]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Set aside a metaslab for ZIL blocks
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, Intel Corporation.
30 * Copyright (c) 2019, Datto Inc. All rights reserved.
31 */
32
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa.h>
36 #include <sys/spa_impl.h>
37 #include <sys/bpobj.h>
38 #include <sys/dmu.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/vdev_rebuild.h>
43 #include <sys/vdev_draid.h>
44 #include <sys/uberblock_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/space_map.h>
48 #include <sys/space_reftree.h>
49 #include <sys/zio.h>
50 #include <sys/zap.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/arc.h>
53 #include <sys/zil.h>
54 #include <sys/dsl_scan.h>
55 #include <sys/vdev_raidz.h>
56 #include <sys/abd.h>
57 #include <sys/vdev_initialize.h>
58 #include <sys/vdev_trim.h>
59 #include <sys/zvol.h>
60 #include <sys/zfs_ratelimit.h>
61
62 /*
63 * One metaslab from each (normal-class) vdev is used by the ZIL. These are
64 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
65 * part of the spa_embedded_log_class. The metaslab with the most free space
66 * in each vdev is selected for this purpose when the pool is opened (or a
67 * vdev is added). See vdev_metaslab_init().
68 *
69 * Log blocks can be allocated from the following locations. Each one is tried
70 * in order until the allocation succeeds:
71 * 1. dedicated log vdevs, aka "slog" (spa_log_class)
72 * 2. embedded slog metaslabs (spa_embedded_log_class)
73 * 3. other metaslabs in normal vdevs (spa_normal_class)
74 *
75 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
76 * than this number of metaslabs in the vdev. This ensures that we don't set
77 * aside an unreasonable amount of space for the ZIL. If set to less than
78 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
79 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
80 */
81 int zfs_embedded_slog_min_ms = 64;
82
83 /* default target for number of metaslabs per top-level vdev */
84 int zfs_vdev_default_ms_count = 200;
85
86 /* minimum number of metaslabs per top-level vdev */
87 int zfs_vdev_min_ms_count = 16;
88
89 /* practical upper limit of total metaslabs per top-level vdev */
90 int zfs_vdev_ms_count_limit = 1ULL << 17;
91
92 /* lower limit for metaslab size (512M) */
93 int zfs_vdev_default_ms_shift = 29;
94
95 /* upper limit for metaslab size (16G) */
96 int zfs_vdev_max_ms_shift = 34;
97
98 int vdev_validate_skip = B_FALSE;
99
100 /*
101 * Since the DTL space map of a vdev is not expected to have a lot of
102 * entries, we default its block size to 4K.
103 */
104 int zfs_vdev_dtl_sm_blksz = (1 << 12);
105
106 /*
107 * Rate limit slow IO (delay) events to this many per second.
108 */
109 unsigned int zfs_slow_io_events_per_second = 20;
110
111 /*
112 * Rate limit checksum events after this many checksum errors per second.
113 */
114 unsigned int zfs_checksum_events_per_second = 20;
115
116 /*
117 * Ignore errors during scrub/resilver. Allows to work around resilver
118 * upon import when there are pool errors.
119 */
120 int zfs_scan_ignore_errors = 0;
121
122 /*
123 * vdev-wide space maps that have lots of entries written to them at
124 * the end of each transaction can benefit from a higher I/O bandwidth
125 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
126 */
127 int zfs_vdev_standard_sm_blksz = (1 << 17);
128
129 /*
130 * Tunable parameter for debugging or performance analysis. Setting this
131 * will cause pool corruption on power loss if a volatile out-of-order
132 * write cache is enabled.
133 */
134 int zfs_nocacheflush = 0;
135
136 uint64_t zfs_vdev_max_auto_ashift = ASHIFT_MAX;
137 uint64_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
138
139 /*PRINTFLIKE2*/
140 void
141 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
142 {
143 va_list adx;
144 char buf[256];
145
146 va_start(adx, fmt);
147 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
148 va_end(adx);
149
150 if (vd->vdev_path != NULL) {
151 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
152 vd->vdev_path, buf);
153 } else {
154 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
155 vd->vdev_ops->vdev_op_type,
156 (u_longlong_t)vd->vdev_id,
157 (u_longlong_t)vd->vdev_guid, buf);
158 }
159 }
160
161 void
162 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
163 {
164 char state[20];
165
166 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
167 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
168 vd->vdev_ops->vdev_op_type);
169 return;
170 }
171
172 switch (vd->vdev_state) {
173 case VDEV_STATE_UNKNOWN:
174 (void) snprintf(state, sizeof (state), "unknown");
175 break;
176 case VDEV_STATE_CLOSED:
177 (void) snprintf(state, sizeof (state), "closed");
178 break;
179 case VDEV_STATE_OFFLINE:
180 (void) snprintf(state, sizeof (state), "offline");
181 break;
182 case VDEV_STATE_REMOVED:
183 (void) snprintf(state, sizeof (state), "removed");
184 break;
185 case VDEV_STATE_CANT_OPEN:
186 (void) snprintf(state, sizeof (state), "can't open");
187 break;
188 case VDEV_STATE_FAULTED:
189 (void) snprintf(state, sizeof (state), "faulted");
190 break;
191 case VDEV_STATE_DEGRADED:
192 (void) snprintf(state, sizeof (state), "degraded");
193 break;
194 case VDEV_STATE_HEALTHY:
195 (void) snprintf(state, sizeof (state), "healthy");
196 break;
197 default:
198 (void) snprintf(state, sizeof (state), "<state %u>",
199 (uint_t)vd->vdev_state);
200 }
201
202 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
203 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
204 vd->vdev_islog ? " (log)" : "",
205 (u_longlong_t)vd->vdev_guid,
206 vd->vdev_path ? vd->vdev_path : "N/A", state);
207
208 for (uint64_t i = 0; i < vd->vdev_children; i++)
209 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
210 }
211
212 /*
213 * Virtual device management.
214 */
215
216 static vdev_ops_t *vdev_ops_table[] = {
217 &vdev_root_ops,
218 &vdev_raidz_ops,
219 &vdev_draid_ops,
220 &vdev_draid_spare_ops,
221 &vdev_mirror_ops,
222 &vdev_replacing_ops,
223 &vdev_spare_ops,
224 &vdev_disk_ops,
225 &vdev_file_ops,
226 &vdev_missing_ops,
227 &vdev_hole_ops,
228 &vdev_indirect_ops,
229 NULL
230 };
231
232 /*
233 * Given a vdev type, return the appropriate ops vector.
234 */
235 static vdev_ops_t *
236 vdev_getops(const char *type)
237 {
238 vdev_ops_t *ops, **opspp;
239
240 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
241 if (strcmp(ops->vdev_op_type, type) == 0)
242 break;
243
244 return (ops);
245 }
246
247 /*
248 * Given a vdev and a metaslab class, find which metaslab group we're
249 * interested in. All vdevs may belong to two different metaslab classes.
250 * Dedicated slog devices use only the primary metaslab group, rather than a
251 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
252 */
253 metaslab_group_t *
254 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
255 {
256 if (mc == spa_embedded_log_class(vd->vdev_spa) &&
257 vd->vdev_log_mg != NULL)
258 return (vd->vdev_log_mg);
259 else
260 return (vd->vdev_mg);
261 }
262
263 /* ARGSUSED */
264 void
265 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
266 range_seg64_t *physical_rs, range_seg64_t *remain_rs)
267 {
268 physical_rs->rs_start = logical_rs->rs_start;
269 physical_rs->rs_end = logical_rs->rs_end;
270 }
271
272 /*
273 * Derive the enumerated allocation bias from string input.
274 * String origin is either the per-vdev zap or zpool(8).
275 */
276 static vdev_alloc_bias_t
277 vdev_derive_alloc_bias(const char *bias)
278 {
279 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
280
281 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
282 alloc_bias = VDEV_BIAS_LOG;
283 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
284 alloc_bias = VDEV_BIAS_SPECIAL;
285 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
286 alloc_bias = VDEV_BIAS_DEDUP;
287
288 return (alloc_bias);
289 }
290
291 /*
292 * Default asize function: return the MAX of psize with the asize of
293 * all children. This is what's used by anything other than RAID-Z.
294 */
295 uint64_t
296 vdev_default_asize(vdev_t *vd, uint64_t psize)
297 {
298 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
299 uint64_t csize;
300
301 for (int c = 0; c < vd->vdev_children; c++) {
302 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
303 asize = MAX(asize, csize);
304 }
305
306 return (asize);
307 }
308
309 uint64_t
310 vdev_default_min_asize(vdev_t *vd)
311 {
312 return (vd->vdev_min_asize);
313 }
314
315 /*
316 * Get the minimum allocatable size. We define the allocatable size as
317 * the vdev's asize rounded to the nearest metaslab. This allows us to
318 * replace or attach devices which don't have the same physical size but
319 * can still satisfy the same number of allocations.
320 */
321 uint64_t
322 vdev_get_min_asize(vdev_t *vd)
323 {
324 vdev_t *pvd = vd->vdev_parent;
325
326 /*
327 * If our parent is NULL (inactive spare or cache) or is the root,
328 * just return our own asize.
329 */
330 if (pvd == NULL)
331 return (vd->vdev_asize);
332
333 /*
334 * The top-level vdev just returns the allocatable size rounded
335 * to the nearest metaslab.
336 */
337 if (vd == vd->vdev_top)
338 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
339
340 return (pvd->vdev_ops->vdev_op_min_asize(pvd));
341 }
342
343 void
344 vdev_set_min_asize(vdev_t *vd)
345 {
346 vd->vdev_min_asize = vdev_get_min_asize(vd);
347
348 for (int c = 0; c < vd->vdev_children; c++)
349 vdev_set_min_asize(vd->vdev_child[c]);
350 }
351
352 /*
353 * Get the minimal allocation size for the top-level vdev.
354 */
355 uint64_t
356 vdev_get_min_alloc(vdev_t *vd)
357 {
358 uint64_t min_alloc = 1ULL << vd->vdev_ashift;
359
360 if (vd->vdev_ops->vdev_op_min_alloc != NULL)
361 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
362
363 return (min_alloc);
364 }
365
366 /*
367 * Get the parity level for a top-level vdev.
368 */
369 uint64_t
370 vdev_get_nparity(vdev_t *vd)
371 {
372 uint64_t nparity = 0;
373
374 if (vd->vdev_ops->vdev_op_nparity != NULL)
375 nparity = vd->vdev_ops->vdev_op_nparity(vd);
376
377 return (nparity);
378 }
379
380 /*
381 * Get the number of data disks for a top-level vdev.
382 */
383 uint64_t
384 vdev_get_ndisks(vdev_t *vd)
385 {
386 uint64_t ndisks = 1;
387
388 if (vd->vdev_ops->vdev_op_ndisks != NULL)
389 ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
390
391 return (ndisks);
392 }
393
394 vdev_t *
395 vdev_lookup_top(spa_t *spa, uint64_t vdev)
396 {
397 vdev_t *rvd = spa->spa_root_vdev;
398
399 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
400
401 if (vdev < rvd->vdev_children) {
402 ASSERT(rvd->vdev_child[vdev] != NULL);
403 return (rvd->vdev_child[vdev]);
404 }
405
406 return (NULL);
407 }
408
409 vdev_t *
410 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
411 {
412 vdev_t *mvd;
413
414 if (vd->vdev_guid == guid)
415 return (vd);
416
417 for (int c = 0; c < vd->vdev_children; c++)
418 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
419 NULL)
420 return (mvd);
421
422 return (NULL);
423 }
424
425 static int
426 vdev_count_leaves_impl(vdev_t *vd)
427 {
428 int n = 0;
429
430 if (vd->vdev_ops->vdev_op_leaf)
431 return (1);
432
433 for (int c = 0; c < vd->vdev_children; c++)
434 n += vdev_count_leaves_impl(vd->vdev_child[c]);
435
436 return (n);
437 }
438
439 int
440 vdev_count_leaves(spa_t *spa)
441 {
442 int rc;
443
444 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
445 rc = vdev_count_leaves_impl(spa->spa_root_vdev);
446 spa_config_exit(spa, SCL_VDEV, FTAG);
447
448 return (rc);
449 }
450
451 void
452 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
453 {
454 size_t oldsize, newsize;
455 uint64_t id = cvd->vdev_id;
456 vdev_t **newchild;
457
458 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
459 ASSERT(cvd->vdev_parent == NULL);
460
461 cvd->vdev_parent = pvd;
462
463 if (pvd == NULL)
464 return;
465
466 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
467
468 oldsize = pvd->vdev_children * sizeof (vdev_t *);
469 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
470 newsize = pvd->vdev_children * sizeof (vdev_t *);
471
472 newchild = kmem_alloc(newsize, KM_SLEEP);
473 if (pvd->vdev_child != NULL) {
474 bcopy(pvd->vdev_child, newchild, oldsize);
475 kmem_free(pvd->vdev_child, oldsize);
476 }
477
478 pvd->vdev_child = newchild;
479 pvd->vdev_child[id] = cvd;
480
481 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
482 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
483
484 /*
485 * Walk up all ancestors to update guid sum.
486 */
487 for (; pvd != NULL; pvd = pvd->vdev_parent)
488 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
489
490 if (cvd->vdev_ops->vdev_op_leaf) {
491 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
492 cvd->vdev_spa->spa_leaf_list_gen++;
493 }
494 }
495
496 void
497 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
498 {
499 int c;
500 uint_t id = cvd->vdev_id;
501
502 ASSERT(cvd->vdev_parent == pvd);
503
504 if (pvd == NULL)
505 return;
506
507 ASSERT(id < pvd->vdev_children);
508 ASSERT(pvd->vdev_child[id] == cvd);
509
510 pvd->vdev_child[id] = NULL;
511 cvd->vdev_parent = NULL;
512
513 for (c = 0; c < pvd->vdev_children; c++)
514 if (pvd->vdev_child[c])
515 break;
516
517 if (c == pvd->vdev_children) {
518 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
519 pvd->vdev_child = NULL;
520 pvd->vdev_children = 0;
521 }
522
523 if (cvd->vdev_ops->vdev_op_leaf) {
524 spa_t *spa = cvd->vdev_spa;
525 list_remove(&spa->spa_leaf_list, cvd);
526 spa->spa_leaf_list_gen++;
527 }
528
529 /*
530 * Walk up all ancestors to update guid sum.
531 */
532 for (; pvd != NULL; pvd = pvd->vdev_parent)
533 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
534 }
535
536 /*
537 * Remove any holes in the child array.
538 */
539 void
540 vdev_compact_children(vdev_t *pvd)
541 {
542 vdev_t **newchild, *cvd;
543 int oldc = pvd->vdev_children;
544 int newc;
545
546 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
547
548 if (oldc == 0)
549 return;
550
551 for (int c = newc = 0; c < oldc; c++)
552 if (pvd->vdev_child[c])
553 newc++;
554
555 if (newc > 0) {
556 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
557
558 for (int c = newc = 0; c < oldc; c++) {
559 if ((cvd = pvd->vdev_child[c]) != NULL) {
560 newchild[newc] = cvd;
561 cvd->vdev_id = newc++;
562 }
563 }
564 } else {
565 newchild = NULL;
566 }
567
568 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
569 pvd->vdev_child = newchild;
570 pvd->vdev_children = newc;
571 }
572
573 /*
574 * Allocate and minimally initialize a vdev_t.
575 */
576 vdev_t *
577 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
578 {
579 vdev_t *vd;
580 vdev_indirect_config_t *vic;
581
582 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
583 vic = &vd->vdev_indirect_config;
584
585 if (spa->spa_root_vdev == NULL) {
586 ASSERT(ops == &vdev_root_ops);
587 spa->spa_root_vdev = vd;
588 spa->spa_load_guid = spa_generate_guid(NULL);
589 }
590
591 if (guid == 0 && ops != &vdev_hole_ops) {
592 if (spa->spa_root_vdev == vd) {
593 /*
594 * The root vdev's guid will also be the pool guid,
595 * which must be unique among all pools.
596 */
597 guid = spa_generate_guid(NULL);
598 } else {
599 /*
600 * Any other vdev's guid must be unique within the pool.
601 */
602 guid = spa_generate_guid(spa);
603 }
604 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
605 }
606
607 vd->vdev_spa = spa;
608 vd->vdev_id = id;
609 vd->vdev_guid = guid;
610 vd->vdev_guid_sum = guid;
611 vd->vdev_ops = ops;
612 vd->vdev_state = VDEV_STATE_CLOSED;
613 vd->vdev_ishole = (ops == &vdev_hole_ops);
614 vic->vic_prev_indirect_vdev = UINT64_MAX;
615
616 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
617 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
618 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
619 0, 0);
620
621 /*
622 * Initialize rate limit structs for events. We rate limit ZIO delay
623 * and checksum events so that we don't overwhelm ZED with thousands
624 * of events when a disk is acting up.
625 */
626 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
627 1);
628 zfs_ratelimit_init(&vd->vdev_checksum_rl,
629 &zfs_checksum_events_per_second, 1);
630
631 list_link_init(&vd->vdev_config_dirty_node);
632 list_link_init(&vd->vdev_state_dirty_node);
633 list_link_init(&vd->vdev_initialize_node);
634 list_link_init(&vd->vdev_leaf_node);
635 list_link_init(&vd->vdev_trim_node);
636
637 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
638 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
639 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
640 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
641
642 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
643 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
644 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
645 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
646
647 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
648 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
649 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
650 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
651 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
652 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
653
654 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
655 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
656
657 for (int t = 0; t < DTL_TYPES; t++) {
658 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
659 0);
660 }
661
662 txg_list_create(&vd->vdev_ms_list, spa,
663 offsetof(struct metaslab, ms_txg_node));
664 txg_list_create(&vd->vdev_dtl_list, spa,
665 offsetof(struct vdev, vdev_dtl_node));
666 vd->vdev_stat.vs_timestamp = gethrtime();
667 vdev_queue_init(vd);
668 vdev_cache_init(vd);
669
670 return (vd);
671 }
672
673 /*
674 * Allocate a new vdev. The 'alloctype' is used to control whether we are
675 * creating a new vdev or loading an existing one - the behavior is slightly
676 * different for each case.
677 */
678 int
679 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
680 int alloctype)
681 {
682 vdev_ops_t *ops;
683 char *type;
684 uint64_t guid = 0, islog;
685 vdev_t *vd;
686 vdev_indirect_config_t *vic;
687 char *tmp = NULL;
688 int rc;
689 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
690 boolean_t top_level = (parent && !parent->vdev_parent);
691
692 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
693
694 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
695 return (SET_ERROR(EINVAL));
696
697 if ((ops = vdev_getops(type)) == NULL)
698 return (SET_ERROR(EINVAL));
699
700 /*
701 * If this is a load, get the vdev guid from the nvlist.
702 * Otherwise, vdev_alloc_common() will generate one for us.
703 */
704 if (alloctype == VDEV_ALLOC_LOAD) {
705 uint64_t label_id;
706
707 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
708 label_id != id)
709 return (SET_ERROR(EINVAL));
710
711 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
712 return (SET_ERROR(EINVAL));
713 } else if (alloctype == VDEV_ALLOC_SPARE) {
714 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
715 return (SET_ERROR(EINVAL));
716 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
717 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
718 return (SET_ERROR(EINVAL));
719 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
720 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
721 return (SET_ERROR(EINVAL));
722 }
723
724 /*
725 * The first allocated vdev must be of type 'root'.
726 */
727 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
728 return (SET_ERROR(EINVAL));
729
730 /*
731 * Determine whether we're a log vdev.
732 */
733 islog = 0;
734 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
735 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
736 return (SET_ERROR(ENOTSUP));
737
738 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
739 return (SET_ERROR(ENOTSUP));
740
741 if (top_level && alloctype == VDEV_ALLOC_ADD) {
742 char *bias;
743
744 /*
745 * If creating a top-level vdev, check for allocation
746 * classes input.
747 */
748 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
749 &bias) == 0) {
750 alloc_bias = vdev_derive_alloc_bias(bias);
751
752 /* spa_vdev_add() expects feature to be enabled */
753 if (spa->spa_load_state != SPA_LOAD_CREATE &&
754 !spa_feature_is_enabled(spa,
755 SPA_FEATURE_ALLOCATION_CLASSES)) {
756 return (SET_ERROR(ENOTSUP));
757 }
758 }
759
760 /* spa_vdev_add() expects feature to be enabled */
761 if (ops == &vdev_draid_ops &&
762 spa->spa_load_state != SPA_LOAD_CREATE &&
763 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
764 return (SET_ERROR(ENOTSUP));
765 }
766 }
767
768 /*
769 * Initialize the vdev specific data. This is done before calling
770 * vdev_alloc_common() since it may fail and this simplifies the
771 * error reporting and cleanup code paths.
772 */
773 void *tsd = NULL;
774 if (ops->vdev_op_init != NULL) {
775 rc = ops->vdev_op_init(spa, nv, &tsd);
776 if (rc != 0) {
777 return (rc);
778 }
779 }
780
781 vd = vdev_alloc_common(spa, id, guid, ops);
782 vd->vdev_tsd = tsd;
783 vd->vdev_islog = islog;
784
785 if (top_level && alloc_bias != VDEV_BIAS_NONE)
786 vd->vdev_alloc_bias = alloc_bias;
787
788 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
789 vd->vdev_path = spa_strdup(vd->vdev_path);
790
791 /*
792 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
793 * fault on a vdev and want it to persist across imports (like with
794 * zpool offline -f).
795 */
796 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
797 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
798 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
799 vd->vdev_faulted = 1;
800 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
801 }
802
803 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
804 vd->vdev_devid = spa_strdup(vd->vdev_devid);
805 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
806 &vd->vdev_physpath) == 0)
807 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
808
809 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
810 &vd->vdev_enc_sysfs_path) == 0)
811 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
812
813 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
814 vd->vdev_fru = spa_strdup(vd->vdev_fru);
815
816 /*
817 * Set the whole_disk property. If it's not specified, leave the value
818 * as -1.
819 */
820 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
821 &vd->vdev_wholedisk) != 0)
822 vd->vdev_wholedisk = -1ULL;
823
824 vic = &vd->vdev_indirect_config;
825
826 ASSERT0(vic->vic_mapping_object);
827 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
828 &vic->vic_mapping_object);
829 ASSERT0(vic->vic_births_object);
830 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
831 &vic->vic_births_object);
832 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
833 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
834 &vic->vic_prev_indirect_vdev);
835
836 /*
837 * Look for the 'not present' flag. This will only be set if the device
838 * was not present at the time of import.
839 */
840 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
841 &vd->vdev_not_present);
842
843 /*
844 * Get the alignment requirement.
845 */
846 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
847
848 /*
849 * Retrieve the vdev creation time.
850 */
851 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
852 &vd->vdev_crtxg);
853
854 /*
855 * If we're a top-level vdev, try to load the allocation parameters.
856 */
857 if (top_level &&
858 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
859 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
860 &vd->vdev_ms_array);
861 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
862 &vd->vdev_ms_shift);
863 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
864 &vd->vdev_asize);
865 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
866 &vd->vdev_removing);
867 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
868 &vd->vdev_top_zap);
869 } else {
870 ASSERT0(vd->vdev_top_zap);
871 }
872
873 if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
874 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
875 alloctype == VDEV_ALLOC_ADD ||
876 alloctype == VDEV_ALLOC_SPLIT ||
877 alloctype == VDEV_ALLOC_ROOTPOOL);
878 /* Note: metaslab_group_create() is now deferred */
879 }
880
881 if (vd->vdev_ops->vdev_op_leaf &&
882 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
883 (void) nvlist_lookup_uint64(nv,
884 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
885 } else {
886 ASSERT0(vd->vdev_leaf_zap);
887 }
888
889 /*
890 * If we're a leaf vdev, try to load the DTL object and other state.
891 */
892
893 if (vd->vdev_ops->vdev_op_leaf &&
894 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
895 alloctype == VDEV_ALLOC_ROOTPOOL)) {
896 if (alloctype == VDEV_ALLOC_LOAD) {
897 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
898 &vd->vdev_dtl_object);
899 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
900 &vd->vdev_unspare);
901 }
902
903 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
904 uint64_t spare = 0;
905
906 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
907 &spare) == 0 && spare)
908 spa_spare_add(vd);
909 }
910
911 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
912 &vd->vdev_offline);
913
914 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
915 &vd->vdev_resilver_txg);
916
917 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
918 &vd->vdev_rebuild_txg);
919
920 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
921 vdev_defer_resilver(vd);
922
923 /*
924 * In general, when importing a pool we want to ignore the
925 * persistent fault state, as the diagnosis made on another
926 * system may not be valid in the current context. The only
927 * exception is if we forced a vdev to a persistently faulted
928 * state with 'zpool offline -f'. The persistent fault will
929 * remain across imports until cleared.
930 *
931 * Local vdevs will remain in the faulted state.
932 */
933 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
934 spa_load_state(spa) == SPA_LOAD_IMPORT) {
935 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
936 &vd->vdev_faulted);
937 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
938 &vd->vdev_degraded);
939 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
940 &vd->vdev_removed);
941
942 if (vd->vdev_faulted || vd->vdev_degraded) {
943 char *aux;
944
945 vd->vdev_label_aux =
946 VDEV_AUX_ERR_EXCEEDED;
947 if (nvlist_lookup_string(nv,
948 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
949 strcmp(aux, "external") == 0)
950 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
951 else
952 vd->vdev_faulted = 0ULL;
953 }
954 }
955 }
956
957 /*
958 * Add ourselves to the parent's list of children.
959 */
960 vdev_add_child(parent, vd);
961
962 *vdp = vd;
963
964 return (0);
965 }
966
967 void
968 vdev_free(vdev_t *vd)
969 {
970 spa_t *spa = vd->vdev_spa;
971
972 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
973 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
974 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
975 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
976
977 /*
978 * Scan queues are normally destroyed at the end of a scan. If the
979 * queue exists here, that implies the vdev is being removed while
980 * the scan is still running.
981 */
982 if (vd->vdev_scan_io_queue != NULL) {
983 mutex_enter(&vd->vdev_scan_io_queue_lock);
984 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
985 vd->vdev_scan_io_queue = NULL;
986 mutex_exit(&vd->vdev_scan_io_queue_lock);
987 }
988
989 /*
990 * vdev_free() implies closing the vdev first. This is simpler than
991 * trying to ensure complicated semantics for all callers.
992 */
993 vdev_close(vd);
994
995 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
996 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
997
998 /*
999 * Free all children.
1000 */
1001 for (int c = 0; c < vd->vdev_children; c++)
1002 vdev_free(vd->vdev_child[c]);
1003
1004 ASSERT(vd->vdev_child == NULL);
1005 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1006
1007 if (vd->vdev_ops->vdev_op_fini != NULL)
1008 vd->vdev_ops->vdev_op_fini(vd);
1009
1010 /*
1011 * Discard allocation state.
1012 */
1013 if (vd->vdev_mg != NULL) {
1014 vdev_metaslab_fini(vd);
1015 metaslab_group_destroy(vd->vdev_mg);
1016 vd->vdev_mg = NULL;
1017 }
1018 if (vd->vdev_log_mg != NULL) {
1019 ASSERT0(vd->vdev_ms_count);
1020 metaslab_group_destroy(vd->vdev_log_mg);
1021 vd->vdev_log_mg = NULL;
1022 }
1023
1024 ASSERT0(vd->vdev_stat.vs_space);
1025 ASSERT0(vd->vdev_stat.vs_dspace);
1026 ASSERT0(vd->vdev_stat.vs_alloc);
1027
1028 /*
1029 * Remove this vdev from its parent's child list.
1030 */
1031 vdev_remove_child(vd->vdev_parent, vd);
1032
1033 ASSERT(vd->vdev_parent == NULL);
1034 ASSERT(!list_link_active(&vd->vdev_leaf_node));
1035
1036 /*
1037 * Clean up vdev structure.
1038 */
1039 vdev_queue_fini(vd);
1040 vdev_cache_fini(vd);
1041
1042 if (vd->vdev_path)
1043 spa_strfree(vd->vdev_path);
1044 if (vd->vdev_devid)
1045 spa_strfree(vd->vdev_devid);
1046 if (vd->vdev_physpath)
1047 spa_strfree(vd->vdev_physpath);
1048
1049 if (vd->vdev_enc_sysfs_path)
1050 spa_strfree(vd->vdev_enc_sysfs_path);
1051
1052 if (vd->vdev_fru)
1053 spa_strfree(vd->vdev_fru);
1054
1055 if (vd->vdev_isspare)
1056 spa_spare_remove(vd);
1057 if (vd->vdev_isl2cache)
1058 spa_l2cache_remove(vd);
1059
1060 txg_list_destroy(&vd->vdev_ms_list);
1061 txg_list_destroy(&vd->vdev_dtl_list);
1062
1063 mutex_enter(&vd->vdev_dtl_lock);
1064 space_map_close(vd->vdev_dtl_sm);
1065 for (int t = 0; t < DTL_TYPES; t++) {
1066 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1067 range_tree_destroy(vd->vdev_dtl[t]);
1068 }
1069 mutex_exit(&vd->vdev_dtl_lock);
1070
1071 EQUIV(vd->vdev_indirect_births != NULL,
1072 vd->vdev_indirect_mapping != NULL);
1073 if (vd->vdev_indirect_births != NULL) {
1074 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1075 vdev_indirect_births_close(vd->vdev_indirect_births);
1076 }
1077
1078 if (vd->vdev_obsolete_sm != NULL) {
1079 ASSERT(vd->vdev_removing ||
1080 vd->vdev_ops == &vdev_indirect_ops);
1081 space_map_close(vd->vdev_obsolete_sm);
1082 vd->vdev_obsolete_sm = NULL;
1083 }
1084 range_tree_destroy(vd->vdev_obsolete_segments);
1085 rw_destroy(&vd->vdev_indirect_rwlock);
1086 mutex_destroy(&vd->vdev_obsolete_lock);
1087
1088 mutex_destroy(&vd->vdev_dtl_lock);
1089 mutex_destroy(&vd->vdev_stat_lock);
1090 mutex_destroy(&vd->vdev_probe_lock);
1091 mutex_destroy(&vd->vdev_scan_io_queue_lock);
1092
1093 mutex_destroy(&vd->vdev_initialize_lock);
1094 mutex_destroy(&vd->vdev_initialize_io_lock);
1095 cv_destroy(&vd->vdev_initialize_io_cv);
1096 cv_destroy(&vd->vdev_initialize_cv);
1097
1098 mutex_destroy(&vd->vdev_trim_lock);
1099 mutex_destroy(&vd->vdev_autotrim_lock);
1100 mutex_destroy(&vd->vdev_trim_io_lock);
1101 cv_destroy(&vd->vdev_trim_cv);
1102 cv_destroy(&vd->vdev_autotrim_cv);
1103 cv_destroy(&vd->vdev_trim_io_cv);
1104
1105 mutex_destroy(&vd->vdev_rebuild_lock);
1106 cv_destroy(&vd->vdev_rebuild_cv);
1107
1108 zfs_ratelimit_fini(&vd->vdev_delay_rl);
1109 zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1110
1111 if (vd == spa->spa_root_vdev)
1112 spa->spa_root_vdev = NULL;
1113
1114 kmem_free(vd, sizeof (vdev_t));
1115 }
1116
1117 /*
1118 * Transfer top-level vdev state from svd to tvd.
1119 */
1120 static void
1121 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1122 {
1123 spa_t *spa = svd->vdev_spa;
1124 metaslab_t *msp;
1125 vdev_t *vd;
1126 int t;
1127
1128 ASSERT(tvd == tvd->vdev_top);
1129
1130 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
1131 tvd->vdev_ms_array = svd->vdev_ms_array;
1132 tvd->vdev_ms_shift = svd->vdev_ms_shift;
1133 tvd->vdev_ms_count = svd->vdev_ms_count;
1134 tvd->vdev_top_zap = svd->vdev_top_zap;
1135
1136 svd->vdev_ms_array = 0;
1137 svd->vdev_ms_shift = 0;
1138 svd->vdev_ms_count = 0;
1139 svd->vdev_top_zap = 0;
1140
1141 if (tvd->vdev_mg)
1142 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1143 if (tvd->vdev_log_mg)
1144 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1145 tvd->vdev_mg = svd->vdev_mg;
1146 tvd->vdev_log_mg = svd->vdev_log_mg;
1147 tvd->vdev_ms = svd->vdev_ms;
1148
1149 svd->vdev_mg = NULL;
1150 svd->vdev_log_mg = NULL;
1151 svd->vdev_ms = NULL;
1152
1153 if (tvd->vdev_mg != NULL)
1154 tvd->vdev_mg->mg_vd = tvd;
1155 if (tvd->vdev_log_mg != NULL)
1156 tvd->vdev_log_mg->mg_vd = tvd;
1157
1158 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1159 svd->vdev_checkpoint_sm = NULL;
1160
1161 tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1162 svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1163
1164 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1165 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1166 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1167
1168 svd->vdev_stat.vs_alloc = 0;
1169 svd->vdev_stat.vs_space = 0;
1170 svd->vdev_stat.vs_dspace = 0;
1171
1172 /*
1173 * State which may be set on a top-level vdev that's in the
1174 * process of being removed.
1175 */
1176 ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1177 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1178 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1179 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1180 ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1181 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1182 ASSERT0(tvd->vdev_removing);
1183 ASSERT0(tvd->vdev_rebuilding);
1184 tvd->vdev_removing = svd->vdev_removing;
1185 tvd->vdev_rebuilding = svd->vdev_rebuilding;
1186 tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1187 tvd->vdev_indirect_config = svd->vdev_indirect_config;
1188 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1189 tvd->vdev_indirect_births = svd->vdev_indirect_births;
1190 range_tree_swap(&svd->vdev_obsolete_segments,
1191 &tvd->vdev_obsolete_segments);
1192 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1193 svd->vdev_indirect_config.vic_mapping_object = 0;
1194 svd->vdev_indirect_config.vic_births_object = 0;
1195 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1196 svd->vdev_indirect_mapping = NULL;
1197 svd->vdev_indirect_births = NULL;
1198 svd->vdev_obsolete_sm = NULL;
1199 svd->vdev_removing = 0;
1200 svd->vdev_rebuilding = 0;
1201
1202 for (t = 0; t < TXG_SIZE; t++) {
1203 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1204 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1205 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1206 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1207 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1208 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1209 }
1210
1211 if (list_link_active(&svd->vdev_config_dirty_node)) {
1212 vdev_config_clean(svd);
1213 vdev_config_dirty(tvd);
1214 }
1215
1216 if (list_link_active(&svd->vdev_state_dirty_node)) {
1217 vdev_state_clean(svd);
1218 vdev_state_dirty(tvd);
1219 }
1220
1221 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1222 svd->vdev_deflate_ratio = 0;
1223
1224 tvd->vdev_islog = svd->vdev_islog;
1225 svd->vdev_islog = 0;
1226
1227 dsl_scan_io_queue_vdev_xfer(svd, tvd);
1228 }
1229
1230 static void
1231 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1232 {
1233 if (vd == NULL)
1234 return;
1235
1236 vd->vdev_top = tvd;
1237
1238 for (int c = 0; c < vd->vdev_children; c++)
1239 vdev_top_update(tvd, vd->vdev_child[c]);
1240 }
1241
1242 /*
1243 * Add a mirror/replacing vdev above an existing vdev. There is no need to
1244 * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1245 */
1246 vdev_t *
1247 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1248 {
1249 spa_t *spa = cvd->vdev_spa;
1250 vdev_t *pvd = cvd->vdev_parent;
1251 vdev_t *mvd;
1252
1253 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1254
1255 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1256
1257 mvd->vdev_asize = cvd->vdev_asize;
1258 mvd->vdev_min_asize = cvd->vdev_min_asize;
1259 mvd->vdev_max_asize = cvd->vdev_max_asize;
1260 mvd->vdev_psize = cvd->vdev_psize;
1261 mvd->vdev_ashift = cvd->vdev_ashift;
1262 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1263 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1264 mvd->vdev_state = cvd->vdev_state;
1265 mvd->vdev_crtxg = cvd->vdev_crtxg;
1266
1267 vdev_remove_child(pvd, cvd);
1268 vdev_add_child(pvd, mvd);
1269 cvd->vdev_id = mvd->vdev_children;
1270 vdev_add_child(mvd, cvd);
1271 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1272
1273 if (mvd == mvd->vdev_top)
1274 vdev_top_transfer(cvd, mvd);
1275
1276 return (mvd);
1277 }
1278
1279 /*
1280 * Remove a 1-way mirror/replacing vdev from the tree.
1281 */
1282 void
1283 vdev_remove_parent(vdev_t *cvd)
1284 {
1285 vdev_t *mvd = cvd->vdev_parent;
1286 vdev_t *pvd = mvd->vdev_parent;
1287
1288 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1289
1290 ASSERT(mvd->vdev_children == 1);
1291 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1292 mvd->vdev_ops == &vdev_replacing_ops ||
1293 mvd->vdev_ops == &vdev_spare_ops);
1294 cvd->vdev_ashift = mvd->vdev_ashift;
1295 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1296 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1297 vdev_remove_child(mvd, cvd);
1298 vdev_remove_child(pvd, mvd);
1299
1300 /*
1301 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1302 * Otherwise, we could have detached an offline device, and when we
1303 * go to import the pool we'll think we have two top-level vdevs,
1304 * instead of a different version of the same top-level vdev.
1305 */
1306 if (mvd->vdev_top == mvd) {
1307 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1308 cvd->vdev_orig_guid = cvd->vdev_guid;
1309 cvd->vdev_guid += guid_delta;
1310 cvd->vdev_guid_sum += guid_delta;
1311
1312 /*
1313 * If pool not set for autoexpand, we need to also preserve
1314 * mvd's asize to prevent automatic expansion of cvd.
1315 * Otherwise if we are adjusting the mirror by attaching and
1316 * detaching children of non-uniform sizes, the mirror could
1317 * autoexpand, unexpectedly requiring larger devices to
1318 * re-establish the mirror.
1319 */
1320 if (!cvd->vdev_spa->spa_autoexpand)
1321 cvd->vdev_asize = mvd->vdev_asize;
1322 }
1323 cvd->vdev_id = mvd->vdev_id;
1324 vdev_add_child(pvd, cvd);
1325 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1326
1327 if (cvd == cvd->vdev_top)
1328 vdev_top_transfer(mvd, cvd);
1329
1330 ASSERT(mvd->vdev_children == 0);
1331 vdev_free(mvd);
1332 }
1333
1334 void
1335 vdev_metaslab_group_create(vdev_t *vd)
1336 {
1337 spa_t *spa = vd->vdev_spa;
1338
1339 /*
1340 * metaslab_group_create was delayed until allocation bias was available
1341 */
1342 if (vd->vdev_mg == NULL) {
1343 metaslab_class_t *mc;
1344
1345 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1346 vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1347
1348 ASSERT3U(vd->vdev_islog, ==,
1349 (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1350
1351 switch (vd->vdev_alloc_bias) {
1352 case VDEV_BIAS_LOG:
1353 mc = spa_log_class(spa);
1354 break;
1355 case VDEV_BIAS_SPECIAL:
1356 mc = spa_special_class(spa);
1357 break;
1358 case VDEV_BIAS_DEDUP:
1359 mc = spa_dedup_class(spa);
1360 break;
1361 default:
1362 mc = spa_normal_class(spa);
1363 }
1364
1365 vd->vdev_mg = metaslab_group_create(mc, vd,
1366 spa->spa_alloc_count);
1367
1368 if (!vd->vdev_islog) {
1369 vd->vdev_log_mg = metaslab_group_create(
1370 spa_embedded_log_class(spa), vd, 1);
1371 }
1372
1373 /*
1374 * The spa ashift min/max only apply for the normal metaslab
1375 * class. Class destination is late binding so ashift boundry
1376 * setting had to wait until now.
1377 */
1378 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1379 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1380 if (vd->vdev_ashift > spa->spa_max_ashift)
1381 spa->spa_max_ashift = vd->vdev_ashift;
1382 if (vd->vdev_ashift < spa->spa_min_ashift)
1383 spa->spa_min_ashift = vd->vdev_ashift;
1384
1385 uint64_t min_alloc = vdev_get_min_alloc(vd);
1386 if (min_alloc < spa->spa_min_alloc)
1387 spa->spa_min_alloc = min_alloc;
1388 }
1389 }
1390 }
1391
1392 int
1393 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1394 {
1395 spa_t *spa = vd->vdev_spa;
1396 uint64_t oldc = vd->vdev_ms_count;
1397 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1398 metaslab_t **mspp;
1399 int error;
1400 boolean_t expanding = (oldc != 0);
1401
1402 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1403
1404 /*
1405 * This vdev is not being allocated from yet or is a hole.
1406 */
1407 if (vd->vdev_ms_shift == 0)
1408 return (0);
1409
1410 ASSERT(!vd->vdev_ishole);
1411
1412 ASSERT(oldc <= newc);
1413
1414 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1415
1416 if (expanding) {
1417 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1418 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1419 }
1420
1421 vd->vdev_ms = mspp;
1422 vd->vdev_ms_count = newc;
1423
1424 for (uint64_t m = oldc; m < newc; m++) {
1425 uint64_t object = 0;
1426 /*
1427 * vdev_ms_array may be 0 if we are creating the "fake"
1428 * metaslabs for an indirect vdev for zdb's leak detection.
1429 * See zdb_leak_init().
1430 */
1431 if (txg == 0 && vd->vdev_ms_array != 0) {
1432 error = dmu_read(spa->spa_meta_objset,
1433 vd->vdev_ms_array,
1434 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1435 DMU_READ_PREFETCH);
1436 if (error != 0) {
1437 vdev_dbgmsg(vd, "unable to read the metaslab "
1438 "array [error=%d]", error);
1439 return (error);
1440 }
1441 }
1442
1443 error = metaslab_init(vd->vdev_mg, m, object, txg,
1444 &(vd->vdev_ms[m]));
1445 if (error != 0) {
1446 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1447 error);
1448 return (error);
1449 }
1450 }
1451
1452 /*
1453 * Find the emptiest metaslab on the vdev and mark it for use for
1454 * embedded slog by moving it from the regular to the log metaslab
1455 * group.
1456 */
1457 if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1458 vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1459 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1460 uint64_t slog_msid = 0;
1461 uint64_t smallest = UINT64_MAX;
1462
1463 /*
1464 * Note, we only search the new metaslabs, because the old
1465 * (pre-existing) ones may be active (e.g. have non-empty
1466 * range_tree's), and we don't move them to the new
1467 * metaslab_t.
1468 */
1469 for (uint64_t m = oldc; m < newc; m++) {
1470 uint64_t alloc =
1471 space_map_allocated(vd->vdev_ms[m]->ms_sm);
1472 if (alloc < smallest) {
1473 slog_msid = m;
1474 smallest = alloc;
1475 }
1476 }
1477 metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1478 /*
1479 * The metaslab was marked as dirty at the end of
1480 * metaslab_init(). Remove it from the dirty list so that we
1481 * can uninitialize and reinitialize it to the new class.
1482 */
1483 if (txg != 0) {
1484 (void) txg_list_remove_this(&vd->vdev_ms_list,
1485 slog_ms, txg);
1486 }
1487 uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1488 metaslab_fini(slog_ms);
1489 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1490 &vd->vdev_ms[slog_msid]));
1491 }
1492
1493 if (txg == 0)
1494 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1495
1496 /*
1497 * If the vdev is being removed we don't activate
1498 * the metaslabs since we want to ensure that no new
1499 * allocations are performed on this device.
1500 */
1501 if (!expanding && !vd->vdev_removing) {
1502 metaslab_group_activate(vd->vdev_mg);
1503 if (vd->vdev_log_mg != NULL)
1504 metaslab_group_activate(vd->vdev_log_mg);
1505 }
1506
1507 if (txg == 0)
1508 spa_config_exit(spa, SCL_ALLOC, FTAG);
1509
1510 /*
1511 * Regardless whether this vdev was just added or it is being
1512 * expanded, the metaslab count has changed. Recalculate the
1513 * block limit.
1514 */
1515 spa_log_sm_set_blocklimit(spa);
1516
1517 return (0);
1518 }
1519
1520 void
1521 vdev_metaslab_fini(vdev_t *vd)
1522 {
1523 if (vd->vdev_checkpoint_sm != NULL) {
1524 ASSERT(spa_feature_is_active(vd->vdev_spa,
1525 SPA_FEATURE_POOL_CHECKPOINT));
1526 space_map_close(vd->vdev_checkpoint_sm);
1527 /*
1528 * Even though we close the space map, we need to set its
1529 * pointer to NULL. The reason is that vdev_metaslab_fini()
1530 * may be called multiple times for certain operations
1531 * (i.e. when destroying a pool) so we need to ensure that
1532 * this clause never executes twice. This logic is similar
1533 * to the one used for the vdev_ms clause below.
1534 */
1535 vd->vdev_checkpoint_sm = NULL;
1536 }
1537
1538 if (vd->vdev_ms != NULL) {
1539 metaslab_group_t *mg = vd->vdev_mg;
1540
1541 metaslab_group_passivate(mg);
1542 if (vd->vdev_log_mg != NULL) {
1543 ASSERT(!vd->vdev_islog);
1544 metaslab_group_passivate(vd->vdev_log_mg);
1545 }
1546
1547 uint64_t count = vd->vdev_ms_count;
1548 for (uint64_t m = 0; m < count; m++) {
1549 metaslab_t *msp = vd->vdev_ms[m];
1550 if (msp != NULL)
1551 metaslab_fini(msp);
1552 }
1553 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1554 vd->vdev_ms = NULL;
1555 vd->vdev_ms_count = 0;
1556
1557 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1558 ASSERT0(mg->mg_histogram[i]);
1559 if (vd->vdev_log_mg != NULL)
1560 ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1561 }
1562 }
1563 ASSERT0(vd->vdev_ms_count);
1564 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1565 }
1566
1567 typedef struct vdev_probe_stats {
1568 boolean_t vps_readable;
1569 boolean_t vps_writeable;
1570 int vps_flags;
1571 } vdev_probe_stats_t;
1572
1573 static void
1574 vdev_probe_done(zio_t *zio)
1575 {
1576 spa_t *spa = zio->io_spa;
1577 vdev_t *vd = zio->io_vd;
1578 vdev_probe_stats_t *vps = zio->io_private;
1579
1580 ASSERT(vd->vdev_probe_zio != NULL);
1581
1582 if (zio->io_type == ZIO_TYPE_READ) {
1583 if (zio->io_error == 0)
1584 vps->vps_readable = 1;
1585 if (zio->io_error == 0 && spa_writeable(spa)) {
1586 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1587 zio->io_offset, zio->io_size, zio->io_abd,
1588 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1589 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1590 } else {
1591 abd_free(zio->io_abd);
1592 }
1593 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1594 if (zio->io_error == 0)
1595 vps->vps_writeable = 1;
1596 abd_free(zio->io_abd);
1597 } else if (zio->io_type == ZIO_TYPE_NULL) {
1598 zio_t *pio;
1599 zio_link_t *zl;
1600
1601 vd->vdev_cant_read |= !vps->vps_readable;
1602 vd->vdev_cant_write |= !vps->vps_writeable;
1603
1604 if (vdev_readable(vd) &&
1605 (vdev_writeable(vd) || !spa_writeable(spa))) {
1606 zio->io_error = 0;
1607 } else {
1608 ASSERT(zio->io_error != 0);
1609 vdev_dbgmsg(vd, "failed probe");
1610 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1611 spa, vd, NULL, NULL, 0);
1612 zio->io_error = SET_ERROR(ENXIO);
1613 }
1614
1615 mutex_enter(&vd->vdev_probe_lock);
1616 ASSERT(vd->vdev_probe_zio == zio);
1617 vd->vdev_probe_zio = NULL;
1618 mutex_exit(&vd->vdev_probe_lock);
1619
1620 zl = NULL;
1621 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1622 if (!vdev_accessible(vd, pio))
1623 pio->io_error = SET_ERROR(ENXIO);
1624
1625 kmem_free(vps, sizeof (*vps));
1626 }
1627 }
1628
1629 /*
1630 * Determine whether this device is accessible.
1631 *
1632 * Read and write to several known locations: the pad regions of each
1633 * vdev label but the first, which we leave alone in case it contains
1634 * a VTOC.
1635 */
1636 zio_t *
1637 vdev_probe(vdev_t *vd, zio_t *zio)
1638 {
1639 spa_t *spa = vd->vdev_spa;
1640 vdev_probe_stats_t *vps = NULL;
1641 zio_t *pio;
1642
1643 ASSERT(vd->vdev_ops->vdev_op_leaf);
1644
1645 /*
1646 * Don't probe the probe.
1647 */
1648 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1649 return (NULL);
1650
1651 /*
1652 * To prevent 'probe storms' when a device fails, we create
1653 * just one probe i/o at a time. All zios that want to probe
1654 * this vdev will become parents of the probe io.
1655 */
1656 mutex_enter(&vd->vdev_probe_lock);
1657
1658 if ((pio = vd->vdev_probe_zio) == NULL) {
1659 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1660
1661 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1662 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1663 ZIO_FLAG_TRYHARD;
1664
1665 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1666 /*
1667 * vdev_cant_read and vdev_cant_write can only
1668 * transition from TRUE to FALSE when we have the
1669 * SCL_ZIO lock as writer; otherwise they can only
1670 * transition from FALSE to TRUE. This ensures that
1671 * any zio looking at these values can assume that
1672 * failures persist for the life of the I/O. That's
1673 * important because when a device has intermittent
1674 * connectivity problems, we want to ensure that
1675 * they're ascribed to the device (ENXIO) and not
1676 * the zio (EIO).
1677 *
1678 * Since we hold SCL_ZIO as writer here, clear both
1679 * values so the probe can reevaluate from first
1680 * principles.
1681 */
1682 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1683 vd->vdev_cant_read = B_FALSE;
1684 vd->vdev_cant_write = B_FALSE;
1685 }
1686
1687 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1688 vdev_probe_done, vps,
1689 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1690
1691 /*
1692 * We can't change the vdev state in this context, so we
1693 * kick off an async task to do it on our behalf.
1694 */
1695 if (zio != NULL) {
1696 vd->vdev_probe_wanted = B_TRUE;
1697 spa_async_request(spa, SPA_ASYNC_PROBE);
1698 }
1699 }
1700
1701 if (zio != NULL)
1702 zio_add_child(zio, pio);
1703
1704 mutex_exit(&vd->vdev_probe_lock);
1705
1706 if (vps == NULL) {
1707 ASSERT(zio != NULL);
1708 return (NULL);
1709 }
1710
1711 for (int l = 1; l < VDEV_LABELS; l++) {
1712 zio_nowait(zio_read_phys(pio, vd,
1713 vdev_label_offset(vd->vdev_psize, l,
1714 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1715 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1716 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1717 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1718 }
1719
1720 if (zio == NULL)
1721 return (pio);
1722
1723 zio_nowait(pio);
1724 return (NULL);
1725 }
1726
1727 static void
1728 vdev_open_child(void *arg)
1729 {
1730 vdev_t *vd = arg;
1731
1732 vd->vdev_open_thread = curthread;
1733 vd->vdev_open_error = vdev_open(vd);
1734 vd->vdev_open_thread = NULL;
1735 }
1736
1737 static boolean_t
1738 vdev_uses_zvols(vdev_t *vd)
1739 {
1740 #ifdef _KERNEL
1741 if (zvol_is_zvol(vd->vdev_path))
1742 return (B_TRUE);
1743 #endif
1744
1745 for (int c = 0; c < vd->vdev_children; c++)
1746 if (vdev_uses_zvols(vd->vdev_child[c]))
1747 return (B_TRUE);
1748
1749 return (B_FALSE);
1750 }
1751
1752 /*
1753 * Returns B_TRUE if the passed child should be opened.
1754 */
1755 static boolean_t
1756 vdev_default_open_children_func(vdev_t *vd)
1757 {
1758 return (B_TRUE);
1759 }
1760
1761 /*
1762 * Open the requested child vdevs. If any of the leaf vdevs are using
1763 * a ZFS volume then do the opens in a single thread. This avoids a
1764 * deadlock when the current thread is holding the spa_namespace_lock.
1765 */
1766 static void
1767 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1768 {
1769 int children = vd->vdev_children;
1770
1771 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1772 children, children, TASKQ_PREPOPULATE);
1773 vd->vdev_nonrot = B_TRUE;
1774
1775 for (int c = 0; c < children; c++) {
1776 vdev_t *cvd = vd->vdev_child[c];
1777
1778 if (open_func(cvd) == B_FALSE)
1779 continue;
1780
1781 if (tq == NULL || vdev_uses_zvols(vd)) {
1782 cvd->vdev_open_error = vdev_open(cvd);
1783 } else {
1784 VERIFY(taskq_dispatch(tq, vdev_open_child,
1785 cvd, TQ_SLEEP) != TASKQID_INVALID);
1786 }
1787
1788 vd->vdev_nonrot &= cvd->vdev_nonrot;
1789 }
1790
1791 if (tq != NULL) {
1792 taskq_wait(tq);
1793 taskq_destroy(tq);
1794 }
1795 }
1796
1797 /*
1798 * Open all child vdevs.
1799 */
1800 void
1801 vdev_open_children(vdev_t *vd)
1802 {
1803 vdev_open_children_impl(vd, vdev_default_open_children_func);
1804 }
1805
1806 /*
1807 * Conditionally open a subset of child vdevs.
1808 */
1809 void
1810 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
1811 {
1812 vdev_open_children_impl(vd, open_func);
1813 }
1814
1815 /*
1816 * Compute the raidz-deflation ratio. Note, we hard-code
1817 * in 128k (1 << 17) because it is the "typical" blocksize.
1818 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1819 * otherwise it would inconsistently account for existing bp's.
1820 */
1821 static void
1822 vdev_set_deflate_ratio(vdev_t *vd)
1823 {
1824 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1825 vd->vdev_deflate_ratio = (1 << 17) /
1826 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1827 }
1828 }
1829
1830 /*
1831 * Maximize performance by inflating the configured ashift for top level
1832 * vdevs to be as close to the physical ashift as possible while maintaining
1833 * administrator defined limits and ensuring it doesn't go below the
1834 * logical ashift.
1835 */
1836 static void
1837 vdev_ashift_optimize(vdev_t *vd)
1838 {
1839 ASSERT(vd == vd->vdev_top);
1840
1841 if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1842 vd->vdev_ashift = MIN(
1843 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
1844 MAX(zfs_vdev_min_auto_ashift,
1845 vd->vdev_physical_ashift));
1846 } else {
1847 /*
1848 * If the logical and physical ashifts are the same, then
1849 * we ensure that the top-level vdev's ashift is not smaller
1850 * than our minimum ashift value. For the unusual case
1851 * where logical ashift > physical ashift, we can't cap
1852 * the calculated ashift based on max ashift as that
1853 * would cause failures.
1854 * We still check if we need to increase it to match
1855 * the min ashift.
1856 */
1857 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
1858 vd->vdev_ashift);
1859 }
1860 }
1861
1862 /*
1863 * Prepare a virtual device for access.
1864 */
1865 int
1866 vdev_open(vdev_t *vd)
1867 {
1868 spa_t *spa = vd->vdev_spa;
1869 int error;
1870 uint64_t osize = 0;
1871 uint64_t max_osize = 0;
1872 uint64_t asize, max_asize, psize;
1873 uint64_t logical_ashift = 0;
1874 uint64_t physical_ashift = 0;
1875
1876 ASSERT(vd->vdev_open_thread == curthread ||
1877 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1878 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1879 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1880 vd->vdev_state == VDEV_STATE_OFFLINE);
1881
1882 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1883 vd->vdev_cant_read = B_FALSE;
1884 vd->vdev_cant_write = B_FALSE;
1885 vd->vdev_min_asize = vdev_get_min_asize(vd);
1886
1887 /*
1888 * If this vdev is not removed, check its fault status. If it's
1889 * faulted, bail out of the open.
1890 */
1891 if (!vd->vdev_removed && vd->vdev_faulted) {
1892 ASSERT(vd->vdev_children == 0);
1893 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1894 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1895 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1896 vd->vdev_label_aux);
1897 return (SET_ERROR(ENXIO));
1898 } else if (vd->vdev_offline) {
1899 ASSERT(vd->vdev_children == 0);
1900 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1901 return (SET_ERROR(ENXIO));
1902 }
1903
1904 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1905 &logical_ashift, &physical_ashift);
1906 /*
1907 * Physical volume size should never be larger than its max size, unless
1908 * the disk has shrunk while we were reading it or the device is buggy
1909 * or damaged: either way it's not safe for use, bail out of the open.
1910 */
1911 if (osize > max_osize) {
1912 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1913 VDEV_AUX_OPEN_FAILED);
1914 return (SET_ERROR(ENXIO));
1915 }
1916
1917 /*
1918 * Reset the vdev_reopening flag so that we actually close
1919 * the vdev on error.
1920 */
1921 vd->vdev_reopening = B_FALSE;
1922 if (zio_injection_enabled && error == 0)
1923 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
1924
1925 if (error) {
1926 if (vd->vdev_removed &&
1927 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1928 vd->vdev_removed = B_FALSE;
1929
1930 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1931 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1932 vd->vdev_stat.vs_aux);
1933 } else {
1934 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1935 vd->vdev_stat.vs_aux);
1936 }
1937 return (error);
1938 }
1939
1940 vd->vdev_removed = B_FALSE;
1941
1942 /*
1943 * Recheck the faulted flag now that we have confirmed that
1944 * the vdev is accessible. If we're faulted, bail.
1945 */
1946 if (vd->vdev_faulted) {
1947 ASSERT(vd->vdev_children == 0);
1948 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1949 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1950 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1951 vd->vdev_label_aux);
1952 return (SET_ERROR(ENXIO));
1953 }
1954
1955 if (vd->vdev_degraded) {
1956 ASSERT(vd->vdev_children == 0);
1957 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1958 VDEV_AUX_ERR_EXCEEDED);
1959 } else {
1960 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1961 }
1962
1963 /*
1964 * For hole or missing vdevs we just return success.
1965 */
1966 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1967 return (0);
1968
1969 for (int c = 0; c < vd->vdev_children; c++) {
1970 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1971 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1972 VDEV_AUX_NONE);
1973 break;
1974 }
1975 }
1976
1977 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1978 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1979
1980 if (vd->vdev_children == 0) {
1981 if (osize < SPA_MINDEVSIZE) {
1982 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1983 VDEV_AUX_TOO_SMALL);
1984 return (SET_ERROR(EOVERFLOW));
1985 }
1986 psize = osize;
1987 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1988 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1989 VDEV_LABEL_END_SIZE);
1990 } else {
1991 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1992 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1993 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1994 VDEV_AUX_TOO_SMALL);
1995 return (SET_ERROR(EOVERFLOW));
1996 }
1997 psize = 0;
1998 asize = osize;
1999 max_asize = max_osize;
2000 }
2001
2002 /*
2003 * If the vdev was expanded, record this so that we can re-create the
2004 * uberblock rings in labels {2,3}, during the next sync.
2005 */
2006 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2007 vd->vdev_copy_uberblocks = B_TRUE;
2008
2009 vd->vdev_psize = psize;
2010
2011 /*
2012 * Make sure the allocatable size hasn't shrunk too much.
2013 */
2014 if (asize < vd->vdev_min_asize) {
2015 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2016 VDEV_AUX_BAD_LABEL);
2017 return (SET_ERROR(EINVAL));
2018 }
2019
2020 /*
2021 * We can always set the logical/physical ashift members since
2022 * their values are only used to calculate the vdev_ashift when
2023 * the device is first added to the config. These values should
2024 * not be used for anything else since they may change whenever
2025 * the device is reopened and we don't store them in the label.
2026 */
2027 vd->vdev_physical_ashift =
2028 MAX(physical_ashift, vd->vdev_physical_ashift);
2029 vd->vdev_logical_ashift = MAX(logical_ashift,
2030 vd->vdev_logical_ashift);
2031
2032 if (vd->vdev_asize == 0) {
2033 /*
2034 * This is the first-ever open, so use the computed values.
2035 * For compatibility, a different ashift can be requested.
2036 */
2037 vd->vdev_asize = asize;
2038 vd->vdev_max_asize = max_asize;
2039
2040 /*
2041 * If the vdev_ashift was not overriden at creation time,
2042 * then set it the logical ashift and optimize the ashift.
2043 */
2044 if (vd->vdev_ashift == 0) {
2045 vd->vdev_ashift = vd->vdev_logical_ashift;
2046
2047 if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2048 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2049 VDEV_AUX_ASHIFT_TOO_BIG);
2050 return (SET_ERROR(EDOM));
2051 }
2052
2053 if (vd->vdev_top == vd) {
2054 vdev_ashift_optimize(vd);
2055 }
2056 }
2057 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2058 vd->vdev_ashift > ASHIFT_MAX)) {
2059 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2060 VDEV_AUX_BAD_ASHIFT);
2061 return (SET_ERROR(EDOM));
2062 }
2063 } else {
2064 /*
2065 * Make sure the alignment required hasn't increased.
2066 */
2067 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2068 vd->vdev_ops->vdev_op_leaf) {
2069 (void) zfs_ereport_post(
2070 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2071 spa, vd, NULL, NULL, 0);
2072 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2073 VDEV_AUX_BAD_LABEL);
2074 return (SET_ERROR(EDOM));
2075 }
2076 vd->vdev_max_asize = max_asize;
2077 }
2078
2079 /*
2080 * If all children are healthy we update asize if either:
2081 * The asize has increased, due to a device expansion caused by dynamic
2082 * LUN growth or vdev replacement, and automatic expansion is enabled;
2083 * making the additional space available.
2084 *
2085 * The asize has decreased, due to a device shrink usually caused by a
2086 * vdev replace with a smaller device. This ensures that calculations
2087 * based of max_asize and asize e.g. esize are always valid. It's safe
2088 * to do this as we've already validated that asize is greater than
2089 * vdev_min_asize.
2090 */
2091 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2092 ((asize > vd->vdev_asize &&
2093 (vd->vdev_expanding || spa->spa_autoexpand)) ||
2094 (asize < vd->vdev_asize)))
2095 vd->vdev_asize = asize;
2096
2097 vdev_set_min_asize(vd);
2098
2099 /*
2100 * Ensure we can issue some IO before declaring the
2101 * vdev open for business.
2102 */
2103 if (vd->vdev_ops->vdev_op_leaf &&
2104 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2105 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2106 VDEV_AUX_ERR_EXCEEDED);
2107 return (error);
2108 }
2109
2110 /*
2111 * Track the the minimum allocation size.
2112 */
2113 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2114 vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2115 uint64_t min_alloc = vdev_get_min_alloc(vd);
2116 if (min_alloc < spa->spa_min_alloc)
2117 spa->spa_min_alloc = min_alloc;
2118 }
2119
2120 /*
2121 * If this is a leaf vdev, assess whether a resilver is needed.
2122 * But don't do this if we are doing a reopen for a scrub, since
2123 * this would just restart the scrub we are already doing.
2124 */
2125 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2126 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2127
2128 return (0);
2129 }
2130
2131 /*
2132 * Called once the vdevs are all opened, this routine validates the label
2133 * contents. This needs to be done before vdev_load() so that we don't
2134 * inadvertently do repair I/Os to the wrong device.
2135 *
2136 * This function will only return failure if one of the vdevs indicates that it
2137 * has since been destroyed or exported. This is only possible if
2138 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
2139 * will be updated but the function will return 0.
2140 */
2141 int
2142 vdev_validate(vdev_t *vd)
2143 {
2144 spa_t *spa = vd->vdev_spa;
2145 nvlist_t *label;
2146 uint64_t guid = 0, aux_guid = 0, top_guid;
2147 uint64_t state;
2148 nvlist_t *nvl;
2149 uint64_t txg;
2150
2151 if (vdev_validate_skip)
2152 return (0);
2153
2154 for (uint64_t c = 0; c < vd->vdev_children; c++)
2155 if (vdev_validate(vd->vdev_child[c]) != 0)
2156 return (SET_ERROR(EBADF));
2157
2158 /*
2159 * If the device has already failed, or was marked offline, don't do
2160 * any further validation. Otherwise, label I/O will fail and we will
2161 * overwrite the previous state.
2162 */
2163 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2164 return (0);
2165
2166 /*
2167 * If we are performing an extreme rewind, we allow for a label that
2168 * was modified at a point after the current txg.
2169 * If config lock is not held do not check for the txg. spa_sync could
2170 * be updating the vdev's label before updating spa_last_synced_txg.
2171 */
2172 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2173 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2174 txg = UINT64_MAX;
2175 else
2176 txg = spa_last_synced_txg(spa);
2177
2178 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2179 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2180 VDEV_AUX_BAD_LABEL);
2181 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2182 "txg %llu", (u_longlong_t)txg);
2183 return (0);
2184 }
2185
2186 /*
2187 * Determine if this vdev has been split off into another
2188 * pool. If so, then refuse to open it.
2189 */
2190 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2191 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2192 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2193 VDEV_AUX_SPLIT_POOL);
2194 nvlist_free(label);
2195 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2196 return (0);
2197 }
2198
2199 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2200 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2201 VDEV_AUX_CORRUPT_DATA);
2202 nvlist_free(label);
2203 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2204 ZPOOL_CONFIG_POOL_GUID);
2205 return (0);
2206 }
2207
2208 /*
2209 * If config is not trusted then ignore the spa guid check. This is
2210 * necessary because if the machine crashed during a re-guid the new
2211 * guid might have been written to all of the vdev labels, but not the
2212 * cached config. The check will be performed again once we have the
2213 * trusted config from the MOS.
2214 */
2215 if (spa->spa_trust_config && guid != spa_guid(spa)) {
2216 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2217 VDEV_AUX_CORRUPT_DATA);
2218 nvlist_free(label);
2219 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2220 "match config (%llu != %llu)", (u_longlong_t)guid,
2221 (u_longlong_t)spa_guid(spa));
2222 return (0);
2223 }
2224
2225 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2226 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2227 &aux_guid) != 0)
2228 aux_guid = 0;
2229
2230 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2231 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2232 VDEV_AUX_CORRUPT_DATA);
2233 nvlist_free(label);
2234 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2235 ZPOOL_CONFIG_GUID);
2236 return (0);
2237 }
2238
2239 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2240 != 0) {
2241 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2242 VDEV_AUX_CORRUPT_DATA);
2243 nvlist_free(label);
2244 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2245 ZPOOL_CONFIG_TOP_GUID);
2246 return (0);
2247 }
2248
2249 /*
2250 * If this vdev just became a top-level vdev because its sibling was
2251 * detached, it will have adopted the parent's vdev guid -- but the
2252 * label may or may not be on disk yet. Fortunately, either version
2253 * of the label will have the same top guid, so if we're a top-level
2254 * vdev, we can safely compare to that instead.
2255 * However, if the config comes from a cachefile that failed to update
2256 * after the detach, a top-level vdev will appear as a non top-level
2257 * vdev in the config. Also relax the constraints if we perform an
2258 * extreme rewind.
2259 *
2260 * If we split this vdev off instead, then we also check the
2261 * original pool's guid. We don't want to consider the vdev
2262 * corrupt if it is partway through a split operation.
2263 */
2264 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2265 boolean_t mismatch = B_FALSE;
2266 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2267 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2268 mismatch = B_TRUE;
2269 } else {
2270 if (vd->vdev_guid != top_guid &&
2271 vd->vdev_top->vdev_guid != guid)
2272 mismatch = B_TRUE;
2273 }
2274
2275 if (mismatch) {
2276 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2277 VDEV_AUX_CORRUPT_DATA);
2278 nvlist_free(label);
2279 vdev_dbgmsg(vd, "vdev_validate: config guid "
2280 "doesn't match label guid");
2281 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2282 (u_longlong_t)vd->vdev_guid,
2283 (u_longlong_t)vd->vdev_top->vdev_guid);
2284 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2285 "aux_guid %llu", (u_longlong_t)guid,
2286 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2287 return (0);
2288 }
2289 }
2290
2291 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2292 &state) != 0) {
2293 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2294 VDEV_AUX_CORRUPT_DATA);
2295 nvlist_free(label);
2296 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2297 ZPOOL_CONFIG_POOL_STATE);
2298 return (0);
2299 }
2300
2301 nvlist_free(label);
2302
2303 /*
2304 * If this is a verbatim import, no need to check the
2305 * state of the pool.
2306 */
2307 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2308 spa_load_state(spa) == SPA_LOAD_OPEN &&
2309 state != POOL_STATE_ACTIVE) {
2310 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2311 "for spa %s", (u_longlong_t)state, spa->spa_name);
2312 return (SET_ERROR(EBADF));
2313 }
2314
2315 /*
2316 * If we were able to open and validate a vdev that was
2317 * previously marked permanently unavailable, clear that state
2318 * now.
2319 */
2320 if (vd->vdev_not_present)
2321 vd->vdev_not_present = 0;
2322
2323 return (0);
2324 }
2325
2326 static void
2327 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2328 {
2329 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2330 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2331 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2332 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2333 dvd->vdev_path, svd->vdev_path);
2334 spa_strfree(dvd->vdev_path);
2335 dvd->vdev_path = spa_strdup(svd->vdev_path);
2336 }
2337 } else if (svd->vdev_path != NULL) {
2338 dvd->vdev_path = spa_strdup(svd->vdev_path);
2339 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2340 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2341 }
2342 }
2343
2344 /*
2345 * Recursively copy vdev paths from one vdev to another. Source and destination
2346 * vdev trees must have same geometry otherwise return error. Intended to copy
2347 * paths from userland config into MOS config.
2348 */
2349 int
2350 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2351 {
2352 if ((svd->vdev_ops == &vdev_missing_ops) ||
2353 (svd->vdev_ishole && dvd->vdev_ishole) ||
2354 (dvd->vdev_ops == &vdev_indirect_ops))
2355 return (0);
2356
2357 if (svd->vdev_ops != dvd->vdev_ops) {
2358 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2359 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2360 return (SET_ERROR(EINVAL));
2361 }
2362
2363 if (svd->vdev_guid != dvd->vdev_guid) {
2364 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2365 "%llu)", (u_longlong_t)svd->vdev_guid,
2366 (u_longlong_t)dvd->vdev_guid);
2367 return (SET_ERROR(EINVAL));
2368 }
2369
2370 if (svd->vdev_children != dvd->vdev_children) {
2371 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2372 "%llu != %llu", (u_longlong_t)svd->vdev_children,
2373 (u_longlong_t)dvd->vdev_children);
2374 return (SET_ERROR(EINVAL));
2375 }
2376
2377 for (uint64_t i = 0; i < svd->vdev_children; i++) {
2378 int error = vdev_copy_path_strict(svd->vdev_child[i],
2379 dvd->vdev_child[i]);
2380 if (error != 0)
2381 return (error);
2382 }
2383
2384 if (svd->vdev_ops->vdev_op_leaf)
2385 vdev_copy_path_impl(svd, dvd);
2386
2387 return (0);
2388 }
2389
2390 static void
2391 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2392 {
2393 ASSERT(stvd->vdev_top == stvd);
2394 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2395
2396 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2397 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2398 }
2399
2400 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2401 return;
2402
2403 /*
2404 * The idea here is that while a vdev can shift positions within
2405 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2406 * step outside of it.
2407 */
2408 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2409
2410 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2411 return;
2412
2413 ASSERT(vd->vdev_ops->vdev_op_leaf);
2414
2415 vdev_copy_path_impl(vd, dvd);
2416 }
2417
2418 /*
2419 * Recursively copy vdev paths from one root vdev to another. Source and
2420 * destination vdev trees may differ in geometry. For each destination leaf
2421 * vdev, search a vdev with the same guid and top vdev id in the source.
2422 * Intended to copy paths from userland config into MOS config.
2423 */
2424 void
2425 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2426 {
2427 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2428 ASSERT(srvd->vdev_ops == &vdev_root_ops);
2429 ASSERT(drvd->vdev_ops == &vdev_root_ops);
2430
2431 for (uint64_t i = 0; i < children; i++) {
2432 vdev_copy_path_search(srvd->vdev_child[i],
2433 drvd->vdev_child[i]);
2434 }
2435 }
2436
2437 /*
2438 * Close a virtual device.
2439 */
2440 void
2441 vdev_close(vdev_t *vd)
2442 {
2443 vdev_t *pvd = vd->vdev_parent;
2444 spa_t *spa __maybe_unused = vd->vdev_spa;
2445
2446 ASSERT(vd != NULL);
2447 ASSERT(vd->vdev_open_thread == curthread ||
2448 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2449
2450 /*
2451 * If our parent is reopening, then we are as well, unless we are
2452 * going offline.
2453 */
2454 if (pvd != NULL && pvd->vdev_reopening)
2455 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2456
2457 vd->vdev_ops->vdev_op_close(vd);
2458
2459 vdev_cache_purge(vd);
2460
2461 /*
2462 * We record the previous state before we close it, so that if we are
2463 * doing a reopen(), we don't generate FMA ereports if we notice that
2464 * it's still faulted.
2465 */
2466 vd->vdev_prevstate = vd->vdev_state;
2467
2468 if (vd->vdev_offline)
2469 vd->vdev_state = VDEV_STATE_OFFLINE;
2470 else
2471 vd->vdev_state = VDEV_STATE_CLOSED;
2472 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2473 }
2474
2475 void
2476 vdev_hold(vdev_t *vd)
2477 {
2478 spa_t *spa = vd->vdev_spa;
2479
2480 ASSERT(spa_is_root(spa));
2481 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2482 return;
2483
2484 for (int c = 0; c < vd->vdev_children; c++)
2485 vdev_hold(vd->vdev_child[c]);
2486
2487 if (vd->vdev_ops->vdev_op_leaf)
2488 vd->vdev_ops->vdev_op_hold(vd);
2489 }
2490
2491 void
2492 vdev_rele(vdev_t *vd)
2493 {
2494 ASSERT(spa_is_root(vd->vdev_spa));
2495 for (int c = 0; c < vd->vdev_children; c++)
2496 vdev_rele(vd->vdev_child[c]);
2497
2498 if (vd->vdev_ops->vdev_op_leaf)
2499 vd->vdev_ops->vdev_op_rele(vd);
2500 }
2501
2502 /*
2503 * Reopen all interior vdevs and any unopened leaves. We don't actually
2504 * reopen leaf vdevs which had previously been opened as they might deadlock
2505 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
2506 * If the leaf has never been opened then open it, as usual.
2507 */
2508 void
2509 vdev_reopen(vdev_t *vd)
2510 {
2511 spa_t *spa = vd->vdev_spa;
2512
2513 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2514
2515 /* set the reopening flag unless we're taking the vdev offline */
2516 vd->vdev_reopening = !vd->vdev_offline;
2517 vdev_close(vd);
2518 (void) vdev_open(vd);
2519
2520 /*
2521 * Call vdev_validate() here to make sure we have the same device.
2522 * Otherwise, a device with an invalid label could be successfully
2523 * opened in response to vdev_reopen().
2524 */
2525 if (vd->vdev_aux) {
2526 (void) vdev_validate_aux(vd);
2527 if (vdev_readable(vd) && vdev_writeable(vd) &&
2528 vd->vdev_aux == &spa->spa_l2cache) {
2529 /*
2530 * In case the vdev is present we should evict all ARC
2531 * buffers and pointers to log blocks and reclaim their
2532 * space before restoring its contents to L2ARC.
2533 */
2534 if (l2arc_vdev_present(vd)) {
2535 l2arc_rebuild_vdev(vd, B_TRUE);
2536 } else {
2537 l2arc_add_vdev(spa, vd);
2538 }
2539 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2540 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2541 }
2542 } else {
2543 (void) vdev_validate(vd);
2544 }
2545
2546 /*
2547 * Reassess parent vdev's health.
2548 */
2549 vdev_propagate_state(vd);
2550 }
2551
2552 int
2553 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2554 {
2555 int error;
2556
2557 /*
2558 * Normally, partial opens (e.g. of a mirror) are allowed.
2559 * For a create, however, we want to fail the request if
2560 * there are any components we can't open.
2561 */
2562 error = vdev_open(vd);
2563
2564 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2565 vdev_close(vd);
2566 return (error ? error : SET_ERROR(ENXIO));
2567 }
2568
2569 /*
2570 * Recursively load DTLs and initialize all labels.
2571 */
2572 if ((error = vdev_dtl_load(vd)) != 0 ||
2573 (error = vdev_label_init(vd, txg, isreplacing ?
2574 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2575 vdev_close(vd);
2576 return (error);
2577 }
2578
2579 return (0);
2580 }
2581
2582 void
2583 vdev_metaslab_set_size(vdev_t *vd)
2584 {
2585 uint64_t asize = vd->vdev_asize;
2586 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2587 uint64_t ms_shift;
2588
2589 /*
2590 * There are two dimensions to the metaslab sizing calculation:
2591 * the size of the metaslab and the count of metaslabs per vdev.
2592 *
2593 * The default values used below are a good balance between memory
2594 * usage (larger metaslab size means more memory needed for loaded
2595 * metaslabs; more metaslabs means more memory needed for the
2596 * metaslab_t structs), metaslab load time (larger metaslabs take
2597 * longer to load), and metaslab sync time (more metaslabs means
2598 * more time spent syncing all of them).
2599 *
2600 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2601 * The range of the dimensions are as follows:
2602 *
2603 * 2^29 <= ms_size <= 2^34
2604 * 16 <= ms_count <= 131,072
2605 *
2606 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2607 * at least 512MB (2^29) to minimize fragmentation effects when
2608 * testing with smaller devices. However, the count constraint
2609 * of at least 16 metaslabs will override this minimum size goal.
2610 *
2611 * On the upper end of vdev sizes, we aim for a maximum metaslab
2612 * size of 16GB. However, we will cap the total count to 2^17
2613 * metaslabs to keep our memory footprint in check and let the
2614 * metaslab size grow from there if that limit is hit.
2615 *
2616 * The net effect of applying above constrains is summarized below.
2617 *
2618 * vdev size metaslab count
2619 * --------------|-----------------
2620 * < 8GB ~16
2621 * 8GB - 100GB one per 512MB
2622 * 100GB - 3TB ~200
2623 * 3TB - 2PB one per 16GB
2624 * > 2PB ~131,072
2625 * --------------------------------
2626 *
2627 * Finally, note that all of the above calculate the initial
2628 * number of metaslabs. Expanding a top-level vdev will result
2629 * in additional metaslabs being allocated making it possible
2630 * to exceed the zfs_vdev_ms_count_limit.
2631 */
2632
2633 if (ms_count < zfs_vdev_min_ms_count)
2634 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2635 else if (ms_count > zfs_vdev_default_ms_count)
2636 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2637 else
2638 ms_shift = zfs_vdev_default_ms_shift;
2639
2640 if (ms_shift < SPA_MAXBLOCKSHIFT) {
2641 ms_shift = SPA_MAXBLOCKSHIFT;
2642 } else if (ms_shift > zfs_vdev_max_ms_shift) {
2643 ms_shift = zfs_vdev_max_ms_shift;
2644 /* cap the total count to constrain memory footprint */
2645 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2646 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2647 }
2648
2649 vd->vdev_ms_shift = ms_shift;
2650 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2651 }
2652
2653 void
2654 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2655 {
2656 ASSERT(vd == vd->vdev_top);
2657 /* indirect vdevs don't have metaslabs or dtls */
2658 ASSERT(vdev_is_concrete(vd) || flags == 0);
2659 ASSERT(ISP2(flags));
2660 ASSERT(spa_writeable(vd->vdev_spa));
2661
2662 if (flags & VDD_METASLAB)
2663 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2664
2665 if (flags & VDD_DTL)
2666 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2667
2668 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2669 }
2670
2671 void
2672 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2673 {
2674 for (int c = 0; c < vd->vdev_children; c++)
2675 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2676
2677 if (vd->vdev_ops->vdev_op_leaf)
2678 vdev_dirty(vd->vdev_top, flags, vd, txg);
2679 }
2680
2681 /*
2682 * DTLs.
2683 *
2684 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2685 * the vdev has less than perfect replication. There are four kinds of DTL:
2686 *
2687 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2688 *
2689 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2690 *
2691 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2692 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2693 * txgs that was scrubbed.
2694 *
2695 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2696 * persistent errors or just some device being offline.
2697 * Unlike the other three, the DTL_OUTAGE map is not generally
2698 * maintained; it's only computed when needed, typically to
2699 * determine whether a device can be detached.
2700 *
2701 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2702 * either has the data or it doesn't.
2703 *
2704 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2705 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2706 * if any child is less than fully replicated, then so is its parent.
2707 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2708 * comprising only those txgs which appear in 'maxfaults' or more children;
2709 * those are the txgs we don't have enough replication to read. For example,
2710 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2711 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2712 * two child DTL_MISSING maps.
2713 *
2714 * It should be clear from the above that to compute the DTLs and outage maps
2715 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2716 * Therefore, that is all we keep on disk. When loading the pool, or after
2717 * a configuration change, we generate all other DTLs from first principles.
2718 */
2719 void
2720 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2721 {
2722 range_tree_t *rt = vd->vdev_dtl[t];
2723
2724 ASSERT(t < DTL_TYPES);
2725 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2726 ASSERT(spa_writeable(vd->vdev_spa));
2727
2728 mutex_enter(&vd->vdev_dtl_lock);
2729 if (!range_tree_contains(rt, txg, size))
2730 range_tree_add(rt, txg, size);
2731 mutex_exit(&vd->vdev_dtl_lock);
2732 }
2733
2734 boolean_t
2735 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2736 {
2737 range_tree_t *rt = vd->vdev_dtl[t];
2738 boolean_t dirty = B_FALSE;
2739
2740 ASSERT(t < DTL_TYPES);
2741 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2742
2743 /*
2744 * While we are loading the pool, the DTLs have not been loaded yet.
2745 * This isn't a problem but it can result in devices being tried
2746 * which are known to not have the data. In which case, the import
2747 * is relying on the checksum to ensure that we get the right data.
2748 * Note that while importing we are only reading the MOS, which is
2749 * always checksummed.
2750 */
2751 mutex_enter(&vd->vdev_dtl_lock);
2752 if (!range_tree_is_empty(rt))
2753 dirty = range_tree_contains(rt, txg, size);
2754 mutex_exit(&vd->vdev_dtl_lock);
2755
2756 return (dirty);
2757 }
2758
2759 boolean_t
2760 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2761 {
2762 range_tree_t *rt = vd->vdev_dtl[t];
2763 boolean_t empty;
2764
2765 mutex_enter(&vd->vdev_dtl_lock);
2766 empty = range_tree_is_empty(rt);
2767 mutex_exit(&vd->vdev_dtl_lock);
2768
2769 return (empty);
2770 }
2771
2772 /*
2773 * Check if the txg falls within the range which must be
2774 * resilvered. DVAs outside this range can always be skipped.
2775 */
2776 boolean_t
2777 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2778 uint64_t phys_birth)
2779 {
2780 /* Set by sequential resilver. */
2781 if (phys_birth == TXG_UNKNOWN)
2782 return (B_TRUE);
2783
2784 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
2785 }
2786
2787 /*
2788 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
2789 */
2790 boolean_t
2791 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2792 uint64_t phys_birth)
2793 {
2794 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2795
2796 if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2797 vd->vdev_ops->vdev_op_leaf)
2798 return (B_TRUE);
2799
2800 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
2801 phys_birth));
2802 }
2803
2804 /*
2805 * Returns the lowest txg in the DTL range.
2806 */
2807 static uint64_t
2808 vdev_dtl_min(vdev_t *vd)
2809 {
2810 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2811 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2812 ASSERT0(vd->vdev_children);
2813
2814 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
2815 }
2816
2817 /*
2818 * Returns the highest txg in the DTL.
2819 */
2820 static uint64_t
2821 vdev_dtl_max(vdev_t *vd)
2822 {
2823 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2824 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2825 ASSERT0(vd->vdev_children);
2826
2827 return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
2828 }
2829
2830 /*
2831 * Determine if a resilvering vdev should remove any DTL entries from
2832 * its range. If the vdev was resilvering for the entire duration of the
2833 * scan then it should excise that range from its DTLs. Otherwise, this
2834 * vdev is considered partially resilvered and should leave its DTL
2835 * entries intact. The comment in vdev_dtl_reassess() describes how we
2836 * excise the DTLs.
2837 */
2838 static boolean_t
2839 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
2840 {
2841 ASSERT0(vd->vdev_children);
2842
2843 if (vd->vdev_state < VDEV_STATE_DEGRADED)
2844 return (B_FALSE);
2845
2846 if (vd->vdev_resilver_deferred)
2847 return (B_FALSE);
2848
2849 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2850 return (B_TRUE);
2851
2852 if (rebuild_done) {
2853 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2854 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
2855
2856 /* Rebuild not initiated by attach */
2857 if (vd->vdev_rebuild_txg == 0)
2858 return (B_TRUE);
2859
2860 /*
2861 * When a rebuild completes without error then all missing data
2862 * up to the rebuild max txg has been reconstructed and the DTL
2863 * is eligible for excision.
2864 */
2865 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
2866 vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
2867 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
2868 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
2869 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
2870 return (B_TRUE);
2871 }
2872 } else {
2873 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
2874 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
2875
2876 /* Resilver not initiated by attach */
2877 if (vd->vdev_resilver_txg == 0)
2878 return (B_TRUE);
2879
2880 /*
2881 * When a resilver is initiated the scan will assign the
2882 * scn_max_txg value to the highest txg value that exists
2883 * in all DTLs. If this device's max DTL is not part of this
2884 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
2885 * then it is not eligible for excision.
2886 */
2887 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2888 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
2889 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
2890 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
2891 return (B_TRUE);
2892 }
2893 }
2894
2895 return (B_FALSE);
2896 }
2897
2898 /*
2899 * Reassess DTLs after a config change or scrub completion. If txg == 0 no
2900 * write operations will be issued to the pool.
2901 */
2902 void
2903 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
2904 boolean_t scrub_done, boolean_t rebuild_done)
2905 {
2906 spa_t *spa = vd->vdev_spa;
2907 avl_tree_t reftree;
2908 int minref;
2909
2910 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2911
2912 for (int c = 0; c < vd->vdev_children; c++)
2913 vdev_dtl_reassess(vd->vdev_child[c], txg,
2914 scrub_txg, scrub_done, rebuild_done);
2915
2916 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2917 return;
2918
2919 if (vd->vdev_ops->vdev_op_leaf) {
2920 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2921 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2922 boolean_t check_excise = B_FALSE;
2923 boolean_t wasempty = B_TRUE;
2924
2925 mutex_enter(&vd->vdev_dtl_lock);
2926
2927 /*
2928 * If requested, pretend the scan or rebuild completed cleanly.
2929 */
2930 if (zfs_scan_ignore_errors) {
2931 if (scn != NULL)
2932 scn->scn_phys.scn_errors = 0;
2933 if (vr != NULL)
2934 vr->vr_rebuild_phys.vrp_errors = 0;
2935 }
2936
2937 if (scrub_txg != 0 &&
2938 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
2939 wasempty = B_FALSE;
2940 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
2941 "dtl:%llu/%llu errors:%llu",
2942 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
2943 (u_longlong_t)scrub_txg, spa->spa_scrub_started,
2944 (u_longlong_t)vdev_dtl_min(vd),
2945 (u_longlong_t)vdev_dtl_max(vd),
2946 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
2947 }
2948
2949 /*
2950 * If we've completed a scrub/resilver or a rebuild cleanly
2951 * then determine if this vdev should remove any DTLs. We
2952 * only want to excise regions on vdevs that were available
2953 * during the entire duration of this scan.
2954 */
2955 if (rebuild_done &&
2956 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
2957 check_excise = B_TRUE;
2958 } else {
2959 if (spa->spa_scrub_started ||
2960 (scn != NULL && scn->scn_phys.scn_errors == 0)) {
2961 check_excise = B_TRUE;
2962 }
2963 }
2964
2965 if (scrub_txg && check_excise &&
2966 vdev_dtl_should_excise(vd, rebuild_done)) {
2967 /*
2968 * We completed a scrub, resilver or rebuild up to
2969 * scrub_txg. If we did it without rebooting, then
2970 * the scrub dtl will be valid, so excise the old
2971 * region and fold in the scrub dtl. Otherwise,
2972 * leave the dtl as-is if there was an error.
2973 *
2974 * There's little trick here: to excise the beginning
2975 * of the DTL_MISSING map, we put it into a reference
2976 * tree and then add a segment with refcnt -1 that
2977 * covers the range [0, scrub_txg). This means
2978 * that each txg in that range has refcnt -1 or 0.
2979 * We then add DTL_SCRUB with a refcnt of 2, so that
2980 * entries in the range [0, scrub_txg) will have a
2981 * positive refcnt -- either 1 or 2. We then convert
2982 * the reference tree into the new DTL_MISSING map.
2983 */
2984 space_reftree_create(&reftree);
2985 space_reftree_add_map(&reftree,
2986 vd->vdev_dtl[DTL_MISSING], 1);
2987 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2988 space_reftree_add_map(&reftree,
2989 vd->vdev_dtl[DTL_SCRUB], 2);
2990 space_reftree_generate_map(&reftree,
2991 vd->vdev_dtl[DTL_MISSING], 1);
2992 space_reftree_destroy(&reftree);
2993
2994 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
2995 zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
2996 (u_longlong_t)vdev_dtl_min(vd),
2997 (u_longlong_t)vdev_dtl_max(vd));
2998 } else if (!wasempty) {
2999 zfs_dbgmsg("DTL_MISSING is now empty");
3000 }
3001 }
3002 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3003 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3004 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3005 if (scrub_done)
3006 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
3007 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3008 if (!vdev_readable(vd))
3009 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3010 else
3011 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3012 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3013
3014 /*
3015 * If the vdev was resilvering or rebuilding and no longer
3016 * has any DTLs then reset the appropriate flag and dirty
3017 * the top level so that we persist the change.
3018 */
3019 if (txg != 0 &&
3020 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3021 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3022 if (vd->vdev_rebuild_txg != 0) {
3023 vd->vdev_rebuild_txg = 0;
3024 vdev_config_dirty(vd->vdev_top);
3025 } else if (vd->vdev_resilver_txg != 0) {
3026 vd->vdev_resilver_txg = 0;
3027 vdev_config_dirty(vd->vdev_top);
3028 }
3029 }
3030
3031 mutex_exit(&vd->vdev_dtl_lock);
3032
3033 if (txg != 0)
3034 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3035 return;
3036 }
3037
3038 mutex_enter(&vd->vdev_dtl_lock);
3039 for (int t = 0; t < DTL_TYPES; t++) {
3040 /* account for child's outage in parent's missing map */
3041 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3042 if (t == DTL_SCRUB)
3043 continue; /* leaf vdevs only */
3044 if (t == DTL_PARTIAL)
3045 minref = 1; /* i.e. non-zero */
3046 else if (vdev_get_nparity(vd) != 0)
3047 minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */
3048 else
3049 minref = vd->vdev_children; /* any kind of mirror */
3050 space_reftree_create(&reftree);
3051 for (int c = 0; c < vd->vdev_children; c++) {
3052 vdev_t *cvd = vd->vdev_child[c];
3053 mutex_enter(&cvd->vdev_dtl_lock);
3054 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
3055 mutex_exit(&cvd->vdev_dtl_lock);
3056 }
3057 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
3058 space_reftree_destroy(&reftree);
3059 }
3060 mutex_exit(&vd->vdev_dtl_lock);
3061 }
3062
3063 int
3064 vdev_dtl_load(vdev_t *vd)
3065 {
3066 spa_t *spa = vd->vdev_spa;
3067 objset_t *mos = spa->spa_meta_objset;
3068 range_tree_t *rt;
3069 int error = 0;
3070
3071 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3072 ASSERT(vdev_is_concrete(vd));
3073
3074 error = space_map_open(&vd->vdev_dtl_sm, mos,
3075 vd->vdev_dtl_object, 0, -1ULL, 0);
3076 if (error)
3077 return (error);
3078 ASSERT(vd->vdev_dtl_sm != NULL);
3079
3080 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3081 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3082 if (error == 0) {
3083 mutex_enter(&vd->vdev_dtl_lock);
3084 range_tree_walk(rt, range_tree_add,
3085 vd->vdev_dtl[DTL_MISSING]);
3086 mutex_exit(&vd->vdev_dtl_lock);
3087 }
3088
3089 range_tree_vacate(rt, NULL, NULL);
3090 range_tree_destroy(rt);
3091
3092 return (error);
3093 }
3094
3095 for (int c = 0; c < vd->vdev_children; c++) {
3096 error = vdev_dtl_load(vd->vdev_child[c]);
3097 if (error != 0)
3098 break;
3099 }
3100
3101 return (error);
3102 }
3103
3104 static void
3105 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3106 {
3107 spa_t *spa = vd->vdev_spa;
3108 objset_t *mos = spa->spa_meta_objset;
3109 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3110 const char *string;
3111
3112 ASSERT(alloc_bias != VDEV_BIAS_NONE);
3113
3114 string =
3115 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3116 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3117 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3118
3119 ASSERT(string != NULL);
3120 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3121 1, strlen(string) + 1, string, tx));
3122
3123 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3124 spa_activate_allocation_classes(spa, tx);
3125 }
3126 }
3127
3128 void
3129 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3130 {
3131 spa_t *spa = vd->vdev_spa;
3132
3133 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3134 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3135 zapobj, tx));
3136 }
3137
3138 uint64_t
3139 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3140 {
3141 spa_t *spa = vd->vdev_spa;
3142 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3143 DMU_OT_NONE, 0, tx);
3144
3145 ASSERT(zap != 0);
3146 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3147 zap, tx));
3148
3149 return (zap);
3150 }
3151
3152 void
3153 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3154 {
3155 if (vd->vdev_ops != &vdev_hole_ops &&
3156 vd->vdev_ops != &vdev_missing_ops &&
3157 vd->vdev_ops != &vdev_root_ops &&
3158 !vd->vdev_top->vdev_removing) {
3159 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3160 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3161 }
3162 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3163 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3164 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3165 vdev_zap_allocation_data(vd, tx);
3166 }
3167 }
3168
3169 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3170 vdev_construct_zaps(vd->vdev_child[i], tx);
3171 }
3172 }
3173
3174 static void
3175 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3176 {
3177 spa_t *spa = vd->vdev_spa;
3178 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3179 objset_t *mos = spa->spa_meta_objset;
3180 range_tree_t *rtsync;
3181 dmu_tx_t *tx;
3182 uint64_t object = space_map_object(vd->vdev_dtl_sm);
3183
3184 ASSERT(vdev_is_concrete(vd));
3185 ASSERT(vd->vdev_ops->vdev_op_leaf);
3186
3187 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3188
3189 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3190 mutex_enter(&vd->vdev_dtl_lock);
3191 space_map_free(vd->vdev_dtl_sm, tx);
3192 space_map_close(vd->vdev_dtl_sm);
3193 vd->vdev_dtl_sm = NULL;
3194 mutex_exit(&vd->vdev_dtl_lock);
3195
3196 /*
3197 * We only destroy the leaf ZAP for detached leaves or for
3198 * removed log devices. Removed data devices handle leaf ZAP
3199 * cleanup later, once cancellation is no longer possible.
3200 */
3201 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3202 vd->vdev_top->vdev_islog)) {
3203 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3204 vd->vdev_leaf_zap = 0;
3205 }
3206
3207 dmu_tx_commit(tx);
3208 return;
3209 }
3210
3211 if (vd->vdev_dtl_sm == NULL) {
3212 uint64_t new_object;
3213
3214 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3215 VERIFY3U(new_object, !=, 0);
3216
3217 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3218 0, -1ULL, 0));
3219 ASSERT(vd->vdev_dtl_sm != NULL);
3220 }
3221
3222 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3223
3224 mutex_enter(&vd->vdev_dtl_lock);
3225 range_tree_walk(rt, range_tree_add, rtsync);
3226 mutex_exit(&vd->vdev_dtl_lock);
3227
3228 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3229 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3230 range_tree_vacate(rtsync, NULL, NULL);
3231
3232 range_tree_destroy(rtsync);
3233
3234 /*
3235 * If the object for the space map has changed then dirty
3236 * the top level so that we update the config.
3237 */
3238 if (object != space_map_object(vd->vdev_dtl_sm)) {
3239 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3240 "new object %llu", (u_longlong_t)txg, spa_name(spa),
3241 (u_longlong_t)object,
3242 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3243 vdev_config_dirty(vd->vdev_top);
3244 }
3245
3246 dmu_tx_commit(tx);
3247 }
3248
3249 /*
3250 * Determine whether the specified vdev can be offlined/detached/removed
3251 * without losing data.
3252 */
3253 boolean_t
3254 vdev_dtl_required(vdev_t *vd)
3255 {
3256 spa_t *spa = vd->vdev_spa;
3257 vdev_t *tvd = vd->vdev_top;
3258 uint8_t cant_read = vd->vdev_cant_read;
3259 boolean_t required;
3260
3261 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3262
3263 if (vd == spa->spa_root_vdev || vd == tvd)
3264 return (B_TRUE);
3265
3266 /*
3267 * Temporarily mark the device as unreadable, and then determine
3268 * whether this results in any DTL outages in the top-level vdev.
3269 * If not, we can safely offline/detach/remove the device.
3270 */
3271 vd->vdev_cant_read = B_TRUE;
3272 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3273 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3274 vd->vdev_cant_read = cant_read;
3275 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3276
3277 if (!required && zio_injection_enabled) {
3278 required = !!zio_handle_device_injection(vd, NULL,
3279 SET_ERROR(ECHILD));
3280 }
3281
3282 return (required);
3283 }
3284
3285 /*
3286 * Determine if resilver is needed, and if so the txg range.
3287 */
3288 boolean_t
3289 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3290 {
3291 boolean_t needed = B_FALSE;
3292 uint64_t thismin = UINT64_MAX;
3293 uint64_t thismax = 0;
3294
3295 if (vd->vdev_children == 0) {
3296 mutex_enter(&vd->vdev_dtl_lock);
3297 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3298 vdev_writeable(vd)) {
3299
3300 thismin = vdev_dtl_min(vd);
3301 thismax = vdev_dtl_max(vd);
3302 needed = B_TRUE;
3303 }
3304 mutex_exit(&vd->vdev_dtl_lock);
3305 } else {
3306 for (int c = 0; c < vd->vdev_children; c++) {
3307 vdev_t *cvd = vd->vdev_child[c];
3308 uint64_t cmin, cmax;
3309
3310 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3311 thismin = MIN(thismin, cmin);
3312 thismax = MAX(thismax, cmax);
3313 needed = B_TRUE;
3314 }
3315 }
3316 }
3317
3318 if (needed && minp) {
3319 *minp = thismin;
3320 *maxp = thismax;
3321 }
3322 return (needed);
3323 }
3324
3325 /*
3326 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
3327 * will contain either the checkpoint spacemap object or zero if none exists.
3328 * All other errors are returned to the caller.
3329 */
3330 int
3331 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3332 {
3333 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3334
3335 if (vd->vdev_top_zap == 0) {
3336 *sm_obj = 0;
3337 return (0);
3338 }
3339
3340 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3341 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3342 if (error == ENOENT) {
3343 *sm_obj = 0;
3344 error = 0;
3345 }
3346
3347 return (error);
3348 }
3349
3350 int
3351 vdev_load(vdev_t *vd)
3352 {
3353 int error = 0;
3354
3355 /*
3356 * Recursively load all children.
3357 */
3358 for (int c = 0; c < vd->vdev_children; c++) {
3359 error = vdev_load(vd->vdev_child[c]);
3360 if (error != 0) {
3361 return (error);
3362 }
3363 }
3364
3365 vdev_set_deflate_ratio(vd);
3366
3367 /*
3368 * On spa_load path, grab the allocation bias from our zap
3369 */
3370 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3371 spa_t *spa = vd->vdev_spa;
3372 char bias_str[64];
3373
3374 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3375 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3376 bias_str);
3377 if (error == 0) {
3378 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3379 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3380 } else if (error != ENOENT) {
3381 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3382 VDEV_AUX_CORRUPT_DATA);
3383 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3384 "failed [error=%d]", vd->vdev_top_zap, error);
3385 return (error);
3386 }
3387 }
3388
3389 /*
3390 * Load any rebuild state from the top-level vdev zap.
3391 */
3392 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3393 error = vdev_rebuild_load(vd);
3394 if (error && error != ENOTSUP) {
3395 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3396 VDEV_AUX_CORRUPT_DATA);
3397 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3398 "failed [error=%d]", error);
3399 return (error);
3400 }
3401 }
3402
3403 /*
3404 * If this is a top-level vdev, initialize its metaslabs.
3405 */
3406 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3407 vdev_metaslab_group_create(vd);
3408
3409 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3410 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3411 VDEV_AUX_CORRUPT_DATA);
3412 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3413 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3414 (u_longlong_t)vd->vdev_asize);
3415 return (SET_ERROR(ENXIO));
3416 }
3417
3418 error = vdev_metaslab_init(vd, 0);
3419 if (error != 0) {
3420 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3421 "[error=%d]", error);
3422 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3423 VDEV_AUX_CORRUPT_DATA);
3424 return (error);
3425 }
3426
3427 uint64_t checkpoint_sm_obj;
3428 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3429 if (error == 0 && checkpoint_sm_obj != 0) {
3430 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3431 ASSERT(vd->vdev_asize != 0);
3432 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3433
3434 error = space_map_open(&vd->vdev_checkpoint_sm,
3435 mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3436 vd->vdev_ashift);
3437 if (error != 0) {
3438 vdev_dbgmsg(vd, "vdev_load: space_map_open "
3439 "failed for checkpoint spacemap (obj %llu) "
3440 "[error=%d]",
3441 (u_longlong_t)checkpoint_sm_obj, error);
3442 return (error);
3443 }
3444 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3445
3446 /*
3447 * Since the checkpoint_sm contains free entries
3448 * exclusively we can use space_map_allocated() to
3449 * indicate the cumulative checkpointed space that
3450 * has been freed.
3451 */
3452 vd->vdev_stat.vs_checkpoint_space =
3453 -space_map_allocated(vd->vdev_checkpoint_sm);
3454 vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3455 vd->vdev_stat.vs_checkpoint_space;
3456 } else if (error != 0) {
3457 vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3458 "checkpoint space map object from vdev ZAP "
3459 "[error=%d]", error);
3460 return (error);
3461 }
3462 }
3463
3464 /*
3465 * If this is a leaf vdev, load its DTL.
3466 */
3467 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3468 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3469 VDEV_AUX_CORRUPT_DATA);
3470 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3471 "[error=%d]", error);
3472 return (error);
3473 }
3474
3475 uint64_t obsolete_sm_object;
3476 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3477 if (error == 0 && obsolete_sm_object != 0) {
3478 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3479 ASSERT(vd->vdev_asize != 0);
3480 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3481
3482 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3483 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3484 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3485 VDEV_AUX_CORRUPT_DATA);
3486 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3487 "obsolete spacemap (obj %llu) [error=%d]",
3488 (u_longlong_t)obsolete_sm_object, error);
3489 return (error);
3490 }
3491 } else if (error != 0) {
3492 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3493 "space map object from vdev ZAP [error=%d]", error);
3494 return (error);
3495 }
3496
3497 return (0);
3498 }
3499
3500 /*
3501 * The special vdev case is used for hot spares and l2cache devices. Its
3502 * sole purpose it to set the vdev state for the associated vdev. To do this,
3503 * we make sure that we can open the underlying device, then try to read the
3504 * label, and make sure that the label is sane and that it hasn't been
3505 * repurposed to another pool.
3506 */
3507 int
3508 vdev_validate_aux(vdev_t *vd)
3509 {
3510 nvlist_t *label;
3511 uint64_t guid, version;
3512 uint64_t state;
3513
3514 if (!vdev_readable(vd))
3515 return (0);
3516
3517 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3518 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3519 VDEV_AUX_CORRUPT_DATA);
3520 return (-1);
3521 }
3522
3523 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3524 !SPA_VERSION_IS_SUPPORTED(version) ||
3525 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3526 guid != vd->vdev_guid ||
3527 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3528 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3529 VDEV_AUX_CORRUPT_DATA);
3530 nvlist_free(label);
3531 return (-1);
3532 }
3533
3534 /*
3535 * We don't actually check the pool state here. If it's in fact in
3536 * use by another pool, we update this fact on the fly when requested.
3537 */
3538 nvlist_free(label);
3539 return (0);
3540 }
3541
3542 static void
3543 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3544 {
3545 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3546
3547 if (vd->vdev_top_zap == 0)
3548 return;
3549
3550 uint64_t object = 0;
3551 int err = zap_lookup(mos, vd->vdev_top_zap,
3552 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3553 if (err == ENOENT)
3554 return;
3555 VERIFY0(err);
3556
3557 VERIFY0(dmu_object_free(mos, object, tx));
3558 VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3559 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3560 }
3561
3562 /*
3563 * Free the objects used to store this vdev's spacemaps, and the array
3564 * that points to them.
3565 */
3566 void
3567 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3568 {
3569 if (vd->vdev_ms_array == 0)
3570 return;
3571
3572 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3573 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3574 size_t array_bytes = array_count * sizeof (uint64_t);
3575 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3576 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3577 array_bytes, smobj_array, 0));
3578
3579 for (uint64_t i = 0; i < array_count; i++) {
3580 uint64_t smobj = smobj_array[i];
3581 if (smobj == 0)
3582 continue;
3583
3584 space_map_free_obj(mos, smobj, tx);
3585 }
3586
3587 kmem_free(smobj_array, array_bytes);
3588 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3589 vdev_destroy_ms_flush_data(vd, tx);
3590 vd->vdev_ms_array = 0;
3591 }
3592
3593 static void
3594 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3595 {
3596 spa_t *spa = vd->vdev_spa;
3597
3598 ASSERT(vd->vdev_islog);
3599 ASSERT(vd == vd->vdev_top);
3600 ASSERT3U(txg, ==, spa_syncing_txg(spa));
3601
3602 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3603
3604 vdev_destroy_spacemaps(vd, tx);
3605 if (vd->vdev_top_zap != 0) {
3606 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3607 vd->vdev_top_zap = 0;
3608 }
3609
3610 dmu_tx_commit(tx);
3611 }
3612
3613 void
3614 vdev_sync_done(vdev_t *vd, uint64_t txg)
3615 {
3616 metaslab_t *msp;
3617 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3618
3619 ASSERT(vdev_is_concrete(vd));
3620
3621 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3622 != NULL)
3623 metaslab_sync_done(msp, txg);
3624
3625 if (reassess) {
3626 metaslab_sync_reassess(vd->vdev_mg);
3627 if (vd->vdev_log_mg != NULL)
3628 metaslab_sync_reassess(vd->vdev_log_mg);
3629 }
3630 }
3631
3632 void
3633 vdev_sync(vdev_t *vd, uint64_t txg)
3634 {
3635 spa_t *spa = vd->vdev_spa;
3636 vdev_t *lvd;
3637 metaslab_t *msp;
3638
3639 ASSERT3U(txg, ==, spa->spa_syncing_txg);
3640 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3641 if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3642 ASSERT(vd->vdev_removing ||
3643 vd->vdev_ops == &vdev_indirect_ops);
3644
3645 vdev_indirect_sync_obsolete(vd, tx);
3646
3647 /*
3648 * If the vdev is indirect, it can't have dirty
3649 * metaslabs or DTLs.
3650 */
3651 if (vd->vdev_ops == &vdev_indirect_ops) {
3652 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3653 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3654 dmu_tx_commit(tx);
3655 return;
3656 }
3657 }
3658
3659 ASSERT(vdev_is_concrete(vd));
3660
3661 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3662 !vd->vdev_removing) {
3663 ASSERT(vd == vd->vdev_top);
3664 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3665 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3666 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3667 ASSERT(vd->vdev_ms_array != 0);
3668 vdev_config_dirty(vd);
3669 }
3670
3671 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3672 metaslab_sync(msp, txg);
3673 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3674 }
3675
3676 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3677 vdev_dtl_sync(lvd, txg);
3678
3679 /*
3680 * If this is an empty log device being removed, destroy the
3681 * metadata associated with it.
3682 */
3683 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3684 vdev_remove_empty_log(vd, txg);
3685
3686 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3687 dmu_tx_commit(tx);
3688 }
3689
3690 uint64_t
3691 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3692 {
3693 return (vd->vdev_ops->vdev_op_asize(vd, psize));
3694 }
3695
3696 /*
3697 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
3698 * not be opened, and no I/O is attempted.
3699 */
3700 int
3701 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3702 {
3703 vdev_t *vd, *tvd;
3704
3705 spa_vdev_state_enter(spa, SCL_NONE);
3706
3707 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3708 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3709
3710 if (!vd->vdev_ops->vdev_op_leaf)
3711 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3712
3713 tvd = vd->vdev_top;
3714
3715 /*
3716 * If user did a 'zpool offline -f' then make the fault persist across
3717 * reboots.
3718 */
3719 if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
3720 /*
3721 * There are two kinds of forced faults: temporary and
3722 * persistent. Temporary faults go away at pool import, while
3723 * persistent faults stay set. Both types of faults can be
3724 * cleared with a zpool clear.
3725 *
3726 * We tell if a vdev is persistently faulted by looking at the
3727 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
3728 * import then it's a persistent fault. Otherwise, it's
3729 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
3730 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
3731 * tells vdev_config_generate() (which gets run later) to set
3732 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
3733 */
3734 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
3735 vd->vdev_tmpoffline = B_FALSE;
3736 aux = VDEV_AUX_EXTERNAL;
3737 } else {
3738 vd->vdev_tmpoffline = B_TRUE;
3739 }
3740
3741 /*
3742 * We don't directly use the aux state here, but if we do a
3743 * vdev_reopen(), we need this value to be present to remember why we
3744 * were faulted.
3745 */
3746 vd->vdev_label_aux = aux;
3747
3748 /*
3749 * Faulted state takes precedence over degraded.
3750 */
3751 vd->vdev_delayed_close = B_FALSE;
3752 vd->vdev_faulted = 1ULL;
3753 vd->vdev_degraded = 0ULL;
3754 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3755
3756 /*
3757 * If this device has the only valid copy of the data, then
3758 * back off and simply mark the vdev as degraded instead.
3759 */
3760 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3761 vd->vdev_degraded = 1ULL;
3762 vd->vdev_faulted = 0ULL;
3763
3764 /*
3765 * If we reopen the device and it's not dead, only then do we
3766 * mark it degraded.
3767 */
3768 vdev_reopen(tvd);
3769
3770 if (vdev_readable(vd))
3771 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3772 }
3773
3774 return (spa_vdev_state_exit(spa, vd, 0));
3775 }
3776
3777 /*
3778 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
3779 * user that something is wrong. The vdev continues to operate as normal as far
3780 * as I/O is concerned.
3781 */
3782 int
3783 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3784 {
3785 vdev_t *vd;
3786
3787 spa_vdev_state_enter(spa, SCL_NONE);
3788
3789 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3790 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3791
3792 if (!vd->vdev_ops->vdev_op_leaf)
3793 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3794
3795 /*
3796 * If the vdev is already faulted, then don't do anything.
3797 */
3798 if (vd->vdev_faulted || vd->vdev_degraded)
3799 return (spa_vdev_state_exit(spa, NULL, 0));
3800
3801 vd->vdev_degraded = 1ULL;
3802 if (!vdev_is_dead(vd))
3803 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3804 aux);
3805
3806 return (spa_vdev_state_exit(spa, vd, 0));
3807 }
3808
3809 /*
3810 * Online the given vdev.
3811 *
3812 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
3813 * spare device should be detached when the device finishes resilvering.
3814 * Second, the online should be treated like a 'test' online case, so no FMA
3815 * events are generated if the device fails to open.
3816 */
3817 int
3818 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3819 {
3820 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3821 boolean_t wasoffline;
3822 vdev_state_t oldstate;
3823
3824 spa_vdev_state_enter(spa, SCL_NONE);
3825
3826 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3827 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3828
3829 if (!vd->vdev_ops->vdev_op_leaf)
3830 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3831
3832 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3833 oldstate = vd->vdev_state;
3834
3835 tvd = vd->vdev_top;
3836 vd->vdev_offline = B_FALSE;
3837 vd->vdev_tmpoffline = B_FALSE;
3838 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3839 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3840
3841 /* XXX - L2ARC 1.0 does not support expansion */
3842 if (!vd->vdev_aux) {
3843 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3844 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
3845 spa->spa_autoexpand);
3846 vd->vdev_expansion_time = gethrestime_sec();
3847 }
3848
3849 vdev_reopen(tvd);
3850 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3851
3852 if (!vd->vdev_aux) {
3853 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3854 pvd->vdev_expanding = B_FALSE;
3855 }
3856
3857 if (newstate)
3858 *newstate = vd->vdev_state;
3859 if ((flags & ZFS_ONLINE_UNSPARE) &&
3860 !vdev_is_dead(vd) && vd->vdev_parent &&
3861 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3862 vd->vdev_parent->vdev_child[0] == vd)
3863 vd->vdev_unspare = B_TRUE;
3864
3865 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3866
3867 /* XXX - L2ARC 1.0 does not support expansion */
3868 if (vd->vdev_aux)
3869 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3870 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3871 }
3872
3873 /* Restart initializing if necessary */
3874 mutex_enter(&vd->vdev_initialize_lock);
3875 if (vdev_writeable(vd) &&
3876 vd->vdev_initialize_thread == NULL &&
3877 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3878 (void) vdev_initialize(vd);
3879 }
3880 mutex_exit(&vd->vdev_initialize_lock);
3881
3882 /*
3883 * Restart trimming if necessary. We do not restart trimming for cache
3884 * devices here. This is triggered by l2arc_rebuild_vdev()
3885 * asynchronously for the whole device or in l2arc_evict() as it evicts
3886 * space for upcoming writes.
3887 */
3888 mutex_enter(&vd->vdev_trim_lock);
3889 if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
3890 vd->vdev_trim_thread == NULL &&
3891 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
3892 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
3893 vd->vdev_trim_secure);
3894 }
3895 mutex_exit(&vd->vdev_trim_lock);
3896
3897 if (wasoffline ||
3898 (oldstate < VDEV_STATE_DEGRADED &&
3899 vd->vdev_state >= VDEV_STATE_DEGRADED))
3900 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3901
3902 return (spa_vdev_state_exit(spa, vd, 0));
3903 }
3904
3905 static int
3906 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3907 {
3908 vdev_t *vd, *tvd;
3909 int error = 0;
3910 uint64_t generation;
3911 metaslab_group_t *mg;
3912
3913 top:
3914 spa_vdev_state_enter(spa, SCL_ALLOC);
3915
3916 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3917 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3918
3919 if (!vd->vdev_ops->vdev_op_leaf)
3920 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3921
3922 if (vd->vdev_ops == &vdev_draid_spare_ops)
3923 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3924
3925 tvd = vd->vdev_top;
3926 mg = tvd->vdev_mg;
3927 generation = spa->spa_config_generation + 1;
3928
3929 /*
3930 * If the device isn't already offline, try to offline it.
3931 */
3932 if (!vd->vdev_offline) {
3933 /*
3934 * If this device has the only valid copy of some data,
3935 * don't allow it to be offlined. Log devices are always
3936 * expendable.
3937 */
3938 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3939 vdev_dtl_required(vd))
3940 return (spa_vdev_state_exit(spa, NULL,
3941 SET_ERROR(EBUSY)));
3942
3943 /*
3944 * If the top-level is a slog and it has had allocations
3945 * then proceed. We check that the vdev's metaslab group
3946 * is not NULL since it's possible that we may have just
3947 * added this vdev but not yet initialized its metaslabs.
3948 */
3949 if (tvd->vdev_islog && mg != NULL) {
3950 /*
3951 * Prevent any future allocations.
3952 */
3953 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
3954 metaslab_group_passivate(mg);
3955 (void) spa_vdev_state_exit(spa, vd, 0);
3956
3957 error = spa_reset_logs(spa);
3958
3959 /*
3960 * If the log device was successfully reset but has
3961 * checkpointed data, do not offline it.
3962 */
3963 if (error == 0 &&
3964 tvd->vdev_checkpoint_sm != NULL) {
3965 ASSERT3U(space_map_allocated(
3966 tvd->vdev_checkpoint_sm), !=, 0);
3967 error = ZFS_ERR_CHECKPOINT_EXISTS;
3968 }
3969
3970 spa_vdev_state_enter(spa, SCL_ALLOC);
3971
3972 /*
3973 * Check to see if the config has changed.
3974 */
3975 if (error || generation != spa->spa_config_generation) {
3976 metaslab_group_activate(mg);
3977 if (error)
3978 return (spa_vdev_state_exit(spa,
3979 vd, error));
3980 (void) spa_vdev_state_exit(spa, vd, 0);
3981 goto top;
3982 }
3983 ASSERT0(tvd->vdev_stat.vs_alloc);
3984 }
3985
3986 /*
3987 * Offline this device and reopen its top-level vdev.
3988 * If the top-level vdev is a log device then just offline
3989 * it. Otherwise, if this action results in the top-level
3990 * vdev becoming unusable, undo it and fail the request.
3991 */
3992 vd->vdev_offline = B_TRUE;
3993 vdev_reopen(tvd);
3994
3995 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3996 vdev_is_dead(tvd)) {
3997 vd->vdev_offline = B_FALSE;
3998 vdev_reopen(tvd);
3999 return (spa_vdev_state_exit(spa, NULL,
4000 SET_ERROR(EBUSY)));
4001 }
4002
4003 /*
4004 * Add the device back into the metaslab rotor so that
4005 * once we online the device it's open for business.
4006 */
4007 if (tvd->vdev_islog && mg != NULL)
4008 metaslab_group_activate(mg);
4009 }
4010
4011 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4012
4013 return (spa_vdev_state_exit(spa, vd, 0));
4014 }
4015
4016 int
4017 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4018 {
4019 int error;
4020
4021 mutex_enter(&spa->spa_vdev_top_lock);
4022 error = vdev_offline_locked(spa, guid, flags);
4023 mutex_exit(&spa->spa_vdev_top_lock);
4024
4025 return (error);
4026 }
4027
4028 /*
4029 * Clear the error counts associated with this vdev. Unlike vdev_online() and
4030 * vdev_offline(), we assume the spa config is locked. We also clear all
4031 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
4032 */
4033 void
4034 vdev_clear(spa_t *spa, vdev_t *vd)
4035 {
4036 vdev_t *rvd = spa->spa_root_vdev;
4037
4038 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4039
4040 if (vd == NULL)
4041 vd = rvd;
4042
4043 vd->vdev_stat.vs_read_errors = 0;
4044 vd->vdev_stat.vs_write_errors = 0;
4045 vd->vdev_stat.vs_checksum_errors = 0;
4046 vd->vdev_stat.vs_slow_ios = 0;
4047
4048 for (int c = 0; c < vd->vdev_children; c++)
4049 vdev_clear(spa, vd->vdev_child[c]);
4050
4051 /*
4052 * It makes no sense to "clear" an indirect vdev.
4053 */
4054 if (!vdev_is_concrete(vd))
4055 return;
4056
4057 /*
4058 * If we're in the FAULTED state or have experienced failed I/O, then
4059 * clear the persistent state and attempt to reopen the device. We
4060 * also mark the vdev config dirty, so that the new faulted state is
4061 * written out to disk.
4062 */
4063 if (vd->vdev_faulted || vd->vdev_degraded ||
4064 !vdev_readable(vd) || !vdev_writeable(vd)) {
4065 /*
4066 * When reopening in response to a clear event, it may be due to
4067 * a fmadm repair request. In this case, if the device is
4068 * still broken, we want to still post the ereport again.
4069 */
4070 vd->vdev_forcefault = B_TRUE;
4071
4072 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4073 vd->vdev_cant_read = B_FALSE;
4074 vd->vdev_cant_write = B_FALSE;
4075 vd->vdev_stat.vs_aux = 0;
4076
4077 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4078
4079 vd->vdev_forcefault = B_FALSE;
4080
4081 if (vd != rvd && vdev_writeable(vd->vdev_top))
4082 vdev_state_dirty(vd->vdev_top);
4083
4084 /* If a resilver isn't required, check if vdevs can be culled */
4085 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4086 !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4087 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4088 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4089
4090 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4091 }
4092
4093 /*
4094 * When clearing a FMA-diagnosed fault, we always want to
4095 * unspare the device, as we assume that the original spare was
4096 * done in response to the FMA fault.
4097 */
4098 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4099 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4100 vd->vdev_parent->vdev_child[0] == vd)
4101 vd->vdev_unspare = B_TRUE;
4102 }
4103
4104 boolean_t
4105 vdev_is_dead(vdev_t *vd)
4106 {
4107 /*
4108 * Holes and missing devices are always considered "dead".
4109 * This simplifies the code since we don't have to check for
4110 * these types of devices in the various code paths.
4111 * Instead we rely on the fact that we skip over dead devices
4112 * before issuing I/O to them.
4113 */
4114 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4115 vd->vdev_ops == &vdev_hole_ops ||
4116 vd->vdev_ops == &vdev_missing_ops);
4117 }
4118
4119 boolean_t
4120 vdev_readable(vdev_t *vd)
4121 {
4122 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4123 }
4124
4125 boolean_t
4126 vdev_writeable(vdev_t *vd)
4127 {
4128 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4129 vdev_is_concrete(vd));
4130 }
4131
4132 boolean_t
4133 vdev_allocatable(vdev_t *vd)
4134 {
4135 uint64_t state = vd->vdev_state;
4136
4137 /*
4138 * We currently allow allocations from vdevs which may be in the
4139 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4140 * fails to reopen then we'll catch it later when we're holding
4141 * the proper locks. Note that we have to get the vdev state
4142 * in a local variable because although it changes atomically,
4143 * we're asking two separate questions about it.
4144 */
4145 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4146 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4147 vd->vdev_mg->mg_initialized);
4148 }
4149
4150 boolean_t
4151 vdev_accessible(vdev_t *vd, zio_t *zio)
4152 {
4153 ASSERT(zio->io_vd == vd);
4154
4155 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4156 return (B_FALSE);
4157
4158 if (zio->io_type == ZIO_TYPE_READ)
4159 return (!vd->vdev_cant_read);
4160
4161 if (zio->io_type == ZIO_TYPE_WRITE)
4162 return (!vd->vdev_cant_write);
4163
4164 return (B_TRUE);
4165 }
4166
4167 static void
4168 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4169 {
4170 /*
4171 * Exclude the dRAID spare when aggregating to avoid double counting
4172 * the ops and bytes. These IOs are counted by the physical leaves.
4173 */
4174 if (cvd->vdev_ops == &vdev_draid_spare_ops)
4175 return;
4176
4177 for (int t = 0; t < VS_ZIO_TYPES; t++) {
4178 vs->vs_ops[t] += cvs->vs_ops[t];
4179 vs->vs_bytes[t] += cvs->vs_bytes[t];
4180 }
4181
4182 cvs->vs_scan_removing = cvd->vdev_removing;
4183 }
4184
4185 /*
4186 * Get extended stats
4187 */
4188 static void
4189 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4190 {
4191 int t, b;
4192 for (t = 0; t < ZIO_TYPES; t++) {
4193 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4194 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4195
4196 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4197 vsx->vsx_total_histo[t][b] +=
4198 cvsx->vsx_total_histo[t][b];
4199 }
4200 }
4201
4202 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4203 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4204 vsx->vsx_queue_histo[t][b] +=
4205 cvsx->vsx_queue_histo[t][b];
4206 }
4207 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4208 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4209
4210 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4211 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4212
4213 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4214 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4215 }
4216
4217 }
4218
4219 boolean_t
4220 vdev_is_spacemap_addressable(vdev_t *vd)
4221 {
4222 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4223 return (B_TRUE);
4224
4225 /*
4226 * If double-word space map entries are not enabled we assume
4227 * 47 bits of the space map entry are dedicated to the entry's
4228 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4229 * to calculate the maximum address that can be described by a
4230 * space map entry for the given device.
4231 */
4232 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4233
4234 if (shift >= 63) /* detect potential overflow */
4235 return (B_TRUE);
4236
4237 return (vd->vdev_asize < (1ULL << shift));
4238 }
4239
4240 /*
4241 * Get statistics for the given vdev.
4242 */
4243 static void
4244 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4245 {
4246 int t;
4247 /*
4248 * If we're getting stats on the root vdev, aggregate the I/O counts
4249 * over all top-level vdevs (i.e. the direct children of the root).
4250 */
4251 if (!vd->vdev_ops->vdev_op_leaf) {
4252 if (vs) {
4253 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4254 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4255 }
4256 if (vsx)
4257 memset(vsx, 0, sizeof (*vsx));
4258
4259 for (int c = 0; c < vd->vdev_children; c++) {
4260 vdev_t *cvd = vd->vdev_child[c];
4261 vdev_stat_t *cvs = &cvd->vdev_stat;
4262 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4263
4264 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4265 if (vs)
4266 vdev_get_child_stat(cvd, vs, cvs);
4267 if (vsx)
4268 vdev_get_child_stat_ex(cvd, vsx, cvsx);
4269 }
4270 } else {
4271 /*
4272 * We're a leaf. Just copy our ZIO active queue stats in. The
4273 * other leaf stats are updated in vdev_stat_update().
4274 */
4275 if (!vsx)
4276 return;
4277
4278 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4279
4280 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
4281 vsx->vsx_active_queue[t] =
4282 vd->vdev_queue.vq_class[t].vqc_active;
4283 vsx->vsx_pend_queue[t] = avl_numnodes(
4284 &vd->vdev_queue.vq_class[t].vqc_queued_tree);
4285 }
4286 }
4287 }
4288
4289 void
4290 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4291 {
4292 vdev_t *tvd = vd->vdev_top;
4293 mutex_enter(&vd->vdev_stat_lock);
4294 if (vs) {
4295 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
4296 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4297 vs->vs_state = vd->vdev_state;
4298 vs->vs_rsize = vdev_get_min_asize(vd);
4299
4300 if (vd->vdev_ops->vdev_op_leaf) {
4301 vs->vs_rsize += VDEV_LABEL_START_SIZE +
4302 VDEV_LABEL_END_SIZE;
4303 /*
4304 * Report initializing progress. Since we don't
4305 * have the initializing locks held, this is only
4306 * an estimate (although a fairly accurate one).
4307 */
4308 vs->vs_initialize_bytes_done =
4309 vd->vdev_initialize_bytes_done;
4310 vs->vs_initialize_bytes_est =
4311 vd->vdev_initialize_bytes_est;
4312 vs->vs_initialize_state = vd->vdev_initialize_state;
4313 vs->vs_initialize_action_time =
4314 vd->vdev_initialize_action_time;
4315
4316 /*
4317 * Report manual TRIM progress. Since we don't have
4318 * the manual TRIM locks held, this is only an
4319 * estimate (although fairly accurate one).
4320 */
4321 vs->vs_trim_notsup = !vd->vdev_has_trim;
4322 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4323 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4324 vs->vs_trim_state = vd->vdev_trim_state;
4325 vs->vs_trim_action_time = vd->vdev_trim_action_time;
4326
4327 /* Set when there is a deferred resilver. */
4328 vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4329 }
4330
4331 /*
4332 * Report expandable space on top-level, non-auxiliary devices
4333 * only. The expandable space is reported in terms of metaslab
4334 * sized units since that determines how much space the pool
4335 * can expand.
4336 */
4337 if (vd->vdev_aux == NULL && tvd != NULL) {
4338 vs->vs_esize = P2ALIGN(
4339 vd->vdev_max_asize - vd->vdev_asize,
4340 1ULL << tvd->vdev_ms_shift);
4341 }
4342
4343 vs->vs_configured_ashift = vd->vdev_top != NULL
4344 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4345 vs->vs_logical_ashift = vd->vdev_logical_ashift;
4346 vs->vs_physical_ashift = vd->vdev_physical_ashift;
4347
4348 /*
4349 * Report fragmentation and rebuild progress for top-level,
4350 * non-auxiliary, concrete devices.
4351 */
4352 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4353 vdev_is_concrete(vd)) {
4354 /*
4355 * The vdev fragmentation rating doesn't take into
4356 * account the embedded slog metaslab (vdev_log_mg).
4357 * Since it's only one metaslab, it would have a tiny
4358 * impact on the overall fragmentation.
4359 */
4360 vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4361 vd->vdev_mg->mg_fragmentation : 0;
4362 }
4363 }
4364
4365 vdev_get_stats_ex_impl(vd, vs, vsx);
4366 mutex_exit(&vd->vdev_stat_lock);
4367 }
4368
4369 void
4370 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4371 {
4372 return (vdev_get_stats_ex(vd, vs, NULL));
4373 }
4374
4375 void
4376 vdev_clear_stats(vdev_t *vd)
4377 {
4378 mutex_enter(&vd->vdev_stat_lock);
4379 vd->vdev_stat.vs_space = 0;
4380 vd->vdev_stat.vs_dspace = 0;
4381 vd->vdev_stat.vs_alloc = 0;
4382 mutex_exit(&vd->vdev_stat_lock);
4383 }
4384
4385 void
4386 vdev_scan_stat_init(vdev_t *vd)
4387 {
4388 vdev_stat_t *vs = &vd->vdev_stat;
4389
4390 for (int c = 0; c < vd->vdev_children; c++)
4391 vdev_scan_stat_init(vd->vdev_child[c]);
4392
4393 mutex_enter(&vd->vdev_stat_lock);
4394 vs->vs_scan_processed = 0;
4395 mutex_exit(&vd->vdev_stat_lock);
4396 }
4397
4398 void
4399 vdev_stat_update(zio_t *zio, uint64_t psize)
4400 {
4401 spa_t *spa = zio->io_spa;
4402 vdev_t *rvd = spa->spa_root_vdev;
4403 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4404 vdev_t *pvd;
4405 uint64_t txg = zio->io_txg;
4406 vdev_stat_t *vs = &vd->vdev_stat;
4407 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4408 zio_type_t type = zio->io_type;
4409 int flags = zio->io_flags;
4410
4411 /*
4412 * If this i/o is a gang leader, it didn't do any actual work.
4413 */
4414 if (zio->io_gang_tree)
4415 return;
4416
4417 if (zio->io_error == 0) {
4418 /*
4419 * If this is a root i/o, don't count it -- we've already
4420 * counted the top-level vdevs, and vdev_get_stats() will
4421 * aggregate them when asked. This reduces contention on
4422 * the root vdev_stat_lock and implicitly handles blocks
4423 * that compress away to holes, for which there is no i/o.
4424 * (Holes never create vdev children, so all the counters
4425 * remain zero, which is what we want.)
4426 *
4427 * Note: this only applies to successful i/o (io_error == 0)
4428 * because unlike i/o counts, errors are not additive.
4429 * When reading a ditto block, for example, failure of
4430 * one top-level vdev does not imply a root-level error.
4431 */
4432 if (vd == rvd)
4433 return;
4434
4435 ASSERT(vd == zio->io_vd);
4436
4437 if (flags & ZIO_FLAG_IO_BYPASS)
4438 return;
4439
4440 mutex_enter(&vd->vdev_stat_lock);
4441
4442 if (flags & ZIO_FLAG_IO_REPAIR) {
4443 /*
4444 * Repair is the result of a resilver issued by the
4445 * scan thread (spa_sync).
4446 */
4447 if (flags & ZIO_FLAG_SCAN_THREAD) {
4448 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4449 dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4450 uint64_t *processed = &scn_phys->scn_processed;
4451
4452 if (vd->vdev_ops->vdev_op_leaf)
4453 atomic_add_64(processed, psize);
4454 vs->vs_scan_processed += psize;
4455 }
4456
4457 /*
4458 * Repair is the result of a rebuild issued by the
4459 * rebuild thread (vdev_rebuild_thread). To avoid
4460 * double counting repaired bytes the virtual dRAID
4461 * spare vdev is excluded from the processed bytes.
4462 */
4463 if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4464 vdev_t *tvd = vd->vdev_top;
4465 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4466 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4467 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4468
4469 if (vd->vdev_ops->vdev_op_leaf &&
4470 vd->vdev_ops != &vdev_draid_spare_ops) {
4471 atomic_add_64(rebuilt, psize);
4472 }
4473 vs->vs_rebuild_processed += psize;
4474 }
4475
4476 if (flags & ZIO_FLAG_SELF_HEAL)
4477 vs->vs_self_healed += psize;
4478 }
4479
4480 /*
4481 * The bytes/ops/histograms are recorded at the leaf level and
4482 * aggregated into the higher level vdevs in vdev_get_stats().
4483 */
4484 if (vd->vdev_ops->vdev_op_leaf &&
4485 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4486 zio_type_t vs_type = type;
4487 zio_priority_t priority = zio->io_priority;
4488
4489 /*
4490 * TRIM ops and bytes are reported to user space as
4491 * ZIO_TYPE_IOCTL. This is done to preserve the
4492 * vdev_stat_t structure layout for user space.
4493 */
4494 if (type == ZIO_TYPE_TRIM)
4495 vs_type = ZIO_TYPE_IOCTL;
4496
4497 /*
4498 * Solely for the purposes of 'zpool iostat -lqrw'
4499 * reporting use the priority to catagorize the IO.
4500 * Only the following are reported to user space:
4501 *
4502 * ZIO_PRIORITY_SYNC_READ,
4503 * ZIO_PRIORITY_SYNC_WRITE,
4504 * ZIO_PRIORITY_ASYNC_READ,
4505 * ZIO_PRIORITY_ASYNC_WRITE,
4506 * ZIO_PRIORITY_SCRUB,
4507 * ZIO_PRIORITY_TRIM.
4508 */
4509 if (priority == ZIO_PRIORITY_REBUILD) {
4510 priority = ((type == ZIO_TYPE_WRITE) ?
4511 ZIO_PRIORITY_ASYNC_WRITE :
4512 ZIO_PRIORITY_SCRUB);
4513 } else if (priority == ZIO_PRIORITY_INITIALIZING) {
4514 ASSERT3U(type, ==, ZIO_TYPE_WRITE);
4515 priority = ZIO_PRIORITY_ASYNC_WRITE;
4516 } else if (priority == ZIO_PRIORITY_REMOVAL) {
4517 priority = ((type == ZIO_TYPE_WRITE) ?
4518 ZIO_PRIORITY_ASYNC_WRITE :
4519 ZIO_PRIORITY_ASYNC_READ);
4520 }
4521
4522 vs->vs_ops[vs_type]++;
4523 vs->vs_bytes[vs_type] += psize;
4524
4525 if (flags & ZIO_FLAG_DELEGATED) {
4526 vsx->vsx_agg_histo[priority]
4527 [RQ_HISTO(zio->io_size)]++;
4528 } else {
4529 vsx->vsx_ind_histo[priority]
4530 [RQ_HISTO(zio->io_size)]++;
4531 }
4532
4533 if (zio->io_delta && zio->io_delay) {
4534 vsx->vsx_queue_histo[priority]
4535 [L_HISTO(zio->io_delta - zio->io_delay)]++;
4536 vsx->vsx_disk_histo[type]
4537 [L_HISTO(zio->io_delay)]++;
4538 vsx->vsx_total_histo[type]
4539 [L_HISTO(zio->io_delta)]++;
4540 }
4541 }
4542
4543 mutex_exit(&vd->vdev_stat_lock);
4544 return;
4545 }
4546
4547 if (flags & ZIO_FLAG_SPECULATIVE)
4548 return;
4549
4550 /*
4551 * If this is an I/O error that is going to be retried, then ignore the
4552 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
4553 * hard errors, when in reality they can happen for any number of
4554 * innocuous reasons (bus resets, MPxIO link failure, etc).
4555 */
4556 if (zio->io_error == EIO &&
4557 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4558 return;
4559
4560 /*
4561 * Intent logs writes won't propagate their error to the root
4562 * I/O so don't mark these types of failures as pool-level
4563 * errors.
4564 */
4565 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4566 return;
4567
4568 if (type == ZIO_TYPE_WRITE && txg != 0 &&
4569 (!(flags & ZIO_FLAG_IO_REPAIR) ||
4570 (flags & ZIO_FLAG_SCAN_THREAD) ||
4571 spa->spa_claiming)) {
4572 /*
4573 * This is either a normal write (not a repair), or it's
4574 * a repair induced by the scrub thread, or it's a repair
4575 * made by zil_claim() during spa_load() in the first txg.
4576 * In the normal case, we commit the DTL change in the same
4577 * txg as the block was born. In the scrub-induced repair
4578 * case, we know that scrubs run in first-pass syncing context,
4579 * so we commit the DTL change in spa_syncing_txg(spa).
4580 * In the zil_claim() case, we commit in spa_first_txg(spa).
4581 *
4582 * We currently do not make DTL entries for failed spontaneous
4583 * self-healing writes triggered by normal (non-scrubbing)
4584 * reads, because we have no transactional context in which to
4585 * do so -- and it's not clear that it'd be desirable anyway.
4586 */
4587 if (vd->vdev_ops->vdev_op_leaf) {
4588 uint64_t commit_txg = txg;
4589 if (flags & ZIO_FLAG_SCAN_THREAD) {
4590 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4591 ASSERT(spa_sync_pass(spa) == 1);
4592 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4593 commit_txg = spa_syncing_txg(spa);
4594 } else if (spa->spa_claiming) {
4595 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4596 commit_txg = spa_first_txg(spa);
4597 }
4598 ASSERT(commit_txg >= spa_syncing_txg(spa));
4599 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4600 return;
4601 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4602 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4603 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4604 }
4605 if (vd != rvd)
4606 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4607 }
4608 }
4609
4610 int64_t
4611 vdev_deflated_space(vdev_t *vd, int64_t space)
4612 {
4613 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4614 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4615
4616 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4617 }
4618
4619 /*
4620 * Update the in-core space usage stats for this vdev, its metaslab class,
4621 * and the root vdev.
4622 */
4623 void
4624 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4625 int64_t space_delta)
4626 {
4627 int64_t dspace_delta;
4628 spa_t *spa = vd->vdev_spa;
4629 vdev_t *rvd = spa->spa_root_vdev;
4630
4631 ASSERT(vd == vd->vdev_top);
4632
4633 /*
4634 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4635 * factor. We must calculate this here and not at the root vdev
4636 * because the root vdev's psize-to-asize is simply the max of its
4637 * children's, thus not accurate enough for us.
4638 */
4639 dspace_delta = vdev_deflated_space(vd, space_delta);
4640
4641 mutex_enter(&vd->vdev_stat_lock);
4642 /* ensure we won't underflow */
4643 if (alloc_delta < 0) {
4644 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
4645 }
4646
4647 vd->vdev_stat.vs_alloc += alloc_delta;
4648 vd->vdev_stat.vs_space += space_delta;
4649 vd->vdev_stat.vs_dspace += dspace_delta;
4650 mutex_exit(&vd->vdev_stat_lock);
4651
4652 /* every class but log contributes to root space stats */
4653 if (vd->vdev_mg != NULL && !vd->vdev_islog) {
4654 ASSERT(!vd->vdev_isl2cache);
4655 mutex_enter(&rvd->vdev_stat_lock);
4656 rvd->vdev_stat.vs_alloc += alloc_delta;
4657 rvd->vdev_stat.vs_space += space_delta;
4658 rvd->vdev_stat.vs_dspace += dspace_delta;
4659 mutex_exit(&rvd->vdev_stat_lock);
4660 }
4661 /* Note: metaslab_class_space_update moved to metaslab_space_update */
4662 }
4663
4664 /*
4665 * Mark a top-level vdev's config as dirty, placing it on the dirty list
4666 * so that it will be written out next time the vdev configuration is synced.
4667 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4668 */
4669 void
4670 vdev_config_dirty(vdev_t *vd)
4671 {
4672 spa_t *spa = vd->vdev_spa;
4673 vdev_t *rvd = spa->spa_root_vdev;
4674 int c;
4675
4676 ASSERT(spa_writeable(spa));
4677
4678 /*
4679 * If this is an aux vdev (as with l2cache and spare devices), then we
4680 * update the vdev config manually and set the sync flag.
4681 */
4682 if (vd->vdev_aux != NULL) {
4683 spa_aux_vdev_t *sav = vd->vdev_aux;
4684 nvlist_t **aux;
4685 uint_t naux;
4686
4687 for (c = 0; c < sav->sav_count; c++) {
4688 if (sav->sav_vdevs[c] == vd)
4689 break;
4690 }
4691
4692 if (c == sav->sav_count) {
4693 /*
4694 * We're being removed. There's nothing more to do.
4695 */
4696 ASSERT(sav->sav_sync == B_TRUE);
4697 return;
4698 }
4699
4700 sav->sav_sync = B_TRUE;
4701
4702 if (nvlist_lookup_nvlist_array(sav->sav_config,
4703 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
4704 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
4705 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
4706 }
4707
4708 ASSERT(c < naux);
4709
4710 /*
4711 * Setting the nvlist in the middle if the array is a little
4712 * sketchy, but it will work.
4713 */
4714 nvlist_free(aux[c]);
4715 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
4716
4717 return;
4718 }
4719
4720 /*
4721 * The dirty list is protected by the SCL_CONFIG lock. The caller
4722 * must either hold SCL_CONFIG as writer, or must be the sync thread
4723 * (which holds SCL_CONFIG as reader). There's only one sync thread,
4724 * so this is sufficient to ensure mutual exclusion.
4725 */
4726 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4727 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4728 spa_config_held(spa, SCL_CONFIG, RW_READER)));
4729
4730 if (vd == rvd) {
4731 for (c = 0; c < rvd->vdev_children; c++)
4732 vdev_config_dirty(rvd->vdev_child[c]);
4733 } else {
4734 ASSERT(vd == vd->vdev_top);
4735
4736 if (!list_link_active(&vd->vdev_config_dirty_node) &&
4737 vdev_is_concrete(vd)) {
4738 list_insert_head(&spa->spa_config_dirty_list, vd);
4739 }
4740 }
4741 }
4742
4743 void
4744 vdev_config_clean(vdev_t *vd)
4745 {
4746 spa_t *spa = vd->vdev_spa;
4747
4748 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4749 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4750 spa_config_held(spa, SCL_CONFIG, RW_READER)));
4751
4752 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4753 list_remove(&spa->spa_config_dirty_list, vd);
4754 }
4755
4756 /*
4757 * Mark a top-level vdev's state as dirty, so that the next pass of
4758 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
4759 * the state changes from larger config changes because they require
4760 * much less locking, and are often needed for administrative actions.
4761 */
4762 void
4763 vdev_state_dirty(vdev_t *vd)
4764 {
4765 spa_t *spa = vd->vdev_spa;
4766
4767 ASSERT(spa_writeable(spa));
4768 ASSERT(vd == vd->vdev_top);
4769
4770 /*
4771 * The state list is protected by the SCL_STATE lock. The caller
4772 * must either hold SCL_STATE as writer, or must be the sync thread
4773 * (which holds SCL_STATE as reader). There's only one sync thread,
4774 * so this is sufficient to ensure mutual exclusion.
4775 */
4776 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4777 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4778 spa_config_held(spa, SCL_STATE, RW_READER)));
4779
4780 if (!list_link_active(&vd->vdev_state_dirty_node) &&
4781 vdev_is_concrete(vd))
4782 list_insert_head(&spa->spa_state_dirty_list, vd);
4783 }
4784
4785 void
4786 vdev_state_clean(vdev_t *vd)
4787 {
4788 spa_t *spa = vd->vdev_spa;
4789
4790 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4791 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4792 spa_config_held(spa, SCL_STATE, RW_READER)));
4793
4794 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4795 list_remove(&spa->spa_state_dirty_list, vd);
4796 }
4797
4798 /*
4799 * Propagate vdev state up from children to parent.
4800 */
4801 void
4802 vdev_propagate_state(vdev_t *vd)
4803 {
4804 spa_t *spa = vd->vdev_spa;
4805 vdev_t *rvd = spa->spa_root_vdev;
4806 int degraded = 0, faulted = 0;
4807 int corrupted = 0;
4808 vdev_t *child;
4809
4810 if (vd->vdev_children > 0) {
4811 for (int c = 0; c < vd->vdev_children; c++) {
4812 child = vd->vdev_child[c];
4813
4814 /*
4815 * Don't factor holes or indirect vdevs into the
4816 * decision.
4817 */
4818 if (!vdev_is_concrete(child))
4819 continue;
4820
4821 if (!vdev_readable(child) ||
4822 (!vdev_writeable(child) && spa_writeable(spa))) {
4823 /*
4824 * Root special: if there is a top-level log
4825 * device, treat the root vdev as if it were
4826 * degraded.
4827 */
4828 if (child->vdev_islog && vd == rvd)
4829 degraded++;
4830 else
4831 faulted++;
4832 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4833 degraded++;
4834 }
4835
4836 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4837 corrupted++;
4838 }
4839
4840 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4841
4842 /*
4843 * Root special: if there is a top-level vdev that cannot be
4844 * opened due to corrupted metadata, then propagate the root
4845 * vdev's aux state as 'corrupt' rather than 'insufficient
4846 * replicas'.
4847 */
4848 if (corrupted && vd == rvd &&
4849 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4850 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4851 VDEV_AUX_CORRUPT_DATA);
4852 }
4853
4854 if (vd->vdev_parent)
4855 vdev_propagate_state(vd->vdev_parent);
4856 }
4857
4858 /*
4859 * Set a vdev's state. If this is during an open, we don't update the parent
4860 * state, because we're in the process of opening children depth-first.
4861 * Otherwise, we propagate the change to the parent.
4862 *
4863 * If this routine places a device in a faulted state, an appropriate ereport is
4864 * generated.
4865 */
4866 void
4867 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4868 {
4869 uint64_t save_state;
4870 spa_t *spa = vd->vdev_spa;
4871
4872 if (state == vd->vdev_state) {
4873 /*
4874 * Since vdev_offline() code path is already in an offline
4875 * state we can miss a statechange event to OFFLINE. Check
4876 * the previous state to catch this condition.
4877 */
4878 if (vd->vdev_ops->vdev_op_leaf &&
4879 (state == VDEV_STATE_OFFLINE) &&
4880 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
4881 /* post an offline state change */
4882 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
4883 }
4884 vd->vdev_stat.vs_aux = aux;
4885 return;
4886 }
4887
4888 save_state = vd->vdev_state;
4889
4890 vd->vdev_state = state;
4891 vd->vdev_stat.vs_aux = aux;
4892
4893 /*
4894 * If we are setting the vdev state to anything but an open state, then
4895 * always close the underlying device unless the device has requested
4896 * a delayed close (i.e. we're about to remove or fault the device).
4897 * Otherwise, we keep accessible but invalid devices open forever.
4898 * We don't call vdev_close() itself, because that implies some extra
4899 * checks (offline, etc) that we don't want here. This is limited to
4900 * leaf devices, because otherwise closing the device will affect other
4901 * children.
4902 */
4903 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4904 vd->vdev_ops->vdev_op_leaf)
4905 vd->vdev_ops->vdev_op_close(vd);
4906
4907 if (vd->vdev_removed &&
4908 state == VDEV_STATE_CANT_OPEN &&
4909 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4910 /*
4911 * If the previous state is set to VDEV_STATE_REMOVED, then this
4912 * device was previously marked removed and someone attempted to
4913 * reopen it. If this failed due to a nonexistent device, then
4914 * keep the device in the REMOVED state. We also let this be if
4915 * it is one of our special test online cases, which is only
4916 * attempting to online the device and shouldn't generate an FMA
4917 * fault.
4918 */
4919 vd->vdev_state = VDEV_STATE_REMOVED;
4920 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4921 } else if (state == VDEV_STATE_REMOVED) {
4922 vd->vdev_removed = B_TRUE;
4923 } else if (state == VDEV_STATE_CANT_OPEN) {
4924 /*
4925 * If we fail to open a vdev during an import or recovery, we
4926 * mark it as "not available", which signifies that it was
4927 * never there to begin with. Failure to open such a device
4928 * is not considered an error.
4929 */
4930 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4931 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
4932 vd->vdev_ops->vdev_op_leaf)
4933 vd->vdev_not_present = 1;
4934
4935 /*
4936 * Post the appropriate ereport. If the 'prevstate' field is
4937 * set to something other than VDEV_STATE_UNKNOWN, it indicates
4938 * that this is part of a vdev_reopen(). In this case, we don't
4939 * want to post the ereport if the device was already in the
4940 * CANT_OPEN state beforehand.
4941 *
4942 * If the 'checkremove' flag is set, then this is an attempt to
4943 * online the device in response to an insertion event. If we
4944 * hit this case, then we have detected an insertion event for a
4945 * faulted or offline device that wasn't in the removed state.
4946 * In this scenario, we don't post an ereport because we are
4947 * about to replace the device, or attempt an online with
4948 * vdev_forcefault, which will generate the fault for us.
4949 */
4950 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4951 !vd->vdev_not_present && !vd->vdev_checkremove &&
4952 vd != spa->spa_root_vdev) {
4953 const char *class;
4954
4955 switch (aux) {
4956 case VDEV_AUX_OPEN_FAILED:
4957 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4958 break;
4959 case VDEV_AUX_CORRUPT_DATA:
4960 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4961 break;
4962 case VDEV_AUX_NO_REPLICAS:
4963 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4964 break;
4965 case VDEV_AUX_BAD_GUID_SUM:
4966 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4967 break;
4968 case VDEV_AUX_TOO_SMALL:
4969 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4970 break;
4971 case VDEV_AUX_BAD_LABEL:
4972 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4973 break;
4974 case VDEV_AUX_BAD_ASHIFT:
4975 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
4976 break;
4977 default:
4978 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4979 }
4980
4981 (void) zfs_ereport_post(class, spa, vd, NULL, NULL,
4982 save_state);
4983 }
4984
4985 /* Erase any notion of persistent removed state */
4986 vd->vdev_removed = B_FALSE;
4987 } else {
4988 vd->vdev_removed = B_FALSE;
4989 }
4990
4991 /*
4992 * Notify ZED of any significant state-change on a leaf vdev.
4993 *
4994 */
4995 if (vd->vdev_ops->vdev_op_leaf) {
4996 /* preserve original state from a vdev_reopen() */
4997 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
4998 (vd->vdev_prevstate != vd->vdev_state) &&
4999 (save_state <= VDEV_STATE_CLOSED))
5000 save_state = vd->vdev_prevstate;
5001
5002 /* filter out state change due to initial vdev_open */
5003 if (save_state > VDEV_STATE_CLOSED)
5004 zfs_post_state_change(spa, vd, save_state);
5005 }
5006
5007 if (!isopen && vd->vdev_parent)
5008 vdev_propagate_state(vd->vdev_parent);
5009 }
5010
5011 boolean_t
5012 vdev_children_are_offline(vdev_t *vd)
5013 {
5014 ASSERT(!vd->vdev_ops->vdev_op_leaf);
5015
5016 for (uint64_t i = 0; i < vd->vdev_children; i++) {
5017 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5018 return (B_FALSE);
5019 }
5020
5021 return (B_TRUE);
5022 }
5023
5024 /*
5025 * Check the vdev configuration to ensure that it's capable of supporting
5026 * a root pool. We do not support partial configuration.
5027 */
5028 boolean_t
5029 vdev_is_bootable(vdev_t *vd)
5030 {
5031 if (!vd->vdev_ops->vdev_op_leaf) {
5032 const char *vdev_type = vd->vdev_ops->vdev_op_type;
5033
5034 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
5035 strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
5036 return (B_FALSE);
5037 }
5038 }
5039
5040 for (int c = 0; c < vd->vdev_children; c++) {
5041 if (!vdev_is_bootable(vd->vdev_child[c]))
5042 return (B_FALSE);
5043 }
5044 return (B_TRUE);
5045 }
5046
5047 boolean_t
5048 vdev_is_concrete(vdev_t *vd)
5049 {
5050 vdev_ops_t *ops = vd->vdev_ops;
5051 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5052 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5053 return (B_FALSE);
5054 } else {
5055 return (B_TRUE);
5056 }
5057 }
5058
5059 /*
5060 * Determine if a log device has valid content. If the vdev was
5061 * removed or faulted in the MOS config then we know that
5062 * the content on the log device has already been written to the pool.
5063 */
5064 boolean_t
5065 vdev_log_state_valid(vdev_t *vd)
5066 {
5067 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5068 !vd->vdev_removed)
5069 return (B_TRUE);
5070
5071 for (int c = 0; c < vd->vdev_children; c++)
5072 if (vdev_log_state_valid(vd->vdev_child[c]))
5073 return (B_TRUE);
5074
5075 return (B_FALSE);
5076 }
5077
5078 /*
5079 * Expand a vdev if possible.
5080 */
5081 void
5082 vdev_expand(vdev_t *vd, uint64_t txg)
5083 {
5084 ASSERT(vd->vdev_top == vd);
5085 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5086 ASSERT(vdev_is_concrete(vd));
5087
5088 vdev_set_deflate_ratio(vd);
5089
5090 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5091 vdev_is_concrete(vd)) {
5092 vdev_metaslab_group_create(vd);
5093 VERIFY(vdev_metaslab_init(vd, txg) == 0);
5094 vdev_config_dirty(vd);
5095 }
5096 }
5097
5098 /*
5099 * Split a vdev.
5100 */
5101 void
5102 vdev_split(vdev_t *vd)
5103 {
5104 vdev_t *cvd, *pvd = vd->vdev_parent;
5105
5106 vdev_remove_child(pvd, vd);
5107 vdev_compact_children(pvd);
5108
5109 cvd = pvd->vdev_child[0];
5110 if (pvd->vdev_children == 1) {
5111 vdev_remove_parent(cvd);
5112 cvd->vdev_splitting = B_TRUE;
5113 }
5114 vdev_propagate_state(cvd);
5115 }
5116
5117 void
5118 vdev_deadman(vdev_t *vd, char *tag)
5119 {
5120 for (int c = 0; c < vd->vdev_children; c++) {
5121 vdev_t *cvd = vd->vdev_child[c];
5122
5123 vdev_deadman(cvd, tag);
5124 }
5125
5126 if (vd->vdev_ops->vdev_op_leaf) {
5127 vdev_queue_t *vq = &vd->vdev_queue;
5128
5129 mutex_enter(&vq->vq_lock);
5130 if (avl_numnodes(&vq->vq_active_tree) > 0) {
5131 spa_t *spa = vd->vdev_spa;
5132 zio_t *fio;
5133 uint64_t delta;
5134
5135 zfs_dbgmsg("slow vdev: %s has %d active IOs",
5136 vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
5137
5138 /*
5139 * Look at the head of all the pending queues,
5140 * if any I/O has been outstanding for longer than
5141 * the spa_deadman_synctime invoke the deadman logic.
5142 */
5143 fio = avl_first(&vq->vq_active_tree);
5144 delta = gethrtime() - fio->io_timestamp;
5145 if (delta > spa_deadman_synctime(spa))
5146 zio_deadman(fio, tag);
5147 }
5148 mutex_exit(&vq->vq_lock);
5149 }
5150 }
5151
5152 void
5153 vdev_defer_resilver(vdev_t *vd)
5154 {
5155 ASSERT(vd->vdev_ops->vdev_op_leaf);
5156
5157 vd->vdev_resilver_deferred = B_TRUE;
5158 vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5159 }
5160
5161 /*
5162 * Clears the resilver deferred flag on all leaf devs under vd. Returns
5163 * B_TRUE if we have devices that need to be resilvered and are available to
5164 * accept resilver I/Os.
5165 */
5166 boolean_t
5167 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5168 {
5169 boolean_t resilver_needed = B_FALSE;
5170 spa_t *spa = vd->vdev_spa;
5171
5172 for (int c = 0; c < vd->vdev_children; c++) {
5173 vdev_t *cvd = vd->vdev_child[c];
5174 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5175 }
5176
5177 if (vd == spa->spa_root_vdev &&
5178 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5179 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5180 vdev_config_dirty(vd);
5181 spa->spa_resilver_deferred = B_FALSE;
5182 return (resilver_needed);
5183 }
5184
5185 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5186 !vd->vdev_ops->vdev_op_leaf)
5187 return (resilver_needed);
5188
5189 vd->vdev_resilver_deferred = B_FALSE;
5190
5191 return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5192 vdev_resilver_needed(vd, NULL, NULL));
5193 }
5194
5195 boolean_t
5196 vdev_xlate_is_empty(range_seg64_t *rs)
5197 {
5198 return (rs->rs_start == rs->rs_end);
5199 }
5200
5201 /*
5202 * Translate a logical range to the first contiguous physical range for the
5203 * specified vdev_t. This function is initially called with a leaf vdev and
5204 * will walk each parent vdev until it reaches a top-level vdev. Once the
5205 * top-level is reached the physical range is initialized and the recursive
5206 * function begins to unwind. As it unwinds it calls the parent's vdev
5207 * specific translation function to do the real conversion.
5208 */
5209 void
5210 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
5211 range_seg64_t *physical_rs, range_seg64_t *remain_rs)
5212 {
5213 /*
5214 * Walk up the vdev tree
5215 */
5216 if (vd != vd->vdev_top) {
5217 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5218 remain_rs);
5219 } else {
5220 /*
5221 * We've reached the top-level vdev, initialize the physical
5222 * range to the logical range and set an empty remaining
5223 * range then start to unwind.
5224 */
5225 physical_rs->rs_start = logical_rs->rs_start;
5226 physical_rs->rs_end = logical_rs->rs_end;
5227
5228 remain_rs->rs_start = logical_rs->rs_start;
5229 remain_rs->rs_end = logical_rs->rs_start;
5230
5231 return;
5232 }
5233
5234 vdev_t *pvd = vd->vdev_parent;
5235 ASSERT3P(pvd, !=, NULL);
5236 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5237
5238 /*
5239 * As this recursive function unwinds, translate the logical
5240 * range into its physical and any remaining components by calling
5241 * the vdev specific translate function.
5242 */
5243 range_seg64_t intermediate = { 0 };
5244 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5245
5246 physical_rs->rs_start = intermediate.rs_start;
5247 physical_rs->rs_end = intermediate.rs_end;
5248 }
5249
5250 void
5251 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
5252 vdev_xlate_func_t *func, void *arg)
5253 {
5254 range_seg64_t iter_rs = *logical_rs;
5255 range_seg64_t physical_rs;
5256 range_seg64_t remain_rs;
5257
5258 while (!vdev_xlate_is_empty(&iter_rs)) {
5259
5260 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5261
5262 /*
5263 * With raidz and dRAID, it's possible that the logical range
5264 * does not live on this leaf vdev. Only when there is a non-
5265 * zero physical size call the provided function.
5266 */
5267 if (!vdev_xlate_is_empty(&physical_rs))
5268 func(arg, &physical_rs);
5269
5270 iter_rs = remain_rs;
5271 }
5272 }
5273
5274 /*
5275 * Look at the vdev tree and determine whether any devices are currently being
5276 * replaced.
5277 */
5278 boolean_t
5279 vdev_replace_in_progress(vdev_t *vdev)
5280 {
5281 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5282
5283 if (vdev->vdev_ops == &vdev_replacing_ops)
5284 return (B_TRUE);
5285
5286 /*
5287 * A 'spare' vdev indicates that we have a replace in progress, unless
5288 * it has exactly two children, and the second, the hot spare, has
5289 * finished being resilvered.
5290 */
5291 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5292 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5293 return (B_TRUE);
5294
5295 for (int i = 0; i < vdev->vdev_children; i++) {
5296 if (vdev_replace_in_progress(vdev->vdev_child[i]))
5297 return (B_TRUE);
5298 }
5299
5300 return (B_FALSE);
5301 }
5302
5303 EXPORT_SYMBOL(vdev_fault);
5304 EXPORT_SYMBOL(vdev_degrade);
5305 EXPORT_SYMBOL(vdev_online);
5306 EXPORT_SYMBOL(vdev_offline);
5307 EXPORT_SYMBOL(vdev_clear);
5308
5309 /* BEGIN CSTYLED */
5310 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, INT, ZMOD_RW,
5311 "Target number of metaslabs per top-level vdev");
5312
5313 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, INT, ZMOD_RW,
5314 "Default limit for metaslab size");
5315
5316 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, INT, ZMOD_RW,
5317 "Minimum number of metaslabs per top-level vdev");
5318
5319 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, INT, ZMOD_RW,
5320 "Practical upper limit of total metaslabs per top-level vdev");
5321
5322 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
5323 "Rate limit slow IO (delay) events to this many per second");
5324
5325 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
5326 "Rate limit checksum events to this many checksum errors per second "
5327 "(do not set below zed threshold).");
5328
5329 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
5330 "Ignore errors during resilver/scrub");
5331
5332 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
5333 "Bypass vdev_validate()");
5334
5335 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
5336 "Disable cache flushes");
5337
5338 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, INT, ZMOD_RW,
5339 "Minimum number of metaslabs required to dedicate one for log blocks");
5340
5341 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
5342 param_set_min_auto_ashift, param_get_ulong, ZMOD_RW,
5343 "Minimum ashift used when creating new top-level vdevs");
5344
5345 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
5346 param_set_max_auto_ashift, param_get_ulong, ZMOD_RW,
5347 "Maximum ashift used when optimizing for logical -> physical sector "
5348 "size on new top-level vdevs");
5349 /* END CSTYLED */