]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Fix using zvol as slog device
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/arc.h>
43 #include <sys/zil.h>
44 #include <sys/dsl_scan.h>
45 #include <sys/zvol.h>
46
47 /*
48 * Virtual device management.
49 */
50
51 static vdev_ops_t *vdev_ops_table[] = {
52 &vdev_root_ops,
53 &vdev_raidz_ops,
54 &vdev_mirror_ops,
55 &vdev_replacing_ops,
56 &vdev_spare_ops,
57 &vdev_disk_ops,
58 &vdev_file_ops,
59 &vdev_missing_ops,
60 &vdev_hole_ops,
61 NULL
62 };
63
64 /* maximum scrub/resilver I/O queue per leaf vdev */
65 int zfs_scrub_limit = 10;
66
67 /*
68 * Given a vdev type, return the appropriate ops vector.
69 */
70 static vdev_ops_t *
71 vdev_getops(const char *type)
72 {
73 vdev_ops_t *ops, **opspp;
74
75 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
76 if (strcmp(ops->vdev_op_type, type) == 0)
77 break;
78
79 return (ops);
80 }
81
82 /*
83 * Default asize function: return the MAX of psize with the asize of
84 * all children. This is what's used by anything other than RAID-Z.
85 */
86 uint64_t
87 vdev_default_asize(vdev_t *vd, uint64_t psize)
88 {
89 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
90 uint64_t csize;
91 int c;
92
93 for (c = 0; c < vd->vdev_children; c++) {
94 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
95 asize = MAX(asize, csize);
96 }
97
98 return (asize);
99 }
100
101 /*
102 * Get the minimum allocatable size. We define the allocatable size as
103 * the vdev's asize rounded to the nearest metaslab. This allows us to
104 * replace or attach devices which don't have the same physical size but
105 * can still satisfy the same number of allocations.
106 */
107 uint64_t
108 vdev_get_min_asize(vdev_t *vd)
109 {
110 vdev_t *pvd = vd->vdev_parent;
111
112 /*
113 * If our parent is NULL (inactive spare or cache) or is the root,
114 * just return our own asize.
115 */
116 if (pvd == NULL)
117 return (vd->vdev_asize);
118
119 /*
120 * The top-level vdev just returns the allocatable size rounded
121 * to the nearest metaslab.
122 */
123 if (vd == vd->vdev_top)
124 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
125
126 /*
127 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
128 * so each child must provide at least 1/Nth of its asize.
129 */
130 if (pvd->vdev_ops == &vdev_raidz_ops)
131 return (pvd->vdev_min_asize / pvd->vdev_children);
132
133 return (pvd->vdev_min_asize);
134 }
135
136 void
137 vdev_set_min_asize(vdev_t *vd)
138 {
139 int c;
140 vd->vdev_min_asize = vdev_get_min_asize(vd);
141
142 for (c = 0; c < vd->vdev_children; c++)
143 vdev_set_min_asize(vd->vdev_child[c]);
144 }
145
146 vdev_t *
147 vdev_lookup_top(spa_t *spa, uint64_t vdev)
148 {
149 vdev_t *rvd = spa->spa_root_vdev;
150
151 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
152
153 if (vdev < rvd->vdev_children) {
154 ASSERT(rvd->vdev_child[vdev] != NULL);
155 return (rvd->vdev_child[vdev]);
156 }
157
158 return (NULL);
159 }
160
161 vdev_t *
162 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
163 {
164 vdev_t *mvd;
165 int c;
166
167 if (vd->vdev_guid == guid)
168 return (vd);
169
170 for (c = 0; c < vd->vdev_children; c++)
171 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
172 NULL)
173 return (mvd);
174
175 return (NULL);
176 }
177
178 void
179 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
180 {
181 size_t oldsize, newsize;
182 uint64_t id = cvd->vdev_id;
183 vdev_t **newchild;
184
185 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
186 ASSERT(cvd->vdev_parent == NULL);
187
188 cvd->vdev_parent = pvd;
189
190 if (pvd == NULL)
191 return;
192
193 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
194
195 oldsize = pvd->vdev_children * sizeof (vdev_t *);
196 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
197 newsize = pvd->vdev_children * sizeof (vdev_t *);
198
199 newchild = kmem_zalloc(newsize, KM_PUSHPAGE);
200 if (pvd->vdev_child != NULL) {
201 bcopy(pvd->vdev_child, newchild, oldsize);
202 kmem_free(pvd->vdev_child, oldsize);
203 }
204
205 pvd->vdev_child = newchild;
206 pvd->vdev_child[id] = cvd;
207
208 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
209 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
210
211 /*
212 * Walk up all ancestors to update guid sum.
213 */
214 for (; pvd != NULL; pvd = pvd->vdev_parent)
215 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
216 }
217
218 void
219 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
220 {
221 int c;
222 uint_t id = cvd->vdev_id;
223
224 ASSERT(cvd->vdev_parent == pvd);
225
226 if (pvd == NULL)
227 return;
228
229 ASSERT(id < pvd->vdev_children);
230 ASSERT(pvd->vdev_child[id] == cvd);
231
232 pvd->vdev_child[id] = NULL;
233 cvd->vdev_parent = NULL;
234
235 for (c = 0; c < pvd->vdev_children; c++)
236 if (pvd->vdev_child[c])
237 break;
238
239 if (c == pvd->vdev_children) {
240 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
241 pvd->vdev_child = NULL;
242 pvd->vdev_children = 0;
243 }
244
245 /*
246 * Walk up all ancestors to update guid sum.
247 */
248 for (; pvd != NULL; pvd = pvd->vdev_parent)
249 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
250 }
251
252 /*
253 * Remove any holes in the child array.
254 */
255 void
256 vdev_compact_children(vdev_t *pvd)
257 {
258 vdev_t **newchild, *cvd;
259 int oldc = pvd->vdev_children;
260 int newc;
261 int c;
262
263 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
264
265 for (c = newc = 0; c < oldc; c++)
266 if (pvd->vdev_child[c])
267 newc++;
268
269 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_PUSHPAGE);
270
271 for (c = newc = 0; c < oldc; c++) {
272 if ((cvd = pvd->vdev_child[c]) != NULL) {
273 newchild[newc] = cvd;
274 cvd->vdev_id = newc++;
275 }
276 }
277
278 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
279 pvd->vdev_child = newchild;
280 pvd->vdev_children = newc;
281 }
282
283 /*
284 * Allocate and minimally initialize a vdev_t.
285 */
286 vdev_t *
287 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
288 {
289 vdev_t *vd;
290 int t;
291
292 vd = kmem_zalloc(sizeof (vdev_t), KM_PUSHPAGE);
293
294 if (spa->spa_root_vdev == NULL) {
295 ASSERT(ops == &vdev_root_ops);
296 spa->spa_root_vdev = vd;
297 spa->spa_load_guid = spa_generate_guid(NULL);
298 }
299
300 if (guid == 0 && ops != &vdev_hole_ops) {
301 if (spa->spa_root_vdev == vd) {
302 /*
303 * The root vdev's guid will also be the pool guid,
304 * which must be unique among all pools.
305 */
306 guid = spa_generate_guid(NULL);
307 } else {
308 /*
309 * Any other vdev's guid must be unique within the pool.
310 */
311 guid = spa_generate_guid(spa);
312 }
313 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
314 }
315
316 vd->vdev_spa = spa;
317 vd->vdev_id = id;
318 vd->vdev_guid = guid;
319 vd->vdev_guid_sum = guid;
320 vd->vdev_ops = ops;
321 vd->vdev_state = VDEV_STATE_CLOSED;
322 vd->vdev_ishole = (ops == &vdev_hole_ops);
323
324 list_link_init(&vd->vdev_config_dirty_node);
325 list_link_init(&vd->vdev_state_dirty_node);
326 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
327 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
328 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
329 for (t = 0; t < DTL_TYPES; t++) {
330 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
331 &vd->vdev_dtl_lock);
332 }
333 txg_list_create(&vd->vdev_ms_list,
334 offsetof(struct metaslab, ms_txg_node));
335 txg_list_create(&vd->vdev_dtl_list,
336 offsetof(struct vdev, vdev_dtl_node));
337 vd->vdev_stat.vs_timestamp = gethrtime();
338 vdev_queue_init(vd);
339 vdev_cache_init(vd);
340
341 return (vd);
342 }
343
344 /*
345 * Allocate a new vdev. The 'alloctype' is used to control whether we are
346 * creating a new vdev or loading an existing one - the behavior is slightly
347 * different for each case.
348 */
349 int
350 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
351 int alloctype)
352 {
353 vdev_ops_t *ops;
354 char *type;
355 uint64_t guid = 0, islog, nparity;
356 vdev_t *vd;
357
358 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
359
360 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
361 return (EINVAL);
362
363 if ((ops = vdev_getops(type)) == NULL)
364 return (EINVAL);
365
366 /*
367 * If this is a load, get the vdev guid from the nvlist.
368 * Otherwise, vdev_alloc_common() will generate one for us.
369 */
370 if (alloctype == VDEV_ALLOC_LOAD) {
371 uint64_t label_id;
372
373 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
374 label_id != id)
375 return (EINVAL);
376
377 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
378 return (EINVAL);
379 } else if (alloctype == VDEV_ALLOC_SPARE) {
380 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
381 return (EINVAL);
382 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
383 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
384 return (EINVAL);
385 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
386 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
387 return (EINVAL);
388 }
389
390 /*
391 * The first allocated vdev must be of type 'root'.
392 */
393 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
394 return (EINVAL);
395
396 /*
397 * Determine whether we're a log vdev.
398 */
399 islog = 0;
400 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
401 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
402 return (ENOTSUP);
403
404 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
405 return (ENOTSUP);
406
407 /*
408 * Set the nparity property for RAID-Z vdevs.
409 */
410 nparity = -1ULL;
411 if (ops == &vdev_raidz_ops) {
412 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
413 &nparity) == 0) {
414 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
415 return (EINVAL);
416 /*
417 * Previous versions could only support 1 or 2 parity
418 * device.
419 */
420 if (nparity > 1 &&
421 spa_version(spa) < SPA_VERSION_RAIDZ2)
422 return (ENOTSUP);
423 if (nparity > 2 &&
424 spa_version(spa) < SPA_VERSION_RAIDZ3)
425 return (ENOTSUP);
426 } else {
427 /*
428 * We require the parity to be specified for SPAs that
429 * support multiple parity levels.
430 */
431 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
432 return (EINVAL);
433 /*
434 * Otherwise, we default to 1 parity device for RAID-Z.
435 */
436 nparity = 1;
437 }
438 } else {
439 nparity = 0;
440 }
441 ASSERT(nparity != -1ULL);
442
443 vd = vdev_alloc_common(spa, id, guid, ops);
444
445 vd->vdev_islog = islog;
446 vd->vdev_nparity = nparity;
447
448 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
449 vd->vdev_path = spa_strdup(vd->vdev_path);
450 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
451 vd->vdev_devid = spa_strdup(vd->vdev_devid);
452 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
453 &vd->vdev_physpath) == 0)
454 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
455 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
456 vd->vdev_fru = spa_strdup(vd->vdev_fru);
457
458 /*
459 * Set the whole_disk property. If it's not specified, leave the value
460 * as -1.
461 */
462 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
463 &vd->vdev_wholedisk) != 0)
464 vd->vdev_wholedisk = -1ULL;
465
466 /*
467 * Look for the 'not present' flag. This will only be set if the device
468 * was not present at the time of import.
469 */
470 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
471 &vd->vdev_not_present);
472
473 /*
474 * Get the alignment requirement.
475 */
476 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
477
478 /*
479 * Retrieve the vdev creation time.
480 */
481 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
482 &vd->vdev_crtxg);
483
484 /*
485 * If we're a top-level vdev, try to load the allocation parameters.
486 */
487 if (parent && !parent->vdev_parent &&
488 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
489 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
490 &vd->vdev_ms_array);
491 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
492 &vd->vdev_ms_shift);
493 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
494 &vd->vdev_asize);
495 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
496 &vd->vdev_removing);
497 }
498
499 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
500 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
501 alloctype == VDEV_ALLOC_ADD ||
502 alloctype == VDEV_ALLOC_SPLIT ||
503 alloctype == VDEV_ALLOC_ROOTPOOL);
504 vd->vdev_mg = metaslab_group_create(islog ?
505 spa_log_class(spa) : spa_normal_class(spa), vd);
506 }
507
508 /*
509 * If we're a leaf vdev, try to load the DTL object and other state.
510 */
511 if (vd->vdev_ops->vdev_op_leaf &&
512 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
513 alloctype == VDEV_ALLOC_ROOTPOOL)) {
514 if (alloctype == VDEV_ALLOC_LOAD) {
515 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
516 &vd->vdev_dtl_smo.smo_object);
517 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
518 &vd->vdev_unspare);
519 }
520
521 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
522 uint64_t spare = 0;
523
524 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
525 &spare) == 0 && spare)
526 spa_spare_add(vd);
527 }
528
529 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
530 &vd->vdev_offline);
531
532 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
533 &vd->vdev_resilvering);
534
535 /*
536 * When importing a pool, we want to ignore the persistent fault
537 * state, as the diagnosis made on another system may not be
538 * valid in the current context. Local vdevs will
539 * remain in the faulted state.
540 */
541 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
542 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
543 &vd->vdev_faulted);
544 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
545 &vd->vdev_degraded);
546 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
547 &vd->vdev_removed);
548
549 if (vd->vdev_faulted || vd->vdev_degraded) {
550 char *aux;
551
552 vd->vdev_label_aux =
553 VDEV_AUX_ERR_EXCEEDED;
554 if (nvlist_lookup_string(nv,
555 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
556 strcmp(aux, "external") == 0)
557 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
558 }
559 }
560 }
561
562 /*
563 * Add ourselves to the parent's list of children.
564 */
565 vdev_add_child(parent, vd);
566
567 *vdp = vd;
568
569 return (0);
570 }
571
572 void
573 vdev_free(vdev_t *vd)
574 {
575 int c, t;
576 spa_t *spa = vd->vdev_spa;
577
578 /*
579 * vdev_free() implies closing the vdev first. This is simpler than
580 * trying to ensure complicated semantics for all callers.
581 */
582 vdev_close(vd);
583
584 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
585 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
586
587 /*
588 * Free all children.
589 */
590 for (c = 0; c < vd->vdev_children; c++)
591 vdev_free(vd->vdev_child[c]);
592
593 ASSERT(vd->vdev_child == NULL);
594 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
595
596 /*
597 * Discard allocation state.
598 */
599 if (vd->vdev_mg != NULL) {
600 vdev_metaslab_fini(vd);
601 metaslab_group_destroy(vd->vdev_mg);
602 }
603
604 ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
605 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
606 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
607
608 /*
609 * Remove this vdev from its parent's child list.
610 */
611 vdev_remove_child(vd->vdev_parent, vd);
612
613 ASSERT(vd->vdev_parent == NULL);
614
615 /*
616 * Clean up vdev structure.
617 */
618 vdev_queue_fini(vd);
619 vdev_cache_fini(vd);
620
621 if (vd->vdev_path)
622 spa_strfree(vd->vdev_path);
623 if (vd->vdev_devid)
624 spa_strfree(vd->vdev_devid);
625 if (vd->vdev_physpath)
626 spa_strfree(vd->vdev_physpath);
627 if (vd->vdev_fru)
628 spa_strfree(vd->vdev_fru);
629
630 if (vd->vdev_isspare)
631 spa_spare_remove(vd);
632 if (vd->vdev_isl2cache)
633 spa_l2cache_remove(vd);
634
635 txg_list_destroy(&vd->vdev_ms_list);
636 txg_list_destroy(&vd->vdev_dtl_list);
637
638 mutex_enter(&vd->vdev_dtl_lock);
639 for (t = 0; t < DTL_TYPES; t++) {
640 space_map_unload(&vd->vdev_dtl[t]);
641 space_map_destroy(&vd->vdev_dtl[t]);
642 }
643 mutex_exit(&vd->vdev_dtl_lock);
644
645 mutex_destroy(&vd->vdev_dtl_lock);
646 mutex_destroy(&vd->vdev_stat_lock);
647 mutex_destroy(&vd->vdev_probe_lock);
648
649 if (vd == spa->spa_root_vdev)
650 spa->spa_root_vdev = NULL;
651
652 kmem_free(vd, sizeof (vdev_t));
653 }
654
655 /*
656 * Transfer top-level vdev state from svd to tvd.
657 */
658 static void
659 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
660 {
661 spa_t *spa = svd->vdev_spa;
662 metaslab_t *msp;
663 vdev_t *vd;
664 int t;
665
666 ASSERT(tvd == tvd->vdev_top);
667
668 tvd->vdev_ms_array = svd->vdev_ms_array;
669 tvd->vdev_ms_shift = svd->vdev_ms_shift;
670 tvd->vdev_ms_count = svd->vdev_ms_count;
671
672 svd->vdev_ms_array = 0;
673 svd->vdev_ms_shift = 0;
674 svd->vdev_ms_count = 0;
675
676 if (tvd->vdev_mg)
677 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
678 tvd->vdev_mg = svd->vdev_mg;
679 tvd->vdev_ms = svd->vdev_ms;
680
681 svd->vdev_mg = NULL;
682 svd->vdev_ms = NULL;
683
684 if (tvd->vdev_mg != NULL)
685 tvd->vdev_mg->mg_vd = tvd;
686
687 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
688 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
689 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
690
691 svd->vdev_stat.vs_alloc = 0;
692 svd->vdev_stat.vs_space = 0;
693 svd->vdev_stat.vs_dspace = 0;
694
695 for (t = 0; t < TXG_SIZE; t++) {
696 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
697 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
698 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
699 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
700 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
701 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
702 }
703
704 if (list_link_active(&svd->vdev_config_dirty_node)) {
705 vdev_config_clean(svd);
706 vdev_config_dirty(tvd);
707 }
708
709 if (list_link_active(&svd->vdev_state_dirty_node)) {
710 vdev_state_clean(svd);
711 vdev_state_dirty(tvd);
712 }
713
714 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
715 svd->vdev_deflate_ratio = 0;
716
717 tvd->vdev_islog = svd->vdev_islog;
718 svd->vdev_islog = 0;
719 }
720
721 static void
722 vdev_top_update(vdev_t *tvd, vdev_t *vd)
723 {
724 int c;
725
726 if (vd == NULL)
727 return;
728
729 vd->vdev_top = tvd;
730
731 for (c = 0; c < vd->vdev_children; c++)
732 vdev_top_update(tvd, vd->vdev_child[c]);
733 }
734
735 /*
736 * Add a mirror/replacing vdev above an existing vdev.
737 */
738 vdev_t *
739 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
740 {
741 spa_t *spa = cvd->vdev_spa;
742 vdev_t *pvd = cvd->vdev_parent;
743 vdev_t *mvd;
744
745 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
746
747 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
748
749 mvd->vdev_asize = cvd->vdev_asize;
750 mvd->vdev_min_asize = cvd->vdev_min_asize;
751 mvd->vdev_max_asize = cvd->vdev_max_asize;
752 mvd->vdev_ashift = cvd->vdev_ashift;
753 mvd->vdev_state = cvd->vdev_state;
754 mvd->vdev_crtxg = cvd->vdev_crtxg;
755
756 vdev_remove_child(pvd, cvd);
757 vdev_add_child(pvd, mvd);
758 cvd->vdev_id = mvd->vdev_children;
759 vdev_add_child(mvd, cvd);
760 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
761
762 if (mvd == mvd->vdev_top)
763 vdev_top_transfer(cvd, mvd);
764
765 return (mvd);
766 }
767
768 /*
769 * Remove a 1-way mirror/replacing vdev from the tree.
770 */
771 void
772 vdev_remove_parent(vdev_t *cvd)
773 {
774 vdev_t *mvd = cvd->vdev_parent;
775 vdev_t *pvd = mvd->vdev_parent;
776
777 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
778
779 ASSERT(mvd->vdev_children == 1);
780 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
781 mvd->vdev_ops == &vdev_replacing_ops ||
782 mvd->vdev_ops == &vdev_spare_ops);
783 cvd->vdev_ashift = mvd->vdev_ashift;
784
785 vdev_remove_child(mvd, cvd);
786 vdev_remove_child(pvd, mvd);
787
788 /*
789 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
790 * Otherwise, we could have detached an offline device, and when we
791 * go to import the pool we'll think we have two top-level vdevs,
792 * instead of a different version of the same top-level vdev.
793 */
794 if (mvd->vdev_top == mvd) {
795 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
796 cvd->vdev_orig_guid = cvd->vdev_guid;
797 cvd->vdev_guid += guid_delta;
798 cvd->vdev_guid_sum += guid_delta;
799 }
800 cvd->vdev_id = mvd->vdev_id;
801 vdev_add_child(pvd, cvd);
802 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
803
804 if (cvd == cvd->vdev_top)
805 vdev_top_transfer(mvd, cvd);
806
807 ASSERT(mvd->vdev_children == 0);
808 vdev_free(mvd);
809 }
810
811 int
812 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
813 {
814 spa_t *spa = vd->vdev_spa;
815 objset_t *mos = spa->spa_meta_objset;
816 uint64_t m;
817 uint64_t oldc = vd->vdev_ms_count;
818 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
819 metaslab_t **mspp;
820 int error;
821
822 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
823
824 /*
825 * This vdev is not being allocated from yet or is a hole.
826 */
827 if (vd->vdev_ms_shift == 0)
828 return (0);
829
830 ASSERT(!vd->vdev_ishole);
831
832 /*
833 * Compute the raidz-deflation ratio. Note, we hard-code
834 * in 128k (1 << 17) because it is the current "typical" blocksize.
835 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
836 * or we will inconsistently account for existing bp's.
837 */
838 vd->vdev_deflate_ratio = (1 << 17) /
839 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
840
841 ASSERT(oldc <= newc);
842
843 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_PUSHPAGE | KM_NODEBUG);
844
845 if (oldc != 0) {
846 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
847 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
848 }
849
850 vd->vdev_ms = mspp;
851 vd->vdev_ms_count = newc;
852
853 for (m = oldc; m < newc; m++) {
854 space_map_obj_t smo = { 0, 0, 0 };
855 if (txg == 0) {
856 uint64_t object = 0;
857 error = dmu_read(mos, vd->vdev_ms_array,
858 m * sizeof (uint64_t), sizeof (uint64_t), &object,
859 DMU_READ_PREFETCH);
860 if (error)
861 return (error);
862 if (object != 0) {
863 dmu_buf_t *db;
864 error = dmu_bonus_hold(mos, object, FTAG, &db);
865 if (error)
866 return (error);
867 ASSERT3U(db->db_size, >=, sizeof (smo));
868 bcopy(db->db_data, &smo, sizeof (smo));
869 ASSERT3U(smo.smo_object, ==, object);
870 dmu_buf_rele(db, FTAG);
871 }
872 }
873 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
874 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
875 }
876
877 if (txg == 0)
878 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
879
880 /*
881 * If the vdev is being removed we don't activate
882 * the metaslabs since we want to ensure that no new
883 * allocations are performed on this device.
884 */
885 if (oldc == 0 && !vd->vdev_removing)
886 metaslab_group_activate(vd->vdev_mg);
887
888 if (txg == 0)
889 spa_config_exit(spa, SCL_ALLOC, FTAG);
890
891 return (0);
892 }
893
894 void
895 vdev_metaslab_fini(vdev_t *vd)
896 {
897 uint64_t m;
898 uint64_t count = vd->vdev_ms_count;
899
900 if (vd->vdev_ms != NULL) {
901 metaslab_group_passivate(vd->vdev_mg);
902 for (m = 0; m < count; m++)
903 if (vd->vdev_ms[m] != NULL)
904 metaslab_fini(vd->vdev_ms[m]);
905 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
906 vd->vdev_ms = NULL;
907 }
908
909 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
910 }
911
912 typedef struct vdev_probe_stats {
913 boolean_t vps_readable;
914 boolean_t vps_writeable;
915 int vps_flags;
916 } vdev_probe_stats_t;
917
918 static void
919 vdev_probe_done(zio_t *zio)
920 {
921 spa_t *spa = zio->io_spa;
922 vdev_t *vd = zio->io_vd;
923 vdev_probe_stats_t *vps = zio->io_private;
924
925 ASSERT(vd->vdev_probe_zio != NULL);
926
927 if (zio->io_type == ZIO_TYPE_READ) {
928 if (zio->io_error == 0)
929 vps->vps_readable = 1;
930 if (zio->io_error == 0 && spa_writeable(spa)) {
931 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
932 zio->io_offset, zio->io_size, zio->io_data,
933 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
934 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
935 } else {
936 zio_buf_free(zio->io_data, zio->io_size);
937 }
938 } else if (zio->io_type == ZIO_TYPE_WRITE) {
939 if (zio->io_error == 0)
940 vps->vps_writeable = 1;
941 zio_buf_free(zio->io_data, zio->io_size);
942 } else if (zio->io_type == ZIO_TYPE_NULL) {
943 zio_t *pio;
944
945 vd->vdev_cant_read |= !vps->vps_readable;
946 vd->vdev_cant_write |= !vps->vps_writeable;
947
948 if (vdev_readable(vd) &&
949 (vdev_writeable(vd) || !spa_writeable(spa))) {
950 zio->io_error = 0;
951 } else {
952 ASSERT(zio->io_error != 0);
953 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
954 spa, vd, NULL, 0, 0);
955 zio->io_error = ENXIO;
956 }
957
958 mutex_enter(&vd->vdev_probe_lock);
959 ASSERT(vd->vdev_probe_zio == zio);
960 vd->vdev_probe_zio = NULL;
961 mutex_exit(&vd->vdev_probe_lock);
962
963 while ((pio = zio_walk_parents(zio)) != NULL)
964 if (!vdev_accessible(vd, pio))
965 pio->io_error = ENXIO;
966
967 kmem_free(vps, sizeof (*vps));
968 }
969 }
970
971 /*
972 * Determine whether this device is accessible by reading and writing
973 * to several known locations: the pad regions of each vdev label
974 * but the first (which we leave alone in case it contains a VTOC).
975 */
976 zio_t *
977 vdev_probe(vdev_t *vd, zio_t *zio)
978 {
979 spa_t *spa = vd->vdev_spa;
980 vdev_probe_stats_t *vps = NULL;
981 zio_t *pio;
982 int l;
983
984 ASSERT(vd->vdev_ops->vdev_op_leaf);
985
986 /*
987 * Don't probe the probe.
988 */
989 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
990 return (NULL);
991
992 /*
993 * To prevent 'probe storms' when a device fails, we create
994 * just one probe i/o at a time. All zios that want to probe
995 * this vdev will become parents of the probe io.
996 */
997 mutex_enter(&vd->vdev_probe_lock);
998
999 if ((pio = vd->vdev_probe_zio) == NULL) {
1000 vps = kmem_zalloc(sizeof (*vps), KM_PUSHPAGE);
1001
1002 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1003 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1004 ZIO_FLAG_TRYHARD;
1005
1006 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1007 /*
1008 * vdev_cant_read and vdev_cant_write can only
1009 * transition from TRUE to FALSE when we have the
1010 * SCL_ZIO lock as writer; otherwise they can only
1011 * transition from FALSE to TRUE. This ensures that
1012 * any zio looking at these values can assume that
1013 * failures persist for the life of the I/O. That's
1014 * important because when a device has intermittent
1015 * connectivity problems, we want to ensure that
1016 * they're ascribed to the device (ENXIO) and not
1017 * the zio (EIO).
1018 *
1019 * Since we hold SCL_ZIO as writer here, clear both
1020 * values so the probe can reevaluate from first
1021 * principles.
1022 */
1023 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1024 vd->vdev_cant_read = B_FALSE;
1025 vd->vdev_cant_write = B_FALSE;
1026 }
1027
1028 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1029 vdev_probe_done, vps,
1030 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1031
1032 /*
1033 * We can't change the vdev state in this context, so we
1034 * kick off an async task to do it on our behalf.
1035 */
1036 if (zio != NULL) {
1037 vd->vdev_probe_wanted = B_TRUE;
1038 spa_async_request(spa, SPA_ASYNC_PROBE);
1039 }
1040 }
1041
1042 if (zio != NULL)
1043 zio_add_child(zio, pio);
1044
1045 mutex_exit(&vd->vdev_probe_lock);
1046
1047 if (vps == NULL) {
1048 ASSERT(zio != NULL);
1049 return (NULL);
1050 }
1051
1052 for (l = 1; l < VDEV_LABELS; l++) {
1053 zio_nowait(zio_read_phys(pio, vd,
1054 vdev_label_offset(vd->vdev_psize, l,
1055 offsetof(vdev_label_t, vl_pad2)),
1056 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1057 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1058 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1059 }
1060
1061 if (zio == NULL)
1062 return (pio);
1063
1064 zio_nowait(pio);
1065 return (NULL);
1066 }
1067
1068 static void
1069 vdev_open_child(void *arg)
1070 {
1071 vdev_t *vd = arg;
1072
1073 vd->vdev_open_thread = curthread;
1074 vd->vdev_open_error = vdev_open(vd);
1075 vd->vdev_open_thread = NULL;
1076 }
1077
1078 static boolean_t
1079 vdev_uses_zvols(vdev_t *vd)
1080 {
1081 int c;
1082
1083 #ifdef _KERNEL
1084 if (zvol_is_zvol(vd->vdev_path))
1085 return (B_TRUE);
1086 #endif
1087
1088 for (c = 0; c < vd->vdev_children; c++)
1089 if (vdev_uses_zvols(vd->vdev_child[c]))
1090 return (B_TRUE);
1091
1092 return (B_FALSE);
1093 }
1094
1095 void
1096 vdev_open_children(vdev_t *vd)
1097 {
1098 taskq_t *tq;
1099 int children = vd->vdev_children;
1100 int c;
1101
1102 /*
1103 * in order to handle pools on top of zvols, do the opens
1104 * in a single thread so that the same thread holds the
1105 * spa_namespace_lock
1106 */
1107 if (vdev_uses_zvols(vd)) {
1108 for (c = 0; c < children; c++)
1109 vd->vdev_child[c]->vdev_open_error =
1110 vdev_open(vd->vdev_child[c]);
1111 return;
1112 }
1113 tq = taskq_create("vdev_open", children, minclsyspri,
1114 children, children, TASKQ_PREPOPULATE);
1115
1116 for (c = 0; c < children; c++)
1117 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1118 TQ_SLEEP) != 0);
1119
1120 taskq_destroy(tq);
1121 }
1122
1123 /*
1124 * Prepare a virtual device for access.
1125 */
1126 int
1127 vdev_open(vdev_t *vd)
1128 {
1129 spa_t *spa = vd->vdev_spa;
1130 int error;
1131 uint64_t osize = 0;
1132 uint64_t max_osize = 0;
1133 uint64_t asize, max_asize, psize;
1134 uint64_t ashift = 0;
1135 int c;
1136
1137 ASSERT(vd->vdev_open_thread == curthread ||
1138 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1139 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1140 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1141 vd->vdev_state == VDEV_STATE_OFFLINE);
1142
1143 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1144 vd->vdev_cant_read = B_FALSE;
1145 vd->vdev_cant_write = B_FALSE;
1146 vd->vdev_min_asize = vdev_get_min_asize(vd);
1147
1148 /*
1149 * If this vdev is not removed, check its fault status. If it's
1150 * faulted, bail out of the open.
1151 */
1152 if (!vd->vdev_removed && vd->vdev_faulted) {
1153 ASSERT(vd->vdev_children == 0);
1154 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1155 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1156 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1157 vd->vdev_label_aux);
1158 return (ENXIO);
1159 } else if (vd->vdev_offline) {
1160 ASSERT(vd->vdev_children == 0);
1161 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1162 return (ENXIO);
1163 }
1164
1165 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1166
1167 /*
1168 * Reset the vdev_reopening flag so that we actually close
1169 * the vdev on error.
1170 */
1171 vd->vdev_reopening = B_FALSE;
1172 if (zio_injection_enabled && error == 0)
1173 error = zio_handle_device_injection(vd, NULL, ENXIO);
1174
1175 if (error) {
1176 if (vd->vdev_removed &&
1177 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1178 vd->vdev_removed = B_FALSE;
1179
1180 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1181 vd->vdev_stat.vs_aux);
1182 return (error);
1183 }
1184
1185 vd->vdev_removed = B_FALSE;
1186
1187 /*
1188 * Recheck the faulted flag now that we have confirmed that
1189 * the vdev is accessible. If we're faulted, bail.
1190 */
1191 if (vd->vdev_faulted) {
1192 ASSERT(vd->vdev_children == 0);
1193 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1194 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1195 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1196 vd->vdev_label_aux);
1197 return (ENXIO);
1198 }
1199
1200 if (vd->vdev_degraded) {
1201 ASSERT(vd->vdev_children == 0);
1202 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1203 VDEV_AUX_ERR_EXCEEDED);
1204 } else {
1205 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1206 }
1207
1208 /*
1209 * For hole or missing vdevs we just return success.
1210 */
1211 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1212 return (0);
1213
1214 for (c = 0; c < vd->vdev_children; c++) {
1215 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1216 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1217 VDEV_AUX_NONE);
1218 break;
1219 }
1220 }
1221
1222 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1223 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1224
1225 if (vd->vdev_children == 0) {
1226 if (osize < SPA_MINDEVSIZE) {
1227 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1228 VDEV_AUX_TOO_SMALL);
1229 return (EOVERFLOW);
1230 }
1231 psize = osize;
1232 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1233 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1234 VDEV_LABEL_END_SIZE);
1235 } else {
1236 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1237 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1238 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1239 VDEV_AUX_TOO_SMALL);
1240 return (EOVERFLOW);
1241 }
1242 psize = 0;
1243 asize = osize;
1244 max_asize = max_osize;
1245 }
1246
1247 vd->vdev_psize = psize;
1248
1249 /*
1250 * Make sure the allocatable size hasn't shrunk.
1251 */
1252 if (asize < vd->vdev_min_asize) {
1253 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1254 VDEV_AUX_BAD_LABEL);
1255 return (EINVAL);
1256 }
1257
1258 if (vd->vdev_asize == 0) {
1259 /*
1260 * This is the first-ever open, so use the computed values.
1261 * For testing purposes, a higher ashift can be requested.
1262 */
1263 vd->vdev_asize = asize;
1264 vd->vdev_max_asize = max_asize;
1265 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1266 } else {
1267 /*
1268 * Detect if the alignment requirement has increased.
1269 * We don't want to make the pool unavailable, just
1270 * post an event instead.
1271 */
1272 if (ashift > vd->vdev_top->vdev_ashift &&
1273 vd->vdev_ops->vdev_op_leaf) {
1274 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1275 spa, vd, NULL, 0, 0);
1276 }
1277
1278 vd->vdev_max_asize = max_asize;
1279 }
1280
1281 /*
1282 * If all children are healthy and the asize has increased,
1283 * then we've experienced dynamic LUN growth. If automatic
1284 * expansion is enabled then use the additional space.
1285 */
1286 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1287 (vd->vdev_expanding || spa->spa_autoexpand))
1288 vd->vdev_asize = asize;
1289
1290 vdev_set_min_asize(vd);
1291
1292 /*
1293 * Ensure we can issue some IO before declaring the
1294 * vdev open for business.
1295 */
1296 if (vd->vdev_ops->vdev_op_leaf &&
1297 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1298 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1299 VDEV_AUX_ERR_EXCEEDED);
1300 return (error);
1301 }
1302
1303 /*
1304 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1305 * resilver. But don't do this if we are doing a reopen for a scrub,
1306 * since this would just restart the scrub we are already doing.
1307 */
1308 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1309 vdev_resilver_needed(vd, NULL, NULL))
1310 spa_async_request(spa, SPA_ASYNC_RESILVER);
1311
1312 return (0);
1313 }
1314
1315 /*
1316 * Called once the vdevs are all opened, this routine validates the label
1317 * contents. This needs to be done before vdev_load() so that we don't
1318 * inadvertently do repair I/Os to the wrong device.
1319 *
1320 * If 'strict' is false ignore the spa guid check. This is necessary because
1321 * if the machine crashed during a re-guid the new guid might have been written
1322 * to all of the vdev labels, but not the cached config. The strict check
1323 * will be performed when the pool is opened again using the mos config.
1324 *
1325 * This function will only return failure if one of the vdevs indicates that it
1326 * has since been destroyed or exported. This is only possible if
1327 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1328 * will be updated but the function will return 0.
1329 */
1330 int
1331 vdev_validate(vdev_t *vd, boolean_t strict)
1332 {
1333 spa_t *spa = vd->vdev_spa;
1334 nvlist_t *label;
1335 uint64_t guid = 0, top_guid;
1336 uint64_t state;
1337 int c;
1338
1339 for (c = 0; c < vd->vdev_children; c++)
1340 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1341 return (EBADF);
1342
1343 /*
1344 * If the device has already failed, or was marked offline, don't do
1345 * any further validation. Otherwise, label I/O will fail and we will
1346 * overwrite the previous state.
1347 */
1348 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1349 uint64_t aux_guid = 0;
1350 nvlist_t *nvl;
1351
1352 if ((label = vdev_label_read_config(vd)) == NULL) {
1353 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1354 VDEV_AUX_BAD_LABEL);
1355 return (0);
1356 }
1357
1358 /*
1359 * Determine if this vdev has been split off into another
1360 * pool. If so, then refuse to open it.
1361 */
1362 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1363 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1364 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1365 VDEV_AUX_SPLIT_POOL);
1366 nvlist_free(label);
1367 return (0);
1368 }
1369
1370 if (strict && (nvlist_lookup_uint64(label,
1371 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1372 guid != spa_guid(spa))) {
1373 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1374 VDEV_AUX_CORRUPT_DATA);
1375 nvlist_free(label);
1376 return (0);
1377 }
1378
1379 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1380 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1381 &aux_guid) != 0)
1382 aux_guid = 0;
1383
1384 /*
1385 * If this vdev just became a top-level vdev because its
1386 * sibling was detached, it will have adopted the parent's
1387 * vdev guid -- but the label may or may not be on disk yet.
1388 * Fortunately, either version of the label will have the
1389 * same top guid, so if we're a top-level vdev, we can
1390 * safely compare to that instead.
1391 *
1392 * If we split this vdev off instead, then we also check the
1393 * original pool's guid. We don't want to consider the vdev
1394 * corrupt if it is partway through a split operation.
1395 */
1396 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1397 &guid) != 0 ||
1398 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1399 &top_guid) != 0 ||
1400 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1401 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1402 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1403 VDEV_AUX_CORRUPT_DATA);
1404 nvlist_free(label);
1405 return (0);
1406 }
1407
1408 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1409 &state) != 0) {
1410 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1411 VDEV_AUX_CORRUPT_DATA);
1412 nvlist_free(label);
1413 return (0);
1414 }
1415
1416 nvlist_free(label);
1417
1418 /*
1419 * If this is a verbatim import, no need to check the
1420 * state of the pool.
1421 */
1422 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1423 spa_load_state(spa) == SPA_LOAD_OPEN &&
1424 state != POOL_STATE_ACTIVE)
1425 return (EBADF);
1426
1427 /*
1428 * If we were able to open and validate a vdev that was
1429 * previously marked permanently unavailable, clear that state
1430 * now.
1431 */
1432 if (vd->vdev_not_present)
1433 vd->vdev_not_present = 0;
1434 }
1435
1436 return (0);
1437 }
1438
1439 /*
1440 * Close a virtual device.
1441 */
1442 void
1443 vdev_close(vdev_t *vd)
1444 {
1445 vdev_t *pvd = vd->vdev_parent;
1446 ASSERTV(spa_t *spa = vd->vdev_spa);
1447
1448 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1449
1450 /*
1451 * If our parent is reopening, then we are as well, unless we are
1452 * going offline.
1453 */
1454 if (pvd != NULL && pvd->vdev_reopening)
1455 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1456
1457 vd->vdev_ops->vdev_op_close(vd);
1458
1459 vdev_cache_purge(vd);
1460
1461 /*
1462 * We record the previous state before we close it, so that if we are
1463 * doing a reopen(), we don't generate FMA ereports if we notice that
1464 * it's still faulted.
1465 */
1466 vd->vdev_prevstate = vd->vdev_state;
1467
1468 if (vd->vdev_offline)
1469 vd->vdev_state = VDEV_STATE_OFFLINE;
1470 else
1471 vd->vdev_state = VDEV_STATE_CLOSED;
1472 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1473 }
1474
1475 void
1476 vdev_hold(vdev_t *vd)
1477 {
1478 spa_t *spa = vd->vdev_spa;
1479 int c;
1480
1481 ASSERT(spa_is_root(spa));
1482 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1483 return;
1484
1485 for (c = 0; c < vd->vdev_children; c++)
1486 vdev_hold(vd->vdev_child[c]);
1487
1488 if (vd->vdev_ops->vdev_op_leaf)
1489 vd->vdev_ops->vdev_op_hold(vd);
1490 }
1491
1492 void
1493 vdev_rele(vdev_t *vd)
1494 {
1495 int c;
1496
1497 ASSERT(spa_is_root(vd->vdev_spa));
1498 for (c = 0; c < vd->vdev_children; c++)
1499 vdev_rele(vd->vdev_child[c]);
1500
1501 if (vd->vdev_ops->vdev_op_leaf)
1502 vd->vdev_ops->vdev_op_rele(vd);
1503 }
1504
1505 /*
1506 * Reopen all interior vdevs and any unopened leaves. We don't actually
1507 * reopen leaf vdevs which had previously been opened as they might deadlock
1508 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1509 * If the leaf has never been opened then open it, as usual.
1510 */
1511 void
1512 vdev_reopen(vdev_t *vd)
1513 {
1514 spa_t *spa = vd->vdev_spa;
1515
1516 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1517
1518 /* set the reopening flag unless we're taking the vdev offline */
1519 vd->vdev_reopening = !vd->vdev_offline;
1520 vdev_close(vd);
1521 (void) vdev_open(vd);
1522
1523 /*
1524 * Call vdev_validate() here to make sure we have the same device.
1525 * Otherwise, a device with an invalid label could be successfully
1526 * opened in response to vdev_reopen().
1527 */
1528 if (vd->vdev_aux) {
1529 (void) vdev_validate_aux(vd);
1530 if (vdev_readable(vd) && vdev_writeable(vd) &&
1531 vd->vdev_aux == &spa->spa_l2cache &&
1532 !l2arc_vdev_present(vd))
1533 l2arc_add_vdev(spa, vd);
1534 } else {
1535 (void) vdev_validate(vd, B_TRUE);
1536 }
1537
1538 /*
1539 * Reassess parent vdev's health.
1540 */
1541 vdev_propagate_state(vd);
1542 }
1543
1544 int
1545 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1546 {
1547 int error;
1548
1549 /*
1550 * Normally, partial opens (e.g. of a mirror) are allowed.
1551 * For a create, however, we want to fail the request if
1552 * there are any components we can't open.
1553 */
1554 error = vdev_open(vd);
1555
1556 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1557 vdev_close(vd);
1558 return (error ? error : ENXIO);
1559 }
1560
1561 /*
1562 * Recursively initialize all labels.
1563 */
1564 if ((error = vdev_label_init(vd, txg, isreplacing ?
1565 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1566 vdev_close(vd);
1567 return (error);
1568 }
1569
1570 return (0);
1571 }
1572
1573 void
1574 vdev_metaslab_set_size(vdev_t *vd)
1575 {
1576 /*
1577 * Aim for roughly 200 metaslabs per vdev.
1578 */
1579 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1580 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1581 }
1582
1583 void
1584 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1585 {
1586 ASSERT(vd == vd->vdev_top);
1587 ASSERT(!vd->vdev_ishole);
1588 ASSERT(ISP2(flags));
1589 ASSERT(spa_writeable(vd->vdev_spa));
1590
1591 if (flags & VDD_METASLAB)
1592 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1593
1594 if (flags & VDD_DTL)
1595 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1596
1597 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1598 }
1599
1600 /*
1601 * DTLs.
1602 *
1603 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1604 * the vdev has less than perfect replication. There are four kinds of DTL:
1605 *
1606 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1607 *
1608 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1609 *
1610 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1611 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1612 * txgs that was scrubbed.
1613 *
1614 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1615 * persistent errors or just some device being offline.
1616 * Unlike the other three, the DTL_OUTAGE map is not generally
1617 * maintained; it's only computed when needed, typically to
1618 * determine whether a device can be detached.
1619 *
1620 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1621 * either has the data or it doesn't.
1622 *
1623 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1624 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1625 * if any child is less than fully replicated, then so is its parent.
1626 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1627 * comprising only those txgs which appear in 'maxfaults' or more children;
1628 * those are the txgs we don't have enough replication to read. For example,
1629 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1630 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1631 * two child DTL_MISSING maps.
1632 *
1633 * It should be clear from the above that to compute the DTLs and outage maps
1634 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1635 * Therefore, that is all we keep on disk. When loading the pool, or after
1636 * a configuration change, we generate all other DTLs from first principles.
1637 */
1638 void
1639 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1640 {
1641 space_map_t *sm = &vd->vdev_dtl[t];
1642
1643 ASSERT(t < DTL_TYPES);
1644 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1645 ASSERT(spa_writeable(vd->vdev_spa));
1646
1647 mutex_enter(sm->sm_lock);
1648 if (!space_map_contains(sm, txg, size))
1649 space_map_add(sm, txg, size);
1650 mutex_exit(sm->sm_lock);
1651 }
1652
1653 boolean_t
1654 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1655 {
1656 space_map_t *sm = &vd->vdev_dtl[t];
1657 boolean_t dirty = B_FALSE;
1658
1659 ASSERT(t < DTL_TYPES);
1660 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1661
1662 mutex_enter(sm->sm_lock);
1663 if (sm->sm_space != 0)
1664 dirty = space_map_contains(sm, txg, size);
1665 mutex_exit(sm->sm_lock);
1666
1667 return (dirty);
1668 }
1669
1670 boolean_t
1671 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1672 {
1673 space_map_t *sm = &vd->vdev_dtl[t];
1674 boolean_t empty;
1675
1676 mutex_enter(sm->sm_lock);
1677 empty = (sm->sm_space == 0);
1678 mutex_exit(sm->sm_lock);
1679
1680 return (empty);
1681 }
1682
1683 /*
1684 * Reassess DTLs after a config change or scrub completion.
1685 */
1686 void
1687 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1688 {
1689 spa_t *spa = vd->vdev_spa;
1690 avl_tree_t reftree;
1691 int c, t, minref;
1692
1693 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1694
1695 for (c = 0; c < vd->vdev_children; c++)
1696 vdev_dtl_reassess(vd->vdev_child[c], txg,
1697 scrub_txg, scrub_done);
1698
1699 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1700 return;
1701
1702 if (vd->vdev_ops->vdev_op_leaf) {
1703 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1704
1705 mutex_enter(&vd->vdev_dtl_lock);
1706 if (scrub_txg != 0 &&
1707 (spa->spa_scrub_started ||
1708 (scn && scn->scn_phys.scn_errors == 0))) {
1709 /*
1710 * We completed a scrub up to scrub_txg. If we
1711 * did it without rebooting, then the scrub dtl
1712 * will be valid, so excise the old region and
1713 * fold in the scrub dtl. Otherwise, leave the
1714 * dtl as-is if there was an error.
1715 *
1716 * There's little trick here: to excise the beginning
1717 * of the DTL_MISSING map, we put it into a reference
1718 * tree and then add a segment with refcnt -1 that
1719 * covers the range [0, scrub_txg). This means
1720 * that each txg in that range has refcnt -1 or 0.
1721 * We then add DTL_SCRUB with a refcnt of 2, so that
1722 * entries in the range [0, scrub_txg) will have a
1723 * positive refcnt -- either 1 or 2. We then convert
1724 * the reference tree into the new DTL_MISSING map.
1725 */
1726 space_map_ref_create(&reftree);
1727 space_map_ref_add_map(&reftree,
1728 &vd->vdev_dtl[DTL_MISSING], 1);
1729 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1730 space_map_ref_add_map(&reftree,
1731 &vd->vdev_dtl[DTL_SCRUB], 2);
1732 space_map_ref_generate_map(&reftree,
1733 &vd->vdev_dtl[DTL_MISSING], 1);
1734 space_map_ref_destroy(&reftree);
1735 }
1736 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1737 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1738 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1739 if (scrub_done)
1740 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1741 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1742 if (!vdev_readable(vd))
1743 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1744 else
1745 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1746 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1747 mutex_exit(&vd->vdev_dtl_lock);
1748
1749 if (txg != 0)
1750 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1751 return;
1752 }
1753
1754 mutex_enter(&vd->vdev_dtl_lock);
1755 for (t = 0; t < DTL_TYPES; t++) {
1756 /* account for child's outage in parent's missing map */
1757 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1758 if (t == DTL_SCRUB)
1759 continue; /* leaf vdevs only */
1760 if (t == DTL_PARTIAL)
1761 minref = 1; /* i.e. non-zero */
1762 else if (vd->vdev_nparity != 0)
1763 minref = vd->vdev_nparity + 1; /* RAID-Z */
1764 else
1765 minref = vd->vdev_children; /* any kind of mirror */
1766 space_map_ref_create(&reftree);
1767 for (c = 0; c < vd->vdev_children; c++) {
1768 vdev_t *cvd = vd->vdev_child[c];
1769 mutex_enter(&cvd->vdev_dtl_lock);
1770 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1771 mutex_exit(&cvd->vdev_dtl_lock);
1772 }
1773 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1774 space_map_ref_destroy(&reftree);
1775 }
1776 mutex_exit(&vd->vdev_dtl_lock);
1777 }
1778
1779 static int
1780 vdev_dtl_load(vdev_t *vd)
1781 {
1782 spa_t *spa = vd->vdev_spa;
1783 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1784 objset_t *mos = spa->spa_meta_objset;
1785 dmu_buf_t *db;
1786 int error;
1787
1788 ASSERT(vd->vdev_children == 0);
1789
1790 if (smo->smo_object == 0)
1791 return (0);
1792
1793 ASSERT(!vd->vdev_ishole);
1794
1795 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1796 return (error);
1797
1798 ASSERT3U(db->db_size, >=, sizeof (*smo));
1799 bcopy(db->db_data, smo, sizeof (*smo));
1800 dmu_buf_rele(db, FTAG);
1801
1802 mutex_enter(&vd->vdev_dtl_lock);
1803 error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1804 NULL, SM_ALLOC, smo, mos);
1805 mutex_exit(&vd->vdev_dtl_lock);
1806
1807 return (error);
1808 }
1809
1810 void
1811 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1812 {
1813 spa_t *spa = vd->vdev_spa;
1814 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1815 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1816 objset_t *mos = spa->spa_meta_objset;
1817 space_map_t smsync;
1818 kmutex_t smlock;
1819 dmu_buf_t *db;
1820 dmu_tx_t *tx;
1821
1822 ASSERT(!vd->vdev_ishole);
1823
1824 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1825
1826 if (vd->vdev_detached) {
1827 if (smo->smo_object != 0) {
1828 VERIFY(0 == dmu_object_free(mos, smo->smo_object, tx));
1829 smo->smo_object = 0;
1830 }
1831 dmu_tx_commit(tx);
1832 return;
1833 }
1834
1835 if (smo->smo_object == 0) {
1836 ASSERT(smo->smo_objsize == 0);
1837 ASSERT(smo->smo_alloc == 0);
1838 smo->smo_object = dmu_object_alloc(mos,
1839 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1840 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1841 ASSERT(smo->smo_object != 0);
1842 vdev_config_dirty(vd->vdev_top);
1843 }
1844
1845 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1846
1847 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1848 &smlock);
1849
1850 mutex_enter(&smlock);
1851
1852 mutex_enter(&vd->vdev_dtl_lock);
1853 space_map_walk(sm, space_map_add, &smsync);
1854 mutex_exit(&vd->vdev_dtl_lock);
1855
1856 space_map_truncate(smo, mos, tx);
1857 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1858
1859 space_map_destroy(&smsync);
1860
1861 mutex_exit(&smlock);
1862 mutex_destroy(&smlock);
1863
1864 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1865 dmu_buf_will_dirty(db, tx);
1866 ASSERT3U(db->db_size, >=, sizeof (*smo));
1867 bcopy(smo, db->db_data, sizeof (*smo));
1868 dmu_buf_rele(db, FTAG);
1869
1870 dmu_tx_commit(tx);
1871 }
1872
1873 /*
1874 * Determine whether the specified vdev can be offlined/detached/removed
1875 * without losing data.
1876 */
1877 boolean_t
1878 vdev_dtl_required(vdev_t *vd)
1879 {
1880 spa_t *spa = vd->vdev_spa;
1881 vdev_t *tvd = vd->vdev_top;
1882 uint8_t cant_read = vd->vdev_cant_read;
1883 boolean_t required;
1884
1885 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1886
1887 if (vd == spa->spa_root_vdev || vd == tvd)
1888 return (B_TRUE);
1889
1890 /*
1891 * Temporarily mark the device as unreadable, and then determine
1892 * whether this results in any DTL outages in the top-level vdev.
1893 * If not, we can safely offline/detach/remove the device.
1894 */
1895 vd->vdev_cant_read = B_TRUE;
1896 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1897 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1898 vd->vdev_cant_read = cant_read;
1899 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1900
1901 if (!required && zio_injection_enabled)
1902 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1903
1904 return (required);
1905 }
1906
1907 /*
1908 * Determine if resilver is needed, and if so the txg range.
1909 */
1910 boolean_t
1911 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1912 {
1913 boolean_t needed = B_FALSE;
1914 uint64_t thismin = UINT64_MAX;
1915 uint64_t thismax = 0;
1916 int c;
1917
1918 if (vd->vdev_children == 0) {
1919 mutex_enter(&vd->vdev_dtl_lock);
1920 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1921 vdev_writeable(vd)) {
1922 space_seg_t *ss;
1923
1924 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1925 thismin = ss->ss_start - 1;
1926 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1927 thismax = ss->ss_end;
1928 needed = B_TRUE;
1929 }
1930 mutex_exit(&vd->vdev_dtl_lock);
1931 } else {
1932 for (c = 0; c < vd->vdev_children; c++) {
1933 vdev_t *cvd = vd->vdev_child[c];
1934 uint64_t cmin, cmax;
1935
1936 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1937 thismin = MIN(thismin, cmin);
1938 thismax = MAX(thismax, cmax);
1939 needed = B_TRUE;
1940 }
1941 }
1942 }
1943
1944 if (needed && minp) {
1945 *minp = thismin;
1946 *maxp = thismax;
1947 }
1948 return (needed);
1949 }
1950
1951 void
1952 vdev_load(vdev_t *vd)
1953 {
1954 int c;
1955
1956 /*
1957 * Recursively load all children.
1958 */
1959 for (c = 0; c < vd->vdev_children; c++)
1960 vdev_load(vd->vdev_child[c]);
1961
1962 /*
1963 * If this is a top-level vdev, initialize its metaslabs.
1964 */
1965 if (vd == vd->vdev_top && !vd->vdev_ishole &&
1966 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1967 vdev_metaslab_init(vd, 0) != 0))
1968 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1969 VDEV_AUX_CORRUPT_DATA);
1970
1971 /*
1972 * If this is a leaf vdev, load its DTL.
1973 */
1974 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1975 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1976 VDEV_AUX_CORRUPT_DATA);
1977 }
1978
1979 /*
1980 * The special vdev case is used for hot spares and l2cache devices. Its
1981 * sole purpose it to set the vdev state for the associated vdev. To do this,
1982 * we make sure that we can open the underlying device, then try to read the
1983 * label, and make sure that the label is sane and that it hasn't been
1984 * repurposed to another pool.
1985 */
1986 int
1987 vdev_validate_aux(vdev_t *vd)
1988 {
1989 nvlist_t *label;
1990 uint64_t guid, version;
1991 uint64_t state;
1992
1993 if (!vdev_readable(vd))
1994 return (0);
1995
1996 if ((label = vdev_label_read_config(vd)) == NULL) {
1997 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1998 VDEV_AUX_CORRUPT_DATA);
1999 return (-1);
2000 }
2001
2002 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2003 version > SPA_VERSION ||
2004 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2005 guid != vd->vdev_guid ||
2006 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2007 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2008 VDEV_AUX_CORRUPT_DATA);
2009 nvlist_free(label);
2010 return (-1);
2011 }
2012
2013 /*
2014 * We don't actually check the pool state here. If it's in fact in
2015 * use by another pool, we update this fact on the fly when requested.
2016 */
2017 nvlist_free(label);
2018 return (0);
2019 }
2020
2021 void
2022 vdev_remove(vdev_t *vd, uint64_t txg)
2023 {
2024 spa_t *spa = vd->vdev_spa;
2025 objset_t *mos = spa->spa_meta_objset;
2026 dmu_tx_t *tx;
2027 int m;
2028
2029 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2030
2031 if (vd->vdev_dtl_smo.smo_object) {
2032 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
2033 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2034 vd->vdev_dtl_smo.smo_object = 0;
2035 }
2036
2037 if (vd->vdev_ms != NULL) {
2038 for (m = 0; m < vd->vdev_ms_count; m++) {
2039 metaslab_t *msp = vd->vdev_ms[m];
2040
2041 if (msp == NULL || msp->ms_smo.smo_object == 0)
2042 continue;
2043
2044 ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2045 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2046 msp->ms_smo.smo_object = 0;
2047 }
2048 }
2049
2050 if (vd->vdev_ms_array) {
2051 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2052 vd->vdev_ms_array = 0;
2053 vd->vdev_ms_shift = 0;
2054 }
2055 dmu_tx_commit(tx);
2056 }
2057
2058 void
2059 vdev_sync_done(vdev_t *vd, uint64_t txg)
2060 {
2061 metaslab_t *msp;
2062 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2063
2064 ASSERT(!vd->vdev_ishole);
2065
2066 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2067 metaslab_sync_done(msp, txg);
2068
2069 if (reassess)
2070 metaslab_sync_reassess(vd->vdev_mg);
2071 }
2072
2073 void
2074 vdev_sync(vdev_t *vd, uint64_t txg)
2075 {
2076 spa_t *spa = vd->vdev_spa;
2077 vdev_t *lvd;
2078 metaslab_t *msp;
2079 dmu_tx_t *tx;
2080
2081 ASSERT(!vd->vdev_ishole);
2082
2083 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2084 ASSERT(vd == vd->vdev_top);
2085 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2086 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2087 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2088 ASSERT(vd->vdev_ms_array != 0);
2089 vdev_config_dirty(vd);
2090 dmu_tx_commit(tx);
2091 }
2092
2093 /*
2094 * Remove the metadata associated with this vdev once it's empty.
2095 */
2096 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2097 vdev_remove(vd, txg);
2098
2099 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2100 metaslab_sync(msp, txg);
2101 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2102 }
2103
2104 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2105 vdev_dtl_sync(lvd, txg);
2106
2107 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2108 }
2109
2110 uint64_t
2111 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2112 {
2113 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2114 }
2115
2116 /*
2117 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2118 * not be opened, and no I/O is attempted.
2119 */
2120 int
2121 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2122 {
2123 vdev_t *vd, *tvd;
2124
2125 spa_vdev_state_enter(spa, SCL_NONE);
2126
2127 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2128 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2129
2130 if (!vd->vdev_ops->vdev_op_leaf)
2131 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2132
2133 tvd = vd->vdev_top;
2134
2135 /*
2136 * We don't directly use the aux state here, but if we do a
2137 * vdev_reopen(), we need this value to be present to remember why we
2138 * were faulted.
2139 */
2140 vd->vdev_label_aux = aux;
2141
2142 /*
2143 * Faulted state takes precedence over degraded.
2144 */
2145 vd->vdev_delayed_close = B_FALSE;
2146 vd->vdev_faulted = 1ULL;
2147 vd->vdev_degraded = 0ULL;
2148 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2149
2150 /*
2151 * If this device has the only valid copy of the data, then
2152 * back off and simply mark the vdev as degraded instead.
2153 */
2154 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2155 vd->vdev_degraded = 1ULL;
2156 vd->vdev_faulted = 0ULL;
2157
2158 /*
2159 * If we reopen the device and it's not dead, only then do we
2160 * mark it degraded.
2161 */
2162 vdev_reopen(tvd);
2163
2164 if (vdev_readable(vd))
2165 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2166 }
2167
2168 return (spa_vdev_state_exit(spa, vd, 0));
2169 }
2170
2171 /*
2172 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2173 * user that something is wrong. The vdev continues to operate as normal as far
2174 * as I/O is concerned.
2175 */
2176 int
2177 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2178 {
2179 vdev_t *vd;
2180
2181 spa_vdev_state_enter(spa, SCL_NONE);
2182
2183 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2184 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2185
2186 if (!vd->vdev_ops->vdev_op_leaf)
2187 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2188
2189 /*
2190 * If the vdev is already faulted, then don't do anything.
2191 */
2192 if (vd->vdev_faulted || vd->vdev_degraded)
2193 return (spa_vdev_state_exit(spa, NULL, 0));
2194
2195 vd->vdev_degraded = 1ULL;
2196 if (!vdev_is_dead(vd))
2197 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2198 aux);
2199
2200 return (spa_vdev_state_exit(spa, vd, 0));
2201 }
2202
2203 /*
2204 * Online the given vdev. If 'unspare' is set, it implies two things. First,
2205 * any attached spare device should be detached when the device finishes
2206 * resilvering. Second, the online should be treated like a 'test' online case,
2207 * so no FMA events are generated if the device fails to open.
2208 */
2209 int
2210 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2211 {
2212 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2213
2214 spa_vdev_state_enter(spa, SCL_NONE);
2215
2216 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2217 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2218
2219 if (!vd->vdev_ops->vdev_op_leaf)
2220 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2221
2222 tvd = vd->vdev_top;
2223 vd->vdev_offline = B_FALSE;
2224 vd->vdev_tmpoffline = B_FALSE;
2225 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2226 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2227
2228 /* XXX - L2ARC 1.0 does not support expansion */
2229 if (!vd->vdev_aux) {
2230 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2231 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2232 }
2233
2234 vdev_reopen(tvd);
2235 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2236
2237 if (!vd->vdev_aux) {
2238 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2239 pvd->vdev_expanding = B_FALSE;
2240 }
2241
2242 if (newstate)
2243 *newstate = vd->vdev_state;
2244 if ((flags & ZFS_ONLINE_UNSPARE) &&
2245 !vdev_is_dead(vd) && vd->vdev_parent &&
2246 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2247 vd->vdev_parent->vdev_child[0] == vd)
2248 vd->vdev_unspare = B_TRUE;
2249
2250 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2251
2252 /* XXX - L2ARC 1.0 does not support expansion */
2253 if (vd->vdev_aux)
2254 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2255 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2256 }
2257 return (spa_vdev_state_exit(spa, vd, 0));
2258 }
2259
2260 static int
2261 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2262 {
2263 vdev_t *vd, *tvd;
2264 int error = 0;
2265 uint64_t generation;
2266 metaslab_group_t *mg;
2267
2268 top:
2269 spa_vdev_state_enter(spa, SCL_ALLOC);
2270
2271 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2272 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2273
2274 if (!vd->vdev_ops->vdev_op_leaf)
2275 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2276
2277 tvd = vd->vdev_top;
2278 mg = tvd->vdev_mg;
2279 generation = spa->spa_config_generation + 1;
2280
2281 /*
2282 * If the device isn't already offline, try to offline it.
2283 */
2284 if (!vd->vdev_offline) {
2285 /*
2286 * If this device has the only valid copy of some data,
2287 * don't allow it to be offlined. Log devices are always
2288 * expendable.
2289 */
2290 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2291 vdev_dtl_required(vd))
2292 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2293
2294 /*
2295 * If the top-level is a slog and it has had allocations
2296 * then proceed. We check that the vdev's metaslab group
2297 * is not NULL since it's possible that we may have just
2298 * added this vdev but not yet initialized its metaslabs.
2299 */
2300 if (tvd->vdev_islog && mg != NULL) {
2301 /*
2302 * Prevent any future allocations.
2303 */
2304 metaslab_group_passivate(mg);
2305 (void) spa_vdev_state_exit(spa, vd, 0);
2306
2307 error = spa_offline_log(spa);
2308
2309 spa_vdev_state_enter(spa, SCL_ALLOC);
2310
2311 /*
2312 * Check to see if the config has changed.
2313 */
2314 if (error || generation != spa->spa_config_generation) {
2315 metaslab_group_activate(mg);
2316 if (error)
2317 return (spa_vdev_state_exit(spa,
2318 vd, error));
2319 (void) spa_vdev_state_exit(spa, vd, 0);
2320 goto top;
2321 }
2322 ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2323 }
2324
2325 /*
2326 * Offline this device and reopen its top-level vdev.
2327 * If the top-level vdev is a log device then just offline
2328 * it. Otherwise, if this action results in the top-level
2329 * vdev becoming unusable, undo it and fail the request.
2330 */
2331 vd->vdev_offline = B_TRUE;
2332 vdev_reopen(tvd);
2333
2334 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2335 vdev_is_dead(tvd)) {
2336 vd->vdev_offline = B_FALSE;
2337 vdev_reopen(tvd);
2338 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2339 }
2340
2341 /*
2342 * Add the device back into the metaslab rotor so that
2343 * once we online the device it's open for business.
2344 */
2345 if (tvd->vdev_islog && mg != NULL)
2346 metaslab_group_activate(mg);
2347 }
2348
2349 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2350
2351 return (spa_vdev_state_exit(spa, vd, 0));
2352 }
2353
2354 int
2355 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2356 {
2357 int error;
2358
2359 mutex_enter(&spa->spa_vdev_top_lock);
2360 error = vdev_offline_locked(spa, guid, flags);
2361 mutex_exit(&spa->spa_vdev_top_lock);
2362
2363 return (error);
2364 }
2365
2366 /*
2367 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2368 * vdev_offline(), we assume the spa config is locked. We also clear all
2369 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2370 */
2371 void
2372 vdev_clear(spa_t *spa, vdev_t *vd)
2373 {
2374 vdev_t *rvd = spa->spa_root_vdev;
2375 int c;
2376
2377 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2378
2379 if (vd == NULL)
2380 vd = rvd;
2381
2382 vd->vdev_stat.vs_read_errors = 0;
2383 vd->vdev_stat.vs_write_errors = 0;
2384 vd->vdev_stat.vs_checksum_errors = 0;
2385
2386 for (c = 0; c < vd->vdev_children; c++)
2387 vdev_clear(spa, vd->vdev_child[c]);
2388
2389 /*
2390 * If we're in the FAULTED state or have experienced failed I/O, then
2391 * clear the persistent state and attempt to reopen the device. We
2392 * also mark the vdev config dirty, so that the new faulted state is
2393 * written out to disk.
2394 */
2395 if (vd->vdev_faulted || vd->vdev_degraded ||
2396 !vdev_readable(vd) || !vdev_writeable(vd)) {
2397
2398 /*
2399 * When reopening in reponse to a clear event, it may be due to
2400 * a fmadm repair request. In this case, if the device is
2401 * still broken, we want to still post the ereport again.
2402 */
2403 vd->vdev_forcefault = B_TRUE;
2404
2405 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2406 vd->vdev_cant_read = B_FALSE;
2407 vd->vdev_cant_write = B_FALSE;
2408
2409 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2410
2411 vd->vdev_forcefault = B_FALSE;
2412
2413 if (vd != rvd && vdev_writeable(vd->vdev_top))
2414 vdev_state_dirty(vd->vdev_top);
2415
2416 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2417 spa_async_request(spa, SPA_ASYNC_RESILVER);
2418
2419 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
2420 }
2421
2422 /*
2423 * When clearing a FMA-diagnosed fault, we always want to
2424 * unspare the device, as we assume that the original spare was
2425 * done in response to the FMA fault.
2426 */
2427 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2428 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2429 vd->vdev_parent->vdev_child[0] == vd)
2430 vd->vdev_unspare = B_TRUE;
2431 }
2432
2433 boolean_t
2434 vdev_is_dead(vdev_t *vd)
2435 {
2436 /*
2437 * Holes and missing devices are always considered "dead".
2438 * This simplifies the code since we don't have to check for
2439 * these types of devices in the various code paths.
2440 * Instead we rely on the fact that we skip over dead devices
2441 * before issuing I/O to them.
2442 */
2443 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2444 vd->vdev_ops == &vdev_missing_ops);
2445 }
2446
2447 boolean_t
2448 vdev_readable(vdev_t *vd)
2449 {
2450 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2451 }
2452
2453 boolean_t
2454 vdev_writeable(vdev_t *vd)
2455 {
2456 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2457 }
2458
2459 boolean_t
2460 vdev_allocatable(vdev_t *vd)
2461 {
2462 uint64_t state = vd->vdev_state;
2463
2464 /*
2465 * We currently allow allocations from vdevs which may be in the
2466 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2467 * fails to reopen then we'll catch it later when we're holding
2468 * the proper locks. Note that we have to get the vdev state
2469 * in a local variable because although it changes atomically,
2470 * we're asking two separate questions about it.
2471 */
2472 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2473 !vd->vdev_cant_write && !vd->vdev_ishole);
2474 }
2475
2476 boolean_t
2477 vdev_accessible(vdev_t *vd, zio_t *zio)
2478 {
2479 ASSERT(zio->io_vd == vd);
2480
2481 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2482 return (B_FALSE);
2483
2484 if (zio->io_type == ZIO_TYPE_READ)
2485 return (!vd->vdev_cant_read);
2486
2487 if (zio->io_type == ZIO_TYPE_WRITE)
2488 return (!vd->vdev_cant_write);
2489
2490 return (B_TRUE);
2491 }
2492
2493 /*
2494 * Get statistics for the given vdev.
2495 */
2496 void
2497 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2498 {
2499 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2500 int c, t;
2501
2502 mutex_enter(&vd->vdev_stat_lock);
2503 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2504 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2505 vs->vs_state = vd->vdev_state;
2506 vs->vs_rsize = vdev_get_min_asize(vd);
2507 if (vd->vdev_ops->vdev_op_leaf)
2508 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2509 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2510 mutex_exit(&vd->vdev_stat_lock);
2511
2512 /*
2513 * If we're getting stats on the root vdev, aggregate the I/O counts
2514 * over all top-level vdevs (i.e. the direct children of the root).
2515 */
2516 if (vd == rvd) {
2517 for (c = 0; c < rvd->vdev_children; c++) {
2518 vdev_t *cvd = rvd->vdev_child[c];
2519 vdev_stat_t *cvs = &cvd->vdev_stat;
2520
2521 mutex_enter(&vd->vdev_stat_lock);
2522 for (t = 0; t < ZIO_TYPES; t++) {
2523 vs->vs_ops[t] += cvs->vs_ops[t];
2524 vs->vs_bytes[t] += cvs->vs_bytes[t];
2525 }
2526 cvs->vs_scan_removing = cvd->vdev_removing;
2527 mutex_exit(&vd->vdev_stat_lock);
2528 }
2529 }
2530 }
2531
2532 void
2533 vdev_clear_stats(vdev_t *vd)
2534 {
2535 mutex_enter(&vd->vdev_stat_lock);
2536 vd->vdev_stat.vs_space = 0;
2537 vd->vdev_stat.vs_dspace = 0;
2538 vd->vdev_stat.vs_alloc = 0;
2539 mutex_exit(&vd->vdev_stat_lock);
2540 }
2541
2542 void
2543 vdev_scan_stat_init(vdev_t *vd)
2544 {
2545 vdev_stat_t *vs = &vd->vdev_stat;
2546 int c;
2547
2548 for (c = 0; c < vd->vdev_children; c++)
2549 vdev_scan_stat_init(vd->vdev_child[c]);
2550
2551 mutex_enter(&vd->vdev_stat_lock);
2552 vs->vs_scan_processed = 0;
2553 mutex_exit(&vd->vdev_stat_lock);
2554 }
2555
2556 void
2557 vdev_stat_update(zio_t *zio, uint64_t psize)
2558 {
2559 spa_t *spa = zio->io_spa;
2560 vdev_t *rvd = spa->spa_root_vdev;
2561 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2562 vdev_t *pvd;
2563 uint64_t txg = zio->io_txg;
2564 vdev_stat_t *vs = &vd->vdev_stat;
2565 zio_type_t type = zio->io_type;
2566 int flags = zio->io_flags;
2567
2568 /*
2569 * If this i/o is a gang leader, it didn't do any actual work.
2570 */
2571 if (zio->io_gang_tree)
2572 return;
2573
2574 if (zio->io_error == 0) {
2575 /*
2576 * If this is a root i/o, don't count it -- we've already
2577 * counted the top-level vdevs, and vdev_get_stats() will
2578 * aggregate them when asked. This reduces contention on
2579 * the root vdev_stat_lock and implicitly handles blocks
2580 * that compress away to holes, for which there is no i/o.
2581 * (Holes never create vdev children, so all the counters
2582 * remain zero, which is what we want.)
2583 *
2584 * Note: this only applies to successful i/o (io_error == 0)
2585 * because unlike i/o counts, errors are not additive.
2586 * When reading a ditto block, for example, failure of
2587 * one top-level vdev does not imply a root-level error.
2588 */
2589 if (vd == rvd)
2590 return;
2591
2592 ASSERT(vd == zio->io_vd);
2593
2594 if (flags & ZIO_FLAG_IO_BYPASS)
2595 return;
2596
2597 mutex_enter(&vd->vdev_stat_lock);
2598
2599 if (flags & ZIO_FLAG_IO_REPAIR) {
2600 if (flags & ZIO_FLAG_SCAN_THREAD) {
2601 dsl_scan_phys_t *scn_phys =
2602 &spa->spa_dsl_pool->dp_scan->scn_phys;
2603 uint64_t *processed = &scn_phys->scn_processed;
2604
2605 /* XXX cleanup? */
2606 if (vd->vdev_ops->vdev_op_leaf)
2607 atomic_add_64(processed, psize);
2608 vs->vs_scan_processed += psize;
2609 }
2610
2611 if (flags & ZIO_FLAG_SELF_HEAL)
2612 vs->vs_self_healed += psize;
2613 }
2614
2615 vs->vs_ops[type]++;
2616 vs->vs_bytes[type] += psize;
2617
2618 mutex_exit(&vd->vdev_stat_lock);
2619 return;
2620 }
2621
2622 if (flags & ZIO_FLAG_SPECULATIVE)
2623 return;
2624
2625 /*
2626 * If this is an I/O error that is going to be retried, then ignore the
2627 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2628 * hard errors, when in reality they can happen for any number of
2629 * innocuous reasons (bus resets, MPxIO link failure, etc).
2630 */
2631 if (zio->io_error == EIO &&
2632 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2633 return;
2634
2635 /*
2636 * Intent logs writes won't propagate their error to the root
2637 * I/O so don't mark these types of failures as pool-level
2638 * errors.
2639 */
2640 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2641 return;
2642
2643 mutex_enter(&vd->vdev_stat_lock);
2644 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2645 if (zio->io_error == ECKSUM)
2646 vs->vs_checksum_errors++;
2647 else
2648 vs->vs_read_errors++;
2649 }
2650 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2651 vs->vs_write_errors++;
2652 mutex_exit(&vd->vdev_stat_lock);
2653
2654 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2655 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2656 (flags & ZIO_FLAG_SCAN_THREAD) ||
2657 spa->spa_claiming)) {
2658 /*
2659 * This is either a normal write (not a repair), or it's
2660 * a repair induced by the scrub thread, or it's a repair
2661 * made by zil_claim() during spa_load() in the first txg.
2662 * In the normal case, we commit the DTL change in the same
2663 * txg as the block was born. In the scrub-induced repair
2664 * case, we know that scrubs run in first-pass syncing context,
2665 * so we commit the DTL change in spa_syncing_txg(spa).
2666 * In the zil_claim() case, we commit in spa_first_txg(spa).
2667 *
2668 * We currently do not make DTL entries for failed spontaneous
2669 * self-healing writes triggered by normal (non-scrubbing)
2670 * reads, because we have no transactional context in which to
2671 * do so -- and it's not clear that it'd be desirable anyway.
2672 */
2673 if (vd->vdev_ops->vdev_op_leaf) {
2674 uint64_t commit_txg = txg;
2675 if (flags & ZIO_FLAG_SCAN_THREAD) {
2676 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2677 ASSERT(spa_sync_pass(spa) == 1);
2678 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2679 commit_txg = spa_syncing_txg(spa);
2680 } else if (spa->spa_claiming) {
2681 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2682 commit_txg = spa_first_txg(spa);
2683 }
2684 ASSERT(commit_txg >= spa_syncing_txg(spa));
2685 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2686 return;
2687 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2688 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2689 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2690 }
2691 if (vd != rvd)
2692 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2693 }
2694 }
2695
2696 /*
2697 * Update the in-core space usage stats for this vdev, its metaslab class,
2698 * and the root vdev.
2699 */
2700 void
2701 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2702 int64_t space_delta)
2703 {
2704 int64_t dspace_delta = space_delta;
2705 spa_t *spa = vd->vdev_spa;
2706 vdev_t *rvd = spa->spa_root_vdev;
2707 metaslab_group_t *mg = vd->vdev_mg;
2708 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2709
2710 ASSERT(vd == vd->vdev_top);
2711
2712 /*
2713 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2714 * factor. We must calculate this here and not at the root vdev
2715 * because the root vdev's psize-to-asize is simply the max of its
2716 * childrens', thus not accurate enough for us.
2717 */
2718 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2719 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2720 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2721 vd->vdev_deflate_ratio;
2722
2723 mutex_enter(&vd->vdev_stat_lock);
2724 vd->vdev_stat.vs_alloc += alloc_delta;
2725 vd->vdev_stat.vs_space += space_delta;
2726 vd->vdev_stat.vs_dspace += dspace_delta;
2727 mutex_exit(&vd->vdev_stat_lock);
2728
2729 if (mc == spa_normal_class(spa)) {
2730 mutex_enter(&rvd->vdev_stat_lock);
2731 rvd->vdev_stat.vs_alloc += alloc_delta;
2732 rvd->vdev_stat.vs_space += space_delta;
2733 rvd->vdev_stat.vs_dspace += dspace_delta;
2734 mutex_exit(&rvd->vdev_stat_lock);
2735 }
2736
2737 if (mc != NULL) {
2738 ASSERT(rvd == vd->vdev_parent);
2739 ASSERT(vd->vdev_ms_count != 0);
2740
2741 metaslab_class_space_update(mc,
2742 alloc_delta, defer_delta, space_delta, dspace_delta);
2743 }
2744 }
2745
2746 /*
2747 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2748 * so that it will be written out next time the vdev configuration is synced.
2749 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2750 */
2751 void
2752 vdev_config_dirty(vdev_t *vd)
2753 {
2754 spa_t *spa = vd->vdev_spa;
2755 vdev_t *rvd = spa->spa_root_vdev;
2756 int c;
2757
2758 ASSERT(spa_writeable(spa));
2759
2760 /*
2761 * If this is an aux vdev (as with l2cache and spare devices), then we
2762 * update the vdev config manually and set the sync flag.
2763 */
2764 if (vd->vdev_aux != NULL) {
2765 spa_aux_vdev_t *sav = vd->vdev_aux;
2766 nvlist_t **aux;
2767 uint_t naux;
2768
2769 for (c = 0; c < sav->sav_count; c++) {
2770 if (sav->sav_vdevs[c] == vd)
2771 break;
2772 }
2773
2774 if (c == sav->sav_count) {
2775 /*
2776 * We're being removed. There's nothing more to do.
2777 */
2778 ASSERT(sav->sav_sync == B_TRUE);
2779 return;
2780 }
2781
2782 sav->sav_sync = B_TRUE;
2783
2784 if (nvlist_lookup_nvlist_array(sav->sav_config,
2785 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2786 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2787 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2788 }
2789
2790 ASSERT(c < naux);
2791
2792 /*
2793 * Setting the nvlist in the middle if the array is a little
2794 * sketchy, but it will work.
2795 */
2796 nvlist_free(aux[c]);
2797 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2798
2799 return;
2800 }
2801
2802 /*
2803 * The dirty list is protected by the SCL_CONFIG lock. The caller
2804 * must either hold SCL_CONFIG as writer, or must be the sync thread
2805 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2806 * so this is sufficient to ensure mutual exclusion.
2807 */
2808 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2809 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2810 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2811
2812 if (vd == rvd) {
2813 for (c = 0; c < rvd->vdev_children; c++)
2814 vdev_config_dirty(rvd->vdev_child[c]);
2815 } else {
2816 ASSERT(vd == vd->vdev_top);
2817
2818 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2819 !vd->vdev_ishole)
2820 list_insert_head(&spa->spa_config_dirty_list, vd);
2821 }
2822 }
2823
2824 void
2825 vdev_config_clean(vdev_t *vd)
2826 {
2827 spa_t *spa = vd->vdev_spa;
2828
2829 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2830 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2831 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2832
2833 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2834 list_remove(&spa->spa_config_dirty_list, vd);
2835 }
2836
2837 /*
2838 * Mark a top-level vdev's state as dirty, so that the next pass of
2839 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2840 * the state changes from larger config changes because they require
2841 * much less locking, and are often needed for administrative actions.
2842 */
2843 void
2844 vdev_state_dirty(vdev_t *vd)
2845 {
2846 spa_t *spa = vd->vdev_spa;
2847
2848 ASSERT(spa_writeable(spa));
2849 ASSERT(vd == vd->vdev_top);
2850
2851 /*
2852 * The state list is protected by the SCL_STATE lock. The caller
2853 * must either hold SCL_STATE as writer, or must be the sync thread
2854 * (which holds SCL_STATE as reader). There's only one sync thread,
2855 * so this is sufficient to ensure mutual exclusion.
2856 */
2857 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2858 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2859 spa_config_held(spa, SCL_STATE, RW_READER)));
2860
2861 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2862 list_insert_head(&spa->spa_state_dirty_list, vd);
2863 }
2864
2865 void
2866 vdev_state_clean(vdev_t *vd)
2867 {
2868 spa_t *spa = vd->vdev_spa;
2869
2870 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2871 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2872 spa_config_held(spa, SCL_STATE, RW_READER)));
2873
2874 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2875 list_remove(&spa->spa_state_dirty_list, vd);
2876 }
2877
2878 /*
2879 * Propagate vdev state up from children to parent.
2880 */
2881 void
2882 vdev_propagate_state(vdev_t *vd)
2883 {
2884 spa_t *spa = vd->vdev_spa;
2885 vdev_t *rvd = spa->spa_root_vdev;
2886 int degraded = 0, faulted = 0;
2887 int corrupted = 0;
2888 vdev_t *child;
2889 int c;
2890
2891 if (vd->vdev_children > 0) {
2892 for (c = 0; c < vd->vdev_children; c++) {
2893 child = vd->vdev_child[c];
2894
2895 /*
2896 * Don't factor holes into the decision.
2897 */
2898 if (child->vdev_ishole)
2899 continue;
2900
2901 if (!vdev_readable(child) ||
2902 (!vdev_writeable(child) && spa_writeable(spa))) {
2903 /*
2904 * Root special: if there is a top-level log
2905 * device, treat the root vdev as if it were
2906 * degraded.
2907 */
2908 if (child->vdev_islog && vd == rvd)
2909 degraded++;
2910 else
2911 faulted++;
2912 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2913 degraded++;
2914 }
2915
2916 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2917 corrupted++;
2918 }
2919
2920 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2921
2922 /*
2923 * Root special: if there is a top-level vdev that cannot be
2924 * opened due to corrupted metadata, then propagate the root
2925 * vdev's aux state as 'corrupt' rather than 'insufficient
2926 * replicas'.
2927 */
2928 if (corrupted && vd == rvd &&
2929 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2930 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2931 VDEV_AUX_CORRUPT_DATA);
2932 }
2933
2934 if (vd->vdev_parent)
2935 vdev_propagate_state(vd->vdev_parent);
2936 }
2937
2938 /*
2939 * Set a vdev's state. If this is during an open, we don't update the parent
2940 * state, because we're in the process of opening children depth-first.
2941 * Otherwise, we propagate the change to the parent.
2942 *
2943 * If this routine places a device in a faulted state, an appropriate ereport is
2944 * generated.
2945 */
2946 void
2947 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2948 {
2949 uint64_t save_state;
2950 spa_t *spa = vd->vdev_spa;
2951
2952 if (state == vd->vdev_state) {
2953 vd->vdev_stat.vs_aux = aux;
2954 return;
2955 }
2956
2957 save_state = vd->vdev_state;
2958
2959 vd->vdev_state = state;
2960 vd->vdev_stat.vs_aux = aux;
2961
2962 /*
2963 * If we are setting the vdev state to anything but an open state, then
2964 * always close the underlying device unless the device has requested
2965 * a delayed close (i.e. we're about to remove or fault the device).
2966 * Otherwise, we keep accessible but invalid devices open forever.
2967 * We don't call vdev_close() itself, because that implies some extra
2968 * checks (offline, etc) that we don't want here. This is limited to
2969 * leaf devices, because otherwise closing the device will affect other
2970 * children.
2971 */
2972 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2973 vd->vdev_ops->vdev_op_leaf)
2974 vd->vdev_ops->vdev_op_close(vd);
2975
2976 /*
2977 * If we have brought this vdev back into service, we need
2978 * to notify fmd so that it can gracefully repair any outstanding
2979 * cases due to a missing device. We do this in all cases, even those
2980 * that probably don't correlate to a repaired fault. This is sure to
2981 * catch all cases, and we let the zfs-retire agent sort it out. If
2982 * this is a transient state it's OK, as the retire agent will
2983 * double-check the state of the vdev before repairing it.
2984 */
2985 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2986 vd->vdev_prevstate != state)
2987 zfs_post_state_change(spa, vd);
2988
2989 if (vd->vdev_removed &&
2990 state == VDEV_STATE_CANT_OPEN &&
2991 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2992 /*
2993 * If the previous state is set to VDEV_STATE_REMOVED, then this
2994 * device was previously marked removed and someone attempted to
2995 * reopen it. If this failed due to a nonexistent device, then
2996 * keep the device in the REMOVED state. We also let this be if
2997 * it is one of our special test online cases, which is only
2998 * attempting to online the device and shouldn't generate an FMA
2999 * fault.
3000 */
3001 vd->vdev_state = VDEV_STATE_REMOVED;
3002 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3003 } else if (state == VDEV_STATE_REMOVED) {
3004 vd->vdev_removed = B_TRUE;
3005 } else if (state == VDEV_STATE_CANT_OPEN) {
3006 /*
3007 * If we fail to open a vdev during an import or recovery, we
3008 * mark it as "not available", which signifies that it was
3009 * never there to begin with. Failure to open such a device
3010 * is not considered an error.
3011 */
3012 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3013 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3014 vd->vdev_ops->vdev_op_leaf)
3015 vd->vdev_not_present = 1;
3016
3017 /*
3018 * Post the appropriate ereport. If the 'prevstate' field is
3019 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3020 * that this is part of a vdev_reopen(). In this case, we don't
3021 * want to post the ereport if the device was already in the
3022 * CANT_OPEN state beforehand.
3023 *
3024 * If the 'checkremove' flag is set, then this is an attempt to
3025 * online the device in response to an insertion event. If we
3026 * hit this case, then we have detected an insertion event for a
3027 * faulted or offline device that wasn't in the removed state.
3028 * In this scenario, we don't post an ereport because we are
3029 * about to replace the device, or attempt an online with
3030 * vdev_forcefault, which will generate the fault for us.
3031 */
3032 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3033 !vd->vdev_not_present && !vd->vdev_checkremove &&
3034 vd != spa->spa_root_vdev) {
3035 const char *class;
3036
3037 switch (aux) {
3038 case VDEV_AUX_OPEN_FAILED:
3039 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3040 break;
3041 case VDEV_AUX_CORRUPT_DATA:
3042 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3043 break;
3044 case VDEV_AUX_NO_REPLICAS:
3045 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3046 break;
3047 case VDEV_AUX_BAD_GUID_SUM:
3048 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3049 break;
3050 case VDEV_AUX_TOO_SMALL:
3051 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3052 break;
3053 case VDEV_AUX_BAD_LABEL:
3054 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3055 break;
3056 default:
3057 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3058 }
3059
3060 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3061 }
3062
3063 /* Erase any notion of persistent removed state */
3064 vd->vdev_removed = B_FALSE;
3065 } else {
3066 vd->vdev_removed = B_FALSE;
3067 }
3068
3069 if (!isopen && vd->vdev_parent)
3070 vdev_propagate_state(vd->vdev_parent);
3071 }
3072
3073 /*
3074 * Check the vdev configuration to ensure that it's capable of supporting
3075 * a root pool.
3076 */
3077 boolean_t
3078 vdev_is_bootable(vdev_t *vd)
3079 {
3080 #if defined(__sun__) || defined(__sun)
3081 /*
3082 * Currently, we do not support RAID-Z or partial configuration.
3083 * In addition, only a single top-level vdev is allowed and none of the
3084 * leaves can be wholedisks.
3085 */
3086 int c;
3087
3088 if (!vd->vdev_ops->vdev_op_leaf) {
3089 char *vdev_type = vd->vdev_ops->vdev_op_type;
3090
3091 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3092 vd->vdev_children > 1) {
3093 return (B_FALSE);
3094 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3095 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3096 return (B_FALSE);
3097 }
3098 } else if (vd->vdev_wholedisk == 1) {
3099 return (B_FALSE);
3100 }
3101
3102 for (c = 0; c < vd->vdev_children; c++) {
3103 if (!vdev_is_bootable(vd->vdev_child[c]))
3104 return (B_FALSE);
3105 }
3106 #endif /* __sun__ || __sun */
3107 return (B_TRUE);
3108 }
3109
3110 /*
3111 * Load the state from the original vdev tree (ovd) which
3112 * we've retrieved from the MOS config object. If the original
3113 * vdev was offline or faulted then we transfer that state to the
3114 * device in the current vdev tree (nvd).
3115 */
3116 void
3117 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3118 {
3119 int c;
3120
3121 ASSERT(nvd->vdev_top->vdev_islog);
3122 ASSERT(spa_config_held(nvd->vdev_spa,
3123 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3124 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3125
3126 for (c = 0; c < nvd->vdev_children; c++)
3127 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3128
3129 if (nvd->vdev_ops->vdev_op_leaf) {
3130 /*
3131 * Restore the persistent vdev state
3132 */
3133 nvd->vdev_offline = ovd->vdev_offline;
3134 nvd->vdev_faulted = ovd->vdev_faulted;
3135 nvd->vdev_degraded = ovd->vdev_degraded;
3136 nvd->vdev_removed = ovd->vdev_removed;
3137 }
3138 }
3139
3140 /*
3141 * Determine if a log device has valid content. If the vdev was
3142 * removed or faulted in the MOS config then we know that
3143 * the content on the log device has already been written to the pool.
3144 */
3145 boolean_t
3146 vdev_log_state_valid(vdev_t *vd)
3147 {
3148 int c;
3149
3150 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3151 !vd->vdev_removed)
3152 return (B_TRUE);
3153
3154 for (c = 0; c < vd->vdev_children; c++)
3155 if (vdev_log_state_valid(vd->vdev_child[c]))
3156 return (B_TRUE);
3157
3158 return (B_FALSE);
3159 }
3160
3161 /*
3162 * Expand a vdev if possible.
3163 */
3164 void
3165 vdev_expand(vdev_t *vd, uint64_t txg)
3166 {
3167 ASSERT(vd->vdev_top == vd);
3168 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3169
3170 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3171 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3172 vdev_config_dirty(vd);
3173 }
3174 }
3175
3176 /*
3177 * Split a vdev.
3178 */
3179 void
3180 vdev_split(vdev_t *vd)
3181 {
3182 vdev_t *cvd, *pvd = vd->vdev_parent;
3183
3184 vdev_remove_child(pvd, vd);
3185 vdev_compact_children(pvd);
3186
3187 cvd = pvd->vdev_child[0];
3188 if (pvd->vdev_children == 1) {
3189 vdev_remove_parent(cvd);
3190 cvd->vdev_splitting = B_TRUE;
3191 }
3192 vdev_propagate_state(cvd);
3193 }
3194
3195 #if defined(_KERNEL) && defined(HAVE_SPL)
3196 EXPORT_SYMBOL(vdev_fault);
3197 EXPORT_SYMBOL(vdev_degrade);
3198 EXPORT_SYMBOL(vdev_online);
3199 EXPORT_SYMBOL(vdev_offline);
3200 EXPORT_SYMBOL(vdev_clear);
3201
3202 module_param(zfs_scrub_limit, int, 0644);
3203 MODULE_PARM_DESC(zfs_scrub_limit, "Max scrub/resilver I/O per leaf vdev");
3204 #endif