]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Identify locks flagged by lockdep
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/space_reftree.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/zvol.h>
47
48 /*
49 * When a vdev is added, it will be divided into approximately (but no
50 * more than) this number of metaslabs.
51 */
52 int metaslabs_per_vdev = 200;
53
54 /*
55 * Virtual device management.
56 */
57
58 static vdev_ops_t *vdev_ops_table[] = {
59 &vdev_root_ops,
60 &vdev_raidz_ops,
61 &vdev_mirror_ops,
62 &vdev_replacing_ops,
63 &vdev_spare_ops,
64 &vdev_disk_ops,
65 &vdev_file_ops,
66 &vdev_missing_ops,
67 &vdev_hole_ops,
68 NULL
69 };
70
71 /*
72 * Given a vdev type, return the appropriate ops vector.
73 */
74 static vdev_ops_t *
75 vdev_getops(const char *type)
76 {
77 vdev_ops_t *ops, **opspp;
78
79 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
80 if (strcmp(ops->vdev_op_type, type) == 0)
81 break;
82
83 return (ops);
84 }
85
86 /*
87 * Default asize function: return the MAX of psize with the asize of
88 * all children. This is what's used by anything other than RAID-Z.
89 */
90 uint64_t
91 vdev_default_asize(vdev_t *vd, uint64_t psize)
92 {
93 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
94 uint64_t csize;
95 int c;
96
97 for (c = 0; c < vd->vdev_children; c++) {
98 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
99 asize = MAX(asize, csize);
100 }
101
102 return (asize);
103 }
104
105 /*
106 * Get the minimum allocatable size. We define the allocatable size as
107 * the vdev's asize rounded to the nearest metaslab. This allows us to
108 * replace or attach devices which don't have the same physical size but
109 * can still satisfy the same number of allocations.
110 */
111 uint64_t
112 vdev_get_min_asize(vdev_t *vd)
113 {
114 vdev_t *pvd = vd->vdev_parent;
115
116 /*
117 * If our parent is NULL (inactive spare or cache) or is the root,
118 * just return our own asize.
119 */
120 if (pvd == NULL)
121 return (vd->vdev_asize);
122
123 /*
124 * The top-level vdev just returns the allocatable size rounded
125 * to the nearest metaslab.
126 */
127 if (vd == vd->vdev_top)
128 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
129
130 /*
131 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
132 * so each child must provide at least 1/Nth of its asize.
133 */
134 if (pvd->vdev_ops == &vdev_raidz_ops)
135 return (pvd->vdev_min_asize / pvd->vdev_children);
136
137 return (pvd->vdev_min_asize);
138 }
139
140 void
141 vdev_set_min_asize(vdev_t *vd)
142 {
143 int c;
144 vd->vdev_min_asize = vdev_get_min_asize(vd);
145
146 for (c = 0; c < vd->vdev_children; c++)
147 vdev_set_min_asize(vd->vdev_child[c]);
148 }
149
150 vdev_t *
151 vdev_lookup_top(spa_t *spa, uint64_t vdev)
152 {
153 vdev_t *rvd = spa->spa_root_vdev;
154
155 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
156
157 if (vdev < rvd->vdev_children) {
158 ASSERT(rvd->vdev_child[vdev] != NULL);
159 return (rvd->vdev_child[vdev]);
160 }
161
162 return (NULL);
163 }
164
165 vdev_t *
166 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
167 {
168 vdev_t *mvd;
169 int c;
170
171 if (vd->vdev_guid == guid)
172 return (vd);
173
174 for (c = 0; c < vd->vdev_children; c++)
175 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
176 NULL)
177 return (mvd);
178
179 return (NULL);
180 }
181
182 static int
183 vdev_count_leaves_impl(vdev_t *vd)
184 {
185 int n = 0;
186 int c;
187
188 if (vd->vdev_ops->vdev_op_leaf)
189 return (1);
190
191 for (c = 0; c < vd->vdev_children; c++)
192 n += vdev_count_leaves_impl(vd->vdev_child[c]);
193
194 return (n);
195 }
196
197 int
198 vdev_count_leaves(spa_t *spa)
199 {
200 return (vdev_count_leaves_impl(spa->spa_root_vdev));
201 }
202
203 void
204 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
205 {
206 size_t oldsize, newsize;
207 uint64_t id = cvd->vdev_id;
208 vdev_t **newchild;
209
210 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
211 ASSERT(cvd->vdev_parent == NULL);
212
213 cvd->vdev_parent = pvd;
214
215 if (pvd == NULL)
216 return;
217
218 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
219
220 oldsize = pvd->vdev_children * sizeof (vdev_t *);
221 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
222 newsize = pvd->vdev_children * sizeof (vdev_t *);
223
224 newchild = kmem_alloc(newsize, KM_SLEEP);
225 if (pvd->vdev_child != NULL) {
226 bcopy(pvd->vdev_child, newchild, oldsize);
227 kmem_free(pvd->vdev_child, oldsize);
228 }
229
230 pvd->vdev_child = newchild;
231 pvd->vdev_child[id] = cvd;
232
233 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
234 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
235
236 /*
237 * Walk up all ancestors to update guid sum.
238 */
239 for (; pvd != NULL; pvd = pvd->vdev_parent)
240 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
241 }
242
243 void
244 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
245 {
246 int c;
247 uint_t id = cvd->vdev_id;
248
249 ASSERT(cvd->vdev_parent == pvd);
250
251 if (pvd == NULL)
252 return;
253
254 ASSERT(id < pvd->vdev_children);
255 ASSERT(pvd->vdev_child[id] == cvd);
256
257 pvd->vdev_child[id] = NULL;
258 cvd->vdev_parent = NULL;
259
260 for (c = 0; c < pvd->vdev_children; c++)
261 if (pvd->vdev_child[c])
262 break;
263
264 if (c == pvd->vdev_children) {
265 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
266 pvd->vdev_child = NULL;
267 pvd->vdev_children = 0;
268 }
269
270 /*
271 * Walk up all ancestors to update guid sum.
272 */
273 for (; pvd != NULL; pvd = pvd->vdev_parent)
274 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
275 }
276
277 /*
278 * Remove any holes in the child array.
279 */
280 void
281 vdev_compact_children(vdev_t *pvd)
282 {
283 vdev_t **newchild, *cvd;
284 int oldc = pvd->vdev_children;
285 int newc;
286 int c;
287
288 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
289
290 for (c = newc = 0; c < oldc; c++)
291 if (pvd->vdev_child[c])
292 newc++;
293
294 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
295
296 for (c = newc = 0; c < oldc; c++) {
297 if ((cvd = pvd->vdev_child[c]) != NULL) {
298 newchild[newc] = cvd;
299 cvd->vdev_id = newc++;
300 }
301 }
302
303 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
304 pvd->vdev_child = newchild;
305 pvd->vdev_children = newc;
306 }
307
308 /*
309 * Allocate and minimally initialize a vdev_t.
310 */
311 vdev_t *
312 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
313 {
314 vdev_t *vd;
315 int t;
316
317 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
318
319 if (spa->spa_root_vdev == NULL) {
320 ASSERT(ops == &vdev_root_ops);
321 spa->spa_root_vdev = vd;
322 spa->spa_load_guid = spa_generate_guid(NULL);
323 }
324
325 if (guid == 0 && ops != &vdev_hole_ops) {
326 if (spa->spa_root_vdev == vd) {
327 /*
328 * The root vdev's guid will also be the pool guid,
329 * which must be unique among all pools.
330 */
331 guid = spa_generate_guid(NULL);
332 } else {
333 /*
334 * Any other vdev's guid must be unique within the pool.
335 */
336 guid = spa_generate_guid(spa);
337 }
338 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
339 }
340
341 vd->vdev_spa = spa;
342 vd->vdev_id = id;
343 vd->vdev_guid = guid;
344 vd->vdev_guid_sum = guid;
345 vd->vdev_ops = ops;
346 vd->vdev_state = VDEV_STATE_CLOSED;
347 vd->vdev_ishole = (ops == &vdev_hole_ops);
348
349 list_link_init(&vd->vdev_config_dirty_node);
350 list_link_init(&vd->vdev_state_dirty_node);
351 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
352 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
353 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
354 for (t = 0; t < DTL_TYPES; t++) {
355 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
356 &vd->vdev_dtl_lock);
357 }
358 txg_list_create(&vd->vdev_ms_list,
359 offsetof(struct metaslab, ms_txg_node));
360 txg_list_create(&vd->vdev_dtl_list,
361 offsetof(struct vdev, vdev_dtl_node));
362 vd->vdev_stat.vs_timestamp = gethrtime();
363 vdev_queue_init(vd);
364 vdev_cache_init(vd);
365
366 return (vd);
367 }
368
369 /*
370 * Allocate a new vdev. The 'alloctype' is used to control whether we are
371 * creating a new vdev or loading an existing one - the behavior is slightly
372 * different for each case.
373 */
374 int
375 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
376 int alloctype)
377 {
378 vdev_ops_t *ops;
379 char *type;
380 uint64_t guid = 0, islog, nparity;
381 vdev_t *vd;
382
383 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
384
385 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
386 return (SET_ERROR(EINVAL));
387
388 if ((ops = vdev_getops(type)) == NULL)
389 return (SET_ERROR(EINVAL));
390
391 /*
392 * If this is a load, get the vdev guid from the nvlist.
393 * Otherwise, vdev_alloc_common() will generate one for us.
394 */
395 if (alloctype == VDEV_ALLOC_LOAD) {
396 uint64_t label_id;
397
398 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
399 label_id != id)
400 return (SET_ERROR(EINVAL));
401
402 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
403 return (SET_ERROR(EINVAL));
404 } else if (alloctype == VDEV_ALLOC_SPARE) {
405 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
406 return (SET_ERROR(EINVAL));
407 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
408 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
409 return (SET_ERROR(EINVAL));
410 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
411 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
412 return (SET_ERROR(EINVAL));
413 }
414
415 /*
416 * The first allocated vdev must be of type 'root'.
417 */
418 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
419 return (SET_ERROR(EINVAL));
420
421 /*
422 * Determine whether we're a log vdev.
423 */
424 islog = 0;
425 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
426 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
427 return (SET_ERROR(ENOTSUP));
428
429 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
430 return (SET_ERROR(ENOTSUP));
431
432 /*
433 * Set the nparity property for RAID-Z vdevs.
434 */
435 nparity = -1ULL;
436 if (ops == &vdev_raidz_ops) {
437 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
438 &nparity) == 0) {
439 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
440 return (SET_ERROR(EINVAL));
441 /*
442 * Previous versions could only support 1 or 2 parity
443 * device.
444 */
445 if (nparity > 1 &&
446 spa_version(spa) < SPA_VERSION_RAIDZ2)
447 return (SET_ERROR(ENOTSUP));
448 if (nparity > 2 &&
449 spa_version(spa) < SPA_VERSION_RAIDZ3)
450 return (SET_ERROR(ENOTSUP));
451 } else {
452 /*
453 * We require the parity to be specified for SPAs that
454 * support multiple parity levels.
455 */
456 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
457 return (SET_ERROR(EINVAL));
458 /*
459 * Otherwise, we default to 1 parity device for RAID-Z.
460 */
461 nparity = 1;
462 }
463 } else {
464 nparity = 0;
465 }
466 ASSERT(nparity != -1ULL);
467
468 vd = vdev_alloc_common(spa, id, guid, ops);
469
470 vd->vdev_islog = islog;
471 vd->vdev_nparity = nparity;
472
473 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
474 vd->vdev_path = spa_strdup(vd->vdev_path);
475 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
476 vd->vdev_devid = spa_strdup(vd->vdev_devid);
477 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
478 &vd->vdev_physpath) == 0)
479 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
480 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
481 vd->vdev_fru = spa_strdup(vd->vdev_fru);
482
483 /*
484 * Set the whole_disk property. If it's not specified, leave the value
485 * as -1.
486 */
487 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
488 &vd->vdev_wholedisk) != 0)
489 vd->vdev_wholedisk = -1ULL;
490
491 /*
492 * Look for the 'not present' flag. This will only be set if the device
493 * was not present at the time of import.
494 */
495 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
496 &vd->vdev_not_present);
497
498 /*
499 * Get the alignment requirement.
500 */
501 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
502
503 /*
504 * Retrieve the vdev creation time.
505 */
506 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
507 &vd->vdev_crtxg);
508
509 /*
510 * If we're a top-level vdev, try to load the allocation parameters.
511 */
512 if (parent && !parent->vdev_parent &&
513 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
515 &vd->vdev_ms_array);
516 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
517 &vd->vdev_ms_shift);
518 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
519 &vd->vdev_asize);
520 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
521 &vd->vdev_removing);
522 }
523
524 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
525 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
526 alloctype == VDEV_ALLOC_ADD ||
527 alloctype == VDEV_ALLOC_SPLIT ||
528 alloctype == VDEV_ALLOC_ROOTPOOL);
529 vd->vdev_mg = metaslab_group_create(islog ?
530 spa_log_class(spa) : spa_normal_class(spa), vd);
531 }
532
533 /*
534 * If we're a leaf vdev, try to load the DTL object and other state.
535 */
536 if (vd->vdev_ops->vdev_op_leaf &&
537 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
538 alloctype == VDEV_ALLOC_ROOTPOOL)) {
539 if (alloctype == VDEV_ALLOC_LOAD) {
540 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
541 &vd->vdev_dtl_object);
542 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
543 &vd->vdev_unspare);
544 }
545
546 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
547 uint64_t spare = 0;
548
549 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
550 &spare) == 0 && spare)
551 spa_spare_add(vd);
552 }
553
554 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
555 &vd->vdev_offline);
556
557 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
558 &vd->vdev_resilver_txg);
559
560 /*
561 * When importing a pool, we want to ignore the persistent fault
562 * state, as the diagnosis made on another system may not be
563 * valid in the current context. Local vdevs will
564 * remain in the faulted state.
565 */
566 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
567 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
568 &vd->vdev_faulted);
569 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
570 &vd->vdev_degraded);
571 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
572 &vd->vdev_removed);
573
574 if (vd->vdev_faulted || vd->vdev_degraded) {
575 char *aux;
576
577 vd->vdev_label_aux =
578 VDEV_AUX_ERR_EXCEEDED;
579 if (nvlist_lookup_string(nv,
580 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
581 strcmp(aux, "external") == 0)
582 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
583 }
584 }
585 }
586
587 /*
588 * Add ourselves to the parent's list of children.
589 */
590 vdev_add_child(parent, vd);
591
592 *vdp = vd;
593
594 return (0);
595 }
596
597 void
598 vdev_free(vdev_t *vd)
599 {
600 int c, t;
601 spa_t *spa = vd->vdev_spa;
602
603 /*
604 * vdev_free() implies closing the vdev first. This is simpler than
605 * trying to ensure complicated semantics for all callers.
606 */
607 vdev_close(vd);
608
609 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
610 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
611
612 /*
613 * Free all children.
614 */
615 for (c = 0; c < vd->vdev_children; c++)
616 vdev_free(vd->vdev_child[c]);
617
618 ASSERT(vd->vdev_child == NULL);
619 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
620
621 /*
622 * Discard allocation state.
623 */
624 if (vd->vdev_mg != NULL) {
625 vdev_metaslab_fini(vd);
626 metaslab_group_destroy(vd->vdev_mg);
627 }
628
629 ASSERT0(vd->vdev_stat.vs_space);
630 ASSERT0(vd->vdev_stat.vs_dspace);
631 ASSERT0(vd->vdev_stat.vs_alloc);
632
633 /*
634 * Remove this vdev from its parent's child list.
635 */
636 vdev_remove_child(vd->vdev_parent, vd);
637
638 ASSERT(vd->vdev_parent == NULL);
639
640 /*
641 * Clean up vdev structure.
642 */
643 vdev_queue_fini(vd);
644 vdev_cache_fini(vd);
645
646 if (vd->vdev_path)
647 spa_strfree(vd->vdev_path);
648 if (vd->vdev_devid)
649 spa_strfree(vd->vdev_devid);
650 if (vd->vdev_physpath)
651 spa_strfree(vd->vdev_physpath);
652 if (vd->vdev_fru)
653 spa_strfree(vd->vdev_fru);
654
655 if (vd->vdev_isspare)
656 spa_spare_remove(vd);
657 if (vd->vdev_isl2cache)
658 spa_l2cache_remove(vd);
659
660 txg_list_destroy(&vd->vdev_ms_list);
661 txg_list_destroy(&vd->vdev_dtl_list);
662
663 mutex_enter(&vd->vdev_dtl_lock);
664 space_map_close(vd->vdev_dtl_sm);
665 for (t = 0; t < DTL_TYPES; t++) {
666 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
667 range_tree_destroy(vd->vdev_dtl[t]);
668 }
669 mutex_exit(&vd->vdev_dtl_lock);
670
671 mutex_destroy(&vd->vdev_dtl_lock);
672 mutex_destroy(&vd->vdev_stat_lock);
673 mutex_destroy(&vd->vdev_probe_lock);
674
675 if (vd == spa->spa_root_vdev)
676 spa->spa_root_vdev = NULL;
677
678 kmem_free(vd, sizeof (vdev_t));
679 }
680
681 /*
682 * Transfer top-level vdev state from svd to tvd.
683 */
684 static void
685 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
686 {
687 spa_t *spa = svd->vdev_spa;
688 metaslab_t *msp;
689 vdev_t *vd;
690 int t;
691
692 ASSERT(tvd == tvd->vdev_top);
693
694 tvd->vdev_ms_array = svd->vdev_ms_array;
695 tvd->vdev_ms_shift = svd->vdev_ms_shift;
696 tvd->vdev_ms_count = svd->vdev_ms_count;
697
698 svd->vdev_ms_array = 0;
699 svd->vdev_ms_shift = 0;
700 svd->vdev_ms_count = 0;
701
702 if (tvd->vdev_mg)
703 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
704 tvd->vdev_mg = svd->vdev_mg;
705 tvd->vdev_ms = svd->vdev_ms;
706
707 svd->vdev_mg = NULL;
708 svd->vdev_ms = NULL;
709
710 if (tvd->vdev_mg != NULL)
711 tvd->vdev_mg->mg_vd = tvd;
712
713 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
714 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
715 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
716
717 svd->vdev_stat.vs_alloc = 0;
718 svd->vdev_stat.vs_space = 0;
719 svd->vdev_stat.vs_dspace = 0;
720
721 for (t = 0; t < TXG_SIZE; t++) {
722 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
723 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
724 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
725 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
726 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
727 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
728 }
729
730 if (list_link_active(&svd->vdev_config_dirty_node)) {
731 vdev_config_clean(svd);
732 vdev_config_dirty(tvd);
733 }
734
735 if (list_link_active(&svd->vdev_state_dirty_node)) {
736 vdev_state_clean(svd);
737 vdev_state_dirty(tvd);
738 }
739
740 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
741 svd->vdev_deflate_ratio = 0;
742
743 tvd->vdev_islog = svd->vdev_islog;
744 svd->vdev_islog = 0;
745 }
746
747 static void
748 vdev_top_update(vdev_t *tvd, vdev_t *vd)
749 {
750 int c;
751
752 if (vd == NULL)
753 return;
754
755 vd->vdev_top = tvd;
756
757 for (c = 0; c < vd->vdev_children; c++)
758 vdev_top_update(tvd, vd->vdev_child[c]);
759 }
760
761 /*
762 * Add a mirror/replacing vdev above an existing vdev.
763 */
764 vdev_t *
765 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
766 {
767 spa_t *spa = cvd->vdev_spa;
768 vdev_t *pvd = cvd->vdev_parent;
769 vdev_t *mvd;
770
771 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
772
773 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
774
775 mvd->vdev_asize = cvd->vdev_asize;
776 mvd->vdev_min_asize = cvd->vdev_min_asize;
777 mvd->vdev_max_asize = cvd->vdev_max_asize;
778 mvd->vdev_ashift = cvd->vdev_ashift;
779 mvd->vdev_state = cvd->vdev_state;
780 mvd->vdev_crtxg = cvd->vdev_crtxg;
781
782 vdev_remove_child(pvd, cvd);
783 vdev_add_child(pvd, mvd);
784 cvd->vdev_id = mvd->vdev_children;
785 vdev_add_child(mvd, cvd);
786 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
787
788 if (mvd == mvd->vdev_top)
789 vdev_top_transfer(cvd, mvd);
790
791 return (mvd);
792 }
793
794 /*
795 * Remove a 1-way mirror/replacing vdev from the tree.
796 */
797 void
798 vdev_remove_parent(vdev_t *cvd)
799 {
800 vdev_t *mvd = cvd->vdev_parent;
801 vdev_t *pvd = mvd->vdev_parent;
802
803 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
804
805 ASSERT(mvd->vdev_children == 1);
806 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
807 mvd->vdev_ops == &vdev_replacing_ops ||
808 mvd->vdev_ops == &vdev_spare_ops);
809 cvd->vdev_ashift = mvd->vdev_ashift;
810
811 vdev_remove_child(mvd, cvd);
812 vdev_remove_child(pvd, mvd);
813
814 /*
815 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
816 * Otherwise, we could have detached an offline device, and when we
817 * go to import the pool we'll think we have two top-level vdevs,
818 * instead of a different version of the same top-level vdev.
819 */
820 if (mvd->vdev_top == mvd) {
821 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
822 cvd->vdev_orig_guid = cvd->vdev_guid;
823 cvd->vdev_guid += guid_delta;
824 cvd->vdev_guid_sum += guid_delta;
825
826 /*
827 * If pool not set for autoexpand, we need to also preserve
828 * mvd's asize to prevent automatic expansion of cvd.
829 * Otherwise if we are adjusting the mirror by attaching and
830 * detaching children of non-uniform sizes, the mirror could
831 * autoexpand, unexpectedly requiring larger devices to
832 * re-establish the mirror.
833 */
834 if (!cvd->vdev_spa->spa_autoexpand)
835 cvd->vdev_asize = mvd->vdev_asize;
836 }
837 cvd->vdev_id = mvd->vdev_id;
838 vdev_add_child(pvd, cvd);
839 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
840
841 if (cvd == cvd->vdev_top)
842 vdev_top_transfer(mvd, cvd);
843
844 ASSERT(mvd->vdev_children == 0);
845 vdev_free(mvd);
846 }
847
848 int
849 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
850 {
851 spa_t *spa = vd->vdev_spa;
852 objset_t *mos = spa->spa_meta_objset;
853 uint64_t m;
854 uint64_t oldc = vd->vdev_ms_count;
855 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
856 metaslab_t **mspp;
857 int error;
858
859 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
860
861 /*
862 * This vdev is not being allocated from yet or is a hole.
863 */
864 if (vd->vdev_ms_shift == 0)
865 return (0);
866
867 ASSERT(!vd->vdev_ishole);
868
869 /*
870 * Compute the raidz-deflation ratio. Note, we hard-code
871 * in 128k (1 << 17) because it is the "typical" blocksize.
872 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
873 * otherwise it would inconsistently account for existing bp's.
874 */
875 vd->vdev_deflate_ratio = (1 << 17) /
876 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
877
878 ASSERT(oldc <= newc);
879
880 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
881
882 if (oldc != 0) {
883 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
884 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
885 }
886
887 vd->vdev_ms = mspp;
888 vd->vdev_ms_count = newc;
889
890 for (m = oldc; m < newc; m++) {
891 uint64_t object = 0;
892
893 if (txg == 0) {
894 error = dmu_read(mos, vd->vdev_ms_array,
895 m * sizeof (uint64_t), sizeof (uint64_t), &object,
896 DMU_READ_PREFETCH);
897 if (error)
898 return (error);
899 }
900
901 error = metaslab_init(vd->vdev_mg, m, object, txg,
902 &(vd->vdev_ms[m]));
903 if (error)
904 return (error);
905 }
906
907 if (txg == 0)
908 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
909
910 /*
911 * If the vdev is being removed we don't activate
912 * the metaslabs since we want to ensure that no new
913 * allocations are performed on this device.
914 */
915 if (oldc == 0 && !vd->vdev_removing)
916 metaslab_group_activate(vd->vdev_mg);
917
918 if (txg == 0)
919 spa_config_exit(spa, SCL_ALLOC, FTAG);
920
921 return (0);
922 }
923
924 void
925 vdev_metaslab_fini(vdev_t *vd)
926 {
927 uint64_t m;
928 uint64_t count = vd->vdev_ms_count;
929
930 if (vd->vdev_ms != NULL) {
931 metaslab_group_passivate(vd->vdev_mg);
932 for (m = 0; m < count; m++) {
933 metaslab_t *msp = vd->vdev_ms[m];
934
935 if (msp != NULL)
936 metaslab_fini(msp);
937 }
938 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
939 vd->vdev_ms = NULL;
940 }
941
942 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
943 }
944
945 typedef struct vdev_probe_stats {
946 boolean_t vps_readable;
947 boolean_t vps_writeable;
948 int vps_flags;
949 } vdev_probe_stats_t;
950
951 static void
952 vdev_probe_done(zio_t *zio)
953 {
954 spa_t *spa = zio->io_spa;
955 vdev_t *vd = zio->io_vd;
956 vdev_probe_stats_t *vps = zio->io_private;
957
958 ASSERT(vd->vdev_probe_zio != NULL);
959
960 if (zio->io_type == ZIO_TYPE_READ) {
961 if (zio->io_error == 0)
962 vps->vps_readable = 1;
963 if (zio->io_error == 0 && spa_writeable(spa)) {
964 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
965 zio->io_offset, zio->io_size, zio->io_data,
966 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
967 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
968 } else {
969 zio_buf_free(zio->io_data, zio->io_size);
970 }
971 } else if (zio->io_type == ZIO_TYPE_WRITE) {
972 if (zio->io_error == 0)
973 vps->vps_writeable = 1;
974 zio_buf_free(zio->io_data, zio->io_size);
975 } else if (zio->io_type == ZIO_TYPE_NULL) {
976 zio_t *pio;
977
978 vd->vdev_cant_read |= !vps->vps_readable;
979 vd->vdev_cant_write |= !vps->vps_writeable;
980
981 if (vdev_readable(vd) &&
982 (vdev_writeable(vd) || !spa_writeable(spa))) {
983 zio->io_error = 0;
984 } else {
985 ASSERT(zio->io_error != 0);
986 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
987 spa, vd, NULL, 0, 0);
988 zio->io_error = SET_ERROR(ENXIO);
989 }
990
991 mutex_enter(&vd->vdev_probe_lock);
992 ASSERT(vd->vdev_probe_zio == zio);
993 vd->vdev_probe_zio = NULL;
994 mutex_exit(&vd->vdev_probe_lock);
995
996 while ((pio = zio_walk_parents(zio)) != NULL)
997 if (!vdev_accessible(vd, pio))
998 pio->io_error = SET_ERROR(ENXIO);
999
1000 kmem_free(vps, sizeof (*vps));
1001 }
1002 }
1003
1004 /*
1005 * Determine whether this device is accessible.
1006 *
1007 * Read and write to several known locations: the pad regions of each
1008 * vdev label but the first, which we leave alone in case it contains
1009 * a VTOC.
1010 */
1011 zio_t *
1012 vdev_probe(vdev_t *vd, zio_t *zio)
1013 {
1014 spa_t *spa = vd->vdev_spa;
1015 vdev_probe_stats_t *vps = NULL;
1016 zio_t *pio;
1017 int l;
1018
1019 ASSERT(vd->vdev_ops->vdev_op_leaf);
1020
1021 /*
1022 * Don't probe the probe.
1023 */
1024 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1025 return (NULL);
1026
1027 /*
1028 * To prevent 'probe storms' when a device fails, we create
1029 * just one probe i/o at a time. All zios that want to probe
1030 * this vdev will become parents of the probe io.
1031 */
1032 mutex_enter(&vd->vdev_probe_lock);
1033
1034 if ((pio = vd->vdev_probe_zio) == NULL) {
1035 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1036
1037 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1038 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1039 ZIO_FLAG_TRYHARD;
1040
1041 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1042 /*
1043 * vdev_cant_read and vdev_cant_write can only
1044 * transition from TRUE to FALSE when we have the
1045 * SCL_ZIO lock as writer; otherwise they can only
1046 * transition from FALSE to TRUE. This ensures that
1047 * any zio looking at these values can assume that
1048 * failures persist for the life of the I/O. That's
1049 * important because when a device has intermittent
1050 * connectivity problems, we want to ensure that
1051 * they're ascribed to the device (ENXIO) and not
1052 * the zio (EIO).
1053 *
1054 * Since we hold SCL_ZIO as writer here, clear both
1055 * values so the probe can reevaluate from first
1056 * principles.
1057 */
1058 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1059 vd->vdev_cant_read = B_FALSE;
1060 vd->vdev_cant_write = B_FALSE;
1061 }
1062
1063 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1064 vdev_probe_done, vps,
1065 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1066
1067 /*
1068 * We can't change the vdev state in this context, so we
1069 * kick off an async task to do it on our behalf.
1070 */
1071 if (zio != NULL) {
1072 vd->vdev_probe_wanted = B_TRUE;
1073 spa_async_request(spa, SPA_ASYNC_PROBE);
1074 }
1075 }
1076
1077 if (zio != NULL)
1078 zio_add_child(zio, pio);
1079
1080 mutex_exit(&vd->vdev_probe_lock);
1081
1082 if (vps == NULL) {
1083 ASSERT(zio != NULL);
1084 return (NULL);
1085 }
1086
1087 for (l = 1; l < VDEV_LABELS; l++) {
1088 zio_nowait(zio_read_phys(pio, vd,
1089 vdev_label_offset(vd->vdev_psize, l,
1090 offsetof(vdev_label_t, vl_pad2)),
1091 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1092 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1093 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1094 }
1095
1096 if (zio == NULL)
1097 return (pio);
1098
1099 zio_nowait(pio);
1100 return (NULL);
1101 }
1102
1103 static void
1104 vdev_open_child(void *arg)
1105 {
1106 vdev_t *vd = arg;
1107
1108 vd->vdev_open_thread = curthread;
1109 vd->vdev_open_error = vdev_open(vd);
1110 vd->vdev_open_thread = NULL;
1111 vd->vdev_parent->vdev_nonrot &= vd->vdev_nonrot;
1112 }
1113
1114 static boolean_t
1115 vdev_uses_zvols(vdev_t *vd)
1116 {
1117 int c;
1118
1119 #ifdef _KERNEL
1120 if (zvol_is_zvol(vd->vdev_path))
1121 return (B_TRUE);
1122 #endif
1123
1124 for (c = 0; c < vd->vdev_children; c++)
1125 if (vdev_uses_zvols(vd->vdev_child[c]))
1126 return (B_TRUE);
1127
1128 return (B_FALSE);
1129 }
1130
1131 void
1132 vdev_open_children(vdev_t *vd)
1133 {
1134 taskq_t *tq;
1135 int children = vd->vdev_children;
1136 int c;
1137
1138 vd->vdev_nonrot = B_TRUE;
1139
1140 /*
1141 * in order to handle pools on top of zvols, do the opens
1142 * in a single thread so that the same thread holds the
1143 * spa_namespace_lock
1144 */
1145 if (vdev_uses_zvols(vd)) {
1146 for (c = 0; c < children; c++) {
1147 vd->vdev_child[c]->vdev_open_error =
1148 vdev_open(vd->vdev_child[c]);
1149 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1150 }
1151 return;
1152 }
1153 tq = taskq_create("vdev_open", children, minclsyspri,
1154 children, children, TASKQ_PREPOPULATE);
1155
1156 for (c = 0; c < children; c++)
1157 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1158 TQ_SLEEP) != 0);
1159
1160 taskq_destroy(tq);
1161
1162 for (c = 0; c < children; c++)
1163 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1164 }
1165
1166 /*
1167 * Prepare a virtual device for access.
1168 */
1169 int
1170 vdev_open(vdev_t *vd)
1171 {
1172 spa_t *spa = vd->vdev_spa;
1173 int error;
1174 uint64_t osize = 0;
1175 uint64_t max_osize = 0;
1176 uint64_t asize, max_asize, psize;
1177 uint64_t ashift = 0;
1178 int c;
1179
1180 ASSERT(vd->vdev_open_thread == curthread ||
1181 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1182 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1183 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1184 vd->vdev_state == VDEV_STATE_OFFLINE);
1185
1186 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1187 vd->vdev_cant_read = B_FALSE;
1188 vd->vdev_cant_write = B_FALSE;
1189 vd->vdev_min_asize = vdev_get_min_asize(vd);
1190
1191 /*
1192 * If this vdev is not removed, check its fault status. If it's
1193 * faulted, bail out of the open.
1194 */
1195 if (!vd->vdev_removed && vd->vdev_faulted) {
1196 ASSERT(vd->vdev_children == 0);
1197 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1198 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1199 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1200 vd->vdev_label_aux);
1201 return (SET_ERROR(ENXIO));
1202 } else if (vd->vdev_offline) {
1203 ASSERT(vd->vdev_children == 0);
1204 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1205 return (SET_ERROR(ENXIO));
1206 }
1207
1208 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1209
1210 /*
1211 * Reset the vdev_reopening flag so that we actually close
1212 * the vdev on error.
1213 */
1214 vd->vdev_reopening = B_FALSE;
1215 if (zio_injection_enabled && error == 0)
1216 error = zio_handle_device_injection(vd, NULL, ENXIO);
1217
1218 if (error) {
1219 if (vd->vdev_removed &&
1220 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1221 vd->vdev_removed = B_FALSE;
1222
1223 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1224 vd->vdev_stat.vs_aux);
1225 return (error);
1226 }
1227
1228 vd->vdev_removed = B_FALSE;
1229
1230 /*
1231 * Recheck the faulted flag now that we have confirmed that
1232 * the vdev is accessible. If we're faulted, bail.
1233 */
1234 if (vd->vdev_faulted) {
1235 ASSERT(vd->vdev_children == 0);
1236 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1237 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1238 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1239 vd->vdev_label_aux);
1240 return (SET_ERROR(ENXIO));
1241 }
1242
1243 if (vd->vdev_degraded) {
1244 ASSERT(vd->vdev_children == 0);
1245 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1246 VDEV_AUX_ERR_EXCEEDED);
1247 } else {
1248 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1249 }
1250
1251 /*
1252 * For hole or missing vdevs we just return success.
1253 */
1254 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1255 return (0);
1256
1257 for (c = 0; c < vd->vdev_children; c++) {
1258 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1259 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1260 VDEV_AUX_NONE);
1261 break;
1262 }
1263 }
1264
1265 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1266 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1267
1268 if (vd->vdev_children == 0) {
1269 if (osize < SPA_MINDEVSIZE) {
1270 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1271 VDEV_AUX_TOO_SMALL);
1272 return (SET_ERROR(EOVERFLOW));
1273 }
1274 psize = osize;
1275 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1276 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1277 VDEV_LABEL_END_SIZE);
1278 } else {
1279 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1280 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1281 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1282 VDEV_AUX_TOO_SMALL);
1283 return (SET_ERROR(EOVERFLOW));
1284 }
1285 psize = 0;
1286 asize = osize;
1287 max_asize = max_osize;
1288 }
1289
1290 vd->vdev_psize = psize;
1291
1292 /*
1293 * Make sure the allocatable size hasn't shrunk.
1294 */
1295 if (asize < vd->vdev_min_asize) {
1296 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1297 VDEV_AUX_BAD_LABEL);
1298 return (SET_ERROR(EINVAL));
1299 }
1300
1301 if (vd->vdev_asize == 0) {
1302 /*
1303 * This is the first-ever open, so use the computed values.
1304 * For compatibility, a different ashift can be requested.
1305 */
1306 vd->vdev_asize = asize;
1307 vd->vdev_max_asize = max_asize;
1308 if (vd->vdev_ashift == 0)
1309 vd->vdev_ashift = ashift;
1310 } else {
1311 /*
1312 * Detect if the alignment requirement has increased.
1313 * We don't want to make the pool unavailable, just
1314 * post an event instead.
1315 */
1316 if (ashift > vd->vdev_top->vdev_ashift &&
1317 vd->vdev_ops->vdev_op_leaf) {
1318 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1319 spa, vd, NULL, 0, 0);
1320 }
1321
1322 vd->vdev_max_asize = max_asize;
1323 }
1324
1325 /*
1326 * If all children are healthy and the asize has increased,
1327 * then we've experienced dynamic LUN growth. If automatic
1328 * expansion is enabled then use the additional space.
1329 */
1330 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1331 (vd->vdev_expanding || spa->spa_autoexpand))
1332 vd->vdev_asize = asize;
1333
1334 vdev_set_min_asize(vd);
1335
1336 /*
1337 * Ensure we can issue some IO before declaring the
1338 * vdev open for business.
1339 */
1340 if (vd->vdev_ops->vdev_op_leaf &&
1341 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1342 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1343 VDEV_AUX_ERR_EXCEEDED);
1344 return (error);
1345 }
1346
1347 /*
1348 * Track the min and max ashift values for normal data devices.
1349 */
1350 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1351 !vd->vdev_islog && vd->vdev_aux == NULL) {
1352 if (vd->vdev_ashift > spa->spa_max_ashift)
1353 spa->spa_max_ashift = vd->vdev_ashift;
1354 if (vd->vdev_ashift < spa->spa_min_ashift)
1355 spa->spa_min_ashift = vd->vdev_ashift;
1356 }
1357
1358 /*
1359 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1360 * resilver. But don't do this if we are doing a reopen for a scrub,
1361 * since this would just restart the scrub we are already doing.
1362 */
1363 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1364 vdev_resilver_needed(vd, NULL, NULL))
1365 spa_async_request(spa, SPA_ASYNC_RESILVER);
1366
1367 return (0);
1368 }
1369
1370 /*
1371 * Called once the vdevs are all opened, this routine validates the label
1372 * contents. This needs to be done before vdev_load() so that we don't
1373 * inadvertently do repair I/Os to the wrong device.
1374 *
1375 * If 'strict' is false ignore the spa guid check. This is necessary because
1376 * if the machine crashed during a re-guid the new guid might have been written
1377 * to all of the vdev labels, but not the cached config. The strict check
1378 * will be performed when the pool is opened again using the mos config.
1379 *
1380 * This function will only return failure if one of the vdevs indicates that it
1381 * has since been destroyed or exported. This is only possible if
1382 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1383 * will be updated but the function will return 0.
1384 */
1385 int
1386 vdev_validate(vdev_t *vd, boolean_t strict)
1387 {
1388 spa_t *spa = vd->vdev_spa;
1389 nvlist_t *label;
1390 uint64_t guid = 0, top_guid;
1391 uint64_t state;
1392 int c;
1393
1394 for (c = 0; c < vd->vdev_children; c++)
1395 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1396 return (SET_ERROR(EBADF));
1397
1398 /*
1399 * If the device has already failed, or was marked offline, don't do
1400 * any further validation. Otherwise, label I/O will fail and we will
1401 * overwrite the previous state.
1402 */
1403 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1404 uint64_t aux_guid = 0;
1405 nvlist_t *nvl;
1406 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1407 spa_last_synced_txg(spa) : -1ULL;
1408
1409 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1410 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1411 VDEV_AUX_BAD_LABEL);
1412 return (0);
1413 }
1414
1415 /*
1416 * Determine if this vdev has been split off into another
1417 * pool. If so, then refuse to open it.
1418 */
1419 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1420 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1421 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1422 VDEV_AUX_SPLIT_POOL);
1423 nvlist_free(label);
1424 return (0);
1425 }
1426
1427 if (strict && (nvlist_lookup_uint64(label,
1428 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1429 guid != spa_guid(spa))) {
1430 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1431 VDEV_AUX_CORRUPT_DATA);
1432 nvlist_free(label);
1433 return (0);
1434 }
1435
1436 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1437 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1438 &aux_guid) != 0)
1439 aux_guid = 0;
1440
1441 /*
1442 * If this vdev just became a top-level vdev because its
1443 * sibling was detached, it will have adopted the parent's
1444 * vdev guid -- but the label may or may not be on disk yet.
1445 * Fortunately, either version of the label will have the
1446 * same top guid, so if we're a top-level vdev, we can
1447 * safely compare to that instead.
1448 *
1449 * If we split this vdev off instead, then we also check the
1450 * original pool's guid. We don't want to consider the vdev
1451 * corrupt if it is partway through a split operation.
1452 */
1453 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1454 &guid) != 0 ||
1455 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1456 &top_guid) != 0 ||
1457 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1458 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1459 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1460 VDEV_AUX_CORRUPT_DATA);
1461 nvlist_free(label);
1462 return (0);
1463 }
1464
1465 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1466 &state) != 0) {
1467 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1468 VDEV_AUX_CORRUPT_DATA);
1469 nvlist_free(label);
1470 return (0);
1471 }
1472
1473 nvlist_free(label);
1474
1475 /*
1476 * If this is a verbatim import, no need to check the
1477 * state of the pool.
1478 */
1479 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1480 spa_load_state(spa) == SPA_LOAD_OPEN &&
1481 state != POOL_STATE_ACTIVE)
1482 return (SET_ERROR(EBADF));
1483
1484 /*
1485 * If we were able to open and validate a vdev that was
1486 * previously marked permanently unavailable, clear that state
1487 * now.
1488 */
1489 if (vd->vdev_not_present)
1490 vd->vdev_not_present = 0;
1491 }
1492
1493 return (0);
1494 }
1495
1496 /*
1497 * Close a virtual device.
1498 */
1499 void
1500 vdev_close(vdev_t *vd)
1501 {
1502 vdev_t *pvd = vd->vdev_parent;
1503 ASSERTV(spa_t *spa = vd->vdev_spa);
1504
1505 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1506
1507 /*
1508 * If our parent is reopening, then we are as well, unless we are
1509 * going offline.
1510 */
1511 if (pvd != NULL && pvd->vdev_reopening)
1512 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1513
1514 vd->vdev_ops->vdev_op_close(vd);
1515
1516 vdev_cache_purge(vd);
1517
1518 /*
1519 * We record the previous state before we close it, so that if we are
1520 * doing a reopen(), we don't generate FMA ereports if we notice that
1521 * it's still faulted.
1522 */
1523 vd->vdev_prevstate = vd->vdev_state;
1524
1525 if (vd->vdev_offline)
1526 vd->vdev_state = VDEV_STATE_OFFLINE;
1527 else
1528 vd->vdev_state = VDEV_STATE_CLOSED;
1529 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1530 }
1531
1532 void
1533 vdev_hold(vdev_t *vd)
1534 {
1535 spa_t *spa = vd->vdev_spa;
1536 int c;
1537
1538 ASSERT(spa_is_root(spa));
1539 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1540 return;
1541
1542 for (c = 0; c < vd->vdev_children; c++)
1543 vdev_hold(vd->vdev_child[c]);
1544
1545 if (vd->vdev_ops->vdev_op_leaf)
1546 vd->vdev_ops->vdev_op_hold(vd);
1547 }
1548
1549 void
1550 vdev_rele(vdev_t *vd)
1551 {
1552 int c;
1553
1554 ASSERT(spa_is_root(vd->vdev_spa));
1555 for (c = 0; c < vd->vdev_children; c++)
1556 vdev_rele(vd->vdev_child[c]);
1557
1558 if (vd->vdev_ops->vdev_op_leaf)
1559 vd->vdev_ops->vdev_op_rele(vd);
1560 }
1561
1562 /*
1563 * Reopen all interior vdevs and any unopened leaves. We don't actually
1564 * reopen leaf vdevs which had previously been opened as they might deadlock
1565 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1566 * If the leaf has never been opened then open it, as usual.
1567 */
1568 void
1569 vdev_reopen(vdev_t *vd)
1570 {
1571 spa_t *spa = vd->vdev_spa;
1572
1573 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1574
1575 /* set the reopening flag unless we're taking the vdev offline */
1576 vd->vdev_reopening = !vd->vdev_offline;
1577 vdev_close(vd);
1578 (void) vdev_open(vd);
1579
1580 /*
1581 * Call vdev_validate() here to make sure we have the same device.
1582 * Otherwise, a device with an invalid label could be successfully
1583 * opened in response to vdev_reopen().
1584 */
1585 if (vd->vdev_aux) {
1586 (void) vdev_validate_aux(vd);
1587 if (vdev_readable(vd) && vdev_writeable(vd) &&
1588 vd->vdev_aux == &spa->spa_l2cache &&
1589 !l2arc_vdev_present(vd))
1590 l2arc_add_vdev(spa, vd);
1591 } else {
1592 (void) vdev_validate(vd, B_TRUE);
1593 }
1594
1595 /*
1596 * Reassess parent vdev's health.
1597 */
1598 vdev_propagate_state(vd);
1599 }
1600
1601 int
1602 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1603 {
1604 int error;
1605
1606 /*
1607 * Normally, partial opens (e.g. of a mirror) are allowed.
1608 * For a create, however, we want to fail the request if
1609 * there are any components we can't open.
1610 */
1611 error = vdev_open(vd);
1612
1613 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1614 vdev_close(vd);
1615 return (error ? error : ENXIO);
1616 }
1617
1618 /*
1619 * Recursively load DTLs and initialize all labels.
1620 */
1621 if ((error = vdev_dtl_load(vd)) != 0 ||
1622 (error = vdev_label_init(vd, txg, isreplacing ?
1623 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1624 vdev_close(vd);
1625 return (error);
1626 }
1627
1628 return (0);
1629 }
1630
1631 void
1632 vdev_metaslab_set_size(vdev_t *vd)
1633 {
1634 /*
1635 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1636 */
1637 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1638 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1639 }
1640
1641 void
1642 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1643 {
1644 ASSERT(vd == vd->vdev_top);
1645 ASSERT(!vd->vdev_ishole);
1646 ASSERT(ISP2(flags));
1647 ASSERT(spa_writeable(vd->vdev_spa));
1648
1649 if (flags & VDD_METASLAB)
1650 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1651
1652 if (flags & VDD_DTL)
1653 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1654
1655 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1656 }
1657
1658 void
1659 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1660 {
1661 int c;
1662
1663 for (c = 0; c < vd->vdev_children; c++)
1664 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1665
1666 if (vd->vdev_ops->vdev_op_leaf)
1667 vdev_dirty(vd->vdev_top, flags, vd, txg);
1668 }
1669
1670 /*
1671 * DTLs.
1672 *
1673 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1674 * the vdev has less than perfect replication. There are four kinds of DTL:
1675 *
1676 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1677 *
1678 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1679 *
1680 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1681 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1682 * txgs that was scrubbed.
1683 *
1684 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1685 * persistent errors or just some device being offline.
1686 * Unlike the other three, the DTL_OUTAGE map is not generally
1687 * maintained; it's only computed when needed, typically to
1688 * determine whether a device can be detached.
1689 *
1690 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1691 * either has the data or it doesn't.
1692 *
1693 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1694 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1695 * if any child is less than fully replicated, then so is its parent.
1696 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1697 * comprising only those txgs which appear in 'maxfaults' or more children;
1698 * those are the txgs we don't have enough replication to read. For example,
1699 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1700 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1701 * two child DTL_MISSING maps.
1702 *
1703 * It should be clear from the above that to compute the DTLs and outage maps
1704 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1705 * Therefore, that is all we keep on disk. When loading the pool, or after
1706 * a configuration change, we generate all other DTLs from first principles.
1707 */
1708 void
1709 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1710 {
1711 range_tree_t *rt = vd->vdev_dtl[t];
1712
1713 ASSERT(t < DTL_TYPES);
1714 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1715 ASSERT(spa_writeable(vd->vdev_spa));
1716
1717 mutex_enter(rt->rt_lock);
1718 if (!range_tree_contains(rt, txg, size))
1719 range_tree_add(rt, txg, size);
1720 mutex_exit(rt->rt_lock);
1721 }
1722
1723 boolean_t
1724 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1725 {
1726 range_tree_t *rt = vd->vdev_dtl[t];
1727 boolean_t dirty = B_FALSE;
1728
1729 ASSERT(t < DTL_TYPES);
1730 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1731
1732 mutex_enter(rt->rt_lock);
1733 if (range_tree_space(rt) != 0)
1734 dirty = range_tree_contains(rt, txg, size);
1735 mutex_exit(rt->rt_lock);
1736
1737 return (dirty);
1738 }
1739
1740 boolean_t
1741 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1742 {
1743 range_tree_t *rt = vd->vdev_dtl[t];
1744 boolean_t empty;
1745
1746 mutex_enter(rt->rt_lock);
1747 empty = (range_tree_space(rt) == 0);
1748 mutex_exit(rt->rt_lock);
1749
1750 return (empty);
1751 }
1752
1753 /*
1754 * Returns the lowest txg in the DTL range.
1755 */
1756 static uint64_t
1757 vdev_dtl_min(vdev_t *vd)
1758 {
1759 range_seg_t *rs;
1760
1761 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1762 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1763 ASSERT0(vd->vdev_children);
1764
1765 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1766 return (rs->rs_start - 1);
1767 }
1768
1769 /*
1770 * Returns the highest txg in the DTL.
1771 */
1772 static uint64_t
1773 vdev_dtl_max(vdev_t *vd)
1774 {
1775 range_seg_t *rs;
1776
1777 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1778 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1779 ASSERT0(vd->vdev_children);
1780
1781 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1782 return (rs->rs_end);
1783 }
1784
1785 /*
1786 * Determine if a resilvering vdev should remove any DTL entries from
1787 * its range. If the vdev was resilvering for the entire duration of the
1788 * scan then it should excise that range from its DTLs. Otherwise, this
1789 * vdev is considered partially resilvered and should leave its DTL
1790 * entries intact. The comment in vdev_dtl_reassess() describes how we
1791 * excise the DTLs.
1792 */
1793 static boolean_t
1794 vdev_dtl_should_excise(vdev_t *vd)
1795 {
1796 spa_t *spa = vd->vdev_spa;
1797 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1798
1799 ASSERT0(scn->scn_phys.scn_errors);
1800 ASSERT0(vd->vdev_children);
1801
1802 if (vd->vdev_resilver_txg == 0 ||
1803 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1804 return (B_TRUE);
1805
1806 /*
1807 * When a resilver is initiated the scan will assign the scn_max_txg
1808 * value to the highest txg value that exists in all DTLs. If this
1809 * device's max DTL is not part of this scan (i.e. it is not in
1810 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1811 * for excision.
1812 */
1813 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1814 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1815 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1816 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1817 return (B_TRUE);
1818 }
1819 return (B_FALSE);
1820 }
1821
1822 /*
1823 * Reassess DTLs after a config change or scrub completion.
1824 */
1825 void
1826 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1827 {
1828 spa_t *spa = vd->vdev_spa;
1829 avl_tree_t reftree;
1830 int c, t, minref;
1831
1832 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1833
1834 for (c = 0; c < vd->vdev_children; c++)
1835 vdev_dtl_reassess(vd->vdev_child[c], txg,
1836 scrub_txg, scrub_done);
1837
1838 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1839 return;
1840
1841 if (vd->vdev_ops->vdev_op_leaf) {
1842 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1843
1844 mutex_enter(&vd->vdev_dtl_lock);
1845
1846 /*
1847 * If we've completed a scan cleanly then determine
1848 * if this vdev should remove any DTLs. We only want to
1849 * excise regions on vdevs that were available during
1850 * the entire duration of this scan.
1851 */
1852 if (scrub_txg != 0 &&
1853 (spa->spa_scrub_started ||
1854 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1855 vdev_dtl_should_excise(vd)) {
1856 /*
1857 * We completed a scrub up to scrub_txg. If we
1858 * did it without rebooting, then the scrub dtl
1859 * will be valid, so excise the old region and
1860 * fold in the scrub dtl. Otherwise, leave the
1861 * dtl as-is if there was an error.
1862 *
1863 * There's little trick here: to excise the beginning
1864 * of the DTL_MISSING map, we put it into a reference
1865 * tree and then add a segment with refcnt -1 that
1866 * covers the range [0, scrub_txg). This means
1867 * that each txg in that range has refcnt -1 or 0.
1868 * We then add DTL_SCRUB with a refcnt of 2, so that
1869 * entries in the range [0, scrub_txg) will have a
1870 * positive refcnt -- either 1 or 2. We then convert
1871 * the reference tree into the new DTL_MISSING map.
1872 */
1873 space_reftree_create(&reftree);
1874 space_reftree_add_map(&reftree,
1875 vd->vdev_dtl[DTL_MISSING], 1);
1876 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1877 space_reftree_add_map(&reftree,
1878 vd->vdev_dtl[DTL_SCRUB], 2);
1879 space_reftree_generate_map(&reftree,
1880 vd->vdev_dtl[DTL_MISSING], 1);
1881 space_reftree_destroy(&reftree);
1882 }
1883 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1884 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1885 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1886 if (scrub_done)
1887 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1888 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1889 if (!vdev_readable(vd))
1890 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1891 else
1892 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1893 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1894
1895 /*
1896 * If the vdev was resilvering and no longer has any
1897 * DTLs then reset its resilvering flag.
1898 */
1899 if (vd->vdev_resilver_txg != 0 &&
1900 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1901 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1902 vd->vdev_resilver_txg = 0;
1903
1904 mutex_exit(&vd->vdev_dtl_lock);
1905
1906 if (txg != 0)
1907 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1908 return;
1909 }
1910
1911 mutex_enter(&vd->vdev_dtl_lock);
1912 for (t = 0; t < DTL_TYPES; t++) {
1913 int c;
1914
1915 /* account for child's outage in parent's missing map */
1916 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1917 if (t == DTL_SCRUB)
1918 continue; /* leaf vdevs only */
1919 if (t == DTL_PARTIAL)
1920 minref = 1; /* i.e. non-zero */
1921 else if (vd->vdev_nparity != 0)
1922 minref = vd->vdev_nparity + 1; /* RAID-Z */
1923 else
1924 minref = vd->vdev_children; /* any kind of mirror */
1925 space_reftree_create(&reftree);
1926 for (c = 0; c < vd->vdev_children; c++) {
1927 vdev_t *cvd = vd->vdev_child[c];
1928 mutex_enter(&cvd->vdev_dtl_lock);
1929 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1930 mutex_exit(&cvd->vdev_dtl_lock);
1931 }
1932 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1933 space_reftree_destroy(&reftree);
1934 }
1935 mutex_exit(&vd->vdev_dtl_lock);
1936 }
1937
1938 int
1939 vdev_dtl_load(vdev_t *vd)
1940 {
1941 spa_t *spa = vd->vdev_spa;
1942 objset_t *mos = spa->spa_meta_objset;
1943 int error = 0;
1944 int c;
1945
1946 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1947 ASSERT(!vd->vdev_ishole);
1948
1949 error = space_map_open(&vd->vdev_dtl_sm, mos,
1950 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1951 if (error)
1952 return (error);
1953 ASSERT(vd->vdev_dtl_sm != NULL);
1954
1955 mutex_enter(&vd->vdev_dtl_lock);
1956
1957 /*
1958 * Now that we've opened the space_map we need to update
1959 * the in-core DTL.
1960 */
1961 space_map_update(vd->vdev_dtl_sm);
1962
1963 error = space_map_load(vd->vdev_dtl_sm,
1964 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1965 mutex_exit(&vd->vdev_dtl_lock);
1966
1967 return (error);
1968 }
1969
1970 for (c = 0; c < vd->vdev_children; c++) {
1971 error = vdev_dtl_load(vd->vdev_child[c]);
1972 if (error != 0)
1973 break;
1974 }
1975
1976 return (error);
1977 }
1978
1979 void
1980 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1981 {
1982 spa_t *spa = vd->vdev_spa;
1983 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
1984 objset_t *mos = spa->spa_meta_objset;
1985 range_tree_t *rtsync;
1986 kmutex_t rtlock;
1987 dmu_tx_t *tx;
1988 uint64_t object = space_map_object(vd->vdev_dtl_sm);
1989
1990 ASSERT(!vd->vdev_ishole);
1991 ASSERT(vd->vdev_ops->vdev_op_leaf);
1992
1993 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1994
1995 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
1996 mutex_enter(&vd->vdev_dtl_lock);
1997 space_map_free(vd->vdev_dtl_sm, tx);
1998 space_map_close(vd->vdev_dtl_sm);
1999 vd->vdev_dtl_sm = NULL;
2000 mutex_exit(&vd->vdev_dtl_lock);
2001 dmu_tx_commit(tx);
2002 return;
2003 }
2004
2005 if (vd->vdev_dtl_sm == NULL) {
2006 uint64_t new_object;
2007
2008 new_object = space_map_alloc(mos, tx);
2009 VERIFY3U(new_object, !=, 0);
2010
2011 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2012 0, -1ULL, 0, &vd->vdev_dtl_lock));
2013 ASSERT(vd->vdev_dtl_sm != NULL);
2014 }
2015
2016 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2017
2018 rtsync = range_tree_create(NULL, NULL, &rtlock);
2019
2020 mutex_enter(&rtlock);
2021
2022 mutex_enter(&vd->vdev_dtl_lock);
2023 range_tree_walk(rt, range_tree_add, rtsync);
2024 mutex_exit(&vd->vdev_dtl_lock);
2025
2026 space_map_truncate(vd->vdev_dtl_sm, tx);
2027 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2028 range_tree_vacate(rtsync, NULL, NULL);
2029
2030 range_tree_destroy(rtsync);
2031
2032 mutex_exit(&rtlock);
2033 mutex_destroy(&rtlock);
2034
2035 /*
2036 * If the object for the space map has changed then dirty
2037 * the top level so that we update the config.
2038 */
2039 if (object != space_map_object(vd->vdev_dtl_sm)) {
2040 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2041 "new object %llu", txg, spa_name(spa), object,
2042 space_map_object(vd->vdev_dtl_sm));
2043 vdev_config_dirty(vd->vdev_top);
2044 }
2045
2046 dmu_tx_commit(tx);
2047
2048 mutex_enter(&vd->vdev_dtl_lock);
2049 space_map_update(vd->vdev_dtl_sm);
2050 mutex_exit(&vd->vdev_dtl_lock);
2051 }
2052
2053 /*
2054 * Determine whether the specified vdev can be offlined/detached/removed
2055 * without losing data.
2056 */
2057 boolean_t
2058 vdev_dtl_required(vdev_t *vd)
2059 {
2060 spa_t *spa = vd->vdev_spa;
2061 vdev_t *tvd = vd->vdev_top;
2062 uint8_t cant_read = vd->vdev_cant_read;
2063 boolean_t required;
2064
2065 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2066
2067 if (vd == spa->spa_root_vdev || vd == tvd)
2068 return (B_TRUE);
2069
2070 /*
2071 * Temporarily mark the device as unreadable, and then determine
2072 * whether this results in any DTL outages in the top-level vdev.
2073 * If not, we can safely offline/detach/remove the device.
2074 */
2075 vd->vdev_cant_read = B_TRUE;
2076 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2077 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2078 vd->vdev_cant_read = cant_read;
2079 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2080
2081 if (!required && zio_injection_enabled)
2082 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2083
2084 return (required);
2085 }
2086
2087 /*
2088 * Determine if resilver is needed, and if so the txg range.
2089 */
2090 boolean_t
2091 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2092 {
2093 boolean_t needed = B_FALSE;
2094 uint64_t thismin = UINT64_MAX;
2095 uint64_t thismax = 0;
2096 int c;
2097
2098 if (vd->vdev_children == 0) {
2099 mutex_enter(&vd->vdev_dtl_lock);
2100 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2101 vdev_writeable(vd)) {
2102
2103 thismin = vdev_dtl_min(vd);
2104 thismax = vdev_dtl_max(vd);
2105 needed = B_TRUE;
2106 }
2107 mutex_exit(&vd->vdev_dtl_lock);
2108 } else {
2109 for (c = 0; c < vd->vdev_children; c++) {
2110 vdev_t *cvd = vd->vdev_child[c];
2111 uint64_t cmin, cmax;
2112
2113 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2114 thismin = MIN(thismin, cmin);
2115 thismax = MAX(thismax, cmax);
2116 needed = B_TRUE;
2117 }
2118 }
2119 }
2120
2121 if (needed && minp) {
2122 *minp = thismin;
2123 *maxp = thismax;
2124 }
2125 return (needed);
2126 }
2127
2128 void
2129 vdev_load(vdev_t *vd)
2130 {
2131 int c;
2132
2133 /*
2134 * Recursively load all children.
2135 */
2136 for (c = 0; c < vd->vdev_children; c++)
2137 vdev_load(vd->vdev_child[c]);
2138
2139 /*
2140 * If this is a top-level vdev, initialize its metaslabs.
2141 */
2142 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2143 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2144 vdev_metaslab_init(vd, 0) != 0))
2145 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2146 VDEV_AUX_CORRUPT_DATA);
2147
2148 /*
2149 * If this is a leaf vdev, load its DTL.
2150 */
2151 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2152 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2153 VDEV_AUX_CORRUPT_DATA);
2154 }
2155
2156 /*
2157 * The special vdev case is used for hot spares and l2cache devices. Its
2158 * sole purpose it to set the vdev state for the associated vdev. To do this,
2159 * we make sure that we can open the underlying device, then try to read the
2160 * label, and make sure that the label is sane and that it hasn't been
2161 * repurposed to another pool.
2162 */
2163 int
2164 vdev_validate_aux(vdev_t *vd)
2165 {
2166 nvlist_t *label;
2167 uint64_t guid, version;
2168 uint64_t state;
2169
2170 if (!vdev_readable(vd))
2171 return (0);
2172
2173 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2174 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2175 VDEV_AUX_CORRUPT_DATA);
2176 return (-1);
2177 }
2178
2179 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2180 !SPA_VERSION_IS_SUPPORTED(version) ||
2181 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2182 guid != vd->vdev_guid ||
2183 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2184 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2185 VDEV_AUX_CORRUPT_DATA);
2186 nvlist_free(label);
2187 return (-1);
2188 }
2189
2190 /*
2191 * We don't actually check the pool state here. If it's in fact in
2192 * use by another pool, we update this fact on the fly when requested.
2193 */
2194 nvlist_free(label);
2195 return (0);
2196 }
2197
2198 void
2199 vdev_remove(vdev_t *vd, uint64_t txg)
2200 {
2201 spa_t *spa = vd->vdev_spa;
2202 objset_t *mos = spa->spa_meta_objset;
2203 dmu_tx_t *tx;
2204 int m, i;
2205
2206 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2207
2208 if (vd->vdev_ms != NULL) {
2209 metaslab_group_t *mg = vd->vdev_mg;
2210
2211 metaslab_group_histogram_verify(mg);
2212 metaslab_class_histogram_verify(mg->mg_class);
2213
2214 for (m = 0; m < vd->vdev_ms_count; m++) {
2215 metaslab_t *msp = vd->vdev_ms[m];
2216
2217 if (msp == NULL || msp->ms_sm == NULL)
2218 continue;
2219
2220 mutex_enter(&msp->ms_lock);
2221 /*
2222 * If the metaslab was not loaded when the vdev
2223 * was removed then the histogram accounting may
2224 * not be accurate. Update the histogram information
2225 * here so that we ensure that the metaslab group
2226 * and metaslab class are up-to-date.
2227 */
2228 metaslab_group_histogram_remove(mg, msp);
2229
2230 VERIFY0(space_map_allocated(msp->ms_sm));
2231 space_map_free(msp->ms_sm, tx);
2232 space_map_close(msp->ms_sm);
2233 msp->ms_sm = NULL;
2234 mutex_exit(&msp->ms_lock);
2235 }
2236
2237 metaslab_group_histogram_verify(mg);
2238 metaslab_class_histogram_verify(mg->mg_class);
2239 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2240 ASSERT0(mg->mg_histogram[i]);
2241
2242 }
2243
2244 if (vd->vdev_ms_array) {
2245 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2246 vd->vdev_ms_array = 0;
2247 }
2248 dmu_tx_commit(tx);
2249 }
2250
2251 void
2252 vdev_sync_done(vdev_t *vd, uint64_t txg)
2253 {
2254 metaslab_t *msp;
2255 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2256
2257 ASSERT(!vd->vdev_ishole);
2258
2259 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2260 metaslab_sync_done(msp, txg);
2261
2262 if (reassess)
2263 metaslab_sync_reassess(vd->vdev_mg);
2264 }
2265
2266 void
2267 vdev_sync(vdev_t *vd, uint64_t txg)
2268 {
2269 spa_t *spa = vd->vdev_spa;
2270 vdev_t *lvd;
2271 metaslab_t *msp;
2272 dmu_tx_t *tx;
2273
2274 ASSERT(!vd->vdev_ishole);
2275
2276 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2277 ASSERT(vd == vd->vdev_top);
2278 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2279 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2280 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2281 ASSERT(vd->vdev_ms_array != 0);
2282 vdev_config_dirty(vd);
2283 dmu_tx_commit(tx);
2284 }
2285
2286 /*
2287 * Remove the metadata associated with this vdev once it's empty.
2288 */
2289 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2290 vdev_remove(vd, txg);
2291
2292 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2293 metaslab_sync(msp, txg);
2294 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2295 }
2296
2297 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2298 vdev_dtl_sync(lvd, txg);
2299
2300 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2301 }
2302
2303 uint64_t
2304 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2305 {
2306 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2307 }
2308
2309 /*
2310 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2311 * not be opened, and no I/O is attempted.
2312 */
2313 int
2314 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2315 {
2316 vdev_t *vd, *tvd;
2317
2318 spa_vdev_state_enter(spa, SCL_NONE);
2319
2320 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2321 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2322
2323 if (!vd->vdev_ops->vdev_op_leaf)
2324 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2325
2326 tvd = vd->vdev_top;
2327
2328 /*
2329 * We don't directly use the aux state here, but if we do a
2330 * vdev_reopen(), we need this value to be present to remember why we
2331 * were faulted.
2332 */
2333 vd->vdev_label_aux = aux;
2334
2335 /*
2336 * Faulted state takes precedence over degraded.
2337 */
2338 vd->vdev_delayed_close = B_FALSE;
2339 vd->vdev_faulted = 1ULL;
2340 vd->vdev_degraded = 0ULL;
2341 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2342
2343 /*
2344 * If this device has the only valid copy of the data, then
2345 * back off and simply mark the vdev as degraded instead.
2346 */
2347 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2348 vd->vdev_degraded = 1ULL;
2349 vd->vdev_faulted = 0ULL;
2350
2351 /*
2352 * If we reopen the device and it's not dead, only then do we
2353 * mark it degraded.
2354 */
2355 vdev_reopen(tvd);
2356
2357 if (vdev_readable(vd))
2358 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2359 }
2360
2361 return (spa_vdev_state_exit(spa, vd, 0));
2362 }
2363
2364 /*
2365 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2366 * user that something is wrong. The vdev continues to operate as normal as far
2367 * as I/O is concerned.
2368 */
2369 int
2370 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2371 {
2372 vdev_t *vd;
2373
2374 spa_vdev_state_enter(spa, SCL_NONE);
2375
2376 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2377 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2378
2379 if (!vd->vdev_ops->vdev_op_leaf)
2380 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2381
2382 /*
2383 * If the vdev is already faulted, then don't do anything.
2384 */
2385 if (vd->vdev_faulted || vd->vdev_degraded)
2386 return (spa_vdev_state_exit(spa, NULL, 0));
2387
2388 vd->vdev_degraded = 1ULL;
2389 if (!vdev_is_dead(vd))
2390 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2391 aux);
2392
2393 return (spa_vdev_state_exit(spa, vd, 0));
2394 }
2395
2396 /*
2397 * Online the given vdev.
2398 *
2399 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2400 * spare device should be detached when the device finishes resilvering.
2401 * Second, the online should be treated like a 'test' online case, so no FMA
2402 * events are generated if the device fails to open.
2403 */
2404 int
2405 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2406 {
2407 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2408
2409 spa_vdev_state_enter(spa, SCL_NONE);
2410
2411 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2412 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2413
2414 if (!vd->vdev_ops->vdev_op_leaf)
2415 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2416
2417 tvd = vd->vdev_top;
2418 vd->vdev_offline = B_FALSE;
2419 vd->vdev_tmpoffline = B_FALSE;
2420 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2421 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2422
2423 /* XXX - L2ARC 1.0 does not support expansion */
2424 if (!vd->vdev_aux) {
2425 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2426 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2427 }
2428
2429 vdev_reopen(tvd);
2430 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2431
2432 if (!vd->vdev_aux) {
2433 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2434 pvd->vdev_expanding = B_FALSE;
2435 }
2436
2437 if (newstate)
2438 *newstate = vd->vdev_state;
2439 if ((flags & ZFS_ONLINE_UNSPARE) &&
2440 !vdev_is_dead(vd) && vd->vdev_parent &&
2441 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2442 vd->vdev_parent->vdev_child[0] == vd)
2443 vd->vdev_unspare = B_TRUE;
2444
2445 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2446
2447 /* XXX - L2ARC 1.0 does not support expansion */
2448 if (vd->vdev_aux)
2449 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2450 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2451 }
2452 return (spa_vdev_state_exit(spa, vd, 0));
2453 }
2454
2455 static int
2456 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2457 {
2458 vdev_t *vd, *tvd;
2459 int error = 0;
2460 uint64_t generation;
2461 metaslab_group_t *mg;
2462
2463 top:
2464 spa_vdev_state_enter(spa, SCL_ALLOC);
2465
2466 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2467 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2468
2469 if (!vd->vdev_ops->vdev_op_leaf)
2470 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2471
2472 tvd = vd->vdev_top;
2473 mg = tvd->vdev_mg;
2474 generation = spa->spa_config_generation + 1;
2475
2476 /*
2477 * If the device isn't already offline, try to offline it.
2478 */
2479 if (!vd->vdev_offline) {
2480 /*
2481 * If this device has the only valid copy of some data,
2482 * don't allow it to be offlined. Log devices are always
2483 * expendable.
2484 */
2485 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2486 vdev_dtl_required(vd))
2487 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2488
2489 /*
2490 * If the top-level is a slog and it has had allocations
2491 * then proceed. We check that the vdev's metaslab group
2492 * is not NULL since it's possible that we may have just
2493 * added this vdev but not yet initialized its metaslabs.
2494 */
2495 if (tvd->vdev_islog && mg != NULL) {
2496 /*
2497 * Prevent any future allocations.
2498 */
2499 metaslab_group_passivate(mg);
2500 (void) spa_vdev_state_exit(spa, vd, 0);
2501
2502 error = spa_offline_log(spa);
2503
2504 spa_vdev_state_enter(spa, SCL_ALLOC);
2505
2506 /*
2507 * Check to see if the config has changed.
2508 */
2509 if (error || generation != spa->spa_config_generation) {
2510 metaslab_group_activate(mg);
2511 if (error)
2512 return (spa_vdev_state_exit(spa,
2513 vd, error));
2514 (void) spa_vdev_state_exit(spa, vd, 0);
2515 goto top;
2516 }
2517 ASSERT0(tvd->vdev_stat.vs_alloc);
2518 }
2519
2520 /*
2521 * Offline this device and reopen its top-level vdev.
2522 * If the top-level vdev is a log device then just offline
2523 * it. Otherwise, if this action results in the top-level
2524 * vdev becoming unusable, undo it and fail the request.
2525 */
2526 vd->vdev_offline = B_TRUE;
2527 vdev_reopen(tvd);
2528
2529 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2530 vdev_is_dead(tvd)) {
2531 vd->vdev_offline = B_FALSE;
2532 vdev_reopen(tvd);
2533 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2534 }
2535
2536 /*
2537 * Add the device back into the metaslab rotor so that
2538 * once we online the device it's open for business.
2539 */
2540 if (tvd->vdev_islog && mg != NULL)
2541 metaslab_group_activate(mg);
2542 }
2543
2544 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2545
2546 return (spa_vdev_state_exit(spa, vd, 0));
2547 }
2548
2549 int
2550 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2551 {
2552 int error;
2553
2554 mutex_enter(&spa->spa_vdev_top_lock);
2555 error = vdev_offline_locked(spa, guid, flags);
2556 mutex_exit(&spa->spa_vdev_top_lock);
2557
2558 return (error);
2559 }
2560
2561 /*
2562 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2563 * vdev_offline(), we assume the spa config is locked. We also clear all
2564 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2565 */
2566 void
2567 vdev_clear(spa_t *spa, vdev_t *vd)
2568 {
2569 vdev_t *rvd = spa->spa_root_vdev;
2570 int c;
2571
2572 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2573
2574 if (vd == NULL)
2575 vd = rvd;
2576
2577 vd->vdev_stat.vs_read_errors = 0;
2578 vd->vdev_stat.vs_write_errors = 0;
2579 vd->vdev_stat.vs_checksum_errors = 0;
2580
2581 for (c = 0; c < vd->vdev_children; c++)
2582 vdev_clear(spa, vd->vdev_child[c]);
2583
2584 /*
2585 * If we're in the FAULTED state or have experienced failed I/O, then
2586 * clear the persistent state and attempt to reopen the device. We
2587 * also mark the vdev config dirty, so that the new faulted state is
2588 * written out to disk.
2589 */
2590 if (vd->vdev_faulted || vd->vdev_degraded ||
2591 !vdev_readable(vd) || !vdev_writeable(vd)) {
2592
2593 /*
2594 * When reopening in reponse to a clear event, it may be due to
2595 * a fmadm repair request. In this case, if the device is
2596 * still broken, we want to still post the ereport again.
2597 */
2598 vd->vdev_forcefault = B_TRUE;
2599
2600 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2601 vd->vdev_cant_read = B_FALSE;
2602 vd->vdev_cant_write = B_FALSE;
2603
2604 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2605
2606 vd->vdev_forcefault = B_FALSE;
2607
2608 if (vd != rvd && vdev_writeable(vd->vdev_top))
2609 vdev_state_dirty(vd->vdev_top);
2610
2611 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2612 spa_async_request(spa, SPA_ASYNC_RESILVER);
2613
2614 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
2615 }
2616
2617 /*
2618 * When clearing a FMA-diagnosed fault, we always want to
2619 * unspare the device, as we assume that the original spare was
2620 * done in response to the FMA fault.
2621 */
2622 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2623 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2624 vd->vdev_parent->vdev_child[0] == vd)
2625 vd->vdev_unspare = B_TRUE;
2626 }
2627
2628 boolean_t
2629 vdev_is_dead(vdev_t *vd)
2630 {
2631 /*
2632 * Holes and missing devices are always considered "dead".
2633 * This simplifies the code since we don't have to check for
2634 * these types of devices in the various code paths.
2635 * Instead we rely on the fact that we skip over dead devices
2636 * before issuing I/O to them.
2637 */
2638 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2639 vd->vdev_ops == &vdev_missing_ops);
2640 }
2641
2642 boolean_t
2643 vdev_readable(vdev_t *vd)
2644 {
2645 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2646 }
2647
2648 boolean_t
2649 vdev_writeable(vdev_t *vd)
2650 {
2651 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2652 }
2653
2654 boolean_t
2655 vdev_allocatable(vdev_t *vd)
2656 {
2657 uint64_t state = vd->vdev_state;
2658
2659 /*
2660 * We currently allow allocations from vdevs which may be in the
2661 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2662 * fails to reopen then we'll catch it later when we're holding
2663 * the proper locks. Note that we have to get the vdev state
2664 * in a local variable because although it changes atomically,
2665 * we're asking two separate questions about it.
2666 */
2667 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2668 !vd->vdev_cant_write && !vd->vdev_ishole);
2669 }
2670
2671 boolean_t
2672 vdev_accessible(vdev_t *vd, zio_t *zio)
2673 {
2674 ASSERT(zio->io_vd == vd);
2675
2676 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2677 return (B_FALSE);
2678
2679 if (zio->io_type == ZIO_TYPE_READ)
2680 return (!vd->vdev_cant_read);
2681
2682 if (zio->io_type == ZIO_TYPE_WRITE)
2683 return (!vd->vdev_cant_write);
2684
2685 return (B_TRUE);
2686 }
2687
2688 /*
2689 * Get statistics for the given vdev.
2690 */
2691 void
2692 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2693 {
2694 spa_t *spa = vd->vdev_spa;
2695 vdev_t *rvd = spa->spa_root_vdev;
2696 int c, t;
2697
2698 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2699
2700 mutex_enter(&vd->vdev_stat_lock);
2701 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2702 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2703 vs->vs_state = vd->vdev_state;
2704 vs->vs_rsize = vdev_get_min_asize(vd);
2705 if (vd->vdev_ops->vdev_op_leaf)
2706 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2707 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2708 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2709 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2710 }
2711
2712 /*
2713 * If we're getting stats on the root vdev, aggregate the I/O counts
2714 * over all top-level vdevs (i.e. the direct children of the root).
2715 */
2716 if (vd == rvd) {
2717 for (c = 0; c < rvd->vdev_children; c++) {
2718 vdev_t *cvd = rvd->vdev_child[c];
2719 vdev_stat_t *cvs = &cvd->vdev_stat;
2720
2721 for (t = 0; t < ZIO_TYPES; t++) {
2722 vs->vs_ops[t] += cvs->vs_ops[t];
2723 vs->vs_bytes[t] += cvs->vs_bytes[t];
2724 }
2725 cvs->vs_scan_removing = cvd->vdev_removing;
2726 }
2727 }
2728 mutex_exit(&vd->vdev_stat_lock);
2729 }
2730
2731 void
2732 vdev_clear_stats(vdev_t *vd)
2733 {
2734 mutex_enter(&vd->vdev_stat_lock);
2735 vd->vdev_stat.vs_space = 0;
2736 vd->vdev_stat.vs_dspace = 0;
2737 vd->vdev_stat.vs_alloc = 0;
2738 mutex_exit(&vd->vdev_stat_lock);
2739 }
2740
2741 void
2742 vdev_scan_stat_init(vdev_t *vd)
2743 {
2744 vdev_stat_t *vs = &vd->vdev_stat;
2745 int c;
2746
2747 for (c = 0; c < vd->vdev_children; c++)
2748 vdev_scan_stat_init(vd->vdev_child[c]);
2749
2750 mutex_enter(&vd->vdev_stat_lock);
2751 vs->vs_scan_processed = 0;
2752 mutex_exit(&vd->vdev_stat_lock);
2753 }
2754
2755 void
2756 vdev_stat_update(zio_t *zio, uint64_t psize)
2757 {
2758 spa_t *spa = zio->io_spa;
2759 vdev_t *rvd = spa->spa_root_vdev;
2760 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2761 vdev_t *pvd;
2762 uint64_t txg = zio->io_txg;
2763 vdev_stat_t *vs = &vd->vdev_stat;
2764 zio_type_t type = zio->io_type;
2765 int flags = zio->io_flags;
2766
2767 /*
2768 * If this i/o is a gang leader, it didn't do any actual work.
2769 */
2770 if (zio->io_gang_tree)
2771 return;
2772
2773 if (zio->io_error == 0) {
2774 /*
2775 * If this is a root i/o, don't count it -- we've already
2776 * counted the top-level vdevs, and vdev_get_stats() will
2777 * aggregate them when asked. This reduces contention on
2778 * the root vdev_stat_lock and implicitly handles blocks
2779 * that compress away to holes, for which there is no i/o.
2780 * (Holes never create vdev children, so all the counters
2781 * remain zero, which is what we want.)
2782 *
2783 * Note: this only applies to successful i/o (io_error == 0)
2784 * because unlike i/o counts, errors are not additive.
2785 * When reading a ditto block, for example, failure of
2786 * one top-level vdev does not imply a root-level error.
2787 */
2788 if (vd == rvd)
2789 return;
2790
2791 ASSERT(vd == zio->io_vd);
2792
2793 if (flags & ZIO_FLAG_IO_BYPASS)
2794 return;
2795
2796 mutex_enter(&vd->vdev_stat_lock);
2797
2798 if (flags & ZIO_FLAG_IO_REPAIR) {
2799 if (flags & ZIO_FLAG_SCAN_THREAD) {
2800 dsl_scan_phys_t *scn_phys =
2801 &spa->spa_dsl_pool->dp_scan->scn_phys;
2802 uint64_t *processed = &scn_phys->scn_processed;
2803
2804 /* XXX cleanup? */
2805 if (vd->vdev_ops->vdev_op_leaf)
2806 atomic_add_64(processed, psize);
2807 vs->vs_scan_processed += psize;
2808 }
2809
2810 if (flags & ZIO_FLAG_SELF_HEAL)
2811 vs->vs_self_healed += psize;
2812 }
2813
2814 vs->vs_ops[type]++;
2815 vs->vs_bytes[type] += psize;
2816
2817 mutex_exit(&vd->vdev_stat_lock);
2818 return;
2819 }
2820
2821 if (flags & ZIO_FLAG_SPECULATIVE)
2822 return;
2823
2824 /*
2825 * If this is an I/O error that is going to be retried, then ignore the
2826 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2827 * hard errors, when in reality they can happen for any number of
2828 * innocuous reasons (bus resets, MPxIO link failure, etc).
2829 */
2830 if (zio->io_error == EIO &&
2831 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2832 return;
2833
2834 /*
2835 * Intent logs writes won't propagate their error to the root
2836 * I/O so don't mark these types of failures as pool-level
2837 * errors.
2838 */
2839 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2840 return;
2841
2842 mutex_enter(&vd->vdev_stat_lock);
2843 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2844 if (zio->io_error == ECKSUM)
2845 vs->vs_checksum_errors++;
2846 else
2847 vs->vs_read_errors++;
2848 }
2849 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2850 vs->vs_write_errors++;
2851 mutex_exit(&vd->vdev_stat_lock);
2852
2853 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2854 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2855 (flags & ZIO_FLAG_SCAN_THREAD) ||
2856 spa->spa_claiming)) {
2857 /*
2858 * This is either a normal write (not a repair), or it's
2859 * a repair induced by the scrub thread, or it's a repair
2860 * made by zil_claim() during spa_load() in the first txg.
2861 * In the normal case, we commit the DTL change in the same
2862 * txg as the block was born. In the scrub-induced repair
2863 * case, we know that scrubs run in first-pass syncing context,
2864 * so we commit the DTL change in spa_syncing_txg(spa).
2865 * In the zil_claim() case, we commit in spa_first_txg(spa).
2866 *
2867 * We currently do not make DTL entries for failed spontaneous
2868 * self-healing writes triggered by normal (non-scrubbing)
2869 * reads, because we have no transactional context in which to
2870 * do so -- and it's not clear that it'd be desirable anyway.
2871 */
2872 if (vd->vdev_ops->vdev_op_leaf) {
2873 uint64_t commit_txg = txg;
2874 if (flags & ZIO_FLAG_SCAN_THREAD) {
2875 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2876 ASSERT(spa_sync_pass(spa) == 1);
2877 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2878 commit_txg = spa_syncing_txg(spa);
2879 } else if (spa->spa_claiming) {
2880 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2881 commit_txg = spa_first_txg(spa);
2882 }
2883 ASSERT(commit_txg >= spa_syncing_txg(spa));
2884 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2885 return;
2886 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2887 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2888 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2889 }
2890 if (vd != rvd)
2891 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2892 }
2893 }
2894
2895 /*
2896 * Update the in-core space usage stats for this vdev, its metaslab class,
2897 * and the root vdev.
2898 */
2899 void
2900 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2901 int64_t space_delta)
2902 {
2903 int64_t dspace_delta = space_delta;
2904 spa_t *spa = vd->vdev_spa;
2905 vdev_t *rvd = spa->spa_root_vdev;
2906 metaslab_group_t *mg = vd->vdev_mg;
2907 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2908
2909 ASSERT(vd == vd->vdev_top);
2910
2911 /*
2912 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2913 * factor. We must calculate this here and not at the root vdev
2914 * because the root vdev's psize-to-asize is simply the max of its
2915 * childrens', thus not accurate enough for us.
2916 */
2917 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2918 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2919 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2920 vd->vdev_deflate_ratio;
2921
2922 mutex_enter(&vd->vdev_stat_lock);
2923 vd->vdev_stat.vs_alloc += alloc_delta;
2924 vd->vdev_stat.vs_space += space_delta;
2925 vd->vdev_stat.vs_dspace += dspace_delta;
2926 mutex_exit(&vd->vdev_stat_lock);
2927
2928 if (mc == spa_normal_class(spa)) {
2929 mutex_enter(&rvd->vdev_stat_lock);
2930 rvd->vdev_stat.vs_alloc += alloc_delta;
2931 rvd->vdev_stat.vs_space += space_delta;
2932 rvd->vdev_stat.vs_dspace += dspace_delta;
2933 mutex_exit(&rvd->vdev_stat_lock);
2934 }
2935
2936 if (mc != NULL) {
2937 ASSERT(rvd == vd->vdev_parent);
2938 ASSERT(vd->vdev_ms_count != 0);
2939
2940 metaslab_class_space_update(mc,
2941 alloc_delta, defer_delta, space_delta, dspace_delta);
2942 }
2943 }
2944
2945 /*
2946 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2947 * so that it will be written out next time the vdev configuration is synced.
2948 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2949 */
2950 void
2951 vdev_config_dirty(vdev_t *vd)
2952 {
2953 spa_t *spa = vd->vdev_spa;
2954 vdev_t *rvd = spa->spa_root_vdev;
2955 int c;
2956
2957 ASSERT(spa_writeable(spa));
2958
2959 /*
2960 * If this is an aux vdev (as with l2cache and spare devices), then we
2961 * update the vdev config manually and set the sync flag.
2962 */
2963 if (vd->vdev_aux != NULL) {
2964 spa_aux_vdev_t *sav = vd->vdev_aux;
2965 nvlist_t **aux;
2966 uint_t naux;
2967
2968 for (c = 0; c < sav->sav_count; c++) {
2969 if (sav->sav_vdevs[c] == vd)
2970 break;
2971 }
2972
2973 if (c == sav->sav_count) {
2974 /*
2975 * We're being removed. There's nothing more to do.
2976 */
2977 ASSERT(sav->sav_sync == B_TRUE);
2978 return;
2979 }
2980
2981 sav->sav_sync = B_TRUE;
2982
2983 if (nvlist_lookup_nvlist_array(sav->sav_config,
2984 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2985 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2986 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2987 }
2988
2989 ASSERT(c < naux);
2990
2991 /*
2992 * Setting the nvlist in the middle if the array is a little
2993 * sketchy, but it will work.
2994 */
2995 nvlist_free(aux[c]);
2996 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2997
2998 return;
2999 }
3000
3001 /*
3002 * The dirty list is protected by the SCL_CONFIG lock. The caller
3003 * must either hold SCL_CONFIG as writer, or must be the sync thread
3004 * (which holds SCL_CONFIG as reader). There's only one sync thread,
3005 * so this is sufficient to ensure mutual exclusion.
3006 */
3007 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3008 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3009 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3010
3011 if (vd == rvd) {
3012 for (c = 0; c < rvd->vdev_children; c++)
3013 vdev_config_dirty(rvd->vdev_child[c]);
3014 } else {
3015 ASSERT(vd == vd->vdev_top);
3016
3017 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3018 !vd->vdev_ishole)
3019 list_insert_head(&spa->spa_config_dirty_list, vd);
3020 }
3021 }
3022
3023 void
3024 vdev_config_clean(vdev_t *vd)
3025 {
3026 spa_t *spa = vd->vdev_spa;
3027
3028 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3029 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3030 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3031
3032 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3033 list_remove(&spa->spa_config_dirty_list, vd);
3034 }
3035
3036 /*
3037 * Mark a top-level vdev's state as dirty, so that the next pass of
3038 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3039 * the state changes from larger config changes because they require
3040 * much less locking, and are often needed for administrative actions.
3041 */
3042 void
3043 vdev_state_dirty(vdev_t *vd)
3044 {
3045 spa_t *spa = vd->vdev_spa;
3046
3047 ASSERT(spa_writeable(spa));
3048 ASSERT(vd == vd->vdev_top);
3049
3050 /*
3051 * The state list is protected by the SCL_STATE lock. The caller
3052 * must either hold SCL_STATE as writer, or must be the sync thread
3053 * (which holds SCL_STATE as reader). There's only one sync thread,
3054 * so this is sufficient to ensure mutual exclusion.
3055 */
3056 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3057 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3058 spa_config_held(spa, SCL_STATE, RW_READER)));
3059
3060 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3061 list_insert_head(&spa->spa_state_dirty_list, vd);
3062 }
3063
3064 void
3065 vdev_state_clean(vdev_t *vd)
3066 {
3067 spa_t *spa = vd->vdev_spa;
3068
3069 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3070 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3071 spa_config_held(spa, SCL_STATE, RW_READER)));
3072
3073 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3074 list_remove(&spa->spa_state_dirty_list, vd);
3075 }
3076
3077 /*
3078 * Propagate vdev state up from children to parent.
3079 */
3080 void
3081 vdev_propagate_state(vdev_t *vd)
3082 {
3083 spa_t *spa = vd->vdev_spa;
3084 vdev_t *rvd = spa->spa_root_vdev;
3085 int degraded = 0, faulted = 0;
3086 int corrupted = 0;
3087 vdev_t *child;
3088 int c;
3089
3090 if (vd->vdev_children > 0) {
3091 for (c = 0; c < vd->vdev_children; c++) {
3092 child = vd->vdev_child[c];
3093
3094 /*
3095 * Don't factor holes into the decision.
3096 */
3097 if (child->vdev_ishole)
3098 continue;
3099
3100 if (!vdev_readable(child) ||
3101 (!vdev_writeable(child) && spa_writeable(spa))) {
3102 /*
3103 * Root special: if there is a top-level log
3104 * device, treat the root vdev as if it were
3105 * degraded.
3106 */
3107 if (child->vdev_islog && vd == rvd)
3108 degraded++;
3109 else
3110 faulted++;
3111 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3112 degraded++;
3113 }
3114
3115 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3116 corrupted++;
3117 }
3118
3119 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3120
3121 /*
3122 * Root special: if there is a top-level vdev that cannot be
3123 * opened due to corrupted metadata, then propagate the root
3124 * vdev's aux state as 'corrupt' rather than 'insufficient
3125 * replicas'.
3126 */
3127 if (corrupted && vd == rvd &&
3128 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3129 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3130 VDEV_AUX_CORRUPT_DATA);
3131 }
3132
3133 if (vd->vdev_parent)
3134 vdev_propagate_state(vd->vdev_parent);
3135 }
3136
3137 /*
3138 * Set a vdev's state. If this is during an open, we don't update the parent
3139 * state, because we're in the process of opening children depth-first.
3140 * Otherwise, we propagate the change to the parent.
3141 *
3142 * If this routine places a device in a faulted state, an appropriate ereport is
3143 * generated.
3144 */
3145 void
3146 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3147 {
3148 uint64_t save_state;
3149 spa_t *spa = vd->vdev_spa;
3150
3151 if (state == vd->vdev_state) {
3152 vd->vdev_stat.vs_aux = aux;
3153 return;
3154 }
3155
3156 save_state = vd->vdev_state;
3157
3158 vd->vdev_state = state;
3159 vd->vdev_stat.vs_aux = aux;
3160
3161 /*
3162 * If we are setting the vdev state to anything but an open state, then
3163 * always close the underlying device unless the device has requested
3164 * a delayed close (i.e. we're about to remove or fault the device).
3165 * Otherwise, we keep accessible but invalid devices open forever.
3166 * We don't call vdev_close() itself, because that implies some extra
3167 * checks (offline, etc) that we don't want here. This is limited to
3168 * leaf devices, because otherwise closing the device will affect other
3169 * children.
3170 */
3171 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3172 vd->vdev_ops->vdev_op_leaf)
3173 vd->vdev_ops->vdev_op_close(vd);
3174
3175 /*
3176 * If we have brought this vdev back into service, we need
3177 * to notify fmd so that it can gracefully repair any outstanding
3178 * cases due to a missing device. We do this in all cases, even those
3179 * that probably don't correlate to a repaired fault. This is sure to
3180 * catch all cases, and we let the zfs-retire agent sort it out. If
3181 * this is a transient state it's OK, as the retire agent will
3182 * double-check the state of the vdev before repairing it.
3183 */
3184 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3185 vd->vdev_prevstate != state)
3186 zfs_post_state_change(spa, vd);
3187
3188 if (vd->vdev_removed &&
3189 state == VDEV_STATE_CANT_OPEN &&
3190 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3191 /*
3192 * If the previous state is set to VDEV_STATE_REMOVED, then this
3193 * device was previously marked removed and someone attempted to
3194 * reopen it. If this failed due to a nonexistent device, then
3195 * keep the device in the REMOVED state. We also let this be if
3196 * it is one of our special test online cases, which is only
3197 * attempting to online the device and shouldn't generate an FMA
3198 * fault.
3199 */
3200 vd->vdev_state = VDEV_STATE_REMOVED;
3201 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3202 } else if (state == VDEV_STATE_REMOVED) {
3203 vd->vdev_removed = B_TRUE;
3204 } else if (state == VDEV_STATE_CANT_OPEN) {
3205 /*
3206 * If we fail to open a vdev during an import or recovery, we
3207 * mark it as "not available", which signifies that it was
3208 * never there to begin with. Failure to open such a device
3209 * is not considered an error.
3210 */
3211 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3212 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3213 vd->vdev_ops->vdev_op_leaf)
3214 vd->vdev_not_present = 1;
3215
3216 /*
3217 * Post the appropriate ereport. If the 'prevstate' field is
3218 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3219 * that this is part of a vdev_reopen(). In this case, we don't
3220 * want to post the ereport if the device was already in the
3221 * CANT_OPEN state beforehand.
3222 *
3223 * If the 'checkremove' flag is set, then this is an attempt to
3224 * online the device in response to an insertion event. If we
3225 * hit this case, then we have detected an insertion event for a
3226 * faulted or offline device that wasn't in the removed state.
3227 * In this scenario, we don't post an ereport because we are
3228 * about to replace the device, or attempt an online with
3229 * vdev_forcefault, which will generate the fault for us.
3230 */
3231 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3232 !vd->vdev_not_present && !vd->vdev_checkremove &&
3233 vd != spa->spa_root_vdev) {
3234 const char *class;
3235
3236 switch (aux) {
3237 case VDEV_AUX_OPEN_FAILED:
3238 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3239 break;
3240 case VDEV_AUX_CORRUPT_DATA:
3241 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3242 break;
3243 case VDEV_AUX_NO_REPLICAS:
3244 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3245 break;
3246 case VDEV_AUX_BAD_GUID_SUM:
3247 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3248 break;
3249 case VDEV_AUX_TOO_SMALL:
3250 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3251 break;
3252 case VDEV_AUX_BAD_LABEL:
3253 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3254 break;
3255 default:
3256 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3257 }
3258
3259 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3260 }
3261
3262 /* Erase any notion of persistent removed state */
3263 vd->vdev_removed = B_FALSE;
3264 } else {
3265 vd->vdev_removed = B_FALSE;
3266 }
3267
3268 if (!isopen && vd->vdev_parent)
3269 vdev_propagate_state(vd->vdev_parent);
3270 }
3271
3272 /*
3273 * Check the vdev configuration to ensure that it's capable of supporting
3274 * a root pool.
3275 */
3276 boolean_t
3277 vdev_is_bootable(vdev_t *vd)
3278 {
3279 #if defined(__sun__) || defined(__sun)
3280 /*
3281 * Currently, we do not support RAID-Z or partial configuration.
3282 * In addition, only a single top-level vdev is allowed and none of the
3283 * leaves can be wholedisks.
3284 */
3285 int c;
3286
3287 if (!vd->vdev_ops->vdev_op_leaf) {
3288 char *vdev_type = vd->vdev_ops->vdev_op_type;
3289
3290 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3291 vd->vdev_children > 1) {
3292 return (B_FALSE);
3293 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3294 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3295 return (B_FALSE);
3296 }
3297 } else if (vd->vdev_wholedisk == 1) {
3298 return (B_FALSE);
3299 }
3300
3301 for (c = 0; c < vd->vdev_children; c++) {
3302 if (!vdev_is_bootable(vd->vdev_child[c]))
3303 return (B_FALSE);
3304 }
3305 #endif /* __sun__ || __sun */
3306 return (B_TRUE);
3307 }
3308
3309 /*
3310 * Load the state from the original vdev tree (ovd) which
3311 * we've retrieved from the MOS config object. If the original
3312 * vdev was offline or faulted then we transfer that state to the
3313 * device in the current vdev tree (nvd).
3314 */
3315 void
3316 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3317 {
3318 int c;
3319
3320 ASSERT(nvd->vdev_top->vdev_islog);
3321 ASSERT(spa_config_held(nvd->vdev_spa,
3322 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3323 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3324
3325 for (c = 0; c < nvd->vdev_children; c++)
3326 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3327
3328 if (nvd->vdev_ops->vdev_op_leaf) {
3329 /*
3330 * Restore the persistent vdev state
3331 */
3332 nvd->vdev_offline = ovd->vdev_offline;
3333 nvd->vdev_faulted = ovd->vdev_faulted;
3334 nvd->vdev_degraded = ovd->vdev_degraded;
3335 nvd->vdev_removed = ovd->vdev_removed;
3336 }
3337 }
3338
3339 /*
3340 * Determine if a log device has valid content. If the vdev was
3341 * removed or faulted in the MOS config then we know that
3342 * the content on the log device has already been written to the pool.
3343 */
3344 boolean_t
3345 vdev_log_state_valid(vdev_t *vd)
3346 {
3347 int c;
3348
3349 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3350 !vd->vdev_removed)
3351 return (B_TRUE);
3352
3353 for (c = 0; c < vd->vdev_children; c++)
3354 if (vdev_log_state_valid(vd->vdev_child[c]))
3355 return (B_TRUE);
3356
3357 return (B_FALSE);
3358 }
3359
3360 /*
3361 * Expand a vdev if possible.
3362 */
3363 void
3364 vdev_expand(vdev_t *vd, uint64_t txg)
3365 {
3366 ASSERT(vd->vdev_top == vd);
3367 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3368
3369 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3370 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3371 vdev_config_dirty(vd);
3372 }
3373 }
3374
3375 /*
3376 * Split a vdev.
3377 */
3378 void
3379 vdev_split(vdev_t *vd)
3380 {
3381 vdev_t *cvd, *pvd = vd->vdev_parent;
3382
3383 vdev_remove_child(pvd, vd);
3384 vdev_compact_children(pvd);
3385
3386 cvd = pvd->vdev_child[0];
3387 if (pvd->vdev_children == 1) {
3388 vdev_remove_parent(cvd);
3389 cvd->vdev_splitting = B_TRUE;
3390 }
3391 vdev_propagate_state(cvd);
3392 }
3393
3394 void
3395 vdev_deadman(vdev_t *vd)
3396 {
3397 int c;
3398
3399 for (c = 0; c < vd->vdev_children; c++) {
3400 vdev_t *cvd = vd->vdev_child[c];
3401
3402 vdev_deadman(cvd);
3403 }
3404
3405 if (vd->vdev_ops->vdev_op_leaf) {
3406 vdev_queue_t *vq = &vd->vdev_queue;
3407
3408 mutex_enter(&vq->vq_lock);
3409 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3410 spa_t *spa = vd->vdev_spa;
3411 zio_t *fio;
3412 uint64_t delta;
3413
3414 /*
3415 * Look at the head of all the pending queues,
3416 * if any I/O has been outstanding for longer than
3417 * the spa_deadman_synctime we log a zevent.
3418 */
3419 fio = avl_first(&vq->vq_active_tree);
3420 delta = gethrtime() - fio->io_timestamp;
3421 if (delta > spa_deadman_synctime(spa)) {
3422 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3423 "delta %lluns, last io %lluns",
3424 fio->io_timestamp, delta,
3425 vq->vq_io_complete_ts);
3426 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3427 spa, vd, fio, 0, 0);
3428 }
3429 }
3430 mutex_exit(&vq->vq_lock);
3431 }
3432 }
3433
3434 #if defined(_KERNEL) && defined(HAVE_SPL)
3435 EXPORT_SYMBOL(vdev_fault);
3436 EXPORT_SYMBOL(vdev_degrade);
3437 EXPORT_SYMBOL(vdev_online);
3438 EXPORT_SYMBOL(vdev_offline);
3439 EXPORT_SYMBOL(vdev_clear);
3440
3441 module_param(metaslabs_per_vdev, int, 0644);
3442 MODULE_PARM_DESC(metaslabs_per_vdev,
3443 "Divide added vdev into approximately (but no more than) this number "
3444 "of metaslabs");
3445 #endif