]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Configure zed's diagnosis engine with vdev properties
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, Intel Corporation.
30 * Copyright (c) 2019, Datto Inc. All rights reserved.
31 * Copyright (c) 2021, Klara Inc.
32 * Copyright [2021] Hewlett Packard Enterprise Development LP
33 */
34
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa.h>
38 #include <sys/spa_impl.h>
39 #include <sys/bpobj.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/vdev_rebuild.h>
45 #include <sys/vdev_draid.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/space_map.h>
50 #include <sys/space_reftree.h>
51 #include <sys/zio.h>
52 #include <sys/zap.h>
53 #include <sys/fs/zfs.h>
54 #include <sys/arc.h>
55 #include <sys/zil.h>
56 #include <sys/dsl_scan.h>
57 #include <sys/vdev_raidz.h>
58 #include <sys/abd.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_trim.h>
61 #include <sys/zvol.h>
62 #include <sys/zfs_ratelimit.h>
63 #include "zfs_prop.h"
64
65 /*
66 * One metaslab from each (normal-class) vdev is used by the ZIL. These are
67 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
68 * part of the spa_embedded_log_class. The metaslab with the most free space
69 * in each vdev is selected for this purpose when the pool is opened (or a
70 * vdev is added). See vdev_metaslab_init().
71 *
72 * Log blocks can be allocated from the following locations. Each one is tried
73 * in order until the allocation succeeds:
74 * 1. dedicated log vdevs, aka "slog" (spa_log_class)
75 * 2. embedded slog metaslabs (spa_embedded_log_class)
76 * 3. other metaslabs in normal vdevs (spa_normal_class)
77 *
78 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
79 * than this number of metaslabs in the vdev. This ensures that we don't set
80 * aside an unreasonable amount of space for the ZIL. If set to less than
81 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
82 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
83 */
84 static uint_t zfs_embedded_slog_min_ms = 64;
85
86 /* default target for number of metaslabs per top-level vdev */
87 static uint_t zfs_vdev_default_ms_count = 200;
88
89 /* minimum number of metaslabs per top-level vdev */
90 static uint_t zfs_vdev_min_ms_count = 16;
91
92 /* practical upper limit of total metaslabs per top-level vdev */
93 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
94
95 /* lower limit for metaslab size (512M) */
96 static uint_t zfs_vdev_default_ms_shift = 29;
97
98 /* upper limit for metaslab size (16G) */
99 static const uint_t zfs_vdev_max_ms_shift = 34;
100
101 int vdev_validate_skip = B_FALSE;
102
103 /*
104 * Since the DTL space map of a vdev is not expected to have a lot of
105 * entries, we default its block size to 4K.
106 */
107 int zfs_vdev_dtl_sm_blksz = (1 << 12);
108
109 /*
110 * Rate limit slow IO (delay) events to this many per second.
111 */
112 static unsigned int zfs_slow_io_events_per_second = 20;
113
114 /*
115 * Rate limit checksum events after this many checksum errors per second.
116 */
117 static unsigned int zfs_checksum_events_per_second = 20;
118
119 /*
120 * Ignore errors during scrub/resilver. Allows to work around resilver
121 * upon import when there are pool errors.
122 */
123 static int zfs_scan_ignore_errors = 0;
124
125 /*
126 * vdev-wide space maps that have lots of entries written to them at
127 * the end of each transaction can benefit from a higher I/O bandwidth
128 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
129 */
130 int zfs_vdev_standard_sm_blksz = (1 << 17);
131
132 /*
133 * Tunable parameter for debugging or performance analysis. Setting this
134 * will cause pool corruption on power loss if a volatile out-of-order
135 * write cache is enabled.
136 */
137 int zfs_nocacheflush = 0;
138
139 /*
140 * Maximum and minimum ashift values that can be automatically set based on
141 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX
142 * is higher than the maximum value, it is intentionally limited here to not
143 * excessively impact pool space efficiency. Higher ashift values may still
144 * be forced by vdev logical ashift or by user via ashift property, but won't
145 * be set automatically as a performance optimization.
146 */
147 uint_t zfs_vdev_max_auto_ashift = 14;
148 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
149
150 void
151 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
152 {
153 va_list adx;
154 char buf[256];
155
156 va_start(adx, fmt);
157 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
158 va_end(adx);
159
160 if (vd->vdev_path != NULL) {
161 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
162 vd->vdev_path, buf);
163 } else {
164 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
165 vd->vdev_ops->vdev_op_type,
166 (u_longlong_t)vd->vdev_id,
167 (u_longlong_t)vd->vdev_guid, buf);
168 }
169 }
170
171 void
172 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
173 {
174 char state[20];
175
176 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
177 zfs_dbgmsg("%*svdev %llu: %s", indent, "",
178 (u_longlong_t)vd->vdev_id,
179 vd->vdev_ops->vdev_op_type);
180 return;
181 }
182
183 switch (vd->vdev_state) {
184 case VDEV_STATE_UNKNOWN:
185 (void) snprintf(state, sizeof (state), "unknown");
186 break;
187 case VDEV_STATE_CLOSED:
188 (void) snprintf(state, sizeof (state), "closed");
189 break;
190 case VDEV_STATE_OFFLINE:
191 (void) snprintf(state, sizeof (state), "offline");
192 break;
193 case VDEV_STATE_REMOVED:
194 (void) snprintf(state, sizeof (state), "removed");
195 break;
196 case VDEV_STATE_CANT_OPEN:
197 (void) snprintf(state, sizeof (state), "can't open");
198 break;
199 case VDEV_STATE_FAULTED:
200 (void) snprintf(state, sizeof (state), "faulted");
201 break;
202 case VDEV_STATE_DEGRADED:
203 (void) snprintf(state, sizeof (state), "degraded");
204 break;
205 case VDEV_STATE_HEALTHY:
206 (void) snprintf(state, sizeof (state), "healthy");
207 break;
208 default:
209 (void) snprintf(state, sizeof (state), "<state %u>",
210 (uint_t)vd->vdev_state);
211 }
212
213 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
214 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
215 vd->vdev_islog ? " (log)" : "",
216 (u_longlong_t)vd->vdev_guid,
217 vd->vdev_path ? vd->vdev_path : "N/A", state);
218
219 for (uint64_t i = 0; i < vd->vdev_children; i++)
220 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
221 }
222
223 /*
224 * Virtual device management.
225 */
226
227 static vdev_ops_t *const vdev_ops_table[] = {
228 &vdev_root_ops,
229 &vdev_raidz_ops,
230 &vdev_draid_ops,
231 &vdev_draid_spare_ops,
232 &vdev_mirror_ops,
233 &vdev_replacing_ops,
234 &vdev_spare_ops,
235 &vdev_disk_ops,
236 &vdev_file_ops,
237 &vdev_missing_ops,
238 &vdev_hole_ops,
239 &vdev_indirect_ops,
240 NULL
241 };
242
243 /*
244 * Given a vdev type, return the appropriate ops vector.
245 */
246 static vdev_ops_t *
247 vdev_getops(const char *type)
248 {
249 vdev_ops_t *ops, *const *opspp;
250
251 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
252 if (strcmp(ops->vdev_op_type, type) == 0)
253 break;
254
255 return (ops);
256 }
257
258 /*
259 * Given a vdev and a metaslab class, find which metaslab group we're
260 * interested in. All vdevs may belong to two different metaslab classes.
261 * Dedicated slog devices use only the primary metaslab group, rather than a
262 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
263 */
264 metaslab_group_t *
265 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
266 {
267 if (mc == spa_embedded_log_class(vd->vdev_spa) &&
268 vd->vdev_log_mg != NULL)
269 return (vd->vdev_log_mg);
270 else
271 return (vd->vdev_mg);
272 }
273
274 void
275 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
276 range_seg64_t *physical_rs, range_seg64_t *remain_rs)
277 {
278 (void) vd, (void) remain_rs;
279
280 physical_rs->rs_start = logical_rs->rs_start;
281 physical_rs->rs_end = logical_rs->rs_end;
282 }
283
284 /*
285 * Derive the enumerated allocation bias from string input.
286 * String origin is either the per-vdev zap or zpool(8).
287 */
288 static vdev_alloc_bias_t
289 vdev_derive_alloc_bias(const char *bias)
290 {
291 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
292
293 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
294 alloc_bias = VDEV_BIAS_LOG;
295 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
296 alloc_bias = VDEV_BIAS_SPECIAL;
297 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
298 alloc_bias = VDEV_BIAS_DEDUP;
299
300 return (alloc_bias);
301 }
302
303 /*
304 * Default asize function: return the MAX of psize with the asize of
305 * all children. This is what's used by anything other than RAID-Z.
306 */
307 uint64_t
308 vdev_default_asize(vdev_t *vd, uint64_t psize)
309 {
310 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
311 uint64_t csize;
312
313 for (int c = 0; c < vd->vdev_children; c++) {
314 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
315 asize = MAX(asize, csize);
316 }
317
318 return (asize);
319 }
320
321 uint64_t
322 vdev_default_min_asize(vdev_t *vd)
323 {
324 return (vd->vdev_min_asize);
325 }
326
327 /*
328 * Get the minimum allocatable size. We define the allocatable size as
329 * the vdev's asize rounded to the nearest metaslab. This allows us to
330 * replace or attach devices which don't have the same physical size but
331 * can still satisfy the same number of allocations.
332 */
333 uint64_t
334 vdev_get_min_asize(vdev_t *vd)
335 {
336 vdev_t *pvd = vd->vdev_parent;
337
338 /*
339 * If our parent is NULL (inactive spare or cache) or is the root,
340 * just return our own asize.
341 */
342 if (pvd == NULL)
343 return (vd->vdev_asize);
344
345 /*
346 * The top-level vdev just returns the allocatable size rounded
347 * to the nearest metaslab.
348 */
349 if (vd == vd->vdev_top)
350 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
351
352 return (pvd->vdev_ops->vdev_op_min_asize(pvd));
353 }
354
355 void
356 vdev_set_min_asize(vdev_t *vd)
357 {
358 vd->vdev_min_asize = vdev_get_min_asize(vd);
359
360 for (int c = 0; c < vd->vdev_children; c++)
361 vdev_set_min_asize(vd->vdev_child[c]);
362 }
363
364 /*
365 * Get the minimal allocation size for the top-level vdev.
366 */
367 uint64_t
368 vdev_get_min_alloc(vdev_t *vd)
369 {
370 uint64_t min_alloc = 1ULL << vd->vdev_ashift;
371
372 if (vd->vdev_ops->vdev_op_min_alloc != NULL)
373 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
374
375 return (min_alloc);
376 }
377
378 /*
379 * Get the parity level for a top-level vdev.
380 */
381 uint64_t
382 vdev_get_nparity(vdev_t *vd)
383 {
384 uint64_t nparity = 0;
385
386 if (vd->vdev_ops->vdev_op_nparity != NULL)
387 nparity = vd->vdev_ops->vdev_op_nparity(vd);
388
389 return (nparity);
390 }
391
392 static int
393 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
394 {
395 spa_t *spa = vd->vdev_spa;
396 objset_t *mos = spa->spa_meta_objset;
397 uint64_t objid;
398 int err;
399
400 if (vd->vdev_top_zap != 0) {
401 objid = vd->vdev_top_zap;
402 } else if (vd->vdev_leaf_zap != 0) {
403 objid = vd->vdev_leaf_zap;
404 } else {
405 return (EINVAL);
406 }
407
408 err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
409 sizeof (uint64_t), 1, value);
410
411 if (err == ENOENT)
412 *value = vdev_prop_default_numeric(prop);
413
414 return (err);
415 }
416
417 /*
418 * Get the number of data disks for a top-level vdev.
419 */
420 uint64_t
421 vdev_get_ndisks(vdev_t *vd)
422 {
423 uint64_t ndisks = 1;
424
425 if (vd->vdev_ops->vdev_op_ndisks != NULL)
426 ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
427
428 return (ndisks);
429 }
430
431 vdev_t *
432 vdev_lookup_top(spa_t *spa, uint64_t vdev)
433 {
434 vdev_t *rvd = spa->spa_root_vdev;
435
436 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
437
438 if (vdev < rvd->vdev_children) {
439 ASSERT(rvd->vdev_child[vdev] != NULL);
440 return (rvd->vdev_child[vdev]);
441 }
442
443 return (NULL);
444 }
445
446 vdev_t *
447 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
448 {
449 vdev_t *mvd;
450
451 if (vd->vdev_guid == guid)
452 return (vd);
453
454 for (int c = 0; c < vd->vdev_children; c++)
455 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
456 NULL)
457 return (mvd);
458
459 return (NULL);
460 }
461
462 static int
463 vdev_count_leaves_impl(vdev_t *vd)
464 {
465 int n = 0;
466
467 if (vd->vdev_ops->vdev_op_leaf)
468 return (1);
469
470 for (int c = 0; c < vd->vdev_children; c++)
471 n += vdev_count_leaves_impl(vd->vdev_child[c]);
472
473 return (n);
474 }
475
476 int
477 vdev_count_leaves(spa_t *spa)
478 {
479 int rc;
480
481 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
482 rc = vdev_count_leaves_impl(spa->spa_root_vdev);
483 spa_config_exit(spa, SCL_VDEV, FTAG);
484
485 return (rc);
486 }
487
488 void
489 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
490 {
491 size_t oldsize, newsize;
492 uint64_t id = cvd->vdev_id;
493 vdev_t **newchild;
494
495 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
496 ASSERT(cvd->vdev_parent == NULL);
497
498 cvd->vdev_parent = pvd;
499
500 if (pvd == NULL)
501 return;
502
503 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
504
505 oldsize = pvd->vdev_children * sizeof (vdev_t *);
506 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
507 newsize = pvd->vdev_children * sizeof (vdev_t *);
508
509 newchild = kmem_alloc(newsize, KM_SLEEP);
510 if (pvd->vdev_child != NULL) {
511 memcpy(newchild, pvd->vdev_child, oldsize);
512 kmem_free(pvd->vdev_child, oldsize);
513 }
514
515 pvd->vdev_child = newchild;
516 pvd->vdev_child[id] = cvd;
517
518 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
519 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
520
521 /*
522 * Walk up all ancestors to update guid sum.
523 */
524 for (; pvd != NULL; pvd = pvd->vdev_parent)
525 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
526
527 if (cvd->vdev_ops->vdev_op_leaf) {
528 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
529 cvd->vdev_spa->spa_leaf_list_gen++;
530 }
531 }
532
533 void
534 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
535 {
536 int c;
537 uint_t id = cvd->vdev_id;
538
539 ASSERT(cvd->vdev_parent == pvd);
540
541 if (pvd == NULL)
542 return;
543
544 ASSERT(id < pvd->vdev_children);
545 ASSERT(pvd->vdev_child[id] == cvd);
546
547 pvd->vdev_child[id] = NULL;
548 cvd->vdev_parent = NULL;
549
550 for (c = 0; c < pvd->vdev_children; c++)
551 if (pvd->vdev_child[c])
552 break;
553
554 if (c == pvd->vdev_children) {
555 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
556 pvd->vdev_child = NULL;
557 pvd->vdev_children = 0;
558 }
559
560 if (cvd->vdev_ops->vdev_op_leaf) {
561 spa_t *spa = cvd->vdev_spa;
562 list_remove(&spa->spa_leaf_list, cvd);
563 spa->spa_leaf_list_gen++;
564 }
565
566 /*
567 * Walk up all ancestors to update guid sum.
568 */
569 for (; pvd != NULL; pvd = pvd->vdev_parent)
570 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
571 }
572
573 /*
574 * Remove any holes in the child array.
575 */
576 void
577 vdev_compact_children(vdev_t *pvd)
578 {
579 vdev_t **newchild, *cvd;
580 int oldc = pvd->vdev_children;
581 int newc;
582
583 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
584
585 if (oldc == 0)
586 return;
587
588 for (int c = newc = 0; c < oldc; c++)
589 if (pvd->vdev_child[c])
590 newc++;
591
592 if (newc > 0) {
593 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
594
595 for (int c = newc = 0; c < oldc; c++) {
596 if ((cvd = pvd->vdev_child[c]) != NULL) {
597 newchild[newc] = cvd;
598 cvd->vdev_id = newc++;
599 }
600 }
601 } else {
602 newchild = NULL;
603 }
604
605 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
606 pvd->vdev_child = newchild;
607 pvd->vdev_children = newc;
608 }
609
610 /*
611 * Allocate and minimally initialize a vdev_t.
612 */
613 vdev_t *
614 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
615 {
616 vdev_t *vd;
617 vdev_indirect_config_t *vic;
618
619 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
620 vic = &vd->vdev_indirect_config;
621
622 if (spa->spa_root_vdev == NULL) {
623 ASSERT(ops == &vdev_root_ops);
624 spa->spa_root_vdev = vd;
625 spa->spa_load_guid = spa_generate_guid(NULL);
626 }
627
628 if (guid == 0 && ops != &vdev_hole_ops) {
629 if (spa->spa_root_vdev == vd) {
630 /*
631 * The root vdev's guid will also be the pool guid,
632 * which must be unique among all pools.
633 */
634 guid = spa_generate_guid(NULL);
635 } else {
636 /*
637 * Any other vdev's guid must be unique within the pool.
638 */
639 guid = spa_generate_guid(spa);
640 }
641 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
642 }
643
644 vd->vdev_spa = spa;
645 vd->vdev_id = id;
646 vd->vdev_guid = guid;
647 vd->vdev_guid_sum = guid;
648 vd->vdev_ops = ops;
649 vd->vdev_state = VDEV_STATE_CLOSED;
650 vd->vdev_ishole = (ops == &vdev_hole_ops);
651 vic->vic_prev_indirect_vdev = UINT64_MAX;
652
653 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
654 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
655 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
656 0, 0);
657
658 /*
659 * Initialize rate limit structs for events. We rate limit ZIO delay
660 * and checksum events so that we don't overwhelm ZED with thousands
661 * of events when a disk is acting up.
662 */
663 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
664 1);
665 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second,
666 1);
667 zfs_ratelimit_init(&vd->vdev_checksum_rl,
668 &zfs_checksum_events_per_second, 1);
669
670 /*
671 * Default Thresholds for tuning ZED
672 */
673 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
674 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
675 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
676 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
677
678 list_link_init(&vd->vdev_config_dirty_node);
679 list_link_init(&vd->vdev_state_dirty_node);
680 list_link_init(&vd->vdev_initialize_node);
681 list_link_init(&vd->vdev_leaf_node);
682 list_link_init(&vd->vdev_trim_node);
683
684 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
685 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
686 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
687 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
688
689 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
690 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
691 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
692 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
693
694 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
695 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
696 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
697 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
698 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
699 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
700
701 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
702 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
703
704 for (int t = 0; t < DTL_TYPES; t++) {
705 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
706 0);
707 }
708
709 txg_list_create(&vd->vdev_ms_list, spa,
710 offsetof(struct metaslab, ms_txg_node));
711 txg_list_create(&vd->vdev_dtl_list, spa,
712 offsetof(struct vdev, vdev_dtl_node));
713 vd->vdev_stat.vs_timestamp = gethrtime();
714 vdev_queue_init(vd);
715 vdev_cache_init(vd);
716
717 return (vd);
718 }
719
720 /*
721 * Allocate a new vdev. The 'alloctype' is used to control whether we are
722 * creating a new vdev or loading an existing one - the behavior is slightly
723 * different for each case.
724 */
725 int
726 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
727 int alloctype)
728 {
729 vdev_ops_t *ops;
730 char *type;
731 uint64_t guid = 0, islog;
732 vdev_t *vd;
733 vdev_indirect_config_t *vic;
734 char *tmp = NULL;
735 int rc;
736 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
737 boolean_t top_level = (parent && !parent->vdev_parent);
738
739 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
740
741 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
742 return (SET_ERROR(EINVAL));
743
744 if ((ops = vdev_getops(type)) == NULL)
745 return (SET_ERROR(EINVAL));
746
747 /*
748 * If this is a load, get the vdev guid from the nvlist.
749 * Otherwise, vdev_alloc_common() will generate one for us.
750 */
751 if (alloctype == VDEV_ALLOC_LOAD) {
752 uint64_t label_id;
753
754 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
755 label_id != id)
756 return (SET_ERROR(EINVAL));
757
758 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
759 return (SET_ERROR(EINVAL));
760 } else if (alloctype == VDEV_ALLOC_SPARE) {
761 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
762 return (SET_ERROR(EINVAL));
763 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
764 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
765 return (SET_ERROR(EINVAL));
766 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
767 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
768 return (SET_ERROR(EINVAL));
769 }
770
771 /*
772 * The first allocated vdev must be of type 'root'.
773 */
774 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
775 return (SET_ERROR(EINVAL));
776
777 /*
778 * Determine whether we're a log vdev.
779 */
780 islog = 0;
781 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
782 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
783 return (SET_ERROR(ENOTSUP));
784
785 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
786 return (SET_ERROR(ENOTSUP));
787
788 if (top_level && alloctype == VDEV_ALLOC_ADD) {
789 char *bias;
790
791 /*
792 * If creating a top-level vdev, check for allocation
793 * classes input.
794 */
795 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
796 &bias) == 0) {
797 alloc_bias = vdev_derive_alloc_bias(bias);
798
799 /* spa_vdev_add() expects feature to be enabled */
800 if (spa->spa_load_state != SPA_LOAD_CREATE &&
801 !spa_feature_is_enabled(spa,
802 SPA_FEATURE_ALLOCATION_CLASSES)) {
803 return (SET_ERROR(ENOTSUP));
804 }
805 }
806
807 /* spa_vdev_add() expects feature to be enabled */
808 if (ops == &vdev_draid_ops &&
809 spa->spa_load_state != SPA_LOAD_CREATE &&
810 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
811 return (SET_ERROR(ENOTSUP));
812 }
813 }
814
815 /*
816 * Initialize the vdev specific data. This is done before calling
817 * vdev_alloc_common() since it may fail and this simplifies the
818 * error reporting and cleanup code paths.
819 */
820 void *tsd = NULL;
821 if (ops->vdev_op_init != NULL) {
822 rc = ops->vdev_op_init(spa, nv, &tsd);
823 if (rc != 0) {
824 return (rc);
825 }
826 }
827
828 vd = vdev_alloc_common(spa, id, guid, ops);
829 vd->vdev_tsd = tsd;
830 vd->vdev_islog = islog;
831
832 if (top_level && alloc_bias != VDEV_BIAS_NONE)
833 vd->vdev_alloc_bias = alloc_bias;
834
835 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
836 vd->vdev_path = spa_strdup(vd->vdev_path);
837
838 /*
839 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
840 * fault on a vdev and want it to persist across imports (like with
841 * zpool offline -f).
842 */
843 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
844 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
845 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
846 vd->vdev_faulted = 1;
847 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
848 }
849
850 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
851 vd->vdev_devid = spa_strdup(vd->vdev_devid);
852 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
853 &vd->vdev_physpath) == 0)
854 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
855
856 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
857 &vd->vdev_enc_sysfs_path) == 0)
858 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
859
860 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
861 vd->vdev_fru = spa_strdup(vd->vdev_fru);
862
863 /*
864 * Set the whole_disk property. If it's not specified, leave the value
865 * as -1.
866 */
867 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
868 &vd->vdev_wholedisk) != 0)
869 vd->vdev_wholedisk = -1ULL;
870
871 vic = &vd->vdev_indirect_config;
872
873 ASSERT0(vic->vic_mapping_object);
874 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
875 &vic->vic_mapping_object);
876 ASSERT0(vic->vic_births_object);
877 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
878 &vic->vic_births_object);
879 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
880 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
881 &vic->vic_prev_indirect_vdev);
882
883 /*
884 * Look for the 'not present' flag. This will only be set if the device
885 * was not present at the time of import.
886 */
887 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
888 &vd->vdev_not_present);
889
890 /*
891 * Get the alignment requirement.
892 */
893 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
894
895 /*
896 * Retrieve the vdev creation time.
897 */
898 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
899 &vd->vdev_crtxg);
900
901 /*
902 * If we're a top-level vdev, try to load the allocation parameters.
903 */
904 if (top_level &&
905 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
906 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
907 &vd->vdev_ms_array);
908 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
909 &vd->vdev_ms_shift);
910 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
911 &vd->vdev_asize);
912 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
913 &vd->vdev_noalloc);
914 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
915 &vd->vdev_removing);
916 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
917 &vd->vdev_top_zap);
918 } else {
919 ASSERT0(vd->vdev_top_zap);
920 }
921
922 if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
923 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
924 alloctype == VDEV_ALLOC_ADD ||
925 alloctype == VDEV_ALLOC_SPLIT ||
926 alloctype == VDEV_ALLOC_ROOTPOOL);
927 /* Note: metaslab_group_create() is now deferred */
928 }
929
930 if (vd->vdev_ops->vdev_op_leaf &&
931 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
932 (void) nvlist_lookup_uint64(nv,
933 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
934 } else {
935 ASSERT0(vd->vdev_leaf_zap);
936 }
937
938 /*
939 * If we're a leaf vdev, try to load the DTL object and other state.
940 */
941
942 if (vd->vdev_ops->vdev_op_leaf &&
943 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
944 alloctype == VDEV_ALLOC_ROOTPOOL)) {
945 if (alloctype == VDEV_ALLOC_LOAD) {
946 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
947 &vd->vdev_dtl_object);
948 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
949 &vd->vdev_unspare);
950 }
951
952 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
953 uint64_t spare = 0;
954
955 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
956 &spare) == 0 && spare)
957 spa_spare_add(vd);
958 }
959
960 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
961 &vd->vdev_offline);
962
963 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
964 &vd->vdev_resilver_txg);
965
966 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
967 &vd->vdev_rebuild_txg);
968
969 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
970 vdev_defer_resilver(vd);
971
972 /*
973 * In general, when importing a pool we want to ignore the
974 * persistent fault state, as the diagnosis made on another
975 * system may not be valid in the current context. The only
976 * exception is if we forced a vdev to a persistently faulted
977 * state with 'zpool offline -f'. The persistent fault will
978 * remain across imports until cleared.
979 *
980 * Local vdevs will remain in the faulted state.
981 */
982 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
983 spa_load_state(spa) == SPA_LOAD_IMPORT) {
984 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
985 &vd->vdev_faulted);
986 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
987 &vd->vdev_degraded);
988 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
989 &vd->vdev_removed);
990
991 if (vd->vdev_faulted || vd->vdev_degraded) {
992 char *aux;
993
994 vd->vdev_label_aux =
995 VDEV_AUX_ERR_EXCEEDED;
996 if (nvlist_lookup_string(nv,
997 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
998 strcmp(aux, "external") == 0)
999 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
1000 else
1001 vd->vdev_faulted = 0ULL;
1002 }
1003 }
1004 }
1005
1006 /*
1007 * Add ourselves to the parent's list of children.
1008 */
1009 vdev_add_child(parent, vd);
1010
1011 *vdp = vd;
1012
1013 return (0);
1014 }
1015
1016 void
1017 vdev_free(vdev_t *vd)
1018 {
1019 spa_t *spa = vd->vdev_spa;
1020
1021 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1022 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1023 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1024 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1025
1026 /*
1027 * Scan queues are normally destroyed at the end of a scan. If the
1028 * queue exists here, that implies the vdev is being removed while
1029 * the scan is still running.
1030 */
1031 if (vd->vdev_scan_io_queue != NULL) {
1032 mutex_enter(&vd->vdev_scan_io_queue_lock);
1033 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
1034 vd->vdev_scan_io_queue = NULL;
1035 mutex_exit(&vd->vdev_scan_io_queue_lock);
1036 }
1037
1038 /*
1039 * vdev_free() implies closing the vdev first. This is simpler than
1040 * trying to ensure complicated semantics for all callers.
1041 */
1042 vdev_close(vd);
1043
1044 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1045 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1046
1047 /*
1048 * Free all children.
1049 */
1050 for (int c = 0; c < vd->vdev_children; c++)
1051 vdev_free(vd->vdev_child[c]);
1052
1053 ASSERT(vd->vdev_child == NULL);
1054 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1055
1056 if (vd->vdev_ops->vdev_op_fini != NULL)
1057 vd->vdev_ops->vdev_op_fini(vd);
1058
1059 /*
1060 * Discard allocation state.
1061 */
1062 if (vd->vdev_mg != NULL) {
1063 vdev_metaslab_fini(vd);
1064 metaslab_group_destroy(vd->vdev_mg);
1065 vd->vdev_mg = NULL;
1066 }
1067 if (vd->vdev_log_mg != NULL) {
1068 ASSERT0(vd->vdev_ms_count);
1069 metaslab_group_destroy(vd->vdev_log_mg);
1070 vd->vdev_log_mg = NULL;
1071 }
1072
1073 ASSERT0(vd->vdev_stat.vs_space);
1074 ASSERT0(vd->vdev_stat.vs_dspace);
1075 ASSERT0(vd->vdev_stat.vs_alloc);
1076
1077 /*
1078 * Remove this vdev from its parent's child list.
1079 */
1080 vdev_remove_child(vd->vdev_parent, vd);
1081
1082 ASSERT(vd->vdev_parent == NULL);
1083 ASSERT(!list_link_active(&vd->vdev_leaf_node));
1084
1085 /*
1086 * Clean up vdev structure.
1087 */
1088 vdev_queue_fini(vd);
1089 vdev_cache_fini(vd);
1090
1091 if (vd->vdev_path)
1092 spa_strfree(vd->vdev_path);
1093 if (vd->vdev_devid)
1094 spa_strfree(vd->vdev_devid);
1095 if (vd->vdev_physpath)
1096 spa_strfree(vd->vdev_physpath);
1097
1098 if (vd->vdev_enc_sysfs_path)
1099 spa_strfree(vd->vdev_enc_sysfs_path);
1100
1101 if (vd->vdev_fru)
1102 spa_strfree(vd->vdev_fru);
1103
1104 if (vd->vdev_isspare)
1105 spa_spare_remove(vd);
1106 if (vd->vdev_isl2cache)
1107 spa_l2cache_remove(vd);
1108
1109 txg_list_destroy(&vd->vdev_ms_list);
1110 txg_list_destroy(&vd->vdev_dtl_list);
1111
1112 mutex_enter(&vd->vdev_dtl_lock);
1113 space_map_close(vd->vdev_dtl_sm);
1114 for (int t = 0; t < DTL_TYPES; t++) {
1115 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1116 range_tree_destroy(vd->vdev_dtl[t]);
1117 }
1118 mutex_exit(&vd->vdev_dtl_lock);
1119
1120 EQUIV(vd->vdev_indirect_births != NULL,
1121 vd->vdev_indirect_mapping != NULL);
1122 if (vd->vdev_indirect_births != NULL) {
1123 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1124 vdev_indirect_births_close(vd->vdev_indirect_births);
1125 }
1126
1127 if (vd->vdev_obsolete_sm != NULL) {
1128 ASSERT(vd->vdev_removing ||
1129 vd->vdev_ops == &vdev_indirect_ops);
1130 space_map_close(vd->vdev_obsolete_sm);
1131 vd->vdev_obsolete_sm = NULL;
1132 }
1133 range_tree_destroy(vd->vdev_obsolete_segments);
1134 rw_destroy(&vd->vdev_indirect_rwlock);
1135 mutex_destroy(&vd->vdev_obsolete_lock);
1136
1137 mutex_destroy(&vd->vdev_dtl_lock);
1138 mutex_destroy(&vd->vdev_stat_lock);
1139 mutex_destroy(&vd->vdev_probe_lock);
1140 mutex_destroy(&vd->vdev_scan_io_queue_lock);
1141
1142 mutex_destroy(&vd->vdev_initialize_lock);
1143 mutex_destroy(&vd->vdev_initialize_io_lock);
1144 cv_destroy(&vd->vdev_initialize_io_cv);
1145 cv_destroy(&vd->vdev_initialize_cv);
1146
1147 mutex_destroy(&vd->vdev_trim_lock);
1148 mutex_destroy(&vd->vdev_autotrim_lock);
1149 mutex_destroy(&vd->vdev_trim_io_lock);
1150 cv_destroy(&vd->vdev_trim_cv);
1151 cv_destroy(&vd->vdev_autotrim_cv);
1152 cv_destroy(&vd->vdev_trim_io_cv);
1153
1154 mutex_destroy(&vd->vdev_rebuild_lock);
1155 cv_destroy(&vd->vdev_rebuild_cv);
1156
1157 zfs_ratelimit_fini(&vd->vdev_delay_rl);
1158 zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1159 zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1160
1161 if (vd == spa->spa_root_vdev)
1162 spa->spa_root_vdev = NULL;
1163
1164 kmem_free(vd, sizeof (vdev_t));
1165 }
1166
1167 /*
1168 * Transfer top-level vdev state from svd to tvd.
1169 */
1170 static void
1171 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1172 {
1173 spa_t *spa = svd->vdev_spa;
1174 metaslab_t *msp;
1175 vdev_t *vd;
1176 int t;
1177
1178 ASSERT(tvd == tvd->vdev_top);
1179
1180 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
1181 tvd->vdev_ms_array = svd->vdev_ms_array;
1182 tvd->vdev_ms_shift = svd->vdev_ms_shift;
1183 tvd->vdev_ms_count = svd->vdev_ms_count;
1184 tvd->vdev_top_zap = svd->vdev_top_zap;
1185
1186 svd->vdev_ms_array = 0;
1187 svd->vdev_ms_shift = 0;
1188 svd->vdev_ms_count = 0;
1189 svd->vdev_top_zap = 0;
1190
1191 if (tvd->vdev_mg)
1192 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1193 if (tvd->vdev_log_mg)
1194 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1195 tvd->vdev_mg = svd->vdev_mg;
1196 tvd->vdev_log_mg = svd->vdev_log_mg;
1197 tvd->vdev_ms = svd->vdev_ms;
1198
1199 svd->vdev_mg = NULL;
1200 svd->vdev_log_mg = NULL;
1201 svd->vdev_ms = NULL;
1202
1203 if (tvd->vdev_mg != NULL)
1204 tvd->vdev_mg->mg_vd = tvd;
1205 if (tvd->vdev_log_mg != NULL)
1206 tvd->vdev_log_mg->mg_vd = tvd;
1207
1208 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1209 svd->vdev_checkpoint_sm = NULL;
1210
1211 tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1212 svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1213
1214 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1215 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1216 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1217
1218 svd->vdev_stat.vs_alloc = 0;
1219 svd->vdev_stat.vs_space = 0;
1220 svd->vdev_stat.vs_dspace = 0;
1221
1222 /*
1223 * State which may be set on a top-level vdev that's in the
1224 * process of being removed.
1225 */
1226 ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1227 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1228 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1229 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1230 ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1231 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1232 ASSERT0(tvd->vdev_noalloc);
1233 ASSERT0(tvd->vdev_removing);
1234 ASSERT0(tvd->vdev_rebuilding);
1235 tvd->vdev_noalloc = svd->vdev_noalloc;
1236 tvd->vdev_removing = svd->vdev_removing;
1237 tvd->vdev_rebuilding = svd->vdev_rebuilding;
1238 tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1239 tvd->vdev_indirect_config = svd->vdev_indirect_config;
1240 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1241 tvd->vdev_indirect_births = svd->vdev_indirect_births;
1242 range_tree_swap(&svd->vdev_obsolete_segments,
1243 &tvd->vdev_obsolete_segments);
1244 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1245 svd->vdev_indirect_config.vic_mapping_object = 0;
1246 svd->vdev_indirect_config.vic_births_object = 0;
1247 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1248 svd->vdev_indirect_mapping = NULL;
1249 svd->vdev_indirect_births = NULL;
1250 svd->vdev_obsolete_sm = NULL;
1251 svd->vdev_noalloc = 0;
1252 svd->vdev_removing = 0;
1253 svd->vdev_rebuilding = 0;
1254
1255 for (t = 0; t < TXG_SIZE; t++) {
1256 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1257 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1258 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1259 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1260 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1261 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1262 }
1263
1264 if (list_link_active(&svd->vdev_config_dirty_node)) {
1265 vdev_config_clean(svd);
1266 vdev_config_dirty(tvd);
1267 }
1268
1269 if (list_link_active(&svd->vdev_state_dirty_node)) {
1270 vdev_state_clean(svd);
1271 vdev_state_dirty(tvd);
1272 }
1273
1274 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1275 svd->vdev_deflate_ratio = 0;
1276
1277 tvd->vdev_islog = svd->vdev_islog;
1278 svd->vdev_islog = 0;
1279
1280 dsl_scan_io_queue_vdev_xfer(svd, tvd);
1281 }
1282
1283 static void
1284 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1285 {
1286 if (vd == NULL)
1287 return;
1288
1289 vd->vdev_top = tvd;
1290
1291 for (int c = 0; c < vd->vdev_children; c++)
1292 vdev_top_update(tvd, vd->vdev_child[c]);
1293 }
1294
1295 /*
1296 * Add a mirror/replacing vdev above an existing vdev. There is no need to
1297 * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1298 */
1299 vdev_t *
1300 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1301 {
1302 spa_t *spa = cvd->vdev_spa;
1303 vdev_t *pvd = cvd->vdev_parent;
1304 vdev_t *mvd;
1305
1306 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1307
1308 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1309
1310 mvd->vdev_asize = cvd->vdev_asize;
1311 mvd->vdev_min_asize = cvd->vdev_min_asize;
1312 mvd->vdev_max_asize = cvd->vdev_max_asize;
1313 mvd->vdev_psize = cvd->vdev_psize;
1314 mvd->vdev_ashift = cvd->vdev_ashift;
1315 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1316 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1317 mvd->vdev_state = cvd->vdev_state;
1318 mvd->vdev_crtxg = cvd->vdev_crtxg;
1319
1320 vdev_remove_child(pvd, cvd);
1321 vdev_add_child(pvd, mvd);
1322 cvd->vdev_id = mvd->vdev_children;
1323 vdev_add_child(mvd, cvd);
1324 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1325
1326 if (mvd == mvd->vdev_top)
1327 vdev_top_transfer(cvd, mvd);
1328
1329 return (mvd);
1330 }
1331
1332 /*
1333 * Remove a 1-way mirror/replacing vdev from the tree.
1334 */
1335 void
1336 vdev_remove_parent(vdev_t *cvd)
1337 {
1338 vdev_t *mvd = cvd->vdev_parent;
1339 vdev_t *pvd = mvd->vdev_parent;
1340
1341 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1342
1343 ASSERT(mvd->vdev_children == 1);
1344 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1345 mvd->vdev_ops == &vdev_replacing_ops ||
1346 mvd->vdev_ops == &vdev_spare_ops);
1347 cvd->vdev_ashift = mvd->vdev_ashift;
1348 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1349 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1350 vdev_remove_child(mvd, cvd);
1351 vdev_remove_child(pvd, mvd);
1352
1353 /*
1354 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1355 * Otherwise, we could have detached an offline device, and when we
1356 * go to import the pool we'll think we have two top-level vdevs,
1357 * instead of a different version of the same top-level vdev.
1358 */
1359 if (mvd->vdev_top == mvd) {
1360 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1361 cvd->vdev_orig_guid = cvd->vdev_guid;
1362 cvd->vdev_guid += guid_delta;
1363 cvd->vdev_guid_sum += guid_delta;
1364
1365 /*
1366 * If pool not set for autoexpand, we need to also preserve
1367 * mvd's asize to prevent automatic expansion of cvd.
1368 * Otherwise if we are adjusting the mirror by attaching and
1369 * detaching children of non-uniform sizes, the mirror could
1370 * autoexpand, unexpectedly requiring larger devices to
1371 * re-establish the mirror.
1372 */
1373 if (!cvd->vdev_spa->spa_autoexpand)
1374 cvd->vdev_asize = mvd->vdev_asize;
1375 }
1376 cvd->vdev_id = mvd->vdev_id;
1377 vdev_add_child(pvd, cvd);
1378 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1379
1380 if (cvd == cvd->vdev_top)
1381 vdev_top_transfer(mvd, cvd);
1382
1383 ASSERT(mvd->vdev_children == 0);
1384 vdev_free(mvd);
1385 }
1386
1387 void
1388 vdev_metaslab_group_create(vdev_t *vd)
1389 {
1390 spa_t *spa = vd->vdev_spa;
1391
1392 /*
1393 * metaslab_group_create was delayed until allocation bias was available
1394 */
1395 if (vd->vdev_mg == NULL) {
1396 metaslab_class_t *mc;
1397
1398 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1399 vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1400
1401 ASSERT3U(vd->vdev_islog, ==,
1402 (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1403
1404 switch (vd->vdev_alloc_bias) {
1405 case VDEV_BIAS_LOG:
1406 mc = spa_log_class(spa);
1407 break;
1408 case VDEV_BIAS_SPECIAL:
1409 mc = spa_special_class(spa);
1410 break;
1411 case VDEV_BIAS_DEDUP:
1412 mc = spa_dedup_class(spa);
1413 break;
1414 default:
1415 mc = spa_normal_class(spa);
1416 }
1417
1418 vd->vdev_mg = metaslab_group_create(mc, vd,
1419 spa->spa_alloc_count);
1420
1421 if (!vd->vdev_islog) {
1422 vd->vdev_log_mg = metaslab_group_create(
1423 spa_embedded_log_class(spa), vd, 1);
1424 }
1425
1426 /*
1427 * The spa ashift min/max only apply for the normal metaslab
1428 * class. Class destination is late binding so ashift boundary
1429 * setting had to wait until now.
1430 */
1431 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1432 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1433 if (vd->vdev_ashift > spa->spa_max_ashift)
1434 spa->spa_max_ashift = vd->vdev_ashift;
1435 if (vd->vdev_ashift < spa->spa_min_ashift)
1436 spa->spa_min_ashift = vd->vdev_ashift;
1437
1438 uint64_t min_alloc = vdev_get_min_alloc(vd);
1439 if (min_alloc < spa->spa_min_alloc)
1440 spa->spa_min_alloc = min_alloc;
1441 }
1442 }
1443 }
1444
1445 int
1446 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1447 {
1448 spa_t *spa = vd->vdev_spa;
1449 uint64_t oldc = vd->vdev_ms_count;
1450 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1451 metaslab_t **mspp;
1452 int error;
1453 boolean_t expanding = (oldc != 0);
1454
1455 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1456
1457 /*
1458 * This vdev is not being allocated from yet or is a hole.
1459 */
1460 if (vd->vdev_ms_shift == 0)
1461 return (0);
1462
1463 ASSERT(!vd->vdev_ishole);
1464
1465 ASSERT(oldc <= newc);
1466
1467 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1468
1469 if (expanding) {
1470 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1471 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1472 }
1473
1474 vd->vdev_ms = mspp;
1475 vd->vdev_ms_count = newc;
1476
1477 for (uint64_t m = oldc; m < newc; m++) {
1478 uint64_t object = 0;
1479 /*
1480 * vdev_ms_array may be 0 if we are creating the "fake"
1481 * metaslabs for an indirect vdev for zdb's leak detection.
1482 * See zdb_leak_init().
1483 */
1484 if (txg == 0 && vd->vdev_ms_array != 0) {
1485 error = dmu_read(spa->spa_meta_objset,
1486 vd->vdev_ms_array,
1487 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1488 DMU_READ_PREFETCH);
1489 if (error != 0) {
1490 vdev_dbgmsg(vd, "unable to read the metaslab "
1491 "array [error=%d]", error);
1492 return (error);
1493 }
1494 }
1495
1496 error = metaslab_init(vd->vdev_mg, m, object, txg,
1497 &(vd->vdev_ms[m]));
1498 if (error != 0) {
1499 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1500 error);
1501 return (error);
1502 }
1503 }
1504
1505 /*
1506 * Find the emptiest metaslab on the vdev and mark it for use for
1507 * embedded slog by moving it from the regular to the log metaslab
1508 * group.
1509 */
1510 if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1511 vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1512 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1513 uint64_t slog_msid = 0;
1514 uint64_t smallest = UINT64_MAX;
1515
1516 /*
1517 * Note, we only search the new metaslabs, because the old
1518 * (pre-existing) ones may be active (e.g. have non-empty
1519 * range_tree's), and we don't move them to the new
1520 * metaslab_t.
1521 */
1522 for (uint64_t m = oldc; m < newc; m++) {
1523 uint64_t alloc =
1524 space_map_allocated(vd->vdev_ms[m]->ms_sm);
1525 if (alloc < smallest) {
1526 slog_msid = m;
1527 smallest = alloc;
1528 }
1529 }
1530 metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1531 /*
1532 * The metaslab was marked as dirty at the end of
1533 * metaslab_init(). Remove it from the dirty list so that we
1534 * can uninitialize and reinitialize it to the new class.
1535 */
1536 if (txg != 0) {
1537 (void) txg_list_remove_this(&vd->vdev_ms_list,
1538 slog_ms, txg);
1539 }
1540 uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1541 metaslab_fini(slog_ms);
1542 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1543 &vd->vdev_ms[slog_msid]));
1544 }
1545
1546 if (txg == 0)
1547 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1548
1549 /*
1550 * If the vdev is marked as non-allocating then don't
1551 * activate the metaslabs since we want to ensure that
1552 * no allocations are performed on this device.
1553 */
1554 if (vd->vdev_noalloc) {
1555 /* track non-allocating vdev space */
1556 spa->spa_nonallocating_dspace += spa_deflate(spa) ?
1557 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1558 } else if (!expanding) {
1559 metaslab_group_activate(vd->vdev_mg);
1560 if (vd->vdev_log_mg != NULL)
1561 metaslab_group_activate(vd->vdev_log_mg);
1562 }
1563
1564 if (txg == 0)
1565 spa_config_exit(spa, SCL_ALLOC, FTAG);
1566
1567 return (0);
1568 }
1569
1570 void
1571 vdev_metaslab_fini(vdev_t *vd)
1572 {
1573 if (vd->vdev_checkpoint_sm != NULL) {
1574 ASSERT(spa_feature_is_active(vd->vdev_spa,
1575 SPA_FEATURE_POOL_CHECKPOINT));
1576 space_map_close(vd->vdev_checkpoint_sm);
1577 /*
1578 * Even though we close the space map, we need to set its
1579 * pointer to NULL. The reason is that vdev_metaslab_fini()
1580 * may be called multiple times for certain operations
1581 * (i.e. when destroying a pool) so we need to ensure that
1582 * this clause never executes twice. This logic is similar
1583 * to the one used for the vdev_ms clause below.
1584 */
1585 vd->vdev_checkpoint_sm = NULL;
1586 }
1587
1588 if (vd->vdev_ms != NULL) {
1589 metaslab_group_t *mg = vd->vdev_mg;
1590
1591 metaslab_group_passivate(mg);
1592 if (vd->vdev_log_mg != NULL) {
1593 ASSERT(!vd->vdev_islog);
1594 metaslab_group_passivate(vd->vdev_log_mg);
1595 }
1596
1597 uint64_t count = vd->vdev_ms_count;
1598 for (uint64_t m = 0; m < count; m++) {
1599 metaslab_t *msp = vd->vdev_ms[m];
1600 if (msp != NULL)
1601 metaslab_fini(msp);
1602 }
1603 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1604 vd->vdev_ms = NULL;
1605 vd->vdev_ms_count = 0;
1606
1607 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1608 ASSERT0(mg->mg_histogram[i]);
1609 if (vd->vdev_log_mg != NULL)
1610 ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1611 }
1612 }
1613 ASSERT0(vd->vdev_ms_count);
1614 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1615 }
1616
1617 typedef struct vdev_probe_stats {
1618 boolean_t vps_readable;
1619 boolean_t vps_writeable;
1620 int vps_flags;
1621 } vdev_probe_stats_t;
1622
1623 static void
1624 vdev_probe_done(zio_t *zio)
1625 {
1626 spa_t *spa = zio->io_spa;
1627 vdev_t *vd = zio->io_vd;
1628 vdev_probe_stats_t *vps = zio->io_private;
1629
1630 ASSERT(vd->vdev_probe_zio != NULL);
1631
1632 if (zio->io_type == ZIO_TYPE_READ) {
1633 if (zio->io_error == 0)
1634 vps->vps_readable = 1;
1635 if (zio->io_error == 0 && spa_writeable(spa)) {
1636 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1637 zio->io_offset, zio->io_size, zio->io_abd,
1638 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1639 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1640 } else {
1641 abd_free(zio->io_abd);
1642 }
1643 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1644 if (zio->io_error == 0)
1645 vps->vps_writeable = 1;
1646 abd_free(zio->io_abd);
1647 } else if (zio->io_type == ZIO_TYPE_NULL) {
1648 zio_t *pio;
1649 zio_link_t *zl;
1650
1651 vd->vdev_cant_read |= !vps->vps_readable;
1652 vd->vdev_cant_write |= !vps->vps_writeable;
1653
1654 if (vdev_readable(vd) &&
1655 (vdev_writeable(vd) || !spa_writeable(spa))) {
1656 zio->io_error = 0;
1657 } else {
1658 ASSERT(zio->io_error != 0);
1659 vdev_dbgmsg(vd, "failed probe");
1660 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1661 spa, vd, NULL, NULL, 0);
1662 zio->io_error = SET_ERROR(ENXIO);
1663 }
1664
1665 mutex_enter(&vd->vdev_probe_lock);
1666 ASSERT(vd->vdev_probe_zio == zio);
1667 vd->vdev_probe_zio = NULL;
1668 mutex_exit(&vd->vdev_probe_lock);
1669
1670 zl = NULL;
1671 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1672 if (!vdev_accessible(vd, pio))
1673 pio->io_error = SET_ERROR(ENXIO);
1674
1675 kmem_free(vps, sizeof (*vps));
1676 }
1677 }
1678
1679 /*
1680 * Determine whether this device is accessible.
1681 *
1682 * Read and write to several known locations: the pad regions of each
1683 * vdev label but the first, which we leave alone in case it contains
1684 * a VTOC.
1685 */
1686 zio_t *
1687 vdev_probe(vdev_t *vd, zio_t *zio)
1688 {
1689 spa_t *spa = vd->vdev_spa;
1690 vdev_probe_stats_t *vps = NULL;
1691 zio_t *pio;
1692
1693 ASSERT(vd->vdev_ops->vdev_op_leaf);
1694
1695 /*
1696 * Don't probe the probe.
1697 */
1698 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1699 return (NULL);
1700
1701 /*
1702 * To prevent 'probe storms' when a device fails, we create
1703 * just one probe i/o at a time. All zios that want to probe
1704 * this vdev will become parents of the probe io.
1705 */
1706 mutex_enter(&vd->vdev_probe_lock);
1707
1708 if ((pio = vd->vdev_probe_zio) == NULL) {
1709 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1710
1711 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1712 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1713 ZIO_FLAG_TRYHARD;
1714
1715 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1716 /*
1717 * vdev_cant_read and vdev_cant_write can only
1718 * transition from TRUE to FALSE when we have the
1719 * SCL_ZIO lock as writer; otherwise they can only
1720 * transition from FALSE to TRUE. This ensures that
1721 * any zio looking at these values can assume that
1722 * failures persist for the life of the I/O. That's
1723 * important because when a device has intermittent
1724 * connectivity problems, we want to ensure that
1725 * they're ascribed to the device (ENXIO) and not
1726 * the zio (EIO).
1727 *
1728 * Since we hold SCL_ZIO as writer here, clear both
1729 * values so the probe can reevaluate from first
1730 * principles.
1731 */
1732 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1733 vd->vdev_cant_read = B_FALSE;
1734 vd->vdev_cant_write = B_FALSE;
1735 }
1736
1737 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1738 vdev_probe_done, vps,
1739 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1740
1741 /*
1742 * We can't change the vdev state in this context, so we
1743 * kick off an async task to do it on our behalf.
1744 */
1745 if (zio != NULL) {
1746 vd->vdev_probe_wanted = B_TRUE;
1747 spa_async_request(spa, SPA_ASYNC_PROBE);
1748 }
1749 }
1750
1751 if (zio != NULL)
1752 zio_add_child(zio, pio);
1753
1754 mutex_exit(&vd->vdev_probe_lock);
1755
1756 if (vps == NULL) {
1757 ASSERT(zio != NULL);
1758 return (NULL);
1759 }
1760
1761 for (int l = 1; l < VDEV_LABELS; l++) {
1762 zio_nowait(zio_read_phys(pio, vd,
1763 vdev_label_offset(vd->vdev_psize, l,
1764 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1765 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1766 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1767 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1768 }
1769
1770 if (zio == NULL)
1771 return (pio);
1772
1773 zio_nowait(pio);
1774 return (NULL);
1775 }
1776
1777 static void
1778 vdev_load_child(void *arg)
1779 {
1780 vdev_t *vd = arg;
1781
1782 vd->vdev_load_error = vdev_load(vd);
1783 }
1784
1785 static void
1786 vdev_open_child(void *arg)
1787 {
1788 vdev_t *vd = arg;
1789
1790 vd->vdev_open_thread = curthread;
1791 vd->vdev_open_error = vdev_open(vd);
1792 vd->vdev_open_thread = NULL;
1793 }
1794
1795 static boolean_t
1796 vdev_uses_zvols(vdev_t *vd)
1797 {
1798 #ifdef _KERNEL
1799 if (zvol_is_zvol(vd->vdev_path))
1800 return (B_TRUE);
1801 #endif
1802
1803 for (int c = 0; c < vd->vdev_children; c++)
1804 if (vdev_uses_zvols(vd->vdev_child[c]))
1805 return (B_TRUE);
1806
1807 return (B_FALSE);
1808 }
1809
1810 /*
1811 * Returns B_TRUE if the passed child should be opened.
1812 */
1813 static boolean_t
1814 vdev_default_open_children_func(vdev_t *vd)
1815 {
1816 (void) vd;
1817 return (B_TRUE);
1818 }
1819
1820 /*
1821 * Open the requested child vdevs. If any of the leaf vdevs are using
1822 * a ZFS volume then do the opens in a single thread. This avoids a
1823 * deadlock when the current thread is holding the spa_namespace_lock.
1824 */
1825 static void
1826 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1827 {
1828 int children = vd->vdev_children;
1829
1830 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1831 children, children, TASKQ_PREPOPULATE);
1832 vd->vdev_nonrot = B_TRUE;
1833
1834 for (int c = 0; c < children; c++) {
1835 vdev_t *cvd = vd->vdev_child[c];
1836
1837 if (open_func(cvd) == B_FALSE)
1838 continue;
1839
1840 if (tq == NULL || vdev_uses_zvols(vd)) {
1841 cvd->vdev_open_error = vdev_open(cvd);
1842 } else {
1843 VERIFY(taskq_dispatch(tq, vdev_open_child,
1844 cvd, TQ_SLEEP) != TASKQID_INVALID);
1845 }
1846
1847 vd->vdev_nonrot &= cvd->vdev_nonrot;
1848 }
1849
1850 if (tq != NULL) {
1851 taskq_wait(tq);
1852 taskq_destroy(tq);
1853 }
1854 }
1855
1856 /*
1857 * Open all child vdevs.
1858 */
1859 void
1860 vdev_open_children(vdev_t *vd)
1861 {
1862 vdev_open_children_impl(vd, vdev_default_open_children_func);
1863 }
1864
1865 /*
1866 * Conditionally open a subset of child vdevs.
1867 */
1868 void
1869 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
1870 {
1871 vdev_open_children_impl(vd, open_func);
1872 }
1873
1874 /*
1875 * Compute the raidz-deflation ratio. Note, we hard-code
1876 * in 128k (1 << 17) because it is the "typical" blocksize.
1877 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1878 * otherwise it would inconsistently account for existing bp's.
1879 */
1880 static void
1881 vdev_set_deflate_ratio(vdev_t *vd)
1882 {
1883 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1884 vd->vdev_deflate_ratio = (1 << 17) /
1885 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1886 }
1887 }
1888
1889 /*
1890 * Choose the best of two ashifts, preferring one between logical ashift
1891 * (absolute minimum) and administrator defined maximum, otherwise take
1892 * the biggest of the two.
1893 */
1894 uint64_t
1895 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
1896 {
1897 if (a > logical && a <= zfs_vdev_max_auto_ashift) {
1898 if (b <= logical || b > zfs_vdev_max_auto_ashift)
1899 return (a);
1900 else
1901 return (MAX(a, b));
1902 } else if (b <= logical || b > zfs_vdev_max_auto_ashift)
1903 return (MAX(a, b));
1904 return (b);
1905 }
1906
1907 /*
1908 * Maximize performance by inflating the configured ashift for top level
1909 * vdevs to be as close to the physical ashift as possible while maintaining
1910 * administrator defined limits and ensuring it doesn't go below the
1911 * logical ashift.
1912 */
1913 static void
1914 vdev_ashift_optimize(vdev_t *vd)
1915 {
1916 ASSERT(vd == vd->vdev_top);
1917
1918 if (vd->vdev_ashift < vd->vdev_physical_ashift &&
1919 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
1920 vd->vdev_ashift = MIN(
1921 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
1922 MAX(zfs_vdev_min_auto_ashift,
1923 vd->vdev_physical_ashift));
1924 } else {
1925 /*
1926 * If the logical and physical ashifts are the same, then
1927 * we ensure that the top-level vdev's ashift is not smaller
1928 * than our minimum ashift value. For the unusual case
1929 * where logical ashift > physical ashift, we can't cap
1930 * the calculated ashift based on max ashift as that
1931 * would cause failures.
1932 * We still check if we need to increase it to match
1933 * the min ashift.
1934 */
1935 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
1936 vd->vdev_ashift);
1937 }
1938 }
1939
1940 /*
1941 * Prepare a virtual device for access.
1942 */
1943 int
1944 vdev_open(vdev_t *vd)
1945 {
1946 spa_t *spa = vd->vdev_spa;
1947 int error;
1948 uint64_t osize = 0;
1949 uint64_t max_osize = 0;
1950 uint64_t asize, max_asize, psize;
1951 uint64_t logical_ashift = 0;
1952 uint64_t physical_ashift = 0;
1953
1954 ASSERT(vd->vdev_open_thread == curthread ||
1955 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1956 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1957 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1958 vd->vdev_state == VDEV_STATE_OFFLINE);
1959
1960 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1961 vd->vdev_cant_read = B_FALSE;
1962 vd->vdev_cant_write = B_FALSE;
1963 vd->vdev_min_asize = vdev_get_min_asize(vd);
1964
1965 /*
1966 * If this vdev is not removed, check its fault status. If it's
1967 * faulted, bail out of the open.
1968 */
1969 if (!vd->vdev_removed && vd->vdev_faulted) {
1970 ASSERT(vd->vdev_children == 0);
1971 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1972 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1973 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1974 vd->vdev_label_aux);
1975 return (SET_ERROR(ENXIO));
1976 } else if (vd->vdev_offline) {
1977 ASSERT(vd->vdev_children == 0);
1978 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1979 return (SET_ERROR(ENXIO));
1980 }
1981
1982 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1983 &logical_ashift, &physical_ashift);
1984
1985 /* Keep the device in removed state if unplugged */
1986 if (error == ENOENT && vd->vdev_removed) {
1987 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
1988 VDEV_AUX_NONE);
1989 return (error);
1990 }
1991
1992 /*
1993 * Physical volume size should never be larger than its max size, unless
1994 * the disk has shrunk while we were reading it or the device is buggy
1995 * or damaged: either way it's not safe for use, bail out of the open.
1996 */
1997 if (osize > max_osize) {
1998 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1999 VDEV_AUX_OPEN_FAILED);
2000 return (SET_ERROR(ENXIO));
2001 }
2002
2003 /*
2004 * Reset the vdev_reopening flag so that we actually close
2005 * the vdev on error.
2006 */
2007 vd->vdev_reopening = B_FALSE;
2008 if (zio_injection_enabled && error == 0)
2009 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
2010
2011 if (error) {
2012 if (vd->vdev_removed &&
2013 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
2014 vd->vdev_removed = B_FALSE;
2015
2016 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
2017 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
2018 vd->vdev_stat.vs_aux);
2019 } else {
2020 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2021 vd->vdev_stat.vs_aux);
2022 }
2023 return (error);
2024 }
2025
2026 vd->vdev_removed = B_FALSE;
2027
2028 /*
2029 * Recheck the faulted flag now that we have confirmed that
2030 * the vdev is accessible. If we're faulted, bail.
2031 */
2032 if (vd->vdev_faulted) {
2033 ASSERT(vd->vdev_children == 0);
2034 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2035 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2036 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2037 vd->vdev_label_aux);
2038 return (SET_ERROR(ENXIO));
2039 }
2040
2041 if (vd->vdev_degraded) {
2042 ASSERT(vd->vdev_children == 0);
2043 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2044 VDEV_AUX_ERR_EXCEEDED);
2045 } else {
2046 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
2047 }
2048
2049 /*
2050 * For hole or missing vdevs we just return success.
2051 */
2052 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
2053 return (0);
2054
2055 for (int c = 0; c < vd->vdev_children; c++) {
2056 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
2057 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2058 VDEV_AUX_NONE);
2059 break;
2060 }
2061 }
2062
2063 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
2064 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
2065
2066 if (vd->vdev_children == 0) {
2067 if (osize < SPA_MINDEVSIZE) {
2068 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2069 VDEV_AUX_TOO_SMALL);
2070 return (SET_ERROR(EOVERFLOW));
2071 }
2072 psize = osize;
2073 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2074 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2075 VDEV_LABEL_END_SIZE);
2076 } else {
2077 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2078 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2079 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2080 VDEV_AUX_TOO_SMALL);
2081 return (SET_ERROR(EOVERFLOW));
2082 }
2083 psize = 0;
2084 asize = osize;
2085 max_asize = max_osize;
2086 }
2087
2088 /*
2089 * If the vdev was expanded, record this so that we can re-create the
2090 * uberblock rings in labels {2,3}, during the next sync.
2091 */
2092 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2093 vd->vdev_copy_uberblocks = B_TRUE;
2094
2095 vd->vdev_psize = psize;
2096
2097 /*
2098 * Make sure the allocatable size hasn't shrunk too much.
2099 */
2100 if (asize < vd->vdev_min_asize) {
2101 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2102 VDEV_AUX_BAD_LABEL);
2103 return (SET_ERROR(EINVAL));
2104 }
2105
2106 /*
2107 * We can always set the logical/physical ashift members since
2108 * their values are only used to calculate the vdev_ashift when
2109 * the device is first added to the config. These values should
2110 * not be used for anything else since they may change whenever
2111 * the device is reopened and we don't store them in the label.
2112 */
2113 vd->vdev_physical_ashift =
2114 MAX(physical_ashift, vd->vdev_physical_ashift);
2115 vd->vdev_logical_ashift = MAX(logical_ashift,
2116 vd->vdev_logical_ashift);
2117
2118 if (vd->vdev_asize == 0) {
2119 /*
2120 * This is the first-ever open, so use the computed values.
2121 * For compatibility, a different ashift can be requested.
2122 */
2123 vd->vdev_asize = asize;
2124 vd->vdev_max_asize = max_asize;
2125
2126 /*
2127 * If the vdev_ashift was not overridden at creation time,
2128 * then set it the logical ashift and optimize the ashift.
2129 */
2130 if (vd->vdev_ashift == 0) {
2131 vd->vdev_ashift = vd->vdev_logical_ashift;
2132
2133 if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2134 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2135 VDEV_AUX_ASHIFT_TOO_BIG);
2136 return (SET_ERROR(EDOM));
2137 }
2138
2139 if (vd->vdev_top == vd) {
2140 vdev_ashift_optimize(vd);
2141 }
2142 }
2143 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2144 vd->vdev_ashift > ASHIFT_MAX)) {
2145 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2146 VDEV_AUX_BAD_ASHIFT);
2147 return (SET_ERROR(EDOM));
2148 }
2149 } else {
2150 /*
2151 * Make sure the alignment required hasn't increased.
2152 */
2153 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2154 vd->vdev_ops->vdev_op_leaf) {
2155 (void) zfs_ereport_post(
2156 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2157 spa, vd, NULL, NULL, 0);
2158 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2159 VDEV_AUX_BAD_LABEL);
2160 return (SET_ERROR(EDOM));
2161 }
2162 vd->vdev_max_asize = max_asize;
2163 }
2164
2165 /*
2166 * If all children are healthy we update asize if either:
2167 * The asize has increased, due to a device expansion caused by dynamic
2168 * LUN growth or vdev replacement, and automatic expansion is enabled;
2169 * making the additional space available.
2170 *
2171 * The asize has decreased, due to a device shrink usually caused by a
2172 * vdev replace with a smaller device. This ensures that calculations
2173 * based of max_asize and asize e.g. esize are always valid. It's safe
2174 * to do this as we've already validated that asize is greater than
2175 * vdev_min_asize.
2176 */
2177 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2178 ((asize > vd->vdev_asize &&
2179 (vd->vdev_expanding || spa->spa_autoexpand)) ||
2180 (asize < vd->vdev_asize)))
2181 vd->vdev_asize = asize;
2182
2183 vdev_set_min_asize(vd);
2184
2185 /*
2186 * Ensure we can issue some IO before declaring the
2187 * vdev open for business.
2188 */
2189 if (vd->vdev_ops->vdev_op_leaf &&
2190 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2191 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2192 VDEV_AUX_ERR_EXCEEDED);
2193 return (error);
2194 }
2195
2196 /*
2197 * Track the minimum allocation size.
2198 */
2199 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2200 vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2201 uint64_t min_alloc = vdev_get_min_alloc(vd);
2202 if (min_alloc < spa->spa_min_alloc)
2203 spa->spa_min_alloc = min_alloc;
2204 }
2205
2206 /*
2207 * If this is a leaf vdev, assess whether a resilver is needed.
2208 * But don't do this if we are doing a reopen for a scrub, since
2209 * this would just restart the scrub we are already doing.
2210 */
2211 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2212 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2213
2214 return (0);
2215 }
2216
2217 static void
2218 vdev_validate_child(void *arg)
2219 {
2220 vdev_t *vd = arg;
2221
2222 vd->vdev_validate_thread = curthread;
2223 vd->vdev_validate_error = vdev_validate(vd);
2224 vd->vdev_validate_thread = NULL;
2225 }
2226
2227 /*
2228 * Called once the vdevs are all opened, this routine validates the label
2229 * contents. This needs to be done before vdev_load() so that we don't
2230 * inadvertently do repair I/Os to the wrong device.
2231 *
2232 * This function will only return failure if one of the vdevs indicates that it
2233 * has since been destroyed or exported. This is only possible if
2234 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
2235 * will be updated but the function will return 0.
2236 */
2237 int
2238 vdev_validate(vdev_t *vd)
2239 {
2240 spa_t *spa = vd->vdev_spa;
2241 taskq_t *tq = NULL;
2242 nvlist_t *label;
2243 uint64_t guid = 0, aux_guid = 0, top_guid;
2244 uint64_t state;
2245 nvlist_t *nvl;
2246 uint64_t txg;
2247 int children = vd->vdev_children;
2248
2249 if (vdev_validate_skip)
2250 return (0);
2251
2252 if (children > 0) {
2253 tq = taskq_create("vdev_validate", children, minclsyspri,
2254 children, children, TASKQ_PREPOPULATE);
2255 }
2256
2257 for (uint64_t c = 0; c < children; c++) {
2258 vdev_t *cvd = vd->vdev_child[c];
2259
2260 if (tq == NULL || vdev_uses_zvols(cvd)) {
2261 vdev_validate_child(cvd);
2262 } else {
2263 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2264 TQ_SLEEP) != TASKQID_INVALID);
2265 }
2266 }
2267 if (tq != NULL) {
2268 taskq_wait(tq);
2269 taskq_destroy(tq);
2270 }
2271 for (int c = 0; c < children; c++) {
2272 int error = vd->vdev_child[c]->vdev_validate_error;
2273
2274 if (error != 0)
2275 return (SET_ERROR(EBADF));
2276 }
2277
2278
2279 /*
2280 * If the device has already failed, or was marked offline, don't do
2281 * any further validation. Otherwise, label I/O will fail and we will
2282 * overwrite the previous state.
2283 */
2284 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2285 return (0);
2286
2287 /*
2288 * If we are performing an extreme rewind, we allow for a label that
2289 * was modified at a point after the current txg.
2290 * If config lock is not held do not check for the txg. spa_sync could
2291 * be updating the vdev's label before updating spa_last_synced_txg.
2292 */
2293 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2294 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2295 txg = UINT64_MAX;
2296 else
2297 txg = spa_last_synced_txg(spa);
2298
2299 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2300 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2301 VDEV_AUX_BAD_LABEL);
2302 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2303 "txg %llu", (u_longlong_t)txg);
2304 return (0);
2305 }
2306
2307 /*
2308 * Determine if this vdev has been split off into another
2309 * pool. If so, then refuse to open it.
2310 */
2311 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2312 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2313 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2314 VDEV_AUX_SPLIT_POOL);
2315 nvlist_free(label);
2316 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2317 return (0);
2318 }
2319
2320 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2321 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2322 VDEV_AUX_CORRUPT_DATA);
2323 nvlist_free(label);
2324 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2325 ZPOOL_CONFIG_POOL_GUID);
2326 return (0);
2327 }
2328
2329 /*
2330 * If config is not trusted then ignore the spa guid check. This is
2331 * necessary because if the machine crashed during a re-guid the new
2332 * guid might have been written to all of the vdev labels, but not the
2333 * cached config. The check will be performed again once we have the
2334 * trusted config from the MOS.
2335 */
2336 if (spa->spa_trust_config && guid != spa_guid(spa)) {
2337 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2338 VDEV_AUX_CORRUPT_DATA);
2339 nvlist_free(label);
2340 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2341 "match config (%llu != %llu)", (u_longlong_t)guid,
2342 (u_longlong_t)spa_guid(spa));
2343 return (0);
2344 }
2345
2346 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2347 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2348 &aux_guid) != 0)
2349 aux_guid = 0;
2350
2351 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2352 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2353 VDEV_AUX_CORRUPT_DATA);
2354 nvlist_free(label);
2355 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2356 ZPOOL_CONFIG_GUID);
2357 return (0);
2358 }
2359
2360 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2361 != 0) {
2362 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2363 VDEV_AUX_CORRUPT_DATA);
2364 nvlist_free(label);
2365 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2366 ZPOOL_CONFIG_TOP_GUID);
2367 return (0);
2368 }
2369
2370 /*
2371 * If this vdev just became a top-level vdev because its sibling was
2372 * detached, it will have adopted the parent's vdev guid -- but the
2373 * label may or may not be on disk yet. Fortunately, either version
2374 * of the label will have the same top guid, so if we're a top-level
2375 * vdev, we can safely compare to that instead.
2376 * However, if the config comes from a cachefile that failed to update
2377 * after the detach, a top-level vdev will appear as a non top-level
2378 * vdev in the config. Also relax the constraints if we perform an
2379 * extreme rewind.
2380 *
2381 * If we split this vdev off instead, then we also check the
2382 * original pool's guid. We don't want to consider the vdev
2383 * corrupt if it is partway through a split operation.
2384 */
2385 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2386 boolean_t mismatch = B_FALSE;
2387 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2388 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2389 mismatch = B_TRUE;
2390 } else {
2391 if (vd->vdev_guid != top_guid &&
2392 vd->vdev_top->vdev_guid != guid)
2393 mismatch = B_TRUE;
2394 }
2395
2396 if (mismatch) {
2397 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2398 VDEV_AUX_CORRUPT_DATA);
2399 nvlist_free(label);
2400 vdev_dbgmsg(vd, "vdev_validate: config guid "
2401 "doesn't match label guid");
2402 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2403 (u_longlong_t)vd->vdev_guid,
2404 (u_longlong_t)vd->vdev_top->vdev_guid);
2405 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2406 "aux_guid %llu", (u_longlong_t)guid,
2407 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2408 return (0);
2409 }
2410 }
2411
2412 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2413 &state) != 0) {
2414 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2415 VDEV_AUX_CORRUPT_DATA);
2416 nvlist_free(label);
2417 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2418 ZPOOL_CONFIG_POOL_STATE);
2419 return (0);
2420 }
2421
2422 nvlist_free(label);
2423
2424 /*
2425 * If this is a verbatim import, no need to check the
2426 * state of the pool.
2427 */
2428 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2429 spa_load_state(spa) == SPA_LOAD_OPEN &&
2430 state != POOL_STATE_ACTIVE) {
2431 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2432 "for spa %s", (u_longlong_t)state, spa->spa_name);
2433 return (SET_ERROR(EBADF));
2434 }
2435
2436 /*
2437 * If we were able to open and validate a vdev that was
2438 * previously marked permanently unavailable, clear that state
2439 * now.
2440 */
2441 if (vd->vdev_not_present)
2442 vd->vdev_not_present = 0;
2443
2444 return (0);
2445 }
2446
2447 static void
2448 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2449 {
2450 char *old, *new;
2451 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2452 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2453 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2454 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2455 dvd->vdev_path, svd->vdev_path);
2456 spa_strfree(dvd->vdev_path);
2457 dvd->vdev_path = spa_strdup(svd->vdev_path);
2458 }
2459 } else if (svd->vdev_path != NULL) {
2460 dvd->vdev_path = spa_strdup(svd->vdev_path);
2461 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2462 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2463 }
2464
2465 /*
2466 * Our enclosure sysfs path may have changed between imports
2467 */
2468 old = dvd->vdev_enc_sysfs_path;
2469 new = svd->vdev_enc_sysfs_path;
2470 if ((old != NULL && new == NULL) ||
2471 (old == NULL && new != NULL) ||
2472 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2473 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2474 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2475 old, new);
2476
2477 if (dvd->vdev_enc_sysfs_path)
2478 spa_strfree(dvd->vdev_enc_sysfs_path);
2479
2480 if (svd->vdev_enc_sysfs_path) {
2481 dvd->vdev_enc_sysfs_path = spa_strdup(
2482 svd->vdev_enc_sysfs_path);
2483 } else {
2484 dvd->vdev_enc_sysfs_path = NULL;
2485 }
2486 }
2487 }
2488
2489 /*
2490 * Recursively copy vdev paths from one vdev to another. Source and destination
2491 * vdev trees must have same geometry otherwise return error. Intended to copy
2492 * paths from userland config into MOS config.
2493 */
2494 int
2495 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2496 {
2497 if ((svd->vdev_ops == &vdev_missing_ops) ||
2498 (svd->vdev_ishole && dvd->vdev_ishole) ||
2499 (dvd->vdev_ops == &vdev_indirect_ops))
2500 return (0);
2501
2502 if (svd->vdev_ops != dvd->vdev_ops) {
2503 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2504 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2505 return (SET_ERROR(EINVAL));
2506 }
2507
2508 if (svd->vdev_guid != dvd->vdev_guid) {
2509 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2510 "%llu)", (u_longlong_t)svd->vdev_guid,
2511 (u_longlong_t)dvd->vdev_guid);
2512 return (SET_ERROR(EINVAL));
2513 }
2514
2515 if (svd->vdev_children != dvd->vdev_children) {
2516 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2517 "%llu != %llu", (u_longlong_t)svd->vdev_children,
2518 (u_longlong_t)dvd->vdev_children);
2519 return (SET_ERROR(EINVAL));
2520 }
2521
2522 for (uint64_t i = 0; i < svd->vdev_children; i++) {
2523 int error = vdev_copy_path_strict(svd->vdev_child[i],
2524 dvd->vdev_child[i]);
2525 if (error != 0)
2526 return (error);
2527 }
2528
2529 if (svd->vdev_ops->vdev_op_leaf)
2530 vdev_copy_path_impl(svd, dvd);
2531
2532 return (0);
2533 }
2534
2535 static void
2536 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2537 {
2538 ASSERT(stvd->vdev_top == stvd);
2539 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2540
2541 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2542 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2543 }
2544
2545 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2546 return;
2547
2548 /*
2549 * The idea here is that while a vdev can shift positions within
2550 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2551 * step outside of it.
2552 */
2553 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2554
2555 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2556 return;
2557
2558 ASSERT(vd->vdev_ops->vdev_op_leaf);
2559
2560 vdev_copy_path_impl(vd, dvd);
2561 }
2562
2563 /*
2564 * Recursively copy vdev paths from one root vdev to another. Source and
2565 * destination vdev trees may differ in geometry. For each destination leaf
2566 * vdev, search a vdev with the same guid and top vdev id in the source.
2567 * Intended to copy paths from userland config into MOS config.
2568 */
2569 void
2570 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2571 {
2572 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2573 ASSERT(srvd->vdev_ops == &vdev_root_ops);
2574 ASSERT(drvd->vdev_ops == &vdev_root_ops);
2575
2576 for (uint64_t i = 0; i < children; i++) {
2577 vdev_copy_path_search(srvd->vdev_child[i],
2578 drvd->vdev_child[i]);
2579 }
2580 }
2581
2582 /*
2583 * Close a virtual device.
2584 */
2585 void
2586 vdev_close(vdev_t *vd)
2587 {
2588 vdev_t *pvd = vd->vdev_parent;
2589 spa_t *spa __maybe_unused = vd->vdev_spa;
2590
2591 ASSERT(vd != NULL);
2592 ASSERT(vd->vdev_open_thread == curthread ||
2593 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2594
2595 /*
2596 * If our parent is reopening, then we are as well, unless we are
2597 * going offline.
2598 */
2599 if (pvd != NULL && pvd->vdev_reopening)
2600 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2601
2602 vd->vdev_ops->vdev_op_close(vd);
2603
2604 vdev_cache_purge(vd);
2605
2606 /*
2607 * We record the previous state before we close it, so that if we are
2608 * doing a reopen(), we don't generate FMA ereports if we notice that
2609 * it's still faulted.
2610 */
2611 vd->vdev_prevstate = vd->vdev_state;
2612
2613 if (vd->vdev_offline)
2614 vd->vdev_state = VDEV_STATE_OFFLINE;
2615 else
2616 vd->vdev_state = VDEV_STATE_CLOSED;
2617 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2618 }
2619
2620 void
2621 vdev_hold(vdev_t *vd)
2622 {
2623 spa_t *spa = vd->vdev_spa;
2624
2625 ASSERT(spa_is_root(spa));
2626 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2627 return;
2628
2629 for (int c = 0; c < vd->vdev_children; c++)
2630 vdev_hold(vd->vdev_child[c]);
2631
2632 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2633 vd->vdev_ops->vdev_op_hold(vd);
2634 }
2635
2636 void
2637 vdev_rele(vdev_t *vd)
2638 {
2639 ASSERT(spa_is_root(vd->vdev_spa));
2640 for (int c = 0; c < vd->vdev_children; c++)
2641 vdev_rele(vd->vdev_child[c]);
2642
2643 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2644 vd->vdev_ops->vdev_op_rele(vd);
2645 }
2646
2647 /*
2648 * Reopen all interior vdevs and any unopened leaves. We don't actually
2649 * reopen leaf vdevs which had previously been opened as they might deadlock
2650 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
2651 * If the leaf has never been opened then open it, as usual.
2652 */
2653 void
2654 vdev_reopen(vdev_t *vd)
2655 {
2656 spa_t *spa = vd->vdev_spa;
2657
2658 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2659
2660 /* set the reopening flag unless we're taking the vdev offline */
2661 vd->vdev_reopening = !vd->vdev_offline;
2662 vdev_close(vd);
2663 (void) vdev_open(vd);
2664
2665 /*
2666 * Call vdev_validate() here to make sure we have the same device.
2667 * Otherwise, a device with an invalid label could be successfully
2668 * opened in response to vdev_reopen().
2669 */
2670 if (vd->vdev_aux) {
2671 (void) vdev_validate_aux(vd);
2672 if (vdev_readable(vd) && vdev_writeable(vd) &&
2673 vd->vdev_aux == &spa->spa_l2cache) {
2674 /*
2675 * In case the vdev is present we should evict all ARC
2676 * buffers and pointers to log blocks and reclaim their
2677 * space before restoring its contents to L2ARC.
2678 */
2679 if (l2arc_vdev_present(vd)) {
2680 l2arc_rebuild_vdev(vd, B_TRUE);
2681 } else {
2682 l2arc_add_vdev(spa, vd);
2683 }
2684 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2685 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2686 }
2687 } else {
2688 (void) vdev_validate(vd);
2689 }
2690
2691 /*
2692 * Reassess parent vdev's health.
2693 */
2694 vdev_propagate_state(vd);
2695 }
2696
2697 int
2698 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2699 {
2700 int error;
2701
2702 /*
2703 * Normally, partial opens (e.g. of a mirror) are allowed.
2704 * For a create, however, we want to fail the request if
2705 * there are any components we can't open.
2706 */
2707 error = vdev_open(vd);
2708
2709 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2710 vdev_close(vd);
2711 return (error ? error : SET_ERROR(ENXIO));
2712 }
2713
2714 /*
2715 * Recursively load DTLs and initialize all labels.
2716 */
2717 if ((error = vdev_dtl_load(vd)) != 0 ||
2718 (error = vdev_label_init(vd, txg, isreplacing ?
2719 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2720 vdev_close(vd);
2721 return (error);
2722 }
2723
2724 return (0);
2725 }
2726
2727 void
2728 vdev_metaslab_set_size(vdev_t *vd)
2729 {
2730 uint64_t asize = vd->vdev_asize;
2731 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2732 uint64_t ms_shift;
2733
2734 /*
2735 * There are two dimensions to the metaslab sizing calculation:
2736 * the size of the metaslab and the count of metaslabs per vdev.
2737 *
2738 * The default values used below are a good balance between memory
2739 * usage (larger metaslab size means more memory needed for loaded
2740 * metaslabs; more metaslabs means more memory needed for the
2741 * metaslab_t structs), metaslab load time (larger metaslabs take
2742 * longer to load), and metaslab sync time (more metaslabs means
2743 * more time spent syncing all of them).
2744 *
2745 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2746 * The range of the dimensions are as follows:
2747 *
2748 * 2^29 <= ms_size <= 2^34
2749 * 16 <= ms_count <= 131,072
2750 *
2751 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2752 * at least 512MB (2^29) to minimize fragmentation effects when
2753 * testing with smaller devices. However, the count constraint
2754 * of at least 16 metaslabs will override this minimum size goal.
2755 *
2756 * On the upper end of vdev sizes, we aim for a maximum metaslab
2757 * size of 16GB. However, we will cap the total count to 2^17
2758 * metaslabs to keep our memory footprint in check and let the
2759 * metaslab size grow from there if that limit is hit.
2760 *
2761 * The net effect of applying above constrains is summarized below.
2762 *
2763 * vdev size metaslab count
2764 * --------------|-----------------
2765 * < 8GB ~16
2766 * 8GB - 100GB one per 512MB
2767 * 100GB - 3TB ~200
2768 * 3TB - 2PB one per 16GB
2769 * > 2PB ~131,072
2770 * --------------------------------
2771 *
2772 * Finally, note that all of the above calculate the initial
2773 * number of metaslabs. Expanding a top-level vdev will result
2774 * in additional metaslabs being allocated making it possible
2775 * to exceed the zfs_vdev_ms_count_limit.
2776 */
2777
2778 if (ms_count < zfs_vdev_min_ms_count)
2779 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2780 else if (ms_count > zfs_vdev_default_ms_count)
2781 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2782 else
2783 ms_shift = zfs_vdev_default_ms_shift;
2784
2785 if (ms_shift < SPA_MAXBLOCKSHIFT) {
2786 ms_shift = SPA_MAXBLOCKSHIFT;
2787 } else if (ms_shift > zfs_vdev_max_ms_shift) {
2788 ms_shift = zfs_vdev_max_ms_shift;
2789 /* cap the total count to constrain memory footprint */
2790 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2791 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2792 }
2793
2794 vd->vdev_ms_shift = ms_shift;
2795 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2796 }
2797
2798 void
2799 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2800 {
2801 ASSERT(vd == vd->vdev_top);
2802 /* indirect vdevs don't have metaslabs or dtls */
2803 ASSERT(vdev_is_concrete(vd) || flags == 0);
2804 ASSERT(ISP2(flags));
2805 ASSERT(spa_writeable(vd->vdev_spa));
2806
2807 if (flags & VDD_METASLAB)
2808 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2809
2810 if (flags & VDD_DTL)
2811 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2812
2813 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2814 }
2815
2816 void
2817 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2818 {
2819 for (int c = 0; c < vd->vdev_children; c++)
2820 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2821
2822 if (vd->vdev_ops->vdev_op_leaf)
2823 vdev_dirty(vd->vdev_top, flags, vd, txg);
2824 }
2825
2826 /*
2827 * DTLs.
2828 *
2829 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2830 * the vdev has less than perfect replication. There are four kinds of DTL:
2831 *
2832 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2833 *
2834 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2835 *
2836 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2837 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2838 * txgs that was scrubbed.
2839 *
2840 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2841 * persistent errors or just some device being offline.
2842 * Unlike the other three, the DTL_OUTAGE map is not generally
2843 * maintained; it's only computed when needed, typically to
2844 * determine whether a device can be detached.
2845 *
2846 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2847 * either has the data or it doesn't.
2848 *
2849 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2850 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2851 * if any child is less than fully replicated, then so is its parent.
2852 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2853 * comprising only those txgs which appear in 'maxfaults' or more children;
2854 * those are the txgs we don't have enough replication to read. For example,
2855 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2856 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2857 * two child DTL_MISSING maps.
2858 *
2859 * It should be clear from the above that to compute the DTLs and outage maps
2860 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2861 * Therefore, that is all we keep on disk. When loading the pool, or after
2862 * a configuration change, we generate all other DTLs from first principles.
2863 */
2864 void
2865 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2866 {
2867 range_tree_t *rt = vd->vdev_dtl[t];
2868
2869 ASSERT(t < DTL_TYPES);
2870 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2871 ASSERT(spa_writeable(vd->vdev_spa));
2872
2873 mutex_enter(&vd->vdev_dtl_lock);
2874 if (!range_tree_contains(rt, txg, size))
2875 range_tree_add(rt, txg, size);
2876 mutex_exit(&vd->vdev_dtl_lock);
2877 }
2878
2879 boolean_t
2880 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2881 {
2882 range_tree_t *rt = vd->vdev_dtl[t];
2883 boolean_t dirty = B_FALSE;
2884
2885 ASSERT(t < DTL_TYPES);
2886 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2887
2888 /*
2889 * While we are loading the pool, the DTLs have not been loaded yet.
2890 * This isn't a problem but it can result in devices being tried
2891 * which are known to not have the data. In which case, the import
2892 * is relying on the checksum to ensure that we get the right data.
2893 * Note that while importing we are only reading the MOS, which is
2894 * always checksummed.
2895 */
2896 mutex_enter(&vd->vdev_dtl_lock);
2897 if (!range_tree_is_empty(rt))
2898 dirty = range_tree_contains(rt, txg, size);
2899 mutex_exit(&vd->vdev_dtl_lock);
2900
2901 return (dirty);
2902 }
2903
2904 boolean_t
2905 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2906 {
2907 range_tree_t *rt = vd->vdev_dtl[t];
2908 boolean_t empty;
2909
2910 mutex_enter(&vd->vdev_dtl_lock);
2911 empty = range_tree_is_empty(rt);
2912 mutex_exit(&vd->vdev_dtl_lock);
2913
2914 return (empty);
2915 }
2916
2917 /*
2918 * Check if the txg falls within the range which must be
2919 * resilvered. DVAs outside this range can always be skipped.
2920 */
2921 boolean_t
2922 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2923 uint64_t phys_birth)
2924 {
2925 (void) dva, (void) psize;
2926
2927 /* Set by sequential resilver. */
2928 if (phys_birth == TXG_UNKNOWN)
2929 return (B_TRUE);
2930
2931 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
2932 }
2933
2934 /*
2935 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
2936 */
2937 boolean_t
2938 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2939 uint64_t phys_birth)
2940 {
2941 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2942
2943 if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2944 vd->vdev_ops->vdev_op_leaf)
2945 return (B_TRUE);
2946
2947 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
2948 phys_birth));
2949 }
2950
2951 /*
2952 * Returns the lowest txg in the DTL range.
2953 */
2954 static uint64_t
2955 vdev_dtl_min(vdev_t *vd)
2956 {
2957 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2958 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2959 ASSERT0(vd->vdev_children);
2960
2961 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
2962 }
2963
2964 /*
2965 * Returns the highest txg in the DTL.
2966 */
2967 static uint64_t
2968 vdev_dtl_max(vdev_t *vd)
2969 {
2970 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2971 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2972 ASSERT0(vd->vdev_children);
2973
2974 return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
2975 }
2976
2977 /*
2978 * Determine if a resilvering vdev should remove any DTL entries from
2979 * its range. If the vdev was resilvering for the entire duration of the
2980 * scan then it should excise that range from its DTLs. Otherwise, this
2981 * vdev is considered partially resilvered and should leave its DTL
2982 * entries intact. The comment in vdev_dtl_reassess() describes how we
2983 * excise the DTLs.
2984 */
2985 static boolean_t
2986 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
2987 {
2988 ASSERT0(vd->vdev_children);
2989
2990 if (vd->vdev_state < VDEV_STATE_DEGRADED)
2991 return (B_FALSE);
2992
2993 if (vd->vdev_resilver_deferred)
2994 return (B_FALSE);
2995
2996 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2997 return (B_TRUE);
2998
2999 if (rebuild_done) {
3000 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3001 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
3002
3003 /* Rebuild not initiated by attach */
3004 if (vd->vdev_rebuild_txg == 0)
3005 return (B_TRUE);
3006
3007 /*
3008 * When a rebuild completes without error then all missing data
3009 * up to the rebuild max txg has been reconstructed and the DTL
3010 * is eligible for excision.
3011 */
3012 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
3013 vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
3014 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
3015 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
3016 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
3017 return (B_TRUE);
3018 }
3019 } else {
3020 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3021 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
3022
3023 /* Resilver not initiated by attach */
3024 if (vd->vdev_resilver_txg == 0)
3025 return (B_TRUE);
3026
3027 /*
3028 * When a resilver is initiated the scan will assign the
3029 * scn_max_txg value to the highest txg value that exists
3030 * in all DTLs. If this device's max DTL is not part of this
3031 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3032 * then it is not eligible for excision.
3033 */
3034 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
3035 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
3036 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
3037 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
3038 return (B_TRUE);
3039 }
3040 }
3041
3042 return (B_FALSE);
3043 }
3044
3045 /*
3046 * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3047 * write operations will be issued to the pool.
3048 */
3049 void
3050 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3051 boolean_t scrub_done, boolean_t rebuild_done)
3052 {
3053 spa_t *spa = vd->vdev_spa;
3054 avl_tree_t reftree;
3055 int minref;
3056
3057 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3058
3059 for (int c = 0; c < vd->vdev_children; c++)
3060 vdev_dtl_reassess(vd->vdev_child[c], txg,
3061 scrub_txg, scrub_done, rebuild_done);
3062
3063 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3064 return;
3065
3066 if (vd->vdev_ops->vdev_op_leaf) {
3067 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3068 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3069 boolean_t check_excise = B_FALSE;
3070 boolean_t wasempty = B_TRUE;
3071
3072 mutex_enter(&vd->vdev_dtl_lock);
3073
3074 /*
3075 * If requested, pretend the scan or rebuild completed cleanly.
3076 */
3077 if (zfs_scan_ignore_errors) {
3078 if (scn != NULL)
3079 scn->scn_phys.scn_errors = 0;
3080 if (vr != NULL)
3081 vr->vr_rebuild_phys.vrp_errors = 0;
3082 }
3083
3084 if (scrub_txg != 0 &&
3085 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3086 wasempty = B_FALSE;
3087 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3088 "dtl:%llu/%llu errors:%llu",
3089 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3090 (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3091 (u_longlong_t)vdev_dtl_min(vd),
3092 (u_longlong_t)vdev_dtl_max(vd),
3093 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3094 }
3095
3096 /*
3097 * If we've completed a scrub/resilver or a rebuild cleanly
3098 * then determine if this vdev should remove any DTLs. We
3099 * only want to excise regions on vdevs that were available
3100 * during the entire duration of this scan.
3101 */
3102 if (rebuild_done &&
3103 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3104 check_excise = B_TRUE;
3105 } else {
3106 if (spa->spa_scrub_started ||
3107 (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3108 check_excise = B_TRUE;
3109 }
3110 }
3111
3112 if (scrub_txg && check_excise &&
3113 vdev_dtl_should_excise(vd, rebuild_done)) {
3114 /*
3115 * We completed a scrub, resilver or rebuild up to
3116 * scrub_txg. If we did it without rebooting, then
3117 * the scrub dtl will be valid, so excise the old
3118 * region and fold in the scrub dtl. Otherwise,
3119 * leave the dtl as-is if there was an error.
3120 *
3121 * There's little trick here: to excise the beginning
3122 * of the DTL_MISSING map, we put it into a reference
3123 * tree and then add a segment with refcnt -1 that
3124 * covers the range [0, scrub_txg). This means
3125 * that each txg in that range has refcnt -1 or 0.
3126 * We then add DTL_SCRUB with a refcnt of 2, so that
3127 * entries in the range [0, scrub_txg) will have a
3128 * positive refcnt -- either 1 or 2. We then convert
3129 * the reference tree into the new DTL_MISSING map.
3130 */
3131 space_reftree_create(&reftree);
3132 space_reftree_add_map(&reftree,
3133 vd->vdev_dtl[DTL_MISSING], 1);
3134 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3135 space_reftree_add_map(&reftree,
3136 vd->vdev_dtl[DTL_SCRUB], 2);
3137 space_reftree_generate_map(&reftree,
3138 vd->vdev_dtl[DTL_MISSING], 1);
3139 space_reftree_destroy(&reftree);
3140
3141 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3142 zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3143 (u_longlong_t)vdev_dtl_min(vd),
3144 (u_longlong_t)vdev_dtl_max(vd));
3145 } else if (!wasempty) {
3146 zfs_dbgmsg("DTL_MISSING is now empty");
3147 }
3148 }
3149 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3150 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3151 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3152 if (scrub_done)
3153 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
3154 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3155 if (!vdev_readable(vd))
3156 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3157 else
3158 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3159 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3160
3161 /*
3162 * If the vdev was resilvering or rebuilding and no longer
3163 * has any DTLs then reset the appropriate flag and dirty
3164 * the top level so that we persist the change.
3165 */
3166 if (txg != 0 &&
3167 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3168 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3169 if (vd->vdev_rebuild_txg != 0) {
3170 vd->vdev_rebuild_txg = 0;
3171 vdev_config_dirty(vd->vdev_top);
3172 } else if (vd->vdev_resilver_txg != 0) {
3173 vd->vdev_resilver_txg = 0;
3174 vdev_config_dirty(vd->vdev_top);
3175 }
3176 }
3177
3178 mutex_exit(&vd->vdev_dtl_lock);
3179
3180 if (txg != 0)
3181 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3182 return;
3183 }
3184
3185 mutex_enter(&vd->vdev_dtl_lock);
3186 for (int t = 0; t < DTL_TYPES; t++) {
3187 /* account for child's outage in parent's missing map */
3188 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3189 if (t == DTL_SCRUB)
3190 continue; /* leaf vdevs only */
3191 if (t == DTL_PARTIAL)
3192 minref = 1; /* i.e. non-zero */
3193 else if (vdev_get_nparity(vd) != 0)
3194 minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */
3195 else
3196 minref = vd->vdev_children; /* any kind of mirror */
3197 space_reftree_create(&reftree);
3198 for (int c = 0; c < vd->vdev_children; c++) {
3199 vdev_t *cvd = vd->vdev_child[c];
3200 mutex_enter(&cvd->vdev_dtl_lock);
3201 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
3202 mutex_exit(&cvd->vdev_dtl_lock);
3203 }
3204 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
3205 space_reftree_destroy(&reftree);
3206 }
3207 mutex_exit(&vd->vdev_dtl_lock);
3208 }
3209
3210 /*
3211 * Iterate over all the vdevs except spare, and post kobj events
3212 */
3213 void
3214 vdev_post_kobj_evt(vdev_t *vd)
3215 {
3216 if (vd->vdev_ops->vdev_op_kobj_evt_post &&
3217 vd->vdev_kobj_flag == B_FALSE) {
3218 vd->vdev_kobj_flag = B_TRUE;
3219 vd->vdev_ops->vdev_op_kobj_evt_post(vd);
3220 }
3221
3222 for (int c = 0; c < vd->vdev_children; c++)
3223 vdev_post_kobj_evt(vd->vdev_child[c]);
3224 }
3225
3226 /*
3227 * Iterate over all the vdevs except spare, and clear kobj events
3228 */
3229 void
3230 vdev_clear_kobj_evt(vdev_t *vd)
3231 {
3232 vd->vdev_kobj_flag = B_FALSE;
3233
3234 for (int c = 0; c < vd->vdev_children; c++)
3235 vdev_clear_kobj_evt(vd->vdev_child[c]);
3236 }
3237
3238 int
3239 vdev_dtl_load(vdev_t *vd)
3240 {
3241 spa_t *spa = vd->vdev_spa;
3242 objset_t *mos = spa->spa_meta_objset;
3243 range_tree_t *rt;
3244 int error = 0;
3245
3246 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3247 ASSERT(vdev_is_concrete(vd));
3248
3249 /*
3250 * If the dtl cannot be sync'd there is no need to open it.
3251 */
3252 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3253 return (0);
3254
3255 error = space_map_open(&vd->vdev_dtl_sm, mos,
3256 vd->vdev_dtl_object, 0, -1ULL, 0);
3257 if (error)
3258 return (error);
3259 ASSERT(vd->vdev_dtl_sm != NULL);
3260
3261 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3262 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3263 if (error == 0) {
3264 mutex_enter(&vd->vdev_dtl_lock);
3265 range_tree_walk(rt, range_tree_add,
3266 vd->vdev_dtl[DTL_MISSING]);
3267 mutex_exit(&vd->vdev_dtl_lock);
3268 }
3269
3270 range_tree_vacate(rt, NULL, NULL);
3271 range_tree_destroy(rt);
3272
3273 return (error);
3274 }
3275
3276 for (int c = 0; c < vd->vdev_children; c++) {
3277 error = vdev_dtl_load(vd->vdev_child[c]);
3278 if (error != 0)
3279 break;
3280 }
3281
3282 return (error);
3283 }
3284
3285 static void
3286 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3287 {
3288 spa_t *spa = vd->vdev_spa;
3289 objset_t *mos = spa->spa_meta_objset;
3290 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3291 const char *string;
3292
3293 ASSERT(alloc_bias != VDEV_BIAS_NONE);
3294
3295 string =
3296 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3297 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3298 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3299
3300 ASSERT(string != NULL);
3301 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3302 1, strlen(string) + 1, string, tx));
3303
3304 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3305 spa_activate_allocation_classes(spa, tx);
3306 }
3307 }
3308
3309 void
3310 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3311 {
3312 spa_t *spa = vd->vdev_spa;
3313
3314 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3315 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3316 zapobj, tx));
3317 }
3318
3319 uint64_t
3320 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3321 {
3322 spa_t *spa = vd->vdev_spa;
3323 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3324 DMU_OT_NONE, 0, tx);
3325
3326 ASSERT(zap != 0);
3327 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3328 zap, tx));
3329
3330 return (zap);
3331 }
3332
3333 void
3334 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3335 {
3336 if (vd->vdev_ops != &vdev_hole_ops &&
3337 vd->vdev_ops != &vdev_missing_ops &&
3338 vd->vdev_ops != &vdev_root_ops &&
3339 !vd->vdev_top->vdev_removing) {
3340 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3341 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3342 }
3343 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3344 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3345 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3346 vdev_zap_allocation_data(vd, tx);
3347 }
3348 }
3349
3350 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3351 vdev_construct_zaps(vd->vdev_child[i], tx);
3352 }
3353 }
3354
3355 static void
3356 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3357 {
3358 spa_t *spa = vd->vdev_spa;
3359 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3360 objset_t *mos = spa->spa_meta_objset;
3361 range_tree_t *rtsync;
3362 dmu_tx_t *tx;
3363 uint64_t object = space_map_object(vd->vdev_dtl_sm);
3364
3365 ASSERT(vdev_is_concrete(vd));
3366 ASSERT(vd->vdev_ops->vdev_op_leaf);
3367
3368 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3369
3370 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3371 mutex_enter(&vd->vdev_dtl_lock);
3372 space_map_free(vd->vdev_dtl_sm, tx);
3373 space_map_close(vd->vdev_dtl_sm);
3374 vd->vdev_dtl_sm = NULL;
3375 mutex_exit(&vd->vdev_dtl_lock);
3376
3377 /*
3378 * We only destroy the leaf ZAP for detached leaves or for
3379 * removed log devices. Removed data devices handle leaf ZAP
3380 * cleanup later, once cancellation is no longer possible.
3381 */
3382 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3383 vd->vdev_top->vdev_islog)) {
3384 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3385 vd->vdev_leaf_zap = 0;
3386 }
3387
3388 dmu_tx_commit(tx);
3389 return;
3390 }
3391
3392 if (vd->vdev_dtl_sm == NULL) {
3393 uint64_t new_object;
3394
3395 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3396 VERIFY3U(new_object, !=, 0);
3397
3398 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3399 0, -1ULL, 0));
3400 ASSERT(vd->vdev_dtl_sm != NULL);
3401 }
3402
3403 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3404
3405 mutex_enter(&vd->vdev_dtl_lock);
3406 range_tree_walk(rt, range_tree_add, rtsync);
3407 mutex_exit(&vd->vdev_dtl_lock);
3408
3409 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3410 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3411 range_tree_vacate(rtsync, NULL, NULL);
3412
3413 range_tree_destroy(rtsync);
3414
3415 /*
3416 * If the object for the space map has changed then dirty
3417 * the top level so that we update the config.
3418 */
3419 if (object != space_map_object(vd->vdev_dtl_sm)) {
3420 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3421 "new object %llu", (u_longlong_t)txg, spa_name(spa),
3422 (u_longlong_t)object,
3423 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3424 vdev_config_dirty(vd->vdev_top);
3425 }
3426
3427 dmu_tx_commit(tx);
3428 }
3429
3430 /*
3431 * Determine whether the specified vdev can be offlined/detached/removed
3432 * without losing data.
3433 */
3434 boolean_t
3435 vdev_dtl_required(vdev_t *vd)
3436 {
3437 spa_t *spa = vd->vdev_spa;
3438 vdev_t *tvd = vd->vdev_top;
3439 uint8_t cant_read = vd->vdev_cant_read;
3440 boolean_t required;
3441
3442 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3443
3444 if (vd == spa->spa_root_vdev || vd == tvd)
3445 return (B_TRUE);
3446
3447 /*
3448 * Temporarily mark the device as unreadable, and then determine
3449 * whether this results in any DTL outages in the top-level vdev.
3450 * If not, we can safely offline/detach/remove the device.
3451 */
3452 vd->vdev_cant_read = B_TRUE;
3453 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3454 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3455 vd->vdev_cant_read = cant_read;
3456 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3457
3458 if (!required && zio_injection_enabled) {
3459 required = !!zio_handle_device_injection(vd, NULL,
3460 SET_ERROR(ECHILD));
3461 }
3462
3463 return (required);
3464 }
3465
3466 /*
3467 * Determine if resilver is needed, and if so the txg range.
3468 */
3469 boolean_t
3470 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3471 {
3472 boolean_t needed = B_FALSE;
3473 uint64_t thismin = UINT64_MAX;
3474 uint64_t thismax = 0;
3475
3476 if (vd->vdev_children == 0) {
3477 mutex_enter(&vd->vdev_dtl_lock);
3478 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3479 vdev_writeable(vd)) {
3480
3481 thismin = vdev_dtl_min(vd);
3482 thismax = vdev_dtl_max(vd);
3483 needed = B_TRUE;
3484 }
3485 mutex_exit(&vd->vdev_dtl_lock);
3486 } else {
3487 for (int c = 0; c < vd->vdev_children; c++) {
3488 vdev_t *cvd = vd->vdev_child[c];
3489 uint64_t cmin, cmax;
3490
3491 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3492 thismin = MIN(thismin, cmin);
3493 thismax = MAX(thismax, cmax);
3494 needed = B_TRUE;
3495 }
3496 }
3497 }
3498
3499 if (needed && minp) {
3500 *minp = thismin;
3501 *maxp = thismax;
3502 }
3503 return (needed);
3504 }
3505
3506 /*
3507 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
3508 * will contain either the checkpoint spacemap object or zero if none exists.
3509 * All other errors are returned to the caller.
3510 */
3511 int
3512 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3513 {
3514 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3515
3516 if (vd->vdev_top_zap == 0) {
3517 *sm_obj = 0;
3518 return (0);
3519 }
3520
3521 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3522 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3523 if (error == ENOENT) {
3524 *sm_obj = 0;
3525 error = 0;
3526 }
3527
3528 return (error);
3529 }
3530
3531 int
3532 vdev_load(vdev_t *vd)
3533 {
3534 int children = vd->vdev_children;
3535 int error = 0;
3536 taskq_t *tq = NULL;
3537
3538 /*
3539 * It's only worthwhile to use the taskq for the root vdev, because the
3540 * slow part is metaslab_init, and that only happens for top-level
3541 * vdevs.
3542 */
3543 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3544 tq = taskq_create("vdev_load", children, minclsyspri,
3545 children, children, TASKQ_PREPOPULATE);
3546 }
3547
3548 /*
3549 * Recursively load all children.
3550 */
3551 for (int c = 0; c < vd->vdev_children; c++) {
3552 vdev_t *cvd = vd->vdev_child[c];
3553
3554 if (tq == NULL || vdev_uses_zvols(cvd)) {
3555 cvd->vdev_load_error = vdev_load(cvd);
3556 } else {
3557 VERIFY(taskq_dispatch(tq, vdev_load_child,
3558 cvd, TQ_SLEEP) != TASKQID_INVALID);
3559 }
3560 }
3561
3562 if (tq != NULL) {
3563 taskq_wait(tq);
3564 taskq_destroy(tq);
3565 }
3566
3567 for (int c = 0; c < vd->vdev_children; c++) {
3568 int error = vd->vdev_child[c]->vdev_load_error;
3569
3570 if (error != 0)
3571 return (error);
3572 }
3573
3574 vdev_set_deflate_ratio(vd);
3575
3576 /*
3577 * On spa_load path, grab the allocation bias from our zap
3578 */
3579 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3580 spa_t *spa = vd->vdev_spa;
3581 char bias_str[64];
3582
3583 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3584 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3585 bias_str);
3586 if (error == 0) {
3587 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3588 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3589 } else if (error != ENOENT) {
3590 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3591 VDEV_AUX_CORRUPT_DATA);
3592 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3593 "failed [error=%d]",
3594 (u_longlong_t)vd->vdev_top_zap, error);
3595 return (error);
3596 }
3597 }
3598
3599 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3600 spa_t *spa = vd->vdev_spa;
3601 uint64_t failfast;
3602
3603 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3604 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
3605 1, &failfast);
3606 if (error == 0) {
3607 vd->vdev_failfast = failfast & 1;
3608 } else if (error == ENOENT) {
3609 vd->vdev_failfast = vdev_prop_default_numeric(
3610 VDEV_PROP_FAILFAST);
3611 } else {
3612 vdev_dbgmsg(vd,
3613 "vdev_load: zap_lookup(top_zap=%llu) "
3614 "failed [error=%d]",
3615 (u_longlong_t)vd->vdev_top_zap, error);
3616 }
3617 }
3618
3619 /*
3620 * Load any rebuild state from the top-level vdev zap.
3621 */
3622 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3623 error = vdev_rebuild_load(vd);
3624 if (error && error != ENOTSUP) {
3625 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3626 VDEV_AUX_CORRUPT_DATA);
3627 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3628 "failed [error=%d]", error);
3629 return (error);
3630 }
3631 }
3632
3633 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
3634 uint64_t zapobj;
3635
3636 if (vd->vdev_top_zap != 0)
3637 zapobj = vd->vdev_top_zap;
3638 else
3639 zapobj = vd->vdev_leaf_zap;
3640
3641 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
3642 &vd->vdev_checksum_n);
3643 if (error && error != ENOENT)
3644 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3645 "failed [error=%d]", (u_longlong_t)zapobj, error);
3646
3647 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
3648 &vd->vdev_checksum_t);
3649 if (error && error != ENOENT)
3650 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3651 "failed [error=%d]", (u_longlong_t)zapobj, error);
3652
3653 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
3654 &vd->vdev_io_n);
3655 if (error && error != ENOENT)
3656 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3657 "failed [error=%d]", (u_longlong_t)zapobj, error);
3658
3659 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
3660 &vd->vdev_io_t);
3661 if (error && error != ENOENT)
3662 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3663 "failed [error=%d]", (u_longlong_t)zapobj, error);
3664 }
3665
3666 /*
3667 * If this is a top-level vdev, initialize its metaslabs.
3668 */
3669 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3670 vdev_metaslab_group_create(vd);
3671
3672 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3673 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3674 VDEV_AUX_CORRUPT_DATA);
3675 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3676 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3677 (u_longlong_t)vd->vdev_asize);
3678 return (SET_ERROR(ENXIO));
3679 }
3680
3681 error = vdev_metaslab_init(vd, 0);
3682 if (error != 0) {
3683 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3684 "[error=%d]", error);
3685 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3686 VDEV_AUX_CORRUPT_DATA);
3687 return (error);
3688 }
3689
3690 uint64_t checkpoint_sm_obj;
3691 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3692 if (error == 0 && checkpoint_sm_obj != 0) {
3693 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3694 ASSERT(vd->vdev_asize != 0);
3695 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3696
3697 error = space_map_open(&vd->vdev_checkpoint_sm,
3698 mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3699 vd->vdev_ashift);
3700 if (error != 0) {
3701 vdev_dbgmsg(vd, "vdev_load: space_map_open "
3702 "failed for checkpoint spacemap (obj %llu) "
3703 "[error=%d]",
3704 (u_longlong_t)checkpoint_sm_obj, error);
3705 return (error);
3706 }
3707 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3708
3709 /*
3710 * Since the checkpoint_sm contains free entries
3711 * exclusively we can use space_map_allocated() to
3712 * indicate the cumulative checkpointed space that
3713 * has been freed.
3714 */
3715 vd->vdev_stat.vs_checkpoint_space =
3716 -space_map_allocated(vd->vdev_checkpoint_sm);
3717 vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3718 vd->vdev_stat.vs_checkpoint_space;
3719 } else if (error != 0) {
3720 vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3721 "checkpoint space map object from vdev ZAP "
3722 "[error=%d]", error);
3723 return (error);
3724 }
3725 }
3726
3727 /*
3728 * If this is a leaf vdev, load its DTL.
3729 */
3730 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3731 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3732 VDEV_AUX_CORRUPT_DATA);
3733 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3734 "[error=%d]", error);
3735 return (error);
3736 }
3737
3738 uint64_t obsolete_sm_object;
3739 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3740 if (error == 0 && obsolete_sm_object != 0) {
3741 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3742 ASSERT(vd->vdev_asize != 0);
3743 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3744
3745 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3746 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3747 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3748 VDEV_AUX_CORRUPT_DATA);
3749 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3750 "obsolete spacemap (obj %llu) [error=%d]",
3751 (u_longlong_t)obsolete_sm_object, error);
3752 return (error);
3753 }
3754 } else if (error != 0) {
3755 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3756 "space map object from vdev ZAP [error=%d]", error);
3757 return (error);
3758 }
3759
3760 return (0);
3761 }
3762
3763 /*
3764 * The special vdev case is used for hot spares and l2cache devices. Its
3765 * sole purpose it to set the vdev state for the associated vdev. To do this,
3766 * we make sure that we can open the underlying device, then try to read the
3767 * label, and make sure that the label is sane and that it hasn't been
3768 * repurposed to another pool.
3769 */
3770 int
3771 vdev_validate_aux(vdev_t *vd)
3772 {
3773 nvlist_t *label;
3774 uint64_t guid, version;
3775 uint64_t state;
3776
3777 if (!vdev_readable(vd))
3778 return (0);
3779
3780 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3781 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3782 VDEV_AUX_CORRUPT_DATA);
3783 return (-1);
3784 }
3785
3786 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3787 !SPA_VERSION_IS_SUPPORTED(version) ||
3788 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3789 guid != vd->vdev_guid ||
3790 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3791 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3792 VDEV_AUX_CORRUPT_DATA);
3793 nvlist_free(label);
3794 return (-1);
3795 }
3796
3797 /*
3798 * We don't actually check the pool state here. If it's in fact in
3799 * use by another pool, we update this fact on the fly when requested.
3800 */
3801 nvlist_free(label);
3802 return (0);
3803 }
3804
3805 static void
3806 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3807 {
3808 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3809
3810 if (vd->vdev_top_zap == 0)
3811 return;
3812
3813 uint64_t object = 0;
3814 int err = zap_lookup(mos, vd->vdev_top_zap,
3815 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3816 if (err == ENOENT)
3817 return;
3818 VERIFY0(err);
3819
3820 VERIFY0(dmu_object_free(mos, object, tx));
3821 VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3822 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3823 }
3824
3825 /*
3826 * Free the objects used to store this vdev's spacemaps, and the array
3827 * that points to them.
3828 */
3829 void
3830 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3831 {
3832 if (vd->vdev_ms_array == 0)
3833 return;
3834
3835 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3836 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3837 size_t array_bytes = array_count * sizeof (uint64_t);
3838 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3839 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3840 array_bytes, smobj_array, 0));
3841
3842 for (uint64_t i = 0; i < array_count; i++) {
3843 uint64_t smobj = smobj_array[i];
3844 if (smobj == 0)
3845 continue;
3846
3847 space_map_free_obj(mos, smobj, tx);
3848 }
3849
3850 kmem_free(smobj_array, array_bytes);
3851 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3852 vdev_destroy_ms_flush_data(vd, tx);
3853 vd->vdev_ms_array = 0;
3854 }
3855
3856 static void
3857 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3858 {
3859 spa_t *spa = vd->vdev_spa;
3860
3861 ASSERT(vd->vdev_islog);
3862 ASSERT(vd == vd->vdev_top);
3863 ASSERT3U(txg, ==, spa_syncing_txg(spa));
3864
3865 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3866
3867 vdev_destroy_spacemaps(vd, tx);
3868 if (vd->vdev_top_zap != 0) {
3869 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3870 vd->vdev_top_zap = 0;
3871 }
3872
3873 dmu_tx_commit(tx);
3874 }
3875
3876 void
3877 vdev_sync_done(vdev_t *vd, uint64_t txg)
3878 {
3879 metaslab_t *msp;
3880 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3881
3882 ASSERT(vdev_is_concrete(vd));
3883
3884 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3885 != NULL)
3886 metaslab_sync_done(msp, txg);
3887
3888 if (reassess) {
3889 metaslab_sync_reassess(vd->vdev_mg);
3890 if (vd->vdev_log_mg != NULL)
3891 metaslab_sync_reassess(vd->vdev_log_mg);
3892 }
3893 }
3894
3895 void
3896 vdev_sync(vdev_t *vd, uint64_t txg)
3897 {
3898 spa_t *spa = vd->vdev_spa;
3899 vdev_t *lvd;
3900 metaslab_t *msp;
3901
3902 ASSERT3U(txg, ==, spa->spa_syncing_txg);
3903 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3904 if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3905 ASSERT(vd->vdev_removing ||
3906 vd->vdev_ops == &vdev_indirect_ops);
3907
3908 vdev_indirect_sync_obsolete(vd, tx);
3909
3910 /*
3911 * If the vdev is indirect, it can't have dirty
3912 * metaslabs or DTLs.
3913 */
3914 if (vd->vdev_ops == &vdev_indirect_ops) {
3915 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3916 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3917 dmu_tx_commit(tx);
3918 return;
3919 }
3920 }
3921
3922 ASSERT(vdev_is_concrete(vd));
3923
3924 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3925 !vd->vdev_removing) {
3926 ASSERT(vd == vd->vdev_top);
3927 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3928 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3929 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3930 ASSERT(vd->vdev_ms_array != 0);
3931 vdev_config_dirty(vd);
3932 }
3933
3934 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3935 metaslab_sync(msp, txg);
3936 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3937 }
3938
3939 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3940 vdev_dtl_sync(lvd, txg);
3941
3942 /*
3943 * If this is an empty log device being removed, destroy the
3944 * metadata associated with it.
3945 */
3946 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3947 vdev_remove_empty_log(vd, txg);
3948
3949 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3950 dmu_tx_commit(tx);
3951 }
3952
3953 uint64_t
3954 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3955 {
3956 return (vd->vdev_ops->vdev_op_asize(vd, psize));
3957 }
3958
3959 /*
3960 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
3961 * not be opened, and no I/O is attempted.
3962 */
3963 int
3964 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3965 {
3966 vdev_t *vd, *tvd;
3967
3968 spa_vdev_state_enter(spa, SCL_NONE);
3969
3970 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3971 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3972
3973 if (!vd->vdev_ops->vdev_op_leaf)
3974 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3975
3976 tvd = vd->vdev_top;
3977
3978 /*
3979 * If user did a 'zpool offline -f' then make the fault persist across
3980 * reboots.
3981 */
3982 if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
3983 /*
3984 * There are two kinds of forced faults: temporary and
3985 * persistent. Temporary faults go away at pool import, while
3986 * persistent faults stay set. Both types of faults can be
3987 * cleared with a zpool clear.
3988 *
3989 * We tell if a vdev is persistently faulted by looking at the
3990 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
3991 * import then it's a persistent fault. Otherwise, it's
3992 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
3993 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
3994 * tells vdev_config_generate() (which gets run later) to set
3995 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
3996 */
3997 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
3998 vd->vdev_tmpoffline = B_FALSE;
3999 aux = VDEV_AUX_EXTERNAL;
4000 } else {
4001 vd->vdev_tmpoffline = B_TRUE;
4002 }
4003
4004 /*
4005 * We don't directly use the aux state here, but if we do a
4006 * vdev_reopen(), we need this value to be present to remember why we
4007 * were faulted.
4008 */
4009 vd->vdev_label_aux = aux;
4010
4011 /*
4012 * Faulted state takes precedence over degraded.
4013 */
4014 vd->vdev_delayed_close = B_FALSE;
4015 vd->vdev_faulted = 1ULL;
4016 vd->vdev_degraded = 0ULL;
4017 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
4018
4019 /*
4020 * If this device has the only valid copy of the data, then
4021 * back off and simply mark the vdev as degraded instead.
4022 */
4023 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
4024 vd->vdev_degraded = 1ULL;
4025 vd->vdev_faulted = 0ULL;
4026
4027 /*
4028 * If we reopen the device and it's not dead, only then do we
4029 * mark it degraded.
4030 */
4031 vdev_reopen(tvd);
4032
4033 if (vdev_readable(vd))
4034 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
4035 }
4036
4037 return (spa_vdev_state_exit(spa, vd, 0));
4038 }
4039
4040 /*
4041 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
4042 * user that something is wrong. The vdev continues to operate as normal as far
4043 * as I/O is concerned.
4044 */
4045 int
4046 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4047 {
4048 vdev_t *vd;
4049
4050 spa_vdev_state_enter(spa, SCL_NONE);
4051
4052 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4053 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4054
4055 if (!vd->vdev_ops->vdev_op_leaf)
4056 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4057
4058 /*
4059 * If the vdev is already faulted, then don't do anything.
4060 */
4061 if (vd->vdev_faulted || vd->vdev_degraded)
4062 return (spa_vdev_state_exit(spa, NULL, 0));
4063
4064 vd->vdev_degraded = 1ULL;
4065 if (!vdev_is_dead(vd))
4066 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
4067 aux);
4068
4069 return (spa_vdev_state_exit(spa, vd, 0));
4070 }
4071
4072 int
4073 vdev_remove_wanted(spa_t *spa, uint64_t guid)
4074 {
4075 vdev_t *vd;
4076
4077 spa_vdev_state_enter(spa, SCL_NONE);
4078
4079 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4080 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4081
4082 /*
4083 * If the vdev is already removed, then don't do anything.
4084 */
4085 if (vd->vdev_removed)
4086 return (spa_vdev_state_exit(spa, NULL, 0));
4087
4088 vd->vdev_remove_wanted = B_TRUE;
4089 spa_async_request(spa, SPA_ASYNC_REMOVE);
4090
4091 return (spa_vdev_state_exit(spa, vd, 0));
4092 }
4093
4094
4095 /*
4096 * Online the given vdev.
4097 *
4098 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
4099 * spare device should be detached when the device finishes resilvering.
4100 * Second, the online should be treated like a 'test' online case, so no FMA
4101 * events are generated if the device fails to open.
4102 */
4103 int
4104 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
4105 {
4106 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
4107 boolean_t wasoffline;
4108 vdev_state_t oldstate;
4109
4110 spa_vdev_state_enter(spa, SCL_NONE);
4111
4112 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4113 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4114
4115 if (!vd->vdev_ops->vdev_op_leaf)
4116 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4117
4118 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
4119 oldstate = vd->vdev_state;
4120
4121 tvd = vd->vdev_top;
4122 vd->vdev_offline = B_FALSE;
4123 vd->vdev_tmpoffline = B_FALSE;
4124 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
4125 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
4126
4127 /* XXX - L2ARC 1.0 does not support expansion */
4128 if (!vd->vdev_aux) {
4129 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4130 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
4131 spa->spa_autoexpand);
4132 vd->vdev_expansion_time = gethrestime_sec();
4133 }
4134
4135 vdev_reopen(tvd);
4136 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
4137
4138 if (!vd->vdev_aux) {
4139 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4140 pvd->vdev_expanding = B_FALSE;
4141 }
4142
4143 if (newstate)
4144 *newstate = vd->vdev_state;
4145 if ((flags & ZFS_ONLINE_UNSPARE) &&
4146 !vdev_is_dead(vd) && vd->vdev_parent &&
4147 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4148 vd->vdev_parent->vdev_child[0] == vd)
4149 vd->vdev_unspare = B_TRUE;
4150
4151 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
4152
4153 /* XXX - L2ARC 1.0 does not support expansion */
4154 if (vd->vdev_aux)
4155 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
4156 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4157 }
4158
4159 /* Restart initializing if necessary */
4160 mutex_enter(&vd->vdev_initialize_lock);
4161 if (vdev_writeable(vd) &&
4162 vd->vdev_initialize_thread == NULL &&
4163 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
4164 (void) vdev_initialize(vd);
4165 }
4166 mutex_exit(&vd->vdev_initialize_lock);
4167
4168 /*
4169 * Restart trimming if necessary. We do not restart trimming for cache
4170 * devices here. This is triggered by l2arc_rebuild_vdev()
4171 * asynchronously for the whole device or in l2arc_evict() as it evicts
4172 * space for upcoming writes.
4173 */
4174 mutex_enter(&vd->vdev_trim_lock);
4175 if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4176 vd->vdev_trim_thread == NULL &&
4177 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4178 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4179 vd->vdev_trim_secure);
4180 }
4181 mutex_exit(&vd->vdev_trim_lock);
4182
4183 if (wasoffline ||
4184 (oldstate < VDEV_STATE_DEGRADED &&
4185 vd->vdev_state >= VDEV_STATE_DEGRADED))
4186 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4187
4188 return (spa_vdev_state_exit(spa, vd, 0));
4189 }
4190
4191 static int
4192 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4193 {
4194 vdev_t *vd, *tvd;
4195 int error = 0;
4196 uint64_t generation;
4197 metaslab_group_t *mg;
4198
4199 top:
4200 spa_vdev_state_enter(spa, SCL_ALLOC);
4201
4202 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4203 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4204
4205 if (!vd->vdev_ops->vdev_op_leaf)
4206 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4207
4208 if (vd->vdev_ops == &vdev_draid_spare_ops)
4209 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4210
4211 tvd = vd->vdev_top;
4212 mg = tvd->vdev_mg;
4213 generation = spa->spa_config_generation + 1;
4214
4215 /*
4216 * If the device isn't already offline, try to offline it.
4217 */
4218 if (!vd->vdev_offline) {
4219 /*
4220 * If this device has the only valid copy of some data,
4221 * don't allow it to be offlined. Log devices are always
4222 * expendable.
4223 */
4224 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4225 vdev_dtl_required(vd))
4226 return (spa_vdev_state_exit(spa, NULL,
4227 SET_ERROR(EBUSY)));
4228
4229 /*
4230 * If the top-level is a slog and it has had allocations
4231 * then proceed. We check that the vdev's metaslab group
4232 * is not NULL since it's possible that we may have just
4233 * added this vdev but not yet initialized its metaslabs.
4234 */
4235 if (tvd->vdev_islog && mg != NULL) {
4236 /*
4237 * Prevent any future allocations.
4238 */
4239 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4240 metaslab_group_passivate(mg);
4241 (void) spa_vdev_state_exit(spa, vd, 0);
4242
4243 error = spa_reset_logs(spa);
4244
4245 /*
4246 * If the log device was successfully reset but has
4247 * checkpointed data, do not offline it.
4248 */
4249 if (error == 0 &&
4250 tvd->vdev_checkpoint_sm != NULL) {
4251 ASSERT3U(space_map_allocated(
4252 tvd->vdev_checkpoint_sm), !=, 0);
4253 error = ZFS_ERR_CHECKPOINT_EXISTS;
4254 }
4255
4256 spa_vdev_state_enter(spa, SCL_ALLOC);
4257
4258 /*
4259 * Check to see if the config has changed.
4260 */
4261 if (error || generation != spa->spa_config_generation) {
4262 metaslab_group_activate(mg);
4263 if (error)
4264 return (spa_vdev_state_exit(spa,
4265 vd, error));
4266 (void) spa_vdev_state_exit(spa, vd, 0);
4267 goto top;
4268 }
4269 ASSERT0(tvd->vdev_stat.vs_alloc);
4270 }
4271
4272 /*
4273 * Offline this device and reopen its top-level vdev.
4274 * If the top-level vdev is a log device then just offline
4275 * it. Otherwise, if this action results in the top-level
4276 * vdev becoming unusable, undo it and fail the request.
4277 */
4278 vd->vdev_offline = B_TRUE;
4279 vdev_reopen(tvd);
4280
4281 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4282 vdev_is_dead(tvd)) {
4283 vd->vdev_offline = B_FALSE;
4284 vdev_reopen(tvd);
4285 return (spa_vdev_state_exit(spa, NULL,
4286 SET_ERROR(EBUSY)));
4287 }
4288
4289 /*
4290 * Add the device back into the metaslab rotor so that
4291 * once we online the device it's open for business.
4292 */
4293 if (tvd->vdev_islog && mg != NULL)
4294 metaslab_group_activate(mg);
4295 }
4296
4297 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4298
4299 return (spa_vdev_state_exit(spa, vd, 0));
4300 }
4301
4302 int
4303 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4304 {
4305 int error;
4306
4307 mutex_enter(&spa->spa_vdev_top_lock);
4308 error = vdev_offline_locked(spa, guid, flags);
4309 mutex_exit(&spa->spa_vdev_top_lock);
4310
4311 return (error);
4312 }
4313
4314 /*
4315 * Clear the error counts associated with this vdev. Unlike vdev_online() and
4316 * vdev_offline(), we assume the spa config is locked. We also clear all
4317 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
4318 */
4319 void
4320 vdev_clear(spa_t *spa, vdev_t *vd)
4321 {
4322 vdev_t *rvd = spa->spa_root_vdev;
4323
4324 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4325
4326 if (vd == NULL)
4327 vd = rvd;
4328
4329 vd->vdev_stat.vs_read_errors = 0;
4330 vd->vdev_stat.vs_write_errors = 0;
4331 vd->vdev_stat.vs_checksum_errors = 0;
4332 vd->vdev_stat.vs_slow_ios = 0;
4333
4334 for (int c = 0; c < vd->vdev_children; c++)
4335 vdev_clear(spa, vd->vdev_child[c]);
4336
4337 /*
4338 * It makes no sense to "clear" an indirect or removed vdev.
4339 */
4340 if (!vdev_is_concrete(vd) || vd->vdev_removed)
4341 return;
4342
4343 /*
4344 * If we're in the FAULTED state or have experienced failed I/O, then
4345 * clear the persistent state and attempt to reopen the device. We
4346 * also mark the vdev config dirty, so that the new faulted state is
4347 * written out to disk.
4348 */
4349 if (vd->vdev_faulted || vd->vdev_degraded ||
4350 !vdev_readable(vd) || !vdev_writeable(vd)) {
4351 /*
4352 * When reopening in response to a clear event, it may be due to
4353 * a fmadm repair request. In this case, if the device is
4354 * still broken, we want to still post the ereport again.
4355 */
4356 vd->vdev_forcefault = B_TRUE;
4357
4358 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4359 vd->vdev_cant_read = B_FALSE;
4360 vd->vdev_cant_write = B_FALSE;
4361 vd->vdev_stat.vs_aux = 0;
4362
4363 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4364
4365 vd->vdev_forcefault = B_FALSE;
4366
4367 if (vd != rvd && vdev_writeable(vd->vdev_top))
4368 vdev_state_dirty(vd->vdev_top);
4369
4370 /* If a resilver isn't required, check if vdevs can be culled */
4371 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4372 !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4373 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4374 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4375
4376 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4377 }
4378
4379 /*
4380 * When clearing a FMA-diagnosed fault, we always want to
4381 * unspare the device, as we assume that the original spare was
4382 * done in response to the FMA fault.
4383 */
4384 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4385 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4386 vd->vdev_parent->vdev_child[0] == vd)
4387 vd->vdev_unspare = B_TRUE;
4388
4389 /* Clear recent error events cache (i.e. duplicate events tracking) */
4390 zfs_ereport_clear(spa, vd);
4391 }
4392
4393 boolean_t
4394 vdev_is_dead(vdev_t *vd)
4395 {
4396 /*
4397 * Holes and missing devices are always considered "dead".
4398 * This simplifies the code since we don't have to check for
4399 * these types of devices in the various code paths.
4400 * Instead we rely on the fact that we skip over dead devices
4401 * before issuing I/O to them.
4402 */
4403 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4404 vd->vdev_ops == &vdev_hole_ops ||
4405 vd->vdev_ops == &vdev_missing_ops);
4406 }
4407
4408 boolean_t
4409 vdev_readable(vdev_t *vd)
4410 {
4411 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4412 }
4413
4414 boolean_t
4415 vdev_writeable(vdev_t *vd)
4416 {
4417 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4418 vdev_is_concrete(vd));
4419 }
4420
4421 boolean_t
4422 vdev_allocatable(vdev_t *vd)
4423 {
4424 uint64_t state = vd->vdev_state;
4425
4426 /*
4427 * We currently allow allocations from vdevs which may be in the
4428 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4429 * fails to reopen then we'll catch it later when we're holding
4430 * the proper locks. Note that we have to get the vdev state
4431 * in a local variable because although it changes atomically,
4432 * we're asking two separate questions about it.
4433 */
4434 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4435 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4436 vd->vdev_mg->mg_initialized);
4437 }
4438
4439 boolean_t
4440 vdev_accessible(vdev_t *vd, zio_t *zio)
4441 {
4442 ASSERT(zio->io_vd == vd);
4443
4444 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4445 return (B_FALSE);
4446
4447 if (zio->io_type == ZIO_TYPE_READ)
4448 return (!vd->vdev_cant_read);
4449
4450 if (zio->io_type == ZIO_TYPE_WRITE)
4451 return (!vd->vdev_cant_write);
4452
4453 return (B_TRUE);
4454 }
4455
4456 static void
4457 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4458 {
4459 /*
4460 * Exclude the dRAID spare when aggregating to avoid double counting
4461 * the ops and bytes. These IOs are counted by the physical leaves.
4462 */
4463 if (cvd->vdev_ops == &vdev_draid_spare_ops)
4464 return;
4465
4466 for (int t = 0; t < VS_ZIO_TYPES; t++) {
4467 vs->vs_ops[t] += cvs->vs_ops[t];
4468 vs->vs_bytes[t] += cvs->vs_bytes[t];
4469 }
4470
4471 cvs->vs_scan_removing = cvd->vdev_removing;
4472 }
4473
4474 /*
4475 * Get extended stats
4476 */
4477 static void
4478 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4479 {
4480 (void) cvd;
4481
4482 int t, b;
4483 for (t = 0; t < ZIO_TYPES; t++) {
4484 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4485 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4486
4487 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4488 vsx->vsx_total_histo[t][b] +=
4489 cvsx->vsx_total_histo[t][b];
4490 }
4491 }
4492
4493 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4494 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4495 vsx->vsx_queue_histo[t][b] +=
4496 cvsx->vsx_queue_histo[t][b];
4497 }
4498 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4499 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4500
4501 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4502 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4503
4504 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4505 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4506 }
4507
4508 }
4509
4510 boolean_t
4511 vdev_is_spacemap_addressable(vdev_t *vd)
4512 {
4513 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4514 return (B_TRUE);
4515
4516 /*
4517 * If double-word space map entries are not enabled we assume
4518 * 47 bits of the space map entry are dedicated to the entry's
4519 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4520 * to calculate the maximum address that can be described by a
4521 * space map entry for the given device.
4522 */
4523 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4524
4525 if (shift >= 63) /* detect potential overflow */
4526 return (B_TRUE);
4527
4528 return (vd->vdev_asize < (1ULL << shift));
4529 }
4530
4531 /*
4532 * Get statistics for the given vdev.
4533 */
4534 static void
4535 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4536 {
4537 int t;
4538 /*
4539 * If we're getting stats on the root vdev, aggregate the I/O counts
4540 * over all top-level vdevs (i.e. the direct children of the root).
4541 */
4542 if (!vd->vdev_ops->vdev_op_leaf) {
4543 if (vs) {
4544 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4545 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4546 }
4547 if (vsx)
4548 memset(vsx, 0, sizeof (*vsx));
4549
4550 for (int c = 0; c < vd->vdev_children; c++) {
4551 vdev_t *cvd = vd->vdev_child[c];
4552 vdev_stat_t *cvs = &cvd->vdev_stat;
4553 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4554
4555 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4556 if (vs)
4557 vdev_get_child_stat(cvd, vs, cvs);
4558 if (vsx)
4559 vdev_get_child_stat_ex(cvd, vsx, cvsx);
4560 }
4561 } else {
4562 /*
4563 * We're a leaf. Just copy our ZIO active queue stats in. The
4564 * other leaf stats are updated in vdev_stat_update().
4565 */
4566 if (!vsx)
4567 return;
4568
4569 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4570
4571 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
4572 vsx->vsx_active_queue[t] =
4573 vd->vdev_queue.vq_class[t].vqc_active;
4574 vsx->vsx_pend_queue[t] = avl_numnodes(
4575 &vd->vdev_queue.vq_class[t].vqc_queued_tree);
4576 }
4577 }
4578 }
4579
4580 void
4581 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4582 {
4583 vdev_t *tvd = vd->vdev_top;
4584 mutex_enter(&vd->vdev_stat_lock);
4585 if (vs) {
4586 memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4587 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4588 vs->vs_state = vd->vdev_state;
4589 vs->vs_rsize = vdev_get_min_asize(vd);
4590
4591 if (vd->vdev_ops->vdev_op_leaf) {
4592 vs->vs_pspace = vd->vdev_psize;
4593 vs->vs_rsize += VDEV_LABEL_START_SIZE +
4594 VDEV_LABEL_END_SIZE;
4595 /*
4596 * Report initializing progress. Since we don't
4597 * have the initializing locks held, this is only
4598 * an estimate (although a fairly accurate one).
4599 */
4600 vs->vs_initialize_bytes_done =
4601 vd->vdev_initialize_bytes_done;
4602 vs->vs_initialize_bytes_est =
4603 vd->vdev_initialize_bytes_est;
4604 vs->vs_initialize_state = vd->vdev_initialize_state;
4605 vs->vs_initialize_action_time =
4606 vd->vdev_initialize_action_time;
4607
4608 /*
4609 * Report manual TRIM progress. Since we don't have
4610 * the manual TRIM locks held, this is only an
4611 * estimate (although fairly accurate one).
4612 */
4613 vs->vs_trim_notsup = !vd->vdev_has_trim;
4614 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4615 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4616 vs->vs_trim_state = vd->vdev_trim_state;
4617 vs->vs_trim_action_time = vd->vdev_trim_action_time;
4618
4619 /* Set when there is a deferred resilver. */
4620 vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4621 }
4622
4623 /*
4624 * Report expandable space on top-level, non-auxiliary devices
4625 * only. The expandable space is reported in terms of metaslab
4626 * sized units since that determines how much space the pool
4627 * can expand.
4628 */
4629 if (vd->vdev_aux == NULL && tvd != NULL) {
4630 vs->vs_esize = P2ALIGN(
4631 vd->vdev_max_asize - vd->vdev_asize,
4632 1ULL << tvd->vdev_ms_shift);
4633 }
4634
4635 vs->vs_configured_ashift = vd->vdev_top != NULL
4636 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4637 vs->vs_logical_ashift = vd->vdev_logical_ashift;
4638 if (vd->vdev_physical_ashift <= ASHIFT_MAX)
4639 vs->vs_physical_ashift = vd->vdev_physical_ashift;
4640 else
4641 vs->vs_physical_ashift = 0;
4642
4643 /*
4644 * Report fragmentation and rebuild progress for top-level,
4645 * non-auxiliary, concrete devices.
4646 */
4647 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4648 vdev_is_concrete(vd)) {
4649 /*
4650 * The vdev fragmentation rating doesn't take into
4651 * account the embedded slog metaslab (vdev_log_mg).
4652 * Since it's only one metaslab, it would have a tiny
4653 * impact on the overall fragmentation.
4654 */
4655 vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4656 vd->vdev_mg->mg_fragmentation : 0;
4657 }
4658 vs->vs_noalloc = MAX(vd->vdev_noalloc,
4659 tvd ? tvd->vdev_noalloc : 0);
4660 }
4661
4662 vdev_get_stats_ex_impl(vd, vs, vsx);
4663 mutex_exit(&vd->vdev_stat_lock);
4664 }
4665
4666 void
4667 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4668 {
4669 return (vdev_get_stats_ex(vd, vs, NULL));
4670 }
4671
4672 void
4673 vdev_clear_stats(vdev_t *vd)
4674 {
4675 mutex_enter(&vd->vdev_stat_lock);
4676 vd->vdev_stat.vs_space = 0;
4677 vd->vdev_stat.vs_dspace = 0;
4678 vd->vdev_stat.vs_alloc = 0;
4679 mutex_exit(&vd->vdev_stat_lock);
4680 }
4681
4682 void
4683 vdev_scan_stat_init(vdev_t *vd)
4684 {
4685 vdev_stat_t *vs = &vd->vdev_stat;
4686
4687 for (int c = 0; c < vd->vdev_children; c++)
4688 vdev_scan_stat_init(vd->vdev_child[c]);
4689
4690 mutex_enter(&vd->vdev_stat_lock);
4691 vs->vs_scan_processed = 0;
4692 mutex_exit(&vd->vdev_stat_lock);
4693 }
4694
4695 void
4696 vdev_stat_update(zio_t *zio, uint64_t psize)
4697 {
4698 spa_t *spa = zio->io_spa;
4699 vdev_t *rvd = spa->spa_root_vdev;
4700 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4701 vdev_t *pvd;
4702 uint64_t txg = zio->io_txg;
4703 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
4704 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
4705 zio_type_t type = zio->io_type;
4706 int flags = zio->io_flags;
4707
4708 /*
4709 * If this i/o is a gang leader, it didn't do any actual work.
4710 */
4711 if (zio->io_gang_tree)
4712 return;
4713
4714 if (zio->io_error == 0) {
4715 /*
4716 * If this is a root i/o, don't count it -- we've already
4717 * counted the top-level vdevs, and vdev_get_stats() will
4718 * aggregate them when asked. This reduces contention on
4719 * the root vdev_stat_lock and implicitly handles blocks
4720 * that compress away to holes, for which there is no i/o.
4721 * (Holes never create vdev children, so all the counters
4722 * remain zero, which is what we want.)
4723 *
4724 * Note: this only applies to successful i/o (io_error == 0)
4725 * because unlike i/o counts, errors are not additive.
4726 * When reading a ditto block, for example, failure of
4727 * one top-level vdev does not imply a root-level error.
4728 */
4729 if (vd == rvd)
4730 return;
4731
4732 ASSERT(vd == zio->io_vd);
4733
4734 if (flags & ZIO_FLAG_IO_BYPASS)
4735 return;
4736
4737 mutex_enter(&vd->vdev_stat_lock);
4738
4739 if (flags & ZIO_FLAG_IO_REPAIR) {
4740 /*
4741 * Repair is the result of a resilver issued by the
4742 * scan thread (spa_sync).
4743 */
4744 if (flags & ZIO_FLAG_SCAN_THREAD) {
4745 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4746 dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4747 uint64_t *processed = &scn_phys->scn_processed;
4748
4749 if (vd->vdev_ops->vdev_op_leaf)
4750 atomic_add_64(processed, psize);
4751 vs->vs_scan_processed += psize;
4752 }
4753
4754 /*
4755 * Repair is the result of a rebuild issued by the
4756 * rebuild thread (vdev_rebuild_thread). To avoid
4757 * double counting repaired bytes the virtual dRAID
4758 * spare vdev is excluded from the processed bytes.
4759 */
4760 if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4761 vdev_t *tvd = vd->vdev_top;
4762 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4763 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4764 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4765
4766 if (vd->vdev_ops->vdev_op_leaf &&
4767 vd->vdev_ops != &vdev_draid_spare_ops) {
4768 atomic_add_64(rebuilt, psize);
4769 }
4770 vs->vs_rebuild_processed += psize;
4771 }
4772
4773 if (flags & ZIO_FLAG_SELF_HEAL)
4774 vs->vs_self_healed += psize;
4775 }
4776
4777 /*
4778 * The bytes/ops/histograms are recorded at the leaf level and
4779 * aggregated into the higher level vdevs in vdev_get_stats().
4780 */
4781 if (vd->vdev_ops->vdev_op_leaf &&
4782 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4783 zio_type_t vs_type = type;
4784 zio_priority_t priority = zio->io_priority;
4785
4786 /*
4787 * TRIM ops and bytes are reported to user space as
4788 * ZIO_TYPE_IOCTL. This is done to preserve the
4789 * vdev_stat_t structure layout for user space.
4790 */
4791 if (type == ZIO_TYPE_TRIM)
4792 vs_type = ZIO_TYPE_IOCTL;
4793
4794 /*
4795 * Solely for the purposes of 'zpool iostat -lqrw'
4796 * reporting use the priority to categorize the IO.
4797 * Only the following are reported to user space:
4798 *
4799 * ZIO_PRIORITY_SYNC_READ,
4800 * ZIO_PRIORITY_SYNC_WRITE,
4801 * ZIO_PRIORITY_ASYNC_READ,
4802 * ZIO_PRIORITY_ASYNC_WRITE,
4803 * ZIO_PRIORITY_SCRUB,
4804 * ZIO_PRIORITY_TRIM,
4805 * ZIO_PRIORITY_REBUILD.
4806 */
4807 if (priority == ZIO_PRIORITY_INITIALIZING) {
4808 ASSERT3U(type, ==, ZIO_TYPE_WRITE);
4809 priority = ZIO_PRIORITY_ASYNC_WRITE;
4810 } else if (priority == ZIO_PRIORITY_REMOVAL) {
4811 priority = ((type == ZIO_TYPE_WRITE) ?
4812 ZIO_PRIORITY_ASYNC_WRITE :
4813 ZIO_PRIORITY_ASYNC_READ);
4814 }
4815
4816 vs->vs_ops[vs_type]++;
4817 vs->vs_bytes[vs_type] += psize;
4818
4819 if (flags & ZIO_FLAG_DELEGATED) {
4820 vsx->vsx_agg_histo[priority]
4821 [RQ_HISTO(zio->io_size)]++;
4822 } else {
4823 vsx->vsx_ind_histo[priority]
4824 [RQ_HISTO(zio->io_size)]++;
4825 }
4826
4827 if (zio->io_delta && zio->io_delay) {
4828 vsx->vsx_queue_histo[priority]
4829 [L_HISTO(zio->io_delta - zio->io_delay)]++;
4830 vsx->vsx_disk_histo[type]
4831 [L_HISTO(zio->io_delay)]++;
4832 vsx->vsx_total_histo[type]
4833 [L_HISTO(zio->io_delta)]++;
4834 }
4835 }
4836
4837 mutex_exit(&vd->vdev_stat_lock);
4838 return;
4839 }
4840
4841 if (flags & ZIO_FLAG_SPECULATIVE)
4842 return;
4843
4844 /*
4845 * If this is an I/O error that is going to be retried, then ignore the
4846 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
4847 * hard errors, when in reality they can happen for any number of
4848 * innocuous reasons (bus resets, MPxIO link failure, etc).
4849 */
4850 if (zio->io_error == EIO &&
4851 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4852 return;
4853
4854 /*
4855 * Intent logs writes won't propagate their error to the root
4856 * I/O so don't mark these types of failures as pool-level
4857 * errors.
4858 */
4859 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4860 return;
4861
4862 if (type == ZIO_TYPE_WRITE && txg != 0 &&
4863 (!(flags & ZIO_FLAG_IO_REPAIR) ||
4864 (flags & ZIO_FLAG_SCAN_THREAD) ||
4865 spa->spa_claiming)) {
4866 /*
4867 * This is either a normal write (not a repair), or it's
4868 * a repair induced by the scrub thread, or it's a repair
4869 * made by zil_claim() during spa_load() in the first txg.
4870 * In the normal case, we commit the DTL change in the same
4871 * txg as the block was born. In the scrub-induced repair
4872 * case, we know that scrubs run in first-pass syncing context,
4873 * so we commit the DTL change in spa_syncing_txg(spa).
4874 * In the zil_claim() case, we commit in spa_first_txg(spa).
4875 *
4876 * We currently do not make DTL entries for failed spontaneous
4877 * self-healing writes triggered by normal (non-scrubbing)
4878 * reads, because we have no transactional context in which to
4879 * do so -- and it's not clear that it'd be desirable anyway.
4880 */
4881 if (vd->vdev_ops->vdev_op_leaf) {
4882 uint64_t commit_txg = txg;
4883 if (flags & ZIO_FLAG_SCAN_THREAD) {
4884 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4885 ASSERT(spa_sync_pass(spa) == 1);
4886 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4887 commit_txg = spa_syncing_txg(spa);
4888 } else if (spa->spa_claiming) {
4889 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4890 commit_txg = spa_first_txg(spa);
4891 }
4892 ASSERT(commit_txg >= spa_syncing_txg(spa));
4893 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4894 return;
4895 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4896 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4897 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4898 }
4899 if (vd != rvd)
4900 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4901 }
4902 }
4903
4904 int64_t
4905 vdev_deflated_space(vdev_t *vd, int64_t space)
4906 {
4907 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4908 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4909
4910 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4911 }
4912
4913 /*
4914 * Update the in-core space usage stats for this vdev, its metaslab class,
4915 * and the root vdev.
4916 */
4917 void
4918 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4919 int64_t space_delta)
4920 {
4921 (void) defer_delta;
4922 int64_t dspace_delta;
4923 spa_t *spa = vd->vdev_spa;
4924 vdev_t *rvd = spa->spa_root_vdev;
4925
4926 ASSERT(vd == vd->vdev_top);
4927
4928 /*
4929 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4930 * factor. We must calculate this here and not at the root vdev
4931 * because the root vdev's psize-to-asize is simply the max of its
4932 * children's, thus not accurate enough for us.
4933 */
4934 dspace_delta = vdev_deflated_space(vd, space_delta);
4935
4936 mutex_enter(&vd->vdev_stat_lock);
4937 /* ensure we won't underflow */
4938 if (alloc_delta < 0) {
4939 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
4940 }
4941
4942 vd->vdev_stat.vs_alloc += alloc_delta;
4943 vd->vdev_stat.vs_space += space_delta;
4944 vd->vdev_stat.vs_dspace += dspace_delta;
4945 mutex_exit(&vd->vdev_stat_lock);
4946
4947 /* every class but log contributes to root space stats */
4948 if (vd->vdev_mg != NULL && !vd->vdev_islog) {
4949 ASSERT(!vd->vdev_isl2cache);
4950 mutex_enter(&rvd->vdev_stat_lock);
4951 rvd->vdev_stat.vs_alloc += alloc_delta;
4952 rvd->vdev_stat.vs_space += space_delta;
4953 rvd->vdev_stat.vs_dspace += dspace_delta;
4954 mutex_exit(&rvd->vdev_stat_lock);
4955 }
4956 /* Note: metaslab_class_space_update moved to metaslab_space_update */
4957 }
4958
4959 /*
4960 * Mark a top-level vdev's config as dirty, placing it on the dirty list
4961 * so that it will be written out next time the vdev configuration is synced.
4962 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4963 */
4964 void
4965 vdev_config_dirty(vdev_t *vd)
4966 {
4967 spa_t *spa = vd->vdev_spa;
4968 vdev_t *rvd = spa->spa_root_vdev;
4969 int c;
4970
4971 ASSERT(spa_writeable(spa));
4972
4973 /*
4974 * If this is an aux vdev (as with l2cache and spare devices), then we
4975 * update the vdev config manually and set the sync flag.
4976 */
4977 if (vd->vdev_aux != NULL) {
4978 spa_aux_vdev_t *sav = vd->vdev_aux;
4979 nvlist_t **aux;
4980 uint_t naux;
4981
4982 for (c = 0; c < sav->sav_count; c++) {
4983 if (sav->sav_vdevs[c] == vd)
4984 break;
4985 }
4986
4987 if (c == sav->sav_count) {
4988 /*
4989 * We're being removed. There's nothing more to do.
4990 */
4991 ASSERT(sav->sav_sync == B_TRUE);
4992 return;
4993 }
4994
4995 sav->sav_sync = B_TRUE;
4996
4997 if (nvlist_lookup_nvlist_array(sav->sav_config,
4998 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
4999 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
5000 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
5001 }
5002
5003 ASSERT(c < naux);
5004
5005 /*
5006 * Setting the nvlist in the middle if the array is a little
5007 * sketchy, but it will work.
5008 */
5009 nvlist_free(aux[c]);
5010 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
5011
5012 return;
5013 }
5014
5015 /*
5016 * The dirty list is protected by the SCL_CONFIG lock. The caller
5017 * must either hold SCL_CONFIG as writer, or must be the sync thread
5018 * (which holds SCL_CONFIG as reader). There's only one sync thread,
5019 * so this is sufficient to ensure mutual exclusion.
5020 */
5021 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5022 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5023 spa_config_held(spa, SCL_CONFIG, RW_READER)));
5024
5025 if (vd == rvd) {
5026 for (c = 0; c < rvd->vdev_children; c++)
5027 vdev_config_dirty(rvd->vdev_child[c]);
5028 } else {
5029 ASSERT(vd == vd->vdev_top);
5030
5031 if (!list_link_active(&vd->vdev_config_dirty_node) &&
5032 vdev_is_concrete(vd)) {
5033 list_insert_head(&spa->spa_config_dirty_list, vd);
5034 }
5035 }
5036 }
5037
5038 void
5039 vdev_config_clean(vdev_t *vd)
5040 {
5041 spa_t *spa = vd->vdev_spa;
5042
5043 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5044 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5045 spa_config_held(spa, SCL_CONFIG, RW_READER)));
5046
5047 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
5048 list_remove(&spa->spa_config_dirty_list, vd);
5049 }
5050
5051 /*
5052 * Mark a top-level vdev's state as dirty, so that the next pass of
5053 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
5054 * the state changes from larger config changes because they require
5055 * much less locking, and are often needed for administrative actions.
5056 */
5057 void
5058 vdev_state_dirty(vdev_t *vd)
5059 {
5060 spa_t *spa = vd->vdev_spa;
5061
5062 ASSERT(spa_writeable(spa));
5063 ASSERT(vd == vd->vdev_top);
5064
5065 /*
5066 * The state list is protected by the SCL_STATE lock. The caller
5067 * must either hold SCL_STATE as writer, or must be the sync thread
5068 * (which holds SCL_STATE as reader). There's only one sync thread,
5069 * so this is sufficient to ensure mutual exclusion.
5070 */
5071 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5072 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5073 spa_config_held(spa, SCL_STATE, RW_READER)));
5074
5075 if (!list_link_active(&vd->vdev_state_dirty_node) &&
5076 vdev_is_concrete(vd))
5077 list_insert_head(&spa->spa_state_dirty_list, vd);
5078 }
5079
5080 void
5081 vdev_state_clean(vdev_t *vd)
5082 {
5083 spa_t *spa = vd->vdev_spa;
5084
5085 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5086 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5087 spa_config_held(spa, SCL_STATE, RW_READER)));
5088
5089 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
5090 list_remove(&spa->spa_state_dirty_list, vd);
5091 }
5092
5093 /*
5094 * Propagate vdev state up from children to parent.
5095 */
5096 void
5097 vdev_propagate_state(vdev_t *vd)
5098 {
5099 spa_t *spa = vd->vdev_spa;
5100 vdev_t *rvd = spa->spa_root_vdev;
5101 int degraded = 0, faulted = 0;
5102 int corrupted = 0;
5103 vdev_t *child;
5104
5105 if (vd->vdev_children > 0) {
5106 for (int c = 0; c < vd->vdev_children; c++) {
5107 child = vd->vdev_child[c];
5108
5109 /*
5110 * Don't factor holes or indirect vdevs into the
5111 * decision.
5112 */
5113 if (!vdev_is_concrete(child))
5114 continue;
5115
5116 if (!vdev_readable(child) ||
5117 (!vdev_writeable(child) && spa_writeable(spa))) {
5118 /*
5119 * Root special: if there is a top-level log
5120 * device, treat the root vdev as if it were
5121 * degraded.
5122 */
5123 if (child->vdev_islog && vd == rvd)
5124 degraded++;
5125 else
5126 faulted++;
5127 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
5128 degraded++;
5129 }
5130
5131 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
5132 corrupted++;
5133 }
5134
5135 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
5136
5137 /*
5138 * Root special: if there is a top-level vdev that cannot be
5139 * opened due to corrupted metadata, then propagate the root
5140 * vdev's aux state as 'corrupt' rather than 'insufficient
5141 * replicas'.
5142 */
5143 if (corrupted && vd == rvd &&
5144 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
5145 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
5146 VDEV_AUX_CORRUPT_DATA);
5147 }
5148
5149 if (vd->vdev_parent)
5150 vdev_propagate_state(vd->vdev_parent);
5151 }
5152
5153 /*
5154 * Set a vdev's state. If this is during an open, we don't update the parent
5155 * state, because we're in the process of opening children depth-first.
5156 * Otherwise, we propagate the change to the parent.
5157 *
5158 * If this routine places a device in a faulted state, an appropriate ereport is
5159 * generated.
5160 */
5161 void
5162 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
5163 {
5164 uint64_t save_state;
5165 spa_t *spa = vd->vdev_spa;
5166
5167 if (state == vd->vdev_state) {
5168 /*
5169 * Since vdev_offline() code path is already in an offline
5170 * state we can miss a statechange event to OFFLINE. Check
5171 * the previous state to catch this condition.
5172 */
5173 if (vd->vdev_ops->vdev_op_leaf &&
5174 (state == VDEV_STATE_OFFLINE) &&
5175 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5176 /* post an offline state change */
5177 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5178 }
5179 vd->vdev_stat.vs_aux = aux;
5180 return;
5181 }
5182
5183 save_state = vd->vdev_state;
5184
5185 vd->vdev_state = state;
5186 vd->vdev_stat.vs_aux = aux;
5187
5188 /*
5189 * If we are setting the vdev state to anything but an open state, then
5190 * always close the underlying device unless the device has requested
5191 * a delayed close (i.e. we're about to remove or fault the device).
5192 * Otherwise, we keep accessible but invalid devices open forever.
5193 * We don't call vdev_close() itself, because that implies some extra
5194 * checks (offline, etc) that we don't want here. This is limited to
5195 * leaf devices, because otherwise closing the device will affect other
5196 * children.
5197 */
5198 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5199 vd->vdev_ops->vdev_op_leaf)
5200 vd->vdev_ops->vdev_op_close(vd);
5201
5202 if (vd->vdev_removed &&
5203 state == VDEV_STATE_CANT_OPEN &&
5204 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5205 /*
5206 * If the previous state is set to VDEV_STATE_REMOVED, then this
5207 * device was previously marked removed and someone attempted to
5208 * reopen it. If this failed due to a nonexistent device, then
5209 * keep the device in the REMOVED state. We also let this be if
5210 * it is one of our special test online cases, which is only
5211 * attempting to online the device and shouldn't generate an FMA
5212 * fault.
5213 */
5214 vd->vdev_state = VDEV_STATE_REMOVED;
5215 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5216 } else if (state == VDEV_STATE_REMOVED) {
5217 vd->vdev_removed = B_TRUE;
5218 } else if (state == VDEV_STATE_CANT_OPEN) {
5219 /*
5220 * If we fail to open a vdev during an import or recovery, we
5221 * mark it as "not available", which signifies that it was
5222 * never there to begin with. Failure to open such a device
5223 * is not considered an error.
5224 */
5225 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5226 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5227 vd->vdev_ops->vdev_op_leaf)
5228 vd->vdev_not_present = 1;
5229
5230 /*
5231 * Post the appropriate ereport. If the 'prevstate' field is
5232 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5233 * that this is part of a vdev_reopen(). In this case, we don't
5234 * want to post the ereport if the device was already in the
5235 * CANT_OPEN state beforehand.
5236 *
5237 * If the 'checkremove' flag is set, then this is an attempt to
5238 * online the device in response to an insertion event. If we
5239 * hit this case, then we have detected an insertion event for a
5240 * faulted or offline device that wasn't in the removed state.
5241 * In this scenario, we don't post an ereport because we are
5242 * about to replace the device, or attempt an online with
5243 * vdev_forcefault, which will generate the fault for us.
5244 */
5245 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5246 !vd->vdev_not_present && !vd->vdev_checkremove &&
5247 vd != spa->spa_root_vdev) {
5248 const char *class;
5249
5250 switch (aux) {
5251 case VDEV_AUX_OPEN_FAILED:
5252 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5253 break;
5254 case VDEV_AUX_CORRUPT_DATA:
5255 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5256 break;
5257 case VDEV_AUX_NO_REPLICAS:
5258 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5259 break;
5260 case VDEV_AUX_BAD_GUID_SUM:
5261 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5262 break;
5263 case VDEV_AUX_TOO_SMALL:
5264 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5265 break;
5266 case VDEV_AUX_BAD_LABEL:
5267 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5268 break;
5269 case VDEV_AUX_BAD_ASHIFT:
5270 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5271 break;
5272 default:
5273 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5274 }
5275
5276 (void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5277 save_state);
5278 }
5279
5280 /* Erase any notion of persistent removed state */
5281 vd->vdev_removed = B_FALSE;
5282 } else {
5283 vd->vdev_removed = B_FALSE;
5284 }
5285
5286 /*
5287 * Notify ZED of any significant state-change on a leaf vdev.
5288 *
5289 */
5290 if (vd->vdev_ops->vdev_op_leaf) {
5291 /* preserve original state from a vdev_reopen() */
5292 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5293 (vd->vdev_prevstate != vd->vdev_state) &&
5294 (save_state <= VDEV_STATE_CLOSED))
5295 save_state = vd->vdev_prevstate;
5296
5297 /* filter out state change due to initial vdev_open */
5298 if (save_state > VDEV_STATE_CLOSED)
5299 zfs_post_state_change(spa, vd, save_state);
5300 }
5301
5302 if (!isopen && vd->vdev_parent)
5303 vdev_propagate_state(vd->vdev_parent);
5304 }
5305
5306 boolean_t
5307 vdev_children_are_offline(vdev_t *vd)
5308 {
5309 ASSERT(!vd->vdev_ops->vdev_op_leaf);
5310
5311 for (uint64_t i = 0; i < vd->vdev_children; i++) {
5312 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5313 return (B_FALSE);
5314 }
5315
5316 return (B_TRUE);
5317 }
5318
5319 /*
5320 * Check the vdev configuration to ensure that it's capable of supporting
5321 * a root pool. We do not support partial configuration.
5322 */
5323 boolean_t
5324 vdev_is_bootable(vdev_t *vd)
5325 {
5326 if (!vd->vdev_ops->vdev_op_leaf) {
5327 const char *vdev_type = vd->vdev_ops->vdev_op_type;
5328
5329 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5330 return (B_FALSE);
5331 }
5332
5333 for (int c = 0; c < vd->vdev_children; c++) {
5334 if (!vdev_is_bootable(vd->vdev_child[c]))
5335 return (B_FALSE);
5336 }
5337 return (B_TRUE);
5338 }
5339
5340 boolean_t
5341 vdev_is_concrete(vdev_t *vd)
5342 {
5343 vdev_ops_t *ops = vd->vdev_ops;
5344 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5345 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5346 return (B_FALSE);
5347 } else {
5348 return (B_TRUE);
5349 }
5350 }
5351
5352 /*
5353 * Determine if a log device has valid content. If the vdev was
5354 * removed or faulted in the MOS config then we know that
5355 * the content on the log device has already been written to the pool.
5356 */
5357 boolean_t
5358 vdev_log_state_valid(vdev_t *vd)
5359 {
5360 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5361 !vd->vdev_removed)
5362 return (B_TRUE);
5363
5364 for (int c = 0; c < vd->vdev_children; c++)
5365 if (vdev_log_state_valid(vd->vdev_child[c]))
5366 return (B_TRUE);
5367
5368 return (B_FALSE);
5369 }
5370
5371 /*
5372 * Expand a vdev if possible.
5373 */
5374 void
5375 vdev_expand(vdev_t *vd, uint64_t txg)
5376 {
5377 ASSERT(vd->vdev_top == vd);
5378 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5379 ASSERT(vdev_is_concrete(vd));
5380
5381 vdev_set_deflate_ratio(vd);
5382
5383 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5384 vdev_is_concrete(vd)) {
5385 vdev_metaslab_group_create(vd);
5386 VERIFY(vdev_metaslab_init(vd, txg) == 0);
5387 vdev_config_dirty(vd);
5388 }
5389 }
5390
5391 /*
5392 * Split a vdev.
5393 */
5394 void
5395 vdev_split(vdev_t *vd)
5396 {
5397 vdev_t *cvd, *pvd = vd->vdev_parent;
5398
5399 vdev_remove_child(pvd, vd);
5400 vdev_compact_children(pvd);
5401
5402 cvd = pvd->vdev_child[0];
5403 if (pvd->vdev_children == 1) {
5404 vdev_remove_parent(cvd);
5405 cvd->vdev_splitting = B_TRUE;
5406 }
5407 vdev_propagate_state(cvd);
5408 }
5409
5410 void
5411 vdev_deadman(vdev_t *vd, const char *tag)
5412 {
5413 for (int c = 0; c < vd->vdev_children; c++) {
5414 vdev_t *cvd = vd->vdev_child[c];
5415
5416 vdev_deadman(cvd, tag);
5417 }
5418
5419 if (vd->vdev_ops->vdev_op_leaf) {
5420 vdev_queue_t *vq = &vd->vdev_queue;
5421
5422 mutex_enter(&vq->vq_lock);
5423 if (avl_numnodes(&vq->vq_active_tree) > 0) {
5424 spa_t *spa = vd->vdev_spa;
5425 zio_t *fio;
5426 uint64_t delta;
5427
5428 zfs_dbgmsg("slow vdev: %s has %lu active IOs",
5429 vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
5430
5431 /*
5432 * Look at the head of all the pending queues,
5433 * if any I/O has been outstanding for longer than
5434 * the spa_deadman_synctime invoke the deadman logic.
5435 */
5436 fio = avl_first(&vq->vq_active_tree);
5437 delta = gethrtime() - fio->io_timestamp;
5438 if (delta > spa_deadman_synctime(spa))
5439 zio_deadman(fio, tag);
5440 }
5441 mutex_exit(&vq->vq_lock);
5442 }
5443 }
5444
5445 void
5446 vdev_defer_resilver(vdev_t *vd)
5447 {
5448 ASSERT(vd->vdev_ops->vdev_op_leaf);
5449
5450 vd->vdev_resilver_deferred = B_TRUE;
5451 vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5452 }
5453
5454 /*
5455 * Clears the resilver deferred flag on all leaf devs under vd. Returns
5456 * B_TRUE if we have devices that need to be resilvered and are available to
5457 * accept resilver I/Os.
5458 */
5459 boolean_t
5460 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5461 {
5462 boolean_t resilver_needed = B_FALSE;
5463 spa_t *spa = vd->vdev_spa;
5464
5465 for (int c = 0; c < vd->vdev_children; c++) {
5466 vdev_t *cvd = vd->vdev_child[c];
5467 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5468 }
5469
5470 if (vd == spa->spa_root_vdev &&
5471 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5472 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5473 vdev_config_dirty(vd);
5474 spa->spa_resilver_deferred = B_FALSE;
5475 return (resilver_needed);
5476 }
5477
5478 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5479 !vd->vdev_ops->vdev_op_leaf)
5480 return (resilver_needed);
5481
5482 vd->vdev_resilver_deferred = B_FALSE;
5483
5484 return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5485 vdev_resilver_needed(vd, NULL, NULL));
5486 }
5487
5488 boolean_t
5489 vdev_xlate_is_empty(range_seg64_t *rs)
5490 {
5491 return (rs->rs_start == rs->rs_end);
5492 }
5493
5494 /*
5495 * Translate a logical range to the first contiguous physical range for the
5496 * specified vdev_t. This function is initially called with a leaf vdev and
5497 * will walk each parent vdev until it reaches a top-level vdev. Once the
5498 * top-level is reached the physical range is initialized and the recursive
5499 * function begins to unwind. As it unwinds it calls the parent's vdev
5500 * specific translation function to do the real conversion.
5501 */
5502 void
5503 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
5504 range_seg64_t *physical_rs, range_seg64_t *remain_rs)
5505 {
5506 /*
5507 * Walk up the vdev tree
5508 */
5509 if (vd != vd->vdev_top) {
5510 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5511 remain_rs);
5512 } else {
5513 /*
5514 * We've reached the top-level vdev, initialize the physical
5515 * range to the logical range and set an empty remaining
5516 * range then start to unwind.
5517 */
5518 physical_rs->rs_start = logical_rs->rs_start;
5519 physical_rs->rs_end = logical_rs->rs_end;
5520
5521 remain_rs->rs_start = logical_rs->rs_start;
5522 remain_rs->rs_end = logical_rs->rs_start;
5523
5524 return;
5525 }
5526
5527 vdev_t *pvd = vd->vdev_parent;
5528 ASSERT3P(pvd, !=, NULL);
5529 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5530
5531 /*
5532 * As this recursive function unwinds, translate the logical
5533 * range into its physical and any remaining components by calling
5534 * the vdev specific translate function.
5535 */
5536 range_seg64_t intermediate = { 0 };
5537 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5538
5539 physical_rs->rs_start = intermediate.rs_start;
5540 physical_rs->rs_end = intermediate.rs_end;
5541 }
5542
5543 void
5544 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
5545 vdev_xlate_func_t *func, void *arg)
5546 {
5547 range_seg64_t iter_rs = *logical_rs;
5548 range_seg64_t physical_rs;
5549 range_seg64_t remain_rs;
5550
5551 while (!vdev_xlate_is_empty(&iter_rs)) {
5552
5553 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5554
5555 /*
5556 * With raidz and dRAID, it's possible that the logical range
5557 * does not live on this leaf vdev. Only when there is a non-
5558 * zero physical size call the provided function.
5559 */
5560 if (!vdev_xlate_is_empty(&physical_rs))
5561 func(arg, &physical_rs);
5562
5563 iter_rs = remain_rs;
5564 }
5565 }
5566
5567 static char *
5568 vdev_name(vdev_t *vd, char *buf, int buflen)
5569 {
5570 if (vd->vdev_path == NULL) {
5571 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5572 strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5573 } else if (!vd->vdev_ops->vdev_op_leaf) {
5574 snprintf(buf, buflen, "%s-%llu",
5575 vd->vdev_ops->vdev_op_type,
5576 (u_longlong_t)vd->vdev_id);
5577 }
5578 } else {
5579 strlcpy(buf, vd->vdev_path, buflen);
5580 }
5581 return (buf);
5582 }
5583
5584 /*
5585 * Look at the vdev tree and determine whether any devices are currently being
5586 * replaced.
5587 */
5588 boolean_t
5589 vdev_replace_in_progress(vdev_t *vdev)
5590 {
5591 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5592
5593 if (vdev->vdev_ops == &vdev_replacing_ops)
5594 return (B_TRUE);
5595
5596 /*
5597 * A 'spare' vdev indicates that we have a replace in progress, unless
5598 * it has exactly two children, and the second, the hot spare, has
5599 * finished being resilvered.
5600 */
5601 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5602 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5603 return (B_TRUE);
5604
5605 for (int i = 0; i < vdev->vdev_children; i++) {
5606 if (vdev_replace_in_progress(vdev->vdev_child[i]))
5607 return (B_TRUE);
5608 }
5609
5610 return (B_FALSE);
5611 }
5612
5613 /*
5614 * Add a (source=src, propname=propval) list to an nvlist.
5615 */
5616 static void
5617 vdev_prop_add_list(nvlist_t *nvl, const char *propname, char *strval,
5618 uint64_t intval, zprop_source_t src)
5619 {
5620 nvlist_t *propval;
5621
5622 propval = fnvlist_alloc();
5623 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5624
5625 if (strval != NULL)
5626 fnvlist_add_string(propval, ZPROP_VALUE, strval);
5627 else
5628 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5629
5630 fnvlist_add_nvlist(nvl, propname, propval);
5631 nvlist_free(propval);
5632 }
5633
5634 static void
5635 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5636 {
5637 vdev_t *vd;
5638 nvlist_t *nvp = arg;
5639 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5640 objset_t *mos = spa->spa_meta_objset;
5641 nvpair_t *elem = NULL;
5642 uint64_t vdev_guid;
5643 nvlist_t *nvprops;
5644
5645 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
5646 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
5647 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
5648
5649 /* this vdev could get removed while waiting for this sync task */
5650 if (vd == NULL)
5651 return;
5652
5653 mutex_enter(&spa->spa_props_lock);
5654
5655 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5656 uint64_t intval, objid = 0;
5657 char *strval;
5658 vdev_prop_t prop;
5659 const char *propname = nvpair_name(elem);
5660 zprop_type_t proptype;
5661
5662 /*
5663 * Set vdev property values in the vdev props mos object.
5664 */
5665 if (vd->vdev_top_zap != 0) {
5666 objid = vd->vdev_top_zap;
5667 } else if (vd->vdev_leaf_zap != 0) {
5668 objid = vd->vdev_leaf_zap;
5669 } else {
5670 panic("vdev not top or leaf");
5671 }
5672
5673 switch (prop = vdev_name_to_prop(propname)) {
5674 case VDEV_PROP_USERPROP:
5675 if (vdev_prop_user(propname)) {
5676 strval = fnvpair_value_string(elem);
5677 if (strlen(strval) == 0) {
5678 /* remove the property if value == "" */
5679 (void) zap_remove(mos, objid, propname,
5680 tx);
5681 } else {
5682 VERIFY0(zap_update(mos, objid, propname,
5683 1, strlen(strval) + 1, strval, tx));
5684 }
5685 spa_history_log_internal(spa, "vdev set", tx,
5686 "vdev_guid=%llu: %s=%s",
5687 (u_longlong_t)vdev_guid, nvpair_name(elem),
5688 strval);
5689 }
5690 break;
5691 default:
5692 /* normalize the property name */
5693 propname = vdev_prop_to_name(prop);
5694 proptype = vdev_prop_get_type(prop);
5695
5696 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5697 ASSERT(proptype == PROP_TYPE_STRING);
5698 strval = fnvpair_value_string(elem);
5699 VERIFY0(zap_update(mos, objid, propname,
5700 1, strlen(strval) + 1, strval, tx));
5701 spa_history_log_internal(spa, "vdev set", tx,
5702 "vdev_guid=%llu: %s=%s",
5703 (u_longlong_t)vdev_guid, nvpair_name(elem),
5704 strval);
5705 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5706 intval = fnvpair_value_uint64(elem);
5707
5708 if (proptype == PROP_TYPE_INDEX) {
5709 const char *unused;
5710 VERIFY0(vdev_prop_index_to_string(
5711 prop, intval, &unused));
5712 }
5713 VERIFY0(zap_update(mos, objid, propname,
5714 sizeof (uint64_t), 1, &intval, tx));
5715 spa_history_log_internal(spa, "vdev set", tx,
5716 "vdev_guid=%llu: %s=%lld",
5717 (u_longlong_t)vdev_guid,
5718 nvpair_name(elem), (longlong_t)intval);
5719 } else {
5720 panic("invalid vdev property type %u",
5721 nvpair_type(elem));
5722 }
5723 }
5724
5725 }
5726
5727 mutex_exit(&spa->spa_props_lock);
5728 }
5729
5730 int
5731 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5732 {
5733 spa_t *spa = vd->vdev_spa;
5734 nvpair_t *elem = NULL;
5735 uint64_t vdev_guid;
5736 nvlist_t *nvprops;
5737 int error = 0;
5738
5739 ASSERT(vd != NULL);
5740
5741 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
5742 &vdev_guid) != 0)
5743 return (SET_ERROR(EINVAL));
5744
5745 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
5746 &nvprops) != 0)
5747 return (SET_ERROR(EINVAL));
5748
5749 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
5750 return (SET_ERROR(EINVAL));
5751
5752 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5753 char *propname = nvpair_name(elem);
5754 vdev_prop_t prop = vdev_name_to_prop(propname);
5755 uint64_t intval = 0;
5756 char *strval = NULL;
5757
5758 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
5759 error = EINVAL;
5760 goto end;
5761 }
5762
5763 if (vdev_prop_readonly(prop)) {
5764 error = EROFS;
5765 goto end;
5766 }
5767
5768 /* Special Processing */
5769 switch (prop) {
5770 case VDEV_PROP_PATH:
5771 if (vd->vdev_path == NULL) {
5772 error = EROFS;
5773 break;
5774 }
5775 if (nvpair_value_string(elem, &strval) != 0) {
5776 error = EINVAL;
5777 break;
5778 }
5779 /* New path must start with /dev/ */
5780 if (strncmp(strval, "/dev/", 5)) {
5781 error = EINVAL;
5782 break;
5783 }
5784 error = spa_vdev_setpath(spa, vdev_guid, strval);
5785 break;
5786 case VDEV_PROP_ALLOCATING:
5787 if (nvpair_value_uint64(elem, &intval) != 0) {
5788 error = EINVAL;
5789 break;
5790 }
5791 if (intval != vd->vdev_noalloc)
5792 break;
5793 if (intval == 0)
5794 error = spa_vdev_noalloc(spa, vdev_guid);
5795 else
5796 error = spa_vdev_alloc(spa, vdev_guid);
5797 break;
5798 case VDEV_PROP_FAILFAST:
5799 if (nvpair_value_uint64(elem, &intval) != 0) {
5800 error = EINVAL;
5801 break;
5802 }
5803 vd->vdev_failfast = intval & 1;
5804 break;
5805 case VDEV_PROP_CHECKSUM_N:
5806 if (nvpair_value_uint64(elem, &intval) != 0) {
5807 error = EINVAL;
5808 break;
5809 }
5810 vd->vdev_checksum_n = intval;
5811 break;
5812 case VDEV_PROP_CHECKSUM_T:
5813 if (nvpair_value_uint64(elem, &intval) != 0) {
5814 error = EINVAL;
5815 break;
5816 }
5817 vd->vdev_checksum_t = intval;
5818 break;
5819 case VDEV_PROP_IO_N:
5820 if (nvpair_value_uint64(elem, &intval) != 0) {
5821 error = EINVAL;
5822 break;
5823 }
5824 vd->vdev_io_n = intval;
5825 break;
5826 case VDEV_PROP_IO_T:
5827 if (nvpair_value_uint64(elem, &intval) != 0) {
5828 error = EINVAL;
5829 break;
5830 }
5831 vd->vdev_io_t = intval;
5832 break;
5833 default:
5834 /* Most processing is done in vdev_props_set_sync */
5835 break;
5836 }
5837 end:
5838 if (error != 0) {
5839 intval = error;
5840 vdev_prop_add_list(outnvl, propname, strval, intval, 0);
5841 return (error);
5842 }
5843 }
5844
5845 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
5846 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
5847 }
5848
5849 int
5850 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5851 {
5852 spa_t *spa = vd->vdev_spa;
5853 objset_t *mos = spa->spa_meta_objset;
5854 int err = 0;
5855 uint64_t objid;
5856 uint64_t vdev_guid;
5857 nvpair_t *elem = NULL;
5858 nvlist_t *nvprops = NULL;
5859 uint64_t intval = 0;
5860 char *strval = NULL;
5861 const char *propname = NULL;
5862 vdev_prop_t prop;
5863
5864 ASSERT(vd != NULL);
5865 ASSERT(mos != NULL);
5866
5867 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
5868 &vdev_guid) != 0)
5869 return (SET_ERROR(EINVAL));
5870
5871 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
5872
5873 if (vd->vdev_top_zap != 0) {
5874 objid = vd->vdev_top_zap;
5875 } else if (vd->vdev_leaf_zap != 0) {
5876 objid = vd->vdev_leaf_zap;
5877 } else {
5878 return (SET_ERROR(EINVAL));
5879 }
5880 ASSERT(objid != 0);
5881
5882 mutex_enter(&spa->spa_props_lock);
5883
5884 if (nvprops != NULL) {
5885 char namebuf[64] = { 0 };
5886
5887 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5888 intval = 0;
5889 strval = NULL;
5890 propname = nvpair_name(elem);
5891 prop = vdev_name_to_prop(propname);
5892 zprop_source_t src = ZPROP_SRC_DEFAULT;
5893 uint64_t integer_size, num_integers;
5894
5895 switch (prop) {
5896 /* Special Read-only Properties */
5897 case VDEV_PROP_NAME:
5898 strval = vdev_name(vd, namebuf,
5899 sizeof (namebuf));
5900 if (strval == NULL)
5901 continue;
5902 vdev_prop_add_list(outnvl, propname, strval, 0,
5903 ZPROP_SRC_NONE);
5904 continue;
5905 case VDEV_PROP_CAPACITY:
5906 /* percent used */
5907 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
5908 (vd->vdev_stat.vs_alloc * 100 /
5909 vd->vdev_stat.vs_dspace);
5910 vdev_prop_add_list(outnvl, propname, NULL,
5911 intval, ZPROP_SRC_NONE);
5912 continue;
5913 case VDEV_PROP_STATE:
5914 vdev_prop_add_list(outnvl, propname, NULL,
5915 vd->vdev_state, ZPROP_SRC_NONE);
5916 continue;
5917 case VDEV_PROP_GUID:
5918 vdev_prop_add_list(outnvl, propname, NULL,
5919 vd->vdev_guid, ZPROP_SRC_NONE);
5920 continue;
5921 case VDEV_PROP_ASIZE:
5922 vdev_prop_add_list(outnvl, propname, NULL,
5923 vd->vdev_asize, ZPROP_SRC_NONE);
5924 continue;
5925 case VDEV_PROP_PSIZE:
5926 vdev_prop_add_list(outnvl, propname, NULL,
5927 vd->vdev_psize, ZPROP_SRC_NONE);
5928 continue;
5929 case VDEV_PROP_ASHIFT:
5930 vdev_prop_add_list(outnvl, propname, NULL,
5931 vd->vdev_ashift, ZPROP_SRC_NONE);
5932 continue;
5933 case VDEV_PROP_SIZE:
5934 vdev_prop_add_list(outnvl, propname, NULL,
5935 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
5936 continue;
5937 case VDEV_PROP_FREE:
5938 vdev_prop_add_list(outnvl, propname, NULL,
5939 vd->vdev_stat.vs_dspace -
5940 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
5941 continue;
5942 case VDEV_PROP_ALLOCATED:
5943 vdev_prop_add_list(outnvl, propname, NULL,
5944 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
5945 continue;
5946 case VDEV_PROP_EXPANDSZ:
5947 vdev_prop_add_list(outnvl, propname, NULL,
5948 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
5949 continue;
5950 case VDEV_PROP_FRAGMENTATION:
5951 vdev_prop_add_list(outnvl, propname, NULL,
5952 vd->vdev_stat.vs_fragmentation,
5953 ZPROP_SRC_NONE);
5954 continue;
5955 case VDEV_PROP_PARITY:
5956 vdev_prop_add_list(outnvl, propname, NULL,
5957 vdev_get_nparity(vd), ZPROP_SRC_NONE);
5958 continue;
5959 case VDEV_PROP_PATH:
5960 if (vd->vdev_path == NULL)
5961 continue;
5962 vdev_prop_add_list(outnvl, propname,
5963 vd->vdev_path, 0, ZPROP_SRC_NONE);
5964 continue;
5965 case VDEV_PROP_DEVID:
5966 if (vd->vdev_devid == NULL)
5967 continue;
5968 vdev_prop_add_list(outnvl, propname,
5969 vd->vdev_devid, 0, ZPROP_SRC_NONE);
5970 continue;
5971 case VDEV_PROP_PHYS_PATH:
5972 if (vd->vdev_physpath == NULL)
5973 continue;
5974 vdev_prop_add_list(outnvl, propname,
5975 vd->vdev_physpath, 0, ZPROP_SRC_NONE);
5976 continue;
5977 case VDEV_PROP_ENC_PATH:
5978 if (vd->vdev_enc_sysfs_path == NULL)
5979 continue;
5980 vdev_prop_add_list(outnvl, propname,
5981 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
5982 continue;
5983 case VDEV_PROP_FRU:
5984 if (vd->vdev_fru == NULL)
5985 continue;
5986 vdev_prop_add_list(outnvl, propname,
5987 vd->vdev_fru, 0, ZPROP_SRC_NONE);
5988 continue;
5989 case VDEV_PROP_PARENT:
5990 if (vd->vdev_parent != NULL) {
5991 strval = vdev_name(vd->vdev_parent,
5992 namebuf, sizeof (namebuf));
5993 vdev_prop_add_list(outnvl, propname,
5994 strval, 0, ZPROP_SRC_NONE);
5995 }
5996 continue;
5997 case VDEV_PROP_CHILDREN:
5998 if (vd->vdev_children > 0)
5999 strval = kmem_zalloc(ZAP_MAXVALUELEN,
6000 KM_SLEEP);
6001 for (uint64_t i = 0; i < vd->vdev_children;
6002 i++) {
6003 const char *vname;
6004
6005 vname = vdev_name(vd->vdev_child[i],
6006 namebuf, sizeof (namebuf));
6007 if (vname == NULL)
6008 vname = "(unknown)";
6009 if (strlen(strval) > 0)
6010 strlcat(strval, ",",
6011 ZAP_MAXVALUELEN);
6012 strlcat(strval, vname, ZAP_MAXVALUELEN);
6013 }
6014 if (strval != NULL) {
6015 vdev_prop_add_list(outnvl, propname,
6016 strval, 0, ZPROP_SRC_NONE);
6017 kmem_free(strval, ZAP_MAXVALUELEN);
6018 }
6019 continue;
6020 case VDEV_PROP_NUMCHILDREN:
6021 vdev_prop_add_list(outnvl, propname, NULL,
6022 vd->vdev_children, ZPROP_SRC_NONE);
6023 continue;
6024 case VDEV_PROP_READ_ERRORS:
6025 vdev_prop_add_list(outnvl, propname, NULL,
6026 vd->vdev_stat.vs_read_errors,
6027 ZPROP_SRC_NONE);
6028 continue;
6029 case VDEV_PROP_WRITE_ERRORS:
6030 vdev_prop_add_list(outnvl, propname, NULL,
6031 vd->vdev_stat.vs_write_errors,
6032 ZPROP_SRC_NONE);
6033 continue;
6034 case VDEV_PROP_CHECKSUM_ERRORS:
6035 vdev_prop_add_list(outnvl, propname, NULL,
6036 vd->vdev_stat.vs_checksum_errors,
6037 ZPROP_SRC_NONE);
6038 continue;
6039 case VDEV_PROP_INITIALIZE_ERRORS:
6040 vdev_prop_add_list(outnvl, propname, NULL,
6041 vd->vdev_stat.vs_initialize_errors,
6042 ZPROP_SRC_NONE);
6043 continue;
6044 case VDEV_PROP_OPS_NULL:
6045 vdev_prop_add_list(outnvl, propname, NULL,
6046 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
6047 ZPROP_SRC_NONE);
6048 continue;
6049 case VDEV_PROP_OPS_READ:
6050 vdev_prop_add_list(outnvl, propname, NULL,
6051 vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
6052 ZPROP_SRC_NONE);
6053 continue;
6054 case VDEV_PROP_OPS_WRITE:
6055 vdev_prop_add_list(outnvl, propname, NULL,
6056 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
6057 ZPROP_SRC_NONE);
6058 continue;
6059 case VDEV_PROP_OPS_FREE:
6060 vdev_prop_add_list(outnvl, propname, NULL,
6061 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
6062 ZPROP_SRC_NONE);
6063 continue;
6064 case VDEV_PROP_OPS_CLAIM:
6065 vdev_prop_add_list(outnvl, propname, NULL,
6066 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
6067 ZPROP_SRC_NONE);
6068 continue;
6069 case VDEV_PROP_OPS_TRIM:
6070 /*
6071 * TRIM ops and bytes are reported to user
6072 * space as ZIO_TYPE_IOCTL. This is done to
6073 * preserve the vdev_stat_t structure layout
6074 * for user space.
6075 */
6076 vdev_prop_add_list(outnvl, propname, NULL,
6077 vd->vdev_stat.vs_ops[ZIO_TYPE_IOCTL],
6078 ZPROP_SRC_NONE);
6079 continue;
6080 case VDEV_PROP_BYTES_NULL:
6081 vdev_prop_add_list(outnvl, propname, NULL,
6082 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
6083 ZPROP_SRC_NONE);
6084 continue;
6085 case VDEV_PROP_BYTES_READ:
6086 vdev_prop_add_list(outnvl, propname, NULL,
6087 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
6088 ZPROP_SRC_NONE);
6089 continue;
6090 case VDEV_PROP_BYTES_WRITE:
6091 vdev_prop_add_list(outnvl, propname, NULL,
6092 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
6093 ZPROP_SRC_NONE);
6094 continue;
6095 case VDEV_PROP_BYTES_FREE:
6096 vdev_prop_add_list(outnvl, propname, NULL,
6097 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
6098 ZPROP_SRC_NONE);
6099 continue;
6100 case VDEV_PROP_BYTES_CLAIM:
6101 vdev_prop_add_list(outnvl, propname, NULL,
6102 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
6103 ZPROP_SRC_NONE);
6104 continue;
6105 case VDEV_PROP_BYTES_TRIM:
6106 /*
6107 * TRIM ops and bytes are reported to user
6108 * space as ZIO_TYPE_IOCTL. This is done to
6109 * preserve the vdev_stat_t structure layout
6110 * for user space.
6111 */
6112 vdev_prop_add_list(outnvl, propname, NULL,
6113 vd->vdev_stat.vs_bytes[ZIO_TYPE_IOCTL],
6114 ZPROP_SRC_NONE);
6115 continue;
6116 case VDEV_PROP_REMOVING:
6117 vdev_prop_add_list(outnvl, propname, NULL,
6118 vd->vdev_removing, ZPROP_SRC_NONE);
6119 continue;
6120 /* Numeric Properites */
6121 case VDEV_PROP_ALLOCATING:
6122 /* Leaf vdevs cannot have this property */
6123 if (vd->vdev_mg == NULL &&
6124 vd->vdev_top != NULL) {
6125 src = ZPROP_SRC_NONE;
6126 intval = ZPROP_BOOLEAN_NA;
6127 } else {
6128 err = vdev_prop_get_int(vd, prop,
6129 &intval);
6130 if (err && err != ENOENT)
6131 break;
6132
6133 if (intval ==
6134 vdev_prop_default_numeric(prop))
6135 src = ZPROP_SRC_DEFAULT;
6136 else
6137 src = ZPROP_SRC_LOCAL;
6138 }
6139
6140 vdev_prop_add_list(outnvl, propname, NULL,
6141 intval, src);
6142 break;
6143 case VDEV_PROP_FAILFAST:
6144 src = ZPROP_SRC_LOCAL;
6145 strval = NULL;
6146
6147 err = zap_lookup(mos, objid, nvpair_name(elem),
6148 sizeof (uint64_t), 1, &intval);
6149 if (err == ENOENT) {
6150 intval = vdev_prop_default_numeric(
6151 prop);
6152 err = 0;
6153 } else if (err) {
6154 break;
6155 }
6156 if (intval == vdev_prop_default_numeric(prop))
6157 src = ZPROP_SRC_DEFAULT;
6158
6159 vdev_prop_add_list(outnvl, propname, strval,
6160 intval, src);
6161 break;
6162 case VDEV_PROP_CHECKSUM_N:
6163 case VDEV_PROP_CHECKSUM_T:
6164 case VDEV_PROP_IO_N:
6165 case VDEV_PROP_IO_T:
6166 err = vdev_prop_get_int(vd, prop, &intval);
6167 if (err && err != ENOENT)
6168 break;
6169
6170 if (intval == vdev_prop_default_numeric(prop))
6171 src = ZPROP_SRC_DEFAULT;
6172 else
6173 src = ZPROP_SRC_LOCAL;
6174
6175 vdev_prop_add_list(outnvl, propname, NULL,
6176 intval, src);
6177 break;
6178 /* Text Properties */
6179 case VDEV_PROP_COMMENT:
6180 /* Exists in the ZAP below */
6181 /* FALLTHRU */
6182 case VDEV_PROP_USERPROP:
6183 /* User Properites */
6184 src = ZPROP_SRC_LOCAL;
6185
6186 err = zap_length(mos, objid, nvpair_name(elem),
6187 &integer_size, &num_integers);
6188 if (err)
6189 break;
6190
6191 switch (integer_size) {
6192 case 8:
6193 /* User properties cannot be integers */
6194 err = EINVAL;
6195 break;
6196 case 1:
6197 /* string property */
6198 strval = kmem_alloc(num_integers,
6199 KM_SLEEP);
6200 err = zap_lookup(mos, objid,
6201 nvpair_name(elem), 1,
6202 num_integers, strval);
6203 if (err) {
6204 kmem_free(strval,
6205 num_integers);
6206 break;
6207 }
6208 vdev_prop_add_list(outnvl, propname,
6209 strval, 0, src);
6210 kmem_free(strval, num_integers);
6211 break;
6212 }
6213 break;
6214 default:
6215 err = ENOENT;
6216 break;
6217 }
6218 if (err)
6219 break;
6220 }
6221 } else {
6222 /*
6223 * Get all properties from the MOS vdev property object.
6224 */
6225 zap_cursor_t zc;
6226 zap_attribute_t za;
6227 for (zap_cursor_init(&zc, mos, objid);
6228 (err = zap_cursor_retrieve(&zc, &za)) == 0;
6229 zap_cursor_advance(&zc)) {
6230 intval = 0;
6231 strval = NULL;
6232 zprop_source_t src = ZPROP_SRC_DEFAULT;
6233 propname = za.za_name;
6234
6235 switch (za.za_integer_length) {
6236 case 8:
6237 /* We do not allow integer user properties */
6238 /* This is likely an internal value */
6239 break;
6240 case 1:
6241 /* string property */
6242 strval = kmem_alloc(za.za_num_integers,
6243 KM_SLEEP);
6244 err = zap_lookup(mos, objid, za.za_name, 1,
6245 za.za_num_integers, strval);
6246 if (err) {
6247 kmem_free(strval, za.za_num_integers);
6248 break;
6249 }
6250 vdev_prop_add_list(outnvl, propname, strval, 0,
6251 src);
6252 kmem_free(strval, za.za_num_integers);
6253 break;
6254
6255 default:
6256 break;
6257 }
6258 }
6259 zap_cursor_fini(&zc);
6260 }
6261
6262 mutex_exit(&spa->spa_props_lock);
6263 if (err && err != ENOENT) {
6264 return (err);
6265 }
6266
6267 return (0);
6268 }
6269
6270 EXPORT_SYMBOL(vdev_fault);
6271 EXPORT_SYMBOL(vdev_degrade);
6272 EXPORT_SYMBOL(vdev_online);
6273 EXPORT_SYMBOL(vdev_offline);
6274 EXPORT_SYMBOL(vdev_clear);
6275
6276 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
6277 "Target number of metaslabs per top-level vdev");
6278
6279 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
6280 "Default limit for metaslab size");
6281
6282 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
6283 "Minimum number of metaslabs per top-level vdev");
6284
6285 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
6286 "Practical upper limit of total metaslabs per top-level vdev");
6287
6288 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6289 "Rate limit slow IO (delay) events to this many per second");
6290
6291 /* BEGIN CSTYLED */
6292 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6293 "Rate limit checksum events to this many checksum errors per second "
6294 "(do not set below ZED threshold).");
6295 /* END CSTYLED */
6296
6297 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6298 "Ignore errors during resilver/scrub");
6299
6300 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6301 "Bypass vdev_validate()");
6302
6303 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6304 "Disable cache flushes");
6305
6306 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
6307 "Minimum number of metaslabs required to dedicate one for log blocks");
6308
6309 /* BEGIN CSTYLED */
6310 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6311 param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
6312 "Minimum ashift used when creating new top-level vdevs");
6313
6314 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6315 param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
6316 "Maximum ashift used when optimizing for logical -> physical sector "
6317 "size on new top-level vdevs");
6318 /* END CSTYLED */