]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Multipath autoreplace, control enclosure LEDs, event rate limiting
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/space_reftree.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/zvol.h>
47 #include <sys/zfs_ratelimit.h>
48
49 /*
50 * When a vdev is added, it will be divided into approximately (but no
51 * more than) this number of metaslabs.
52 */
53 int metaslabs_per_vdev = 200;
54
55 /*
56 * Virtual device management.
57 */
58
59 static vdev_ops_t *vdev_ops_table[] = {
60 &vdev_root_ops,
61 &vdev_raidz_ops,
62 &vdev_mirror_ops,
63 &vdev_replacing_ops,
64 &vdev_spare_ops,
65 &vdev_disk_ops,
66 &vdev_file_ops,
67 &vdev_missing_ops,
68 &vdev_hole_ops,
69 NULL
70 };
71
72 /*
73 * Given a vdev type, return the appropriate ops vector.
74 */
75 static vdev_ops_t *
76 vdev_getops(const char *type)
77 {
78 vdev_ops_t *ops, **opspp;
79
80 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
81 if (strcmp(ops->vdev_op_type, type) == 0)
82 break;
83
84 return (ops);
85 }
86
87 /*
88 * Default asize function: return the MAX of psize with the asize of
89 * all children. This is what's used by anything other than RAID-Z.
90 */
91 uint64_t
92 vdev_default_asize(vdev_t *vd, uint64_t psize)
93 {
94 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
95 uint64_t csize;
96 int c;
97
98 for (c = 0; c < vd->vdev_children; c++) {
99 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
100 asize = MAX(asize, csize);
101 }
102
103 return (asize);
104 }
105
106 /*
107 * Get the minimum allocatable size. We define the allocatable size as
108 * the vdev's asize rounded to the nearest metaslab. This allows us to
109 * replace or attach devices which don't have the same physical size but
110 * can still satisfy the same number of allocations.
111 */
112 uint64_t
113 vdev_get_min_asize(vdev_t *vd)
114 {
115 vdev_t *pvd = vd->vdev_parent;
116
117 /*
118 * If our parent is NULL (inactive spare or cache) or is the root,
119 * just return our own asize.
120 */
121 if (pvd == NULL)
122 return (vd->vdev_asize);
123
124 /*
125 * The top-level vdev just returns the allocatable size rounded
126 * to the nearest metaslab.
127 */
128 if (vd == vd->vdev_top)
129 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
130
131 /*
132 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
133 * so each child must provide at least 1/Nth of its asize.
134 */
135 if (pvd->vdev_ops == &vdev_raidz_ops)
136 return (pvd->vdev_min_asize / pvd->vdev_children);
137
138 return (pvd->vdev_min_asize);
139 }
140
141 void
142 vdev_set_min_asize(vdev_t *vd)
143 {
144 int c;
145 vd->vdev_min_asize = vdev_get_min_asize(vd);
146
147 for (c = 0; c < vd->vdev_children; c++)
148 vdev_set_min_asize(vd->vdev_child[c]);
149 }
150
151 vdev_t *
152 vdev_lookup_top(spa_t *spa, uint64_t vdev)
153 {
154 vdev_t *rvd = spa->spa_root_vdev;
155
156 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
157
158 if (vdev < rvd->vdev_children) {
159 ASSERT(rvd->vdev_child[vdev] != NULL);
160 return (rvd->vdev_child[vdev]);
161 }
162
163 return (NULL);
164 }
165
166 vdev_t *
167 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
168 {
169 vdev_t *mvd;
170 int c;
171
172 if (vd->vdev_guid == guid)
173 return (vd);
174
175 for (c = 0; c < vd->vdev_children; c++)
176 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
177 NULL)
178 return (mvd);
179
180 return (NULL);
181 }
182
183 static int
184 vdev_count_leaves_impl(vdev_t *vd)
185 {
186 int n = 0;
187 int c;
188
189 if (vd->vdev_ops->vdev_op_leaf)
190 return (1);
191
192 for (c = 0; c < vd->vdev_children; c++)
193 n += vdev_count_leaves_impl(vd->vdev_child[c]);
194
195 return (n);
196 }
197
198 int
199 vdev_count_leaves(spa_t *spa)
200 {
201 return (vdev_count_leaves_impl(spa->spa_root_vdev));
202 }
203
204 void
205 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
206 {
207 size_t oldsize, newsize;
208 uint64_t id = cvd->vdev_id;
209 vdev_t **newchild;
210
211 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
212 ASSERT(cvd->vdev_parent == NULL);
213
214 cvd->vdev_parent = pvd;
215
216 if (pvd == NULL)
217 return;
218
219 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
220
221 oldsize = pvd->vdev_children * sizeof (vdev_t *);
222 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
223 newsize = pvd->vdev_children * sizeof (vdev_t *);
224
225 newchild = kmem_alloc(newsize, KM_SLEEP);
226 if (pvd->vdev_child != NULL) {
227 bcopy(pvd->vdev_child, newchild, oldsize);
228 kmem_free(pvd->vdev_child, oldsize);
229 }
230
231 pvd->vdev_child = newchild;
232 pvd->vdev_child[id] = cvd;
233
234 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
235 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
236
237 /*
238 * Walk up all ancestors to update guid sum.
239 */
240 for (; pvd != NULL; pvd = pvd->vdev_parent)
241 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
242 }
243
244 void
245 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
246 {
247 int c;
248 uint_t id = cvd->vdev_id;
249
250 ASSERT(cvd->vdev_parent == pvd);
251
252 if (pvd == NULL)
253 return;
254
255 ASSERT(id < pvd->vdev_children);
256 ASSERT(pvd->vdev_child[id] == cvd);
257
258 pvd->vdev_child[id] = NULL;
259 cvd->vdev_parent = NULL;
260
261 for (c = 0; c < pvd->vdev_children; c++)
262 if (pvd->vdev_child[c])
263 break;
264
265 if (c == pvd->vdev_children) {
266 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
267 pvd->vdev_child = NULL;
268 pvd->vdev_children = 0;
269 }
270
271 /*
272 * Walk up all ancestors to update guid sum.
273 */
274 for (; pvd != NULL; pvd = pvd->vdev_parent)
275 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
276 }
277
278 /*
279 * Remove any holes in the child array.
280 */
281 void
282 vdev_compact_children(vdev_t *pvd)
283 {
284 vdev_t **newchild, *cvd;
285 int oldc = pvd->vdev_children;
286 int newc;
287 int c;
288
289 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
290
291 for (c = newc = 0; c < oldc; c++)
292 if (pvd->vdev_child[c])
293 newc++;
294
295 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
296
297 for (c = newc = 0; c < oldc; c++) {
298 if ((cvd = pvd->vdev_child[c]) != NULL) {
299 newchild[newc] = cvd;
300 cvd->vdev_id = newc++;
301 }
302 }
303
304 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
305 pvd->vdev_child = newchild;
306 pvd->vdev_children = newc;
307 }
308
309 /*
310 * Allocate and minimally initialize a vdev_t.
311 */
312 vdev_t *
313 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
314 {
315 vdev_t *vd;
316 int t;
317
318 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
319
320 if (spa->spa_root_vdev == NULL) {
321 ASSERT(ops == &vdev_root_ops);
322 spa->spa_root_vdev = vd;
323 spa->spa_load_guid = spa_generate_guid(NULL);
324 }
325
326 if (guid == 0 && ops != &vdev_hole_ops) {
327 if (spa->spa_root_vdev == vd) {
328 /*
329 * The root vdev's guid will also be the pool guid,
330 * which must be unique among all pools.
331 */
332 guid = spa_generate_guid(NULL);
333 } else {
334 /*
335 * Any other vdev's guid must be unique within the pool.
336 */
337 guid = spa_generate_guid(spa);
338 }
339 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
340 }
341
342 vd->vdev_spa = spa;
343 vd->vdev_id = id;
344 vd->vdev_guid = guid;
345 vd->vdev_guid_sum = guid;
346 vd->vdev_ops = ops;
347 vd->vdev_state = VDEV_STATE_CLOSED;
348 vd->vdev_ishole = (ops == &vdev_hole_ops);
349
350 /*
351 * Initialize rate limit structs for events. We rate limit ZIO delay
352 * and checksum events so that we don't overwhelm ZED with thousands
353 * of events when a disk is acting up.
354 */
355 zfs_ratelimit_init(&vd->vdev_delay_rl, DELAYS_PER_SECOND, 1);
356 zfs_ratelimit_init(&vd->vdev_checksum_rl, CHECKSUMS_PER_SECOND, 1);
357
358 list_link_init(&vd->vdev_config_dirty_node);
359 list_link_init(&vd->vdev_state_dirty_node);
360 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
361 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
362 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
363 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
364
365 for (t = 0; t < DTL_TYPES; t++) {
366 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
367 &vd->vdev_dtl_lock);
368 }
369 txg_list_create(&vd->vdev_ms_list,
370 offsetof(struct metaslab, ms_txg_node));
371 txg_list_create(&vd->vdev_dtl_list,
372 offsetof(struct vdev, vdev_dtl_node));
373 vd->vdev_stat.vs_timestamp = gethrtime();
374 vdev_queue_init(vd);
375 vdev_cache_init(vd);
376
377 return (vd);
378 }
379
380 /*
381 * Allocate a new vdev. The 'alloctype' is used to control whether we are
382 * creating a new vdev or loading an existing one - the behavior is slightly
383 * different for each case.
384 */
385 int
386 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
387 int alloctype)
388 {
389 vdev_ops_t *ops;
390 char *type;
391 uint64_t guid = 0, islog, nparity;
392 vdev_t *vd;
393
394 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
395
396 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
397 return (SET_ERROR(EINVAL));
398
399 if ((ops = vdev_getops(type)) == NULL)
400 return (SET_ERROR(EINVAL));
401
402 /*
403 * If this is a load, get the vdev guid from the nvlist.
404 * Otherwise, vdev_alloc_common() will generate one for us.
405 */
406 if (alloctype == VDEV_ALLOC_LOAD) {
407 uint64_t label_id;
408
409 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
410 label_id != id)
411 return (SET_ERROR(EINVAL));
412
413 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
414 return (SET_ERROR(EINVAL));
415 } else if (alloctype == VDEV_ALLOC_SPARE) {
416 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
417 return (SET_ERROR(EINVAL));
418 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
419 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
420 return (SET_ERROR(EINVAL));
421 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
422 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
423 return (SET_ERROR(EINVAL));
424 }
425
426 /*
427 * The first allocated vdev must be of type 'root'.
428 */
429 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
430 return (SET_ERROR(EINVAL));
431
432 /*
433 * Determine whether we're a log vdev.
434 */
435 islog = 0;
436 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
437 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
438 return (SET_ERROR(ENOTSUP));
439
440 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
441 return (SET_ERROR(ENOTSUP));
442
443 /*
444 * Set the nparity property for RAID-Z vdevs.
445 */
446 nparity = -1ULL;
447 if (ops == &vdev_raidz_ops) {
448 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
449 &nparity) == 0) {
450 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
451 return (SET_ERROR(EINVAL));
452 /*
453 * Previous versions could only support 1 or 2 parity
454 * device.
455 */
456 if (nparity > 1 &&
457 spa_version(spa) < SPA_VERSION_RAIDZ2)
458 return (SET_ERROR(ENOTSUP));
459 if (nparity > 2 &&
460 spa_version(spa) < SPA_VERSION_RAIDZ3)
461 return (SET_ERROR(ENOTSUP));
462 } else {
463 /*
464 * We require the parity to be specified for SPAs that
465 * support multiple parity levels.
466 */
467 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
468 return (SET_ERROR(EINVAL));
469 /*
470 * Otherwise, we default to 1 parity device for RAID-Z.
471 */
472 nparity = 1;
473 }
474 } else {
475 nparity = 0;
476 }
477 ASSERT(nparity != -1ULL);
478
479 vd = vdev_alloc_common(spa, id, guid, ops);
480
481 vd->vdev_islog = islog;
482 vd->vdev_nparity = nparity;
483
484 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
485 vd->vdev_path = spa_strdup(vd->vdev_path);
486 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
487 vd->vdev_devid = spa_strdup(vd->vdev_devid);
488 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
489 &vd->vdev_physpath) == 0)
490 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
491 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
492 vd->vdev_fru = spa_strdup(vd->vdev_fru);
493
494 /*
495 * Set the whole_disk property. If it's not specified, leave the value
496 * as -1.
497 */
498 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
499 &vd->vdev_wholedisk) != 0)
500 vd->vdev_wholedisk = -1ULL;
501
502 /*
503 * Look for the 'not present' flag. This will only be set if the device
504 * was not present at the time of import.
505 */
506 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
507 &vd->vdev_not_present);
508
509 /*
510 * Get the alignment requirement.
511 */
512 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
513
514 /*
515 * Retrieve the vdev creation time.
516 */
517 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
518 &vd->vdev_crtxg);
519
520 /*
521 * If we're a top-level vdev, try to load the allocation parameters.
522 */
523 if (parent && !parent->vdev_parent &&
524 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
525 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
526 &vd->vdev_ms_array);
527 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
528 &vd->vdev_ms_shift);
529 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
530 &vd->vdev_asize);
531 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
532 &vd->vdev_removing);
533 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
534 &vd->vdev_top_zap);
535 } else {
536 ASSERT0(vd->vdev_top_zap);
537 }
538
539 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
540 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
541 alloctype == VDEV_ALLOC_ADD ||
542 alloctype == VDEV_ALLOC_SPLIT ||
543 alloctype == VDEV_ALLOC_ROOTPOOL);
544 vd->vdev_mg = metaslab_group_create(islog ?
545 spa_log_class(spa) : spa_normal_class(spa), vd);
546 }
547
548 if (vd->vdev_ops->vdev_op_leaf &&
549 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
550 (void) nvlist_lookup_uint64(nv,
551 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
552 } else {
553 ASSERT0(vd->vdev_leaf_zap);
554 }
555
556 /*
557 * If we're a leaf vdev, try to load the DTL object and other state.
558 */
559
560 if (vd->vdev_ops->vdev_op_leaf &&
561 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
562 alloctype == VDEV_ALLOC_ROOTPOOL)) {
563 if (alloctype == VDEV_ALLOC_LOAD) {
564 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
565 &vd->vdev_dtl_object);
566 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
567 &vd->vdev_unspare);
568 }
569
570 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
571 uint64_t spare = 0;
572
573 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
574 &spare) == 0 && spare)
575 spa_spare_add(vd);
576 }
577
578 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
579 &vd->vdev_offline);
580
581 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
582 &vd->vdev_resilver_txg);
583
584 /*
585 * When importing a pool, we want to ignore the persistent fault
586 * state, as the diagnosis made on another system may not be
587 * valid in the current context. Local vdevs will
588 * remain in the faulted state.
589 */
590 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
591 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
592 &vd->vdev_faulted);
593 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
594 &vd->vdev_degraded);
595 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
596 &vd->vdev_removed);
597
598 if (vd->vdev_faulted || vd->vdev_degraded) {
599 char *aux;
600
601 vd->vdev_label_aux =
602 VDEV_AUX_ERR_EXCEEDED;
603 if (nvlist_lookup_string(nv,
604 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
605 strcmp(aux, "external") == 0)
606 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
607 }
608 }
609 }
610
611 /*
612 * Add ourselves to the parent's list of children.
613 */
614 vdev_add_child(parent, vd);
615
616 *vdp = vd;
617
618 return (0);
619 }
620
621 void
622 vdev_free(vdev_t *vd)
623 {
624 int c, t;
625 spa_t *spa = vd->vdev_spa;
626
627 /*
628 * vdev_free() implies closing the vdev first. This is simpler than
629 * trying to ensure complicated semantics for all callers.
630 */
631 vdev_close(vd);
632
633 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
634 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
635
636 /*
637 * Free all children.
638 */
639 for (c = 0; c < vd->vdev_children; c++)
640 vdev_free(vd->vdev_child[c]);
641
642 ASSERT(vd->vdev_child == NULL);
643 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
644
645 /*
646 * Discard allocation state.
647 */
648 if (vd->vdev_mg != NULL) {
649 vdev_metaslab_fini(vd);
650 metaslab_group_destroy(vd->vdev_mg);
651 }
652
653 ASSERT0(vd->vdev_stat.vs_space);
654 ASSERT0(vd->vdev_stat.vs_dspace);
655 ASSERT0(vd->vdev_stat.vs_alloc);
656
657 /*
658 * Remove this vdev from its parent's child list.
659 */
660 vdev_remove_child(vd->vdev_parent, vd);
661
662 ASSERT(vd->vdev_parent == NULL);
663
664 /*
665 * Clean up vdev structure.
666 */
667 vdev_queue_fini(vd);
668 vdev_cache_fini(vd);
669
670 if (vd->vdev_path)
671 spa_strfree(vd->vdev_path);
672 if (vd->vdev_devid)
673 spa_strfree(vd->vdev_devid);
674 if (vd->vdev_physpath)
675 spa_strfree(vd->vdev_physpath);
676 if (vd->vdev_fru)
677 spa_strfree(vd->vdev_fru);
678
679 if (vd->vdev_isspare)
680 spa_spare_remove(vd);
681 if (vd->vdev_isl2cache)
682 spa_l2cache_remove(vd);
683
684 txg_list_destroy(&vd->vdev_ms_list);
685 txg_list_destroy(&vd->vdev_dtl_list);
686
687 mutex_enter(&vd->vdev_dtl_lock);
688 space_map_close(vd->vdev_dtl_sm);
689 for (t = 0; t < DTL_TYPES; t++) {
690 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
691 range_tree_destroy(vd->vdev_dtl[t]);
692 }
693 mutex_exit(&vd->vdev_dtl_lock);
694
695 mutex_destroy(&vd->vdev_queue_lock);
696 mutex_destroy(&vd->vdev_dtl_lock);
697 mutex_destroy(&vd->vdev_stat_lock);
698 mutex_destroy(&vd->vdev_probe_lock);
699
700 if (vd == spa->spa_root_vdev)
701 spa->spa_root_vdev = NULL;
702
703 kmem_free(vd, sizeof (vdev_t));
704 }
705
706 /*
707 * Transfer top-level vdev state from svd to tvd.
708 */
709 static void
710 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
711 {
712 spa_t *spa = svd->vdev_spa;
713 metaslab_t *msp;
714 vdev_t *vd;
715 int t;
716
717 ASSERT(tvd == tvd->vdev_top);
718
719 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
720 tvd->vdev_ms_array = svd->vdev_ms_array;
721 tvd->vdev_ms_shift = svd->vdev_ms_shift;
722 tvd->vdev_ms_count = svd->vdev_ms_count;
723 tvd->vdev_top_zap = svd->vdev_top_zap;
724
725 svd->vdev_ms_array = 0;
726 svd->vdev_ms_shift = 0;
727 svd->vdev_ms_count = 0;
728 svd->vdev_top_zap = 0;
729
730 if (tvd->vdev_mg)
731 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
732 tvd->vdev_mg = svd->vdev_mg;
733 tvd->vdev_ms = svd->vdev_ms;
734
735 svd->vdev_mg = NULL;
736 svd->vdev_ms = NULL;
737
738 if (tvd->vdev_mg != NULL)
739 tvd->vdev_mg->mg_vd = tvd;
740
741 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
742 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
743 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
744
745 svd->vdev_stat.vs_alloc = 0;
746 svd->vdev_stat.vs_space = 0;
747 svd->vdev_stat.vs_dspace = 0;
748
749 for (t = 0; t < TXG_SIZE; t++) {
750 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
751 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
752 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
753 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
754 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
755 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
756 }
757
758 if (list_link_active(&svd->vdev_config_dirty_node)) {
759 vdev_config_clean(svd);
760 vdev_config_dirty(tvd);
761 }
762
763 if (list_link_active(&svd->vdev_state_dirty_node)) {
764 vdev_state_clean(svd);
765 vdev_state_dirty(tvd);
766 }
767
768 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
769 svd->vdev_deflate_ratio = 0;
770
771 tvd->vdev_islog = svd->vdev_islog;
772 svd->vdev_islog = 0;
773 }
774
775 static void
776 vdev_top_update(vdev_t *tvd, vdev_t *vd)
777 {
778 int c;
779
780 if (vd == NULL)
781 return;
782
783 vd->vdev_top = tvd;
784
785 for (c = 0; c < vd->vdev_children; c++)
786 vdev_top_update(tvd, vd->vdev_child[c]);
787 }
788
789 /*
790 * Add a mirror/replacing vdev above an existing vdev.
791 */
792 vdev_t *
793 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
794 {
795 spa_t *spa = cvd->vdev_spa;
796 vdev_t *pvd = cvd->vdev_parent;
797 vdev_t *mvd;
798
799 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
800
801 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
802
803 mvd->vdev_asize = cvd->vdev_asize;
804 mvd->vdev_min_asize = cvd->vdev_min_asize;
805 mvd->vdev_max_asize = cvd->vdev_max_asize;
806 mvd->vdev_ashift = cvd->vdev_ashift;
807 mvd->vdev_state = cvd->vdev_state;
808 mvd->vdev_crtxg = cvd->vdev_crtxg;
809
810 vdev_remove_child(pvd, cvd);
811 vdev_add_child(pvd, mvd);
812 cvd->vdev_id = mvd->vdev_children;
813 vdev_add_child(mvd, cvd);
814 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
815
816 if (mvd == mvd->vdev_top)
817 vdev_top_transfer(cvd, mvd);
818
819 return (mvd);
820 }
821
822 /*
823 * Remove a 1-way mirror/replacing vdev from the tree.
824 */
825 void
826 vdev_remove_parent(vdev_t *cvd)
827 {
828 vdev_t *mvd = cvd->vdev_parent;
829 vdev_t *pvd = mvd->vdev_parent;
830
831 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
832
833 ASSERT(mvd->vdev_children == 1);
834 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
835 mvd->vdev_ops == &vdev_replacing_ops ||
836 mvd->vdev_ops == &vdev_spare_ops);
837 cvd->vdev_ashift = mvd->vdev_ashift;
838
839 vdev_remove_child(mvd, cvd);
840 vdev_remove_child(pvd, mvd);
841
842 /*
843 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
844 * Otherwise, we could have detached an offline device, and when we
845 * go to import the pool we'll think we have two top-level vdevs,
846 * instead of a different version of the same top-level vdev.
847 */
848 if (mvd->vdev_top == mvd) {
849 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
850 cvd->vdev_orig_guid = cvd->vdev_guid;
851 cvd->vdev_guid += guid_delta;
852 cvd->vdev_guid_sum += guid_delta;
853
854 /*
855 * If pool not set for autoexpand, we need to also preserve
856 * mvd's asize to prevent automatic expansion of cvd.
857 * Otherwise if we are adjusting the mirror by attaching and
858 * detaching children of non-uniform sizes, the mirror could
859 * autoexpand, unexpectedly requiring larger devices to
860 * re-establish the mirror.
861 */
862 if (!cvd->vdev_spa->spa_autoexpand)
863 cvd->vdev_asize = mvd->vdev_asize;
864 }
865 cvd->vdev_id = mvd->vdev_id;
866 vdev_add_child(pvd, cvd);
867 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
868
869 if (cvd == cvd->vdev_top)
870 vdev_top_transfer(mvd, cvd);
871
872 ASSERT(mvd->vdev_children == 0);
873 vdev_free(mvd);
874 }
875
876 int
877 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
878 {
879 spa_t *spa = vd->vdev_spa;
880 objset_t *mos = spa->spa_meta_objset;
881 uint64_t m;
882 uint64_t oldc = vd->vdev_ms_count;
883 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
884 metaslab_t **mspp;
885 int error;
886
887 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
888
889 /*
890 * This vdev is not being allocated from yet or is a hole.
891 */
892 if (vd->vdev_ms_shift == 0)
893 return (0);
894
895 ASSERT(!vd->vdev_ishole);
896
897 /*
898 * Compute the raidz-deflation ratio. Note, we hard-code
899 * in 128k (1 << 17) because it is the "typical" blocksize.
900 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
901 * otherwise it would inconsistently account for existing bp's.
902 */
903 vd->vdev_deflate_ratio = (1 << 17) /
904 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
905
906 ASSERT(oldc <= newc);
907
908 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
909
910 if (oldc != 0) {
911 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
912 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
913 }
914
915 vd->vdev_ms = mspp;
916 vd->vdev_ms_count = newc;
917
918 for (m = oldc; m < newc; m++) {
919 uint64_t object = 0;
920
921 if (txg == 0) {
922 error = dmu_read(mos, vd->vdev_ms_array,
923 m * sizeof (uint64_t), sizeof (uint64_t), &object,
924 DMU_READ_PREFETCH);
925 if (error)
926 return (error);
927 }
928
929 error = metaslab_init(vd->vdev_mg, m, object, txg,
930 &(vd->vdev_ms[m]));
931 if (error)
932 return (error);
933 }
934
935 if (txg == 0)
936 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
937
938 /*
939 * If the vdev is being removed we don't activate
940 * the metaslabs since we want to ensure that no new
941 * allocations are performed on this device.
942 */
943 if (oldc == 0 && !vd->vdev_removing)
944 metaslab_group_activate(vd->vdev_mg);
945
946 if (txg == 0)
947 spa_config_exit(spa, SCL_ALLOC, FTAG);
948
949 return (0);
950 }
951
952 void
953 vdev_metaslab_fini(vdev_t *vd)
954 {
955 uint64_t m;
956 uint64_t count = vd->vdev_ms_count;
957
958 if (vd->vdev_ms != NULL) {
959 metaslab_group_passivate(vd->vdev_mg);
960 for (m = 0; m < count; m++) {
961 metaslab_t *msp = vd->vdev_ms[m];
962
963 if (msp != NULL)
964 metaslab_fini(msp);
965 }
966 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
967 vd->vdev_ms = NULL;
968 }
969
970 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
971 }
972
973 typedef struct vdev_probe_stats {
974 boolean_t vps_readable;
975 boolean_t vps_writeable;
976 int vps_flags;
977 } vdev_probe_stats_t;
978
979 static void
980 vdev_probe_done(zio_t *zio)
981 {
982 spa_t *spa = zio->io_spa;
983 vdev_t *vd = zio->io_vd;
984 vdev_probe_stats_t *vps = zio->io_private;
985
986 ASSERT(vd->vdev_probe_zio != NULL);
987
988 if (zio->io_type == ZIO_TYPE_READ) {
989 if (zio->io_error == 0)
990 vps->vps_readable = 1;
991 if (zio->io_error == 0 && spa_writeable(spa)) {
992 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
993 zio->io_offset, zio->io_size, zio->io_data,
994 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
995 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
996 } else {
997 zio_buf_free(zio->io_data, zio->io_size);
998 }
999 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1000 if (zio->io_error == 0)
1001 vps->vps_writeable = 1;
1002 zio_buf_free(zio->io_data, zio->io_size);
1003 } else if (zio->io_type == ZIO_TYPE_NULL) {
1004 zio_t *pio;
1005 zio_link_t *zl;
1006
1007 vd->vdev_cant_read |= !vps->vps_readable;
1008 vd->vdev_cant_write |= !vps->vps_writeable;
1009
1010 if (vdev_readable(vd) &&
1011 (vdev_writeable(vd) || !spa_writeable(spa))) {
1012 zio->io_error = 0;
1013 } else {
1014 ASSERT(zio->io_error != 0);
1015 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1016 spa, vd, NULL, 0, 0);
1017 zio->io_error = SET_ERROR(ENXIO);
1018 }
1019
1020 mutex_enter(&vd->vdev_probe_lock);
1021 ASSERT(vd->vdev_probe_zio == zio);
1022 vd->vdev_probe_zio = NULL;
1023 mutex_exit(&vd->vdev_probe_lock);
1024
1025 zl = NULL;
1026 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1027 if (!vdev_accessible(vd, pio))
1028 pio->io_error = SET_ERROR(ENXIO);
1029
1030 kmem_free(vps, sizeof (*vps));
1031 }
1032 }
1033
1034 /*
1035 * Determine whether this device is accessible.
1036 *
1037 * Read and write to several known locations: the pad regions of each
1038 * vdev label but the first, which we leave alone in case it contains
1039 * a VTOC.
1040 */
1041 zio_t *
1042 vdev_probe(vdev_t *vd, zio_t *zio)
1043 {
1044 spa_t *spa = vd->vdev_spa;
1045 vdev_probe_stats_t *vps = NULL;
1046 zio_t *pio;
1047 int l;
1048
1049 ASSERT(vd->vdev_ops->vdev_op_leaf);
1050
1051 /*
1052 * Don't probe the probe.
1053 */
1054 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1055 return (NULL);
1056
1057 /*
1058 * To prevent 'probe storms' when a device fails, we create
1059 * just one probe i/o at a time. All zios that want to probe
1060 * this vdev will become parents of the probe io.
1061 */
1062 mutex_enter(&vd->vdev_probe_lock);
1063
1064 if ((pio = vd->vdev_probe_zio) == NULL) {
1065 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1066
1067 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1068 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1069 ZIO_FLAG_TRYHARD;
1070
1071 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1072 /*
1073 * vdev_cant_read and vdev_cant_write can only
1074 * transition from TRUE to FALSE when we have the
1075 * SCL_ZIO lock as writer; otherwise they can only
1076 * transition from FALSE to TRUE. This ensures that
1077 * any zio looking at these values can assume that
1078 * failures persist for the life of the I/O. That's
1079 * important because when a device has intermittent
1080 * connectivity problems, we want to ensure that
1081 * they're ascribed to the device (ENXIO) and not
1082 * the zio (EIO).
1083 *
1084 * Since we hold SCL_ZIO as writer here, clear both
1085 * values so the probe can reevaluate from first
1086 * principles.
1087 */
1088 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1089 vd->vdev_cant_read = B_FALSE;
1090 vd->vdev_cant_write = B_FALSE;
1091 }
1092
1093 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1094 vdev_probe_done, vps,
1095 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1096
1097 /*
1098 * We can't change the vdev state in this context, so we
1099 * kick off an async task to do it on our behalf.
1100 */
1101 if (zio != NULL) {
1102 vd->vdev_probe_wanted = B_TRUE;
1103 spa_async_request(spa, SPA_ASYNC_PROBE);
1104 }
1105 }
1106
1107 if (zio != NULL)
1108 zio_add_child(zio, pio);
1109
1110 mutex_exit(&vd->vdev_probe_lock);
1111
1112 if (vps == NULL) {
1113 ASSERT(zio != NULL);
1114 return (NULL);
1115 }
1116
1117 for (l = 1; l < VDEV_LABELS; l++) {
1118 zio_nowait(zio_read_phys(pio, vd,
1119 vdev_label_offset(vd->vdev_psize, l,
1120 offsetof(vdev_label_t, vl_pad2)),
1121 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1122 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1123 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1124 }
1125
1126 if (zio == NULL)
1127 return (pio);
1128
1129 zio_nowait(pio);
1130 return (NULL);
1131 }
1132
1133 static void
1134 vdev_open_child(void *arg)
1135 {
1136 vdev_t *vd = arg;
1137
1138 vd->vdev_open_thread = curthread;
1139 vd->vdev_open_error = vdev_open(vd);
1140 vd->vdev_open_thread = NULL;
1141 }
1142
1143 static boolean_t
1144 vdev_uses_zvols(vdev_t *vd)
1145 {
1146 int c;
1147
1148 #ifdef _KERNEL
1149 if (zvol_is_zvol(vd->vdev_path))
1150 return (B_TRUE);
1151 #endif
1152
1153 for (c = 0; c < vd->vdev_children; c++)
1154 if (vdev_uses_zvols(vd->vdev_child[c]))
1155 return (B_TRUE);
1156
1157 return (B_FALSE);
1158 }
1159
1160 void
1161 vdev_open_children(vdev_t *vd)
1162 {
1163 taskq_t *tq;
1164 int children = vd->vdev_children;
1165 int c;
1166
1167 /*
1168 * in order to handle pools on top of zvols, do the opens
1169 * in a single thread so that the same thread holds the
1170 * spa_namespace_lock
1171 */
1172 if (vdev_uses_zvols(vd)) {
1173 for (c = 0; c < children; c++)
1174 vd->vdev_child[c]->vdev_open_error =
1175 vdev_open(vd->vdev_child[c]);
1176 } else {
1177 tq = taskq_create("vdev_open", children, minclsyspri,
1178 children, children, TASKQ_PREPOPULATE);
1179
1180 for (c = 0; c < children; c++)
1181 VERIFY(taskq_dispatch(tq, vdev_open_child,
1182 vd->vdev_child[c], TQ_SLEEP) != 0);
1183
1184 taskq_destroy(tq);
1185 }
1186
1187 vd->vdev_nonrot = B_TRUE;
1188
1189 for (c = 0; c < children; c++)
1190 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1191 }
1192
1193 /*
1194 * Prepare a virtual device for access.
1195 */
1196 int
1197 vdev_open(vdev_t *vd)
1198 {
1199 spa_t *spa = vd->vdev_spa;
1200 int error;
1201 uint64_t osize = 0;
1202 uint64_t max_osize = 0;
1203 uint64_t asize, max_asize, psize;
1204 uint64_t ashift = 0;
1205 int c;
1206
1207 ASSERT(vd->vdev_open_thread == curthread ||
1208 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1209 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1210 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1211 vd->vdev_state == VDEV_STATE_OFFLINE);
1212
1213 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1214 vd->vdev_cant_read = B_FALSE;
1215 vd->vdev_cant_write = B_FALSE;
1216 vd->vdev_min_asize = vdev_get_min_asize(vd);
1217
1218 /*
1219 * If this vdev is not removed, check its fault status. If it's
1220 * faulted, bail out of the open.
1221 */
1222 if (!vd->vdev_removed && vd->vdev_faulted) {
1223 ASSERT(vd->vdev_children == 0);
1224 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1225 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1226 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1227 vd->vdev_label_aux);
1228 return (SET_ERROR(ENXIO));
1229 } else if (vd->vdev_offline) {
1230 ASSERT(vd->vdev_children == 0);
1231 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1232 return (SET_ERROR(ENXIO));
1233 }
1234
1235 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1236
1237 /*
1238 * Reset the vdev_reopening flag so that we actually close
1239 * the vdev on error.
1240 */
1241 vd->vdev_reopening = B_FALSE;
1242 if (zio_injection_enabled && error == 0)
1243 error = zio_handle_device_injection(vd, NULL, ENXIO);
1244
1245 if (error) {
1246 if (vd->vdev_removed &&
1247 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1248 vd->vdev_removed = B_FALSE;
1249
1250 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1251 vd->vdev_stat.vs_aux);
1252 return (error);
1253 }
1254
1255 vd->vdev_removed = B_FALSE;
1256
1257 /*
1258 * Recheck the faulted flag now that we have confirmed that
1259 * the vdev is accessible. If we're faulted, bail.
1260 */
1261 if (vd->vdev_faulted) {
1262 ASSERT(vd->vdev_children == 0);
1263 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1264 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1265 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1266 vd->vdev_label_aux);
1267 return (SET_ERROR(ENXIO));
1268 }
1269
1270 if (vd->vdev_degraded) {
1271 ASSERT(vd->vdev_children == 0);
1272 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1273 VDEV_AUX_ERR_EXCEEDED);
1274 } else {
1275 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1276 }
1277
1278 /*
1279 * For hole or missing vdevs we just return success.
1280 */
1281 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1282 return (0);
1283
1284 for (c = 0; c < vd->vdev_children; c++) {
1285 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1286 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1287 VDEV_AUX_NONE);
1288 break;
1289 }
1290 }
1291
1292 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1293 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1294
1295 if (vd->vdev_children == 0) {
1296 if (osize < SPA_MINDEVSIZE) {
1297 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1298 VDEV_AUX_TOO_SMALL);
1299 return (SET_ERROR(EOVERFLOW));
1300 }
1301 psize = osize;
1302 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1303 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1304 VDEV_LABEL_END_SIZE);
1305 } else {
1306 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1307 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1308 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1309 VDEV_AUX_TOO_SMALL);
1310 return (SET_ERROR(EOVERFLOW));
1311 }
1312 psize = 0;
1313 asize = osize;
1314 max_asize = max_osize;
1315 }
1316
1317 vd->vdev_psize = psize;
1318
1319 /*
1320 * Make sure the allocatable size hasn't shrunk.
1321 */
1322 if (asize < vd->vdev_min_asize) {
1323 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1324 VDEV_AUX_BAD_LABEL);
1325 return (SET_ERROR(EINVAL));
1326 }
1327
1328 if (vd->vdev_asize == 0) {
1329 /*
1330 * This is the first-ever open, so use the computed values.
1331 * For compatibility, a different ashift can be requested.
1332 */
1333 vd->vdev_asize = asize;
1334 vd->vdev_max_asize = max_asize;
1335 if (vd->vdev_ashift == 0)
1336 vd->vdev_ashift = ashift;
1337 } else {
1338 /*
1339 * Detect if the alignment requirement has increased.
1340 * We don't want to make the pool unavailable, just
1341 * post an event instead.
1342 */
1343 if (ashift > vd->vdev_top->vdev_ashift &&
1344 vd->vdev_ops->vdev_op_leaf) {
1345 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1346 spa, vd, NULL, 0, 0);
1347 }
1348
1349 vd->vdev_max_asize = max_asize;
1350 }
1351
1352 /*
1353 * If all children are healthy and the asize has increased,
1354 * then we've experienced dynamic LUN growth. If automatic
1355 * expansion is enabled then use the additional space.
1356 */
1357 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1358 (vd->vdev_expanding || spa->spa_autoexpand))
1359 vd->vdev_asize = asize;
1360
1361 vdev_set_min_asize(vd);
1362
1363 /*
1364 * Ensure we can issue some IO before declaring the
1365 * vdev open for business.
1366 */
1367 if (vd->vdev_ops->vdev_op_leaf &&
1368 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1369 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1370 VDEV_AUX_ERR_EXCEEDED);
1371 return (error);
1372 }
1373
1374 /*
1375 * Track the min and max ashift values for normal data devices.
1376 */
1377 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1378 !vd->vdev_islog && vd->vdev_aux == NULL) {
1379 if (vd->vdev_ashift > spa->spa_max_ashift)
1380 spa->spa_max_ashift = vd->vdev_ashift;
1381 if (vd->vdev_ashift < spa->spa_min_ashift)
1382 spa->spa_min_ashift = vd->vdev_ashift;
1383 }
1384
1385 /*
1386 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1387 * resilver. But don't do this if we are doing a reopen for a scrub,
1388 * since this would just restart the scrub we are already doing.
1389 */
1390 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1391 vdev_resilver_needed(vd, NULL, NULL))
1392 spa_async_request(spa, SPA_ASYNC_RESILVER);
1393
1394 return (0);
1395 }
1396
1397 /*
1398 * Called once the vdevs are all opened, this routine validates the label
1399 * contents. This needs to be done before vdev_load() so that we don't
1400 * inadvertently do repair I/Os to the wrong device.
1401 *
1402 * If 'strict' is false ignore the spa guid check. This is necessary because
1403 * if the machine crashed during a re-guid the new guid might have been written
1404 * to all of the vdev labels, but not the cached config. The strict check
1405 * will be performed when the pool is opened again using the mos config.
1406 *
1407 * This function will only return failure if one of the vdevs indicates that it
1408 * has since been destroyed or exported. This is only possible if
1409 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1410 * will be updated but the function will return 0.
1411 */
1412 int
1413 vdev_validate(vdev_t *vd, boolean_t strict)
1414 {
1415 spa_t *spa = vd->vdev_spa;
1416 nvlist_t *label;
1417 uint64_t guid = 0, top_guid;
1418 uint64_t state;
1419 int c;
1420
1421 for (c = 0; c < vd->vdev_children; c++)
1422 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1423 return (SET_ERROR(EBADF));
1424
1425 /*
1426 * If the device has already failed, or was marked offline, don't do
1427 * any further validation. Otherwise, label I/O will fail and we will
1428 * overwrite the previous state.
1429 */
1430 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1431 uint64_t aux_guid = 0;
1432 nvlist_t *nvl;
1433 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1434 spa_last_synced_txg(spa) : -1ULL;
1435
1436 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1437 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1438 VDEV_AUX_BAD_LABEL);
1439 return (0);
1440 }
1441
1442 /*
1443 * Determine if this vdev has been split off into another
1444 * pool. If so, then refuse to open it.
1445 */
1446 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1447 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1448 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1449 VDEV_AUX_SPLIT_POOL);
1450 nvlist_free(label);
1451 return (0);
1452 }
1453
1454 if (strict && (nvlist_lookup_uint64(label,
1455 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1456 guid != spa_guid(spa))) {
1457 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1458 VDEV_AUX_CORRUPT_DATA);
1459 nvlist_free(label);
1460 return (0);
1461 }
1462
1463 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1464 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1465 &aux_guid) != 0)
1466 aux_guid = 0;
1467
1468 /*
1469 * If this vdev just became a top-level vdev because its
1470 * sibling was detached, it will have adopted the parent's
1471 * vdev guid -- but the label may or may not be on disk yet.
1472 * Fortunately, either version of the label will have the
1473 * same top guid, so if we're a top-level vdev, we can
1474 * safely compare to that instead.
1475 *
1476 * If we split this vdev off instead, then we also check the
1477 * original pool's guid. We don't want to consider the vdev
1478 * corrupt if it is partway through a split operation.
1479 */
1480 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1481 &guid) != 0 ||
1482 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1483 &top_guid) != 0 ||
1484 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1485 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1486 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1487 VDEV_AUX_CORRUPT_DATA);
1488 nvlist_free(label);
1489 return (0);
1490 }
1491
1492 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1493 &state) != 0) {
1494 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1495 VDEV_AUX_CORRUPT_DATA);
1496 nvlist_free(label);
1497 return (0);
1498 }
1499
1500 nvlist_free(label);
1501
1502 /*
1503 * If this is a verbatim import, no need to check the
1504 * state of the pool.
1505 */
1506 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1507 spa_load_state(spa) == SPA_LOAD_OPEN &&
1508 state != POOL_STATE_ACTIVE)
1509 return (SET_ERROR(EBADF));
1510
1511 /*
1512 * If we were able to open and validate a vdev that was
1513 * previously marked permanently unavailable, clear that state
1514 * now.
1515 */
1516 if (vd->vdev_not_present)
1517 vd->vdev_not_present = 0;
1518 }
1519
1520 return (0);
1521 }
1522
1523 /*
1524 * Close a virtual device.
1525 */
1526 void
1527 vdev_close(vdev_t *vd)
1528 {
1529 vdev_t *pvd = vd->vdev_parent;
1530 ASSERTV(spa_t *spa = vd->vdev_spa);
1531
1532 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1533
1534 /*
1535 * If our parent is reopening, then we are as well, unless we are
1536 * going offline.
1537 */
1538 if (pvd != NULL && pvd->vdev_reopening)
1539 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1540
1541 vd->vdev_ops->vdev_op_close(vd);
1542
1543 vdev_cache_purge(vd);
1544
1545 /*
1546 * We record the previous state before we close it, so that if we are
1547 * doing a reopen(), we don't generate FMA ereports if we notice that
1548 * it's still faulted.
1549 */
1550 vd->vdev_prevstate = vd->vdev_state;
1551
1552 if (vd->vdev_offline)
1553 vd->vdev_state = VDEV_STATE_OFFLINE;
1554 else
1555 vd->vdev_state = VDEV_STATE_CLOSED;
1556 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1557 }
1558
1559 void
1560 vdev_hold(vdev_t *vd)
1561 {
1562 spa_t *spa = vd->vdev_spa;
1563 int c;
1564
1565 ASSERT(spa_is_root(spa));
1566 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1567 return;
1568
1569 for (c = 0; c < vd->vdev_children; c++)
1570 vdev_hold(vd->vdev_child[c]);
1571
1572 if (vd->vdev_ops->vdev_op_leaf)
1573 vd->vdev_ops->vdev_op_hold(vd);
1574 }
1575
1576 void
1577 vdev_rele(vdev_t *vd)
1578 {
1579 int c;
1580
1581 ASSERT(spa_is_root(vd->vdev_spa));
1582 for (c = 0; c < vd->vdev_children; c++)
1583 vdev_rele(vd->vdev_child[c]);
1584
1585 if (vd->vdev_ops->vdev_op_leaf)
1586 vd->vdev_ops->vdev_op_rele(vd);
1587 }
1588
1589 /*
1590 * Reopen all interior vdevs and any unopened leaves. We don't actually
1591 * reopen leaf vdevs which had previously been opened as they might deadlock
1592 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1593 * If the leaf has never been opened then open it, as usual.
1594 */
1595 void
1596 vdev_reopen(vdev_t *vd)
1597 {
1598 spa_t *spa = vd->vdev_spa;
1599
1600 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1601
1602 /* set the reopening flag unless we're taking the vdev offline */
1603 vd->vdev_reopening = !vd->vdev_offline;
1604 vdev_close(vd);
1605 (void) vdev_open(vd);
1606
1607 /*
1608 * Call vdev_validate() here to make sure we have the same device.
1609 * Otherwise, a device with an invalid label could be successfully
1610 * opened in response to vdev_reopen().
1611 */
1612 if (vd->vdev_aux) {
1613 (void) vdev_validate_aux(vd);
1614 if (vdev_readable(vd) && vdev_writeable(vd) &&
1615 vd->vdev_aux == &spa->spa_l2cache &&
1616 !l2arc_vdev_present(vd))
1617 l2arc_add_vdev(spa, vd);
1618 } else {
1619 (void) vdev_validate(vd, B_TRUE);
1620 }
1621
1622 /*
1623 * Reassess parent vdev's health.
1624 */
1625 vdev_propagate_state(vd);
1626 }
1627
1628 int
1629 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1630 {
1631 int error;
1632
1633 /*
1634 * Normally, partial opens (e.g. of a mirror) are allowed.
1635 * For a create, however, we want to fail the request if
1636 * there are any components we can't open.
1637 */
1638 error = vdev_open(vd);
1639
1640 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1641 vdev_close(vd);
1642 return (error ? error : ENXIO);
1643 }
1644
1645 /*
1646 * Recursively load DTLs and initialize all labels.
1647 */
1648 if ((error = vdev_dtl_load(vd)) != 0 ||
1649 (error = vdev_label_init(vd, txg, isreplacing ?
1650 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1651 vdev_close(vd);
1652 return (error);
1653 }
1654
1655 return (0);
1656 }
1657
1658 void
1659 vdev_metaslab_set_size(vdev_t *vd)
1660 {
1661 /*
1662 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1663 */
1664 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1665 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1666 }
1667
1668 void
1669 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1670 {
1671 ASSERT(vd == vd->vdev_top);
1672 ASSERT(!vd->vdev_ishole);
1673 ASSERT(ISP2(flags));
1674 ASSERT(spa_writeable(vd->vdev_spa));
1675
1676 if (flags & VDD_METASLAB)
1677 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1678
1679 if (flags & VDD_DTL)
1680 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1681
1682 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1683 }
1684
1685 void
1686 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1687 {
1688 int c;
1689
1690 for (c = 0; c < vd->vdev_children; c++)
1691 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1692
1693 if (vd->vdev_ops->vdev_op_leaf)
1694 vdev_dirty(vd->vdev_top, flags, vd, txg);
1695 }
1696
1697 /*
1698 * DTLs.
1699 *
1700 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1701 * the vdev has less than perfect replication. There are four kinds of DTL:
1702 *
1703 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1704 *
1705 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1706 *
1707 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1708 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1709 * txgs that was scrubbed.
1710 *
1711 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1712 * persistent errors or just some device being offline.
1713 * Unlike the other three, the DTL_OUTAGE map is not generally
1714 * maintained; it's only computed when needed, typically to
1715 * determine whether a device can be detached.
1716 *
1717 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1718 * either has the data or it doesn't.
1719 *
1720 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1721 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1722 * if any child is less than fully replicated, then so is its parent.
1723 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1724 * comprising only those txgs which appear in 'maxfaults' or more children;
1725 * those are the txgs we don't have enough replication to read. For example,
1726 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1727 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1728 * two child DTL_MISSING maps.
1729 *
1730 * It should be clear from the above that to compute the DTLs and outage maps
1731 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1732 * Therefore, that is all we keep on disk. When loading the pool, or after
1733 * a configuration change, we generate all other DTLs from first principles.
1734 */
1735 void
1736 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1737 {
1738 range_tree_t *rt = vd->vdev_dtl[t];
1739
1740 ASSERT(t < DTL_TYPES);
1741 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1742 ASSERT(spa_writeable(vd->vdev_spa));
1743
1744 mutex_enter(rt->rt_lock);
1745 if (!range_tree_contains(rt, txg, size))
1746 range_tree_add(rt, txg, size);
1747 mutex_exit(rt->rt_lock);
1748 }
1749
1750 boolean_t
1751 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1752 {
1753 range_tree_t *rt = vd->vdev_dtl[t];
1754 boolean_t dirty = B_FALSE;
1755
1756 ASSERT(t < DTL_TYPES);
1757 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1758
1759 mutex_enter(rt->rt_lock);
1760 if (range_tree_space(rt) != 0)
1761 dirty = range_tree_contains(rt, txg, size);
1762 mutex_exit(rt->rt_lock);
1763
1764 return (dirty);
1765 }
1766
1767 boolean_t
1768 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1769 {
1770 range_tree_t *rt = vd->vdev_dtl[t];
1771 boolean_t empty;
1772
1773 mutex_enter(rt->rt_lock);
1774 empty = (range_tree_space(rt) == 0);
1775 mutex_exit(rt->rt_lock);
1776
1777 return (empty);
1778 }
1779
1780 /*
1781 * Returns the lowest txg in the DTL range.
1782 */
1783 static uint64_t
1784 vdev_dtl_min(vdev_t *vd)
1785 {
1786 range_seg_t *rs;
1787
1788 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1789 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1790 ASSERT0(vd->vdev_children);
1791
1792 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1793 return (rs->rs_start - 1);
1794 }
1795
1796 /*
1797 * Returns the highest txg in the DTL.
1798 */
1799 static uint64_t
1800 vdev_dtl_max(vdev_t *vd)
1801 {
1802 range_seg_t *rs;
1803
1804 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1805 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1806 ASSERT0(vd->vdev_children);
1807
1808 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1809 return (rs->rs_end);
1810 }
1811
1812 /*
1813 * Determine if a resilvering vdev should remove any DTL entries from
1814 * its range. If the vdev was resilvering for the entire duration of the
1815 * scan then it should excise that range from its DTLs. Otherwise, this
1816 * vdev is considered partially resilvered and should leave its DTL
1817 * entries intact. The comment in vdev_dtl_reassess() describes how we
1818 * excise the DTLs.
1819 */
1820 static boolean_t
1821 vdev_dtl_should_excise(vdev_t *vd)
1822 {
1823 spa_t *spa = vd->vdev_spa;
1824 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1825
1826 ASSERT0(scn->scn_phys.scn_errors);
1827 ASSERT0(vd->vdev_children);
1828
1829 if (vd->vdev_resilver_txg == 0 ||
1830 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1831 return (B_TRUE);
1832
1833 /*
1834 * When a resilver is initiated the scan will assign the scn_max_txg
1835 * value to the highest txg value that exists in all DTLs. If this
1836 * device's max DTL is not part of this scan (i.e. it is not in
1837 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1838 * for excision.
1839 */
1840 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1841 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1842 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1843 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1844 return (B_TRUE);
1845 }
1846 return (B_FALSE);
1847 }
1848
1849 /*
1850 * Reassess DTLs after a config change or scrub completion.
1851 */
1852 void
1853 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1854 {
1855 spa_t *spa = vd->vdev_spa;
1856 avl_tree_t reftree;
1857 int c, t, minref;
1858
1859 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1860
1861 for (c = 0; c < vd->vdev_children; c++)
1862 vdev_dtl_reassess(vd->vdev_child[c], txg,
1863 scrub_txg, scrub_done);
1864
1865 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1866 return;
1867
1868 if (vd->vdev_ops->vdev_op_leaf) {
1869 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1870
1871 mutex_enter(&vd->vdev_dtl_lock);
1872
1873 /*
1874 * If we've completed a scan cleanly then determine
1875 * if this vdev should remove any DTLs. We only want to
1876 * excise regions on vdevs that were available during
1877 * the entire duration of this scan.
1878 */
1879 if (scrub_txg != 0 &&
1880 (spa->spa_scrub_started ||
1881 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1882 vdev_dtl_should_excise(vd)) {
1883 /*
1884 * We completed a scrub up to scrub_txg. If we
1885 * did it without rebooting, then the scrub dtl
1886 * will be valid, so excise the old region and
1887 * fold in the scrub dtl. Otherwise, leave the
1888 * dtl as-is if there was an error.
1889 *
1890 * There's little trick here: to excise the beginning
1891 * of the DTL_MISSING map, we put it into a reference
1892 * tree and then add a segment with refcnt -1 that
1893 * covers the range [0, scrub_txg). This means
1894 * that each txg in that range has refcnt -1 or 0.
1895 * We then add DTL_SCRUB with a refcnt of 2, so that
1896 * entries in the range [0, scrub_txg) will have a
1897 * positive refcnt -- either 1 or 2. We then convert
1898 * the reference tree into the new DTL_MISSING map.
1899 */
1900 space_reftree_create(&reftree);
1901 space_reftree_add_map(&reftree,
1902 vd->vdev_dtl[DTL_MISSING], 1);
1903 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1904 space_reftree_add_map(&reftree,
1905 vd->vdev_dtl[DTL_SCRUB], 2);
1906 space_reftree_generate_map(&reftree,
1907 vd->vdev_dtl[DTL_MISSING], 1);
1908 space_reftree_destroy(&reftree);
1909 }
1910 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1911 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1912 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1913 if (scrub_done)
1914 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1915 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1916 if (!vdev_readable(vd))
1917 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1918 else
1919 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1920 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1921
1922 /*
1923 * If the vdev was resilvering and no longer has any
1924 * DTLs then reset its resilvering flag and dirty
1925 * the top level so that we persist the change.
1926 */
1927 if (vd->vdev_resilver_txg != 0 &&
1928 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1929 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
1930 vd->vdev_resilver_txg = 0;
1931 vdev_config_dirty(vd->vdev_top);
1932 }
1933
1934 mutex_exit(&vd->vdev_dtl_lock);
1935
1936 if (txg != 0)
1937 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1938 return;
1939 }
1940
1941 mutex_enter(&vd->vdev_dtl_lock);
1942 for (t = 0; t < DTL_TYPES; t++) {
1943 int c;
1944
1945 /* account for child's outage in parent's missing map */
1946 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1947 if (t == DTL_SCRUB)
1948 continue; /* leaf vdevs only */
1949 if (t == DTL_PARTIAL)
1950 minref = 1; /* i.e. non-zero */
1951 else if (vd->vdev_nparity != 0)
1952 minref = vd->vdev_nparity + 1; /* RAID-Z */
1953 else
1954 minref = vd->vdev_children; /* any kind of mirror */
1955 space_reftree_create(&reftree);
1956 for (c = 0; c < vd->vdev_children; c++) {
1957 vdev_t *cvd = vd->vdev_child[c];
1958 mutex_enter(&cvd->vdev_dtl_lock);
1959 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1960 mutex_exit(&cvd->vdev_dtl_lock);
1961 }
1962 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1963 space_reftree_destroy(&reftree);
1964 }
1965 mutex_exit(&vd->vdev_dtl_lock);
1966 }
1967
1968 int
1969 vdev_dtl_load(vdev_t *vd)
1970 {
1971 spa_t *spa = vd->vdev_spa;
1972 objset_t *mos = spa->spa_meta_objset;
1973 int error = 0;
1974 int c;
1975
1976 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1977 ASSERT(!vd->vdev_ishole);
1978
1979 error = space_map_open(&vd->vdev_dtl_sm, mos,
1980 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1981 if (error)
1982 return (error);
1983 ASSERT(vd->vdev_dtl_sm != NULL);
1984
1985 mutex_enter(&vd->vdev_dtl_lock);
1986
1987 /*
1988 * Now that we've opened the space_map we need to update
1989 * the in-core DTL.
1990 */
1991 space_map_update(vd->vdev_dtl_sm);
1992
1993 error = space_map_load(vd->vdev_dtl_sm,
1994 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1995 mutex_exit(&vd->vdev_dtl_lock);
1996
1997 return (error);
1998 }
1999
2000 for (c = 0; c < vd->vdev_children; c++) {
2001 error = vdev_dtl_load(vd->vdev_child[c]);
2002 if (error != 0)
2003 break;
2004 }
2005
2006 return (error);
2007 }
2008
2009 void
2010 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2011 {
2012 spa_t *spa = vd->vdev_spa;
2013
2014 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2015 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2016 zapobj, tx));
2017 }
2018
2019 uint64_t
2020 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2021 {
2022 spa_t *spa = vd->vdev_spa;
2023 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2024 DMU_OT_NONE, 0, tx);
2025
2026 ASSERT(zap != 0);
2027 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2028 zap, tx));
2029
2030 return (zap);
2031 }
2032
2033 void
2034 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2035 {
2036 uint64_t i;
2037
2038 if (vd->vdev_ops != &vdev_hole_ops &&
2039 vd->vdev_ops != &vdev_missing_ops &&
2040 vd->vdev_ops != &vdev_root_ops &&
2041 !vd->vdev_top->vdev_removing) {
2042 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2043 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2044 }
2045 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2046 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2047 }
2048 }
2049 for (i = 0; i < vd->vdev_children; i++) {
2050 vdev_construct_zaps(vd->vdev_child[i], tx);
2051 }
2052 }
2053
2054 void
2055 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2056 {
2057 spa_t *spa = vd->vdev_spa;
2058 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2059 objset_t *mos = spa->spa_meta_objset;
2060 range_tree_t *rtsync;
2061 kmutex_t rtlock;
2062 dmu_tx_t *tx;
2063 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2064
2065 ASSERT(!vd->vdev_ishole);
2066 ASSERT(vd->vdev_ops->vdev_op_leaf);
2067
2068 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2069
2070 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2071 mutex_enter(&vd->vdev_dtl_lock);
2072 space_map_free(vd->vdev_dtl_sm, tx);
2073 space_map_close(vd->vdev_dtl_sm);
2074 vd->vdev_dtl_sm = NULL;
2075 mutex_exit(&vd->vdev_dtl_lock);
2076
2077 /*
2078 * We only destroy the leaf ZAP for detached leaves or for
2079 * removed log devices. Removed data devices handle leaf ZAP
2080 * cleanup later, once cancellation is no longer possible.
2081 */
2082 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2083 vd->vdev_top->vdev_islog)) {
2084 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2085 vd->vdev_leaf_zap = 0;
2086 }
2087
2088 dmu_tx_commit(tx);
2089 return;
2090 }
2091
2092 if (vd->vdev_dtl_sm == NULL) {
2093 uint64_t new_object;
2094
2095 new_object = space_map_alloc(mos, tx);
2096 VERIFY3U(new_object, !=, 0);
2097
2098 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2099 0, -1ULL, 0, &vd->vdev_dtl_lock));
2100 ASSERT(vd->vdev_dtl_sm != NULL);
2101 }
2102
2103 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2104
2105 rtsync = range_tree_create(NULL, NULL, &rtlock);
2106
2107 mutex_enter(&rtlock);
2108
2109 mutex_enter(&vd->vdev_dtl_lock);
2110 range_tree_walk(rt, range_tree_add, rtsync);
2111 mutex_exit(&vd->vdev_dtl_lock);
2112
2113 space_map_truncate(vd->vdev_dtl_sm, tx);
2114 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2115 range_tree_vacate(rtsync, NULL, NULL);
2116
2117 range_tree_destroy(rtsync);
2118
2119 mutex_exit(&rtlock);
2120 mutex_destroy(&rtlock);
2121
2122 /*
2123 * If the object for the space map has changed then dirty
2124 * the top level so that we update the config.
2125 */
2126 if (object != space_map_object(vd->vdev_dtl_sm)) {
2127 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2128 "new object %llu", txg, spa_name(spa), object,
2129 space_map_object(vd->vdev_dtl_sm));
2130 vdev_config_dirty(vd->vdev_top);
2131 }
2132
2133 dmu_tx_commit(tx);
2134
2135 mutex_enter(&vd->vdev_dtl_lock);
2136 space_map_update(vd->vdev_dtl_sm);
2137 mutex_exit(&vd->vdev_dtl_lock);
2138 }
2139
2140 /*
2141 * Determine whether the specified vdev can be offlined/detached/removed
2142 * without losing data.
2143 */
2144 boolean_t
2145 vdev_dtl_required(vdev_t *vd)
2146 {
2147 spa_t *spa = vd->vdev_spa;
2148 vdev_t *tvd = vd->vdev_top;
2149 uint8_t cant_read = vd->vdev_cant_read;
2150 boolean_t required;
2151
2152 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2153
2154 if (vd == spa->spa_root_vdev || vd == tvd)
2155 return (B_TRUE);
2156
2157 /*
2158 * Temporarily mark the device as unreadable, and then determine
2159 * whether this results in any DTL outages in the top-level vdev.
2160 * If not, we can safely offline/detach/remove the device.
2161 */
2162 vd->vdev_cant_read = B_TRUE;
2163 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2164 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2165 vd->vdev_cant_read = cant_read;
2166 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2167
2168 if (!required && zio_injection_enabled)
2169 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2170
2171 return (required);
2172 }
2173
2174 /*
2175 * Determine if resilver is needed, and if so the txg range.
2176 */
2177 boolean_t
2178 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2179 {
2180 boolean_t needed = B_FALSE;
2181 uint64_t thismin = UINT64_MAX;
2182 uint64_t thismax = 0;
2183 int c;
2184
2185 if (vd->vdev_children == 0) {
2186 mutex_enter(&vd->vdev_dtl_lock);
2187 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2188 vdev_writeable(vd)) {
2189
2190 thismin = vdev_dtl_min(vd);
2191 thismax = vdev_dtl_max(vd);
2192 needed = B_TRUE;
2193 }
2194 mutex_exit(&vd->vdev_dtl_lock);
2195 } else {
2196 for (c = 0; c < vd->vdev_children; c++) {
2197 vdev_t *cvd = vd->vdev_child[c];
2198 uint64_t cmin, cmax;
2199
2200 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2201 thismin = MIN(thismin, cmin);
2202 thismax = MAX(thismax, cmax);
2203 needed = B_TRUE;
2204 }
2205 }
2206 }
2207
2208 if (needed && minp) {
2209 *minp = thismin;
2210 *maxp = thismax;
2211 }
2212 return (needed);
2213 }
2214
2215 void
2216 vdev_load(vdev_t *vd)
2217 {
2218 int c;
2219
2220 /*
2221 * Recursively load all children.
2222 */
2223 for (c = 0; c < vd->vdev_children; c++)
2224 vdev_load(vd->vdev_child[c]);
2225
2226 /*
2227 * If this is a top-level vdev, initialize its metaslabs.
2228 */
2229 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2230 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2231 vdev_metaslab_init(vd, 0) != 0))
2232 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2233 VDEV_AUX_CORRUPT_DATA);
2234 /*
2235 * If this is a leaf vdev, load its DTL.
2236 */
2237 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2238 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2239 VDEV_AUX_CORRUPT_DATA);
2240 }
2241
2242 /*
2243 * The special vdev case is used for hot spares and l2cache devices. Its
2244 * sole purpose it to set the vdev state for the associated vdev. To do this,
2245 * we make sure that we can open the underlying device, then try to read the
2246 * label, and make sure that the label is sane and that it hasn't been
2247 * repurposed to another pool.
2248 */
2249 int
2250 vdev_validate_aux(vdev_t *vd)
2251 {
2252 nvlist_t *label;
2253 uint64_t guid, version;
2254 uint64_t state;
2255
2256 if (!vdev_readable(vd))
2257 return (0);
2258
2259 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2260 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2261 VDEV_AUX_CORRUPT_DATA);
2262 return (-1);
2263 }
2264
2265 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2266 !SPA_VERSION_IS_SUPPORTED(version) ||
2267 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2268 guid != vd->vdev_guid ||
2269 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2270 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2271 VDEV_AUX_CORRUPT_DATA);
2272 nvlist_free(label);
2273 return (-1);
2274 }
2275
2276 /*
2277 * We don't actually check the pool state here. If it's in fact in
2278 * use by another pool, we update this fact on the fly when requested.
2279 */
2280 nvlist_free(label);
2281 return (0);
2282 }
2283
2284 void
2285 vdev_remove(vdev_t *vd, uint64_t txg)
2286 {
2287 spa_t *spa = vd->vdev_spa;
2288 objset_t *mos = spa->spa_meta_objset;
2289 dmu_tx_t *tx;
2290 int m, i;
2291
2292 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2293 ASSERT(vd == vd->vdev_top);
2294 ASSERT3U(txg, ==, spa_syncing_txg(spa));
2295
2296 if (vd->vdev_ms != NULL) {
2297 metaslab_group_t *mg = vd->vdev_mg;
2298
2299 metaslab_group_histogram_verify(mg);
2300 metaslab_class_histogram_verify(mg->mg_class);
2301
2302 for (m = 0; m < vd->vdev_ms_count; m++) {
2303 metaslab_t *msp = vd->vdev_ms[m];
2304
2305 if (msp == NULL || msp->ms_sm == NULL)
2306 continue;
2307
2308 mutex_enter(&msp->ms_lock);
2309 /*
2310 * If the metaslab was not loaded when the vdev
2311 * was removed then the histogram accounting may
2312 * not be accurate. Update the histogram information
2313 * here so that we ensure that the metaslab group
2314 * and metaslab class are up-to-date.
2315 */
2316 metaslab_group_histogram_remove(mg, msp);
2317
2318 VERIFY0(space_map_allocated(msp->ms_sm));
2319 space_map_free(msp->ms_sm, tx);
2320 space_map_close(msp->ms_sm);
2321 msp->ms_sm = NULL;
2322 mutex_exit(&msp->ms_lock);
2323 }
2324
2325 metaslab_group_histogram_verify(mg);
2326 metaslab_class_histogram_verify(mg->mg_class);
2327 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2328 ASSERT0(mg->mg_histogram[i]);
2329
2330 }
2331
2332 if (vd->vdev_ms_array) {
2333 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2334 vd->vdev_ms_array = 0;
2335 }
2336
2337 if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2338 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2339 vd->vdev_top_zap = 0;
2340 }
2341 dmu_tx_commit(tx);
2342 }
2343
2344 void
2345 vdev_sync_done(vdev_t *vd, uint64_t txg)
2346 {
2347 metaslab_t *msp;
2348 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2349
2350 ASSERT(!vd->vdev_ishole);
2351
2352 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2353 metaslab_sync_done(msp, txg);
2354
2355 if (reassess)
2356 metaslab_sync_reassess(vd->vdev_mg);
2357 }
2358
2359 void
2360 vdev_sync(vdev_t *vd, uint64_t txg)
2361 {
2362 spa_t *spa = vd->vdev_spa;
2363 vdev_t *lvd;
2364 metaslab_t *msp;
2365 dmu_tx_t *tx;
2366
2367 ASSERT(!vd->vdev_ishole);
2368
2369 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2370 ASSERT(vd == vd->vdev_top);
2371 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2372 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2373 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2374 ASSERT(vd->vdev_ms_array != 0);
2375 vdev_config_dirty(vd);
2376 dmu_tx_commit(tx);
2377 }
2378
2379 /*
2380 * Remove the metadata associated with this vdev once it's empty.
2381 */
2382 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2383 vdev_remove(vd, txg);
2384
2385 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2386 metaslab_sync(msp, txg);
2387 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2388 }
2389
2390 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2391 vdev_dtl_sync(lvd, txg);
2392
2393 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2394 }
2395
2396 uint64_t
2397 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2398 {
2399 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2400 }
2401
2402 /*
2403 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2404 * not be opened, and no I/O is attempted.
2405 */
2406 int
2407 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2408 {
2409 vdev_t *vd, *tvd;
2410
2411 spa_vdev_state_enter(spa, SCL_NONE);
2412
2413 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2414 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2415
2416 if (!vd->vdev_ops->vdev_op_leaf)
2417 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2418
2419 tvd = vd->vdev_top;
2420
2421 /*
2422 * We don't directly use the aux state here, but if we do a
2423 * vdev_reopen(), we need this value to be present to remember why we
2424 * were faulted.
2425 */
2426 vd->vdev_label_aux = aux;
2427
2428 /*
2429 * Faulted state takes precedence over degraded.
2430 */
2431 vd->vdev_delayed_close = B_FALSE;
2432 vd->vdev_faulted = 1ULL;
2433 vd->vdev_degraded = 0ULL;
2434 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2435
2436 /*
2437 * If this device has the only valid copy of the data, then
2438 * back off and simply mark the vdev as degraded instead.
2439 */
2440 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2441 vd->vdev_degraded = 1ULL;
2442 vd->vdev_faulted = 0ULL;
2443
2444 /*
2445 * If we reopen the device and it's not dead, only then do we
2446 * mark it degraded.
2447 */
2448 vdev_reopen(tvd);
2449
2450 if (vdev_readable(vd))
2451 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2452 }
2453
2454 return (spa_vdev_state_exit(spa, vd, 0));
2455 }
2456
2457 /*
2458 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2459 * user that something is wrong. The vdev continues to operate as normal as far
2460 * as I/O is concerned.
2461 */
2462 int
2463 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2464 {
2465 vdev_t *vd;
2466
2467 spa_vdev_state_enter(spa, SCL_NONE);
2468
2469 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2470 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2471
2472 if (!vd->vdev_ops->vdev_op_leaf)
2473 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2474
2475 /*
2476 * If the vdev is already faulted, then don't do anything.
2477 */
2478 if (vd->vdev_faulted || vd->vdev_degraded)
2479 return (spa_vdev_state_exit(spa, NULL, 0));
2480
2481 vd->vdev_degraded = 1ULL;
2482 if (!vdev_is_dead(vd))
2483 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2484 aux);
2485
2486 return (spa_vdev_state_exit(spa, vd, 0));
2487 }
2488
2489 /*
2490 * Online the given vdev.
2491 *
2492 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2493 * spare device should be detached when the device finishes resilvering.
2494 * Second, the online should be treated like a 'test' online case, so no FMA
2495 * events are generated if the device fails to open.
2496 */
2497 int
2498 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2499 {
2500 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2501 boolean_t postevent = B_FALSE;
2502
2503 spa_vdev_state_enter(spa, SCL_NONE);
2504
2505 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2506 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2507
2508 if (!vd->vdev_ops->vdev_op_leaf)
2509 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2510
2511 postevent =
2512 (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2513 B_TRUE : B_FALSE;
2514
2515 tvd = vd->vdev_top;
2516 vd->vdev_offline = B_FALSE;
2517 vd->vdev_tmpoffline = B_FALSE;
2518 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2519 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2520
2521 /* XXX - L2ARC 1.0 does not support expansion */
2522 if (!vd->vdev_aux) {
2523 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2524 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2525 }
2526
2527 vdev_reopen(tvd);
2528 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2529
2530 if (!vd->vdev_aux) {
2531 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2532 pvd->vdev_expanding = B_FALSE;
2533 }
2534
2535 if (newstate)
2536 *newstate = vd->vdev_state;
2537 if ((flags & ZFS_ONLINE_UNSPARE) &&
2538 !vdev_is_dead(vd) && vd->vdev_parent &&
2539 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2540 vd->vdev_parent->vdev_child[0] == vd)
2541 vd->vdev_unspare = B_TRUE;
2542
2543 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2544
2545 /* XXX - L2ARC 1.0 does not support expansion */
2546 if (vd->vdev_aux)
2547 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2548 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2549 }
2550
2551 if (postevent)
2552 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2553
2554 return (spa_vdev_state_exit(spa, vd, 0));
2555 }
2556
2557 static int
2558 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2559 {
2560 vdev_t *vd, *tvd;
2561 int error = 0;
2562 uint64_t generation;
2563 metaslab_group_t *mg;
2564
2565 top:
2566 spa_vdev_state_enter(spa, SCL_ALLOC);
2567
2568 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2569 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2570
2571 if (!vd->vdev_ops->vdev_op_leaf)
2572 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2573
2574 tvd = vd->vdev_top;
2575 mg = tvd->vdev_mg;
2576 generation = spa->spa_config_generation + 1;
2577
2578 /*
2579 * If the device isn't already offline, try to offline it.
2580 */
2581 if (!vd->vdev_offline) {
2582 /*
2583 * If this device has the only valid copy of some data,
2584 * don't allow it to be offlined. Log devices are always
2585 * expendable.
2586 */
2587 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2588 vdev_dtl_required(vd))
2589 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2590
2591 /*
2592 * If the top-level is a slog and it has had allocations
2593 * then proceed. We check that the vdev's metaslab group
2594 * is not NULL since it's possible that we may have just
2595 * added this vdev but not yet initialized its metaslabs.
2596 */
2597 if (tvd->vdev_islog && mg != NULL) {
2598 /*
2599 * Prevent any future allocations.
2600 */
2601 metaslab_group_passivate(mg);
2602 (void) spa_vdev_state_exit(spa, vd, 0);
2603
2604 error = spa_offline_log(spa);
2605
2606 spa_vdev_state_enter(spa, SCL_ALLOC);
2607
2608 /*
2609 * Check to see if the config has changed.
2610 */
2611 if (error || generation != spa->spa_config_generation) {
2612 metaslab_group_activate(mg);
2613 if (error)
2614 return (spa_vdev_state_exit(spa,
2615 vd, error));
2616 (void) spa_vdev_state_exit(spa, vd, 0);
2617 goto top;
2618 }
2619 ASSERT0(tvd->vdev_stat.vs_alloc);
2620 }
2621
2622 /*
2623 * Offline this device and reopen its top-level vdev.
2624 * If the top-level vdev is a log device then just offline
2625 * it. Otherwise, if this action results in the top-level
2626 * vdev becoming unusable, undo it and fail the request.
2627 */
2628 vd->vdev_offline = B_TRUE;
2629 vdev_reopen(tvd);
2630
2631 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2632 vdev_is_dead(tvd)) {
2633 vd->vdev_offline = B_FALSE;
2634 vdev_reopen(tvd);
2635 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2636 }
2637
2638 /*
2639 * Add the device back into the metaslab rotor so that
2640 * once we online the device it's open for business.
2641 */
2642 if (tvd->vdev_islog && mg != NULL)
2643 metaslab_group_activate(mg);
2644 }
2645
2646 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2647
2648 return (spa_vdev_state_exit(spa, vd, 0));
2649 }
2650
2651 int
2652 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2653 {
2654 int error;
2655
2656 mutex_enter(&spa->spa_vdev_top_lock);
2657 error = vdev_offline_locked(spa, guid, flags);
2658 mutex_exit(&spa->spa_vdev_top_lock);
2659
2660 return (error);
2661 }
2662
2663 /*
2664 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2665 * vdev_offline(), we assume the spa config is locked. We also clear all
2666 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2667 */
2668 void
2669 vdev_clear(spa_t *spa, vdev_t *vd)
2670 {
2671 vdev_t *rvd = spa->spa_root_vdev;
2672 int c;
2673
2674 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2675
2676 if (vd == NULL)
2677 vd = rvd;
2678
2679 vd->vdev_stat.vs_read_errors = 0;
2680 vd->vdev_stat.vs_write_errors = 0;
2681 vd->vdev_stat.vs_checksum_errors = 0;
2682
2683 for (c = 0; c < vd->vdev_children; c++)
2684 vdev_clear(spa, vd->vdev_child[c]);
2685
2686 /*
2687 * If we're in the FAULTED state or have experienced failed I/O, then
2688 * clear the persistent state and attempt to reopen the device. We
2689 * also mark the vdev config dirty, so that the new faulted state is
2690 * written out to disk.
2691 */
2692 if (vd->vdev_faulted || vd->vdev_degraded ||
2693 !vdev_readable(vd) || !vdev_writeable(vd)) {
2694
2695 /*
2696 * When reopening in reponse to a clear event, it may be due to
2697 * a fmadm repair request. In this case, if the device is
2698 * still broken, we want to still post the ereport again.
2699 */
2700 vd->vdev_forcefault = B_TRUE;
2701
2702 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2703 vd->vdev_cant_read = B_FALSE;
2704 vd->vdev_cant_write = B_FALSE;
2705
2706 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2707
2708 vd->vdev_forcefault = B_FALSE;
2709
2710 if (vd != rvd && vdev_writeable(vd->vdev_top))
2711 vdev_state_dirty(vd->vdev_top);
2712
2713 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2714 spa_async_request(spa, SPA_ASYNC_RESILVER);
2715
2716 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2717 }
2718
2719 /*
2720 * When clearing a FMA-diagnosed fault, we always want to
2721 * unspare the device, as we assume that the original spare was
2722 * done in response to the FMA fault.
2723 */
2724 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2725 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2726 vd->vdev_parent->vdev_child[0] == vd)
2727 vd->vdev_unspare = B_TRUE;
2728 }
2729
2730 boolean_t
2731 vdev_is_dead(vdev_t *vd)
2732 {
2733 /*
2734 * Holes and missing devices are always considered "dead".
2735 * This simplifies the code since we don't have to check for
2736 * these types of devices in the various code paths.
2737 * Instead we rely on the fact that we skip over dead devices
2738 * before issuing I/O to them.
2739 */
2740 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2741 vd->vdev_ops == &vdev_missing_ops);
2742 }
2743
2744 boolean_t
2745 vdev_readable(vdev_t *vd)
2746 {
2747 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2748 }
2749
2750 boolean_t
2751 vdev_writeable(vdev_t *vd)
2752 {
2753 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2754 }
2755
2756 boolean_t
2757 vdev_allocatable(vdev_t *vd)
2758 {
2759 uint64_t state = vd->vdev_state;
2760
2761 /*
2762 * We currently allow allocations from vdevs which may be in the
2763 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2764 * fails to reopen then we'll catch it later when we're holding
2765 * the proper locks. Note that we have to get the vdev state
2766 * in a local variable because although it changes atomically,
2767 * we're asking two separate questions about it.
2768 */
2769 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2770 !vd->vdev_cant_write && !vd->vdev_ishole &&
2771 vd->vdev_mg->mg_initialized);
2772 }
2773
2774 boolean_t
2775 vdev_accessible(vdev_t *vd, zio_t *zio)
2776 {
2777 ASSERT(zio->io_vd == vd);
2778
2779 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2780 return (B_FALSE);
2781
2782 if (zio->io_type == ZIO_TYPE_READ)
2783 return (!vd->vdev_cant_read);
2784
2785 if (zio->io_type == ZIO_TYPE_WRITE)
2786 return (!vd->vdev_cant_write);
2787
2788 return (B_TRUE);
2789 }
2790
2791 static void
2792 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
2793 {
2794 int t;
2795 for (t = 0; t < ZIO_TYPES; t++) {
2796 vs->vs_ops[t] += cvs->vs_ops[t];
2797 vs->vs_bytes[t] += cvs->vs_bytes[t];
2798 }
2799
2800 cvs->vs_scan_removing = cvd->vdev_removing;
2801 }
2802
2803 /*
2804 * Get extended stats
2805 */
2806 static void
2807 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
2808 {
2809 int t, b;
2810 for (t = 0; t < ZIO_TYPES; t++) {
2811 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
2812 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
2813
2814 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
2815 vsx->vsx_total_histo[t][b] +=
2816 cvsx->vsx_total_histo[t][b];
2817 }
2818 }
2819
2820 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
2821 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
2822 vsx->vsx_queue_histo[t][b] +=
2823 cvsx->vsx_queue_histo[t][b];
2824 }
2825 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
2826 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
2827
2828 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
2829 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
2830
2831 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
2832 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
2833 }
2834
2835 }
2836
2837 /*
2838 * Get statistics for the given vdev.
2839 */
2840 static void
2841 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2842 {
2843 int c, t;
2844 /*
2845 * If we're getting stats on the root vdev, aggregate the I/O counts
2846 * over all top-level vdevs (i.e. the direct children of the root).
2847 */
2848 if (!vd->vdev_ops->vdev_op_leaf) {
2849 if (vs) {
2850 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
2851 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
2852 }
2853 if (vsx)
2854 memset(vsx, 0, sizeof (*vsx));
2855
2856 for (c = 0; c < vd->vdev_children; c++) {
2857 vdev_t *cvd = vd->vdev_child[c];
2858 vdev_stat_t *cvs = &cvd->vdev_stat;
2859 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
2860
2861 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
2862 if (vs)
2863 vdev_get_child_stat(cvd, vs, cvs);
2864 if (vsx)
2865 vdev_get_child_stat_ex(cvd, vsx, cvsx);
2866
2867 }
2868 } else {
2869 /*
2870 * We're a leaf. Just copy our ZIO active queue stats in. The
2871 * other leaf stats are updated in vdev_stat_update().
2872 */
2873 if (!vsx)
2874 return;
2875
2876 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
2877
2878 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
2879 vsx->vsx_active_queue[t] =
2880 vd->vdev_queue.vq_class[t].vqc_active;
2881 vsx->vsx_pend_queue[t] = avl_numnodes(
2882 &vd->vdev_queue.vq_class[t].vqc_queued_tree);
2883 }
2884 }
2885 }
2886
2887 void
2888 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2889 {
2890 mutex_enter(&vd->vdev_stat_lock);
2891 if (vs) {
2892 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2893 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2894 vs->vs_state = vd->vdev_state;
2895 vs->vs_rsize = vdev_get_min_asize(vd);
2896 if (vd->vdev_ops->vdev_op_leaf)
2897 vs->vs_rsize += VDEV_LABEL_START_SIZE +
2898 VDEV_LABEL_END_SIZE;
2899 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2900 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
2901 !vd->vdev_ishole) {
2902 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2903 }
2904 }
2905
2906 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_READER) != 0);
2907 vdev_get_stats_ex_impl(vd, vs, vsx);
2908 mutex_exit(&vd->vdev_stat_lock);
2909 }
2910
2911 void
2912 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2913 {
2914 return (vdev_get_stats_ex(vd, vs, NULL));
2915 }
2916
2917 void
2918 vdev_clear_stats(vdev_t *vd)
2919 {
2920 mutex_enter(&vd->vdev_stat_lock);
2921 vd->vdev_stat.vs_space = 0;
2922 vd->vdev_stat.vs_dspace = 0;
2923 vd->vdev_stat.vs_alloc = 0;
2924 mutex_exit(&vd->vdev_stat_lock);
2925 }
2926
2927 void
2928 vdev_scan_stat_init(vdev_t *vd)
2929 {
2930 vdev_stat_t *vs = &vd->vdev_stat;
2931 int c;
2932
2933 for (c = 0; c < vd->vdev_children; c++)
2934 vdev_scan_stat_init(vd->vdev_child[c]);
2935
2936 mutex_enter(&vd->vdev_stat_lock);
2937 vs->vs_scan_processed = 0;
2938 mutex_exit(&vd->vdev_stat_lock);
2939 }
2940
2941 void
2942 vdev_stat_update(zio_t *zio, uint64_t psize)
2943 {
2944 spa_t *spa = zio->io_spa;
2945 vdev_t *rvd = spa->spa_root_vdev;
2946 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2947 vdev_t *pvd;
2948 uint64_t txg = zio->io_txg;
2949 vdev_stat_t *vs = &vd->vdev_stat;
2950 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
2951 zio_type_t type = zio->io_type;
2952 int flags = zio->io_flags;
2953
2954 /*
2955 * If this i/o is a gang leader, it didn't do any actual work.
2956 */
2957 if (zio->io_gang_tree)
2958 return;
2959
2960 if (zio->io_error == 0) {
2961 /*
2962 * If this is a root i/o, don't count it -- we've already
2963 * counted the top-level vdevs, and vdev_get_stats() will
2964 * aggregate them when asked. This reduces contention on
2965 * the root vdev_stat_lock and implicitly handles blocks
2966 * that compress away to holes, for which there is no i/o.
2967 * (Holes never create vdev children, so all the counters
2968 * remain zero, which is what we want.)
2969 *
2970 * Note: this only applies to successful i/o (io_error == 0)
2971 * because unlike i/o counts, errors are not additive.
2972 * When reading a ditto block, for example, failure of
2973 * one top-level vdev does not imply a root-level error.
2974 */
2975 if (vd == rvd)
2976 return;
2977
2978 ASSERT(vd == zio->io_vd);
2979
2980 if (flags & ZIO_FLAG_IO_BYPASS)
2981 return;
2982
2983 mutex_enter(&vd->vdev_stat_lock);
2984
2985 if (flags & ZIO_FLAG_IO_REPAIR) {
2986 if (flags & ZIO_FLAG_SCAN_THREAD) {
2987 dsl_scan_phys_t *scn_phys =
2988 &spa->spa_dsl_pool->dp_scan->scn_phys;
2989 uint64_t *processed = &scn_phys->scn_processed;
2990
2991 /* XXX cleanup? */
2992 if (vd->vdev_ops->vdev_op_leaf)
2993 atomic_add_64(processed, psize);
2994 vs->vs_scan_processed += psize;
2995 }
2996
2997 if (flags & ZIO_FLAG_SELF_HEAL)
2998 vs->vs_self_healed += psize;
2999 }
3000
3001 /*
3002 * The bytes/ops/histograms are recorded at the leaf level and
3003 * aggregated into the higher level vdevs in vdev_get_stats().
3004 */
3005 if (vd->vdev_ops->vdev_op_leaf &&
3006 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
3007
3008 vs->vs_ops[type]++;
3009 vs->vs_bytes[type] += psize;
3010
3011 if (flags & ZIO_FLAG_DELEGATED) {
3012 vsx->vsx_agg_histo[zio->io_priority]
3013 [RQ_HISTO(zio->io_size)]++;
3014 } else {
3015 vsx->vsx_ind_histo[zio->io_priority]
3016 [RQ_HISTO(zio->io_size)]++;
3017 }
3018
3019 if (zio->io_delta && zio->io_delay) {
3020 vsx->vsx_queue_histo[zio->io_priority]
3021 [L_HISTO(zio->io_delta - zio->io_delay)]++;
3022 vsx->vsx_disk_histo[type]
3023 [L_HISTO(zio->io_delay)]++;
3024 vsx->vsx_total_histo[type]
3025 [L_HISTO(zio->io_delta)]++;
3026 }
3027 }
3028
3029 mutex_exit(&vd->vdev_stat_lock);
3030 return;
3031 }
3032
3033 if (flags & ZIO_FLAG_SPECULATIVE)
3034 return;
3035
3036 /*
3037 * If this is an I/O error that is going to be retried, then ignore the
3038 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
3039 * hard errors, when in reality they can happen for any number of
3040 * innocuous reasons (bus resets, MPxIO link failure, etc).
3041 */
3042 if (zio->io_error == EIO &&
3043 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3044 return;
3045
3046 /*
3047 * Intent logs writes won't propagate their error to the root
3048 * I/O so don't mark these types of failures as pool-level
3049 * errors.
3050 */
3051 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3052 return;
3053
3054 mutex_enter(&vd->vdev_stat_lock);
3055 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3056 if (zio->io_error == ECKSUM)
3057 vs->vs_checksum_errors++;
3058 else
3059 vs->vs_read_errors++;
3060 }
3061 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3062 vs->vs_write_errors++;
3063 mutex_exit(&vd->vdev_stat_lock);
3064
3065 if (type == ZIO_TYPE_WRITE && txg != 0 &&
3066 (!(flags & ZIO_FLAG_IO_REPAIR) ||
3067 (flags & ZIO_FLAG_SCAN_THREAD) ||
3068 spa->spa_claiming)) {
3069 /*
3070 * This is either a normal write (not a repair), or it's
3071 * a repair induced by the scrub thread, or it's a repair
3072 * made by zil_claim() during spa_load() in the first txg.
3073 * In the normal case, we commit the DTL change in the same
3074 * txg as the block was born. In the scrub-induced repair
3075 * case, we know that scrubs run in first-pass syncing context,
3076 * so we commit the DTL change in spa_syncing_txg(spa).
3077 * In the zil_claim() case, we commit in spa_first_txg(spa).
3078 *
3079 * We currently do not make DTL entries for failed spontaneous
3080 * self-healing writes triggered by normal (non-scrubbing)
3081 * reads, because we have no transactional context in which to
3082 * do so -- and it's not clear that it'd be desirable anyway.
3083 */
3084 if (vd->vdev_ops->vdev_op_leaf) {
3085 uint64_t commit_txg = txg;
3086 if (flags & ZIO_FLAG_SCAN_THREAD) {
3087 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3088 ASSERT(spa_sync_pass(spa) == 1);
3089 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3090 commit_txg = spa_syncing_txg(spa);
3091 } else if (spa->spa_claiming) {
3092 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3093 commit_txg = spa_first_txg(spa);
3094 }
3095 ASSERT(commit_txg >= spa_syncing_txg(spa));
3096 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3097 return;
3098 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3099 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3100 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3101 }
3102 if (vd != rvd)
3103 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3104 }
3105 }
3106
3107 /*
3108 * Update the in-core space usage stats for this vdev, its metaslab class,
3109 * and the root vdev.
3110 */
3111 void
3112 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3113 int64_t space_delta)
3114 {
3115 int64_t dspace_delta = space_delta;
3116 spa_t *spa = vd->vdev_spa;
3117 vdev_t *rvd = spa->spa_root_vdev;
3118 metaslab_group_t *mg = vd->vdev_mg;
3119 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3120
3121 ASSERT(vd == vd->vdev_top);
3122
3123 /*
3124 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3125 * factor. We must calculate this here and not at the root vdev
3126 * because the root vdev's psize-to-asize is simply the max of its
3127 * childrens', thus not accurate enough for us.
3128 */
3129 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3130 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3131 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3132 vd->vdev_deflate_ratio;
3133
3134 mutex_enter(&vd->vdev_stat_lock);
3135 vd->vdev_stat.vs_alloc += alloc_delta;
3136 vd->vdev_stat.vs_space += space_delta;
3137 vd->vdev_stat.vs_dspace += dspace_delta;
3138 mutex_exit(&vd->vdev_stat_lock);
3139
3140 if (mc == spa_normal_class(spa)) {
3141 mutex_enter(&rvd->vdev_stat_lock);
3142 rvd->vdev_stat.vs_alloc += alloc_delta;
3143 rvd->vdev_stat.vs_space += space_delta;
3144 rvd->vdev_stat.vs_dspace += dspace_delta;
3145 mutex_exit(&rvd->vdev_stat_lock);
3146 }
3147
3148 if (mc != NULL) {
3149 ASSERT(rvd == vd->vdev_parent);
3150 ASSERT(vd->vdev_ms_count != 0);
3151
3152 metaslab_class_space_update(mc,
3153 alloc_delta, defer_delta, space_delta, dspace_delta);
3154 }
3155 }
3156
3157 /*
3158 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3159 * so that it will be written out next time the vdev configuration is synced.
3160 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3161 */
3162 void
3163 vdev_config_dirty(vdev_t *vd)
3164 {
3165 spa_t *spa = vd->vdev_spa;
3166 vdev_t *rvd = spa->spa_root_vdev;
3167 int c;
3168
3169 ASSERT(spa_writeable(spa));
3170
3171 /*
3172 * If this is an aux vdev (as with l2cache and spare devices), then we
3173 * update the vdev config manually and set the sync flag.
3174 */
3175 if (vd->vdev_aux != NULL) {
3176 spa_aux_vdev_t *sav = vd->vdev_aux;
3177 nvlist_t **aux;
3178 uint_t naux;
3179
3180 for (c = 0; c < sav->sav_count; c++) {
3181 if (sav->sav_vdevs[c] == vd)
3182 break;
3183 }
3184
3185 if (c == sav->sav_count) {
3186 /*
3187 * We're being removed. There's nothing more to do.
3188 */
3189 ASSERT(sav->sav_sync == B_TRUE);
3190 return;
3191 }
3192
3193 sav->sav_sync = B_TRUE;
3194
3195 if (nvlist_lookup_nvlist_array(sav->sav_config,
3196 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3197 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3198 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3199 }
3200
3201 ASSERT(c < naux);
3202
3203 /*
3204 * Setting the nvlist in the middle if the array is a little
3205 * sketchy, but it will work.
3206 */
3207 nvlist_free(aux[c]);
3208 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3209
3210 return;
3211 }
3212
3213 /*
3214 * The dirty list is protected by the SCL_CONFIG lock. The caller
3215 * must either hold SCL_CONFIG as writer, or must be the sync thread
3216 * (which holds SCL_CONFIG as reader). There's only one sync thread,
3217 * so this is sufficient to ensure mutual exclusion.
3218 */
3219 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3220 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3221 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3222
3223 if (vd == rvd) {
3224 for (c = 0; c < rvd->vdev_children; c++)
3225 vdev_config_dirty(rvd->vdev_child[c]);
3226 } else {
3227 ASSERT(vd == vd->vdev_top);
3228
3229 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3230 !vd->vdev_ishole)
3231 list_insert_head(&spa->spa_config_dirty_list, vd);
3232 }
3233 }
3234
3235 void
3236 vdev_config_clean(vdev_t *vd)
3237 {
3238 spa_t *spa = vd->vdev_spa;
3239
3240 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3241 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3242 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3243
3244 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3245 list_remove(&spa->spa_config_dirty_list, vd);
3246 }
3247
3248 /*
3249 * Mark a top-level vdev's state as dirty, so that the next pass of
3250 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3251 * the state changes from larger config changes because they require
3252 * much less locking, and are often needed for administrative actions.
3253 */
3254 void
3255 vdev_state_dirty(vdev_t *vd)
3256 {
3257 spa_t *spa = vd->vdev_spa;
3258
3259 ASSERT(spa_writeable(spa));
3260 ASSERT(vd == vd->vdev_top);
3261
3262 /*
3263 * The state list is protected by the SCL_STATE lock. The caller
3264 * must either hold SCL_STATE as writer, or must be the sync thread
3265 * (which holds SCL_STATE as reader). There's only one sync thread,
3266 * so this is sufficient to ensure mutual exclusion.
3267 */
3268 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3269 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3270 spa_config_held(spa, SCL_STATE, RW_READER)));
3271
3272 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3273 list_insert_head(&spa->spa_state_dirty_list, vd);
3274 }
3275
3276 void
3277 vdev_state_clean(vdev_t *vd)
3278 {
3279 spa_t *spa = vd->vdev_spa;
3280
3281 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3282 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3283 spa_config_held(spa, SCL_STATE, RW_READER)));
3284
3285 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3286 list_remove(&spa->spa_state_dirty_list, vd);
3287 }
3288
3289 /*
3290 * Propagate vdev state up from children to parent.
3291 */
3292 void
3293 vdev_propagate_state(vdev_t *vd)
3294 {
3295 spa_t *spa = vd->vdev_spa;
3296 vdev_t *rvd = spa->spa_root_vdev;
3297 int degraded = 0, faulted = 0;
3298 int corrupted = 0;
3299 vdev_t *child;
3300 int c;
3301
3302 if (vd->vdev_children > 0) {
3303 for (c = 0; c < vd->vdev_children; c++) {
3304 child = vd->vdev_child[c];
3305
3306 /*
3307 * Don't factor holes into the decision.
3308 */
3309 if (child->vdev_ishole)
3310 continue;
3311
3312 if (!vdev_readable(child) ||
3313 (!vdev_writeable(child) && spa_writeable(spa))) {
3314 /*
3315 * Root special: if there is a top-level log
3316 * device, treat the root vdev as if it were
3317 * degraded.
3318 */
3319 if (child->vdev_islog && vd == rvd)
3320 degraded++;
3321 else
3322 faulted++;
3323 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3324 degraded++;
3325 }
3326
3327 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3328 corrupted++;
3329 }
3330
3331 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3332
3333 /*
3334 * Root special: if there is a top-level vdev that cannot be
3335 * opened due to corrupted metadata, then propagate the root
3336 * vdev's aux state as 'corrupt' rather than 'insufficient
3337 * replicas'.
3338 */
3339 if (corrupted && vd == rvd &&
3340 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3341 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3342 VDEV_AUX_CORRUPT_DATA);
3343 }
3344
3345 if (vd->vdev_parent)
3346 vdev_propagate_state(vd->vdev_parent);
3347 }
3348
3349 /*
3350 * Set a vdev's state. If this is during an open, we don't update the parent
3351 * state, because we're in the process of opening children depth-first.
3352 * Otherwise, we propagate the change to the parent.
3353 *
3354 * If this routine places a device in a faulted state, an appropriate ereport is
3355 * generated.
3356 */
3357 void
3358 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3359 {
3360 uint64_t save_state;
3361 spa_t *spa = vd->vdev_spa;
3362
3363 if (state == vd->vdev_state) {
3364 vd->vdev_stat.vs_aux = aux;
3365 return;
3366 }
3367
3368 save_state = vd->vdev_state;
3369
3370 vd->vdev_state = state;
3371 vd->vdev_stat.vs_aux = aux;
3372
3373 /*
3374 * If we are setting the vdev state to anything but an open state, then
3375 * always close the underlying device unless the device has requested
3376 * a delayed close (i.e. we're about to remove or fault the device).
3377 * Otherwise, we keep accessible but invalid devices open forever.
3378 * We don't call vdev_close() itself, because that implies some extra
3379 * checks (offline, etc) that we don't want here. This is limited to
3380 * leaf devices, because otherwise closing the device will affect other
3381 * children.
3382 */
3383 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3384 vd->vdev_ops->vdev_op_leaf)
3385 vd->vdev_ops->vdev_op_close(vd);
3386
3387 if (vd->vdev_removed &&
3388 state == VDEV_STATE_CANT_OPEN &&
3389 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3390 /*
3391 * If the previous state is set to VDEV_STATE_REMOVED, then this
3392 * device was previously marked removed and someone attempted to
3393 * reopen it. If this failed due to a nonexistent device, then
3394 * keep the device in the REMOVED state. We also let this be if
3395 * it is one of our special test online cases, which is only
3396 * attempting to online the device and shouldn't generate an FMA
3397 * fault.
3398 */
3399 vd->vdev_state = VDEV_STATE_REMOVED;
3400 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3401 } else if (state == VDEV_STATE_REMOVED) {
3402 vd->vdev_removed = B_TRUE;
3403 } else if (state == VDEV_STATE_CANT_OPEN) {
3404 /*
3405 * If we fail to open a vdev during an import or recovery, we
3406 * mark it as "not available", which signifies that it was
3407 * never there to begin with. Failure to open such a device
3408 * is not considered an error.
3409 */
3410 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3411 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3412 vd->vdev_ops->vdev_op_leaf)
3413 vd->vdev_not_present = 1;
3414
3415 /*
3416 * Post the appropriate ereport. If the 'prevstate' field is
3417 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3418 * that this is part of a vdev_reopen(). In this case, we don't
3419 * want to post the ereport if the device was already in the
3420 * CANT_OPEN state beforehand.
3421 *
3422 * If the 'checkremove' flag is set, then this is an attempt to
3423 * online the device in response to an insertion event. If we
3424 * hit this case, then we have detected an insertion event for a
3425 * faulted or offline device that wasn't in the removed state.
3426 * In this scenario, we don't post an ereport because we are
3427 * about to replace the device, or attempt an online with
3428 * vdev_forcefault, which will generate the fault for us.
3429 */
3430 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3431 !vd->vdev_not_present && !vd->vdev_checkremove &&
3432 vd != spa->spa_root_vdev) {
3433 const char *class;
3434
3435 switch (aux) {
3436 case VDEV_AUX_OPEN_FAILED:
3437 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3438 break;
3439 case VDEV_AUX_CORRUPT_DATA:
3440 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3441 break;
3442 case VDEV_AUX_NO_REPLICAS:
3443 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3444 break;
3445 case VDEV_AUX_BAD_GUID_SUM:
3446 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3447 break;
3448 case VDEV_AUX_TOO_SMALL:
3449 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3450 break;
3451 case VDEV_AUX_BAD_LABEL:
3452 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3453 break;
3454 default:
3455 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3456 }
3457
3458 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3459 }
3460
3461 /* Erase any notion of persistent removed state */
3462 vd->vdev_removed = B_FALSE;
3463 } else {
3464 vd->vdev_removed = B_FALSE;
3465 }
3466
3467 /*
3468 * Notify ZED of any significant state-change on a leaf vdev.
3469 *
3470 */
3471 if (vd->vdev_ops->vdev_op_leaf) {
3472 /* preserve original state from a vdev_reopen() */
3473 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
3474 (vd->vdev_prevstate != vd->vdev_state) &&
3475 (save_state <= VDEV_STATE_CLOSED))
3476 save_state = vd->vdev_prevstate;
3477
3478 /* filter out state change due to initial vdev_open */
3479 if (save_state > VDEV_STATE_CLOSED)
3480 zfs_post_state_change(spa, vd, save_state);
3481 }
3482
3483 if (!isopen && vd->vdev_parent)
3484 vdev_propagate_state(vd->vdev_parent);
3485 }
3486
3487 /*
3488 * Check the vdev configuration to ensure that it's capable of supporting
3489 * a root pool.
3490 */
3491 boolean_t
3492 vdev_is_bootable(vdev_t *vd)
3493 {
3494 #if defined(__sun__) || defined(__sun)
3495 /*
3496 * Currently, we do not support RAID-Z or partial configuration.
3497 * In addition, only a single top-level vdev is allowed and none of the
3498 * leaves can be wholedisks.
3499 */
3500 int c;
3501
3502 if (!vd->vdev_ops->vdev_op_leaf) {
3503 char *vdev_type = vd->vdev_ops->vdev_op_type;
3504
3505 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3506 vd->vdev_children > 1) {
3507 return (B_FALSE);
3508 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3509 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3510 return (B_FALSE);
3511 }
3512 } else if (vd->vdev_wholedisk == 1) {
3513 return (B_FALSE);
3514 }
3515
3516 for (c = 0; c < vd->vdev_children; c++) {
3517 if (!vdev_is_bootable(vd->vdev_child[c]))
3518 return (B_FALSE);
3519 }
3520 #endif /* __sun__ || __sun */
3521 return (B_TRUE);
3522 }
3523
3524 /*
3525 * Load the state from the original vdev tree (ovd) which
3526 * we've retrieved from the MOS config object. If the original
3527 * vdev was offline or faulted then we transfer that state to the
3528 * device in the current vdev tree (nvd).
3529 */
3530 void
3531 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3532 {
3533 int c;
3534
3535 ASSERT(nvd->vdev_top->vdev_islog);
3536 ASSERT(spa_config_held(nvd->vdev_spa,
3537 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3538 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3539
3540 for (c = 0; c < nvd->vdev_children; c++)
3541 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3542
3543 if (nvd->vdev_ops->vdev_op_leaf) {
3544 /*
3545 * Restore the persistent vdev state
3546 */
3547 nvd->vdev_offline = ovd->vdev_offline;
3548 nvd->vdev_faulted = ovd->vdev_faulted;
3549 nvd->vdev_degraded = ovd->vdev_degraded;
3550 nvd->vdev_removed = ovd->vdev_removed;
3551 }
3552 }
3553
3554 /*
3555 * Determine if a log device has valid content. If the vdev was
3556 * removed or faulted in the MOS config then we know that
3557 * the content on the log device has already been written to the pool.
3558 */
3559 boolean_t
3560 vdev_log_state_valid(vdev_t *vd)
3561 {
3562 int c;
3563
3564 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3565 !vd->vdev_removed)
3566 return (B_TRUE);
3567
3568 for (c = 0; c < vd->vdev_children; c++)
3569 if (vdev_log_state_valid(vd->vdev_child[c]))
3570 return (B_TRUE);
3571
3572 return (B_FALSE);
3573 }
3574
3575 /*
3576 * Expand a vdev if possible.
3577 */
3578 void
3579 vdev_expand(vdev_t *vd, uint64_t txg)
3580 {
3581 ASSERT(vd->vdev_top == vd);
3582 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3583
3584 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3585 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3586 vdev_config_dirty(vd);
3587 }
3588 }
3589
3590 /*
3591 * Split a vdev.
3592 */
3593 void
3594 vdev_split(vdev_t *vd)
3595 {
3596 vdev_t *cvd, *pvd = vd->vdev_parent;
3597
3598 vdev_remove_child(pvd, vd);
3599 vdev_compact_children(pvd);
3600
3601 cvd = pvd->vdev_child[0];
3602 if (pvd->vdev_children == 1) {
3603 vdev_remove_parent(cvd);
3604 cvd->vdev_splitting = B_TRUE;
3605 }
3606 vdev_propagate_state(cvd);
3607 }
3608
3609 void
3610 vdev_deadman(vdev_t *vd)
3611 {
3612 int c;
3613
3614 for (c = 0; c < vd->vdev_children; c++) {
3615 vdev_t *cvd = vd->vdev_child[c];
3616
3617 vdev_deadman(cvd);
3618 }
3619
3620 if (vd->vdev_ops->vdev_op_leaf) {
3621 vdev_queue_t *vq = &vd->vdev_queue;
3622
3623 mutex_enter(&vq->vq_lock);
3624 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3625 spa_t *spa = vd->vdev_spa;
3626 zio_t *fio;
3627 uint64_t delta;
3628
3629 /*
3630 * Look at the head of all the pending queues,
3631 * if any I/O has been outstanding for longer than
3632 * the spa_deadman_synctime we log a zevent.
3633 */
3634 fio = avl_first(&vq->vq_active_tree);
3635 delta = gethrtime() - fio->io_timestamp;
3636 if (delta > spa_deadman_synctime(spa)) {
3637 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3638 "delta %lluns, last io %lluns",
3639 fio->io_timestamp, delta,
3640 vq->vq_io_complete_ts);
3641 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3642 spa, vd, fio, 0, 0);
3643 }
3644 }
3645 mutex_exit(&vq->vq_lock);
3646 }
3647 }
3648
3649 #if defined(_KERNEL) && defined(HAVE_SPL)
3650 EXPORT_SYMBOL(vdev_fault);
3651 EXPORT_SYMBOL(vdev_degrade);
3652 EXPORT_SYMBOL(vdev_online);
3653 EXPORT_SYMBOL(vdev_offline);
3654 EXPORT_SYMBOL(vdev_clear);
3655
3656 module_param(metaslabs_per_vdev, int, 0644);
3657 MODULE_PARM_DESC(metaslabs_per_vdev,
3658 "Divide added vdev into approximately (but no more than) this number "
3659 "of metaslabs");
3660 #endif