]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Illumos 5818 - zfs {ref}compressratio is incorrect with 4k sector size
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/space_reftree.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/zvol.h>
47
48 /*
49 * When a vdev is added, it will be divided into approximately (but no
50 * more than) this number of metaslabs.
51 */
52 int metaslabs_per_vdev = 200;
53
54 /*
55 * Virtual device management.
56 */
57
58 static vdev_ops_t *vdev_ops_table[] = {
59 &vdev_root_ops,
60 &vdev_raidz_ops,
61 &vdev_mirror_ops,
62 &vdev_replacing_ops,
63 &vdev_spare_ops,
64 &vdev_disk_ops,
65 &vdev_file_ops,
66 &vdev_missing_ops,
67 &vdev_hole_ops,
68 NULL
69 };
70
71 /*
72 * Given a vdev type, return the appropriate ops vector.
73 */
74 static vdev_ops_t *
75 vdev_getops(const char *type)
76 {
77 vdev_ops_t *ops, **opspp;
78
79 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
80 if (strcmp(ops->vdev_op_type, type) == 0)
81 break;
82
83 return (ops);
84 }
85
86 /*
87 * Default asize function: return the MAX of psize with the asize of
88 * all children. This is what's used by anything other than RAID-Z.
89 */
90 uint64_t
91 vdev_default_asize(vdev_t *vd, uint64_t psize)
92 {
93 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
94 uint64_t csize;
95 int c;
96
97 for (c = 0; c < vd->vdev_children; c++) {
98 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
99 asize = MAX(asize, csize);
100 }
101
102 return (asize);
103 }
104
105 /*
106 * Get the minimum allocatable size. We define the allocatable size as
107 * the vdev's asize rounded to the nearest metaslab. This allows us to
108 * replace or attach devices which don't have the same physical size but
109 * can still satisfy the same number of allocations.
110 */
111 uint64_t
112 vdev_get_min_asize(vdev_t *vd)
113 {
114 vdev_t *pvd = vd->vdev_parent;
115
116 /*
117 * If our parent is NULL (inactive spare or cache) or is the root,
118 * just return our own asize.
119 */
120 if (pvd == NULL)
121 return (vd->vdev_asize);
122
123 /*
124 * The top-level vdev just returns the allocatable size rounded
125 * to the nearest metaslab.
126 */
127 if (vd == vd->vdev_top)
128 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
129
130 /*
131 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
132 * so each child must provide at least 1/Nth of its asize.
133 */
134 if (pvd->vdev_ops == &vdev_raidz_ops)
135 return (pvd->vdev_min_asize / pvd->vdev_children);
136
137 return (pvd->vdev_min_asize);
138 }
139
140 void
141 vdev_set_min_asize(vdev_t *vd)
142 {
143 int c;
144 vd->vdev_min_asize = vdev_get_min_asize(vd);
145
146 for (c = 0; c < vd->vdev_children; c++)
147 vdev_set_min_asize(vd->vdev_child[c]);
148 }
149
150 vdev_t *
151 vdev_lookup_top(spa_t *spa, uint64_t vdev)
152 {
153 vdev_t *rvd = spa->spa_root_vdev;
154
155 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
156
157 if (vdev < rvd->vdev_children) {
158 ASSERT(rvd->vdev_child[vdev] != NULL);
159 return (rvd->vdev_child[vdev]);
160 }
161
162 return (NULL);
163 }
164
165 vdev_t *
166 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
167 {
168 vdev_t *mvd;
169 int c;
170
171 if (vd->vdev_guid == guid)
172 return (vd);
173
174 for (c = 0; c < vd->vdev_children; c++)
175 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
176 NULL)
177 return (mvd);
178
179 return (NULL);
180 }
181
182 static int
183 vdev_count_leaves_impl(vdev_t *vd)
184 {
185 int n = 0;
186 int c;
187
188 if (vd->vdev_ops->vdev_op_leaf)
189 return (1);
190
191 for (c = 0; c < vd->vdev_children; c++)
192 n += vdev_count_leaves_impl(vd->vdev_child[c]);
193
194 return (n);
195 }
196
197 int
198 vdev_count_leaves(spa_t *spa)
199 {
200 return (vdev_count_leaves_impl(spa->spa_root_vdev));
201 }
202
203 void
204 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
205 {
206 size_t oldsize, newsize;
207 uint64_t id = cvd->vdev_id;
208 vdev_t **newchild;
209 spa_t *spa = cvd->vdev_spa;
210
211 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
212 ASSERT(cvd->vdev_parent == NULL);
213
214 cvd->vdev_parent = pvd;
215
216 if (pvd == NULL)
217 return;
218
219 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
220
221 oldsize = pvd->vdev_children * sizeof (vdev_t *);
222 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
223 newsize = pvd->vdev_children * sizeof (vdev_t *);
224
225 newchild = kmem_alloc(newsize, KM_SLEEP);
226 if (pvd->vdev_child != NULL) {
227 bcopy(pvd->vdev_child, newchild, oldsize);
228 kmem_free(pvd->vdev_child, oldsize);
229 }
230
231 pvd->vdev_child = newchild;
232 pvd->vdev_child[id] = cvd;
233
234 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
235 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
236
237 /*
238 * Walk up all ancestors to update guid sum.
239 */
240 for (; pvd != NULL; pvd = pvd->vdev_parent)
241 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
242 }
243
244 void
245 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
246 {
247 int c;
248 uint_t id = cvd->vdev_id;
249
250 ASSERT(cvd->vdev_parent == pvd);
251
252 if (pvd == NULL)
253 return;
254
255 ASSERT(id < pvd->vdev_children);
256 ASSERT(pvd->vdev_child[id] == cvd);
257
258 pvd->vdev_child[id] = NULL;
259 cvd->vdev_parent = NULL;
260
261 for (c = 0; c < pvd->vdev_children; c++)
262 if (pvd->vdev_child[c])
263 break;
264
265 if (c == pvd->vdev_children) {
266 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
267 pvd->vdev_child = NULL;
268 pvd->vdev_children = 0;
269 }
270
271 /*
272 * Walk up all ancestors to update guid sum.
273 */
274 for (; pvd != NULL; pvd = pvd->vdev_parent)
275 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
276 }
277
278 /*
279 * Remove any holes in the child array.
280 */
281 void
282 vdev_compact_children(vdev_t *pvd)
283 {
284 vdev_t **newchild, *cvd;
285 int oldc = pvd->vdev_children;
286 int newc;
287 int c;
288
289 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
290
291 for (c = newc = 0; c < oldc; c++)
292 if (pvd->vdev_child[c])
293 newc++;
294
295 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
296
297 for (c = newc = 0; c < oldc; c++) {
298 if ((cvd = pvd->vdev_child[c]) != NULL) {
299 newchild[newc] = cvd;
300 cvd->vdev_id = newc++;
301 }
302 }
303
304 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
305 pvd->vdev_child = newchild;
306 pvd->vdev_children = newc;
307 }
308
309 /*
310 * Allocate and minimally initialize a vdev_t.
311 */
312 vdev_t *
313 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
314 {
315 vdev_t *vd;
316 int t;
317
318 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
319
320 if (spa->spa_root_vdev == NULL) {
321 ASSERT(ops == &vdev_root_ops);
322 spa->spa_root_vdev = vd;
323 spa->spa_load_guid = spa_generate_guid(NULL);
324 }
325
326 if (guid == 0 && ops != &vdev_hole_ops) {
327 if (spa->spa_root_vdev == vd) {
328 /*
329 * The root vdev's guid will also be the pool guid,
330 * which must be unique among all pools.
331 */
332 guid = spa_generate_guid(NULL);
333 } else {
334 /*
335 * Any other vdev's guid must be unique within the pool.
336 */
337 guid = spa_generate_guid(spa);
338 }
339 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
340 }
341
342 vd->vdev_spa = spa;
343 vd->vdev_id = id;
344 vd->vdev_guid = guid;
345 vd->vdev_guid_sum = guid;
346 vd->vdev_ops = ops;
347 vd->vdev_state = VDEV_STATE_CLOSED;
348 vd->vdev_ishole = (ops == &vdev_hole_ops);
349
350 list_link_init(&vd->vdev_config_dirty_node);
351 list_link_init(&vd->vdev_state_dirty_node);
352 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
353 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
354 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
355 for (t = 0; t < DTL_TYPES; t++) {
356 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
357 &vd->vdev_dtl_lock);
358 }
359 txg_list_create(&vd->vdev_ms_list,
360 offsetof(struct metaslab, ms_txg_node));
361 txg_list_create(&vd->vdev_dtl_list,
362 offsetof(struct vdev, vdev_dtl_node));
363 vd->vdev_stat.vs_timestamp = gethrtime();
364 vdev_queue_init(vd);
365 vdev_cache_init(vd);
366
367 return (vd);
368 }
369
370 /*
371 * Allocate a new vdev. The 'alloctype' is used to control whether we are
372 * creating a new vdev or loading an existing one - the behavior is slightly
373 * different for each case.
374 */
375 int
376 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
377 int alloctype)
378 {
379 vdev_ops_t *ops;
380 char *type;
381 uint64_t guid = 0, islog, nparity;
382 vdev_t *vd;
383
384 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
385
386 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
387 return (SET_ERROR(EINVAL));
388
389 if ((ops = vdev_getops(type)) == NULL)
390 return (SET_ERROR(EINVAL));
391
392 /*
393 * If this is a load, get the vdev guid from the nvlist.
394 * Otherwise, vdev_alloc_common() will generate one for us.
395 */
396 if (alloctype == VDEV_ALLOC_LOAD) {
397 uint64_t label_id;
398
399 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
400 label_id != id)
401 return (SET_ERROR(EINVAL));
402
403 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
404 return (SET_ERROR(EINVAL));
405 } else if (alloctype == VDEV_ALLOC_SPARE) {
406 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
407 return (SET_ERROR(EINVAL));
408 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
409 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
410 return (SET_ERROR(EINVAL));
411 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
412 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
413 return (SET_ERROR(EINVAL));
414 }
415
416 /*
417 * The first allocated vdev must be of type 'root'.
418 */
419 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
420 return (SET_ERROR(EINVAL));
421
422 /*
423 * Determine whether we're a log vdev.
424 */
425 islog = 0;
426 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
427 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
428 return (SET_ERROR(ENOTSUP));
429
430 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
431 return (SET_ERROR(ENOTSUP));
432
433 /*
434 * Set the nparity property for RAID-Z vdevs.
435 */
436 nparity = -1ULL;
437 if (ops == &vdev_raidz_ops) {
438 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
439 &nparity) == 0) {
440 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
441 return (SET_ERROR(EINVAL));
442 /*
443 * Previous versions could only support 1 or 2 parity
444 * device.
445 */
446 if (nparity > 1 &&
447 spa_version(spa) < SPA_VERSION_RAIDZ2)
448 return (SET_ERROR(ENOTSUP));
449 if (nparity > 2 &&
450 spa_version(spa) < SPA_VERSION_RAIDZ3)
451 return (SET_ERROR(ENOTSUP));
452 } else {
453 /*
454 * We require the parity to be specified for SPAs that
455 * support multiple parity levels.
456 */
457 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
458 return (SET_ERROR(EINVAL));
459 /*
460 * Otherwise, we default to 1 parity device for RAID-Z.
461 */
462 nparity = 1;
463 }
464 } else {
465 nparity = 0;
466 }
467 ASSERT(nparity != -1ULL);
468
469 vd = vdev_alloc_common(spa, id, guid, ops);
470
471 vd->vdev_islog = islog;
472 vd->vdev_nparity = nparity;
473
474 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
475 vd->vdev_path = spa_strdup(vd->vdev_path);
476 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
477 vd->vdev_devid = spa_strdup(vd->vdev_devid);
478 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
479 &vd->vdev_physpath) == 0)
480 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
481 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
482 vd->vdev_fru = spa_strdup(vd->vdev_fru);
483
484 /*
485 * Set the whole_disk property. If it's not specified, leave the value
486 * as -1.
487 */
488 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
489 &vd->vdev_wholedisk) != 0)
490 vd->vdev_wholedisk = -1ULL;
491
492 /*
493 * Look for the 'not present' flag. This will only be set if the device
494 * was not present at the time of import.
495 */
496 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
497 &vd->vdev_not_present);
498
499 /*
500 * Get the alignment requirement.
501 */
502 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
503
504 /*
505 * Retrieve the vdev creation time.
506 */
507 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
508 &vd->vdev_crtxg);
509
510 /*
511 * If we're a top-level vdev, try to load the allocation parameters.
512 */
513 if (parent && !parent->vdev_parent &&
514 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
515 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
516 &vd->vdev_ms_array);
517 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
518 &vd->vdev_ms_shift);
519 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
520 &vd->vdev_asize);
521 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
522 &vd->vdev_removing);
523 }
524
525 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
526 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
527 alloctype == VDEV_ALLOC_ADD ||
528 alloctype == VDEV_ALLOC_SPLIT ||
529 alloctype == VDEV_ALLOC_ROOTPOOL);
530 vd->vdev_mg = metaslab_group_create(islog ?
531 spa_log_class(spa) : spa_normal_class(spa), vd);
532 }
533
534 /*
535 * If we're a leaf vdev, try to load the DTL object and other state.
536 */
537 if (vd->vdev_ops->vdev_op_leaf &&
538 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
539 alloctype == VDEV_ALLOC_ROOTPOOL)) {
540 if (alloctype == VDEV_ALLOC_LOAD) {
541 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
542 &vd->vdev_dtl_object);
543 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
544 &vd->vdev_unspare);
545 }
546
547 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
548 uint64_t spare = 0;
549
550 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
551 &spare) == 0 && spare)
552 spa_spare_add(vd);
553 }
554
555 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
556 &vd->vdev_offline);
557
558 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
559 &vd->vdev_resilver_txg);
560
561 /*
562 * When importing a pool, we want to ignore the persistent fault
563 * state, as the diagnosis made on another system may not be
564 * valid in the current context. Local vdevs will
565 * remain in the faulted state.
566 */
567 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
568 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
569 &vd->vdev_faulted);
570 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
571 &vd->vdev_degraded);
572 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
573 &vd->vdev_removed);
574
575 if (vd->vdev_faulted || vd->vdev_degraded) {
576 char *aux;
577
578 vd->vdev_label_aux =
579 VDEV_AUX_ERR_EXCEEDED;
580 if (nvlist_lookup_string(nv,
581 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
582 strcmp(aux, "external") == 0)
583 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
584 }
585 }
586 }
587
588 /*
589 * Add ourselves to the parent's list of children.
590 */
591 vdev_add_child(parent, vd);
592
593 *vdp = vd;
594
595 return (0);
596 }
597
598 void
599 vdev_free(vdev_t *vd)
600 {
601 int c, t;
602 spa_t *spa = vd->vdev_spa;
603
604 /*
605 * vdev_free() implies closing the vdev first. This is simpler than
606 * trying to ensure complicated semantics for all callers.
607 */
608 vdev_close(vd);
609
610 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
611 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
612
613 /*
614 * Free all children.
615 */
616 for (c = 0; c < vd->vdev_children; c++)
617 vdev_free(vd->vdev_child[c]);
618
619 ASSERT(vd->vdev_child == NULL);
620 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
621
622 /*
623 * Discard allocation state.
624 */
625 if (vd->vdev_mg != NULL) {
626 vdev_metaslab_fini(vd);
627 metaslab_group_destroy(vd->vdev_mg);
628 }
629
630 ASSERT0(vd->vdev_stat.vs_space);
631 ASSERT0(vd->vdev_stat.vs_dspace);
632 ASSERT0(vd->vdev_stat.vs_alloc);
633
634 /*
635 * Remove this vdev from its parent's child list.
636 */
637 vdev_remove_child(vd->vdev_parent, vd);
638
639 ASSERT(vd->vdev_parent == NULL);
640
641 /*
642 * Clean up vdev structure.
643 */
644 vdev_queue_fini(vd);
645 vdev_cache_fini(vd);
646
647 if (vd->vdev_path)
648 spa_strfree(vd->vdev_path);
649 if (vd->vdev_devid)
650 spa_strfree(vd->vdev_devid);
651 if (vd->vdev_physpath)
652 spa_strfree(vd->vdev_physpath);
653 if (vd->vdev_fru)
654 spa_strfree(vd->vdev_fru);
655
656 if (vd->vdev_isspare)
657 spa_spare_remove(vd);
658 if (vd->vdev_isl2cache)
659 spa_l2cache_remove(vd);
660
661 txg_list_destroy(&vd->vdev_ms_list);
662 txg_list_destroy(&vd->vdev_dtl_list);
663
664 mutex_enter(&vd->vdev_dtl_lock);
665 space_map_close(vd->vdev_dtl_sm);
666 for (t = 0; t < DTL_TYPES; t++) {
667 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
668 range_tree_destroy(vd->vdev_dtl[t]);
669 }
670 mutex_exit(&vd->vdev_dtl_lock);
671
672 mutex_destroy(&vd->vdev_dtl_lock);
673 mutex_destroy(&vd->vdev_stat_lock);
674 mutex_destroy(&vd->vdev_probe_lock);
675
676 if (vd == spa->spa_root_vdev)
677 spa->spa_root_vdev = NULL;
678
679 kmem_free(vd, sizeof (vdev_t));
680 }
681
682 /*
683 * Transfer top-level vdev state from svd to tvd.
684 */
685 static void
686 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
687 {
688 spa_t *spa = svd->vdev_spa;
689 metaslab_t *msp;
690 vdev_t *vd;
691 int t;
692
693 ASSERT(tvd == tvd->vdev_top);
694
695 tvd->vdev_ms_array = svd->vdev_ms_array;
696 tvd->vdev_ms_shift = svd->vdev_ms_shift;
697 tvd->vdev_ms_count = svd->vdev_ms_count;
698
699 svd->vdev_ms_array = 0;
700 svd->vdev_ms_shift = 0;
701 svd->vdev_ms_count = 0;
702
703 if (tvd->vdev_mg)
704 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
705 tvd->vdev_mg = svd->vdev_mg;
706 tvd->vdev_ms = svd->vdev_ms;
707
708 svd->vdev_mg = NULL;
709 svd->vdev_ms = NULL;
710
711 if (tvd->vdev_mg != NULL)
712 tvd->vdev_mg->mg_vd = tvd;
713
714 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
715 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
716 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
717
718 svd->vdev_stat.vs_alloc = 0;
719 svd->vdev_stat.vs_space = 0;
720 svd->vdev_stat.vs_dspace = 0;
721
722 for (t = 0; t < TXG_SIZE; t++) {
723 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
724 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
725 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
726 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
727 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
728 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
729 }
730
731 if (list_link_active(&svd->vdev_config_dirty_node)) {
732 vdev_config_clean(svd);
733 vdev_config_dirty(tvd);
734 }
735
736 if (list_link_active(&svd->vdev_state_dirty_node)) {
737 vdev_state_clean(svd);
738 vdev_state_dirty(tvd);
739 }
740
741 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
742 svd->vdev_deflate_ratio = 0;
743
744 tvd->vdev_islog = svd->vdev_islog;
745 svd->vdev_islog = 0;
746 }
747
748 static void
749 vdev_top_update(vdev_t *tvd, vdev_t *vd)
750 {
751 int c;
752
753 if (vd == NULL)
754 return;
755
756 vd->vdev_top = tvd;
757
758 for (c = 0; c < vd->vdev_children; c++)
759 vdev_top_update(tvd, vd->vdev_child[c]);
760 }
761
762 /*
763 * Add a mirror/replacing vdev above an existing vdev.
764 */
765 vdev_t *
766 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
767 {
768 spa_t *spa = cvd->vdev_spa;
769 vdev_t *pvd = cvd->vdev_parent;
770 vdev_t *mvd;
771
772 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
773
774 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
775
776 mvd->vdev_asize = cvd->vdev_asize;
777 mvd->vdev_min_asize = cvd->vdev_min_asize;
778 mvd->vdev_max_asize = cvd->vdev_max_asize;
779 mvd->vdev_ashift = cvd->vdev_ashift;
780 mvd->vdev_state = cvd->vdev_state;
781 mvd->vdev_crtxg = cvd->vdev_crtxg;
782
783 vdev_remove_child(pvd, cvd);
784 vdev_add_child(pvd, mvd);
785 cvd->vdev_id = mvd->vdev_children;
786 vdev_add_child(mvd, cvd);
787 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
788
789 if (mvd == mvd->vdev_top)
790 vdev_top_transfer(cvd, mvd);
791
792 return (mvd);
793 }
794
795 /*
796 * Remove a 1-way mirror/replacing vdev from the tree.
797 */
798 void
799 vdev_remove_parent(vdev_t *cvd)
800 {
801 vdev_t *mvd = cvd->vdev_parent;
802 vdev_t *pvd = mvd->vdev_parent;
803
804 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
805
806 ASSERT(mvd->vdev_children == 1);
807 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
808 mvd->vdev_ops == &vdev_replacing_ops ||
809 mvd->vdev_ops == &vdev_spare_ops);
810 cvd->vdev_ashift = mvd->vdev_ashift;
811
812 vdev_remove_child(mvd, cvd);
813 vdev_remove_child(pvd, mvd);
814
815 /*
816 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
817 * Otherwise, we could have detached an offline device, and when we
818 * go to import the pool we'll think we have two top-level vdevs,
819 * instead of a different version of the same top-level vdev.
820 */
821 if (mvd->vdev_top == mvd) {
822 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
823 cvd->vdev_orig_guid = cvd->vdev_guid;
824 cvd->vdev_guid += guid_delta;
825 cvd->vdev_guid_sum += guid_delta;
826
827 /*
828 * If pool not set for autoexpand, we need to also preserve
829 * mvd's asize to prevent automatic expansion of cvd.
830 * Otherwise if we are adjusting the mirror by attaching and
831 * detaching children of non-uniform sizes, the mirror could
832 * autoexpand, unexpectedly requiring larger devices to
833 * re-establish the mirror.
834 */
835 if (!cvd->vdev_spa->spa_autoexpand)
836 cvd->vdev_asize = mvd->vdev_asize;
837 }
838 cvd->vdev_id = mvd->vdev_id;
839 vdev_add_child(pvd, cvd);
840 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
841
842 if (cvd == cvd->vdev_top)
843 vdev_top_transfer(mvd, cvd);
844
845 ASSERT(mvd->vdev_children == 0);
846 vdev_free(mvd);
847 }
848
849 int
850 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
851 {
852 spa_t *spa = vd->vdev_spa;
853 objset_t *mos = spa->spa_meta_objset;
854 uint64_t m;
855 uint64_t oldc = vd->vdev_ms_count;
856 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
857 metaslab_t **mspp;
858 int error;
859
860 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
861
862 /*
863 * This vdev is not being allocated from yet or is a hole.
864 */
865 if (vd->vdev_ms_shift == 0)
866 return (0);
867
868 ASSERT(!vd->vdev_ishole);
869
870 /*
871 * Compute the raidz-deflation ratio. Note, we hard-code
872 * in 128k (1 << 17) because it is the "typical" blocksize.
873 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
874 * otherwise it would inconsistently account for existing bp's.
875 */
876 vd->vdev_deflate_ratio = (1 << 17) /
877 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
878
879 ASSERT(oldc <= newc);
880
881 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
882
883 if (oldc != 0) {
884 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
885 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
886 }
887
888 vd->vdev_ms = mspp;
889 vd->vdev_ms_count = newc;
890
891 for (m = oldc; m < newc; m++) {
892 uint64_t object = 0;
893
894 if (txg == 0) {
895 error = dmu_read(mos, vd->vdev_ms_array,
896 m * sizeof (uint64_t), sizeof (uint64_t), &object,
897 DMU_READ_PREFETCH);
898 if (error)
899 return (error);
900 }
901
902 error = metaslab_init(vd->vdev_mg, m, object, txg,
903 &(vd->vdev_ms[m]));
904 if (error)
905 return (error);
906 }
907
908 if (txg == 0)
909 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
910
911 /*
912 * If the vdev is being removed we don't activate
913 * the metaslabs since we want to ensure that no new
914 * allocations are performed on this device.
915 */
916 if (oldc == 0 && !vd->vdev_removing)
917 metaslab_group_activate(vd->vdev_mg);
918
919 if (txg == 0)
920 spa_config_exit(spa, SCL_ALLOC, FTAG);
921
922 return (0);
923 }
924
925 void
926 vdev_metaslab_fini(vdev_t *vd)
927 {
928 uint64_t m;
929 uint64_t count = vd->vdev_ms_count;
930
931 if (vd->vdev_ms != NULL) {
932 metaslab_group_passivate(vd->vdev_mg);
933 for (m = 0; m < count; m++) {
934 metaslab_t *msp = vd->vdev_ms[m];
935
936 if (msp != NULL)
937 metaslab_fini(msp);
938 }
939 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
940 vd->vdev_ms = NULL;
941 }
942
943 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
944 }
945
946 typedef struct vdev_probe_stats {
947 boolean_t vps_readable;
948 boolean_t vps_writeable;
949 int vps_flags;
950 } vdev_probe_stats_t;
951
952 static void
953 vdev_probe_done(zio_t *zio)
954 {
955 spa_t *spa = zio->io_spa;
956 vdev_t *vd = zio->io_vd;
957 vdev_probe_stats_t *vps = zio->io_private;
958
959 ASSERT(vd->vdev_probe_zio != NULL);
960
961 if (zio->io_type == ZIO_TYPE_READ) {
962 if (zio->io_error == 0)
963 vps->vps_readable = 1;
964 if (zio->io_error == 0 && spa_writeable(spa)) {
965 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
966 zio->io_offset, zio->io_size, zio->io_data,
967 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
968 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
969 } else {
970 zio_buf_free(zio->io_data, zio->io_size);
971 }
972 } else if (zio->io_type == ZIO_TYPE_WRITE) {
973 if (zio->io_error == 0)
974 vps->vps_writeable = 1;
975 zio_buf_free(zio->io_data, zio->io_size);
976 } else if (zio->io_type == ZIO_TYPE_NULL) {
977 zio_t *pio;
978
979 vd->vdev_cant_read |= !vps->vps_readable;
980 vd->vdev_cant_write |= !vps->vps_writeable;
981
982 if (vdev_readable(vd) &&
983 (vdev_writeable(vd) || !spa_writeable(spa))) {
984 zio->io_error = 0;
985 } else {
986 ASSERT(zio->io_error != 0);
987 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
988 spa, vd, NULL, 0, 0);
989 zio->io_error = SET_ERROR(ENXIO);
990 }
991
992 mutex_enter(&vd->vdev_probe_lock);
993 ASSERT(vd->vdev_probe_zio == zio);
994 vd->vdev_probe_zio = NULL;
995 mutex_exit(&vd->vdev_probe_lock);
996
997 while ((pio = zio_walk_parents(zio)) != NULL)
998 if (!vdev_accessible(vd, pio))
999 pio->io_error = SET_ERROR(ENXIO);
1000
1001 kmem_free(vps, sizeof (*vps));
1002 }
1003 }
1004
1005 /*
1006 * Determine whether this device is accessible.
1007 *
1008 * Read and write to several known locations: the pad regions of each
1009 * vdev label but the first, which we leave alone in case it contains
1010 * a VTOC.
1011 */
1012 zio_t *
1013 vdev_probe(vdev_t *vd, zio_t *zio)
1014 {
1015 spa_t *spa = vd->vdev_spa;
1016 vdev_probe_stats_t *vps = NULL;
1017 zio_t *pio;
1018 int l;
1019
1020 ASSERT(vd->vdev_ops->vdev_op_leaf);
1021
1022 /*
1023 * Don't probe the probe.
1024 */
1025 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1026 return (NULL);
1027
1028 /*
1029 * To prevent 'probe storms' when a device fails, we create
1030 * just one probe i/o at a time. All zios that want to probe
1031 * this vdev will become parents of the probe io.
1032 */
1033 mutex_enter(&vd->vdev_probe_lock);
1034
1035 if ((pio = vd->vdev_probe_zio) == NULL) {
1036 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1037
1038 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1039 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1040 ZIO_FLAG_TRYHARD;
1041
1042 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1043 /*
1044 * vdev_cant_read and vdev_cant_write can only
1045 * transition from TRUE to FALSE when we have the
1046 * SCL_ZIO lock as writer; otherwise they can only
1047 * transition from FALSE to TRUE. This ensures that
1048 * any zio looking at these values can assume that
1049 * failures persist for the life of the I/O. That's
1050 * important because when a device has intermittent
1051 * connectivity problems, we want to ensure that
1052 * they're ascribed to the device (ENXIO) and not
1053 * the zio (EIO).
1054 *
1055 * Since we hold SCL_ZIO as writer here, clear both
1056 * values so the probe can reevaluate from first
1057 * principles.
1058 */
1059 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1060 vd->vdev_cant_read = B_FALSE;
1061 vd->vdev_cant_write = B_FALSE;
1062 }
1063
1064 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1065 vdev_probe_done, vps,
1066 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1067
1068 /*
1069 * We can't change the vdev state in this context, so we
1070 * kick off an async task to do it on our behalf.
1071 */
1072 if (zio != NULL) {
1073 vd->vdev_probe_wanted = B_TRUE;
1074 spa_async_request(spa, SPA_ASYNC_PROBE);
1075 }
1076 }
1077
1078 if (zio != NULL)
1079 zio_add_child(zio, pio);
1080
1081 mutex_exit(&vd->vdev_probe_lock);
1082
1083 if (vps == NULL) {
1084 ASSERT(zio != NULL);
1085 return (NULL);
1086 }
1087
1088 for (l = 1; l < VDEV_LABELS; l++) {
1089 zio_nowait(zio_read_phys(pio, vd,
1090 vdev_label_offset(vd->vdev_psize, l,
1091 offsetof(vdev_label_t, vl_pad2)),
1092 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1093 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1094 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1095 }
1096
1097 if (zio == NULL)
1098 return (pio);
1099
1100 zio_nowait(pio);
1101 return (NULL);
1102 }
1103
1104 static void
1105 vdev_open_child(void *arg)
1106 {
1107 vdev_t *vd = arg;
1108
1109 vd->vdev_open_thread = curthread;
1110 vd->vdev_open_error = vdev_open(vd);
1111 vd->vdev_open_thread = NULL;
1112 }
1113
1114 static boolean_t
1115 vdev_uses_zvols(vdev_t *vd)
1116 {
1117 int c;
1118
1119 #ifdef _KERNEL
1120 if (zvol_is_zvol(vd->vdev_path))
1121 return (B_TRUE);
1122 #endif
1123
1124 for (c = 0; c < vd->vdev_children; c++)
1125 if (vdev_uses_zvols(vd->vdev_child[c]))
1126 return (B_TRUE);
1127
1128 return (B_FALSE);
1129 }
1130
1131 void
1132 vdev_open_children(vdev_t *vd)
1133 {
1134 taskq_t *tq;
1135 int children = vd->vdev_children;
1136 int c;
1137
1138 /*
1139 * in order to handle pools on top of zvols, do the opens
1140 * in a single thread so that the same thread holds the
1141 * spa_namespace_lock
1142 */
1143 if (vdev_uses_zvols(vd)) {
1144 for (c = 0; c < children; c++)
1145 vd->vdev_child[c]->vdev_open_error =
1146 vdev_open(vd->vdev_child[c]);
1147 return;
1148 }
1149 tq = taskq_create("vdev_open", children, minclsyspri,
1150 children, children, TASKQ_PREPOPULATE);
1151
1152 for (c = 0; c < children; c++)
1153 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1154 TQ_SLEEP) != 0);
1155
1156 taskq_destroy(tq);
1157 }
1158
1159 /*
1160 * Prepare a virtual device for access.
1161 */
1162 int
1163 vdev_open(vdev_t *vd)
1164 {
1165 spa_t *spa = vd->vdev_spa;
1166 int error;
1167 uint64_t osize = 0;
1168 uint64_t max_osize = 0;
1169 uint64_t asize, max_asize, psize;
1170 uint64_t ashift = 0;
1171 int c;
1172
1173 ASSERT(vd->vdev_open_thread == curthread ||
1174 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1175 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1176 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1177 vd->vdev_state == VDEV_STATE_OFFLINE);
1178
1179 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1180 vd->vdev_cant_read = B_FALSE;
1181 vd->vdev_cant_write = B_FALSE;
1182 vd->vdev_min_asize = vdev_get_min_asize(vd);
1183
1184 /*
1185 * If this vdev is not removed, check its fault status. If it's
1186 * faulted, bail out of the open.
1187 */
1188 if (!vd->vdev_removed && vd->vdev_faulted) {
1189 ASSERT(vd->vdev_children == 0);
1190 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1191 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1192 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1193 vd->vdev_label_aux);
1194 return (SET_ERROR(ENXIO));
1195 } else if (vd->vdev_offline) {
1196 ASSERT(vd->vdev_children == 0);
1197 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1198 return (SET_ERROR(ENXIO));
1199 }
1200
1201 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1202
1203 /*
1204 * Reset the vdev_reopening flag so that we actually close
1205 * the vdev on error.
1206 */
1207 vd->vdev_reopening = B_FALSE;
1208 if (zio_injection_enabled && error == 0)
1209 error = zio_handle_device_injection(vd, NULL, ENXIO);
1210
1211 if (error) {
1212 if (vd->vdev_removed &&
1213 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1214 vd->vdev_removed = B_FALSE;
1215
1216 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1217 vd->vdev_stat.vs_aux);
1218 return (error);
1219 }
1220
1221 vd->vdev_removed = B_FALSE;
1222
1223 /*
1224 * Recheck the faulted flag now that we have confirmed that
1225 * the vdev is accessible. If we're faulted, bail.
1226 */
1227 if (vd->vdev_faulted) {
1228 ASSERT(vd->vdev_children == 0);
1229 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1230 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1231 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1232 vd->vdev_label_aux);
1233 return (SET_ERROR(ENXIO));
1234 }
1235
1236 if (vd->vdev_degraded) {
1237 ASSERT(vd->vdev_children == 0);
1238 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1239 VDEV_AUX_ERR_EXCEEDED);
1240 } else {
1241 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1242 }
1243
1244 /*
1245 * For hole or missing vdevs we just return success.
1246 */
1247 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1248 return (0);
1249
1250 for (c = 0; c < vd->vdev_children; c++) {
1251 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1252 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1253 VDEV_AUX_NONE);
1254 break;
1255 }
1256 }
1257
1258 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1259 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1260
1261 if (vd->vdev_children == 0) {
1262 if (osize < SPA_MINDEVSIZE) {
1263 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1264 VDEV_AUX_TOO_SMALL);
1265 return (SET_ERROR(EOVERFLOW));
1266 }
1267 psize = osize;
1268 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1269 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1270 VDEV_LABEL_END_SIZE);
1271 } else {
1272 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1273 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1274 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1275 VDEV_AUX_TOO_SMALL);
1276 return (SET_ERROR(EOVERFLOW));
1277 }
1278 psize = 0;
1279 asize = osize;
1280 max_asize = max_osize;
1281 }
1282
1283 vd->vdev_psize = psize;
1284
1285 /*
1286 * Make sure the allocatable size hasn't shrunk.
1287 */
1288 if (asize < vd->vdev_min_asize) {
1289 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1290 VDEV_AUX_BAD_LABEL);
1291 return (SET_ERROR(EINVAL));
1292 }
1293
1294 if (vd->vdev_asize == 0) {
1295 /*
1296 * This is the first-ever open, so use the computed values.
1297 * For compatibility, a different ashift can be requested.
1298 */
1299 vd->vdev_asize = asize;
1300 vd->vdev_max_asize = max_asize;
1301 if (vd->vdev_ashift == 0)
1302 vd->vdev_ashift = ashift;
1303 } else {
1304 /*
1305 * Detect if the alignment requirement has increased.
1306 * We don't want to make the pool unavailable, just
1307 * post an event instead.
1308 */
1309 if (ashift > vd->vdev_top->vdev_ashift &&
1310 vd->vdev_ops->vdev_op_leaf) {
1311 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1312 spa, vd, NULL, 0, 0);
1313 }
1314
1315 vd->vdev_max_asize = max_asize;
1316 }
1317
1318 /*
1319 * If all children are healthy and the asize has increased,
1320 * then we've experienced dynamic LUN growth. If automatic
1321 * expansion is enabled then use the additional space.
1322 */
1323 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1324 (vd->vdev_expanding || spa->spa_autoexpand))
1325 vd->vdev_asize = asize;
1326
1327 vdev_set_min_asize(vd);
1328
1329 /*
1330 * Ensure we can issue some IO before declaring the
1331 * vdev open for business.
1332 */
1333 if (vd->vdev_ops->vdev_op_leaf &&
1334 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1335 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1336 VDEV_AUX_ERR_EXCEEDED);
1337 return (error);
1338 }
1339
1340 /*
1341 * Track the min and max ashift values for normal data devices.
1342 */
1343 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1344 !vd->vdev_islog && vd->vdev_aux == NULL) {
1345 if (vd->vdev_ashift > spa->spa_max_ashift)
1346 spa->spa_max_ashift = vd->vdev_ashift;
1347 if (vd->vdev_ashift < spa->spa_min_ashift)
1348 spa->spa_min_ashift = vd->vdev_ashift;
1349 }
1350
1351 /*
1352 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1353 * resilver. But don't do this if we are doing a reopen for a scrub,
1354 * since this would just restart the scrub we are already doing.
1355 */
1356 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1357 vdev_resilver_needed(vd, NULL, NULL))
1358 spa_async_request(spa, SPA_ASYNC_RESILVER);
1359
1360 return (0);
1361 }
1362
1363 /*
1364 * Called once the vdevs are all opened, this routine validates the label
1365 * contents. This needs to be done before vdev_load() so that we don't
1366 * inadvertently do repair I/Os to the wrong device.
1367 *
1368 * If 'strict' is false ignore the spa guid check. This is necessary because
1369 * if the machine crashed during a re-guid the new guid might have been written
1370 * to all of the vdev labels, but not the cached config. The strict check
1371 * will be performed when the pool is opened again using the mos config.
1372 *
1373 * This function will only return failure if one of the vdevs indicates that it
1374 * has since been destroyed or exported. This is only possible if
1375 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1376 * will be updated but the function will return 0.
1377 */
1378 int
1379 vdev_validate(vdev_t *vd, boolean_t strict)
1380 {
1381 spa_t *spa = vd->vdev_spa;
1382 nvlist_t *label;
1383 uint64_t guid = 0, top_guid;
1384 uint64_t state;
1385 int c;
1386
1387 for (c = 0; c < vd->vdev_children; c++)
1388 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1389 return (SET_ERROR(EBADF));
1390
1391 /*
1392 * If the device has already failed, or was marked offline, don't do
1393 * any further validation. Otherwise, label I/O will fail and we will
1394 * overwrite the previous state.
1395 */
1396 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1397 uint64_t aux_guid = 0;
1398 nvlist_t *nvl;
1399 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1400 spa_last_synced_txg(spa) : -1ULL;
1401
1402 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1403 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1404 VDEV_AUX_BAD_LABEL);
1405 return (0);
1406 }
1407
1408 /*
1409 * Determine if this vdev has been split off into another
1410 * pool. If so, then refuse to open it.
1411 */
1412 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1413 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1414 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1415 VDEV_AUX_SPLIT_POOL);
1416 nvlist_free(label);
1417 return (0);
1418 }
1419
1420 if (strict && (nvlist_lookup_uint64(label,
1421 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1422 guid != spa_guid(spa))) {
1423 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1424 VDEV_AUX_CORRUPT_DATA);
1425 nvlist_free(label);
1426 return (0);
1427 }
1428
1429 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1430 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1431 &aux_guid) != 0)
1432 aux_guid = 0;
1433
1434 /*
1435 * If this vdev just became a top-level vdev because its
1436 * sibling was detached, it will have adopted the parent's
1437 * vdev guid -- but the label may or may not be on disk yet.
1438 * Fortunately, either version of the label will have the
1439 * same top guid, so if we're a top-level vdev, we can
1440 * safely compare to that instead.
1441 *
1442 * If we split this vdev off instead, then we also check the
1443 * original pool's guid. We don't want to consider the vdev
1444 * corrupt if it is partway through a split operation.
1445 */
1446 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1447 &guid) != 0 ||
1448 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1449 &top_guid) != 0 ||
1450 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1451 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1452 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1453 VDEV_AUX_CORRUPT_DATA);
1454 nvlist_free(label);
1455 return (0);
1456 }
1457
1458 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1459 &state) != 0) {
1460 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1461 VDEV_AUX_CORRUPT_DATA);
1462 nvlist_free(label);
1463 return (0);
1464 }
1465
1466 nvlist_free(label);
1467
1468 /*
1469 * If this is a verbatim import, no need to check the
1470 * state of the pool.
1471 */
1472 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1473 spa_load_state(spa) == SPA_LOAD_OPEN &&
1474 state != POOL_STATE_ACTIVE)
1475 return (SET_ERROR(EBADF));
1476
1477 /*
1478 * If we were able to open and validate a vdev that was
1479 * previously marked permanently unavailable, clear that state
1480 * now.
1481 */
1482 if (vd->vdev_not_present)
1483 vd->vdev_not_present = 0;
1484 }
1485
1486 return (0);
1487 }
1488
1489 /*
1490 * Close a virtual device.
1491 */
1492 void
1493 vdev_close(vdev_t *vd)
1494 {
1495 vdev_t *pvd = vd->vdev_parent;
1496 ASSERTV(spa_t *spa = vd->vdev_spa);
1497
1498 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1499
1500 /*
1501 * If our parent is reopening, then we are as well, unless we are
1502 * going offline.
1503 */
1504 if (pvd != NULL && pvd->vdev_reopening)
1505 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1506
1507 vd->vdev_ops->vdev_op_close(vd);
1508
1509 vdev_cache_purge(vd);
1510
1511 /*
1512 * We record the previous state before we close it, so that if we are
1513 * doing a reopen(), we don't generate FMA ereports if we notice that
1514 * it's still faulted.
1515 */
1516 vd->vdev_prevstate = vd->vdev_state;
1517
1518 if (vd->vdev_offline)
1519 vd->vdev_state = VDEV_STATE_OFFLINE;
1520 else
1521 vd->vdev_state = VDEV_STATE_CLOSED;
1522 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1523 }
1524
1525 void
1526 vdev_hold(vdev_t *vd)
1527 {
1528 spa_t *spa = vd->vdev_spa;
1529 int c;
1530
1531 ASSERT(spa_is_root(spa));
1532 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1533 return;
1534
1535 for (c = 0; c < vd->vdev_children; c++)
1536 vdev_hold(vd->vdev_child[c]);
1537
1538 if (vd->vdev_ops->vdev_op_leaf)
1539 vd->vdev_ops->vdev_op_hold(vd);
1540 }
1541
1542 void
1543 vdev_rele(vdev_t *vd)
1544 {
1545 int c;
1546
1547 ASSERT(spa_is_root(vd->vdev_spa));
1548 for (c = 0; c < vd->vdev_children; c++)
1549 vdev_rele(vd->vdev_child[c]);
1550
1551 if (vd->vdev_ops->vdev_op_leaf)
1552 vd->vdev_ops->vdev_op_rele(vd);
1553 }
1554
1555 /*
1556 * Reopen all interior vdevs and any unopened leaves. We don't actually
1557 * reopen leaf vdevs which had previously been opened as they might deadlock
1558 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1559 * If the leaf has never been opened then open it, as usual.
1560 */
1561 void
1562 vdev_reopen(vdev_t *vd)
1563 {
1564 spa_t *spa = vd->vdev_spa;
1565
1566 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1567
1568 /* set the reopening flag unless we're taking the vdev offline */
1569 vd->vdev_reopening = !vd->vdev_offline;
1570 vdev_close(vd);
1571 (void) vdev_open(vd);
1572
1573 /*
1574 * Call vdev_validate() here to make sure we have the same device.
1575 * Otherwise, a device with an invalid label could be successfully
1576 * opened in response to vdev_reopen().
1577 */
1578 if (vd->vdev_aux) {
1579 (void) vdev_validate_aux(vd);
1580 if (vdev_readable(vd) && vdev_writeable(vd) &&
1581 vd->vdev_aux == &spa->spa_l2cache &&
1582 !l2arc_vdev_present(vd))
1583 l2arc_add_vdev(spa, vd);
1584 } else {
1585 (void) vdev_validate(vd, B_TRUE);
1586 }
1587
1588 /*
1589 * Reassess parent vdev's health.
1590 */
1591 vdev_propagate_state(vd);
1592 }
1593
1594 int
1595 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1596 {
1597 int error;
1598
1599 /*
1600 * Normally, partial opens (e.g. of a mirror) are allowed.
1601 * For a create, however, we want to fail the request if
1602 * there are any components we can't open.
1603 */
1604 error = vdev_open(vd);
1605
1606 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1607 vdev_close(vd);
1608 return (error ? error : ENXIO);
1609 }
1610
1611 /*
1612 * Recursively load DTLs and initialize all labels.
1613 */
1614 if ((error = vdev_dtl_load(vd)) != 0 ||
1615 (error = vdev_label_init(vd, txg, isreplacing ?
1616 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1617 vdev_close(vd);
1618 return (error);
1619 }
1620
1621 return (0);
1622 }
1623
1624 void
1625 vdev_metaslab_set_size(vdev_t *vd)
1626 {
1627 /*
1628 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1629 */
1630 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1631 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1632 }
1633
1634 void
1635 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1636 {
1637 ASSERT(vd == vd->vdev_top);
1638 ASSERT(!vd->vdev_ishole);
1639 ASSERT(ISP2(flags));
1640 ASSERT(spa_writeable(vd->vdev_spa));
1641
1642 if (flags & VDD_METASLAB)
1643 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1644
1645 if (flags & VDD_DTL)
1646 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1647
1648 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1649 }
1650
1651 void
1652 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1653 {
1654 int c;
1655
1656 for (c = 0; c < vd->vdev_children; c++)
1657 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1658
1659 if (vd->vdev_ops->vdev_op_leaf)
1660 vdev_dirty(vd->vdev_top, flags, vd, txg);
1661 }
1662
1663 /*
1664 * DTLs.
1665 *
1666 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1667 * the vdev has less than perfect replication. There are four kinds of DTL:
1668 *
1669 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1670 *
1671 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1672 *
1673 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1674 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1675 * txgs that was scrubbed.
1676 *
1677 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1678 * persistent errors or just some device being offline.
1679 * Unlike the other three, the DTL_OUTAGE map is not generally
1680 * maintained; it's only computed when needed, typically to
1681 * determine whether a device can be detached.
1682 *
1683 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1684 * either has the data or it doesn't.
1685 *
1686 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1687 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1688 * if any child is less than fully replicated, then so is its parent.
1689 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1690 * comprising only those txgs which appear in 'maxfaults' or more children;
1691 * those are the txgs we don't have enough replication to read. For example,
1692 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1693 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1694 * two child DTL_MISSING maps.
1695 *
1696 * It should be clear from the above that to compute the DTLs and outage maps
1697 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1698 * Therefore, that is all we keep on disk. When loading the pool, or after
1699 * a configuration change, we generate all other DTLs from first principles.
1700 */
1701 void
1702 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1703 {
1704 range_tree_t *rt = vd->vdev_dtl[t];
1705
1706 ASSERT(t < DTL_TYPES);
1707 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1708 ASSERT(spa_writeable(vd->vdev_spa));
1709
1710 mutex_enter(rt->rt_lock);
1711 if (!range_tree_contains(rt, txg, size))
1712 range_tree_add(rt, txg, size);
1713 mutex_exit(rt->rt_lock);
1714 }
1715
1716 boolean_t
1717 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1718 {
1719 range_tree_t *rt = vd->vdev_dtl[t];
1720 boolean_t dirty = B_FALSE;
1721
1722 ASSERT(t < DTL_TYPES);
1723 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1724
1725 mutex_enter(rt->rt_lock);
1726 if (range_tree_space(rt) != 0)
1727 dirty = range_tree_contains(rt, txg, size);
1728 mutex_exit(rt->rt_lock);
1729
1730 return (dirty);
1731 }
1732
1733 boolean_t
1734 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1735 {
1736 range_tree_t *rt = vd->vdev_dtl[t];
1737 boolean_t empty;
1738
1739 mutex_enter(rt->rt_lock);
1740 empty = (range_tree_space(rt) == 0);
1741 mutex_exit(rt->rt_lock);
1742
1743 return (empty);
1744 }
1745
1746 /*
1747 * Returns the lowest txg in the DTL range.
1748 */
1749 static uint64_t
1750 vdev_dtl_min(vdev_t *vd)
1751 {
1752 range_seg_t *rs;
1753
1754 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1755 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1756 ASSERT0(vd->vdev_children);
1757
1758 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1759 return (rs->rs_start - 1);
1760 }
1761
1762 /*
1763 * Returns the highest txg in the DTL.
1764 */
1765 static uint64_t
1766 vdev_dtl_max(vdev_t *vd)
1767 {
1768 range_seg_t *rs;
1769
1770 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1771 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1772 ASSERT0(vd->vdev_children);
1773
1774 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1775 return (rs->rs_end);
1776 }
1777
1778 /*
1779 * Determine if a resilvering vdev should remove any DTL entries from
1780 * its range. If the vdev was resilvering for the entire duration of the
1781 * scan then it should excise that range from its DTLs. Otherwise, this
1782 * vdev is considered partially resilvered and should leave its DTL
1783 * entries intact. The comment in vdev_dtl_reassess() describes how we
1784 * excise the DTLs.
1785 */
1786 static boolean_t
1787 vdev_dtl_should_excise(vdev_t *vd)
1788 {
1789 spa_t *spa = vd->vdev_spa;
1790 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1791
1792 ASSERT0(scn->scn_phys.scn_errors);
1793 ASSERT0(vd->vdev_children);
1794
1795 if (vd->vdev_resilver_txg == 0 ||
1796 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1797 return (B_TRUE);
1798
1799 /*
1800 * When a resilver is initiated the scan will assign the scn_max_txg
1801 * value to the highest txg value that exists in all DTLs. If this
1802 * device's max DTL is not part of this scan (i.e. it is not in
1803 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1804 * for excision.
1805 */
1806 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1807 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1808 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1809 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1810 return (B_TRUE);
1811 }
1812 return (B_FALSE);
1813 }
1814
1815 /*
1816 * Reassess DTLs after a config change or scrub completion.
1817 */
1818 void
1819 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1820 {
1821 spa_t *spa = vd->vdev_spa;
1822 avl_tree_t reftree;
1823 int c, t, minref;
1824
1825 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1826
1827 for (c = 0; c < vd->vdev_children; c++)
1828 vdev_dtl_reassess(vd->vdev_child[c], txg,
1829 scrub_txg, scrub_done);
1830
1831 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1832 return;
1833
1834 if (vd->vdev_ops->vdev_op_leaf) {
1835 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1836
1837 mutex_enter(&vd->vdev_dtl_lock);
1838
1839 /*
1840 * If we've completed a scan cleanly then determine
1841 * if this vdev should remove any DTLs. We only want to
1842 * excise regions on vdevs that were available during
1843 * the entire duration of this scan.
1844 */
1845 if (scrub_txg != 0 &&
1846 (spa->spa_scrub_started ||
1847 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1848 vdev_dtl_should_excise(vd)) {
1849 /*
1850 * We completed a scrub up to scrub_txg. If we
1851 * did it without rebooting, then the scrub dtl
1852 * will be valid, so excise the old region and
1853 * fold in the scrub dtl. Otherwise, leave the
1854 * dtl as-is if there was an error.
1855 *
1856 * There's little trick here: to excise the beginning
1857 * of the DTL_MISSING map, we put it into a reference
1858 * tree and then add a segment with refcnt -1 that
1859 * covers the range [0, scrub_txg). This means
1860 * that each txg in that range has refcnt -1 or 0.
1861 * We then add DTL_SCRUB with a refcnt of 2, so that
1862 * entries in the range [0, scrub_txg) will have a
1863 * positive refcnt -- either 1 or 2. We then convert
1864 * the reference tree into the new DTL_MISSING map.
1865 */
1866 space_reftree_create(&reftree);
1867 space_reftree_add_map(&reftree,
1868 vd->vdev_dtl[DTL_MISSING], 1);
1869 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1870 space_reftree_add_map(&reftree,
1871 vd->vdev_dtl[DTL_SCRUB], 2);
1872 space_reftree_generate_map(&reftree,
1873 vd->vdev_dtl[DTL_MISSING], 1);
1874 space_reftree_destroy(&reftree);
1875 }
1876 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1877 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1878 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1879 if (scrub_done)
1880 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1881 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1882 if (!vdev_readable(vd))
1883 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1884 else
1885 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1886 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1887
1888 /*
1889 * If the vdev was resilvering and no longer has any
1890 * DTLs then reset its resilvering flag.
1891 */
1892 if (vd->vdev_resilver_txg != 0 &&
1893 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1894 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1895 vd->vdev_resilver_txg = 0;
1896
1897 mutex_exit(&vd->vdev_dtl_lock);
1898
1899 if (txg != 0)
1900 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1901 return;
1902 }
1903
1904 mutex_enter(&vd->vdev_dtl_lock);
1905 for (t = 0; t < DTL_TYPES; t++) {
1906 int c;
1907
1908 /* account for child's outage in parent's missing map */
1909 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1910 if (t == DTL_SCRUB)
1911 continue; /* leaf vdevs only */
1912 if (t == DTL_PARTIAL)
1913 minref = 1; /* i.e. non-zero */
1914 else if (vd->vdev_nparity != 0)
1915 minref = vd->vdev_nparity + 1; /* RAID-Z */
1916 else
1917 minref = vd->vdev_children; /* any kind of mirror */
1918 space_reftree_create(&reftree);
1919 for (c = 0; c < vd->vdev_children; c++) {
1920 vdev_t *cvd = vd->vdev_child[c];
1921 mutex_enter(&cvd->vdev_dtl_lock);
1922 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1923 mutex_exit(&cvd->vdev_dtl_lock);
1924 }
1925 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1926 space_reftree_destroy(&reftree);
1927 }
1928 mutex_exit(&vd->vdev_dtl_lock);
1929 }
1930
1931 int
1932 vdev_dtl_load(vdev_t *vd)
1933 {
1934 spa_t *spa = vd->vdev_spa;
1935 objset_t *mos = spa->spa_meta_objset;
1936 int error = 0;
1937 int c;
1938
1939 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1940 ASSERT(!vd->vdev_ishole);
1941
1942 error = space_map_open(&vd->vdev_dtl_sm, mos,
1943 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1944 if (error)
1945 return (error);
1946 ASSERT(vd->vdev_dtl_sm != NULL);
1947
1948 mutex_enter(&vd->vdev_dtl_lock);
1949
1950 /*
1951 * Now that we've opened the space_map we need to update
1952 * the in-core DTL.
1953 */
1954 space_map_update(vd->vdev_dtl_sm);
1955
1956 error = space_map_load(vd->vdev_dtl_sm,
1957 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1958 mutex_exit(&vd->vdev_dtl_lock);
1959
1960 return (error);
1961 }
1962
1963 for (c = 0; c < vd->vdev_children; c++) {
1964 error = vdev_dtl_load(vd->vdev_child[c]);
1965 if (error != 0)
1966 break;
1967 }
1968
1969 return (error);
1970 }
1971
1972 void
1973 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1974 {
1975 spa_t *spa = vd->vdev_spa;
1976 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
1977 objset_t *mos = spa->spa_meta_objset;
1978 range_tree_t *rtsync;
1979 kmutex_t rtlock;
1980 dmu_tx_t *tx;
1981 uint64_t object = space_map_object(vd->vdev_dtl_sm);
1982
1983 ASSERT(!vd->vdev_ishole);
1984 ASSERT(vd->vdev_ops->vdev_op_leaf);
1985
1986 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1987
1988 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
1989 mutex_enter(&vd->vdev_dtl_lock);
1990 space_map_free(vd->vdev_dtl_sm, tx);
1991 space_map_close(vd->vdev_dtl_sm);
1992 vd->vdev_dtl_sm = NULL;
1993 mutex_exit(&vd->vdev_dtl_lock);
1994 dmu_tx_commit(tx);
1995 return;
1996 }
1997
1998 if (vd->vdev_dtl_sm == NULL) {
1999 uint64_t new_object;
2000
2001 new_object = space_map_alloc(mos, tx);
2002 VERIFY3U(new_object, !=, 0);
2003
2004 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2005 0, -1ULL, 0, &vd->vdev_dtl_lock));
2006 ASSERT(vd->vdev_dtl_sm != NULL);
2007 }
2008
2009 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2010
2011 rtsync = range_tree_create(NULL, NULL, &rtlock);
2012
2013 mutex_enter(&rtlock);
2014
2015 mutex_enter(&vd->vdev_dtl_lock);
2016 range_tree_walk(rt, range_tree_add, rtsync);
2017 mutex_exit(&vd->vdev_dtl_lock);
2018
2019 space_map_truncate(vd->vdev_dtl_sm, tx);
2020 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2021 range_tree_vacate(rtsync, NULL, NULL);
2022
2023 range_tree_destroy(rtsync);
2024
2025 mutex_exit(&rtlock);
2026 mutex_destroy(&rtlock);
2027
2028 /*
2029 * If the object for the space map has changed then dirty
2030 * the top level so that we update the config.
2031 */
2032 if (object != space_map_object(vd->vdev_dtl_sm)) {
2033 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2034 "new object %llu", txg, spa_name(spa), object,
2035 space_map_object(vd->vdev_dtl_sm));
2036 vdev_config_dirty(vd->vdev_top);
2037 }
2038
2039 dmu_tx_commit(tx);
2040
2041 mutex_enter(&vd->vdev_dtl_lock);
2042 space_map_update(vd->vdev_dtl_sm);
2043 mutex_exit(&vd->vdev_dtl_lock);
2044 }
2045
2046 /*
2047 * Determine whether the specified vdev can be offlined/detached/removed
2048 * without losing data.
2049 */
2050 boolean_t
2051 vdev_dtl_required(vdev_t *vd)
2052 {
2053 spa_t *spa = vd->vdev_spa;
2054 vdev_t *tvd = vd->vdev_top;
2055 uint8_t cant_read = vd->vdev_cant_read;
2056 boolean_t required;
2057
2058 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2059
2060 if (vd == spa->spa_root_vdev || vd == tvd)
2061 return (B_TRUE);
2062
2063 /*
2064 * Temporarily mark the device as unreadable, and then determine
2065 * whether this results in any DTL outages in the top-level vdev.
2066 * If not, we can safely offline/detach/remove the device.
2067 */
2068 vd->vdev_cant_read = B_TRUE;
2069 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2070 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2071 vd->vdev_cant_read = cant_read;
2072 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2073
2074 if (!required && zio_injection_enabled)
2075 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2076
2077 return (required);
2078 }
2079
2080 /*
2081 * Determine if resilver is needed, and if so the txg range.
2082 */
2083 boolean_t
2084 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2085 {
2086 boolean_t needed = B_FALSE;
2087 uint64_t thismin = UINT64_MAX;
2088 uint64_t thismax = 0;
2089 int c;
2090
2091 if (vd->vdev_children == 0) {
2092 mutex_enter(&vd->vdev_dtl_lock);
2093 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2094 vdev_writeable(vd)) {
2095
2096 thismin = vdev_dtl_min(vd);
2097 thismax = vdev_dtl_max(vd);
2098 needed = B_TRUE;
2099 }
2100 mutex_exit(&vd->vdev_dtl_lock);
2101 } else {
2102 for (c = 0; c < vd->vdev_children; c++) {
2103 vdev_t *cvd = vd->vdev_child[c];
2104 uint64_t cmin, cmax;
2105
2106 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2107 thismin = MIN(thismin, cmin);
2108 thismax = MAX(thismax, cmax);
2109 needed = B_TRUE;
2110 }
2111 }
2112 }
2113
2114 if (needed && minp) {
2115 *minp = thismin;
2116 *maxp = thismax;
2117 }
2118 return (needed);
2119 }
2120
2121 void
2122 vdev_load(vdev_t *vd)
2123 {
2124 int c;
2125
2126 /*
2127 * Recursively load all children.
2128 */
2129 for (c = 0; c < vd->vdev_children; c++)
2130 vdev_load(vd->vdev_child[c]);
2131
2132 /*
2133 * If this is a top-level vdev, initialize its metaslabs.
2134 */
2135 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2136 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2137 vdev_metaslab_init(vd, 0) != 0))
2138 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2139 VDEV_AUX_CORRUPT_DATA);
2140
2141 /*
2142 * If this is a leaf vdev, load its DTL.
2143 */
2144 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2145 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2146 VDEV_AUX_CORRUPT_DATA);
2147 }
2148
2149 /*
2150 * The special vdev case is used for hot spares and l2cache devices. Its
2151 * sole purpose it to set the vdev state for the associated vdev. To do this,
2152 * we make sure that we can open the underlying device, then try to read the
2153 * label, and make sure that the label is sane and that it hasn't been
2154 * repurposed to another pool.
2155 */
2156 int
2157 vdev_validate_aux(vdev_t *vd)
2158 {
2159 nvlist_t *label;
2160 uint64_t guid, version;
2161 uint64_t state;
2162
2163 if (!vdev_readable(vd))
2164 return (0);
2165
2166 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2167 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2168 VDEV_AUX_CORRUPT_DATA);
2169 return (-1);
2170 }
2171
2172 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2173 !SPA_VERSION_IS_SUPPORTED(version) ||
2174 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2175 guid != vd->vdev_guid ||
2176 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2177 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2178 VDEV_AUX_CORRUPT_DATA);
2179 nvlist_free(label);
2180 return (-1);
2181 }
2182
2183 /*
2184 * We don't actually check the pool state here. If it's in fact in
2185 * use by another pool, we update this fact on the fly when requested.
2186 */
2187 nvlist_free(label);
2188 return (0);
2189 }
2190
2191 void
2192 vdev_remove(vdev_t *vd, uint64_t txg)
2193 {
2194 spa_t *spa = vd->vdev_spa;
2195 objset_t *mos = spa->spa_meta_objset;
2196 dmu_tx_t *tx;
2197 int m, i;
2198
2199 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2200
2201 if (vd->vdev_ms != NULL) {
2202 metaslab_group_t *mg = vd->vdev_mg;
2203
2204 metaslab_group_histogram_verify(mg);
2205 metaslab_class_histogram_verify(mg->mg_class);
2206
2207 for (m = 0; m < vd->vdev_ms_count; m++) {
2208 metaslab_t *msp = vd->vdev_ms[m];
2209
2210 if (msp == NULL || msp->ms_sm == NULL)
2211 continue;
2212
2213 mutex_enter(&msp->ms_lock);
2214 /*
2215 * If the metaslab was not loaded when the vdev
2216 * was removed then the histogram accounting may
2217 * not be accurate. Update the histogram information
2218 * here so that we ensure that the metaslab group
2219 * and metaslab class are up-to-date.
2220 */
2221 metaslab_group_histogram_remove(mg, msp);
2222
2223 VERIFY0(space_map_allocated(msp->ms_sm));
2224 space_map_free(msp->ms_sm, tx);
2225 space_map_close(msp->ms_sm);
2226 msp->ms_sm = NULL;
2227 mutex_exit(&msp->ms_lock);
2228 }
2229
2230 metaslab_group_histogram_verify(mg);
2231 metaslab_class_histogram_verify(mg->mg_class);
2232 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2233 ASSERT0(mg->mg_histogram[i]);
2234
2235 }
2236
2237 if (vd->vdev_ms_array) {
2238 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2239 vd->vdev_ms_array = 0;
2240 }
2241 dmu_tx_commit(tx);
2242 }
2243
2244 void
2245 vdev_sync_done(vdev_t *vd, uint64_t txg)
2246 {
2247 metaslab_t *msp;
2248 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2249
2250 ASSERT(!vd->vdev_ishole);
2251
2252 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2253 metaslab_sync_done(msp, txg);
2254
2255 if (reassess)
2256 metaslab_sync_reassess(vd->vdev_mg);
2257 }
2258
2259 void
2260 vdev_sync(vdev_t *vd, uint64_t txg)
2261 {
2262 spa_t *spa = vd->vdev_spa;
2263 vdev_t *lvd;
2264 metaslab_t *msp;
2265 dmu_tx_t *tx;
2266
2267 ASSERT(!vd->vdev_ishole);
2268
2269 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2270 ASSERT(vd == vd->vdev_top);
2271 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2272 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2273 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2274 ASSERT(vd->vdev_ms_array != 0);
2275 vdev_config_dirty(vd);
2276 dmu_tx_commit(tx);
2277 }
2278
2279 /*
2280 * Remove the metadata associated with this vdev once it's empty.
2281 */
2282 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2283 vdev_remove(vd, txg);
2284
2285 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2286 metaslab_sync(msp, txg);
2287 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2288 }
2289
2290 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2291 vdev_dtl_sync(lvd, txg);
2292
2293 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2294 }
2295
2296 uint64_t
2297 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2298 {
2299 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2300 }
2301
2302 /*
2303 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2304 * not be opened, and no I/O is attempted.
2305 */
2306 int
2307 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2308 {
2309 vdev_t *vd, *tvd;
2310
2311 spa_vdev_state_enter(spa, SCL_NONE);
2312
2313 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2314 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2315
2316 if (!vd->vdev_ops->vdev_op_leaf)
2317 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2318
2319 tvd = vd->vdev_top;
2320
2321 /*
2322 * We don't directly use the aux state here, but if we do a
2323 * vdev_reopen(), we need this value to be present to remember why we
2324 * were faulted.
2325 */
2326 vd->vdev_label_aux = aux;
2327
2328 /*
2329 * Faulted state takes precedence over degraded.
2330 */
2331 vd->vdev_delayed_close = B_FALSE;
2332 vd->vdev_faulted = 1ULL;
2333 vd->vdev_degraded = 0ULL;
2334 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2335
2336 /*
2337 * If this device has the only valid copy of the data, then
2338 * back off and simply mark the vdev as degraded instead.
2339 */
2340 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2341 vd->vdev_degraded = 1ULL;
2342 vd->vdev_faulted = 0ULL;
2343
2344 /*
2345 * If we reopen the device and it's not dead, only then do we
2346 * mark it degraded.
2347 */
2348 vdev_reopen(tvd);
2349
2350 if (vdev_readable(vd))
2351 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2352 }
2353
2354 return (spa_vdev_state_exit(spa, vd, 0));
2355 }
2356
2357 /*
2358 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2359 * user that something is wrong. The vdev continues to operate as normal as far
2360 * as I/O is concerned.
2361 */
2362 int
2363 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2364 {
2365 vdev_t *vd;
2366
2367 spa_vdev_state_enter(spa, SCL_NONE);
2368
2369 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2370 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2371
2372 if (!vd->vdev_ops->vdev_op_leaf)
2373 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2374
2375 /*
2376 * If the vdev is already faulted, then don't do anything.
2377 */
2378 if (vd->vdev_faulted || vd->vdev_degraded)
2379 return (spa_vdev_state_exit(spa, NULL, 0));
2380
2381 vd->vdev_degraded = 1ULL;
2382 if (!vdev_is_dead(vd))
2383 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2384 aux);
2385
2386 return (spa_vdev_state_exit(spa, vd, 0));
2387 }
2388
2389 /*
2390 * Online the given vdev.
2391 *
2392 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2393 * spare device should be detached when the device finishes resilvering.
2394 * Second, the online should be treated like a 'test' online case, so no FMA
2395 * events are generated if the device fails to open.
2396 */
2397 int
2398 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2399 {
2400 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2401
2402 spa_vdev_state_enter(spa, SCL_NONE);
2403
2404 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2405 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2406
2407 if (!vd->vdev_ops->vdev_op_leaf)
2408 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2409
2410 tvd = vd->vdev_top;
2411 vd->vdev_offline = B_FALSE;
2412 vd->vdev_tmpoffline = B_FALSE;
2413 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2414 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2415
2416 /* XXX - L2ARC 1.0 does not support expansion */
2417 if (!vd->vdev_aux) {
2418 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2419 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2420 }
2421
2422 vdev_reopen(tvd);
2423 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2424
2425 if (!vd->vdev_aux) {
2426 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2427 pvd->vdev_expanding = B_FALSE;
2428 }
2429
2430 if (newstate)
2431 *newstate = vd->vdev_state;
2432 if ((flags & ZFS_ONLINE_UNSPARE) &&
2433 !vdev_is_dead(vd) && vd->vdev_parent &&
2434 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2435 vd->vdev_parent->vdev_child[0] == vd)
2436 vd->vdev_unspare = B_TRUE;
2437
2438 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2439
2440 /* XXX - L2ARC 1.0 does not support expansion */
2441 if (vd->vdev_aux)
2442 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2443 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2444 }
2445 return (spa_vdev_state_exit(spa, vd, 0));
2446 }
2447
2448 static int
2449 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2450 {
2451 vdev_t *vd, *tvd;
2452 int error = 0;
2453 uint64_t generation;
2454 metaslab_group_t *mg;
2455
2456 top:
2457 spa_vdev_state_enter(spa, SCL_ALLOC);
2458
2459 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2460 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2461
2462 if (!vd->vdev_ops->vdev_op_leaf)
2463 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2464
2465 tvd = vd->vdev_top;
2466 mg = tvd->vdev_mg;
2467 generation = spa->spa_config_generation + 1;
2468
2469 /*
2470 * If the device isn't already offline, try to offline it.
2471 */
2472 if (!vd->vdev_offline) {
2473 /*
2474 * If this device has the only valid copy of some data,
2475 * don't allow it to be offlined. Log devices are always
2476 * expendable.
2477 */
2478 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2479 vdev_dtl_required(vd))
2480 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2481
2482 /*
2483 * If the top-level is a slog and it has had allocations
2484 * then proceed. We check that the vdev's metaslab group
2485 * is not NULL since it's possible that we may have just
2486 * added this vdev but not yet initialized its metaslabs.
2487 */
2488 if (tvd->vdev_islog && mg != NULL) {
2489 /*
2490 * Prevent any future allocations.
2491 */
2492 metaslab_group_passivate(mg);
2493 (void) spa_vdev_state_exit(spa, vd, 0);
2494
2495 error = spa_offline_log(spa);
2496
2497 spa_vdev_state_enter(spa, SCL_ALLOC);
2498
2499 /*
2500 * Check to see if the config has changed.
2501 */
2502 if (error || generation != spa->spa_config_generation) {
2503 metaslab_group_activate(mg);
2504 if (error)
2505 return (spa_vdev_state_exit(spa,
2506 vd, error));
2507 (void) spa_vdev_state_exit(spa, vd, 0);
2508 goto top;
2509 }
2510 ASSERT0(tvd->vdev_stat.vs_alloc);
2511 }
2512
2513 /*
2514 * Offline this device and reopen its top-level vdev.
2515 * If the top-level vdev is a log device then just offline
2516 * it. Otherwise, if this action results in the top-level
2517 * vdev becoming unusable, undo it and fail the request.
2518 */
2519 vd->vdev_offline = B_TRUE;
2520 vdev_reopen(tvd);
2521
2522 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2523 vdev_is_dead(tvd)) {
2524 vd->vdev_offline = B_FALSE;
2525 vdev_reopen(tvd);
2526 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2527 }
2528
2529 /*
2530 * Add the device back into the metaslab rotor so that
2531 * once we online the device it's open for business.
2532 */
2533 if (tvd->vdev_islog && mg != NULL)
2534 metaslab_group_activate(mg);
2535 }
2536
2537 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2538
2539 return (spa_vdev_state_exit(spa, vd, 0));
2540 }
2541
2542 int
2543 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2544 {
2545 int error;
2546
2547 mutex_enter(&spa->spa_vdev_top_lock);
2548 error = vdev_offline_locked(spa, guid, flags);
2549 mutex_exit(&spa->spa_vdev_top_lock);
2550
2551 return (error);
2552 }
2553
2554 /*
2555 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2556 * vdev_offline(), we assume the spa config is locked. We also clear all
2557 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2558 */
2559 void
2560 vdev_clear(spa_t *spa, vdev_t *vd)
2561 {
2562 vdev_t *rvd = spa->spa_root_vdev;
2563 int c;
2564
2565 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2566
2567 if (vd == NULL)
2568 vd = rvd;
2569
2570 vd->vdev_stat.vs_read_errors = 0;
2571 vd->vdev_stat.vs_write_errors = 0;
2572 vd->vdev_stat.vs_checksum_errors = 0;
2573
2574 for (c = 0; c < vd->vdev_children; c++)
2575 vdev_clear(spa, vd->vdev_child[c]);
2576
2577 /*
2578 * If we're in the FAULTED state or have experienced failed I/O, then
2579 * clear the persistent state and attempt to reopen the device. We
2580 * also mark the vdev config dirty, so that the new faulted state is
2581 * written out to disk.
2582 */
2583 if (vd->vdev_faulted || vd->vdev_degraded ||
2584 !vdev_readable(vd) || !vdev_writeable(vd)) {
2585
2586 /*
2587 * When reopening in reponse to a clear event, it may be due to
2588 * a fmadm repair request. In this case, if the device is
2589 * still broken, we want to still post the ereport again.
2590 */
2591 vd->vdev_forcefault = B_TRUE;
2592
2593 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2594 vd->vdev_cant_read = B_FALSE;
2595 vd->vdev_cant_write = B_FALSE;
2596
2597 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2598
2599 vd->vdev_forcefault = B_FALSE;
2600
2601 if (vd != rvd && vdev_writeable(vd->vdev_top))
2602 vdev_state_dirty(vd->vdev_top);
2603
2604 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2605 spa_async_request(spa, SPA_ASYNC_RESILVER);
2606
2607 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
2608 }
2609
2610 /*
2611 * When clearing a FMA-diagnosed fault, we always want to
2612 * unspare the device, as we assume that the original spare was
2613 * done in response to the FMA fault.
2614 */
2615 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2616 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2617 vd->vdev_parent->vdev_child[0] == vd)
2618 vd->vdev_unspare = B_TRUE;
2619 }
2620
2621 boolean_t
2622 vdev_is_dead(vdev_t *vd)
2623 {
2624 /*
2625 * Holes and missing devices are always considered "dead".
2626 * This simplifies the code since we don't have to check for
2627 * these types of devices in the various code paths.
2628 * Instead we rely on the fact that we skip over dead devices
2629 * before issuing I/O to them.
2630 */
2631 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2632 vd->vdev_ops == &vdev_missing_ops);
2633 }
2634
2635 boolean_t
2636 vdev_readable(vdev_t *vd)
2637 {
2638 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2639 }
2640
2641 boolean_t
2642 vdev_writeable(vdev_t *vd)
2643 {
2644 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2645 }
2646
2647 boolean_t
2648 vdev_allocatable(vdev_t *vd)
2649 {
2650 uint64_t state = vd->vdev_state;
2651
2652 /*
2653 * We currently allow allocations from vdevs which may be in the
2654 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2655 * fails to reopen then we'll catch it later when we're holding
2656 * the proper locks. Note that we have to get the vdev state
2657 * in a local variable because although it changes atomically,
2658 * we're asking two separate questions about it.
2659 */
2660 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2661 !vd->vdev_cant_write && !vd->vdev_ishole);
2662 }
2663
2664 boolean_t
2665 vdev_accessible(vdev_t *vd, zio_t *zio)
2666 {
2667 ASSERT(zio->io_vd == vd);
2668
2669 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2670 return (B_FALSE);
2671
2672 if (zio->io_type == ZIO_TYPE_READ)
2673 return (!vd->vdev_cant_read);
2674
2675 if (zio->io_type == ZIO_TYPE_WRITE)
2676 return (!vd->vdev_cant_write);
2677
2678 return (B_TRUE);
2679 }
2680
2681 /*
2682 * Get statistics for the given vdev.
2683 */
2684 void
2685 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2686 {
2687 spa_t *spa = vd->vdev_spa;
2688 vdev_t *rvd = spa->spa_root_vdev;
2689 int c, t;
2690
2691 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2692
2693 mutex_enter(&vd->vdev_stat_lock);
2694 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2695 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2696 vs->vs_state = vd->vdev_state;
2697 vs->vs_rsize = vdev_get_min_asize(vd);
2698 if (vd->vdev_ops->vdev_op_leaf)
2699 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2700 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2701 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2702 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2703 }
2704
2705 /*
2706 * If we're getting stats on the root vdev, aggregate the I/O counts
2707 * over all top-level vdevs (i.e. the direct children of the root).
2708 */
2709 if (vd == rvd) {
2710 for (c = 0; c < rvd->vdev_children; c++) {
2711 vdev_t *cvd = rvd->vdev_child[c];
2712 vdev_stat_t *cvs = &cvd->vdev_stat;
2713
2714 for (t = 0; t < ZIO_TYPES; t++) {
2715 vs->vs_ops[t] += cvs->vs_ops[t];
2716 vs->vs_bytes[t] += cvs->vs_bytes[t];
2717 }
2718 cvs->vs_scan_removing = cvd->vdev_removing;
2719 }
2720 }
2721 mutex_exit(&vd->vdev_stat_lock);
2722 }
2723
2724 void
2725 vdev_clear_stats(vdev_t *vd)
2726 {
2727 mutex_enter(&vd->vdev_stat_lock);
2728 vd->vdev_stat.vs_space = 0;
2729 vd->vdev_stat.vs_dspace = 0;
2730 vd->vdev_stat.vs_alloc = 0;
2731 mutex_exit(&vd->vdev_stat_lock);
2732 }
2733
2734 void
2735 vdev_scan_stat_init(vdev_t *vd)
2736 {
2737 vdev_stat_t *vs = &vd->vdev_stat;
2738 int c;
2739
2740 for (c = 0; c < vd->vdev_children; c++)
2741 vdev_scan_stat_init(vd->vdev_child[c]);
2742
2743 mutex_enter(&vd->vdev_stat_lock);
2744 vs->vs_scan_processed = 0;
2745 mutex_exit(&vd->vdev_stat_lock);
2746 }
2747
2748 void
2749 vdev_stat_update(zio_t *zio, uint64_t psize)
2750 {
2751 spa_t *spa = zio->io_spa;
2752 vdev_t *rvd = spa->spa_root_vdev;
2753 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2754 vdev_t *pvd;
2755 uint64_t txg = zio->io_txg;
2756 vdev_stat_t *vs = &vd->vdev_stat;
2757 zio_type_t type = zio->io_type;
2758 int flags = zio->io_flags;
2759
2760 /*
2761 * If this i/o is a gang leader, it didn't do any actual work.
2762 */
2763 if (zio->io_gang_tree)
2764 return;
2765
2766 if (zio->io_error == 0) {
2767 /*
2768 * If this is a root i/o, don't count it -- we've already
2769 * counted the top-level vdevs, and vdev_get_stats() will
2770 * aggregate them when asked. This reduces contention on
2771 * the root vdev_stat_lock and implicitly handles blocks
2772 * that compress away to holes, for which there is no i/o.
2773 * (Holes never create vdev children, so all the counters
2774 * remain zero, which is what we want.)
2775 *
2776 * Note: this only applies to successful i/o (io_error == 0)
2777 * because unlike i/o counts, errors are not additive.
2778 * When reading a ditto block, for example, failure of
2779 * one top-level vdev does not imply a root-level error.
2780 */
2781 if (vd == rvd)
2782 return;
2783
2784 ASSERT(vd == zio->io_vd);
2785
2786 if (flags & ZIO_FLAG_IO_BYPASS)
2787 return;
2788
2789 mutex_enter(&vd->vdev_stat_lock);
2790
2791 if (flags & ZIO_FLAG_IO_REPAIR) {
2792 if (flags & ZIO_FLAG_SCAN_THREAD) {
2793 dsl_scan_phys_t *scn_phys =
2794 &spa->spa_dsl_pool->dp_scan->scn_phys;
2795 uint64_t *processed = &scn_phys->scn_processed;
2796
2797 /* XXX cleanup? */
2798 if (vd->vdev_ops->vdev_op_leaf)
2799 atomic_add_64(processed, psize);
2800 vs->vs_scan_processed += psize;
2801 }
2802
2803 if (flags & ZIO_FLAG_SELF_HEAL)
2804 vs->vs_self_healed += psize;
2805 }
2806
2807 vs->vs_ops[type]++;
2808 vs->vs_bytes[type] += psize;
2809
2810 mutex_exit(&vd->vdev_stat_lock);
2811 return;
2812 }
2813
2814 if (flags & ZIO_FLAG_SPECULATIVE)
2815 return;
2816
2817 /*
2818 * If this is an I/O error that is going to be retried, then ignore the
2819 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2820 * hard errors, when in reality they can happen for any number of
2821 * innocuous reasons (bus resets, MPxIO link failure, etc).
2822 */
2823 if (zio->io_error == EIO &&
2824 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2825 return;
2826
2827 /*
2828 * Intent logs writes won't propagate their error to the root
2829 * I/O so don't mark these types of failures as pool-level
2830 * errors.
2831 */
2832 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2833 return;
2834
2835 mutex_enter(&vd->vdev_stat_lock);
2836 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2837 if (zio->io_error == ECKSUM)
2838 vs->vs_checksum_errors++;
2839 else
2840 vs->vs_read_errors++;
2841 }
2842 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2843 vs->vs_write_errors++;
2844 mutex_exit(&vd->vdev_stat_lock);
2845
2846 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2847 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2848 (flags & ZIO_FLAG_SCAN_THREAD) ||
2849 spa->spa_claiming)) {
2850 /*
2851 * This is either a normal write (not a repair), or it's
2852 * a repair induced by the scrub thread, or it's a repair
2853 * made by zil_claim() during spa_load() in the first txg.
2854 * In the normal case, we commit the DTL change in the same
2855 * txg as the block was born. In the scrub-induced repair
2856 * case, we know that scrubs run in first-pass syncing context,
2857 * so we commit the DTL change in spa_syncing_txg(spa).
2858 * In the zil_claim() case, we commit in spa_first_txg(spa).
2859 *
2860 * We currently do not make DTL entries for failed spontaneous
2861 * self-healing writes triggered by normal (non-scrubbing)
2862 * reads, because we have no transactional context in which to
2863 * do so -- and it's not clear that it'd be desirable anyway.
2864 */
2865 if (vd->vdev_ops->vdev_op_leaf) {
2866 uint64_t commit_txg = txg;
2867 if (flags & ZIO_FLAG_SCAN_THREAD) {
2868 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2869 ASSERT(spa_sync_pass(spa) == 1);
2870 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2871 commit_txg = spa_syncing_txg(spa);
2872 } else if (spa->spa_claiming) {
2873 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2874 commit_txg = spa_first_txg(spa);
2875 }
2876 ASSERT(commit_txg >= spa_syncing_txg(spa));
2877 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2878 return;
2879 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2880 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2881 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2882 }
2883 if (vd != rvd)
2884 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2885 }
2886 }
2887
2888 /*
2889 * Update the in-core space usage stats for this vdev, its metaslab class,
2890 * and the root vdev.
2891 */
2892 void
2893 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2894 int64_t space_delta)
2895 {
2896 int64_t dspace_delta = space_delta;
2897 spa_t *spa = vd->vdev_spa;
2898 vdev_t *rvd = spa->spa_root_vdev;
2899 metaslab_group_t *mg = vd->vdev_mg;
2900 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2901
2902 ASSERT(vd == vd->vdev_top);
2903
2904 /*
2905 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2906 * factor. We must calculate this here and not at the root vdev
2907 * because the root vdev's psize-to-asize is simply the max of its
2908 * childrens', thus not accurate enough for us.
2909 */
2910 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2911 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2912 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2913 vd->vdev_deflate_ratio;
2914
2915 mutex_enter(&vd->vdev_stat_lock);
2916 vd->vdev_stat.vs_alloc += alloc_delta;
2917 vd->vdev_stat.vs_space += space_delta;
2918 vd->vdev_stat.vs_dspace += dspace_delta;
2919 mutex_exit(&vd->vdev_stat_lock);
2920
2921 if (mc == spa_normal_class(spa)) {
2922 mutex_enter(&rvd->vdev_stat_lock);
2923 rvd->vdev_stat.vs_alloc += alloc_delta;
2924 rvd->vdev_stat.vs_space += space_delta;
2925 rvd->vdev_stat.vs_dspace += dspace_delta;
2926 mutex_exit(&rvd->vdev_stat_lock);
2927 }
2928
2929 if (mc != NULL) {
2930 ASSERT(rvd == vd->vdev_parent);
2931 ASSERT(vd->vdev_ms_count != 0);
2932
2933 metaslab_class_space_update(mc,
2934 alloc_delta, defer_delta, space_delta, dspace_delta);
2935 }
2936 }
2937
2938 /*
2939 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2940 * so that it will be written out next time the vdev configuration is synced.
2941 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2942 */
2943 void
2944 vdev_config_dirty(vdev_t *vd)
2945 {
2946 spa_t *spa = vd->vdev_spa;
2947 vdev_t *rvd = spa->spa_root_vdev;
2948 int c;
2949
2950 ASSERT(spa_writeable(spa));
2951
2952 /*
2953 * If this is an aux vdev (as with l2cache and spare devices), then we
2954 * update the vdev config manually and set the sync flag.
2955 */
2956 if (vd->vdev_aux != NULL) {
2957 spa_aux_vdev_t *sav = vd->vdev_aux;
2958 nvlist_t **aux;
2959 uint_t naux;
2960
2961 for (c = 0; c < sav->sav_count; c++) {
2962 if (sav->sav_vdevs[c] == vd)
2963 break;
2964 }
2965
2966 if (c == sav->sav_count) {
2967 /*
2968 * We're being removed. There's nothing more to do.
2969 */
2970 ASSERT(sav->sav_sync == B_TRUE);
2971 return;
2972 }
2973
2974 sav->sav_sync = B_TRUE;
2975
2976 if (nvlist_lookup_nvlist_array(sav->sav_config,
2977 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2978 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2979 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2980 }
2981
2982 ASSERT(c < naux);
2983
2984 /*
2985 * Setting the nvlist in the middle if the array is a little
2986 * sketchy, but it will work.
2987 */
2988 nvlist_free(aux[c]);
2989 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2990
2991 return;
2992 }
2993
2994 /*
2995 * The dirty list is protected by the SCL_CONFIG lock. The caller
2996 * must either hold SCL_CONFIG as writer, or must be the sync thread
2997 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2998 * so this is sufficient to ensure mutual exclusion.
2999 */
3000 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3001 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3002 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3003
3004 if (vd == rvd) {
3005 for (c = 0; c < rvd->vdev_children; c++)
3006 vdev_config_dirty(rvd->vdev_child[c]);
3007 } else {
3008 ASSERT(vd == vd->vdev_top);
3009
3010 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3011 !vd->vdev_ishole)
3012 list_insert_head(&spa->spa_config_dirty_list, vd);
3013 }
3014 }
3015
3016 void
3017 vdev_config_clean(vdev_t *vd)
3018 {
3019 spa_t *spa = vd->vdev_spa;
3020
3021 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3022 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3023 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3024
3025 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3026 list_remove(&spa->spa_config_dirty_list, vd);
3027 }
3028
3029 /*
3030 * Mark a top-level vdev's state as dirty, so that the next pass of
3031 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3032 * the state changes from larger config changes because they require
3033 * much less locking, and are often needed for administrative actions.
3034 */
3035 void
3036 vdev_state_dirty(vdev_t *vd)
3037 {
3038 spa_t *spa = vd->vdev_spa;
3039
3040 ASSERT(spa_writeable(spa));
3041 ASSERT(vd == vd->vdev_top);
3042
3043 /*
3044 * The state list is protected by the SCL_STATE lock. The caller
3045 * must either hold SCL_STATE as writer, or must be the sync thread
3046 * (which holds SCL_STATE as reader). There's only one sync thread,
3047 * so this is sufficient to ensure mutual exclusion.
3048 */
3049 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3050 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3051 spa_config_held(spa, SCL_STATE, RW_READER)));
3052
3053 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3054 list_insert_head(&spa->spa_state_dirty_list, vd);
3055 }
3056
3057 void
3058 vdev_state_clean(vdev_t *vd)
3059 {
3060 spa_t *spa = vd->vdev_spa;
3061
3062 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3063 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3064 spa_config_held(spa, SCL_STATE, RW_READER)));
3065
3066 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3067 list_remove(&spa->spa_state_dirty_list, vd);
3068 }
3069
3070 /*
3071 * Propagate vdev state up from children to parent.
3072 */
3073 void
3074 vdev_propagate_state(vdev_t *vd)
3075 {
3076 spa_t *spa = vd->vdev_spa;
3077 vdev_t *rvd = spa->spa_root_vdev;
3078 int degraded = 0, faulted = 0;
3079 int corrupted = 0;
3080 vdev_t *child;
3081 int c;
3082
3083 if (vd->vdev_children > 0) {
3084 for (c = 0; c < vd->vdev_children; c++) {
3085 child = vd->vdev_child[c];
3086
3087 /*
3088 * Don't factor holes into the decision.
3089 */
3090 if (child->vdev_ishole)
3091 continue;
3092
3093 if (!vdev_readable(child) ||
3094 (!vdev_writeable(child) && spa_writeable(spa))) {
3095 /*
3096 * Root special: if there is a top-level log
3097 * device, treat the root vdev as if it were
3098 * degraded.
3099 */
3100 if (child->vdev_islog && vd == rvd)
3101 degraded++;
3102 else
3103 faulted++;
3104 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3105 degraded++;
3106 }
3107
3108 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3109 corrupted++;
3110 }
3111
3112 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3113
3114 /*
3115 * Root special: if there is a top-level vdev that cannot be
3116 * opened due to corrupted metadata, then propagate the root
3117 * vdev's aux state as 'corrupt' rather than 'insufficient
3118 * replicas'.
3119 */
3120 if (corrupted && vd == rvd &&
3121 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3122 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3123 VDEV_AUX_CORRUPT_DATA);
3124 }
3125
3126 if (vd->vdev_parent)
3127 vdev_propagate_state(vd->vdev_parent);
3128 }
3129
3130 /*
3131 * Set a vdev's state. If this is during an open, we don't update the parent
3132 * state, because we're in the process of opening children depth-first.
3133 * Otherwise, we propagate the change to the parent.
3134 *
3135 * If this routine places a device in a faulted state, an appropriate ereport is
3136 * generated.
3137 */
3138 void
3139 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3140 {
3141 uint64_t save_state;
3142 spa_t *spa = vd->vdev_spa;
3143
3144 if (state == vd->vdev_state) {
3145 vd->vdev_stat.vs_aux = aux;
3146 return;
3147 }
3148
3149 save_state = vd->vdev_state;
3150
3151 vd->vdev_state = state;
3152 vd->vdev_stat.vs_aux = aux;
3153
3154 /*
3155 * If we are setting the vdev state to anything but an open state, then
3156 * always close the underlying device unless the device has requested
3157 * a delayed close (i.e. we're about to remove or fault the device).
3158 * Otherwise, we keep accessible but invalid devices open forever.
3159 * We don't call vdev_close() itself, because that implies some extra
3160 * checks (offline, etc) that we don't want here. This is limited to
3161 * leaf devices, because otherwise closing the device will affect other
3162 * children.
3163 */
3164 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3165 vd->vdev_ops->vdev_op_leaf)
3166 vd->vdev_ops->vdev_op_close(vd);
3167
3168 /*
3169 * If we have brought this vdev back into service, we need
3170 * to notify fmd so that it can gracefully repair any outstanding
3171 * cases due to a missing device. We do this in all cases, even those
3172 * that probably don't correlate to a repaired fault. This is sure to
3173 * catch all cases, and we let the zfs-retire agent sort it out. If
3174 * this is a transient state it's OK, as the retire agent will
3175 * double-check the state of the vdev before repairing it.
3176 */
3177 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3178 vd->vdev_prevstate != state)
3179 zfs_post_state_change(spa, vd);
3180
3181 if (vd->vdev_removed &&
3182 state == VDEV_STATE_CANT_OPEN &&
3183 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3184 /*
3185 * If the previous state is set to VDEV_STATE_REMOVED, then this
3186 * device was previously marked removed and someone attempted to
3187 * reopen it. If this failed due to a nonexistent device, then
3188 * keep the device in the REMOVED state. We also let this be if
3189 * it is one of our special test online cases, which is only
3190 * attempting to online the device and shouldn't generate an FMA
3191 * fault.
3192 */
3193 vd->vdev_state = VDEV_STATE_REMOVED;
3194 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3195 } else if (state == VDEV_STATE_REMOVED) {
3196 vd->vdev_removed = B_TRUE;
3197 } else if (state == VDEV_STATE_CANT_OPEN) {
3198 /*
3199 * If we fail to open a vdev during an import or recovery, we
3200 * mark it as "not available", which signifies that it was
3201 * never there to begin with. Failure to open such a device
3202 * is not considered an error.
3203 */
3204 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3205 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3206 vd->vdev_ops->vdev_op_leaf)
3207 vd->vdev_not_present = 1;
3208
3209 /*
3210 * Post the appropriate ereport. If the 'prevstate' field is
3211 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3212 * that this is part of a vdev_reopen(). In this case, we don't
3213 * want to post the ereport if the device was already in the
3214 * CANT_OPEN state beforehand.
3215 *
3216 * If the 'checkremove' flag is set, then this is an attempt to
3217 * online the device in response to an insertion event. If we
3218 * hit this case, then we have detected an insertion event for a
3219 * faulted or offline device that wasn't in the removed state.
3220 * In this scenario, we don't post an ereport because we are
3221 * about to replace the device, or attempt an online with
3222 * vdev_forcefault, which will generate the fault for us.
3223 */
3224 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3225 !vd->vdev_not_present && !vd->vdev_checkremove &&
3226 vd != spa->spa_root_vdev) {
3227 const char *class;
3228
3229 switch (aux) {
3230 case VDEV_AUX_OPEN_FAILED:
3231 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3232 break;
3233 case VDEV_AUX_CORRUPT_DATA:
3234 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3235 break;
3236 case VDEV_AUX_NO_REPLICAS:
3237 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3238 break;
3239 case VDEV_AUX_BAD_GUID_SUM:
3240 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3241 break;
3242 case VDEV_AUX_TOO_SMALL:
3243 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3244 break;
3245 case VDEV_AUX_BAD_LABEL:
3246 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3247 break;
3248 default:
3249 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3250 }
3251
3252 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3253 }
3254
3255 /* Erase any notion of persistent removed state */
3256 vd->vdev_removed = B_FALSE;
3257 } else {
3258 vd->vdev_removed = B_FALSE;
3259 }
3260
3261 if (!isopen && vd->vdev_parent)
3262 vdev_propagate_state(vd->vdev_parent);
3263 }
3264
3265 /*
3266 * Check the vdev configuration to ensure that it's capable of supporting
3267 * a root pool.
3268 */
3269 boolean_t
3270 vdev_is_bootable(vdev_t *vd)
3271 {
3272 #if defined(__sun__) || defined(__sun)
3273 /*
3274 * Currently, we do not support RAID-Z or partial configuration.
3275 * In addition, only a single top-level vdev is allowed and none of the
3276 * leaves can be wholedisks.
3277 */
3278 int c;
3279
3280 if (!vd->vdev_ops->vdev_op_leaf) {
3281 char *vdev_type = vd->vdev_ops->vdev_op_type;
3282
3283 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3284 vd->vdev_children > 1) {
3285 return (B_FALSE);
3286 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3287 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3288 return (B_FALSE);
3289 }
3290 } else if (vd->vdev_wholedisk == 1) {
3291 return (B_FALSE);
3292 }
3293
3294 for (c = 0; c < vd->vdev_children; c++) {
3295 if (!vdev_is_bootable(vd->vdev_child[c]))
3296 return (B_FALSE);
3297 }
3298 #endif /* __sun__ || __sun */
3299 return (B_TRUE);
3300 }
3301
3302 /*
3303 * Load the state from the original vdev tree (ovd) which
3304 * we've retrieved from the MOS config object. If the original
3305 * vdev was offline or faulted then we transfer that state to the
3306 * device in the current vdev tree (nvd).
3307 */
3308 void
3309 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3310 {
3311 int c;
3312
3313 ASSERT(nvd->vdev_top->vdev_islog);
3314 ASSERT(spa_config_held(nvd->vdev_spa,
3315 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3316 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3317
3318 for (c = 0; c < nvd->vdev_children; c++)
3319 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3320
3321 if (nvd->vdev_ops->vdev_op_leaf) {
3322 /*
3323 * Restore the persistent vdev state
3324 */
3325 nvd->vdev_offline = ovd->vdev_offline;
3326 nvd->vdev_faulted = ovd->vdev_faulted;
3327 nvd->vdev_degraded = ovd->vdev_degraded;
3328 nvd->vdev_removed = ovd->vdev_removed;
3329 }
3330 }
3331
3332 /*
3333 * Determine if a log device has valid content. If the vdev was
3334 * removed or faulted in the MOS config then we know that
3335 * the content on the log device has already been written to the pool.
3336 */
3337 boolean_t
3338 vdev_log_state_valid(vdev_t *vd)
3339 {
3340 int c;
3341
3342 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3343 !vd->vdev_removed)
3344 return (B_TRUE);
3345
3346 for (c = 0; c < vd->vdev_children; c++)
3347 if (vdev_log_state_valid(vd->vdev_child[c]))
3348 return (B_TRUE);
3349
3350 return (B_FALSE);
3351 }
3352
3353 /*
3354 * Expand a vdev if possible.
3355 */
3356 void
3357 vdev_expand(vdev_t *vd, uint64_t txg)
3358 {
3359 ASSERT(vd->vdev_top == vd);
3360 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3361
3362 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3363 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3364 vdev_config_dirty(vd);
3365 }
3366 }
3367
3368 /*
3369 * Split a vdev.
3370 */
3371 void
3372 vdev_split(vdev_t *vd)
3373 {
3374 vdev_t *cvd, *pvd = vd->vdev_parent;
3375
3376 vdev_remove_child(pvd, vd);
3377 vdev_compact_children(pvd);
3378
3379 cvd = pvd->vdev_child[0];
3380 if (pvd->vdev_children == 1) {
3381 vdev_remove_parent(cvd);
3382 cvd->vdev_splitting = B_TRUE;
3383 }
3384 vdev_propagate_state(cvd);
3385 }
3386
3387 void
3388 vdev_deadman(vdev_t *vd)
3389 {
3390 int c;
3391
3392 for (c = 0; c < vd->vdev_children; c++) {
3393 vdev_t *cvd = vd->vdev_child[c];
3394
3395 vdev_deadman(cvd);
3396 }
3397
3398 if (vd->vdev_ops->vdev_op_leaf) {
3399 vdev_queue_t *vq = &vd->vdev_queue;
3400
3401 mutex_enter(&vq->vq_lock);
3402 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3403 spa_t *spa = vd->vdev_spa;
3404 zio_t *fio;
3405 uint64_t delta;
3406
3407 /*
3408 * Look at the head of all the pending queues,
3409 * if any I/O has been outstanding for longer than
3410 * the spa_deadman_synctime we log a zevent.
3411 */
3412 fio = avl_first(&vq->vq_active_tree);
3413 delta = gethrtime() - fio->io_timestamp;
3414 if (delta > spa_deadman_synctime(spa)) {
3415 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3416 "delta %lluns, last io %lluns",
3417 fio->io_timestamp, delta,
3418 vq->vq_io_complete_ts);
3419 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3420 spa, vd, fio, 0, 0);
3421 }
3422 }
3423 mutex_exit(&vq->vq_lock);
3424 }
3425 }
3426
3427 #if defined(_KERNEL) && defined(HAVE_SPL)
3428 EXPORT_SYMBOL(vdev_fault);
3429 EXPORT_SYMBOL(vdev_degrade);
3430 EXPORT_SYMBOL(vdev_online);
3431 EXPORT_SYMBOL(vdev_offline);
3432 EXPORT_SYMBOL(vdev_clear);
3433
3434 module_param(metaslabs_per_vdev, int, 0644);
3435 MODULE_PARM_DESC(metaslabs_per_vdev,
3436 "Divide added vdev into approximately (but no more than) this number "
3437 "of metaslabs");
3438 #endif