i.e. duplicate events tracking) */
4225 zfs_ereport_clear(spa, vd);
4226 }
4227
4228 boolean_t
4229 vdev_is_dead(vdev_t *vd)
4230 {
4231 /*
4232 * Holes and missing devices are always considered "dead".
4233 * This simplifies the code since we don't have to check for
4234 * these types of devices in the various code paths.
4235 * Instead we rely on the fact that we skip over dead devices
4236 * before issuing I/O to them.
4237 */
4238 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4239 vd->vdev_ops == &vdev_hole_ops ||
4240 vd->vdev_ops == &vdev_missing_ops);
4241 }
4242
4243 boolean_t
4244 vdev_readable(vdev_t *vd)
4245 {
4246 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4247 }
4248
4249 boolean_t
4250 vdev_writeable(vdev_t *vd)
4251 {
4252 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4253 vdev_is_concrete(vd));
4254 }
4255
4256 boolean_t
4257 vdev_allocatable(vdev_t *vd)
4258 {
4259 uint64_t state = vd->vdev_state;
4260
4261 /*
4262 * We currently allow allocations from vdevs which may be in the
4263 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4264 * fails to reopen then we'll catch it later when we're holding
4265 * the proper locks. Note that we have to get the vdev state
4266 * in a local variable because although it changes atomically,
4267 * we're asking two separate questions about it.
4268 */
4269 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4270 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4271 vd->vdev_mg->mg_initialized);
4272 }
4273
4274 boolean_t
4275 vdev_accessible(vdev_t *vd, zio_t *zio)
4276 {
4277 ASSERT(zio->io_vd == vd);
4278
4279 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4280 return (B_FALSE);
4281
4282 if (zio->io_type == ZIO_TYPE_READ)
4283 return (!vd->vdev_cant_read);
4284
4285 if (zio->io_type == ZIO_TYPE_WRITE)
4286 return (!vd->vdev_cant_write);
4287
4288 return (B_TRUE);
4289 }
4290
4291 static void
4292 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4293 {
4294 /*
4295 * Exclude the dRAID spare when aggregating to avoid double counting
4296 * the ops and bytes. These IOs are counted by the physical leaves.
4297 */
4298 if (cvd->vdev_ops == &vdev_draid_spare_ops)
4299 return;
4300
4301 for (int t = 0; t < VS_ZIO_TYPES; t++) {
4302 vs->vs_ops[t] += cvs->vs_ops[t];
4303 vs->vs_bytes[t] += cvs->vs_bytes[t];
4304 }
4305
4306 cvs->vs_scan_removing = cvd->vdev_removing;
4307 }
4308
4309 /*
4310 * Get extended stats
4311 */
4312 static void
4313 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4314 {
4315 (void) cvd;
4316
4317 int t, b;
4318 for (t = 0; t < ZIO_TYPES; t++) {
4319 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4320 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4321
4322 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4323 vsx->vsx_total_histo[t][b] +=
4324 cvsx->vsx_total_histo[t][b];
4325 }
4326 }
4327
4328 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4329 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4330 vsx->vsx_queue_histo[t][b] +=
4331 cvsx->vsx_queue_histo[t][b];
4332 }
4333 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4334 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4335
4336 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4337 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4338
4339 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4340 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4341 }
4342
4343 }
4344
4345 boolean_t
4346 vdev_is_spacemap_addressable(vdev_t *vd)
4347 {
4348 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4349 return (B_TRUE);
4350
4351 /*
4352 * If double-word space map entries are not enabled we assume
4353 * 47 bits of the space map entry are dedicated to the entry's
4354 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4355 * to calculate the maximum address that can be described by a
4356 * space map entry for the given device.
4357 */
4358 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4359
4360 if (shift >= 63) /* detect potential overflow */
4361 return (B_TRUE);
4362
4363 return (vd->vdev_asize < (1ULL << shift));
4364 }
4365
4366 /*
4367 * Get statistics for the given vdev.
4368 */
4369 static void
4370 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4371 {
4372 int t;
4373 /*
4374 * If we're getting stats on the root vdev, aggregate the I/O counts
4375 * over all top-level vdevs (i.e. the direct children of the root).
4376 */
4377 if (!vd->vdev_ops->vdev_op_leaf) {
4378 if (vs) {
4379 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4380 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4381 }
4382 if (vsx)
4383 memset(vsx, 0, sizeof (*vsx));
4384
4385 for (int c = 0; c < vd->vdev_children; c++) {
4386 vdev_t *cvd = vd->vdev_child[c];
4387 vdev_stat_t *cvs = &cvd->vdev_stat;
4388 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4389
4390 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4391 if (vs)
4392 vdev_get_child_stat(cvd, vs, cvs);
4393 if (vsx)
4394 vdev_get_child_stat_ex(cvd, vsx, cvsx);
4395 }
4396 } else {
4397 /*
4398 * We're a leaf. Just copy our ZIO active queue stats in. The
4399 * other leaf stats are updated in vdev_stat_update().
4400 */
4401 if (!vsx)
4402 return;
4403
4404 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4405
4406 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
4407 vsx->vsx_active_queue[t] =
4408 vd->vdev_queue.vq_class[t].vqc_active;
4409 vsx->vsx_pend_queue[t] = avl_numnodes(
4410 &vd->vdev_queue.vq_class[t].vqc_queued_tree);
4411 }
4412 }
4413 }
4414
4415 void
4416 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4417 {
4418 vdev_t *tvd = vd->vdev_top;
4419 mutex_enter(&vd->vdev_stat_lock);
4420 if (vs) {
4421 memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4422 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4423 vs->vs_state = vd->vdev_state;
4424 vs->vs_rsize = vdev_get_min_asize(vd);
4425
4426 if (vd->vdev_ops->vdev_op_leaf) {
4427 vs->vs_pspace = vd->vdev_psize;
4428 vs->vs_rsize += VDEV_LABEL_START_SIZE +
4429 VDEV_LABEL_END_SIZE;
4430 /*
4431 * Report initializing progress. Since we don't
4432 * have the initializing locks held, this is only
4433 * an estimate (although a fairly accurate one).
4434 */
4435 vs->vs_initialize_bytes_done =
4436 vd->vdev_initialize_bytes_done;
4437 vs->vs_initialize_bytes_est =
4438 vd->vdev_initialize_bytes_est;
4439 vs->vs_initialize_state = vd->vdev_initialize_state;
4440 vs->vs_initialize_action_time =
4441 vd->vdev_initialize_action_time;
4442
4443 /*
4444 * Report manual TRIM progress. Since we don't have
4445 * the manual TRIM locks held, this is only an
4446 * estimate (although fairly accurate one).
4447 */
4448 vs->vs_trim_notsup = !vd->vdev_has_trim;
4449 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4450 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4451 vs->vs_trim_state = vd->vdev_trim_state;
4452 vs->vs_trim_action_time = vd->vdev_trim_action_time;
4453
4454 /* Set when there is a deferred resilver. */
4455 vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4456 }
4457
4458 /*
4459 * Report expandable space on top-level, non-auxiliary devices
4460 * only. The expandable space is reported in terms of metaslab
4461 * sized units since that determines how much space the pool
4462 * can expand.
4463 */
4464 if (vd->vdev_aux == NULL && tvd != NULL) {
4465 vs->vs_esize = P2ALIGN(
4466 vd->vdev_max_asize - vd->vdev_asize,
4467 1ULL << tvd->vdev_ms_shift);
4468 }
4469
4470 vs->vs_configured_ashift = vd->vdev_top != NULL
4471 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4472 vs->vs_logical_ashift = vd->vdev_logical_ashift;
4473 vs->vs_physical_ashift = vd->vdev_physical_ashift;
4474
4475 /*
4476 * Report fragmentation and rebuild progress for top-level,
4477 * non-auxiliary, concrete devices.
4478 */
4479 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4480 vdev_is_concrete(vd)) {
4481 /*
4482 * The vdev fragmentation rating doesn't take into
4483 * account the embedded slog metaslab (vdev_log_mg).
4484 * Since it's only one metaslab, it would have a tiny
4485 * impact on the overall fragmentation.
4486 */
4487 vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4488 vd->vdev_mg->mg_fragmentation : 0;
4489 }
4490 vs->vs_noalloc = MAX(vd->vdev_noalloc,
4491 tvd ? tvd->vdev_noalloc : 0);
4492 }
4493
4494 vdev_get_stats_ex_impl(vd, vs, vsx);
4495 mutex_exit(&vd->vdev_stat_lock);
4496 }
4497
4498 void
4499 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4500 {
4501 return (vdev_get_stats_ex(vd, vs, NULL));
4502 }
4503
4504 void
4505 vdev_clear_stats(vdev_t *vd)
4506 {
4507 mutex_enter(&vd->vdev_stat_lock);
4508 vd->vdev_stat.vs_space = 0;
4509 vd->vdev_stat.vs_dspace = 0;
4510 vd->vdev_stat.vs_alloc = 0;
4511 mutex_exit(&vd->vdev_stat_lock);
4512 }
4513
4514 void
4515 vdev_scan_stat_init(vdev_t *vd)
4516 {
4517 vdev_stat_t *vs = &vd->vdev_stat;
4518
4519 for (int c = 0; c < vd->vdev_children; c++)
4520 vdev_scan_stat_init(vd->vdev_child[c]);
4521
4522 mutex_enter(&vd->vdev_stat_lock);
4523 vs->vs_scan_processed = 0;
4524 mutex_exit(&vd->vdev_stat_lock);
4525 }
4526
4527 void
4528 vdev_stat_update(zio_t *zio, uint64_t psize)
4529 {
4530 spa_t *spa = zio->io_spa;
4531 vdev_t *rvd = spa->spa_root_vdev;
4532 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4533 vdev_t *pvd;
4534 uint64_t txg = zio->io_txg;
4535 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
4536 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
4537 zio_type_t type = zio->io_type;
4538 int flags = zio->io_flags;
4539
4540 /*
4541 * If this i/o is a gang leader, it didn't do any actual work.
4542 */
4543 if (zio->io_gang_tree)
4544 return;
4545
4546 if (zio->io_error == 0) {
4547 /*
4548 * If this is a root i/o, don't count it -- we've already
4549 * counted the top-level vdevs, and vdev_get_stats() will
4550 * aggregate them when asked. This reduces contention on
4551 * the root vdev_stat_lock and implicitly handles blocks
4552 * that compress away to holes, for which there is no i/o.
4553 * (Holes never create vdev children, so all the counters
4554 * remain zero, which is what we want.)
4555 *
4556 * Note: this only applies to successful i/o (io_error == 0)
4557 * because unlike i/o counts, errors are not additive.
4558 * When reading a ditto block, for example, failure of
4559 * one top-level vdev does not imply a root-level error.
4560 */
4561 if (vd == rvd)
4562 return;
4563
4564 ASSERT(vd == zio->io_vd);
4565
4566 if (flags & ZIO_FLAG_IO_BYPASS)
4567 return;
4568
4569 mutex_enter(&vd->vdev_stat_lock);
4570
4571 if (flags & ZIO_FLAG_IO_REPAIR) {
4572 /*
4573 * Repair is the result of a resilver issued by the
4574 * scan thread (spa_sync).
4575 */
4576 if (flags & ZIO_FLAG_SCAN_THREAD) {
4577 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4578 dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4579 uint64_t *processed = &scn_phys->scn_processed;
4580
4581 if (vd->vdev_ops->vdev_op_leaf)
4582 atomic_add_64(processed, psize);
4583 vs->vs_scan_processed += psize;
4584 }
4585
4586 /*
4587 * Repair is the result of a rebuild issued by the
4588 * rebuild thread (vdev_rebuild_thread). To avoid
4589 * double counting repaired bytes the virtual dRAID
4590 * spare vdev is excluded from the processed bytes.
4591 */
4592 if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4593 vdev_t *tvd = vd->vdev_top;
4594 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4595 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4596 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4597
4598 if (vd->vdev_ops->vdev_op_leaf &&
4599 vd->vdev_ops != &vdev_draid_spare_ops) {
4600 atomic_add_64(rebuilt, psize);
4601 }
4602 vs->vs_rebuild_processed += psize;
4603 }
4604
4605 if (flags & ZIO_FLAG_SELF_HEAL)
4606 vs->vs_self_healed += psize;
4607 }
4608
4609 /*
4610 * The bytes/ops/histograms are recorded at the leaf level and
4611 * aggregated into the higher level vdevs in vdev_get_stats().
4612 */
4613 if (vd->vdev_ops->vdev_op_leaf &&
4614 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4615 zio_type_t vs_type = type;
4616 zio_priority_t priority = zio->io_priority;
4617
4618 /*
4619 * TRIM ops and bytes are reported to user space as
4620 * ZIO_TYPE_IOCTL. This is done to preserve the
4621 * vdev_stat_t structure layout for user space.
4622 */
4623 if (type == ZIO_TYPE_TRIM)
4624 vs_type = ZIO_TYPE_IOCTL;
4625
4626 /*
4627 * Solely for the purposes of 'zpool iostat -lqrw'
4628 * reporting use the priority to categorize the IO.
4629 * Only the following are reported to user space:
4630 *
4631 * ZIO_PRIORITY_SYNC_READ,
4632 * ZIO_PRIORITY_SYNC_WRITE,
4633 * ZIO_PRIORITY_ASYNC_READ,
4634 * ZIO_PRIORITY_ASYNC_WRITE,
4635 * ZIO_PRIORITY_SCRUB,
4636 * ZIO_PRIORITY_TRIM,
4637 * ZIO_PRIORITY_REBUILD.
4638 */
4639 if (priority == ZIO_PRIORITY_INITIALIZING) {
4640 ASSERT3U(type, ==, ZIO_TYPE_WRITE);
4641 priority = ZIO_PRIORITY_ASYNC_WRITE;
4642 } else if (priority == ZIO_PRIORITY_REMOVAL) {
4643 priority = ((type == ZIO_TYPE_WRITE) ?
4644 ZIO_PRIORITY_ASYNC_WRITE :
4645 ZIO_PRIORITY_ASYNC_READ);
4646 }
4647
4648 vs->vs_ops[vs_type]++;
4649 vs->vs_bytes[vs_type] += psize;
4650
4651 if (flags & ZIO_FLAG_DELEGATED) {
4652 vsx->vsx_agg_histo[priority]
4653 [RQ_HISTO(zio->io_size)]++;
4654 } else {
4655 vsx->vsx_ind_histo[priority]
4656 [RQ_HISTO(zio->io_size)]++;
4657 }
4658
4659 if (zio->io_delta && zio->io_delay) {
4660 vsx->vsx_queue_histo[priority]
4661 [L_HISTO(zio->io_delta - zio->io_delay)]++;
4662 vsx->vsx_disk_histo[type]
4663 [L_HISTO(zio->io_delay)]++;
4664 vsx->vsx_total_histo[type]
4665 [L_HISTO(zio->io_delta)]++;
4666 }
4667 }
4668
4669 mutex_exit(&vd->vdev_stat_lock);
4670 return;
4671 }
4672
4673 if (flags & ZIO_FLAG_SPECULATIVE)
4674 return;
4675
4676 /*
4677 * If this is an I/O error that is going to be retried, then ignore the
4678 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
4679 * hard errors, when in reality they can happen for any number of
4680 * innocuous reasons (bus resets, MPxIO link failure, etc).
4681 */
4682 if (zio->io_error == EIO &&
4683 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4684 return;
4685
4686 /*
4687 * Intent logs writes won't propagate their error to the root
4688 * I/O so don't mark these types of failures as pool-level
4689 * errors.
4690 */
4691 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4692 return;
4693
4694 if (type == ZIO_TYPE_WRITE && txg != 0 &&
4695 (!(flags & ZIO_FLAG_IO_REPAIR) ||
4696 (flags & ZIO_FLAG_SCAN_THREAD) ||
4697 spa->spa_claiming)) {
4698 /*
4699 * This is either a normal write (not a repair), or it's
4700 * a repair induced by the scrub thread, or it's a repair
4701 * made by zil_claim() during spa_load() in the first txg.
4702 * In the normal case, we commit the DTL change in the same
4703 * txg as the block was born. In the scrub-induced repair
4704 * case, we know that scrubs run in first-pass syncing context,
4705 * so we commit the DTL change in spa_syncing_txg(spa).
4706 * In the zil_claim() case, we commit in spa_first_txg(spa).
4707 *
4708 * We currently do not make DTL entries for failed spontaneous
4709 * self-healing writes triggered by normal (non-scrubbing)
4710 * reads, because we have no transactional context in which to
4711 * do so -- and it's not clear that it'd be desirable anyway.
4712 */
4713 if (vd->vdev_ops->vdev_op_leaf) {
4714 uint64_t commit_txg = txg;
4715 if (flags & ZIO_FLAG_SCAN_THREAD) {
4716 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4717 ASSERT(spa_sync_pass(spa) == 1);
4718 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4719 commit_txg = spa_syncing_txg(spa);
4720 } else if (spa->spa_claiming) {
4721 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4722 commit_txg = spa_first_txg(spa);
4723 }
4724 ASSERT(commit_txg >= spa_syncing_txg(spa));
4725 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4726 return;
4727 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4728 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4729 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4730 }
4731 if (vd != rvd)
4732 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4733 }
4734 }
4735
4736 int64_t
4737 vdev_deflated_space(vdev_t *vd, int64_t space)
4738 {
4739 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4740 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4741
4742 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4743 }
4744
4745 /*
4746 * Update the in-core space usage stats for this vdev, its metaslab class,
4747 * and the root vdev.
4748 */
4749 void
4750 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4751 int64_t space_delta)
4752 {
4753 (void) defer_delta;
4754 int64_t dspace_delta;
4755 spa_t *spa = vd->vdev_spa;
4756 vdev_t *rvd = spa->spa_root_vdev;
4757
4758 ASSERT(vd == vd->vdev_top);
4759
4760 /*
4761 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4762 * factor. We must calculate this here and not at the root vdev
4763 * because the root vdev's psize-to-asize is simply the max of its
4764 * children's, thus not accurate enough for us.
4765 */
4766 dspace_delta = vdev_deflated_space(vd, space_delta);
4767
4768 mutex_enter(&vd->vdev_stat_lock);
4769 /* ensure we won't underflow */
4770 if (alloc_delta < 0) {
4771 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
4772 }
4773
4774 vd->vdev_stat.vs_alloc += alloc_delta;
4775 vd->vdev_stat.vs_space += space_delta;
4776 vd->vdev_stat.vs_dspace += dspace_delta;
4777 mutex_exit(&vd->vdev_stat_lock);
4778
4779 /* every class but log contributes to root space stats */
4780 if (vd->vdev_mg != NULL && !vd->vdev_islog) {
4781 ASSERT(!vd->vdev_isl2cache);
4782 mutex_enter(&rvd->vdev_stat_lock);
4783 rvd->vdev_stat.vs_alloc += alloc_delta;
4784 rvd->vdev_stat.vs_space += space_delta;
4785 rvd->vdev_stat.vs_dspace += dspace_delta;
4786 mutex_exit(&rvd->vdev_stat_lock);
4787 }
4788 /* Note: metaslab_class_space_update moved to metaslab_space_update */
4789 }
4790
4791 /*
4792 * Mark a top-level vdev's config as dirty, placing it on the dirty list
4793 * so that it will be written out next time the vdev configuration is synced.
4794 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4795 */
4796 void
4797 vdev_config_dirty(vdev_t *vd)
4798 {
4799 spa_t *spa = vd->vdev_spa;
4800 vdev_t *rvd = spa->spa_root_vdev;
4801 int c;
4802
4803 ASSERT(spa_writeable(spa));
4804
4805 /*
4806 * If this is an aux vdev (as with l2cache and spare devices), then we
4807 * update the vdev config manually and set the sync flag.
4808 */
4809 if (vd->vdev_aux != NULL) {
4810 spa_aux_vdev_t *sav = vd->vdev_aux;
4811 nvlist_t **aux;
4812 uint_t naux;
4813
4814 for (c = 0; c < sav->sav_count; c++) {
4815 if (sav->sav_vdevs[c] == vd)
4816 break;
4817 }
4818
4819 if (c == sav->sav_count) {
4820 /*
4821 * We're being removed. There's nothing more to do.
4822 */
4823 ASSERT(sav->sav_sync == B_TRUE);
4824 return;
4825 }
4826
4827 sav->sav_sync = B_TRUE;
4828
4829 if (nvlist_lookup_nvlist_array(sav->sav_config,
4830 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
4831 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
4832 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
4833 }
4834
4835 ASSERT(c < naux);
4836
4837 /*
4838 * Setting the nvlist in the middle if the array is a little
4839 * sketchy, but it will work.
4840 */
4841 nvlist_free(aux[c]);
4842 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
4843
4844 return;
4845 }
4846
4847 /*
4848 * The dirty list is protected by the SCL_CONFIG lock. The caller
4849 * must either hold SCL_CONFIG as writer, or must be the sync thread
4850 * (which holds SCL_CONFIG as reader). There's only one sync thread,
4851 * so this is sufficient to ensure mutual exclusion.
4852 */
4853 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4854 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4855 spa_config_held(spa, SCL_CONFIG, RW_READER)));
4856
4857 if (vd == rvd) {
4858 for (c = 0; c < rvd->vdev_children; c++)
4859 vdev_config_dirty(rvd->vdev_child[c]);
4860 } else {
4861 ASSERT(vd == vd->vdev_top);
4862
4863 if (!list_link_active(&vd->vdev_config_dirty_node) &&
4864 vdev_is_concrete(vd)) {
4865 list_insert_head(&spa->spa_config_dirty_list, vd);
4866 }
4867 }
4868 }
4869
4870 void
4871 vdev_config_clean(vdev_t *vd)
4872 {
4873 spa_t *spa = vd->vdev_spa;
4874
4875 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4876 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4877 spa_config_held(spa, SCL_CONFIG, RW_READER)));
4878
4879 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4880 list_remove(&spa->spa_config_dirty_list, vd);
4881 }
4882
4883 /*
4884 * Mark a top-level vdev's state as dirty, so that the next pass of
4885 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
4886 * the state changes from larger config changes because they require
4887 * much less locking, and are often needed for administrative actions.
4888 */
4889 void
4890 vdev_state_dirty(vdev_t *vd)
4891 {
4892 spa_t *spa = vd->vdev_spa;
4893
4894 ASSERT(spa_writeable(spa));
4895 ASSERT(vd == vd->vdev_top);
4896
4897 /*
4898 * The state list is protected by the SCL_STATE lock. The caller
4899 * must either hold SCL_STATE as writer, or must be the sync thread
4900 * (which holds SCL_STATE as reader). There's only one sync thread,
4901 * so this is sufficient to ensure mutual exclusion.
4902 */
4903 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4904 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4905 spa_config_held(spa, SCL_STATE, RW_READER)));
4906
4907 if (!list_link_active(&vd->vdev_state_dirty_node) &&
4908 vdev_is_concrete(vd))
4909 list_insert_head(&spa->spa_state_dirty_list, vd);
4910 }
4911
4912 void
4913 vdev_state_clean(vdev_t *vd)
4914 {
4915 spa_t *spa = vd->vdev_spa;
4916
4917 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4918 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4919 spa_config_held(spa, SCL_STATE, RW_READER)));
4920
4921 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4922 list_remove(&spa->spa_state_dirty_list, vd);
4923 }
4924
4925 /*
4926 * Propagate vdev state up from children to parent.
4927 */
4928 void
4929 vdev_propagate_state(vdev_t *vd)
4930 {
4931 spa_t *spa = vd->vdev_spa;
4932 vdev_t *rvd = spa->spa_root_vdev;
4933 int degraded = 0, faulted = 0;
4934 int corrupted = 0;
4935 vdev_t *child;
4936
4937 if (vd->vdev_children > 0) {
4938 for (int c = 0; c < vd->vdev_children; c++) {
4939 child = vd->vdev_child[c];
4940
4941 /*
4942 * Don't factor holes or indirect vdevs into the
4943 * decision.
4944 */
4945 if (!vdev_is_concrete(child))
4946 continue;
4947
4948 if (!vdev_readable(child) ||
4949 (!vdev_writeable(child) && spa_writeable(spa))) {
4950 /*
4951 * Root special: if there is a top-level log
4952 * device, treat the root vdev as if it were
4953 * degraded.
4954 */
4955 if (child->vdev_islog && vd == rvd)
4956 degraded++;
4957 else
4958 faulted++;
4959 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4960 degraded++;
4961 }
4962
4963 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4964 corrupted++;
4965 }
4966
4967 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4968
4969 /*
4970 * Root special: if there is a top-level vdev that cannot be
4971 * opened due to corrupted metadata, then propagate the root
4972 * vdev's aux state as 'corrupt' rather than 'insufficient
4973 * replicas'.
4974 */
4975 if (corrupted && vd == rvd &&
4976 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4977 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4978 VDEV_AUX_CORRUPT_DATA);
4979 }
4980
4981 if (vd->vdev_parent)
4982 vdev_propagate_state(vd->vdev_parent);
4983 }
4984
4985 /*
4986 * Set a vdev's state. If this is during an open, we don't update the parent
4987 * state, because we're in the process of opening children depth-first.
4988 * Otherwise, we propagate the change to the parent.
4989 *
4990 * If this routine places a device in a faulted state, an appropriate ereport is
4991 * generated.
4992 */
4993 void
4994 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4995 {
4996 uint64_t save_state;
4997 spa_t *spa = vd->vdev_spa;
4998
4999 if (state == vd->vdev_state) {
5000 /*
5001 * Since vdev_offline() code path is already in an offline
5002 * state we can miss a statechange event to OFFLINE. Check
5003 * the previous state to catch this condition.
5004 */
5005 if (vd->vdev_ops->vdev_op_leaf &&
5006 (state == VDEV_STATE_OFFLINE) &&
5007 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5008 /* post an offline state change */
5009 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5010 }
5011 vd->vdev_stat.vs_aux = aux;
5012 return;
5013 }
5014
5015 save_state = vd->vdev_state;
5016
5017 vd->vdev_state = state;
5018 vd->vdev_stat.vs_aux = aux;
5019
5020 /*
5021 * If we are setting the vdev state to anything but an open state, then
5022 * always close the underlying device unless the device has requested
5023 * a delayed close (i.e. we're about to remove or fault the device).
5024 * Otherwise, we keep accessible but invalid devices open forever.
5025 * We don't call vdev_close() itself, because that implies some extra
5026 * checks (offline, etc) that we don't want here. This is limited to
5027 * leaf devices, because otherwise closing the device will affect other
5028 * children.
5029 */
5030 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5031 vd->vdev_ops->vdev_op_leaf)
5032 vd->vdev_ops->vdev_op_close(vd);
5033
5034 if (vd->vdev_removed &&
5035 state == VDEV_STATE_CANT_OPEN &&
5036 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5037 /*
5038 * If the previous state is set to VDEV_STATE_REMOVED, then this
5039 * device was previously marked removed and someone attempted to
5040 * reopen it. If this failed due to a nonexistent device, then
5041 * keep the device in the REMOVED state. We also let this be if
5042 * it is one of our special test online cases, which is only
5043 * attempting to online the device and shouldn't generate an FMA
5044 * fault.
5045 */
5046 vd->vdev_state = VDEV_STATE_REMOVED;
5047 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5048 } else if (state == VDEV_STATE_REMOVED) {
5049 vd->vdev_removed = B_TRUE;
5050 } else if (state == VDEV_STATE_CANT_OPEN) {
5051 /*
5052 * If we fail to open a vdev during an import or recovery, we
5053 * mark it as "not available", which signifies that it was
5054 * never there to begin with. Failure to open such a device
5055 * is not considered an error.
5056 */
5057 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5058 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5059 vd->vdev_ops->vdev_op_leaf)
5060 vd->vdev_not_present = 1;
5061
5062 /*
5063 * Post the appropriate ereport. If the 'prevstate' field is
5064 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5065 * that this is part of a vdev_reopen(). In this case, we don't
5066 * want to post the ereport if the device was already in the
5067 * CANT_OPEN state beforehand.
5068 *
5069 * If the 'checkremove' flag is set, then this is an attempt to
5070 * online the device in response to an insertion event. If we
5071 * hit this case, then we have detected an insertion event for a
5072 * faulted or offline device that wasn't in the removed state.
5073 * In this scenario, we don't post an ereport because we are
5074 * about to replace the device, or attempt an online with
5075 * vdev_forcefault, which will generate the fault for us.
5076 */
5077 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5078 !vd->vdev_not_present && !vd->vdev_checkremove &&
5079 vd != spa->spa_root_vdev) {
5080 const char *class;
5081
5082 switch (aux) {
5083 case VDEV_AUX_OPEN_FAILED:
5084 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5085 break;
5086 case VDEV_AUX_CORRUPT_DATA:
5087 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5088 break;
5089 case VDEV_AUX_NO_REPLICAS:
5090 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5091 break;
5092 case VDEV_AUX_BAD_GUID_SUM:
5093 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5094 break;
5095 case VDEV_AUX_TOO_SMALL:
5096 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5097 break;
5098 case VDEV_AUX_BAD_LABEL:
5099 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5100 break;
5101 case VDEV_AUX_BAD_ASHIFT:
5102 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5103 break;
5104 default:
5105 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5106 }
5107
5108 (void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5109 save_state);
5110 }
5111
5112 /* Erase any notion of persistent removed state */
5113 vd->vdev_removed = B_FALSE;
5114 } else {
5115 vd->vdev_removed = B_FALSE;
5116 }
5117
5118 /*
5119 * Notify ZED of any significant state-change on a leaf vdev.
5120 *
5121 */
5122 if (vd->vdev_ops->vdev_op_leaf) {
5123 /* preserve original state from a vdev_reopen() */
5124 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5125 (vd->vdev_prevstate != vd->vdev_state) &&
5126 (save_state <= VDEV_STATE_CLOSED))
5127 save_state = vd->vdev_prevstate;
5128
5129 /* filter out state change due to initial vdev_open */
5130 if (save_state > VDEV_STATE_CLOSED)
5131 zfs_post_state_change(spa, vd, save_state);
5132 }
5133
5134 if (!isopen && vd->vdev_parent)
5135 vdev_propagate_state(vd->vdev_parent);
5136 }
5137
5138 boolean_t
5139 vdev_children_are_offline(vdev_t *vd)
5140 {
5141 ASSERT(!vd->vdev_ops->vdev_op_leaf);
5142
5143 for (uint64_t i = 0; i < vd->vdev_children; i++) {
5144 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5145 return (B_FALSE);
5146 }
5147
5148 return (B_TRUE);
5149 }
5150
5151 /*
5152 * Check the vdev configuration to ensure that it's capable of supporting
5153 * a root pool. We do not support partial configuration.
5154 */
5155 boolean_t
5156 vdev_is_bootable(vdev_t *vd)
5157 {
5158 if (!vd->vdev_ops->vdev_op_leaf) {
5159 const char *vdev_type = vd->vdev_ops->vdev_op_type;
5160
5161 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5162 return (B_FALSE);
5163 }
5164
5165 for (int c = 0; c < vd->vdev_children; c++) {
5166 if (!vdev_is_bootable(vd->vdev_child[c]))
5167 return (B_FALSE);
5168 }
5169 return (B_TRUE);
5170 }
5171
5172 boolean_t
5173 vdev_is_concrete(vdev_t *vd)
5174 {
5175 vdev_ops_t *ops = vd->vdev_ops;
5176 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5177 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5178 return (B_FALSE);
5179 } else {
5180 return (B_TRUE);
5181 }
5182 }
5183
5184 /*
5185 * Determine if a log device has valid content. If the vdev was
5186 * removed or faulted in the MOS config then we know that
5187 * the content on the log device has already been written to the pool.
5188 */
5189 boolean_t
5190 vdev_log_state_valid(vdev_t *vd)
5191 {
5192 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5193 !vd->vdev_removed)
5194 return (B_TRUE);
5195
5196 for (int c = 0; c < vd->vdev_children; c++)
5197 if (vdev_log_state_valid(vd->vdev_child[c]))
5198 return (B_TRUE);
5199
5200 return (B_FALSE);
5201 }
5202
5203 /*
5204 * Expand a vdev if possible.
5205 */
5206 void
5207 vdev_expand(vdev_t *vd, uint64_t txg)
5208 {
5209 ASSERT(vd->vdev_top == vd);
5210 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5211 ASSERT(vdev_is_concrete(vd));
5212
5213 vdev_set_deflate_ratio(vd);
5214
5215 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5216 vdev_is_concrete(vd)) {
5217 vdev_metaslab_group_create(vd);
5218 VERIFY(vdev_metaslab_init(vd, txg) == 0);
5219 vdev_config_dirty(vd);
5220 }
5221 }
5222
5223 /*
5224 * Split a vdev.
5225 */
5226 void
5227 vdev_split(vdev_t *vd)
5228 {
5229 vdev_t *cvd, *pvd = vd->vdev_parent;
5230
5231 vdev_remove_child(pvd, vd);
5232 vdev_compact_children(pvd);
5233
5234 cvd = pvd->vdev_child[0];
5235 if (pvd->vdev_children == 1) {
5236 vdev_remove_parent(cvd);
5237 cvd->vdev_splitting = B_TRUE;
5238 }
5239 vdev_propagate_state(cvd);
5240 }
5241
5242 void
5243 vdev_deadman(vdev_t *vd, char *tag)
5244 {
5245 for (int c = 0; c < vd->vdev_children; c++) {
5246 vdev_t *cvd = vd->vdev_child[c];
5247
5248 vdev_deadman(cvd, tag);
5249 }
5250
5251 if (vd->vdev_ops->vdev_op_leaf) {
5252 vdev_queue_t *vq = &vd->vdev_queue;
5253
5254 mutex_enter(&vq->vq_lock);
5255 if (avl_numnodes(&vq->vq_active_tree) > 0) {
5256 spa_t *spa = vd->vdev_spa;
5257 zio_t *fio;
5258 uint64_t delta;
5259
5260 zfs_dbgmsg("slow vdev: %s has %lu active IOs",
5261 vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
5262
5263 /*
5264 * Look at the head of all the pending queues,
5265 * if any I/O has been outstanding for longer than
5266 * the spa_deadman_synctime invoke the deadman logic.
5267 */
5268 fio = avl_first(&vq->vq_active_tree);
5269 delta = gethrtime() - fio->io_timestamp;
5270 if (delta > spa_deadman_synctime(spa))
5271 zio_deadman(fio, tag);
5272 }
5273 mutex_exit(&vq->vq_lock);
5274 }
5275 }
5276
5277 void
5278 vdev_defer_resilver(vdev_t *vd)
5279 {
5280 ASSERT(vd->vdev_ops->vdev_op_leaf);
5281
5282 vd->vdev_resilver_deferred = B_TRUE;
5283 vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5284 }
5285
5286 /*
5287 * Clears the resilver deferred flag on all leaf devs under vd. Returns
5288 * B_TRUE if we have devices that need to be resilvered and are available to
5289 * accept resilver I/Os.
5290 */
5291 boolean_t
5292 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5293 {
5294 boolean_t resilver_needed = B_FALSE;
5295 spa_t *spa = vd->vdev_spa;
5296
5297 for (int c = 0; c < vd->vdev_children; c++) {
5298 vdev_t *cvd = vd->vdev_child[c];
5299 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5300 }
5301
5302 if (vd == spa->spa_root_vdev &&
5303 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5304 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5305 vdev_config_dirty(vd);
5306 spa->spa_resilver_deferred = B_FALSE;
5307 return (resilver_needed);
5308 }
5309
5310 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5311 !vd->vdev_ops->vdev_op_leaf)
5312 return (resilver_needed);
5313
5314 vd->vdev_resilver_deferred = B_FALSE;
5315
5316 return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5317 vdev_resilver_needed(vd, NULL, NULL));
5318 }
5319
5320 boolean_t
5321 vdev_xlate_is_empty(range_seg64_t *rs)
5322 {
5323 return (rs->rs_start == rs->rs_end);
5324 }
5325
5326 /*
5327 * Translate a logical range to the first contiguous physical range for the
5328 * specified vdev_t. This function is initially called with a leaf vdev and
5329 * will walk each parent vdev until it reaches a top-level vdev. Once the
5330 * top-level is reached the physical range is initialized and the recursive
5331 * function begins to unwind. As it unwinds it calls the parent's vdev
5332 * specific translation function to do the real conversion.
5333 */
5334 void
5335 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
5336 range_seg64_t *physical_rs, range_seg64_t *remain_rs)
5337 {
5338 /*
5339 * Walk up the vdev tree
5340 */
5341 if (vd != vd->vdev_top) {
5342 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5343 remain_rs);
5344 } else {
5345 /*
5346 * We've reached the top-level vdev, initialize the physical
5347 * range to the logical range and set an empty remaining
5348 * range then start to unwind.
5349 */
5350 physical_rs->rs_start = logical_rs->rs_start;
5351 physical_rs->rs_end = logical_rs->rs_end;
5352
5353 remain_rs->rs_start = logical_rs->rs_start;
5354 remain_rs->rs_end = logical_rs->rs_start;
5355
5356 return;
5357 }
5358
5359 vdev_t *pvd = vd->vdev_parent;
5360 ASSERT3P(pvd, !=, NULL);
5361 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5362
5363 /*
5364 * As this recursive function unwinds, translate the logical
5365 * range into its physical and any remaining components by calling
5366 * the vdev specific translate function.
5367 */
5368 range_seg64_t intermediate = { 0 };
5369 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5370
5371 physical_rs->rs_start = intermediate.rs_start;
5372 physical_rs->rs_end = intermediate.rs_end;
5373 }
5374
5375 void
5376 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
5377 vdev_xlate_func_t *func, void *arg)
5378 {
5379 range_seg64_t iter_rs = *logical_rs;
5380 range_seg64_t physical_rs;
5381 range_seg64_t remain_rs;
5382
5383 while (!vdev_xlate_is_empty(&iter_rs)) {
5384
5385 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5386
5387 /*
5388 * With raidz and dRAID, it's possible that the logical range
5389 * does not live on this leaf vdev. Only when there is a non-
5390 * zero physical size call the provided function.
5391 */
5392 if (!vdev_xlate_is_empty(&physical_rs))
5393 func(arg, &physical_rs);
5394
5395 iter_rs = remain_rs;
5396 }
5397 }
5398
5399 static char *
5400 vdev_name(vdev_t *vd, char *buf, int buflen)
5401 {
5402 if (vd->vdev_path == NULL) {
5403 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5404 strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5405 } else if (!vd->vdev_ops->vdev_op_leaf) {
5406 snprintf(buf, buflen, "%s-%llu",
5407 vd->vdev_ops->vdev_op_type,
5408 (u_longlong_t)vd->vdev_id);
5409 }
5410 } else {
5411 strlcpy(buf, vd->vdev_path, buflen);
5412 }
5413 return (buf);
5414 }
5415
5416 /*
5417 * Look at the vdev tree and determine whether any devices are currently being
5418 * replaced.
5419 */
5420 boolean_t
5421 vdev_replace_in_progress(vdev_t *vdev)
5422 {
5423 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5424
5425 if (vdev->vdev_ops == &vdev_replacing_ops)
5426 return (B_TRUE);
5427
5428 /*
5429 * A 'spare' vdev indicates that we have a replace in progress, unless
5430 * it has exactly two children, and the second, the hot spare, has
5431 * finished being resilvered.
5432 */
5433 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5434 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5435 return (B_TRUE);
5436
5437 for (int i = 0; i < vdev->vdev_children; i++) {
5438 if (vdev_replace_in_progress(vdev->vdev_child[i]))
5439 return (B_TRUE);
5440 }
5441
5442 return (B_FALSE);
5443 }
5444
5445 /*
5446 * Add a (source=src, propname=propval) list to an nvlist.
5447 */
5448 static void
5449 vdev_prop_add_list(nvlist_t *nvl, const char *propname, char *strval,
5450 uint64_t intval, zprop_source_t src)
5451 {
5452 nvlist_t *propval;
5453
5454 propval = fnvlist_alloc();
5455 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5456
5457 if (strval != NULL)
5458 fnvlist_add_string(propval, ZPROP_VALUE, strval);
5459 else
5460 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5461
5462 fnvlist_add_nvlist(nvl, propname, propval);
5463 nvlist_free(propval);
5464 }
5465
5466 static void
5467 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5468 {
5469 vdev_t *vd;
5470 nvlist_t *nvp = arg;
5471 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5472 objset_t *mos = spa->spa_meta_objset;
5473 nvpair_t *elem = NULL;
5474 uint64_t vdev_guid;
5475 nvlist_t *nvprops;
5476
5477 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
5478 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
5479 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
5480
5481 /* this vdev could get removed while waiting for this sync task */
5482 if (vd == NULL)
5483 return;
5484
5485 mutex_enter(&spa->spa_props_lock);
5486
5487 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5488 uint64_t intval, objid = 0;
5489 char *strval;
5490 vdev_prop_t prop;
5491 const char *propname = nvpair_name(elem);
5492 zprop_type_t proptype;
5493
5494 /*
5495 * Set vdev property values in the vdev props mos object.
5496 */
5497 if (vd->vdev_top_zap != 0) {
5498 objid = vd->vdev_top_zap;
5499 } else if (vd->vdev_leaf_zap != 0) {
5500 objid = vd->vdev_leaf_zap;
5501 } else {
5502 panic("vdev not top or leaf");
5503 }
5504
5505 switch (prop = vdev_name_to_prop(propname)) {
5506 case VDEV_PROP_USER:
5507 if (vdev_prop_user(propname)) {
5508 strval = fnvpair_value_string(elem);
5509 if (strlen(strval) == 0) {
5510 /* remove the property if value == "" */
5511 (void) zap_remove(mos, objid, propname,
5512 tx);
5513 } else {
5514 VERIFY0(zap_update(mos, objid, propname,
5515 1, strlen(strval) + 1, strval, tx));
5516 }
5517 spa_history_log_internal(spa, "vdev set", tx,
5518 "vdev_guid=%llu: %s=%s",
5519 (u_longlong_t)vdev_guid, nvpair_name(elem),
5520 strval);
5521 }
5522 break;
5523 default:
5524 /* normalize the property name */
5525 propname = vdev_prop_to_name(prop);
5526 proptype = vdev_prop_get_type(prop);
5527
5528 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5529 ASSERT(proptype == PROP_TYPE_STRING);
5530 strval = fnvpair_value_string(elem);
5531 VERIFY0(zap_update(mos, objid, propname,
5532 1, strlen(strval) + 1, strval, tx));
5533 spa_history_log_internal(spa, "vdev set", tx,
5534 "vdev_guid=%llu: %s=%s",
5535 (u_longlong_t)vdev_guid, nvpair_name(elem),
5536 strval);
5537 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5538 intval = fnvpair_value_uint64(elem);
5539
5540 if (proptype == PROP_TYPE_INDEX) {
5541 const char *unused;
5542 VERIFY0(vdev_prop_index_to_string(
5543 prop, intval, &unused));
5544 }
5545 VERIFY0(zap_update(mos, objid, propname,
5546 sizeof (uint64_t), 1, &intval, tx));
5547 spa_history_log_internal(spa, "vdev set", tx,
5548 "vdev_guid=%llu: %s=%lld",
5549 (u_longlong_t)vdev_guid,
5550 nvpair_name(elem), (longlong_t)intval);
5551 } else {
5552 panic("invalid vdev property type %u",
5553 nvpair_type(elem));
5554 }
5555 }
5556
5557 }
5558
5559 mutex_exit(&spa->spa_props_lock);
5560 }
5561
5562 int
5563 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5564 {
5565 spa_t *spa = vd->vdev_spa;
5566 nvpair_t *elem = NULL;
5567 uint64_t vdev_guid;
5568 nvlist_t *nvprops;
5569 int error;
5570
5571 ASSERT(vd != NULL);
5572
5573 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
5574 &vdev_guid) != 0)
5575 return (SET_ERROR(EINVAL));
5576
5577 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
5578 &nvprops) != 0)
5579 return (SET_ERROR(EINVAL));
5580
5581 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
5582 return (SET_ERROR(EINVAL));
5583
5584 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5585 char *propname = nvpair_name(elem);
5586 vdev_prop_t prop = vdev_name_to_prop(propname);
5587 uint64_t intval = 0;
5588 char *strval = NULL;
5589
5590 if (prop == VDEV_PROP_USER && !vdev_prop_user(propname)) {
5591 error = EINVAL;
5592 goto end;
5593 }
5594
5595 if (vdev_prop_readonly(prop)) {
5596 error = EROFS;
5597 goto end;
5598 }
5599
5600 /* Special Processing */
5601 switch (prop) {
5602 case VDEV_PROP_PATH:
5603 if (vd->vdev_path == NULL) {
5604 error = EROFS;
5605 break;
5606 }
5607 if (nvpair_value_string(elem, &strval) != 0) {
5608 error = EINVAL;
5609 break;
5610 }
5611 /* New path must start with /dev/ */
5612 if (strncmp(strval, "/dev/", 5)) {
5613 error = EINVAL;
5614 break;
5615 }
5616 error = spa_vdev_setpath(spa, vdev_guid, strval);
5617 break;
5618 case VDEV_PROP_ALLOCATING:
5619 if (nvpair_value_uint64(elem, &intval) != 0) {
5620 error = EINVAL;
5621 break;
5622 }
5623 if (intval != vd->vdev_noalloc)
5624 break;
5625 if (intval == 0)
5626 error = spa_vdev_noalloc(spa, vdev_guid);
5627 else
5628 error = spa_vdev_alloc(spa, vdev_guid);
5629 break;
5630 default:
5631 /* Most processing is done in vdev_props_set_sync */
5632 break;
5633 }
5634 end:
5635 if (error != 0) {
5636 intval = error;
5637 vdev_prop_add_list(outnvl, propname, strval, intval, 0);
5638 return (error);
5639 }
5640 }
5641
5642 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
5643 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
5644 }
5645
5646 int
5647 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5648 {
5649 spa_t *spa = vd->vdev_spa;
5650 objset_t *mos = spa->spa_meta_objset;
5651 int err = 0;
5652 uint64_t objid;
5653 uint64_t vdev_guid;
5654 nvpair_t *elem = NULL;
5655 nvlist_t *nvprops = NULL;
5656 uint64_t intval = 0;
5657 char *strval = NULL;
5658 const char *propname = NULL;
5659 vdev_prop_t prop;
5660
5661 ASSERT(vd != NULL);
5662 ASSERT(mos != NULL);
5663
5664 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
5665 &vdev_guid) != 0)
5666 return (SET_ERROR(EINVAL));
5667
5668 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
5669
5670 if (vd->vdev_top_zap != 0) {
5671 objid = vd->vdev_top_zap;
5672 } else if (vd->vdev_leaf_zap != 0) {
5673 objid = vd->vdev_leaf_zap;
5674 } else {
5675 return (SET_ERROR(EINVAL));
5676 }
5677 ASSERT(objid != 0);
5678
5679 mutex_enter(&spa->spa_props_lock);
5680
5681 if (nvprops != NULL) {
5682 char namebuf[64] = { 0 };
5683
5684 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5685 intval = 0;
5686 strval = NULL;
5687 propname = nvpair_name(elem);
5688 prop = vdev_name_to_prop(propname);
5689 zprop_source_t src = ZPROP_SRC_DEFAULT;
5690 uint64_t integer_size, num_integers;
5691
5692 switch (prop) {
5693 /* Special Read-only Properties */
5694 case VDEV_PROP_NAME:
5695 strval = vdev_name(vd, namebuf,
5696 sizeof (namebuf));
5697 if (strval == NULL)
5698 continue;
5699 vdev_prop_add_list(outnvl, propname, strval, 0,
5700 ZPROP_SRC_NONE);
5701 continue;
5702 case VDEV_PROP_CAPACITY:
5703 /* percent used */
5704 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
5705 (vd->vdev_stat.vs_alloc * 100 /
5706 vd->vdev_stat.vs_dspace);
5707 vdev_prop_add_list(outnvl, propname, NULL,
5708 intval, ZPROP_SRC_NONE);
5709 continue;
5710 case VDEV_PROP_STATE:
5711 vdev_prop_add_list(outnvl, propname, NULL,
5712 vd->vdev_state, ZPROP_SRC_NONE);
5713 continue;
5714 case VDEV_PROP_GUID:
5715 vdev_prop_add_list(outnvl, propname, NULL,
5716 vd->vdev_guid, ZPROP_SRC_NONE);
5717 continue;
5718 case VDEV_PROP_ASIZE:
5719 vdev_prop_add_list(outnvl, propname, NULL,
5720 vd->vdev_asize, ZPROP_SRC_NONE);
5721 continue;
5722 case VDEV_PROP_PSIZE:
5723 vdev_prop_add_list(outnvl, propname, NULL,
5724 vd->vdev_psize, ZPROP_SRC_NONE);
5725 continue;
5726 case VDEV_PROP_ASHIFT:
5727 vdev_prop_add_list(outnvl, propname, NULL,
5728 vd->vdev_ashift, ZPROP_SRC_NONE);
5729 continue;
5730 case VDEV_PROP_SIZE:
5731 vdev_prop_add_list(outnvl, propname, NULL,
5732 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
5733 continue;
5734 case VDEV_PROP_FREE:
5735 vdev_prop_add_list(outnvl, propname, NULL,
5736 vd->vdev_stat.vs_dspace -
5737 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
5738 continue;
5739 case VDEV_PROP_ALLOCATED:
5740 vdev_prop_add_list(outnvl, propname, NULL,
5741 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
5742 continue;
5743 case VDEV_PROP_EXPANDSZ:
5744 vdev_prop_add_list(outnvl, propname, NULL,
5745 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
5746 continue;
5747 case VDEV_PROP_FRAGMENTATION:
5748 vdev_prop_add_list(outnvl, propname, NULL,
5749 vd->vdev_stat.vs_fragmentation,
5750 ZPROP_SRC_NONE);
5751 continue;
5752 case VDEV_PROP_PARITY:
5753 vdev_prop_add_list(outnvl, propname, NULL,
5754 vdev_get_nparity(vd), ZPROP_SRC_NONE);
5755 continue;
5756 case VDEV_PROP_PATH:
5757 if (vd->vdev_path == NULL)
5758 continue;
5759 vdev_prop_add_list(outnvl, propname,
5760 vd->vdev_path, 0, ZPROP_SRC_NONE);
5761 continue;
5762 case VDEV_PROP_DEVID:
5763 if (vd->vdev_devid == NULL)
5764 continue;
5765 vdev_prop_add_list(outnvl, propname,
5766 vd->vdev_devid, 0, ZPROP_SRC_NONE);
5767 continue;
5768 case VDEV_PROP_PHYS_PATH:
5769 if (vd->vdev_physpath == NULL)
5770 continue;
5771 vdev_prop_add_list(outnvl, propname,
5772 vd->vdev_physpath, 0, ZPROP_SRC_NONE);
5773 continue;
5774 case VDEV_PROP_ENC_PATH:
5775 if (vd->vdev_enc_sysfs_path == NULL)
5776 continue;
5777 vdev_prop_add_list(outnvl, propname,
5778 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
5779 continue;
5780 case VDEV_PROP_FRU:
5781 if (vd->vdev_fru == NULL)
5782 continue;
5783 vdev_prop_add_list(outnvl, propname,
5784 vd->vdev_fru, 0, ZPROP_SRC_NONE);
5785 continue;
5786 case VDEV_PROP_PARENT:
5787 if (vd->vdev_parent != NULL) {
5788 strval = vdev_name(vd->vdev_parent,
5789 namebuf, sizeof (namebuf));
5790 vdev_prop_add_list(outnvl, propname,
5791 strval, 0, ZPROP_SRC_NONE);
5792 }
5793 continue;
5794 case VDEV_PROP_CHILDREN:
5795 if (vd->vdev_children > 0)
5796 strval = kmem_zalloc(ZAP_MAXVALUELEN,
5797 KM_SLEEP);
5798 for (uint64_t i = 0; i < vd->vdev_children;
5799 i++) {
5800 char *vname;
5801
5802 vname = vdev_name(vd->vdev_child[i],
5803 namebuf, sizeof (namebuf));
5804 if (vname == NULL)
5805 vname = "(unknown)";
5806 if (strlen(strval) > 0)
5807 strlcat(strval, ",",
5808 ZAP_MAXVALUELEN);
5809 strlcat(strval, vname, ZAP_MAXVALUELEN);
5810 }
5811 if (strval != NULL) {
5812 vdev_prop_add_list(outnvl, propname,
5813 strval, 0, ZPROP_SRC_NONE);
5814 kmem_free(strval, ZAP_MAXVALUELEN);
5815 }
5816 continue;
5817 case VDEV_PROP_NUMCHILDREN:
5818 vdev_prop_add_list(outnvl, propname, NULL,
5819 vd->vdev_children, ZPROP_SRC_NONE);
5820 continue;
5821 case VDEV_PROP_READ_ERRORS:
5822 vdev_prop_add_list(outnvl, propname, NULL,
5823 vd->vdev_stat.vs_read_errors,
5824 ZPROP_SRC_NONE);
5825 continue;
5826 case VDEV_PROP_WRITE_ERRORS:
5827 vdev_prop_add_list(outnvl, propname, NULL,
5828 vd->vdev_stat.vs_write_errors,
5829 ZPROP_SRC_NONE);
5830 continue;
5831 case VDEV_PROP_CHECKSUM_ERRORS:
5832 vdev_prop_add_list(outnvl, propname, NULL,
5833 vd->vdev_stat.vs_checksum_errors,
5834 ZPROP_SRC_NONE);
5835 continue;
5836 case VDEV_PROP_INITIALIZE_ERRORS:
5837 vdev_prop_add_list(outnvl, propname, NULL,
5838 vd->vdev_stat.vs_initialize_errors,
5839 ZPROP_SRC_NONE);
5840 continue;
5841 case VDEV_PROP_OPS_NULL:
5842 vdev_prop_add_list(outnvl, propname, NULL,
5843 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
5844 ZPROP_SRC_NONE);
5845 continue;
5846 case VDEV_PROP_OPS_READ:
5847 vdev_prop_add_list(outnvl, propname, NULL,
5848 vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
5849 ZPROP_SRC_NONE);
5850 continue;
5851 case VDEV_PROP_OPS_WRITE:
5852 vdev_prop_add_list(outnvl, propname, NULL,
5853 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
5854 ZPROP_SRC_NONE);
5855 continue;
5856 case VDEV_PROP_OPS_FREE:
5857 vdev_prop_add_list(outnvl, propname, NULL,
5858 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
5859 ZPROP_SRC_NONE);
5860 continue;
5861 case VDEV_PROP_OPS_CLAIM:
5862 vdev_prop_add_list(outnvl, propname, NULL,
5863 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
5864 ZPROP_SRC_NONE);
5865 continue;
5866 case VDEV_PROP_OPS_TRIM:
5867 /*
5868 * TRIM ops and bytes are reported to user
5869 * space as ZIO_TYPE_IOCTL. This is done to
5870 * preserve the vdev_stat_t structure layout
5871 * for user space.
5872 */
5873 vdev_prop_add_list(outnvl, propname, NULL,
5874 vd->vdev_stat.vs_ops[ZIO_TYPE_IOCTL],
5875 ZPROP_SRC_NONE);
5876 continue;
5877 case VDEV_PROP_BYTES_NULL:
5878 vdev_prop_add_list(outnvl, propname, NULL,
5879 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
5880 ZPROP_SRC_NONE);
5881 continue;
5882 case VDEV_PROP_BYTES_READ:
5883 vdev_prop_add_list(outnvl, propname, NULL,
5884 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
5885 ZPROP_SRC_NONE);
5886 continue;
5887 case VDEV_PROP_BYTES_WRITE:
5888 vdev_prop_add_list(outnvl, propname, NULL,
5889 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
5890 ZPROP_SRC_NONE);
5891 continue;
5892 case VDEV_PROP_BYTES_FREE:
5893 vdev_prop_add_list(outnvl, propname, NULL,
5894 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
5895 ZPROP_SRC_NONE);
5896 continue;
5897 case VDEV_PROP_BYTES_CLAIM:
5898 vdev_prop_add_list(outnvl, propname, NULL,
5899 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
5900 ZPROP_SRC_NONE);
5901 continue;
5902 case VDEV_PROP_BYTES_TRIM:
5903 /*
5904 * TRIM ops and bytes are reported to user
5905 * space as ZIO_TYPE_IOCTL. This is done to
5906 * preserve the vdev_stat_t structure layout
5907 * for user space.
5908 */
5909 vdev_prop_add_list(outnvl, propname, NULL,
5910 vd->vdev_stat.vs_bytes[ZIO_TYPE_IOCTL],
5911 ZPROP_SRC_NONE);
5912 continue;
5913 case VDEV_PROP_REMOVING:
5914 vdev_prop_add_list(outnvl, propname, NULL,
5915 vd->vdev_removing, ZPROP_SRC_NONE);
5916 continue;
5917 /* Numeric Properites */
5918 case VDEV_PROP_ALLOCATING:
5919 src = ZPROP_SRC_LOCAL;
5920 strval = NULL;
5921
5922 err = zap_lookup(mos, objid, nvpair_name(elem),
5923 sizeof (uint64_t), 1, &intval);
5924 if (err == ENOENT) {
5925 intval =
5926 vdev_prop_default_numeric(prop);
5927 err = 0;
5928 } else if (err)
5929 break;
5930 if (intval == vdev_prop_default_numeric(prop))
5931 src = ZPROP_SRC_DEFAULT;
5932
5933 /* Leaf vdevs cannot have this property */
5934 if (vd->vdev_mg == NULL &&
5935 vd->vdev_top != NULL) {
5936 src = ZPROP_SRC_NONE;
5937 intval = ZPROP_BOOLEAN_NA;
5938 }
5939
5940 vdev_prop_add_list(outnvl, propname, strval,
5941 intval, src);
5942 break;
5943 /* Text Properties */
5944 case VDEV_PROP_COMMENT:
5945 /* Exists in the ZAP below */
5946 /* FALLTHRU */
5947 case VDEV_PROP_USER:
5948 /* User Properites */
5949 src = ZPROP_SRC_LOCAL;
5950
5951 err = zap_length(mos, objid, nvpair_name(elem),
5952 &integer_size, &num_integers);
5953 if (err)
5954 break;
5955
5956 switch (integer_size) {
5957 case 8:
5958 /* User properties cannot be integers */
5959 err = EINVAL;
5960 break;
5961 case 1:
5962 /* string property */
5963 strval = kmem_alloc(num_integers,
5964 KM_SLEEP);
5965 err = zap_lookup(mos, objid,
5966 nvpair_name(elem), 1,
5967 num_integers, strval);
5968 if (err) {
5969 kmem_free(strval,
5970 num_integers);
5971 break;
5972 }
5973 vdev_prop_add_list(outnvl, propname,
5974 strval, 0, src);
5975 kmem_free(strval, num_integers);
5976 break;
5977 }
5978 break;
5979 default:
5980 err = ENOENT;
5981 break;
5982 }
5983 if (err)
5984 break;
5985 }
5986 } else {
5987 /*
5988 * Get all properties from the MOS vdev property object.
5989 */
5990 zap_cursor_t zc;
5991 zap_attribute_t za;
5992 for (zap_cursor_init(&zc, mos, objid);
5993 (err = zap_cursor_retrieve(&zc, &za)) == 0;
5994 zap_cursor_advance(&zc)) {
5995 intval = 0;
5996 strval = NULL;
5997 zprop_source_t src = ZPROP_SRC_DEFAULT;
5998 propname = za.za_name;
5999 prop = vdev_name_to_prop(propname);
6000
6001 switch (za.za_integer_length) {
6002 case 8:
6003 /* We do not allow integer user properties */
6004 /* This is likely an internal value */
6005 break;
6006 case 1:
6007 /* string property */
6008 strval = kmem_alloc(za.za_num_integers,
6009 KM_SLEEP);
6010 err = zap_lookup(mos, objid, za.za_name, 1,
6011 za.za_num_integers, strval);
6012 if (err) {
6013 kmem_free(strval, za.za_num_integers);
6014 break;
6015 }
6016 vdev_prop_add_list(outnvl, propname, strval, 0,
6017 src);
6018 kmem_free(strval, za.za_num_integers);
6019 break;
6020
6021 default:
6022 break;
6023 }
6024 }
6025 zap_cursor_fini(&zc);
6026 }
6027
6028 mutex_exit(&spa->spa_props_lock);
6029 if (err && err != ENOENT) {
6030 return (err);
6031 }
6032
6033 return (0);
6034 }
6035
6036 EXPORT_SYMBOL(vdev_fault);
6037 EXPORT_SYMBOL(vdev_degrade);
6038 EXPORT_SYMBOL(vdev_online);
6039 EXPORT_SYMBOL(vdev_offline);
6040 EXPORT_SYMBOL(vdev_clear);
6041
6042 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, INT, ZMOD_RW,
6043 "Target number of metaslabs per top-level vdev");
6044
6045 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, INT, ZMOD_RW,
6046 "Default limit for metaslab size");
6047
6048 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, INT, ZMOD_RW,
6049 "Minimum number of metaslabs per top-level vdev");
6050
6051 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, INT, ZMOD_RW,
6052 "Practical upper limit of total metaslabs per top-level vdev");
6053
6054 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6055 "Rate limit slow IO (delay) events to this many per second");
6056
6057 /* BEGIN CSTYLED */
6058 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6059 "Rate limit checksum events to this many checksum errors per second "
6060 "(do not set below ZED threshold).");
6061 /* END CSTYLED */
6062
6063 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6064 "Ignore errors during resilver/scrub");
6065
6066 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6067 "Bypass vdev_validate()");
6068
6069 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6070 "Disable cache flushes");
6071
6072 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, INT, ZMOD_RW,
6073 "Minimum number of metaslabs required to dedicate one for log blocks");
6074
6075 /* BEGIN CSTYLED */
6076 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6077 param_set_min_auto_ashift, param_get_ulong, ZMOD_RW,
6078 "Minimum ashift used when creating new top-level vdevs");
6079
6080 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6081 param_set_max_auto_ashift, param_get_ulong, ZMOD_RW,
6082 "Maximum ashift used when optimizing for logical -> physical sector "
6083 "size on new top-level vdevs");
6084 /* END CSTYLED */