]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/vdev.c
Merge branch 'zil-performance'
[mirror_zfs-debian.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/arc.h>
43 #include <sys/zil.h>
44 #include <sys/dsl_scan.h>
45
46 /*
47 * Virtual device management.
48 */
49
50 static vdev_ops_t *vdev_ops_table[] = {
51 &vdev_root_ops,
52 &vdev_raidz_ops,
53 &vdev_mirror_ops,
54 &vdev_replacing_ops,
55 &vdev_spare_ops,
56 &vdev_disk_ops,
57 &vdev_file_ops,
58 &vdev_missing_ops,
59 &vdev_hole_ops,
60 NULL
61 };
62
63 /* maximum scrub/resilver I/O queue per leaf vdev */
64 int zfs_scrub_limit = 10;
65
66 /*
67 * Given a vdev type, return the appropriate ops vector.
68 */
69 static vdev_ops_t *
70 vdev_getops(const char *type)
71 {
72 vdev_ops_t *ops, **opspp;
73
74 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
75 if (strcmp(ops->vdev_op_type, type) == 0)
76 break;
77
78 return (ops);
79 }
80
81 /*
82 * Default asize function: return the MAX of psize with the asize of
83 * all children. This is what's used by anything other than RAID-Z.
84 */
85 uint64_t
86 vdev_default_asize(vdev_t *vd, uint64_t psize)
87 {
88 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
89 uint64_t csize;
90 int c;
91
92 for (c = 0; c < vd->vdev_children; c++) {
93 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
94 asize = MAX(asize, csize);
95 }
96
97 return (asize);
98 }
99
100 /*
101 * Get the minimum allocatable size. We define the allocatable size as
102 * the vdev's asize rounded to the nearest metaslab. This allows us to
103 * replace or attach devices which don't have the same physical size but
104 * can still satisfy the same number of allocations.
105 */
106 uint64_t
107 vdev_get_min_asize(vdev_t *vd)
108 {
109 vdev_t *pvd = vd->vdev_parent;
110
111 /*
112 * If our parent is NULL (inactive spare or cache) or is the root,
113 * just return our own asize.
114 */
115 if (pvd == NULL)
116 return (vd->vdev_asize);
117
118 /*
119 * The top-level vdev just returns the allocatable size rounded
120 * to the nearest metaslab.
121 */
122 if (vd == vd->vdev_top)
123 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
124
125 /*
126 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
127 * so each child must provide at least 1/Nth of its asize.
128 */
129 if (pvd->vdev_ops == &vdev_raidz_ops)
130 return (pvd->vdev_min_asize / pvd->vdev_children);
131
132 return (pvd->vdev_min_asize);
133 }
134
135 void
136 vdev_set_min_asize(vdev_t *vd)
137 {
138 int c;
139 vd->vdev_min_asize = vdev_get_min_asize(vd);
140
141 for (c = 0; c < vd->vdev_children; c++)
142 vdev_set_min_asize(vd->vdev_child[c]);
143 }
144
145 vdev_t *
146 vdev_lookup_top(spa_t *spa, uint64_t vdev)
147 {
148 vdev_t *rvd = spa->spa_root_vdev;
149
150 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
151
152 if (vdev < rvd->vdev_children) {
153 ASSERT(rvd->vdev_child[vdev] != NULL);
154 return (rvd->vdev_child[vdev]);
155 }
156
157 return (NULL);
158 }
159
160 vdev_t *
161 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
162 {
163 vdev_t *mvd;
164 int c;
165
166 if (vd->vdev_guid == guid)
167 return (vd);
168
169 for (c = 0; c < vd->vdev_children; c++)
170 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
171 NULL)
172 return (mvd);
173
174 return (NULL);
175 }
176
177 void
178 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
179 {
180 size_t oldsize, newsize;
181 uint64_t id = cvd->vdev_id;
182 vdev_t **newchild;
183
184 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
185 ASSERT(cvd->vdev_parent == NULL);
186
187 cvd->vdev_parent = pvd;
188
189 if (pvd == NULL)
190 return;
191
192 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
193
194 oldsize = pvd->vdev_children * sizeof (vdev_t *);
195 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
196 newsize = pvd->vdev_children * sizeof (vdev_t *);
197
198 newchild = kmem_zalloc(newsize, KM_PUSHPAGE);
199 if (pvd->vdev_child != NULL) {
200 bcopy(pvd->vdev_child, newchild, oldsize);
201 kmem_free(pvd->vdev_child, oldsize);
202 }
203
204 pvd->vdev_child = newchild;
205 pvd->vdev_child[id] = cvd;
206
207 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
208 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
209
210 /*
211 * Walk up all ancestors to update guid sum.
212 */
213 for (; pvd != NULL; pvd = pvd->vdev_parent)
214 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
215 }
216
217 void
218 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
219 {
220 int c;
221 uint_t id = cvd->vdev_id;
222
223 ASSERT(cvd->vdev_parent == pvd);
224
225 if (pvd == NULL)
226 return;
227
228 ASSERT(id < pvd->vdev_children);
229 ASSERT(pvd->vdev_child[id] == cvd);
230
231 pvd->vdev_child[id] = NULL;
232 cvd->vdev_parent = NULL;
233
234 for (c = 0; c < pvd->vdev_children; c++)
235 if (pvd->vdev_child[c])
236 break;
237
238 if (c == pvd->vdev_children) {
239 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
240 pvd->vdev_child = NULL;
241 pvd->vdev_children = 0;
242 }
243
244 /*
245 * Walk up all ancestors to update guid sum.
246 */
247 for (; pvd != NULL; pvd = pvd->vdev_parent)
248 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
249 }
250
251 /*
252 * Remove any holes in the child array.
253 */
254 void
255 vdev_compact_children(vdev_t *pvd)
256 {
257 vdev_t **newchild, *cvd;
258 int oldc = pvd->vdev_children;
259 int newc;
260 int c;
261
262 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
263
264 for (c = newc = 0; c < oldc; c++)
265 if (pvd->vdev_child[c])
266 newc++;
267
268 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_PUSHPAGE);
269
270 for (c = newc = 0; c < oldc; c++) {
271 if ((cvd = pvd->vdev_child[c]) != NULL) {
272 newchild[newc] = cvd;
273 cvd->vdev_id = newc++;
274 }
275 }
276
277 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
278 pvd->vdev_child = newchild;
279 pvd->vdev_children = newc;
280 }
281
282 /*
283 * Allocate and minimally initialize a vdev_t.
284 */
285 vdev_t *
286 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
287 {
288 vdev_t *vd;
289 int t;
290
291 vd = kmem_zalloc(sizeof (vdev_t), KM_PUSHPAGE);
292
293 if (spa->spa_root_vdev == NULL) {
294 ASSERT(ops == &vdev_root_ops);
295 spa->spa_root_vdev = vd;
296 spa->spa_load_guid = spa_generate_guid(NULL);
297 }
298
299 if (guid == 0 && ops != &vdev_hole_ops) {
300 if (spa->spa_root_vdev == vd) {
301 /*
302 * The root vdev's guid will also be the pool guid,
303 * which must be unique among all pools.
304 */
305 guid = spa_generate_guid(NULL);
306 } else {
307 /*
308 * Any other vdev's guid must be unique within the pool.
309 */
310 guid = spa_generate_guid(spa);
311 }
312 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
313 }
314
315 vd->vdev_spa = spa;
316 vd->vdev_id = id;
317 vd->vdev_guid = guid;
318 vd->vdev_guid_sum = guid;
319 vd->vdev_ops = ops;
320 vd->vdev_state = VDEV_STATE_CLOSED;
321 vd->vdev_ishole = (ops == &vdev_hole_ops);
322
323 list_link_init(&vd->vdev_config_dirty_node);
324 list_link_init(&vd->vdev_state_dirty_node);
325 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
326 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
327 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
328 for (t = 0; t < DTL_TYPES; t++) {
329 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
330 &vd->vdev_dtl_lock);
331 }
332 txg_list_create(&vd->vdev_ms_list,
333 offsetof(struct metaslab, ms_txg_node));
334 txg_list_create(&vd->vdev_dtl_list,
335 offsetof(struct vdev, vdev_dtl_node));
336 vd->vdev_stat.vs_timestamp = gethrtime();
337 vdev_queue_init(vd);
338 vdev_cache_init(vd);
339
340 return (vd);
341 }
342
343 /*
344 * Allocate a new vdev. The 'alloctype' is used to control whether we are
345 * creating a new vdev or loading an existing one - the behavior is slightly
346 * different for each case.
347 */
348 int
349 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
350 int alloctype)
351 {
352 vdev_ops_t *ops;
353 char *type;
354 uint64_t guid = 0, islog, nparity;
355 vdev_t *vd;
356
357 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
358
359 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
360 return (EINVAL);
361
362 if ((ops = vdev_getops(type)) == NULL)
363 return (EINVAL);
364
365 /*
366 * If this is a load, get the vdev guid from the nvlist.
367 * Otherwise, vdev_alloc_common() will generate one for us.
368 */
369 if (alloctype == VDEV_ALLOC_LOAD) {
370 uint64_t label_id;
371
372 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
373 label_id != id)
374 return (EINVAL);
375
376 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377 return (EINVAL);
378 } else if (alloctype == VDEV_ALLOC_SPARE) {
379 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380 return (EINVAL);
381 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
382 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383 return (EINVAL);
384 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
385 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
386 return (EINVAL);
387 }
388
389 /*
390 * The first allocated vdev must be of type 'root'.
391 */
392 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
393 return (EINVAL);
394
395 /*
396 * Determine whether we're a log vdev.
397 */
398 islog = 0;
399 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
400 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
401 return (ENOTSUP);
402
403 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
404 return (ENOTSUP);
405
406 /*
407 * Set the nparity property for RAID-Z vdevs.
408 */
409 nparity = -1ULL;
410 if (ops == &vdev_raidz_ops) {
411 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
412 &nparity) == 0) {
413 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
414 return (EINVAL);
415 /*
416 * Previous versions could only support 1 or 2 parity
417 * device.
418 */
419 if (nparity > 1 &&
420 spa_version(spa) < SPA_VERSION_RAIDZ2)
421 return (ENOTSUP);
422 if (nparity > 2 &&
423 spa_version(spa) < SPA_VERSION_RAIDZ3)
424 return (ENOTSUP);
425 } else {
426 /*
427 * We require the parity to be specified for SPAs that
428 * support multiple parity levels.
429 */
430 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
431 return (EINVAL);
432 /*
433 * Otherwise, we default to 1 parity device for RAID-Z.
434 */
435 nparity = 1;
436 }
437 } else {
438 nparity = 0;
439 }
440 ASSERT(nparity != -1ULL);
441
442 vd = vdev_alloc_common(spa, id, guid, ops);
443
444 vd->vdev_islog = islog;
445 vd->vdev_nparity = nparity;
446
447 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
448 vd->vdev_path = spa_strdup(vd->vdev_path);
449 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
450 vd->vdev_devid = spa_strdup(vd->vdev_devid);
451 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
452 &vd->vdev_physpath) == 0)
453 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
454 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
455 vd->vdev_fru = spa_strdup(vd->vdev_fru);
456
457 /*
458 * Set the whole_disk property. If it's not specified, leave the value
459 * as -1.
460 */
461 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
462 &vd->vdev_wholedisk) != 0)
463 vd->vdev_wholedisk = -1ULL;
464
465 /*
466 * Look for the 'not present' flag. This will only be set if the device
467 * was not present at the time of import.
468 */
469 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
470 &vd->vdev_not_present);
471
472 /*
473 * Get the alignment requirement.
474 */
475 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
476
477 /*
478 * Retrieve the vdev creation time.
479 */
480 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
481 &vd->vdev_crtxg);
482
483 /*
484 * If we're a top-level vdev, try to load the allocation parameters.
485 */
486 if (parent && !parent->vdev_parent &&
487 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
488 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
489 &vd->vdev_ms_array);
490 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
491 &vd->vdev_ms_shift);
492 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
493 &vd->vdev_asize);
494 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
495 &vd->vdev_removing);
496 }
497
498 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
499 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
500 alloctype == VDEV_ALLOC_ADD ||
501 alloctype == VDEV_ALLOC_SPLIT ||
502 alloctype == VDEV_ALLOC_ROOTPOOL);
503 vd->vdev_mg = metaslab_group_create(islog ?
504 spa_log_class(spa) : spa_normal_class(spa), vd);
505 }
506
507 /*
508 * If we're a leaf vdev, try to load the DTL object and other state.
509 */
510 if (vd->vdev_ops->vdev_op_leaf &&
511 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
512 alloctype == VDEV_ALLOC_ROOTPOOL)) {
513 if (alloctype == VDEV_ALLOC_LOAD) {
514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
515 &vd->vdev_dtl_smo.smo_object);
516 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
517 &vd->vdev_unspare);
518 }
519
520 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
521 uint64_t spare = 0;
522
523 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
524 &spare) == 0 && spare)
525 spa_spare_add(vd);
526 }
527
528 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
529 &vd->vdev_offline);
530
531 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
532 &vd->vdev_resilvering);
533
534 /*
535 * When importing a pool, we want to ignore the persistent fault
536 * state, as the diagnosis made on another system may not be
537 * valid in the current context. Local vdevs will
538 * remain in the faulted state.
539 */
540 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
541 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
542 &vd->vdev_faulted);
543 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
544 &vd->vdev_degraded);
545 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
546 &vd->vdev_removed);
547
548 if (vd->vdev_faulted || vd->vdev_degraded) {
549 char *aux;
550
551 vd->vdev_label_aux =
552 VDEV_AUX_ERR_EXCEEDED;
553 if (nvlist_lookup_string(nv,
554 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
555 strcmp(aux, "external") == 0)
556 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
557 }
558 }
559 }
560
561 /*
562 * Add ourselves to the parent's list of children.
563 */
564 vdev_add_child(parent, vd);
565
566 *vdp = vd;
567
568 return (0);
569 }
570
571 void
572 vdev_free(vdev_t *vd)
573 {
574 int c, t;
575 spa_t *spa = vd->vdev_spa;
576
577 /*
578 * vdev_free() implies closing the vdev first. This is simpler than
579 * trying to ensure complicated semantics for all callers.
580 */
581 vdev_close(vd);
582
583 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
584 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
585
586 /*
587 * Free all children.
588 */
589 for (c = 0; c < vd->vdev_children; c++)
590 vdev_free(vd->vdev_child[c]);
591
592 ASSERT(vd->vdev_child == NULL);
593 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
594
595 /*
596 * Discard allocation state.
597 */
598 if (vd->vdev_mg != NULL) {
599 vdev_metaslab_fini(vd);
600 metaslab_group_destroy(vd->vdev_mg);
601 }
602
603 ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
604 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
605 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
606
607 /*
608 * Remove this vdev from its parent's child list.
609 */
610 vdev_remove_child(vd->vdev_parent, vd);
611
612 ASSERT(vd->vdev_parent == NULL);
613
614 /*
615 * Clean up vdev structure.
616 */
617 vdev_queue_fini(vd);
618 vdev_cache_fini(vd);
619
620 if (vd->vdev_path)
621 spa_strfree(vd->vdev_path);
622 if (vd->vdev_devid)
623 spa_strfree(vd->vdev_devid);
624 if (vd->vdev_physpath)
625 spa_strfree(vd->vdev_physpath);
626 if (vd->vdev_fru)
627 spa_strfree(vd->vdev_fru);
628
629 if (vd->vdev_isspare)
630 spa_spare_remove(vd);
631 if (vd->vdev_isl2cache)
632 spa_l2cache_remove(vd);
633
634 txg_list_destroy(&vd->vdev_ms_list);
635 txg_list_destroy(&vd->vdev_dtl_list);
636
637 mutex_enter(&vd->vdev_dtl_lock);
638 for (t = 0; t < DTL_TYPES; t++) {
639 space_map_unload(&vd->vdev_dtl[t]);
640 space_map_destroy(&vd->vdev_dtl[t]);
641 }
642 mutex_exit(&vd->vdev_dtl_lock);
643
644 mutex_destroy(&vd->vdev_dtl_lock);
645 mutex_destroy(&vd->vdev_stat_lock);
646 mutex_destroy(&vd->vdev_probe_lock);
647
648 if (vd == spa->spa_root_vdev)
649 spa->spa_root_vdev = NULL;
650
651 kmem_free(vd, sizeof (vdev_t));
652 }
653
654 /*
655 * Transfer top-level vdev state from svd to tvd.
656 */
657 static void
658 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
659 {
660 spa_t *spa = svd->vdev_spa;
661 metaslab_t *msp;
662 vdev_t *vd;
663 int t;
664
665 ASSERT(tvd == tvd->vdev_top);
666
667 tvd->vdev_ms_array = svd->vdev_ms_array;
668 tvd->vdev_ms_shift = svd->vdev_ms_shift;
669 tvd->vdev_ms_count = svd->vdev_ms_count;
670
671 svd->vdev_ms_array = 0;
672 svd->vdev_ms_shift = 0;
673 svd->vdev_ms_count = 0;
674
675 if (tvd->vdev_mg)
676 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
677 tvd->vdev_mg = svd->vdev_mg;
678 tvd->vdev_ms = svd->vdev_ms;
679
680 svd->vdev_mg = NULL;
681 svd->vdev_ms = NULL;
682
683 if (tvd->vdev_mg != NULL)
684 tvd->vdev_mg->mg_vd = tvd;
685
686 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
687 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
688 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
689
690 svd->vdev_stat.vs_alloc = 0;
691 svd->vdev_stat.vs_space = 0;
692 svd->vdev_stat.vs_dspace = 0;
693
694 for (t = 0; t < TXG_SIZE; t++) {
695 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
696 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
697 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
698 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
699 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
700 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
701 }
702
703 if (list_link_active(&svd->vdev_config_dirty_node)) {
704 vdev_config_clean(svd);
705 vdev_config_dirty(tvd);
706 }
707
708 if (list_link_active(&svd->vdev_state_dirty_node)) {
709 vdev_state_clean(svd);
710 vdev_state_dirty(tvd);
711 }
712
713 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
714 svd->vdev_deflate_ratio = 0;
715
716 tvd->vdev_islog = svd->vdev_islog;
717 svd->vdev_islog = 0;
718 }
719
720 static void
721 vdev_top_update(vdev_t *tvd, vdev_t *vd)
722 {
723 int c;
724
725 if (vd == NULL)
726 return;
727
728 vd->vdev_top = tvd;
729
730 for (c = 0; c < vd->vdev_children; c++)
731 vdev_top_update(tvd, vd->vdev_child[c]);
732 }
733
734 /*
735 * Add a mirror/replacing vdev above an existing vdev.
736 */
737 vdev_t *
738 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
739 {
740 spa_t *spa = cvd->vdev_spa;
741 vdev_t *pvd = cvd->vdev_parent;
742 vdev_t *mvd;
743
744 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
745
746 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
747
748 mvd->vdev_asize = cvd->vdev_asize;
749 mvd->vdev_min_asize = cvd->vdev_min_asize;
750 mvd->vdev_max_asize = cvd->vdev_max_asize;
751 mvd->vdev_ashift = cvd->vdev_ashift;
752 mvd->vdev_state = cvd->vdev_state;
753 mvd->vdev_crtxg = cvd->vdev_crtxg;
754
755 vdev_remove_child(pvd, cvd);
756 vdev_add_child(pvd, mvd);
757 cvd->vdev_id = mvd->vdev_children;
758 vdev_add_child(mvd, cvd);
759 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
760
761 if (mvd == mvd->vdev_top)
762 vdev_top_transfer(cvd, mvd);
763
764 return (mvd);
765 }
766
767 /*
768 * Remove a 1-way mirror/replacing vdev from the tree.
769 */
770 void
771 vdev_remove_parent(vdev_t *cvd)
772 {
773 vdev_t *mvd = cvd->vdev_parent;
774 vdev_t *pvd = mvd->vdev_parent;
775
776 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
777
778 ASSERT(mvd->vdev_children == 1);
779 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
780 mvd->vdev_ops == &vdev_replacing_ops ||
781 mvd->vdev_ops == &vdev_spare_ops);
782 cvd->vdev_ashift = mvd->vdev_ashift;
783
784 vdev_remove_child(mvd, cvd);
785 vdev_remove_child(pvd, mvd);
786
787 /*
788 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
789 * Otherwise, we could have detached an offline device, and when we
790 * go to import the pool we'll think we have two top-level vdevs,
791 * instead of a different version of the same top-level vdev.
792 */
793 if (mvd->vdev_top == mvd) {
794 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
795 cvd->vdev_orig_guid = cvd->vdev_guid;
796 cvd->vdev_guid += guid_delta;
797 cvd->vdev_guid_sum += guid_delta;
798 }
799 cvd->vdev_id = mvd->vdev_id;
800 vdev_add_child(pvd, cvd);
801 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
802
803 if (cvd == cvd->vdev_top)
804 vdev_top_transfer(mvd, cvd);
805
806 ASSERT(mvd->vdev_children == 0);
807 vdev_free(mvd);
808 }
809
810 int
811 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
812 {
813 spa_t *spa = vd->vdev_spa;
814 objset_t *mos = spa->spa_meta_objset;
815 uint64_t m;
816 uint64_t oldc = vd->vdev_ms_count;
817 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
818 metaslab_t **mspp;
819 int error;
820
821 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
822
823 /*
824 * This vdev is not being allocated from yet or is a hole.
825 */
826 if (vd->vdev_ms_shift == 0)
827 return (0);
828
829 ASSERT(!vd->vdev_ishole);
830
831 /*
832 * Compute the raidz-deflation ratio. Note, we hard-code
833 * in 128k (1 << 17) because it is the current "typical" blocksize.
834 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
835 * or we will inconsistently account for existing bp's.
836 */
837 vd->vdev_deflate_ratio = (1 << 17) /
838 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
839
840 ASSERT(oldc <= newc);
841
842 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_PUSHPAGE | KM_NODEBUG);
843
844 if (oldc != 0) {
845 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
846 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
847 }
848
849 vd->vdev_ms = mspp;
850 vd->vdev_ms_count = newc;
851
852 for (m = oldc; m < newc; m++) {
853 space_map_obj_t smo = { 0, 0, 0 };
854 if (txg == 0) {
855 uint64_t object = 0;
856 error = dmu_read(mos, vd->vdev_ms_array,
857 m * sizeof (uint64_t), sizeof (uint64_t), &object,
858 DMU_READ_PREFETCH);
859 if (error)
860 return (error);
861 if (object != 0) {
862 dmu_buf_t *db;
863 error = dmu_bonus_hold(mos, object, FTAG, &db);
864 if (error)
865 return (error);
866 ASSERT3U(db->db_size, >=, sizeof (smo));
867 bcopy(db->db_data, &smo, sizeof (smo));
868 ASSERT3U(smo.smo_object, ==, object);
869 dmu_buf_rele(db, FTAG);
870 }
871 }
872 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
873 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
874 }
875
876 if (txg == 0)
877 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
878
879 /*
880 * If the vdev is being removed we don't activate
881 * the metaslabs since we want to ensure that no new
882 * allocations are performed on this device.
883 */
884 if (oldc == 0 && !vd->vdev_removing)
885 metaslab_group_activate(vd->vdev_mg);
886
887 if (txg == 0)
888 spa_config_exit(spa, SCL_ALLOC, FTAG);
889
890 return (0);
891 }
892
893 void
894 vdev_metaslab_fini(vdev_t *vd)
895 {
896 uint64_t m;
897 uint64_t count = vd->vdev_ms_count;
898
899 if (vd->vdev_ms != NULL) {
900 metaslab_group_passivate(vd->vdev_mg);
901 for (m = 0; m < count; m++)
902 if (vd->vdev_ms[m] != NULL)
903 metaslab_fini(vd->vdev_ms[m]);
904 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
905 vd->vdev_ms = NULL;
906 }
907
908 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
909 }
910
911 typedef struct vdev_probe_stats {
912 boolean_t vps_readable;
913 boolean_t vps_writeable;
914 int vps_flags;
915 } vdev_probe_stats_t;
916
917 static void
918 vdev_probe_done(zio_t *zio)
919 {
920 spa_t *spa = zio->io_spa;
921 vdev_t *vd = zio->io_vd;
922 vdev_probe_stats_t *vps = zio->io_private;
923
924 ASSERT(vd->vdev_probe_zio != NULL);
925
926 if (zio->io_type == ZIO_TYPE_READ) {
927 if (zio->io_error == 0)
928 vps->vps_readable = 1;
929 if (zio->io_error == 0 && spa_writeable(spa)) {
930 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
931 zio->io_offset, zio->io_size, zio->io_data,
932 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
933 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
934 } else {
935 zio_buf_free(zio->io_data, zio->io_size);
936 }
937 } else if (zio->io_type == ZIO_TYPE_WRITE) {
938 if (zio->io_error == 0)
939 vps->vps_writeable = 1;
940 zio_buf_free(zio->io_data, zio->io_size);
941 } else if (zio->io_type == ZIO_TYPE_NULL) {
942 zio_t *pio;
943
944 vd->vdev_cant_read |= !vps->vps_readable;
945 vd->vdev_cant_write |= !vps->vps_writeable;
946
947 if (vdev_readable(vd) &&
948 (vdev_writeable(vd) || !spa_writeable(spa))) {
949 zio->io_error = 0;
950 } else {
951 ASSERT(zio->io_error != 0);
952 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
953 spa, vd, NULL, 0, 0);
954 zio->io_error = ENXIO;
955 }
956
957 mutex_enter(&vd->vdev_probe_lock);
958 ASSERT(vd->vdev_probe_zio == zio);
959 vd->vdev_probe_zio = NULL;
960 mutex_exit(&vd->vdev_probe_lock);
961
962 while ((pio = zio_walk_parents(zio)) != NULL)
963 if (!vdev_accessible(vd, pio))
964 pio->io_error = ENXIO;
965
966 kmem_free(vps, sizeof (*vps));
967 }
968 }
969
970 /*
971 * Determine whether this device is accessible by reading and writing
972 * to several known locations: the pad regions of each vdev label
973 * but the first (which we leave alone in case it contains a VTOC).
974 */
975 zio_t *
976 vdev_probe(vdev_t *vd, zio_t *zio)
977 {
978 spa_t *spa = vd->vdev_spa;
979 vdev_probe_stats_t *vps = NULL;
980 zio_t *pio;
981 int l;
982
983 ASSERT(vd->vdev_ops->vdev_op_leaf);
984
985 /*
986 * Don't probe the probe.
987 */
988 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
989 return (NULL);
990
991 /*
992 * To prevent 'probe storms' when a device fails, we create
993 * just one probe i/o at a time. All zios that want to probe
994 * this vdev will become parents of the probe io.
995 */
996 mutex_enter(&vd->vdev_probe_lock);
997
998 if ((pio = vd->vdev_probe_zio) == NULL) {
999 vps = kmem_zalloc(sizeof (*vps), KM_PUSHPAGE);
1000
1001 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1002 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1003 ZIO_FLAG_TRYHARD;
1004
1005 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1006 /*
1007 * vdev_cant_read and vdev_cant_write can only
1008 * transition from TRUE to FALSE when we have the
1009 * SCL_ZIO lock as writer; otherwise they can only
1010 * transition from FALSE to TRUE. This ensures that
1011 * any zio looking at these values can assume that
1012 * failures persist for the life of the I/O. That's
1013 * important because when a device has intermittent
1014 * connectivity problems, we want to ensure that
1015 * they're ascribed to the device (ENXIO) and not
1016 * the zio (EIO).
1017 *
1018 * Since we hold SCL_ZIO as writer here, clear both
1019 * values so the probe can reevaluate from first
1020 * principles.
1021 */
1022 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1023 vd->vdev_cant_read = B_FALSE;
1024 vd->vdev_cant_write = B_FALSE;
1025 }
1026
1027 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1028 vdev_probe_done, vps,
1029 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1030
1031 /*
1032 * We can't change the vdev state in this context, so we
1033 * kick off an async task to do it on our behalf.
1034 */
1035 if (zio != NULL) {
1036 vd->vdev_probe_wanted = B_TRUE;
1037 spa_async_request(spa, SPA_ASYNC_PROBE);
1038 }
1039 }
1040
1041 if (zio != NULL)
1042 zio_add_child(zio, pio);
1043
1044 mutex_exit(&vd->vdev_probe_lock);
1045
1046 if (vps == NULL) {
1047 ASSERT(zio != NULL);
1048 return (NULL);
1049 }
1050
1051 for (l = 1; l < VDEV_LABELS; l++) {
1052 zio_nowait(zio_read_phys(pio, vd,
1053 vdev_label_offset(vd->vdev_psize, l,
1054 offsetof(vdev_label_t, vl_pad2)),
1055 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1056 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1057 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1058 }
1059
1060 if (zio == NULL)
1061 return (pio);
1062
1063 zio_nowait(pio);
1064 return (NULL);
1065 }
1066
1067 static void
1068 vdev_open_child(void *arg)
1069 {
1070 vdev_t *vd = arg;
1071
1072 vd->vdev_open_thread = curthread;
1073 vd->vdev_open_error = vdev_open(vd);
1074 vd->vdev_open_thread = NULL;
1075 }
1076
1077 boolean_t
1078 vdev_uses_zvols(vdev_t *vd)
1079 {
1080 /*
1081 * Stacking zpools on top of zvols is unsupported until we implement a method
1082 * for determining if an arbitrary block device is a zvol without using the
1083 * path. Solaris would check the 'zvol' path component but this does not
1084 * exist in the Linux port, so we really should do something like stat the
1085 * file and check the major number. This is complicated by the fact that
1086 * we need to do this portably in user or kernel space.
1087 */
1088 #if 0
1089 int c;
1090
1091 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1092 strlen(ZVOL_DIR)) == 0)
1093 return (B_TRUE);
1094 for (c = 0; c < vd->vdev_children; c++)
1095 if (vdev_uses_zvols(vd->vdev_child[c]))
1096 return (B_TRUE);
1097 #endif
1098 return (B_FALSE);
1099 }
1100
1101 void
1102 vdev_open_children(vdev_t *vd)
1103 {
1104 taskq_t *tq;
1105 int children = vd->vdev_children;
1106 int c;
1107
1108 /*
1109 * in order to handle pools on top of zvols, do the opens
1110 * in a single thread so that the same thread holds the
1111 * spa_namespace_lock
1112 */
1113 if (vdev_uses_zvols(vd)) {
1114 for (c = 0; c < children; c++)
1115 vd->vdev_child[c]->vdev_open_error =
1116 vdev_open(vd->vdev_child[c]);
1117 return;
1118 }
1119 tq = taskq_create("vdev_open", children, minclsyspri,
1120 children, children, TASKQ_PREPOPULATE);
1121
1122 for (c = 0; c < children; c++)
1123 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1124 TQ_SLEEP) != 0);
1125
1126 taskq_destroy(tq);
1127 }
1128
1129 /*
1130 * Prepare a virtual device for access.
1131 */
1132 int
1133 vdev_open(vdev_t *vd)
1134 {
1135 spa_t *spa = vd->vdev_spa;
1136 int error;
1137 uint64_t osize = 0;
1138 uint64_t max_osize = 0;
1139 uint64_t asize, max_asize, psize;
1140 uint64_t ashift = 0;
1141 int c;
1142
1143 ASSERT(vd->vdev_open_thread == curthread ||
1144 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1145 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1146 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1147 vd->vdev_state == VDEV_STATE_OFFLINE);
1148
1149 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1150 vd->vdev_cant_read = B_FALSE;
1151 vd->vdev_cant_write = B_FALSE;
1152 vd->vdev_min_asize = vdev_get_min_asize(vd);
1153
1154 /*
1155 * If this vdev is not removed, check its fault status. If it's
1156 * faulted, bail out of the open.
1157 */
1158 if (!vd->vdev_removed && vd->vdev_faulted) {
1159 ASSERT(vd->vdev_children == 0);
1160 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1161 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1162 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1163 vd->vdev_label_aux);
1164 return (ENXIO);
1165 } else if (vd->vdev_offline) {
1166 ASSERT(vd->vdev_children == 0);
1167 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1168 return (ENXIO);
1169 }
1170
1171 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1172
1173 /*
1174 * Reset the vdev_reopening flag so that we actually close
1175 * the vdev on error.
1176 */
1177 vd->vdev_reopening = B_FALSE;
1178 if (zio_injection_enabled && error == 0)
1179 error = zio_handle_device_injection(vd, NULL, ENXIO);
1180
1181 if (error) {
1182 if (vd->vdev_removed &&
1183 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1184 vd->vdev_removed = B_FALSE;
1185
1186 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1187 vd->vdev_stat.vs_aux);
1188 return (error);
1189 }
1190
1191 vd->vdev_removed = B_FALSE;
1192
1193 /*
1194 * Recheck the faulted flag now that we have confirmed that
1195 * the vdev is accessible. If we're faulted, bail.
1196 */
1197 if (vd->vdev_faulted) {
1198 ASSERT(vd->vdev_children == 0);
1199 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1200 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1201 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1202 vd->vdev_label_aux);
1203 return (ENXIO);
1204 }
1205
1206 if (vd->vdev_degraded) {
1207 ASSERT(vd->vdev_children == 0);
1208 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1209 VDEV_AUX_ERR_EXCEEDED);
1210 } else {
1211 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1212 }
1213
1214 /*
1215 * For hole or missing vdevs we just return success.
1216 */
1217 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1218 return (0);
1219
1220 for (c = 0; c < vd->vdev_children; c++) {
1221 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1222 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1223 VDEV_AUX_NONE);
1224 break;
1225 }
1226 }
1227
1228 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1229 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1230
1231 if (vd->vdev_children == 0) {
1232 if (osize < SPA_MINDEVSIZE) {
1233 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1234 VDEV_AUX_TOO_SMALL);
1235 return (EOVERFLOW);
1236 }
1237 psize = osize;
1238 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1239 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1240 VDEV_LABEL_END_SIZE);
1241 } else {
1242 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1243 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1244 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1245 VDEV_AUX_TOO_SMALL);
1246 return (EOVERFLOW);
1247 }
1248 psize = 0;
1249 asize = osize;
1250 max_asize = max_osize;
1251 }
1252
1253 vd->vdev_psize = psize;
1254
1255 /*
1256 * Make sure the allocatable size hasn't shrunk.
1257 */
1258 if (asize < vd->vdev_min_asize) {
1259 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1260 VDEV_AUX_BAD_LABEL);
1261 return (EINVAL);
1262 }
1263
1264 if (vd->vdev_asize == 0) {
1265 /*
1266 * This is the first-ever open, so use the computed values.
1267 * For testing purposes, a higher ashift can be requested.
1268 */
1269 vd->vdev_asize = asize;
1270 vd->vdev_max_asize = max_asize;
1271 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1272 } else {
1273 /*
1274 * Make sure the alignment requirement hasn't increased.
1275 */
1276 if (ashift > vd->vdev_top->vdev_ashift) {
1277 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1278 VDEV_AUX_BAD_LABEL);
1279 return (EINVAL);
1280 }
1281 vd->vdev_max_asize = max_asize;
1282 }
1283
1284 /*
1285 * If all children are healthy and the asize has increased,
1286 * then we've experienced dynamic LUN growth. If automatic
1287 * expansion is enabled then use the additional space.
1288 */
1289 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1290 (vd->vdev_expanding || spa->spa_autoexpand))
1291 vd->vdev_asize = asize;
1292
1293 vdev_set_min_asize(vd);
1294
1295 /*
1296 * Ensure we can issue some IO before declaring the
1297 * vdev open for business.
1298 */
1299 if (vd->vdev_ops->vdev_op_leaf &&
1300 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1301 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1302 VDEV_AUX_ERR_EXCEEDED);
1303 return (error);
1304 }
1305
1306 /*
1307 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1308 * resilver. But don't do this if we are doing a reopen for a scrub,
1309 * since this would just restart the scrub we are already doing.
1310 */
1311 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1312 vdev_resilver_needed(vd, NULL, NULL))
1313 spa_async_request(spa, SPA_ASYNC_RESILVER);
1314
1315 return (0);
1316 }
1317
1318 /*
1319 * Called once the vdevs are all opened, this routine validates the label
1320 * contents. This needs to be done before vdev_load() so that we don't
1321 * inadvertently do repair I/Os to the wrong device.
1322 *
1323 * If 'strict' is false ignore the spa guid check. This is necessary because
1324 * if the machine crashed during a re-guid the new guid might have been written
1325 * to all of the vdev labels, but not the cached config. The strict check
1326 * will be performed when the pool is opened again using the mos config.
1327 *
1328 * This function will only return failure if one of the vdevs indicates that it
1329 * has since been destroyed or exported. This is only possible if
1330 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1331 * will be updated but the function will return 0.
1332 */
1333 int
1334 vdev_validate(vdev_t *vd, boolean_t strict)
1335 {
1336 spa_t *spa = vd->vdev_spa;
1337 nvlist_t *label;
1338 uint64_t guid = 0, top_guid;
1339 uint64_t state;
1340 int c;
1341
1342 for (c = 0; c < vd->vdev_children; c++)
1343 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1344 return (EBADF);
1345
1346 /*
1347 * If the device has already failed, or was marked offline, don't do
1348 * any further validation. Otherwise, label I/O will fail and we will
1349 * overwrite the previous state.
1350 */
1351 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1352 uint64_t aux_guid = 0;
1353 nvlist_t *nvl;
1354
1355 if ((label = vdev_label_read_config(vd)) == NULL) {
1356 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1357 VDEV_AUX_BAD_LABEL);
1358 return (0);
1359 }
1360
1361 /*
1362 * Determine if this vdev has been split off into another
1363 * pool. If so, then refuse to open it.
1364 */
1365 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1366 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1367 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1368 VDEV_AUX_SPLIT_POOL);
1369 nvlist_free(label);
1370 return (0);
1371 }
1372
1373 if (strict && (nvlist_lookup_uint64(label,
1374 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1375 guid != spa_guid(spa))) {
1376 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1377 VDEV_AUX_CORRUPT_DATA);
1378 nvlist_free(label);
1379 return (0);
1380 }
1381
1382 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1383 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1384 &aux_guid) != 0)
1385 aux_guid = 0;
1386
1387 /*
1388 * If this vdev just became a top-level vdev because its
1389 * sibling was detached, it will have adopted the parent's
1390 * vdev guid -- but the label may or may not be on disk yet.
1391 * Fortunately, either version of the label will have the
1392 * same top guid, so if we're a top-level vdev, we can
1393 * safely compare to that instead.
1394 *
1395 * If we split this vdev off instead, then we also check the
1396 * original pool's guid. We don't want to consider the vdev
1397 * corrupt if it is partway through a split operation.
1398 */
1399 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1400 &guid) != 0 ||
1401 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1402 &top_guid) != 0 ||
1403 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1404 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1405 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1406 VDEV_AUX_CORRUPT_DATA);
1407 nvlist_free(label);
1408 return (0);
1409 }
1410
1411 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1412 &state) != 0) {
1413 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1414 VDEV_AUX_CORRUPT_DATA);
1415 nvlist_free(label);
1416 return (0);
1417 }
1418
1419 nvlist_free(label);
1420
1421 /*
1422 * If this is a verbatim import, no need to check the
1423 * state of the pool.
1424 */
1425 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1426 spa_load_state(spa) == SPA_LOAD_OPEN &&
1427 state != POOL_STATE_ACTIVE)
1428 return (EBADF);
1429
1430 /*
1431 * If we were able to open and validate a vdev that was
1432 * previously marked permanently unavailable, clear that state
1433 * now.
1434 */
1435 if (vd->vdev_not_present)
1436 vd->vdev_not_present = 0;
1437 }
1438
1439 return (0);
1440 }
1441
1442 /*
1443 * Close a virtual device.
1444 */
1445 void
1446 vdev_close(vdev_t *vd)
1447 {
1448 vdev_t *pvd = vd->vdev_parent;
1449 ASSERTV(spa_t *spa = vd->vdev_spa);
1450
1451 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1452
1453 /*
1454 * If our parent is reopening, then we are as well, unless we are
1455 * going offline.
1456 */
1457 if (pvd != NULL && pvd->vdev_reopening)
1458 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1459
1460 vd->vdev_ops->vdev_op_close(vd);
1461
1462 vdev_cache_purge(vd);
1463
1464 /*
1465 * We record the previous state before we close it, so that if we are
1466 * doing a reopen(), we don't generate FMA ereports if we notice that
1467 * it's still faulted.
1468 */
1469 vd->vdev_prevstate = vd->vdev_state;
1470
1471 if (vd->vdev_offline)
1472 vd->vdev_state = VDEV_STATE_OFFLINE;
1473 else
1474 vd->vdev_state = VDEV_STATE_CLOSED;
1475 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1476 }
1477
1478 void
1479 vdev_hold(vdev_t *vd)
1480 {
1481 spa_t *spa = vd->vdev_spa;
1482 int c;
1483
1484 ASSERT(spa_is_root(spa));
1485 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1486 return;
1487
1488 for (c = 0; c < vd->vdev_children; c++)
1489 vdev_hold(vd->vdev_child[c]);
1490
1491 if (vd->vdev_ops->vdev_op_leaf)
1492 vd->vdev_ops->vdev_op_hold(vd);
1493 }
1494
1495 void
1496 vdev_rele(vdev_t *vd)
1497 {
1498 int c;
1499
1500 ASSERT(spa_is_root(vd->vdev_spa));
1501 for (c = 0; c < vd->vdev_children; c++)
1502 vdev_rele(vd->vdev_child[c]);
1503
1504 if (vd->vdev_ops->vdev_op_leaf)
1505 vd->vdev_ops->vdev_op_rele(vd);
1506 }
1507
1508 /*
1509 * Reopen all interior vdevs and any unopened leaves. We don't actually
1510 * reopen leaf vdevs which had previously been opened as they might deadlock
1511 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1512 * If the leaf has never been opened then open it, as usual.
1513 */
1514 void
1515 vdev_reopen(vdev_t *vd)
1516 {
1517 spa_t *spa = vd->vdev_spa;
1518
1519 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1520
1521 /* set the reopening flag unless we're taking the vdev offline */
1522 vd->vdev_reopening = !vd->vdev_offline;
1523 vdev_close(vd);
1524 (void) vdev_open(vd);
1525
1526 /*
1527 * Call vdev_validate() here to make sure we have the same device.
1528 * Otherwise, a device with an invalid label could be successfully
1529 * opened in response to vdev_reopen().
1530 */
1531 if (vd->vdev_aux) {
1532 (void) vdev_validate_aux(vd);
1533 if (vdev_readable(vd) && vdev_writeable(vd) &&
1534 vd->vdev_aux == &spa->spa_l2cache &&
1535 !l2arc_vdev_present(vd))
1536 l2arc_add_vdev(spa, vd);
1537 } else {
1538 (void) vdev_validate(vd, B_TRUE);
1539 }
1540
1541 /*
1542 * Reassess parent vdev's health.
1543 */
1544 vdev_propagate_state(vd);
1545 }
1546
1547 int
1548 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1549 {
1550 int error;
1551
1552 /*
1553 * Normally, partial opens (e.g. of a mirror) are allowed.
1554 * For a create, however, we want to fail the request if
1555 * there are any components we can't open.
1556 */
1557 error = vdev_open(vd);
1558
1559 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1560 vdev_close(vd);
1561 return (error ? error : ENXIO);
1562 }
1563
1564 /*
1565 * Recursively initialize all labels.
1566 */
1567 if ((error = vdev_label_init(vd, txg, isreplacing ?
1568 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1569 vdev_close(vd);
1570 return (error);
1571 }
1572
1573 return (0);
1574 }
1575
1576 void
1577 vdev_metaslab_set_size(vdev_t *vd)
1578 {
1579 /*
1580 * Aim for roughly 200 metaslabs per vdev.
1581 */
1582 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1583 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1584 }
1585
1586 void
1587 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1588 {
1589 ASSERT(vd == vd->vdev_top);
1590 ASSERT(!vd->vdev_ishole);
1591 ASSERT(ISP2(flags));
1592 ASSERT(spa_writeable(vd->vdev_spa));
1593
1594 if (flags & VDD_METASLAB)
1595 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1596
1597 if (flags & VDD_DTL)
1598 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1599
1600 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1601 }
1602
1603 /*
1604 * DTLs.
1605 *
1606 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1607 * the vdev has less than perfect replication. There are four kinds of DTL:
1608 *
1609 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1610 *
1611 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1612 *
1613 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1614 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1615 * txgs that was scrubbed.
1616 *
1617 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1618 * persistent errors or just some device being offline.
1619 * Unlike the other three, the DTL_OUTAGE map is not generally
1620 * maintained; it's only computed when needed, typically to
1621 * determine whether a device can be detached.
1622 *
1623 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1624 * either has the data or it doesn't.
1625 *
1626 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1627 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1628 * if any child is less than fully replicated, then so is its parent.
1629 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1630 * comprising only those txgs which appear in 'maxfaults' or more children;
1631 * those are the txgs we don't have enough replication to read. For example,
1632 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1633 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1634 * two child DTL_MISSING maps.
1635 *
1636 * It should be clear from the above that to compute the DTLs and outage maps
1637 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1638 * Therefore, that is all we keep on disk. When loading the pool, or after
1639 * a configuration change, we generate all other DTLs from first principles.
1640 */
1641 void
1642 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1643 {
1644 space_map_t *sm = &vd->vdev_dtl[t];
1645
1646 ASSERT(t < DTL_TYPES);
1647 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1648 ASSERT(spa_writeable(vd->vdev_spa));
1649
1650 mutex_enter(sm->sm_lock);
1651 if (!space_map_contains(sm, txg, size))
1652 space_map_add(sm, txg, size);
1653 mutex_exit(sm->sm_lock);
1654 }
1655
1656 boolean_t
1657 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1658 {
1659 space_map_t *sm = &vd->vdev_dtl[t];
1660 boolean_t dirty = B_FALSE;
1661
1662 ASSERT(t < DTL_TYPES);
1663 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1664
1665 mutex_enter(sm->sm_lock);
1666 if (sm->sm_space != 0)
1667 dirty = space_map_contains(sm, txg, size);
1668 mutex_exit(sm->sm_lock);
1669
1670 return (dirty);
1671 }
1672
1673 boolean_t
1674 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1675 {
1676 space_map_t *sm = &vd->vdev_dtl[t];
1677 boolean_t empty;
1678
1679 mutex_enter(sm->sm_lock);
1680 empty = (sm->sm_space == 0);
1681 mutex_exit(sm->sm_lock);
1682
1683 return (empty);
1684 }
1685
1686 /*
1687 * Reassess DTLs after a config change or scrub completion.
1688 */
1689 void
1690 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1691 {
1692 spa_t *spa = vd->vdev_spa;
1693 avl_tree_t reftree;
1694 int c, t, minref;
1695
1696 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1697
1698 for (c = 0; c < vd->vdev_children; c++)
1699 vdev_dtl_reassess(vd->vdev_child[c], txg,
1700 scrub_txg, scrub_done);
1701
1702 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1703 return;
1704
1705 if (vd->vdev_ops->vdev_op_leaf) {
1706 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1707
1708 mutex_enter(&vd->vdev_dtl_lock);
1709 if (scrub_txg != 0 &&
1710 (spa->spa_scrub_started ||
1711 (scn && scn->scn_phys.scn_errors == 0))) {
1712 /*
1713 * We completed a scrub up to scrub_txg. If we
1714 * did it without rebooting, then the scrub dtl
1715 * will be valid, so excise the old region and
1716 * fold in the scrub dtl. Otherwise, leave the
1717 * dtl as-is if there was an error.
1718 *
1719 * There's little trick here: to excise the beginning
1720 * of the DTL_MISSING map, we put it into a reference
1721 * tree and then add a segment with refcnt -1 that
1722 * covers the range [0, scrub_txg). This means
1723 * that each txg in that range has refcnt -1 or 0.
1724 * We then add DTL_SCRUB with a refcnt of 2, so that
1725 * entries in the range [0, scrub_txg) will have a
1726 * positive refcnt -- either 1 or 2. We then convert
1727 * the reference tree into the new DTL_MISSING map.
1728 */
1729 space_map_ref_create(&reftree);
1730 space_map_ref_add_map(&reftree,
1731 &vd->vdev_dtl[DTL_MISSING], 1);
1732 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1733 space_map_ref_add_map(&reftree,
1734 &vd->vdev_dtl[DTL_SCRUB], 2);
1735 space_map_ref_generate_map(&reftree,
1736 &vd->vdev_dtl[DTL_MISSING], 1);
1737 space_map_ref_destroy(&reftree);
1738 }
1739 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1740 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1741 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1742 if (scrub_done)
1743 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1744 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1745 if (!vdev_readable(vd))
1746 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1747 else
1748 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1749 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1750 mutex_exit(&vd->vdev_dtl_lock);
1751
1752 if (txg != 0)
1753 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1754 return;
1755 }
1756
1757 mutex_enter(&vd->vdev_dtl_lock);
1758 for (t = 0; t < DTL_TYPES; t++) {
1759 /* account for child's outage in parent's missing map */
1760 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1761 if (t == DTL_SCRUB)
1762 continue; /* leaf vdevs only */
1763 if (t == DTL_PARTIAL)
1764 minref = 1; /* i.e. non-zero */
1765 else if (vd->vdev_nparity != 0)
1766 minref = vd->vdev_nparity + 1; /* RAID-Z */
1767 else
1768 minref = vd->vdev_children; /* any kind of mirror */
1769 space_map_ref_create(&reftree);
1770 for (c = 0; c < vd->vdev_children; c++) {
1771 vdev_t *cvd = vd->vdev_child[c];
1772 mutex_enter(&cvd->vdev_dtl_lock);
1773 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1774 mutex_exit(&cvd->vdev_dtl_lock);
1775 }
1776 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1777 space_map_ref_destroy(&reftree);
1778 }
1779 mutex_exit(&vd->vdev_dtl_lock);
1780 }
1781
1782 static int
1783 vdev_dtl_load(vdev_t *vd)
1784 {
1785 spa_t *spa = vd->vdev_spa;
1786 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1787 objset_t *mos = spa->spa_meta_objset;
1788 dmu_buf_t *db;
1789 int error;
1790
1791 ASSERT(vd->vdev_children == 0);
1792
1793 if (smo->smo_object == 0)
1794 return (0);
1795
1796 ASSERT(!vd->vdev_ishole);
1797
1798 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1799 return (error);
1800
1801 ASSERT3U(db->db_size, >=, sizeof (*smo));
1802 bcopy(db->db_data, smo, sizeof (*smo));
1803 dmu_buf_rele(db, FTAG);
1804
1805 mutex_enter(&vd->vdev_dtl_lock);
1806 error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1807 NULL, SM_ALLOC, smo, mos);
1808 mutex_exit(&vd->vdev_dtl_lock);
1809
1810 return (error);
1811 }
1812
1813 void
1814 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1815 {
1816 spa_t *spa = vd->vdev_spa;
1817 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1818 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1819 objset_t *mos = spa->spa_meta_objset;
1820 space_map_t smsync;
1821 kmutex_t smlock;
1822 dmu_buf_t *db;
1823 dmu_tx_t *tx;
1824
1825 ASSERT(!vd->vdev_ishole);
1826
1827 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1828
1829 if (vd->vdev_detached) {
1830 if (smo->smo_object != 0) {
1831 VERIFY(0 == dmu_object_free(mos, smo->smo_object, tx));
1832 smo->smo_object = 0;
1833 }
1834 dmu_tx_commit(tx);
1835 return;
1836 }
1837
1838 if (smo->smo_object == 0) {
1839 ASSERT(smo->smo_objsize == 0);
1840 ASSERT(smo->smo_alloc == 0);
1841 smo->smo_object = dmu_object_alloc(mos,
1842 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1843 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1844 ASSERT(smo->smo_object != 0);
1845 vdev_config_dirty(vd->vdev_top);
1846 }
1847
1848 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1849
1850 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1851 &smlock);
1852
1853 mutex_enter(&smlock);
1854
1855 mutex_enter(&vd->vdev_dtl_lock);
1856 space_map_walk(sm, space_map_add, &smsync);
1857 mutex_exit(&vd->vdev_dtl_lock);
1858
1859 space_map_truncate(smo, mos, tx);
1860 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1861
1862 space_map_destroy(&smsync);
1863
1864 mutex_exit(&smlock);
1865 mutex_destroy(&smlock);
1866
1867 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1868 dmu_buf_will_dirty(db, tx);
1869 ASSERT3U(db->db_size, >=, sizeof (*smo));
1870 bcopy(smo, db->db_data, sizeof (*smo));
1871 dmu_buf_rele(db, FTAG);
1872
1873 dmu_tx_commit(tx);
1874 }
1875
1876 /*
1877 * Determine whether the specified vdev can be offlined/detached/removed
1878 * without losing data.
1879 */
1880 boolean_t
1881 vdev_dtl_required(vdev_t *vd)
1882 {
1883 spa_t *spa = vd->vdev_spa;
1884 vdev_t *tvd = vd->vdev_top;
1885 uint8_t cant_read = vd->vdev_cant_read;
1886 boolean_t required;
1887
1888 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1889
1890 if (vd == spa->spa_root_vdev || vd == tvd)
1891 return (B_TRUE);
1892
1893 /*
1894 * Temporarily mark the device as unreadable, and then determine
1895 * whether this results in any DTL outages in the top-level vdev.
1896 * If not, we can safely offline/detach/remove the device.
1897 */
1898 vd->vdev_cant_read = B_TRUE;
1899 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1900 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1901 vd->vdev_cant_read = cant_read;
1902 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1903
1904 if (!required && zio_injection_enabled)
1905 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1906
1907 return (required);
1908 }
1909
1910 /*
1911 * Determine if resilver is needed, and if so the txg range.
1912 */
1913 boolean_t
1914 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1915 {
1916 boolean_t needed = B_FALSE;
1917 uint64_t thismin = UINT64_MAX;
1918 uint64_t thismax = 0;
1919 int c;
1920
1921 if (vd->vdev_children == 0) {
1922 mutex_enter(&vd->vdev_dtl_lock);
1923 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1924 vdev_writeable(vd)) {
1925 space_seg_t *ss;
1926
1927 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1928 thismin = ss->ss_start - 1;
1929 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1930 thismax = ss->ss_end;
1931 needed = B_TRUE;
1932 }
1933 mutex_exit(&vd->vdev_dtl_lock);
1934 } else {
1935 for (c = 0; c < vd->vdev_children; c++) {
1936 vdev_t *cvd = vd->vdev_child[c];
1937 uint64_t cmin, cmax;
1938
1939 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1940 thismin = MIN(thismin, cmin);
1941 thismax = MAX(thismax, cmax);
1942 needed = B_TRUE;
1943 }
1944 }
1945 }
1946
1947 if (needed && minp) {
1948 *minp = thismin;
1949 *maxp = thismax;
1950 }
1951 return (needed);
1952 }
1953
1954 void
1955 vdev_load(vdev_t *vd)
1956 {
1957 int c;
1958
1959 /*
1960 * Recursively load all children.
1961 */
1962 for (c = 0; c < vd->vdev_children; c++)
1963 vdev_load(vd->vdev_child[c]);
1964
1965 /*
1966 * If this is a top-level vdev, initialize its metaslabs.
1967 */
1968 if (vd == vd->vdev_top && !vd->vdev_ishole &&
1969 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1970 vdev_metaslab_init(vd, 0) != 0))
1971 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1972 VDEV_AUX_CORRUPT_DATA);
1973
1974 /*
1975 * If this is a leaf vdev, load its DTL.
1976 */
1977 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1978 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1979 VDEV_AUX_CORRUPT_DATA);
1980 }
1981
1982 /*
1983 * The special vdev case is used for hot spares and l2cache devices. Its
1984 * sole purpose it to set the vdev state for the associated vdev. To do this,
1985 * we make sure that we can open the underlying device, then try to read the
1986 * label, and make sure that the label is sane and that it hasn't been
1987 * repurposed to another pool.
1988 */
1989 int
1990 vdev_validate_aux(vdev_t *vd)
1991 {
1992 nvlist_t *label;
1993 uint64_t guid, version;
1994 uint64_t state;
1995
1996 if (!vdev_readable(vd))
1997 return (0);
1998
1999 if ((label = vdev_label_read_config(vd)) == NULL) {
2000 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2001 VDEV_AUX_CORRUPT_DATA);
2002 return (-1);
2003 }
2004
2005 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2006 version > SPA_VERSION ||
2007 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2008 guid != vd->vdev_guid ||
2009 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2010 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2011 VDEV_AUX_CORRUPT_DATA);
2012 nvlist_free(label);
2013 return (-1);
2014 }
2015
2016 /*
2017 * We don't actually check the pool state here. If it's in fact in
2018 * use by another pool, we update this fact on the fly when requested.
2019 */
2020 nvlist_free(label);
2021 return (0);
2022 }
2023
2024 void
2025 vdev_remove(vdev_t *vd, uint64_t txg)
2026 {
2027 spa_t *spa = vd->vdev_spa;
2028 objset_t *mos = spa->spa_meta_objset;
2029 dmu_tx_t *tx;
2030 int m;
2031
2032 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2033
2034 if (vd->vdev_dtl_smo.smo_object) {
2035 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
2036 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2037 vd->vdev_dtl_smo.smo_object = 0;
2038 }
2039
2040 if (vd->vdev_ms != NULL) {
2041 for (m = 0; m < vd->vdev_ms_count; m++) {
2042 metaslab_t *msp = vd->vdev_ms[m];
2043
2044 if (msp == NULL || msp->ms_smo.smo_object == 0)
2045 continue;
2046
2047 ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2048 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2049 msp->ms_smo.smo_object = 0;
2050 }
2051 }
2052
2053 if (vd->vdev_ms_array) {
2054 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2055 vd->vdev_ms_array = 0;
2056 vd->vdev_ms_shift = 0;
2057 }
2058 dmu_tx_commit(tx);
2059 }
2060
2061 void
2062 vdev_sync_done(vdev_t *vd, uint64_t txg)
2063 {
2064 metaslab_t *msp;
2065 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2066
2067 ASSERT(!vd->vdev_ishole);
2068
2069 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2070 metaslab_sync_done(msp, txg);
2071
2072 if (reassess)
2073 metaslab_sync_reassess(vd->vdev_mg);
2074 }
2075
2076 void
2077 vdev_sync(vdev_t *vd, uint64_t txg)
2078 {
2079 spa_t *spa = vd->vdev_spa;
2080 vdev_t *lvd;
2081 metaslab_t *msp;
2082 dmu_tx_t *tx;
2083
2084 ASSERT(!vd->vdev_ishole);
2085
2086 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2087 ASSERT(vd == vd->vdev_top);
2088 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2089 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2090 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2091 ASSERT(vd->vdev_ms_array != 0);
2092 vdev_config_dirty(vd);
2093 dmu_tx_commit(tx);
2094 }
2095
2096 /*
2097 * Remove the metadata associated with this vdev once it's empty.
2098 */
2099 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2100 vdev_remove(vd, txg);
2101
2102 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2103 metaslab_sync(msp, txg);
2104 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2105 }
2106
2107 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2108 vdev_dtl_sync(lvd, txg);
2109
2110 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2111 }
2112
2113 uint64_t
2114 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2115 {
2116 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2117 }
2118
2119 /*
2120 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2121 * not be opened, and no I/O is attempted.
2122 */
2123 int
2124 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2125 {
2126 vdev_t *vd, *tvd;
2127
2128 spa_vdev_state_enter(spa, SCL_NONE);
2129
2130 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2131 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2132
2133 if (!vd->vdev_ops->vdev_op_leaf)
2134 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2135
2136 tvd = vd->vdev_top;
2137
2138 /*
2139 * We don't directly use the aux state here, but if we do a
2140 * vdev_reopen(), we need this value to be present to remember why we
2141 * were faulted.
2142 */
2143 vd->vdev_label_aux = aux;
2144
2145 /*
2146 * Faulted state takes precedence over degraded.
2147 */
2148 vd->vdev_delayed_close = B_FALSE;
2149 vd->vdev_faulted = 1ULL;
2150 vd->vdev_degraded = 0ULL;
2151 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2152
2153 /*
2154 * If this device has the only valid copy of the data, then
2155 * back off and simply mark the vdev as degraded instead.
2156 */
2157 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2158 vd->vdev_degraded = 1ULL;
2159 vd->vdev_faulted = 0ULL;
2160
2161 /*
2162 * If we reopen the device and it's not dead, only then do we
2163 * mark it degraded.
2164 */
2165 vdev_reopen(tvd);
2166
2167 if (vdev_readable(vd))
2168 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2169 }
2170
2171 return (spa_vdev_state_exit(spa, vd, 0));
2172 }
2173
2174 /*
2175 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2176 * user that something is wrong. The vdev continues to operate as normal as far
2177 * as I/O is concerned.
2178 */
2179 int
2180 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2181 {
2182 vdev_t *vd;
2183
2184 spa_vdev_state_enter(spa, SCL_NONE);
2185
2186 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2187 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2188
2189 if (!vd->vdev_ops->vdev_op_leaf)
2190 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2191
2192 /*
2193 * If the vdev is already faulted, then don't do anything.
2194 */
2195 if (vd->vdev_faulted || vd->vdev_degraded)
2196 return (spa_vdev_state_exit(spa, NULL, 0));
2197
2198 vd->vdev_degraded = 1ULL;
2199 if (!vdev_is_dead(vd))
2200 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2201 aux);
2202
2203 return (spa_vdev_state_exit(spa, vd, 0));
2204 }
2205
2206 /*
2207 * Online the given vdev. If 'unspare' is set, it implies two things. First,
2208 * any attached spare device should be detached when the device finishes
2209 * resilvering. Second, the online should be treated like a 'test' online case,
2210 * so no FMA events are generated if the device fails to open.
2211 */
2212 int
2213 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2214 {
2215 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2216
2217 spa_vdev_state_enter(spa, SCL_NONE);
2218
2219 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2220 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2221
2222 if (!vd->vdev_ops->vdev_op_leaf)
2223 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2224
2225 tvd = vd->vdev_top;
2226 vd->vdev_offline = B_FALSE;
2227 vd->vdev_tmpoffline = B_FALSE;
2228 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2229 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2230
2231 /* XXX - L2ARC 1.0 does not support expansion */
2232 if (!vd->vdev_aux) {
2233 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2234 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2235 }
2236
2237 vdev_reopen(tvd);
2238 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2239
2240 if (!vd->vdev_aux) {
2241 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2242 pvd->vdev_expanding = B_FALSE;
2243 }
2244
2245 if (newstate)
2246 *newstate = vd->vdev_state;
2247 if ((flags & ZFS_ONLINE_UNSPARE) &&
2248 !vdev_is_dead(vd) && vd->vdev_parent &&
2249 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2250 vd->vdev_parent->vdev_child[0] == vd)
2251 vd->vdev_unspare = B_TRUE;
2252
2253 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2254
2255 /* XXX - L2ARC 1.0 does not support expansion */
2256 if (vd->vdev_aux)
2257 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2258 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2259 }
2260 return (spa_vdev_state_exit(spa, vd, 0));
2261 }
2262
2263 static int
2264 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2265 {
2266 vdev_t *vd, *tvd;
2267 int error = 0;
2268 uint64_t generation;
2269 metaslab_group_t *mg;
2270
2271 top:
2272 spa_vdev_state_enter(spa, SCL_ALLOC);
2273
2274 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2275 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2276
2277 if (!vd->vdev_ops->vdev_op_leaf)
2278 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2279
2280 tvd = vd->vdev_top;
2281 mg = tvd->vdev_mg;
2282 generation = spa->spa_config_generation + 1;
2283
2284 /*
2285 * If the device isn't already offline, try to offline it.
2286 */
2287 if (!vd->vdev_offline) {
2288 /*
2289 * If this device has the only valid copy of some data,
2290 * don't allow it to be offlined. Log devices are always
2291 * expendable.
2292 */
2293 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2294 vdev_dtl_required(vd))
2295 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2296
2297 /*
2298 * If the top-level is a slog and it has had allocations
2299 * then proceed. We check that the vdev's metaslab group
2300 * is not NULL since it's possible that we may have just
2301 * added this vdev but not yet initialized its metaslabs.
2302 */
2303 if (tvd->vdev_islog && mg != NULL) {
2304 /*
2305 * Prevent any future allocations.
2306 */
2307 metaslab_group_passivate(mg);
2308 (void) spa_vdev_state_exit(spa, vd, 0);
2309
2310 error = spa_offline_log(spa);
2311
2312 spa_vdev_state_enter(spa, SCL_ALLOC);
2313
2314 /*
2315 * Check to see if the config has changed.
2316 */
2317 if (error || generation != spa->spa_config_generation) {
2318 metaslab_group_activate(mg);
2319 if (error)
2320 return (spa_vdev_state_exit(spa,
2321 vd, error));
2322 (void) spa_vdev_state_exit(spa, vd, 0);
2323 goto top;
2324 }
2325 ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2326 }
2327
2328 /*
2329 * Offline this device and reopen its top-level vdev.
2330 * If the top-level vdev is a log device then just offline
2331 * it. Otherwise, if this action results in the top-level
2332 * vdev becoming unusable, undo it and fail the request.
2333 */
2334 vd->vdev_offline = B_TRUE;
2335 vdev_reopen(tvd);
2336
2337 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2338 vdev_is_dead(tvd)) {
2339 vd->vdev_offline = B_FALSE;
2340 vdev_reopen(tvd);
2341 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2342 }
2343
2344 /*
2345 * Add the device back into the metaslab rotor so that
2346 * once we online the device it's open for business.
2347 */
2348 if (tvd->vdev_islog && mg != NULL)
2349 metaslab_group_activate(mg);
2350 }
2351
2352 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2353
2354 return (spa_vdev_state_exit(spa, vd, 0));
2355 }
2356
2357 int
2358 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2359 {
2360 int error;
2361
2362 mutex_enter(&spa->spa_vdev_top_lock);
2363 error = vdev_offline_locked(spa, guid, flags);
2364 mutex_exit(&spa->spa_vdev_top_lock);
2365
2366 return (error);
2367 }
2368
2369 /*
2370 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2371 * vdev_offline(), we assume the spa config is locked. We also clear all
2372 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2373 */
2374 void
2375 vdev_clear(spa_t *spa, vdev_t *vd)
2376 {
2377 vdev_t *rvd = spa->spa_root_vdev;
2378 int c;
2379
2380 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2381
2382 if (vd == NULL)
2383 vd = rvd;
2384
2385 vd->vdev_stat.vs_read_errors = 0;
2386 vd->vdev_stat.vs_write_errors = 0;
2387 vd->vdev_stat.vs_checksum_errors = 0;
2388
2389 for (c = 0; c < vd->vdev_children; c++)
2390 vdev_clear(spa, vd->vdev_child[c]);
2391
2392 /*
2393 * If we're in the FAULTED state or have experienced failed I/O, then
2394 * clear the persistent state and attempt to reopen the device. We
2395 * also mark the vdev config dirty, so that the new faulted state is
2396 * written out to disk.
2397 */
2398 if (vd->vdev_faulted || vd->vdev_degraded ||
2399 !vdev_readable(vd) || !vdev_writeable(vd)) {
2400
2401 /*
2402 * When reopening in reponse to a clear event, it may be due to
2403 * a fmadm repair request. In this case, if the device is
2404 * still broken, we want to still post the ereport again.
2405 */
2406 vd->vdev_forcefault = B_TRUE;
2407
2408 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2409 vd->vdev_cant_read = B_FALSE;
2410 vd->vdev_cant_write = B_FALSE;
2411
2412 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2413
2414 vd->vdev_forcefault = B_FALSE;
2415
2416 if (vd != rvd && vdev_writeable(vd->vdev_top))
2417 vdev_state_dirty(vd->vdev_top);
2418
2419 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2420 spa_async_request(spa, SPA_ASYNC_RESILVER);
2421
2422 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
2423 }
2424
2425 /*
2426 * When clearing a FMA-diagnosed fault, we always want to
2427 * unspare the device, as we assume that the original spare was
2428 * done in response to the FMA fault.
2429 */
2430 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2431 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2432 vd->vdev_parent->vdev_child[0] == vd)
2433 vd->vdev_unspare = B_TRUE;
2434 }
2435
2436 boolean_t
2437 vdev_is_dead(vdev_t *vd)
2438 {
2439 /*
2440 * Holes and missing devices are always considered "dead".
2441 * This simplifies the code since we don't have to check for
2442 * these types of devices in the various code paths.
2443 * Instead we rely on the fact that we skip over dead devices
2444 * before issuing I/O to them.
2445 */
2446 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2447 vd->vdev_ops == &vdev_missing_ops);
2448 }
2449
2450 boolean_t
2451 vdev_readable(vdev_t *vd)
2452 {
2453 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2454 }
2455
2456 boolean_t
2457 vdev_writeable(vdev_t *vd)
2458 {
2459 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2460 }
2461
2462 boolean_t
2463 vdev_allocatable(vdev_t *vd)
2464 {
2465 uint64_t state = vd->vdev_state;
2466
2467 /*
2468 * We currently allow allocations from vdevs which may be in the
2469 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2470 * fails to reopen then we'll catch it later when we're holding
2471 * the proper locks. Note that we have to get the vdev state
2472 * in a local variable because although it changes atomically,
2473 * we're asking two separate questions about it.
2474 */
2475 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2476 !vd->vdev_cant_write && !vd->vdev_ishole);
2477 }
2478
2479 boolean_t
2480 vdev_accessible(vdev_t *vd, zio_t *zio)
2481 {
2482 ASSERT(zio->io_vd == vd);
2483
2484 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2485 return (B_FALSE);
2486
2487 if (zio->io_type == ZIO_TYPE_READ)
2488 return (!vd->vdev_cant_read);
2489
2490 if (zio->io_type == ZIO_TYPE_WRITE)
2491 return (!vd->vdev_cant_write);
2492
2493 return (B_TRUE);
2494 }
2495
2496 /*
2497 * Get statistics for the given vdev.
2498 */
2499 void
2500 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2501 {
2502 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2503 int c, t;
2504
2505 mutex_enter(&vd->vdev_stat_lock);
2506 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2507 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2508 vs->vs_state = vd->vdev_state;
2509 vs->vs_rsize = vdev_get_min_asize(vd);
2510 if (vd->vdev_ops->vdev_op_leaf)
2511 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2512 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2513 mutex_exit(&vd->vdev_stat_lock);
2514
2515 /*
2516 * If we're getting stats on the root vdev, aggregate the I/O counts
2517 * over all top-level vdevs (i.e. the direct children of the root).
2518 */
2519 if (vd == rvd) {
2520 for (c = 0; c < rvd->vdev_children; c++) {
2521 vdev_t *cvd = rvd->vdev_child[c];
2522 vdev_stat_t *cvs = &cvd->vdev_stat;
2523
2524 mutex_enter(&vd->vdev_stat_lock);
2525 for (t = 0; t < ZIO_TYPES; t++) {
2526 vs->vs_ops[t] += cvs->vs_ops[t];
2527 vs->vs_bytes[t] += cvs->vs_bytes[t];
2528 }
2529 cvs->vs_scan_removing = cvd->vdev_removing;
2530 mutex_exit(&vd->vdev_stat_lock);
2531 }
2532 }
2533 }
2534
2535 void
2536 vdev_clear_stats(vdev_t *vd)
2537 {
2538 mutex_enter(&vd->vdev_stat_lock);
2539 vd->vdev_stat.vs_space = 0;
2540 vd->vdev_stat.vs_dspace = 0;
2541 vd->vdev_stat.vs_alloc = 0;
2542 mutex_exit(&vd->vdev_stat_lock);
2543 }
2544
2545 void
2546 vdev_scan_stat_init(vdev_t *vd)
2547 {
2548 vdev_stat_t *vs = &vd->vdev_stat;
2549 int c;
2550
2551 for (c = 0; c < vd->vdev_children; c++)
2552 vdev_scan_stat_init(vd->vdev_child[c]);
2553
2554 mutex_enter(&vd->vdev_stat_lock);
2555 vs->vs_scan_processed = 0;
2556 mutex_exit(&vd->vdev_stat_lock);
2557 }
2558
2559 void
2560 vdev_stat_update(zio_t *zio, uint64_t psize)
2561 {
2562 spa_t *spa = zio->io_spa;
2563 vdev_t *rvd = spa->spa_root_vdev;
2564 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2565 vdev_t *pvd;
2566 uint64_t txg = zio->io_txg;
2567 vdev_stat_t *vs = &vd->vdev_stat;
2568 zio_type_t type = zio->io_type;
2569 int flags = zio->io_flags;
2570
2571 /*
2572 * If this i/o is a gang leader, it didn't do any actual work.
2573 */
2574 if (zio->io_gang_tree)
2575 return;
2576
2577 if (zio->io_error == 0) {
2578 /*
2579 * If this is a root i/o, don't count it -- we've already
2580 * counted the top-level vdevs, and vdev_get_stats() will
2581 * aggregate them when asked. This reduces contention on
2582 * the root vdev_stat_lock and implicitly handles blocks
2583 * that compress away to holes, for which there is no i/o.
2584 * (Holes never create vdev children, so all the counters
2585 * remain zero, which is what we want.)
2586 *
2587 * Note: this only applies to successful i/o (io_error == 0)
2588 * because unlike i/o counts, errors are not additive.
2589 * When reading a ditto block, for example, failure of
2590 * one top-level vdev does not imply a root-level error.
2591 */
2592 if (vd == rvd)
2593 return;
2594
2595 ASSERT(vd == zio->io_vd);
2596
2597 if (flags & ZIO_FLAG_IO_BYPASS)
2598 return;
2599
2600 mutex_enter(&vd->vdev_stat_lock);
2601
2602 if (flags & ZIO_FLAG_IO_REPAIR) {
2603 if (flags & ZIO_FLAG_SCAN_THREAD) {
2604 dsl_scan_phys_t *scn_phys =
2605 &spa->spa_dsl_pool->dp_scan->scn_phys;
2606 uint64_t *processed = &scn_phys->scn_processed;
2607
2608 /* XXX cleanup? */
2609 if (vd->vdev_ops->vdev_op_leaf)
2610 atomic_add_64(processed, psize);
2611 vs->vs_scan_processed += psize;
2612 }
2613
2614 if (flags & ZIO_FLAG_SELF_HEAL)
2615 vs->vs_self_healed += psize;
2616 }
2617
2618 vs->vs_ops[type]++;
2619 vs->vs_bytes[type] += psize;
2620
2621 mutex_exit(&vd->vdev_stat_lock);
2622 return;
2623 }
2624
2625 if (flags & ZIO_FLAG_SPECULATIVE)
2626 return;
2627
2628 /*
2629 * If this is an I/O error that is going to be retried, then ignore the
2630 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2631 * hard errors, when in reality they can happen for any number of
2632 * innocuous reasons (bus resets, MPxIO link failure, etc).
2633 */
2634 if (zio->io_error == EIO &&
2635 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2636 return;
2637
2638 /*
2639 * Intent logs writes won't propagate their error to the root
2640 * I/O so don't mark these types of failures as pool-level
2641 * errors.
2642 */
2643 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2644 return;
2645
2646 mutex_enter(&vd->vdev_stat_lock);
2647 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2648 if (zio->io_error == ECKSUM)
2649 vs->vs_checksum_errors++;
2650 else
2651 vs->vs_read_errors++;
2652 }
2653 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2654 vs->vs_write_errors++;
2655 mutex_exit(&vd->vdev_stat_lock);
2656
2657 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2658 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2659 (flags & ZIO_FLAG_SCAN_THREAD) ||
2660 spa->spa_claiming)) {
2661 /*
2662 * This is either a normal write (not a repair), or it's
2663 * a repair induced by the scrub thread, or it's a repair
2664 * made by zil_claim() during spa_load() in the first txg.
2665 * In the normal case, we commit the DTL change in the same
2666 * txg as the block was born. In the scrub-induced repair
2667 * case, we know that scrubs run in first-pass syncing context,
2668 * so we commit the DTL change in spa_syncing_txg(spa).
2669 * In the zil_claim() case, we commit in spa_first_txg(spa).
2670 *
2671 * We currently do not make DTL entries for failed spontaneous
2672 * self-healing writes triggered by normal (non-scrubbing)
2673 * reads, because we have no transactional context in which to
2674 * do so -- and it's not clear that it'd be desirable anyway.
2675 */
2676 if (vd->vdev_ops->vdev_op_leaf) {
2677 uint64_t commit_txg = txg;
2678 if (flags & ZIO_FLAG_SCAN_THREAD) {
2679 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2680 ASSERT(spa_sync_pass(spa) == 1);
2681 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2682 commit_txg = spa_syncing_txg(spa);
2683 } else if (spa->spa_claiming) {
2684 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2685 commit_txg = spa_first_txg(spa);
2686 }
2687 ASSERT(commit_txg >= spa_syncing_txg(spa));
2688 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2689 return;
2690 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2691 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2692 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2693 }
2694 if (vd != rvd)
2695 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2696 }
2697 }
2698
2699 /*
2700 * Update the in-core space usage stats for this vdev, its metaslab class,
2701 * and the root vdev.
2702 */
2703 void
2704 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2705 int64_t space_delta)
2706 {
2707 int64_t dspace_delta = space_delta;
2708 spa_t *spa = vd->vdev_spa;
2709 vdev_t *rvd = spa->spa_root_vdev;
2710 metaslab_group_t *mg = vd->vdev_mg;
2711 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2712
2713 ASSERT(vd == vd->vdev_top);
2714
2715 /*
2716 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2717 * factor. We must calculate this here and not at the root vdev
2718 * because the root vdev's psize-to-asize is simply the max of its
2719 * childrens', thus not accurate enough for us.
2720 */
2721 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2722 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2723 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2724 vd->vdev_deflate_ratio;
2725
2726 mutex_enter(&vd->vdev_stat_lock);
2727 vd->vdev_stat.vs_alloc += alloc_delta;
2728 vd->vdev_stat.vs_space += space_delta;
2729 vd->vdev_stat.vs_dspace += dspace_delta;
2730 mutex_exit(&vd->vdev_stat_lock);
2731
2732 if (mc == spa_normal_class(spa)) {
2733 mutex_enter(&rvd->vdev_stat_lock);
2734 rvd->vdev_stat.vs_alloc += alloc_delta;
2735 rvd->vdev_stat.vs_space += space_delta;
2736 rvd->vdev_stat.vs_dspace += dspace_delta;
2737 mutex_exit(&rvd->vdev_stat_lock);
2738 }
2739
2740 if (mc != NULL) {
2741 ASSERT(rvd == vd->vdev_parent);
2742 ASSERT(vd->vdev_ms_count != 0);
2743
2744 metaslab_class_space_update(mc,
2745 alloc_delta, defer_delta, space_delta, dspace_delta);
2746 }
2747 }
2748
2749 /*
2750 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2751 * so that it will be written out next time the vdev configuration is synced.
2752 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2753 */
2754 void
2755 vdev_config_dirty(vdev_t *vd)
2756 {
2757 spa_t *spa = vd->vdev_spa;
2758 vdev_t *rvd = spa->spa_root_vdev;
2759 int c;
2760
2761 ASSERT(spa_writeable(spa));
2762
2763 /*
2764 * If this is an aux vdev (as with l2cache and spare devices), then we
2765 * update the vdev config manually and set the sync flag.
2766 */
2767 if (vd->vdev_aux != NULL) {
2768 spa_aux_vdev_t *sav = vd->vdev_aux;
2769 nvlist_t **aux;
2770 uint_t naux;
2771
2772 for (c = 0; c < sav->sav_count; c++) {
2773 if (sav->sav_vdevs[c] == vd)
2774 break;
2775 }
2776
2777 if (c == sav->sav_count) {
2778 /*
2779 * We're being removed. There's nothing more to do.
2780 */
2781 ASSERT(sav->sav_sync == B_TRUE);
2782 return;
2783 }
2784
2785 sav->sav_sync = B_TRUE;
2786
2787 if (nvlist_lookup_nvlist_array(sav->sav_config,
2788 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2789 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2790 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2791 }
2792
2793 ASSERT(c < naux);
2794
2795 /*
2796 * Setting the nvlist in the middle if the array is a little
2797 * sketchy, but it will work.
2798 */
2799 nvlist_free(aux[c]);
2800 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2801
2802 return;
2803 }
2804
2805 /*
2806 * The dirty list is protected by the SCL_CONFIG lock. The caller
2807 * must either hold SCL_CONFIG as writer, or must be the sync thread
2808 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2809 * so this is sufficient to ensure mutual exclusion.
2810 */
2811 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2812 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2813 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2814
2815 if (vd == rvd) {
2816 for (c = 0; c < rvd->vdev_children; c++)
2817 vdev_config_dirty(rvd->vdev_child[c]);
2818 } else {
2819 ASSERT(vd == vd->vdev_top);
2820
2821 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2822 !vd->vdev_ishole)
2823 list_insert_head(&spa->spa_config_dirty_list, vd);
2824 }
2825 }
2826
2827 void
2828 vdev_config_clean(vdev_t *vd)
2829 {
2830 spa_t *spa = vd->vdev_spa;
2831
2832 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2833 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2834 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2835
2836 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2837 list_remove(&spa->spa_config_dirty_list, vd);
2838 }
2839
2840 /*
2841 * Mark a top-level vdev's state as dirty, so that the next pass of
2842 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2843 * the state changes from larger config changes because they require
2844 * much less locking, and are often needed for administrative actions.
2845 */
2846 void
2847 vdev_state_dirty(vdev_t *vd)
2848 {
2849 spa_t *spa = vd->vdev_spa;
2850
2851 ASSERT(spa_writeable(spa));
2852 ASSERT(vd == vd->vdev_top);
2853
2854 /*
2855 * The state list is protected by the SCL_STATE lock. The caller
2856 * must either hold SCL_STATE as writer, or must be the sync thread
2857 * (which holds SCL_STATE as reader). There's only one sync thread,
2858 * so this is sufficient to ensure mutual exclusion.
2859 */
2860 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2861 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2862 spa_config_held(spa, SCL_STATE, RW_READER)));
2863
2864 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2865 list_insert_head(&spa->spa_state_dirty_list, vd);
2866 }
2867
2868 void
2869 vdev_state_clean(vdev_t *vd)
2870 {
2871 spa_t *spa = vd->vdev_spa;
2872
2873 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2874 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2875 spa_config_held(spa, SCL_STATE, RW_READER)));
2876
2877 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2878 list_remove(&spa->spa_state_dirty_list, vd);
2879 }
2880
2881 /*
2882 * Propagate vdev state up from children to parent.
2883 */
2884 void
2885 vdev_propagate_state(vdev_t *vd)
2886 {
2887 spa_t *spa = vd->vdev_spa;
2888 vdev_t *rvd = spa->spa_root_vdev;
2889 int degraded = 0, faulted = 0;
2890 int corrupted = 0;
2891 vdev_t *child;
2892 int c;
2893
2894 if (vd->vdev_children > 0) {
2895 for (c = 0; c < vd->vdev_children; c++) {
2896 child = vd->vdev_child[c];
2897
2898 /*
2899 * Don't factor holes into the decision.
2900 */
2901 if (child->vdev_ishole)
2902 continue;
2903
2904 if (!vdev_readable(child) ||
2905 (!vdev_writeable(child) && spa_writeable(spa))) {
2906 /*
2907 * Root special: if there is a top-level log
2908 * device, treat the root vdev as if it were
2909 * degraded.
2910 */
2911 if (child->vdev_islog && vd == rvd)
2912 degraded++;
2913 else
2914 faulted++;
2915 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2916 degraded++;
2917 }
2918
2919 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2920 corrupted++;
2921 }
2922
2923 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2924
2925 /*
2926 * Root special: if there is a top-level vdev that cannot be
2927 * opened due to corrupted metadata, then propagate the root
2928 * vdev's aux state as 'corrupt' rather than 'insufficient
2929 * replicas'.
2930 */
2931 if (corrupted && vd == rvd &&
2932 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2933 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2934 VDEV_AUX_CORRUPT_DATA);
2935 }
2936
2937 if (vd->vdev_parent)
2938 vdev_propagate_state(vd->vdev_parent);
2939 }
2940
2941 /*
2942 * Set a vdev's state. If this is during an open, we don't update the parent
2943 * state, because we're in the process of opening children depth-first.
2944 * Otherwise, we propagate the change to the parent.
2945 *
2946 * If this routine places a device in a faulted state, an appropriate ereport is
2947 * generated.
2948 */
2949 void
2950 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2951 {
2952 uint64_t save_state;
2953 spa_t *spa = vd->vdev_spa;
2954
2955 if (state == vd->vdev_state) {
2956 vd->vdev_stat.vs_aux = aux;
2957 return;
2958 }
2959
2960 save_state = vd->vdev_state;
2961
2962 vd->vdev_state = state;
2963 vd->vdev_stat.vs_aux = aux;
2964
2965 /*
2966 * If we are setting the vdev state to anything but an open state, then
2967 * always close the underlying device unless the device has requested
2968 * a delayed close (i.e. we're about to remove or fault the device).
2969 * Otherwise, we keep accessible but invalid devices open forever.
2970 * We don't call vdev_close() itself, because that implies some extra
2971 * checks (offline, etc) that we don't want here. This is limited to
2972 * leaf devices, because otherwise closing the device will affect other
2973 * children.
2974 */
2975 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2976 vd->vdev_ops->vdev_op_leaf)
2977 vd->vdev_ops->vdev_op_close(vd);
2978
2979 /*
2980 * If we have brought this vdev back into service, we need
2981 * to notify fmd so that it can gracefully repair any outstanding
2982 * cases due to a missing device. We do this in all cases, even those
2983 * that probably don't correlate to a repaired fault. This is sure to
2984 * catch all cases, and we let the zfs-retire agent sort it out. If
2985 * this is a transient state it's OK, as the retire agent will
2986 * double-check the state of the vdev before repairing it.
2987 */
2988 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2989 vd->vdev_prevstate != state)
2990 zfs_post_state_change(spa, vd);
2991
2992 if (vd->vdev_removed &&
2993 state == VDEV_STATE_CANT_OPEN &&
2994 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2995 /*
2996 * If the previous state is set to VDEV_STATE_REMOVED, then this
2997 * device was previously marked removed and someone attempted to
2998 * reopen it. If this failed due to a nonexistent device, then
2999 * keep the device in the REMOVED state. We also let this be if
3000 * it is one of our special test online cases, which is only
3001 * attempting to online the device and shouldn't generate an FMA
3002 * fault.
3003 */
3004 vd->vdev_state = VDEV_STATE_REMOVED;
3005 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3006 } else if (state == VDEV_STATE_REMOVED) {
3007 vd->vdev_removed = B_TRUE;
3008 } else if (state == VDEV_STATE_CANT_OPEN) {
3009 /*
3010 * If we fail to open a vdev during an import or recovery, we
3011 * mark it as "not available", which signifies that it was
3012 * never there to begin with. Failure to open such a device
3013 * is not considered an error.
3014 */
3015 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3016 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3017 vd->vdev_ops->vdev_op_leaf)
3018 vd->vdev_not_present = 1;
3019
3020 /*
3021 * Post the appropriate ereport. If the 'prevstate' field is
3022 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3023 * that this is part of a vdev_reopen(). In this case, we don't
3024 * want to post the ereport if the device was already in the
3025 * CANT_OPEN state beforehand.
3026 *
3027 * If the 'checkremove' flag is set, then this is an attempt to
3028 * online the device in response to an insertion event. If we
3029 * hit this case, then we have detected an insertion event for a
3030 * faulted or offline device that wasn't in the removed state.
3031 * In this scenario, we don't post an ereport because we are
3032 * about to replace the device, or attempt an online with
3033 * vdev_forcefault, which will generate the fault for us.
3034 */
3035 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3036 !vd->vdev_not_present && !vd->vdev_checkremove &&
3037 vd != spa->spa_root_vdev) {
3038 const char *class;
3039
3040 switch (aux) {
3041 case VDEV_AUX_OPEN_FAILED:
3042 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3043 break;
3044 case VDEV_AUX_CORRUPT_DATA:
3045 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3046 break;
3047 case VDEV_AUX_NO_REPLICAS:
3048 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3049 break;
3050 case VDEV_AUX_BAD_GUID_SUM:
3051 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3052 break;
3053 case VDEV_AUX_TOO_SMALL:
3054 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3055 break;
3056 case VDEV_AUX_BAD_LABEL:
3057 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3058 break;
3059 default:
3060 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3061 }
3062
3063 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3064 }
3065
3066 /* Erase any notion of persistent removed state */
3067 vd->vdev_removed = B_FALSE;
3068 } else {
3069 vd->vdev_removed = B_FALSE;
3070 }
3071
3072 if (!isopen && vd->vdev_parent)
3073 vdev_propagate_state(vd->vdev_parent);
3074 }
3075
3076 /*
3077 * Check the vdev configuration to ensure that it's capable of supporting
3078 * a root pool.
3079 */
3080 boolean_t
3081 vdev_is_bootable(vdev_t *vd)
3082 {
3083 #if defined(__sun__) || defined(__sun)
3084 /*
3085 * Currently, we do not support RAID-Z or partial configuration.
3086 * In addition, only a single top-level vdev is allowed and none of the
3087 * leaves can be wholedisks.
3088 */
3089 int c;
3090
3091 if (!vd->vdev_ops->vdev_op_leaf) {
3092 char *vdev_type = vd->vdev_ops->vdev_op_type;
3093
3094 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3095 vd->vdev_children > 1) {
3096 return (B_FALSE);
3097 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3098 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3099 return (B_FALSE);
3100 }
3101 } else if (vd->vdev_wholedisk == 1) {
3102 return (B_FALSE);
3103 }
3104
3105 for (c = 0; c < vd->vdev_children; c++) {
3106 if (!vdev_is_bootable(vd->vdev_child[c]))
3107 return (B_FALSE);
3108 }
3109 #endif /* __sun__ || __sun */
3110 return (B_TRUE);
3111 }
3112
3113 /*
3114 * Load the state from the original vdev tree (ovd) which
3115 * we've retrieved from the MOS config object. If the original
3116 * vdev was offline or faulted then we transfer that state to the
3117 * device in the current vdev tree (nvd).
3118 */
3119 void
3120 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3121 {
3122 int c;
3123
3124 ASSERT(nvd->vdev_top->vdev_islog);
3125 ASSERT(spa_config_held(nvd->vdev_spa,
3126 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3127 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3128
3129 for (c = 0; c < nvd->vdev_children; c++)
3130 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3131
3132 if (nvd->vdev_ops->vdev_op_leaf) {
3133 /*
3134 * Restore the persistent vdev state
3135 */
3136 nvd->vdev_offline = ovd->vdev_offline;
3137 nvd->vdev_faulted = ovd->vdev_faulted;
3138 nvd->vdev_degraded = ovd->vdev_degraded;
3139 nvd->vdev_removed = ovd->vdev_removed;
3140 }
3141 }
3142
3143 /*
3144 * Determine if a log device has valid content. If the vdev was
3145 * removed or faulted in the MOS config then we know that
3146 * the content on the log device has already been written to the pool.
3147 */
3148 boolean_t
3149 vdev_log_state_valid(vdev_t *vd)
3150 {
3151 int c;
3152
3153 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3154 !vd->vdev_removed)
3155 return (B_TRUE);
3156
3157 for (c = 0; c < vd->vdev_children; c++)
3158 if (vdev_log_state_valid(vd->vdev_child[c]))
3159 return (B_TRUE);
3160
3161 return (B_FALSE);
3162 }
3163
3164 /*
3165 * Expand a vdev if possible.
3166 */
3167 void
3168 vdev_expand(vdev_t *vd, uint64_t txg)
3169 {
3170 ASSERT(vd->vdev_top == vd);
3171 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3172
3173 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3174 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3175 vdev_config_dirty(vd);
3176 }
3177 }
3178
3179 /*
3180 * Split a vdev.
3181 */
3182 void
3183 vdev_split(vdev_t *vd)
3184 {
3185 vdev_t *cvd, *pvd = vd->vdev_parent;
3186
3187 vdev_remove_child(pvd, vd);
3188 vdev_compact_children(pvd);
3189
3190 cvd = pvd->vdev_child[0];
3191 if (pvd->vdev_children == 1) {
3192 vdev_remove_parent(cvd);
3193 cvd->vdev_splitting = B_TRUE;
3194 }
3195 vdev_propagate_state(cvd);
3196 }
3197
3198 #if defined(_KERNEL) && defined(HAVE_SPL)
3199 EXPORT_SYMBOL(vdev_fault);
3200 EXPORT_SYMBOL(vdev_degrade);
3201 EXPORT_SYMBOL(vdev_online);
3202 EXPORT_SYMBOL(vdev_offline);
3203 EXPORT_SYMBOL(vdev_clear);
3204
3205 module_param(zfs_scrub_limit, int, 0644);
3206 MODULE_PARM_DESC(zfs_scrub_limit, "Max scrub/resilver I/O per leaf vdev");
3207 #endif