]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Another set of vdev queue optimizations.
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, Intel Corporation.
30 * Copyright (c) 2019, Datto Inc. All rights reserved.
31 * Copyright (c) 2021, Klara Inc.
32 * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP.
33 */
34
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa.h>
38 #include <sys/spa_impl.h>
39 #include <sys/bpobj.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/vdev_rebuild.h>
45 #include <sys/vdev_draid.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/space_map.h>
50 #include <sys/space_reftree.h>
51 #include <sys/zio.h>
52 #include <sys/zap.h>
53 #include <sys/fs/zfs.h>
54 #include <sys/arc.h>
55 #include <sys/zil.h>
56 #include <sys/dsl_scan.h>
57 #include <sys/vdev_raidz.h>
58 #include <sys/abd.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_trim.h>
61 #include <sys/zvol.h>
62 #include <sys/zfs_ratelimit.h>
63 #include "zfs_prop.h"
64
65 /*
66 * One metaslab from each (normal-class) vdev is used by the ZIL. These are
67 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
68 * part of the spa_embedded_log_class. The metaslab with the most free space
69 * in each vdev is selected for this purpose when the pool is opened (or a
70 * vdev is added). See vdev_metaslab_init().
71 *
72 * Log blocks can be allocated from the following locations. Each one is tried
73 * in order until the allocation succeeds:
74 * 1. dedicated log vdevs, aka "slog" (spa_log_class)
75 * 2. embedded slog metaslabs (spa_embedded_log_class)
76 * 3. other metaslabs in normal vdevs (spa_normal_class)
77 *
78 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
79 * than this number of metaslabs in the vdev. This ensures that we don't set
80 * aside an unreasonable amount of space for the ZIL. If set to less than
81 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
82 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
83 */
84 static uint_t zfs_embedded_slog_min_ms = 64;
85
86 /* default target for number of metaslabs per top-level vdev */
87 static uint_t zfs_vdev_default_ms_count = 200;
88
89 /* minimum number of metaslabs per top-level vdev */
90 static uint_t zfs_vdev_min_ms_count = 16;
91
92 /* practical upper limit of total metaslabs per top-level vdev */
93 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
94
95 /* lower limit for metaslab size (512M) */
96 static uint_t zfs_vdev_default_ms_shift = 29;
97
98 /* upper limit for metaslab size (16G) */
99 static uint_t zfs_vdev_max_ms_shift = 34;
100
101 int vdev_validate_skip = B_FALSE;
102
103 /*
104 * Since the DTL space map of a vdev is not expected to have a lot of
105 * entries, we default its block size to 4K.
106 */
107 int zfs_vdev_dtl_sm_blksz = (1 << 12);
108
109 /*
110 * Rate limit slow IO (delay) events to this many per second.
111 */
112 static unsigned int zfs_slow_io_events_per_second = 20;
113
114 /*
115 * Rate limit checksum events after this many checksum errors per second.
116 */
117 static unsigned int zfs_checksum_events_per_second = 20;
118
119 /*
120 * Ignore errors during scrub/resilver. Allows to work around resilver
121 * upon import when there are pool errors.
122 */
123 static int zfs_scan_ignore_errors = 0;
124
125 /*
126 * vdev-wide space maps that have lots of entries written to them at
127 * the end of each transaction can benefit from a higher I/O bandwidth
128 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
129 */
130 int zfs_vdev_standard_sm_blksz = (1 << 17);
131
132 /*
133 * Tunable parameter for debugging or performance analysis. Setting this
134 * will cause pool corruption on power loss if a volatile out-of-order
135 * write cache is enabled.
136 */
137 int zfs_nocacheflush = 0;
138
139 /*
140 * Maximum and minimum ashift values that can be automatically set based on
141 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX
142 * is higher than the maximum value, it is intentionally limited here to not
143 * excessively impact pool space efficiency. Higher ashift values may still
144 * be forced by vdev logical ashift or by user via ashift property, but won't
145 * be set automatically as a performance optimization.
146 */
147 uint_t zfs_vdev_max_auto_ashift = 14;
148 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
149
150 void
151 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
152 {
153 va_list adx;
154 char buf[256];
155
156 va_start(adx, fmt);
157 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
158 va_end(adx);
159
160 if (vd->vdev_path != NULL) {
161 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
162 vd->vdev_path, buf);
163 } else {
164 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
165 vd->vdev_ops->vdev_op_type,
166 (u_longlong_t)vd->vdev_id,
167 (u_longlong_t)vd->vdev_guid, buf);
168 }
169 }
170
171 void
172 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
173 {
174 char state[20];
175
176 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
177 zfs_dbgmsg("%*svdev %llu: %s", indent, "",
178 (u_longlong_t)vd->vdev_id,
179 vd->vdev_ops->vdev_op_type);
180 return;
181 }
182
183 switch (vd->vdev_state) {
184 case VDEV_STATE_UNKNOWN:
185 (void) snprintf(state, sizeof (state), "unknown");
186 break;
187 case VDEV_STATE_CLOSED:
188 (void) snprintf(state, sizeof (state), "closed");
189 break;
190 case VDEV_STATE_OFFLINE:
191 (void) snprintf(state, sizeof (state), "offline");
192 break;
193 case VDEV_STATE_REMOVED:
194 (void) snprintf(state, sizeof (state), "removed");
195 break;
196 case VDEV_STATE_CANT_OPEN:
197 (void) snprintf(state, sizeof (state), "can't open");
198 break;
199 case VDEV_STATE_FAULTED:
200 (void) snprintf(state, sizeof (state), "faulted");
201 break;
202 case VDEV_STATE_DEGRADED:
203 (void) snprintf(state, sizeof (state), "degraded");
204 break;
205 case VDEV_STATE_HEALTHY:
206 (void) snprintf(state, sizeof (state), "healthy");
207 break;
208 default:
209 (void) snprintf(state, sizeof (state), "<state %u>",
210 (uint_t)vd->vdev_state);
211 }
212
213 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
214 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
215 vd->vdev_islog ? " (log)" : "",
216 (u_longlong_t)vd->vdev_guid,
217 vd->vdev_path ? vd->vdev_path : "N/A", state);
218
219 for (uint64_t i = 0; i < vd->vdev_children; i++)
220 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
221 }
222
223 /*
224 * Virtual device management.
225 */
226
227 static vdev_ops_t *const vdev_ops_table[] = {
228 &vdev_root_ops,
229 &vdev_raidz_ops,
230 &vdev_draid_ops,
231 &vdev_draid_spare_ops,
232 &vdev_mirror_ops,
233 &vdev_replacing_ops,
234 &vdev_spare_ops,
235 &vdev_disk_ops,
236 &vdev_file_ops,
237 &vdev_missing_ops,
238 &vdev_hole_ops,
239 &vdev_indirect_ops,
240 NULL
241 };
242
243 /*
244 * Given a vdev type, return the appropriate ops vector.
245 */
246 static vdev_ops_t *
247 vdev_getops(const char *type)
248 {
249 vdev_ops_t *ops, *const *opspp;
250
251 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
252 if (strcmp(ops->vdev_op_type, type) == 0)
253 break;
254
255 return (ops);
256 }
257
258 /*
259 * Given a vdev and a metaslab class, find which metaslab group we're
260 * interested in. All vdevs may belong to two different metaslab classes.
261 * Dedicated slog devices use only the primary metaslab group, rather than a
262 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
263 */
264 metaslab_group_t *
265 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
266 {
267 if (mc == spa_embedded_log_class(vd->vdev_spa) &&
268 vd->vdev_log_mg != NULL)
269 return (vd->vdev_log_mg);
270 else
271 return (vd->vdev_mg);
272 }
273
274 void
275 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
276 range_seg64_t *physical_rs, range_seg64_t *remain_rs)
277 {
278 (void) vd, (void) remain_rs;
279
280 physical_rs->rs_start = logical_rs->rs_start;
281 physical_rs->rs_end = logical_rs->rs_end;
282 }
283
284 /*
285 * Derive the enumerated allocation bias from string input.
286 * String origin is either the per-vdev zap or zpool(8).
287 */
288 static vdev_alloc_bias_t
289 vdev_derive_alloc_bias(const char *bias)
290 {
291 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
292
293 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
294 alloc_bias = VDEV_BIAS_LOG;
295 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
296 alloc_bias = VDEV_BIAS_SPECIAL;
297 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
298 alloc_bias = VDEV_BIAS_DEDUP;
299
300 return (alloc_bias);
301 }
302
303 /*
304 * Default asize function: return the MAX of psize with the asize of
305 * all children. This is what's used by anything other than RAID-Z.
306 */
307 uint64_t
308 vdev_default_asize(vdev_t *vd, uint64_t psize)
309 {
310 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
311 uint64_t csize;
312
313 for (int c = 0; c < vd->vdev_children; c++) {
314 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
315 asize = MAX(asize, csize);
316 }
317
318 return (asize);
319 }
320
321 uint64_t
322 vdev_default_min_asize(vdev_t *vd)
323 {
324 return (vd->vdev_min_asize);
325 }
326
327 /*
328 * Get the minimum allocatable size. We define the allocatable size as
329 * the vdev's asize rounded to the nearest metaslab. This allows us to
330 * replace or attach devices which don't have the same physical size but
331 * can still satisfy the same number of allocations.
332 */
333 uint64_t
334 vdev_get_min_asize(vdev_t *vd)
335 {
336 vdev_t *pvd = vd->vdev_parent;
337
338 /*
339 * If our parent is NULL (inactive spare or cache) or is the root,
340 * just return our own asize.
341 */
342 if (pvd == NULL)
343 return (vd->vdev_asize);
344
345 /*
346 * The top-level vdev just returns the allocatable size rounded
347 * to the nearest metaslab.
348 */
349 if (vd == vd->vdev_top)
350 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
351
352 return (pvd->vdev_ops->vdev_op_min_asize(pvd));
353 }
354
355 void
356 vdev_set_min_asize(vdev_t *vd)
357 {
358 vd->vdev_min_asize = vdev_get_min_asize(vd);
359
360 for (int c = 0; c < vd->vdev_children; c++)
361 vdev_set_min_asize(vd->vdev_child[c]);
362 }
363
364 /*
365 * Get the minimal allocation size for the top-level vdev.
366 */
367 uint64_t
368 vdev_get_min_alloc(vdev_t *vd)
369 {
370 uint64_t min_alloc = 1ULL << vd->vdev_ashift;
371
372 if (vd->vdev_ops->vdev_op_min_alloc != NULL)
373 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
374
375 return (min_alloc);
376 }
377
378 /*
379 * Get the parity level for a top-level vdev.
380 */
381 uint64_t
382 vdev_get_nparity(vdev_t *vd)
383 {
384 uint64_t nparity = 0;
385
386 if (vd->vdev_ops->vdev_op_nparity != NULL)
387 nparity = vd->vdev_ops->vdev_op_nparity(vd);
388
389 return (nparity);
390 }
391
392 static int
393 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
394 {
395 spa_t *spa = vd->vdev_spa;
396 objset_t *mos = spa->spa_meta_objset;
397 uint64_t objid;
398 int err;
399
400 if (vd->vdev_root_zap != 0) {
401 objid = vd->vdev_root_zap;
402 } else if (vd->vdev_top_zap != 0) {
403 objid = vd->vdev_top_zap;
404 } else if (vd->vdev_leaf_zap != 0) {
405 objid = vd->vdev_leaf_zap;
406 } else {
407 return (EINVAL);
408 }
409
410 err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
411 sizeof (uint64_t), 1, value);
412
413 if (err == ENOENT)
414 *value = vdev_prop_default_numeric(prop);
415
416 return (err);
417 }
418
419 /*
420 * Get the number of data disks for a top-level vdev.
421 */
422 uint64_t
423 vdev_get_ndisks(vdev_t *vd)
424 {
425 uint64_t ndisks = 1;
426
427 if (vd->vdev_ops->vdev_op_ndisks != NULL)
428 ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
429
430 return (ndisks);
431 }
432
433 vdev_t *
434 vdev_lookup_top(spa_t *spa, uint64_t vdev)
435 {
436 vdev_t *rvd = spa->spa_root_vdev;
437
438 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
439
440 if (vdev < rvd->vdev_children) {
441 ASSERT(rvd->vdev_child[vdev] != NULL);
442 return (rvd->vdev_child[vdev]);
443 }
444
445 return (NULL);
446 }
447
448 vdev_t *
449 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
450 {
451 vdev_t *mvd;
452
453 if (vd->vdev_guid == guid)
454 return (vd);
455
456 for (int c = 0; c < vd->vdev_children; c++)
457 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
458 NULL)
459 return (mvd);
460
461 return (NULL);
462 }
463
464 static int
465 vdev_count_leaves_impl(vdev_t *vd)
466 {
467 int n = 0;
468
469 if (vd->vdev_ops->vdev_op_leaf)
470 return (1);
471
472 for (int c = 0; c < vd->vdev_children; c++)
473 n += vdev_count_leaves_impl(vd->vdev_child[c]);
474
475 return (n);
476 }
477
478 int
479 vdev_count_leaves(spa_t *spa)
480 {
481 int rc;
482
483 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
484 rc = vdev_count_leaves_impl(spa->spa_root_vdev);
485 spa_config_exit(spa, SCL_VDEV, FTAG);
486
487 return (rc);
488 }
489
490 void
491 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
492 {
493 size_t oldsize, newsize;
494 uint64_t id = cvd->vdev_id;
495 vdev_t **newchild;
496
497 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
498 ASSERT(cvd->vdev_parent == NULL);
499
500 cvd->vdev_parent = pvd;
501
502 if (pvd == NULL)
503 return;
504
505 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
506
507 oldsize = pvd->vdev_children * sizeof (vdev_t *);
508 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
509 newsize = pvd->vdev_children * sizeof (vdev_t *);
510
511 newchild = kmem_alloc(newsize, KM_SLEEP);
512 if (pvd->vdev_child != NULL) {
513 memcpy(newchild, pvd->vdev_child, oldsize);
514 kmem_free(pvd->vdev_child, oldsize);
515 }
516
517 pvd->vdev_child = newchild;
518 pvd->vdev_child[id] = cvd;
519
520 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
521 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
522
523 /*
524 * Walk up all ancestors to update guid sum.
525 */
526 for (; pvd != NULL; pvd = pvd->vdev_parent)
527 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
528
529 if (cvd->vdev_ops->vdev_op_leaf) {
530 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
531 cvd->vdev_spa->spa_leaf_list_gen++;
532 }
533 }
534
535 void
536 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
537 {
538 int c;
539 uint_t id = cvd->vdev_id;
540
541 ASSERT(cvd->vdev_parent == pvd);
542
543 if (pvd == NULL)
544 return;
545
546 ASSERT(id < pvd->vdev_children);
547 ASSERT(pvd->vdev_child[id] == cvd);
548
549 pvd->vdev_child[id] = NULL;
550 cvd->vdev_parent = NULL;
551
552 for (c = 0; c < pvd->vdev_children; c++)
553 if (pvd->vdev_child[c])
554 break;
555
556 if (c == pvd->vdev_children) {
557 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
558 pvd->vdev_child = NULL;
559 pvd->vdev_children = 0;
560 }
561
562 if (cvd->vdev_ops->vdev_op_leaf) {
563 spa_t *spa = cvd->vdev_spa;
564 list_remove(&spa->spa_leaf_list, cvd);
565 spa->spa_leaf_list_gen++;
566 }
567
568 /*
569 * Walk up all ancestors to update guid sum.
570 */
571 for (; pvd != NULL; pvd = pvd->vdev_parent)
572 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
573 }
574
575 /*
576 * Remove any holes in the child array.
577 */
578 void
579 vdev_compact_children(vdev_t *pvd)
580 {
581 vdev_t **newchild, *cvd;
582 int oldc = pvd->vdev_children;
583 int newc;
584
585 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
586
587 if (oldc == 0)
588 return;
589
590 for (int c = newc = 0; c < oldc; c++)
591 if (pvd->vdev_child[c])
592 newc++;
593
594 if (newc > 0) {
595 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
596
597 for (int c = newc = 0; c < oldc; c++) {
598 if ((cvd = pvd->vdev_child[c]) != NULL) {
599 newchild[newc] = cvd;
600 cvd->vdev_id = newc++;
601 }
602 }
603 } else {
604 newchild = NULL;
605 }
606
607 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
608 pvd->vdev_child = newchild;
609 pvd->vdev_children = newc;
610 }
611
612 /*
613 * Allocate and minimally initialize a vdev_t.
614 */
615 vdev_t *
616 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
617 {
618 vdev_t *vd;
619 vdev_indirect_config_t *vic;
620
621 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
622 vic = &vd->vdev_indirect_config;
623
624 if (spa->spa_root_vdev == NULL) {
625 ASSERT(ops == &vdev_root_ops);
626 spa->spa_root_vdev = vd;
627 spa->spa_load_guid = spa_generate_guid(NULL);
628 }
629
630 if (guid == 0 && ops != &vdev_hole_ops) {
631 if (spa->spa_root_vdev == vd) {
632 /*
633 * The root vdev's guid will also be the pool guid,
634 * which must be unique among all pools.
635 */
636 guid = spa_generate_guid(NULL);
637 } else {
638 /*
639 * Any other vdev's guid must be unique within the pool.
640 */
641 guid = spa_generate_guid(spa);
642 }
643 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
644 }
645
646 vd->vdev_spa = spa;
647 vd->vdev_id = id;
648 vd->vdev_guid = guid;
649 vd->vdev_guid_sum = guid;
650 vd->vdev_ops = ops;
651 vd->vdev_state = VDEV_STATE_CLOSED;
652 vd->vdev_ishole = (ops == &vdev_hole_ops);
653 vic->vic_prev_indirect_vdev = UINT64_MAX;
654
655 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
656 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
657 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
658 0, 0);
659
660 /*
661 * Initialize rate limit structs for events. We rate limit ZIO delay
662 * and checksum events so that we don't overwhelm ZED with thousands
663 * of events when a disk is acting up.
664 */
665 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
666 1);
667 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second,
668 1);
669 zfs_ratelimit_init(&vd->vdev_checksum_rl,
670 &zfs_checksum_events_per_second, 1);
671
672 /*
673 * Default Thresholds for tuning ZED
674 */
675 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
676 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
677 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
678 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
679
680 list_link_init(&vd->vdev_config_dirty_node);
681 list_link_init(&vd->vdev_state_dirty_node);
682 list_link_init(&vd->vdev_initialize_node);
683 list_link_init(&vd->vdev_leaf_node);
684 list_link_init(&vd->vdev_trim_node);
685
686 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
687 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
688 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
689 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
690
691 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
692 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
693 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
694 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
695
696 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
697 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
698 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
699 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
700 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
701 cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL);
702 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
703
704 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
705 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
706
707 for (int t = 0; t < DTL_TYPES; t++) {
708 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
709 0);
710 }
711
712 txg_list_create(&vd->vdev_ms_list, spa,
713 offsetof(struct metaslab, ms_txg_node));
714 txg_list_create(&vd->vdev_dtl_list, spa,
715 offsetof(struct vdev, vdev_dtl_node));
716 vd->vdev_stat.vs_timestamp = gethrtime();
717 vdev_queue_init(vd);
718
719 return (vd);
720 }
721
722 /*
723 * Allocate a new vdev. The 'alloctype' is used to control whether we are
724 * creating a new vdev or loading an existing one - the behavior is slightly
725 * different for each case.
726 */
727 int
728 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
729 int alloctype)
730 {
731 vdev_ops_t *ops;
732 const char *type;
733 uint64_t guid = 0, islog;
734 vdev_t *vd;
735 vdev_indirect_config_t *vic;
736 const char *tmp = NULL;
737 int rc;
738 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
739 boolean_t top_level = (parent && !parent->vdev_parent);
740
741 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
742
743 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
744 return (SET_ERROR(EINVAL));
745
746 if ((ops = vdev_getops(type)) == NULL)
747 return (SET_ERROR(EINVAL));
748
749 /*
750 * If this is a load, get the vdev guid from the nvlist.
751 * Otherwise, vdev_alloc_common() will generate one for us.
752 */
753 if (alloctype == VDEV_ALLOC_LOAD) {
754 uint64_t label_id;
755
756 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
757 label_id != id)
758 return (SET_ERROR(EINVAL));
759
760 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
761 return (SET_ERROR(EINVAL));
762 } else if (alloctype == VDEV_ALLOC_SPARE) {
763 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
764 return (SET_ERROR(EINVAL));
765 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
766 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
767 return (SET_ERROR(EINVAL));
768 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
769 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
770 return (SET_ERROR(EINVAL));
771 }
772
773 /*
774 * The first allocated vdev must be of type 'root'.
775 */
776 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
777 return (SET_ERROR(EINVAL));
778
779 /*
780 * Determine whether we're a log vdev.
781 */
782 islog = 0;
783 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
784 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
785 return (SET_ERROR(ENOTSUP));
786
787 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
788 return (SET_ERROR(ENOTSUP));
789
790 if (top_level && alloctype == VDEV_ALLOC_ADD) {
791 const char *bias;
792
793 /*
794 * If creating a top-level vdev, check for allocation
795 * classes input.
796 */
797 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
798 &bias) == 0) {
799 alloc_bias = vdev_derive_alloc_bias(bias);
800
801 /* spa_vdev_add() expects feature to be enabled */
802 if (spa->spa_load_state != SPA_LOAD_CREATE &&
803 !spa_feature_is_enabled(spa,
804 SPA_FEATURE_ALLOCATION_CLASSES)) {
805 return (SET_ERROR(ENOTSUP));
806 }
807 }
808
809 /* spa_vdev_add() expects feature to be enabled */
810 if (ops == &vdev_draid_ops &&
811 spa->spa_load_state != SPA_LOAD_CREATE &&
812 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
813 return (SET_ERROR(ENOTSUP));
814 }
815 }
816
817 /*
818 * Initialize the vdev specific data. This is done before calling
819 * vdev_alloc_common() since it may fail and this simplifies the
820 * error reporting and cleanup code paths.
821 */
822 void *tsd = NULL;
823 if (ops->vdev_op_init != NULL) {
824 rc = ops->vdev_op_init(spa, nv, &tsd);
825 if (rc != 0) {
826 return (rc);
827 }
828 }
829
830 vd = vdev_alloc_common(spa, id, guid, ops);
831 vd->vdev_tsd = tsd;
832 vd->vdev_islog = islog;
833
834 if (top_level && alloc_bias != VDEV_BIAS_NONE)
835 vd->vdev_alloc_bias = alloc_bias;
836
837 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0)
838 vd->vdev_path = spa_strdup(tmp);
839
840 /*
841 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
842 * fault on a vdev and want it to persist across imports (like with
843 * zpool offline -f).
844 */
845 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
846 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
847 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
848 vd->vdev_faulted = 1;
849 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
850 }
851
852 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0)
853 vd->vdev_devid = spa_strdup(tmp);
854 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0)
855 vd->vdev_physpath = spa_strdup(tmp);
856
857 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
858 &tmp) == 0)
859 vd->vdev_enc_sysfs_path = spa_strdup(tmp);
860
861 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0)
862 vd->vdev_fru = spa_strdup(tmp);
863
864 /*
865 * Set the whole_disk property. If it's not specified, leave the value
866 * as -1.
867 */
868 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
869 &vd->vdev_wholedisk) != 0)
870 vd->vdev_wholedisk = -1ULL;
871
872 vic = &vd->vdev_indirect_config;
873
874 ASSERT0(vic->vic_mapping_object);
875 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
876 &vic->vic_mapping_object);
877 ASSERT0(vic->vic_births_object);
878 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
879 &vic->vic_births_object);
880 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
881 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
882 &vic->vic_prev_indirect_vdev);
883
884 /*
885 * Look for the 'not present' flag. This will only be set if the device
886 * was not present at the time of import.
887 */
888 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
889 &vd->vdev_not_present);
890
891 /*
892 * Get the alignment requirement.
893 */
894 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
895
896 /*
897 * Retrieve the vdev creation time.
898 */
899 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
900 &vd->vdev_crtxg);
901
902 if (vd->vdev_ops == &vdev_root_ops &&
903 (alloctype == VDEV_ALLOC_LOAD ||
904 alloctype == VDEV_ALLOC_SPLIT ||
905 alloctype == VDEV_ALLOC_ROOTPOOL)) {
906 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
907 &vd->vdev_root_zap);
908 }
909
910 /*
911 * If we're a top-level vdev, try to load the allocation parameters.
912 */
913 if (top_level &&
914 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
915 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
916 &vd->vdev_ms_array);
917 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
918 &vd->vdev_ms_shift);
919 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
920 &vd->vdev_asize);
921 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
922 &vd->vdev_noalloc);
923 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
924 &vd->vdev_removing);
925 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
926 &vd->vdev_top_zap);
927 } else {
928 ASSERT0(vd->vdev_top_zap);
929 }
930
931 if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
932 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
933 alloctype == VDEV_ALLOC_ADD ||
934 alloctype == VDEV_ALLOC_SPLIT ||
935 alloctype == VDEV_ALLOC_ROOTPOOL);
936 /* Note: metaslab_group_create() is now deferred */
937 }
938
939 if (vd->vdev_ops->vdev_op_leaf &&
940 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
941 (void) nvlist_lookup_uint64(nv,
942 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
943 } else {
944 ASSERT0(vd->vdev_leaf_zap);
945 }
946
947 /*
948 * If we're a leaf vdev, try to load the DTL object and other state.
949 */
950
951 if (vd->vdev_ops->vdev_op_leaf &&
952 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
953 alloctype == VDEV_ALLOC_ROOTPOOL)) {
954 if (alloctype == VDEV_ALLOC_LOAD) {
955 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
956 &vd->vdev_dtl_object);
957 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
958 &vd->vdev_unspare);
959 }
960
961 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
962 uint64_t spare = 0;
963
964 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
965 &spare) == 0 && spare)
966 spa_spare_add(vd);
967 }
968
969 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
970 &vd->vdev_offline);
971
972 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
973 &vd->vdev_resilver_txg);
974
975 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
976 &vd->vdev_rebuild_txg);
977
978 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
979 vdev_defer_resilver(vd);
980
981 /*
982 * In general, when importing a pool we want to ignore the
983 * persistent fault state, as the diagnosis made on another
984 * system may not be valid in the current context. The only
985 * exception is if we forced a vdev to a persistently faulted
986 * state with 'zpool offline -f'. The persistent fault will
987 * remain across imports until cleared.
988 *
989 * Local vdevs will remain in the faulted state.
990 */
991 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
992 spa_load_state(spa) == SPA_LOAD_IMPORT) {
993 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
994 &vd->vdev_faulted);
995 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
996 &vd->vdev_degraded);
997 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
998 &vd->vdev_removed);
999
1000 if (vd->vdev_faulted || vd->vdev_degraded) {
1001 const char *aux;
1002
1003 vd->vdev_label_aux =
1004 VDEV_AUX_ERR_EXCEEDED;
1005 if (nvlist_lookup_string(nv,
1006 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
1007 strcmp(aux, "external") == 0)
1008 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
1009 else
1010 vd->vdev_faulted = 0ULL;
1011 }
1012 }
1013 }
1014
1015 /*
1016 * Add ourselves to the parent's list of children.
1017 */
1018 vdev_add_child(parent, vd);
1019
1020 *vdp = vd;
1021
1022 return (0);
1023 }
1024
1025 void
1026 vdev_free(vdev_t *vd)
1027 {
1028 spa_t *spa = vd->vdev_spa;
1029
1030 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1031 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1032 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1033 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1034
1035 /*
1036 * Scan queues are normally destroyed at the end of a scan. If the
1037 * queue exists here, that implies the vdev is being removed while
1038 * the scan is still running.
1039 */
1040 if (vd->vdev_scan_io_queue != NULL) {
1041 mutex_enter(&vd->vdev_scan_io_queue_lock);
1042 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
1043 vd->vdev_scan_io_queue = NULL;
1044 mutex_exit(&vd->vdev_scan_io_queue_lock);
1045 }
1046
1047 /*
1048 * vdev_free() implies closing the vdev first. This is simpler than
1049 * trying to ensure complicated semantics for all callers.
1050 */
1051 vdev_close(vd);
1052
1053 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1054 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1055
1056 /*
1057 * Free all children.
1058 */
1059 for (int c = 0; c < vd->vdev_children; c++)
1060 vdev_free(vd->vdev_child[c]);
1061
1062 ASSERT(vd->vdev_child == NULL);
1063 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1064
1065 if (vd->vdev_ops->vdev_op_fini != NULL)
1066 vd->vdev_ops->vdev_op_fini(vd);
1067
1068 /*
1069 * Discard allocation state.
1070 */
1071 if (vd->vdev_mg != NULL) {
1072 vdev_metaslab_fini(vd);
1073 metaslab_group_destroy(vd->vdev_mg);
1074 vd->vdev_mg = NULL;
1075 }
1076 if (vd->vdev_log_mg != NULL) {
1077 ASSERT0(vd->vdev_ms_count);
1078 metaslab_group_destroy(vd->vdev_log_mg);
1079 vd->vdev_log_mg = NULL;
1080 }
1081
1082 ASSERT0(vd->vdev_stat.vs_space);
1083 ASSERT0(vd->vdev_stat.vs_dspace);
1084 ASSERT0(vd->vdev_stat.vs_alloc);
1085
1086 /*
1087 * Remove this vdev from its parent's child list.
1088 */
1089 vdev_remove_child(vd->vdev_parent, vd);
1090
1091 ASSERT(vd->vdev_parent == NULL);
1092 ASSERT(!list_link_active(&vd->vdev_leaf_node));
1093
1094 /*
1095 * Clean up vdev structure.
1096 */
1097 vdev_queue_fini(vd);
1098
1099 if (vd->vdev_path)
1100 spa_strfree(vd->vdev_path);
1101 if (vd->vdev_devid)
1102 spa_strfree(vd->vdev_devid);
1103 if (vd->vdev_physpath)
1104 spa_strfree(vd->vdev_physpath);
1105
1106 if (vd->vdev_enc_sysfs_path)
1107 spa_strfree(vd->vdev_enc_sysfs_path);
1108
1109 if (vd->vdev_fru)
1110 spa_strfree(vd->vdev_fru);
1111
1112 if (vd->vdev_isspare)
1113 spa_spare_remove(vd);
1114 if (vd->vdev_isl2cache)
1115 spa_l2cache_remove(vd);
1116
1117 txg_list_destroy(&vd->vdev_ms_list);
1118 txg_list_destroy(&vd->vdev_dtl_list);
1119
1120 mutex_enter(&vd->vdev_dtl_lock);
1121 space_map_close(vd->vdev_dtl_sm);
1122 for (int t = 0; t < DTL_TYPES; t++) {
1123 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1124 range_tree_destroy(vd->vdev_dtl[t]);
1125 }
1126 mutex_exit(&vd->vdev_dtl_lock);
1127
1128 EQUIV(vd->vdev_indirect_births != NULL,
1129 vd->vdev_indirect_mapping != NULL);
1130 if (vd->vdev_indirect_births != NULL) {
1131 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1132 vdev_indirect_births_close(vd->vdev_indirect_births);
1133 }
1134
1135 if (vd->vdev_obsolete_sm != NULL) {
1136 ASSERT(vd->vdev_removing ||
1137 vd->vdev_ops == &vdev_indirect_ops);
1138 space_map_close(vd->vdev_obsolete_sm);
1139 vd->vdev_obsolete_sm = NULL;
1140 }
1141 range_tree_destroy(vd->vdev_obsolete_segments);
1142 rw_destroy(&vd->vdev_indirect_rwlock);
1143 mutex_destroy(&vd->vdev_obsolete_lock);
1144
1145 mutex_destroy(&vd->vdev_dtl_lock);
1146 mutex_destroy(&vd->vdev_stat_lock);
1147 mutex_destroy(&vd->vdev_probe_lock);
1148 mutex_destroy(&vd->vdev_scan_io_queue_lock);
1149
1150 mutex_destroy(&vd->vdev_initialize_lock);
1151 mutex_destroy(&vd->vdev_initialize_io_lock);
1152 cv_destroy(&vd->vdev_initialize_io_cv);
1153 cv_destroy(&vd->vdev_initialize_cv);
1154
1155 mutex_destroy(&vd->vdev_trim_lock);
1156 mutex_destroy(&vd->vdev_autotrim_lock);
1157 mutex_destroy(&vd->vdev_trim_io_lock);
1158 cv_destroy(&vd->vdev_trim_cv);
1159 cv_destroy(&vd->vdev_autotrim_cv);
1160 cv_destroy(&vd->vdev_autotrim_kick_cv);
1161 cv_destroy(&vd->vdev_trim_io_cv);
1162
1163 mutex_destroy(&vd->vdev_rebuild_lock);
1164 cv_destroy(&vd->vdev_rebuild_cv);
1165
1166 zfs_ratelimit_fini(&vd->vdev_delay_rl);
1167 zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1168 zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1169
1170 if (vd == spa->spa_root_vdev)
1171 spa->spa_root_vdev = NULL;
1172
1173 kmem_free(vd, sizeof (vdev_t));
1174 }
1175
1176 /*
1177 * Transfer top-level vdev state from svd to tvd.
1178 */
1179 static void
1180 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1181 {
1182 spa_t *spa = svd->vdev_spa;
1183 metaslab_t *msp;
1184 vdev_t *vd;
1185 int t;
1186
1187 ASSERT(tvd == tvd->vdev_top);
1188
1189 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
1190 tvd->vdev_ms_array = svd->vdev_ms_array;
1191 tvd->vdev_ms_shift = svd->vdev_ms_shift;
1192 tvd->vdev_ms_count = svd->vdev_ms_count;
1193 tvd->vdev_top_zap = svd->vdev_top_zap;
1194
1195 svd->vdev_ms_array = 0;
1196 svd->vdev_ms_shift = 0;
1197 svd->vdev_ms_count = 0;
1198 svd->vdev_top_zap = 0;
1199
1200 if (tvd->vdev_mg)
1201 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1202 if (tvd->vdev_log_mg)
1203 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1204 tvd->vdev_mg = svd->vdev_mg;
1205 tvd->vdev_log_mg = svd->vdev_log_mg;
1206 tvd->vdev_ms = svd->vdev_ms;
1207
1208 svd->vdev_mg = NULL;
1209 svd->vdev_log_mg = NULL;
1210 svd->vdev_ms = NULL;
1211
1212 if (tvd->vdev_mg != NULL)
1213 tvd->vdev_mg->mg_vd = tvd;
1214 if (tvd->vdev_log_mg != NULL)
1215 tvd->vdev_log_mg->mg_vd = tvd;
1216
1217 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1218 svd->vdev_checkpoint_sm = NULL;
1219
1220 tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1221 svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1222
1223 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1224 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1225 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1226
1227 svd->vdev_stat.vs_alloc = 0;
1228 svd->vdev_stat.vs_space = 0;
1229 svd->vdev_stat.vs_dspace = 0;
1230
1231 /*
1232 * State which may be set on a top-level vdev that's in the
1233 * process of being removed.
1234 */
1235 ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1236 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1237 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1238 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1239 ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1240 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1241 ASSERT0(tvd->vdev_noalloc);
1242 ASSERT0(tvd->vdev_removing);
1243 ASSERT0(tvd->vdev_rebuilding);
1244 tvd->vdev_noalloc = svd->vdev_noalloc;
1245 tvd->vdev_removing = svd->vdev_removing;
1246 tvd->vdev_rebuilding = svd->vdev_rebuilding;
1247 tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1248 tvd->vdev_indirect_config = svd->vdev_indirect_config;
1249 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1250 tvd->vdev_indirect_births = svd->vdev_indirect_births;
1251 range_tree_swap(&svd->vdev_obsolete_segments,
1252 &tvd->vdev_obsolete_segments);
1253 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1254 svd->vdev_indirect_config.vic_mapping_object = 0;
1255 svd->vdev_indirect_config.vic_births_object = 0;
1256 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1257 svd->vdev_indirect_mapping = NULL;
1258 svd->vdev_indirect_births = NULL;
1259 svd->vdev_obsolete_sm = NULL;
1260 svd->vdev_noalloc = 0;
1261 svd->vdev_removing = 0;
1262 svd->vdev_rebuilding = 0;
1263
1264 for (t = 0; t < TXG_SIZE; t++) {
1265 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1266 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1267 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1268 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1269 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1270 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1271 }
1272
1273 if (list_link_active(&svd->vdev_config_dirty_node)) {
1274 vdev_config_clean(svd);
1275 vdev_config_dirty(tvd);
1276 }
1277
1278 if (list_link_active(&svd->vdev_state_dirty_node)) {
1279 vdev_state_clean(svd);
1280 vdev_state_dirty(tvd);
1281 }
1282
1283 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1284 svd->vdev_deflate_ratio = 0;
1285
1286 tvd->vdev_islog = svd->vdev_islog;
1287 svd->vdev_islog = 0;
1288
1289 dsl_scan_io_queue_vdev_xfer(svd, tvd);
1290 }
1291
1292 static void
1293 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1294 {
1295 if (vd == NULL)
1296 return;
1297
1298 vd->vdev_top = tvd;
1299
1300 for (int c = 0; c < vd->vdev_children; c++)
1301 vdev_top_update(tvd, vd->vdev_child[c]);
1302 }
1303
1304 /*
1305 * Add a mirror/replacing vdev above an existing vdev. There is no need to
1306 * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1307 */
1308 vdev_t *
1309 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1310 {
1311 spa_t *spa = cvd->vdev_spa;
1312 vdev_t *pvd = cvd->vdev_parent;
1313 vdev_t *mvd;
1314
1315 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1316
1317 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1318
1319 mvd->vdev_asize = cvd->vdev_asize;
1320 mvd->vdev_min_asize = cvd->vdev_min_asize;
1321 mvd->vdev_max_asize = cvd->vdev_max_asize;
1322 mvd->vdev_psize = cvd->vdev_psize;
1323 mvd->vdev_ashift = cvd->vdev_ashift;
1324 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1325 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1326 mvd->vdev_state = cvd->vdev_state;
1327 mvd->vdev_crtxg = cvd->vdev_crtxg;
1328
1329 vdev_remove_child(pvd, cvd);
1330 vdev_add_child(pvd, mvd);
1331 cvd->vdev_id = mvd->vdev_children;
1332 vdev_add_child(mvd, cvd);
1333 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1334
1335 if (mvd == mvd->vdev_top)
1336 vdev_top_transfer(cvd, mvd);
1337
1338 return (mvd);
1339 }
1340
1341 /*
1342 * Remove a 1-way mirror/replacing vdev from the tree.
1343 */
1344 void
1345 vdev_remove_parent(vdev_t *cvd)
1346 {
1347 vdev_t *mvd = cvd->vdev_parent;
1348 vdev_t *pvd = mvd->vdev_parent;
1349
1350 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1351
1352 ASSERT(mvd->vdev_children == 1);
1353 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1354 mvd->vdev_ops == &vdev_replacing_ops ||
1355 mvd->vdev_ops == &vdev_spare_ops);
1356 cvd->vdev_ashift = mvd->vdev_ashift;
1357 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1358 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1359 vdev_remove_child(mvd, cvd);
1360 vdev_remove_child(pvd, mvd);
1361
1362 /*
1363 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1364 * Otherwise, we could have detached an offline device, and when we
1365 * go to import the pool we'll think we have two top-level vdevs,
1366 * instead of a different version of the same top-level vdev.
1367 */
1368 if (mvd->vdev_top == mvd) {
1369 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1370 cvd->vdev_orig_guid = cvd->vdev_guid;
1371 cvd->vdev_guid += guid_delta;
1372 cvd->vdev_guid_sum += guid_delta;
1373
1374 /*
1375 * If pool not set for autoexpand, we need to also preserve
1376 * mvd's asize to prevent automatic expansion of cvd.
1377 * Otherwise if we are adjusting the mirror by attaching and
1378 * detaching children of non-uniform sizes, the mirror could
1379 * autoexpand, unexpectedly requiring larger devices to
1380 * re-establish the mirror.
1381 */
1382 if (!cvd->vdev_spa->spa_autoexpand)
1383 cvd->vdev_asize = mvd->vdev_asize;
1384 }
1385 cvd->vdev_id = mvd->vdev_id;
1386 vdev_add_child(pvd, cvd);
1387 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1388
1389 if (cvd == cvd->vdev_top)
1390 vdev_top_transfer(mvd, cvd);
1391
1392 ASSERT(mvd->vdev_children == 0);
1393 vdev_free(mvd);
1394 }
1395
1396 void
1397 vdev_metaslab_group_create(vdev_t *vd)
1398 {
1399 spa_t *spa = vd->vdev_spa;
1400
1401 /*
1402 * metaslab_group_create was delayed until allocation bias was available
1403 */
1404 if (vd->vdev_mg == NULL) {
1405 metaslab_class_t *mc;
1406
1407 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1408 vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1409
1410 ASSERT3U(vd->vdev_islog, ==,
1411 (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1412
1413 switch (vd->vdev_alloc_bias) {
1414 case VDEV_BIAS_LOG:
1415 mc = spa_log_class(spa);
1416 break;
1417 case VDEV_BIAS_SPECIAL:
1418 mc = spa_special_class(spa);
1419 break;
1420 case VDEV_BIAS_DEDUP:
1421 mc = spa_dedup_class(spa);
1422 break;
1423 default:
1424 mc = spa_normal_class(spa);
1425 }
1426
1427 vd->vdev_mg = metaslab_group_create(mc, vd,
1428 spa->spa_alloc_count);
1429
1430 if (!vd->vdev_islog) {
1431 vd->vdev_log_mg = metaslab_group_create(
1432 spa_embedded_log_class(spa), vd, 1);
1433 }
1434
1435 /*
1436 * The spa ashift min/max only apply for the normal metaslab
1437 * class. Class destination is late binding so ashift boundary
1438 * setting had to wait until now.
1439 */
1440 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1441 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1442 if (vd->vdev_ashift > spa->spa_max_ashift)
1443 spa->spa_max_ashift = vd->vdev_ashift;
1444 if (vd->vdev_ashift < spa->spa_min_ashift)
1445 spa->spa_min_ashift = vd->vdev_ashift;
1446
1447 uint64_t min_alloc = vdev_get_min_alloc(vd);
1448 if (min_alloc < spa->spa_min_alloc)
1449 spa->spa_min_alloc = min_alloc;
1450 }
1451 }
1452 }
1453
1454 int
1455 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1456 {
1457 spa_t *spa = vd->vdev_spa;
1458 uint64_t oldc = vd->vdev_ms_count;
1459 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1460 metaslab_t **mspp;
1461 int error;
1462 boolean_t expanding = (oldc != 0);
1463
1464 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1465
1466 /*
1467 * This vdev is not being allocated from yet or is a hole.
1468 */
1469 if (vd->vdev_ms_shift == 0)
1470 return (0);
1471
1472 ASSERT(!vd->vdev_ishole);
1473
1474 ASSERT(oldc <= newc);
1475
1476 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1477
1478 if (expanding) {
1479 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1480 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1481 }
1482
1483 vd->vdev_ms = mspp;
1484 vd->vdev_ms_count = newc;
1485
1486 for (uint64_t m = oldc; m < newc; m++) {
1487 uint64_t object = 0;
1488 /*
1489 * vdev_ms_array may be 0 if we are creating the "fake"
1490 * metaslabs for an indirect vdev for zdb's leak detection.
1491 * See zdb_leak_init().
1492 */
1493 if (txg == 0 && vd->vdev_ms_array != 0) {
1494 error = dmu_read(spa->spa_meta_objset,
1495 vd->vdev_ms_array,
1496 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1497 DMU_READ_PREFETCH);
1498 if (error != 0) {
1499 vdev_dbgmsg(vd, "unable to read the metaslab "
1500 "array [error=%d]", error);
1501 return (error);
1502 }
1503 }
1504
1505 error = metaslab_init(vd->vdev_mg, m, object, txg,
1506 &(vd->vdev_ms[m]));
1507 if (error != 0) {
1508 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1509 error);
1510 return (error);
1511 }
1512 }
1513
1514 /*
1515 * Find the emptiest metaslab on the vdev and mark it for use for
1516 * embedded slog by moving it from the regular to the log metaslab
1517 * group.
1518 */
1519 if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1520 vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1521 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1522 uint64_t slog_msid = 0;
1523 uint64_t smallest = UINT64_MAX;
1524
1525 /*
1526 * Note, we only search the new metaslabs, because the old
1527 * (pre-existing) ones may be active (e.g. have non-empty
1528 * range_tree's), and we don't move them to the new
1529 * metaslab_t.
1530 */
1531 for (uint64_t m = oldc; m < newc; m++) {
1532 uint64_t alloc =
1533 space_map_allocated(vd->vdev_ms[m]->ms_sm);
1534 if (alloc < smallest) {
1535 slog_msid = m;
1536 smallest = alloc;
1537 }
1538 }
1539 metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1540 /*
1541 * The metaslab was marked as dirty at the end of
1542 * metaslab_init(). Remove it from the dirty list so that we
1543 * can uninitialize and reinitialize it to the new class.
1544 */
1545 if (txg != 0) {
1546 (void) txg_list_remove_this(&vd->vdev_ms_list,
1547 slog_ms, txg);
1548 }
1549 uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1550 metaslab_fini(slog_ms);
1551 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1552 &vd->vdev_ms[slog_msid]));
1553 }
1554
1555 if (txg == 0)
1556 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1557
1558 /*
1559 * If the vdev is marked as non-allocating then don't
1560 * activate the metaslabs since we want to ensure that
1561 * no allocations are performed on this device.
1562 */
1563 if (vd->vdev_noalloc) {
1564 /* track non-allocating vdev space */
1565 spa->spa_nonallocating_dspace += spa_deflate(spa) ?
1566 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1567 } else if (!expanding) {
1568 metaslab_group_activate(vd->vdev_mg);
1569 if (vd->vdev_log_mg != NULL)
1570 metaslab_group_activate(vd->vdev_log_mg);
1571 }
1572
1573 if (txg == 0)
1574 spa_config_exit(spa, SCL_ALLOC, FTAG);
1575
1576 return (0);
1577 }
1578
1579 void
1580 vdev_metaslab_fini(vdev_t *vd)
1581 {
1582 if (vd->vdev_checkpoint_sm != NULL) {
1583 ASSERT(spa_feature_is_active(vd->vdev_spa,
1584 SPA_FEATURE_POOL_CHECKPOINT));
1585 space_map_close(vd->vdev_checkpoint_sm);
1586 /*
1587 * Even though we close the space map, we need to set its
1588 * pointer to NULL. The reason is that vdev_metaslab_fini()
1589 * may be called multiple times for certain operations
1590 * (i.e. when destroying a pool) so we need to ensure that
1591 * this clause never executes twice. This logic is similar
1592 * to the one used for the vdev_ms clause below.
1593 */
1594 vd->vdev_checkpoint_sm = NULL;
1595 }
1596
1597 if (vd->vdev_ms != NULL) {
1598 metaslab_group_t *mg = vd->vdev_mg;
1599
1600 metaslab_group_passivate(mg);
1601 if (vd->vdev_log_mg != NULL) {
1602 ASSERT(!vd->vdev_islog);
1603 metaslab_group_passivate(vd->vdev_log_mg);
1604 }
1605
1606 uint64_t count = vd->vdev_ms_count;
1607 for (uint64_t m = 0; m < count; m++) {
1608 metaslab_t *msp = vd->vdev_ms[m];
1609 if (msp != NULL)
1610 metaslab_fini(msp);
1611 }
1612 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1613 vd->vdev_ms = NULL;
1614 vd->vdev_ms_count = 0;
1615
1616 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1617 ASSERT0(mg->mg_histogram[i]);
1618 if (vd->vdev_log_mg != NULL)
1619 ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1620 }
1621 }
1622 ASSERT0(vd->vdev_ms_count);
1623 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1624 }
1625
1626 typedef struct vdev_probe_stats {
1627 boolean_t vps_readable;
1628 boolean_t vps_writeable;
1629 int vps_flags;
1630 } vdev_probe_stats_t;
1631
1632 static void
1633 vdev_probe_done(zio_t *zio)
1634 {
1635 spa_t *spa = zio->io_spa;
1636 vdev_t *vd = zio->io_vd;
1637 vdev_probe_stats_t *vps = zio->io_private;
1638
1639 ASSERT(vd->vdev_probe_zio != NULL);
1640
1641 if (zio->io_type == ZIO_TYPE_READ) {
1642 if (zio->io_error == 0)
1643 vps->vps_readable = 1;
1644 if (zio->io_error == 0 && spa_writeable(spa)) {
1645 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1646 zio->io_offset, zio->io_size, zio->io_abd,
1647 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1648 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1649 } else {
1650 abd_free(zio->io_abd);
1651 }
1652 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1653 if (zio->io_error == 0)
1654 vps->vps_writeable = 1;
1655 abd_free(zio->io_abd);
1656 } else if (zio->io_type == ZIO_TYPE_NULL) {
1657 zio_t *pio;
1658 zio_link_t *zl;
1659
1660 vd->vdev_cant_read |= !vps->vps_readable;
1661 vd->vdev_cant_write |= !vps->vps_writeable;
1662
1663 if (vdev_readable(vd) &&
1664 (vdev_writeable(vd) || !spa_writeable(spa))) {
1665 zio->io_error = 0;
1666 } else {
1667 ASSERT(zio->io_error != 0);
1668 vdev_dbgmsg(vd, "failed probe");
1669 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1670 spa, vd, NULL, NULL, 0);
1671 zio->io_error = SET_ERROR(ENXIO);
1672 }
1673
1674 mutex_enter(&vd->vdev_probe_lock);
1675 ASSERT(vd->vdev_probe_zio == zio);
1676 vd->vdev_probe_zio = NULL;
1677 mutex_exit(&vd->vdev_probe_lock);
1678
1679 zl = NULL;
1680 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1681 if (!vdev_accessible(vd, pio))
1682 pio->io_error = SET_ERROR(ENXIO);
1683
1684 kmem_free(vps, sizeof (*vps));
1685 }
1686 }
1687
1688 /*
1689 * Determine whether this device is accessible.
1690 *
1691 * Read and write to several known locations: the pad regions of each
1692 * vdev label but the first, which we leave alone in case it contains
1693 * a VTOC.
1694 */
1695 zio_t *
1696 vdev_probe(vdev_t *vd, zio_t *zio)
1697 {
1698 spa_t *spa = vd->vdev_spa;
1699 vdev_probe_stats_t *vps = NULL;
1700 zio_t *pio;
1701
1702 ASSERT(vd->vdev_ops->vdev_op_leaf);
1703
1704 /*
1705 * Don't probe the probe.
1706 */
1707 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1708 return (NULL);
1709
1710 /*
1711 * To prevent 'probe storms' when a device fails, we create
1712 * just one probe i/o at a time. All zios that want to probe
1713 * this vdev will become parents of the probe io.
1714 */
1715 mutex_enter(&vd->vdev_probe_lock);
1716
1717 if ((pio = vd->vdev_probe_zio) == NULL) {
1718 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1719
1720 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1721 ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD;
1722
1723 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1724 /*
1725 * vdev_cant_read and vdev_cant_write can only
1726 * transition from TRUE to FALSE when we have the
1727 * SCL_ZIO lock as writer; otherwise they can only
1728 * transition from FALSE to TRUE. This ensures that
1729 * any zio looking at these values can assume that
1730 * failures persist for the life of the I/O. That's
1731 * important because when a device has intermittent
1732 * connectivity problems, we want to ensure that
1733 * they're ascribed to the device (ENXIO) and not
1734 * the zio (EIO).
1735 *
1736 * Since we hold SCL_ZIO as writer here, clear both
1737 * values so the probe can reevaluate from first
1738 * principles.
1739 */
1740 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1741 vd->vdev_cant_read = B_FALSE;
1742 vd->vdev_cant_write = B_FALSE;
1743 }
1744
1745 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1746 vdev_probe_done, vps,
1747 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1748
1749 /*
1750 * We can't change the vdev state in this context, so we
1751 * kick off an async task to do it on our behalf.
1752 */
1753 if (zio != NULL) {
1754 vd->vdev_probe_wanted = B_TRUE;
1755 spa_async_request(spa, SPA_ASYNC_PROBE);
1756 }
1757 }
1758
1759 if (zio != NULL)
1760 zio_add_child(zio, pio);
1761
1762 mutex_exit(&vd->vdev_probe_lock);
1763
1764 if (vps == NULL) {
1765 ASSERT(zio != NULL);
1766 return (NULL);
1767 }
1768
1769 for (int l = 1; l < VDEV_LABELS; l++) {
1770 zio_nowait(zio_read_phys(pio, vd,
1771 vdev_label_offset(vd->vdev_psize, l,
1772 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1773 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1774 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1775 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1776 }
1777
1778 if (zio == NULL)
1779 return (pio);
1780
1781 zio_nowait(pio);
1782 return (NULL);
1783 }
1784
1785 static void
1786 vdev_load_child(void *arg)
1787 {
1788 vdev_t *vd = arg;
1789
1790 vd->vdev_load_error = vdev_load(vd);
1791 }
1792
1793 static void
1794 vdev_open_child(void *arg)
1795 {
1796 vdev_t *vd = arg;
1797
1798 vd->vdev_open_thread = curthread;
1799 vd->vdev_open_error = vdev_open(vd);
1800 vd->vdev_open_thread = NULL;
1801 }
1802
1803 static boolean_t
1804 vdev_uses_zvols(vdev_t *vd)
1805 {
1806 #ifdef _KERNEL
1807 if (zvol_is_zvol(vd->vdev_path))
1808 return (B_TRUE);
1809 #endif
1810
1811 for (int c = 0; c < vd->vdev_children; c++)
1812 if (vdev_uses_zvols(vd->vdev_child[c]))
1813 return (B_TRUE);
1814
1815 return (B_FALSE);
1816 }
1817
1818 /*
1819 * Returns B_TRUE if the passed child should be opened.
1820 */
1821 static boolean_t
1822 vdev_default_open_children_func(vdev_t *vd)
1823 {
1824 (void) vd;
1825 return (B_TRUE);
1826 }
1827
1828 /*
1829 * Open the requested child vdevs. If any of the leaf vdevs are using
1830 * a ZFS volume then do the opens in a single thread. This avoids a
1831 * deadlock when the current thread is holding the spa_namespace_lock.
1832 */
1833 static void
1834 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1835 {
1836 int children = vd->vdev_children;
1837
1838 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1839 children, children, TASKQ_PREPOPULATE);
1840 vd->vdev_nonrot = B_TRUE;
1841
1842 for (int c = 0; c < children; c++) {
1843 vdev_t *cvd = vd->vdev_child[c];
1844
1845 if (open_func(cvd) == B_FALSE)
1846 continue;
1847
1848 if (tq == NULL || vdev_uses_zvols(vd)) {
1849 cvd->vdev_open_error = vdev_open(cvd);
1850 } else {
1851 VERIFY(taskq_dispatch(tq, vdev_open_child,
1852 cvd, TQ_SLEEP) != TASKQID_INVALID);
1853 }
1854
1855 vd->vdev_nonrot &= cvd->vdev_nonrot;
1856 }
1857
1858 if (tq != NULL) {
1859 taskq_wait(tq);
1860 taskq_destroy(tq);
1861 }
1862 }
1863
1864 /*
1865 * Open all child vdevs.
1866 */
1867 void
1868 vdev_open_children(vdev_t *vd)
1869 {
1870 vdev_open_children_impl(vd, vdev_default_open_children_func);
1871 }
1872
1873 /*
1874 * Conditionally open a subset of child vdevs.
1875 */
1876 void
1877 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
1878 {
1879 vdev_open_children_impl(vd, open_func);
1880 }
1881
1882 /*
1883 * Compute the raidz-deflation ratio. Note, we hard-code
1884 * in 128k (1 << 17) because it is the "typical" blocksize.
1885 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1886 * otherwise it would inconsistently account for existing bp's.
1887 */
1888 static void
1889 vdev_set_deflate_ratio(vdev_t *vd)
1890 {
1891 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1892 vd->vdev_deflate_ratio = (1 << 17) /
1893 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1894 }
1895 }
1896
1897 /*
1898 * Choose the best of two ashifts, preferring one between logical ashift
1899 * (absolute minimum) and administrator defined maximum, otherwise take
1900 * the biggest of the two.
1901 */
1902 uint64_t
1903 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
1904 {
1905 if (a > logical && a <= zfs_vdev_max_auto_ashift) {
1906 if (b <= logical || b > zfs_vdev_max_auto_ashift)
1907 return (a);
1908 else
1909 return (MAX(a, b));
1910 } else if (b <= logical || b > zfs_vdev_max_auto_ashift)
1911 return (MAX(a, b));
1912 return (b);
1913 }
1914
1915 /*
1916 * Maximize performance by inflating the configured ashift for top level
1917 * vdevs to be as close to the physical ashift as possible while maintaining
1918 * administrator defined limits and ensuring it doesn't go below the
1919 * logical ashift.
1920 */
1921 static void
1922 vdev_ashift_optimize(vdev_t *vd)
1923 {
1924 ASSERT(vd == vd->vdev_top);
1925
1926 if (vd->vdev_ashift < vd->vdev_physical_ashift &&
1927 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
1928 vd->vdev_ashift = MIN(
1929 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
1930 MAX(zfs_vdev_min_auto_ashift,
1931 vd->vdev_physical_ashift));
1932 } else {
1933 /*
1934 * If the logical and physical ashifts are the same, then
1935 * we ensure that the top-level vdev's ashift is not smaller
1936 * than our minimum ashift value. For the unusual case
1937 * where logical ashift > physical ashift, we can't cap
1938 * the calculated ashift based on max ashift as that
1939 * would cause failures.
1940 * We still check if we need to increase it to match
1941 * the min ashift.
1942 */
1943 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
1944 vd->vdev_ashift);
1945 }
1946 }
1947
1948 /*
1949 * Prepare a virtual device for access.
1950 */
1951 int
1952 vdev_open(vdev_t *vd)
1953 {
1954 spa_t *spa = vd->vdev_spa;
1955 int error;
1956 uint64_t osize = 0;
1957 uint64_t max_osize = 0;
1958 uint64_t asize, max_asize, psize;
1959 uint64_t logical_ashift = 0;
1960 uint64_t physical_ashift = 0;
1961
1962 ASSERT(vd->vdev_open_thread == curthread ||
1963 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1964 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1965 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1966 vd->vdev_state == VDEV_STATE_OFFLINE);
1967
1968 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1969 vd->vdev_cant_read = B_FALSE;
1970 vd->vdev_cant_write = B_FALSE;
1971 vd->vdev_min_asize = vdev_get_min_asize(vd);
1972
1973 /*
1974 * If this vdev is not removed, check its fault status. If it's
1975 * faulted, bail out of the open.
1976 */
1977 if (!vd->vdev_removed && vd->vdev_faulted) {
1978 ASSERT(vd->vdev_children == 0);
1979 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1980 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1981 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1982 vd->vdev_label_aux);
1983 return (SET_ERROR(ENXIO));
1984 } else if (vd->vdev_offline) {
1985 ASSERT(vd->vdev_children == 0);
1986 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1987 return (SET_ERROR(ENXIO));
1988 }
1989
1990 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1991 &logical_ashift, &physical_ashift);
1992
1993 /* Keep the device in removed state if unplugged */
1994 if (error == ENOENT && vd->vdev_removed) {
1995 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
1996 VDEV_AUX_NONE);
1997 return (error);
1998 }
1999
2000 /*
2001 * Physical volume size should never be larger than its max size, unless
2002 * the disk has shrunk while we were reading it or the device is buggy
2003 * or damaged: either way it's not safe for use, bail out of the open.
2004 */
2005 if (osize > max_osize) {
2006 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2007 VDEV_AUX_OPEN_FAILED);
2008 return (SET_ERROR(ENXIO));
2009 }
2010
2011 /*
2012 * Reset the vdev_reopening flag so that we actually close
2013 * the vdev on error.
2014 */
2015 vd->vdev_reopening = B_FALSE;
2016 if (zio_injection_enabled && error == 0)
2017 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
2018
2019 if (error) {
2020 if (vd->vdev_removed &&
2021 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
2022 vd->vdev_removed = B_FALSE;
2023
2024 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
2025 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
2026 vd->vdev_stat.vs_aux);
2027 } else {
2028 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2029 vd->vdev_stat.vs_aux);
2030 }
2031 return (error);
2032 }
2033
2034 vd->vdev_removed = B_FALSE;
2035
2036 /*
2037 * Recheck the faulted flag now that we have confirmed that
2038 * the vdev is accessible. If we're faulted, bail.
2039 */
2040 if (vd->vdev_faulted) {
2041 ASSERT(vd->vdev_children == 0);
2042 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2043 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2044 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2045 vd->vdev_label_aux);
2046 return (SET_ERROR(ENXIO));
2047 }
2048
2049 if (vd->vdev_degraded) {
2050 ASSERT(vd->vdev_children == 0);
2051 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2052 VDEV_AUX_ERR_EXCEEDED);
2053 } else {
2054 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
2055 }
2056
2057 /*
2058 * For hole or missing vdevs we just return success.
2059 */
2060 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
2061 return (0);
2062
2063 for (int c = 0; c < vd->vdev_children; c++) {
2064 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
2065 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2066 VDEV_AUX_NONE);
2067 break;
2068 }
2069 }
2070
2071 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
2072 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
2073
2074 if (vd->vdev_children == 0) {
2075 if (osize < SPA_MINDEVSIZE) {
2076 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2077 VDEV_AUX_TOO_SMALL);
2078 return (SET_ERROR(EOVERFLOW));
2079 }
2080 psize = osize;
2081 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2082 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2083 VDEV_LABEL_END_SIZE);
2084 } else {
2085 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2086 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2087 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2088 VDEV_AUX_TOO_SMALL);
2089 return (SET_ERROR(EOVERFLOW));
2090 }
2091 psize = 0;
2092 asize = osize;
2093 max_asize = max_osize;
2094 }
2095
2096 /*
2097 * If the vdev was expanded, record this so that we can re-create the
2098 * uberblock rings in labels {2,3}, during the next sync.
2099 */
2100 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2101 vd->vdev_copy_uberblocks = B_TRUE;
2102
2103 vd->vdev_psize = psize;
2104
2105 /*
2106 * Make sure the allocatable size hasn't shrunk too much.
2107 */
2108 if (asize < vd->vdev_min_asize) {
2109 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2110 VDEV_AUX_BAD_LABEL);
2111 return (SET_ERROR(EINVAL));
2112 }
2113
2114 /*
2115 * We can always set the logical/physical ashift members since
2116 * their values are only used to calculate the vdev_ashift when
2117 * the device is first added to the config. These values should
2118 * not be used for anything else since they may change whenever
2119 * the device is reopened and we don't store them in the label.
2120 */
2121 vd->vdev_physical_ashift =
2122 MAX(physical_ashift, vd->vdev_physical_ashift);
2123 vd->vdev_logical_ashift = MAX(logical_ashift,
2124 vd->vdev_logical_ashift);
2125
2126 if (vd->vdev_asize == 0) {
2127 /*
2128 * This is the first-ever open, so use the computed values.
2129 * For compatibility, a different ashift can be requested.
2130 */
2131 vd->vdev_asize = asize;
2132 vd->vdev_max_asize = max_asize;
2133
2134 /*
2135 * If the vdev_ashift was not overridden at creation time,
2136 * then set it the logical ashift and optimize the ashift.
2137 */
2138 if (vd->vdev_ashift == 0) {
2139 vd->vdev_ashift = vd->vdev_logical_ashift;
2140
2141 if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2142 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2143 VDEV_AUX_ASHIFT_TOO_BIG);
2144 return (SET_ERROR(EDOM));
2145 }
2146
2147 if (vd->vdev_top == vd) {
2148 vdev_ashift_optimize(vd);
2149 }
2150 }
2151 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2152 vd->vdev_ashift > ASHIFT_MAX)) {
2153 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2154 VDEV_AUX_BAD_ASHIFT);
2155 return (SET_ERROR(EDOM));
2156 }
2157 } else {
2158 /*
2159 * Make sure the alignment required hasn't increased.
2160 */
2161 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2162 vd->vdev_ops->vdev_op_leaf) {
2163 (void) zfs_ereport_post(
2164 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2165 spa, vd, NULL, NULL, 0);
2166 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2167 VDEV_AUX_BAD_LABEL);
2168 return (SET_ERROR(EDOM));
2169 }
2170 vd->vdev_max_asize = max_asize;
2171 }
2172
2173 /*
2174 * If all children are healthy we update asize if either:
2175 * The asize has increased, due to a device expansion caused by dynamic
2176 * LUN growth or vdev replacement, and automatic expansion is enabled;
2177 * making the additional space available.
2178 *
2179 * The asize has decreased, due to a device shrink usually caused by a
2180 * vdev replace with a smaller device. This ensures that calculations
2181 * based of max_asize and asize e.g. esize are always valid. It's safe
2182 * to do this as we've already validated that asize is greater than
2183 * vdev_min_asize.
2184 */
2185 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2186 ((asize > vd->vdev_asize &&
2187 (vd->vdev_expanding || spa->spa_autoexpand)) ||
2188 (asize < vd->vdev_asize)))
2189 vd->vdev_asize = asize;
2190
2191 vdev_set_min_asize(vd);
2192
2193 /*
2194 * Ensure we can issue some IO before declaring the
2195 * vdev open for business.
2196 */
2197 if (vd->vdev_ops->vdev_op_leaf &&
2198 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2199 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2200 VDEV_AUX_ERR_EXCEEDED);
2201 return (error);
2202 }
2203
2204 /*
2205 * Track the minimum allocation size.
2206 */
2207 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2208 vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2209 uint64_t min_alloc = vdev_get_min_alloc(vd);
2210 if (min_alloc < spa->spa_min_alloc)
2211 spa->spa_min_alloc = min_alloc;
2212 }
2213
2214 /*
2215 * If this is a leaf vdev, assess whether a resilver is needed.
2216 * But don't do this if we are doing a reopen for a scrub, since
2217 * this would just restart the scrub we are already doing.
2218 */
2219 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2220 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2221
2222 return (0);
2223 }
2224
2225 static void
2226 vdev_validate_child(void *arg)
2227 {
2228 vdev_t *vd = arg;
2229
2230 vd->vdev_validate_thread = curthread;
2231 vd->vdev_validate_error = vdev_validate(vd);
2232 vd->vdev_validate_thread = NULL;
2233 }
2234
2235 /*
2236 * Called once the vdevs are all opened, this routine validates the label
2237 * contents. This needs to be done before vdev_load() so that we don't
2238 * inadvertently do repair I/Os to the wrong device.
2239 *
2240 * This function will only return failure if one of the vdevs indicates that it
2241 * has since been destroyed or exported. This is only possible if
2242 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
2243 * will be updated but the function will return 0.
2244 */
2245 int
2246 vdev_validate(vdev_t *vd)
2247 {
2248 spa_t *spa = vd->vdev_spa;
2249 taskq_t *tq = NULL;
2250 nvlist_t *label;
2251 uint64_t guid = 0, aux_guid = 0, top_guid;
2252 uint64_t state;
2253 nvlist_t *nvl;
2254 uint64_t txg;
2255 int children = vd->vdev_children;
2256
2257 if (vdev_validate_skip)
2258 return (0);
2259
2260 if (children > 0) {
2261 tq = taskq_create("vdev_validate", children, minclsyspri,
2262 children, children, TASKQ_PREPOPULATE);
2263 }
2264
2265 for (uint64_t c = 0; c < children; c++) {
2266 vdev_t *cvd = vd->vdev_child[c];
2267
2268 if (tq == NULL || vdev_uses_zvols(cvd)) {
2269 vdev_validate_child(cvd);
2270 } else {
2271 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2272 TQ_SLEEP) != TASKQID_INVALID);
2273 }
2274 }
2275 if (tq != NULL) {
2276 taskq_wait(tq);
2277 taskq_destroy(tq);
2278 }
2279 for (int c = 0; c < children; c++) {
2280 int error = vd->vdev_child[c]->vdev_validate_error;
2281
2282 if (error != 0)
2283 return (SET_ERROR(EBADF));
2284 }
2285
2286
2287 /*
2288 * If the device has already failed, or was marked offline, don't do
2289 * any further validation. Otherwise, label I/O will fail and we will
2290 * overwrite the previous state.
2291 */
2292 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2293 return (0);
2294
2295 /*
2296 * If we are performing an extreme rewind, we allow for a label that
2297 * was modified at a point after the current txg.
2298 * If config lock is not held do not check for the txg. spa_sync could
2299 * be updating the vdev's label before updating spa_last_synced_txg.
2300 */
2301 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2302 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2303 txg = UINT64_MAX;
2304 else
2305 txg = spa_last_synced_txg(spa);
2306
2307 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2308 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2309 VDEV_AUX_BAD_LABEL);
2310 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2311 "txg %llu", (u_longlong_t)txg);
2312 return (0);
2313 }
2314
2315 /*
2316 * Determine if this vdev has been split off into another
2317 * pool. If so, then refuse to open it.
2318 */
2319 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2320 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2321 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2322 VDEV_AUX_SPLIT_POOL);
2323 nvlist_free(label);
2324 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2325 return (0);
2326 }
2327
2328 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2329 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2330 VDEV_AUX_CORRUPT_DATA);
2331 nvlist_free(label);
2332 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2333 ZPOOL_CONFIG_POOL_GUID);
2334 return (0);
2335 }
2336
2337 /*
2338 * If config is not trusted then ignore the spa guid check. This is
2339 * necessary because if the machine crashed during a re-guid the new
2340 * guid might have been written to all of the vdev labels, but not the
2341 * cached config. The check will be performed again once we have the
2342 * trusted config from the MOS.
2343 */
2344 if (spa->spa_trust_config && guid != spa_guid(spa)) {
2345 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2346 VDEV_AUX_CORRUPT_DATA);
2347 nvlist_free(label);
2348 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2349 "match config (%llu != %llu)", (u_longlong_t)guid,
2350 (u_longlong_t)spa_guid(spa));
2351 return (0);
2352 }
2353
2354 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2355 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2356 &aux_guid) != 0)
2357 aux_guid = 0;
2358
2359 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2360 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2361 VDEV_AUX_CORRUPT_DATA);
2362 nvlist_free(label);
2363 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2364 ZPOOL_CONFIG_GUID);
2365 return (0);
2366 }
2367
2368 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2369 != 0) {
2370 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2371 VDEV_AUX_CORRUPT_DATA);
2372 nvlist_free(label);
2373 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2374 ZPOOL_CONFIG_TOP_GUID);
2375 return (0);
2376 }
2377
2378 /*
2379 * If this vdev just became a top-level vdev because its sibling was
2380 * detached, it will have adopted the parent's vdev guid -- but the
2381 * label may or may not be on disk yet. Fortunately, either version
2382 * of the label will have the same top guid, so if we're a top-level
2383 * vdev, we can safely compare to that instead.
2384 * However, if the config comes from a cachefile that failed to update
2385 * after the detach, a top-level vdev will appear as a non top-level
2386 * vdev in the config. Also relax the constraints if we perform an
2387 * extreme rewind.
2388 *
2389 * If we split this vdev off instead, then we also check the
2390 * original pool's guid. We don't want to consider the vdev
2391 * corrupt if it is partway through a split operation.
2392 */
2393 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2394 boolean_t mismatch = B_FALSE;
2395 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2396 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2397 mismatch = B_TRUE;
2398 } else {
2399 if (vd->vdev_guid != top_guid &&
2400 vd->vdev_top->vdev_guid != guid)
2401 mismatch = B_TRUE;
2402 }
2403
2404 if (mismatch) {
2405 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2406 VDEV_AUX_CORRUPT_DATA);
2407 nvlist_free(label);
2408 vdev_dbgmsg(vd, "vdev_validate: config guid "
2409 "doesn't match label guid");
2410 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2411 (u_longlong_t)vd->vdev_guid,
2412 (u_longlong_t)vd->vdev_top->vdev_guid);
2413 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2414 "aux_guid %llu", (u_longlong_t)guid,
2415 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2416 return (0);
2417 }
2418 }
2419
2420 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2421 &state) != 0) {
2422 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2423 VDEV_AUX_CORRUPT_DATA);
2424 nvlist_free(label);
2425 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2426 ZPOOL_CONFIG_POOL_STATE);
2427 return (0);
2428 }
2429
2430 nvlist_free(label);
2431
2432 /*
2433 * If this is a verbatim import, no need to check the
2434 * state of the pool.
2435 */
2436 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2437 spa_load_state(spa) == SPA_LOAD_OPEN &&
2438 state != POOL_STATE_ACTIVE) {
2439 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2440 "for spa %s", (u_longlong_t)state, spa->spa_name);
2441 return (SET_ERROR(EBADF));
2442 }
2443
2444 /*
2445 * If we were able to open and validate a vdev that was
2446 * previously marked permanently unavailable, clear that state
2447 * now.
2448 */
2449 if (vd->vdev_not_present)
2450 vd->vdev_not_present = 0;
2451
2452 return (0);
2453 }
2454
2455 static void
2456 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2457 {
2458 char *old, *new;
2459 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2460 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2461 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2462 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2463 dvd->vdev_path, svd->vdev_path);
2464 spa_strfree(dvd->vdev_path);
2465 dvd->vdev_path = spa_strdup(svd->vdev_path);
2466 }
2467 } else if (svd->vdev_path != NULL) {
2468 dvd->vdev_path = spa_strdup(svd->vdev_path);
2469 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2470 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2471 }
2472
2473 /*
2474 * Our enclosure sysfs path may have changed between imports
2475 */
2476 old = dvd->vdev_enc_sysfs_path;
2477 new = svd->vdev_enc_sysfs_path;
2478 if ((old != NULL && new == NULL) ||
2479 (old == NULL && new != NULL) ||
2480 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2481 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2482 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2483 old, new);
2484
2485 if (dvd->vdev_enc_sysfs_path)
2486 spa_strfree(dvd->vdev_enc_sysfs_path);
2487
2488 if (svd->vdev_enc_sysfs_path) {
2489 dvd->vdev_enc_sysfs_path = spa_strdup(
2490 svd->vdev_enc_sysfs_path);
2491 } else {
2492 dvd->vdev_enc_sysfs_path = NULL;
2493 }
2494 }
2495 }
2496
2497 /*
2498 * Recursively copy vdev paths from one vdev to another. Source and destination
2499 * vdev trees must have same geometry otherwise return error. Intended to copy
2500 * paths from userland config into MOS config.
2501 */
2502 int
2503 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2504 {
2505 if ((svd->vdev_ops == &vdev_missing_ops) ||
2506 (svd->vdev_ishole && dvd->vdev_ishole) ||
2507 (dvd->vdev_ops == &vdev_indirect_ops))
2508 return (0);
2509
2510 if (svd->vdev_ops != dvd->vdev_ops) {
2511 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2512 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2513 return (SET_ERROR(EINVAL));
2514 }
2515
2516 if (svd->vdev_guid != dvd->vdev_guid) {
2517 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2518 "%llu)", (u_longlong_t)svd->vdev_guid,
2519 (u_longlong_t)dvd->vdev_guid);
2520 return (SET_ERROR(EINVAL));
2521 }
2522
2523 if (svd->vdev_children != dvd->vdev_children) {
2524 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2525 "%llu != %llu", (u_longlong_t)svd->vdev_children,
2526 (u_longlong_t)dvd->vdev_children);
2527 return (SET_ERROR(EINVAL));
2528 }
2529
2530 for (uint64_t i = 0; i < svd->vdev_children; i++) {
2531 int error = vdev_copy_path_strict(svd->vdev_child[i],
2532 dvd->vdev_child[i]);
2533 if (error != 0)
2534 return (error);
2535 }
2536
2537 if (svd->vdev_ops->vdev_op_leaf)
2538 vdev_copy_path_impl(svd, dvd);
2539
2540 return (0);
2541 }
2542
2543 static void
2544 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2545 {
2546 ASSERT(stvd->vdev_top == stvd);
2547 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2548
2549 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2550 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2551 }
2552
2553 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2554 return;
2555
2556 /*
2557 * The idea here is that while a vdev can shift positions within
2558 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2559 * step outside of it.
2560 */
2561 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2562
2563 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2564 return;
2565
2566 ASSERT(vd->vdev_ops->vdev_op_leaf);
2567
2568 vdev_copy_path_impl(vd, dvd);
2569 }
2570
2571 /*
2572 * Recursively copy vdev paths from one root vdev to another. Source and
2573 * destination vdev trees may differ in geometry. For each destination leaf
2574 * vdev, search a vdev with the same guid and top vdev id in the source.
2575 * Intended to copy paths from userland config into MOS config.
2576 */
2577 void
2578 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2579 {
2580 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2581 ASSERT(srvd->vdev_ops == &vdev_root_ops);
2582 ASSERT(drvd->vdev_ops == &vdev_root_ops);
2583
2584 for (uint64_t i = 0; i < children; i++) {
2585 vdev_copy_path_search(srvd->vdev_child[i],
2586 drvd->vdev_child[i]);
2587 }
2588 }
2589
2590 /*
2591 * Close a virtual device.
2592 */
2593 void
2594 vdev_close(vdev_t *vd)
2595 {
2596 vdev_t *pvd = vd->vdev_parent;
2597 spa_t *spa __maybe_unused = vd->vdev_spa;
2598
2599 ASSERT(vd != NULL);
2600 ASSERT(vd->vdev_open_thread == curthread ||
2601 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2602
2603 /*
2604 * If our parent is reopening, then we are as well, unless we are
2605 * going offline.
2606 */
2607 if (pvd != NULL && pvd->vdev_reopening)
2608 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2609
2610 vd->vdev_ops->vdev_op_close(vd);
2611
2612 /*
2613 * We record the previous state before we close it, so that if we are
2614 * doing a reopen(), we don't generate FMA ereports if we notice that
2615 * it's still faulted.
2616 */
2617 vd->vdev_prevstate = vd->vdev_state;
2618
2619 if (vd->vdev_offline)
2620 vd->vdev_state = VDEV_STATE_OFFLINE;
2621 else
2622 vd->vdev_state = VDEV_STATE_CLOSED;
2623 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2624 }
2625
2626 void
2627 vdev_hold(vdev_t *vd)
2628 {
2629 spa_t *spa = vd->vdev_spa;
2630
2631 ASSERT(spa_is_root(spa));
2632 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2633 return;
2634
2635 for (int c = 0; c < vd->vdev_children; c++)
2636 vdev_hold(vd->vdev_child[c]);
2637
2638 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2639 vd->vdev_ops->vdev_op_hold(vd);
2640 }
2641
2642 void
2643 vdev_rele(vdev_t *vd)
2644 {
2645 ASSERT(spa_is_root(vd->vdev_spa));
2646 for (int c = 0; c < vd->vdev_children; c++)
2647 vdev_rele(vd->vdev_child[c]);
2648
2649 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2650 vd->vdev_ops->vdev_op_rele(vd);
2651 }
2652
2653 /*
2654 * Reopen all interior vdevs and any unopened leaves. We don't actually
2655 * reopen leaf vdevs which had previously been opened as they might deadlock
2656 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
2657 * If the leaf has never been opened then open it, as usual.
2658 */
2659 void
2660 vdev_reopen(vdev_t *vd)
2661 {
2662 spa_t *spa = vd->vdev_spa;
2663
2664 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2665
2666 /* set the reopening flag unless we're taking the vdev offline */
2667 vd->vdev_reopening = !vd->vdev_offline;
2668 vdev_close(vd);
2669 (void) vdev_open(vd);
2670
2671 /*
2672 * Call vdev_validate() here to make sure we have the same device.
2673 * Otherwise, a device with an invalid label could be successfully
2674 * opened in response to vdev_reopen().
2675 */
2676 if (vd->vdev_aux) {
2677 (void) vdev_validate_aux(vd);
2678 if (vdev_readable(vd) && vdev_writeable(vd) &&
2679 vd->vdev_aux == &spa->spa_l2cache) {
2680 /*
2681 * In case the vdev is present we should evict all ARC
2682 * buffers and pointers to log blocks and reclaim their
2683 * space before restoring its contents to L2ARC.
2684 */
2685 if (l2arc_vdev_present(vd)) {
2686 l2arc_rebuild_vdev(vd, B_TRUE);
2687 } else {
2688 l2arc_add_vdev(spa, vd);
2689 }
2690 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2691 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2692 }
2693 } else {
2694 (void) vdev_validate(vd);
2695 }
2696
2697 /*
2698 * Recheck if resilver is still needed and cancel any
2699 * scheduled resilver if resilver is unneeded.
2700 */
2701 if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) &&
2702 spa->spa_async_tasks & SPA_ASYNC_RESILVER) {
2703 mutex_enter(&spa->spa_async_lock);
2704 spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER;
2705 mutex_exit(&spa->spa_async_lock);
2706 }
2707
2708 /*
2709 * Reassess parent vdev's health.
2710 */
2711 vdev_propagate_state(vd);
2712 }
2713
2714 int
2715 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2716 {
2717 int error;
2718
2719 /*
2720 * Normally, partial opens (e.g. of a mirror) are allowed.
2721 * For a create, however, we want to fail the request if
2722 * there are any components we can't open.
2723 */
2724 error = vdev_open(vd);
2725
2726 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2727 vdev_close(vd);
2728 return (error ? error : SET_ERROR(ENXIO));
2729 }
2730
2731 /*
2732 * Recursively load DTLs and initialize all labels.
2733 */
2734 if ((error = vdev_dtl_load(vd)) != 0 ||
2735 (error = vdev_label_init(vd, txg, isreplacing ?
2736 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2737 vdev_close(vd);
2738 return (error);
2739 }
2740
2741 return (0);
2742 }
2743
2744 void
2745 vdev_metaslab_set_size(vdev_t *vd)
2746 {
2747 uint64_t asize = vd->vdev_asize;
2748 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2749 uint64_t ms_shift;
2750
2751 /*
2752 * There are two dimensions to the metaslab sizing calculation:
2753 * the size of the metaslab and the count of metaslabs per vdev.
2754 *
2755 * The default values used below are a good balance between memory
2756 * usage (larger metaslab size means more memory needed for loaded
2757 * metaslabs; more metaslabs means more memory needed for the
2758 * metaslab_t structs), metaslab load time (larger metaslabs take
2759 * longer to load), and metaslab sync time (more metaslabs means
2760 * more time spent syncing all of them).
2761 *
2762 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2763 * The range of the dimensions are as follows:
2764 *
2765 * 2^29 <= ms_size <= 2^34
2766 * 16 <= ms_count <= 131,072
2767 *
2768 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2769 * at least 512MB (2^29) to minimize fragmentation effects when
2770 * testing with smaller devices. However, the count constraint
2771 * of at least 16 metaslabs will override this minimum size goal.
2772 *
2773 * On the upper end of vdev sizes, we aim for a maximum metaslab
2774 * size of 16GB. However, we will cap the total count to 2^17
2775 * metaslabs to keep our memory footprint in check and let the
2776 * metaslab size grow from there if that limit is hit.
2777 *
2778 * The net effect of applying above constrains is summarized below.
2779 *
2780 * vdev size metaslab count
2781 * --------------|-----------------
2782 * < 8GB ~16
2783 * 8GB - 100GB one per 512MB
2784 * 100GB - 3TB ~200
2785 * 3TB - 2PB one per 16GB
2786 * > 2PB ~131,072
2787 * --------------------------------
2788 *
2789 * Finally, note that all of the above calculate the initial
2790 * number of metaslabs. Expanding a top-level vdev will result
2791 * in additional metaslabs being allocated making it possible
2792 * to exceed the zfs_vdev_ms_count_limit.
2793 */
2794
2795 if (ms_count < zfs_vdev_min_ms_count)
2796 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2797 else if (ms_count > zfs_vdev_default_ms_count)
2798 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2799 else
2800 ms_shift = zfs_vdev_default_ms_shift;
2801
2802 if (ms_shift < SPA_MAXBLOCKSHIFT) {
2803 ms_shift = SPA_MAXBLOCKSHIFT;
2804 } else if (ms_shift > zfs_vdev_max_ms_shift) {
2805 ms_shift = zfs_vdev_max_ms_shift;
2806 /* cap the total count to constrain memory footprint */
2807 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2808 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2809 }
2810
2811 vd->vdev_ms_shift = ms_shift;
2812 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2813 }
2814
2815 void
2816 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2817 {
2818 ASSERT(vd == vd->vdev_top);
2819 /* indirect vdevs don't have metaslabs or dtls */
2820 ASSERT(vdev_is_concrete(vd) || flags == 0);
2821 ASSERT(ISP2(flags));
2822 ASSERT(spa_writeable(vd->vdev_spa));
2823
2824 if (flags & VDD_METASLAB)
2825 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2826
2827 if (flags & VDD_DTL)
2828 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2829
2830 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2831 }
2832
2833 void
2834 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2835 {
2836 for (int c = 0; c < vd->vdev_children; c++)
2837 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2838
2839 if (vd->vdev_ops->vdev_op_leaf)
2840 vdev_dirty(vd->vdev_top, flags, vd, txg);
2841 }
2842
2843 /*
2844 * DTLs.
2845 *
2846 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2847 * the vdev has less than perfect replication. There are four kinds of DTL:
2848 *
2849 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2850 *
2851 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2852 *
2853 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2854 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2855 * txgs that was scrubbed.
2856 *
2857 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2858 * persistent errors or just some device being offline.
2859 * Unlike the other three, the DTL_OUTAGE map is not generally
2860 * maintained; it's only computed when needed, typically to
2861 * determine whether a device can be detached.
2862 *
2863 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2864 * either has the data or it doesn't.
2865 *
2866 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2867 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2868 * if any child is less than fully replicated, then so is its parent.
2869 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2870 * comprising only those txgs which appear in 'maxfaults' or more children;
2871 * those are the txgs we don't have enough replication to read. For example,
2872 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2873 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2874 * two child DTL_MISSING maps.
2875 *
2876 * It should be clear from the above that to compute the DTLs and outage maps
2877 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2878 * Therefore, that is all we keep on disk. When loading the pool, or after
2879 * a configuration change, we generate all other DTLs from first principles.
2880 */
2881 void
2882 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2883 {
2884 range_tree_t *rt = vd->vdev_dtl[t];
2885
2886 ASSERT(t < DTL_TYPES);
2887 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2888 ASSERT(spa_writeable(vd->vdev_spa));
2889
2890 mutex_enter(&vd->vdev_dtl_lock);
2891 if (!range_tree_contains(rt, txg, size))
2892 range_tree_add(rt, txg, size);
2893 mutex_exit(&vd->vdev_dtl_lock);
2894 }
2895
2896 boolean_t
2897 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2898 {
2899 range_tree_t *rt = vd->vdev_dtl[t];
2900 boolean_t dirty = B_FALSE;
2901
2902 ASSERT(t < DTL_TYPES);
2903 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2904
2905 /*
2906 * While we are loading the pool, the DTLs have not been loaded yet.
2907 * This isn't a problem but it can result in devices being tried
2908 * which are known to not have the data. In which case, the import
2909 * is relying on the checksum to ensure that we get the right data.
2910 * Note that while importing we are only reading the MOS, which is
2911 * always checksummed.
2912 */
2913 mutex_enter(&vd->vdev_dtl_lock);
2914 if (!range_tree_is_empty(rt))
2915 dirty = range_tree_contains(rt, txg, size);
2916 mutex_exit(&vd->vdev_dtl_lock);
2917
2918 return (dirty);
2919 }
2920
2921 boolean_t
2922 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2923 {
2924 range_tree_t *rt = vd->vdev_dtl[t];
2925 boolean_t empty;
2926
2927 mutex_enter(&vd->vdev_dtl_lock);
2928 empty = range_tree_is_empty(rt);
2929 mutex_exit(&vd->vdev_dtl_lock);
2930
2931 return (empty);
2932 }
2933
2934 /*
2935 * Check if the txg falls within the range which must be
2936 * resilvered. DVAs outside this range can always be skipped.
2937 */
2938 boolean_t
2939 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2940 uint64_t phys_birth)
2941 {
2942 (void) dva, (void) psize;
2943
2944 /* Set by sequential resilver. */
2945 if (phys_birth == TXG_UNKNOWN)
2946 return (B_TRUE);
2947
2948 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
2949 }
2950
2951 /*
2952 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
2953 */
2954 boolean_t
2955 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2956 uint64_t phys_birth)
2957 {
2958 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2959
2960 if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2961 vd->vdev_ops->vdev_op_leaf)
2962 return (B_TRUE);
2963
2964 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
2965 phys_birth));
2966 }
2967
2968 /*
2969 * Returns the lowest txg in the DTL range.
2970 */
2971 static uint64_t
2972 vdev_dtl_min(vdev_t *vd)
2973 {
2974 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2975 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2976 ASSERT0(vd->vdev_children);
2977
2978 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
2979 }
2980
2981 /*
2982 * Returns the highest txg in the DTL.
2983 */
2984 static uint64_t
2985 vdev_dtl_max(vdev_t *vd)
2986 {
2987 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2988 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2989 ASSERT0(vd->vdev_children);
2990
2991 return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
2992 }
2993
2994 /*
2995 * Determine if a resilvering vdev should remove any DTL entries from
2996 * its range. If the vdev was resilvering for the entire duration of the
2997 * scan then it should excise that range from its DTLs. Otherwise, this
2998 * vdev is considered partially resilvered and should leave its DTL
2999 * entries intact. The comment in vdev_dtl_reassess() describes how we
3000 * excise the DTLs.
3001 */
3002 static boolean_t
3003 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
3004 {
3005 ASSERT0(vd->vdev_children);
3006
3007 if (vd->vdev_state < VDEV_STATE_DEGRADED)
3008 return (B_FALSE);
3009
3010 if (vd->vdev_resilver_deferred)
3011 return (B_FALSE);
3012
3013 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
3014 return (B_TRUE);
3015
3016 if (rebuild_done) {
3017 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3018 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
3019
3020 /* Rebuild not initiated by attach */
3021 if (vd->vdev_rebuild_txg == 0)
3022 return (B_TRUE);
3023
3024 /*
3025 * When a rebuild completes without error then all missing data
3026 * up to the rebuild max txg has been reconstructed and the DTL
3027 * is eligible for excision.
3028 */
3029 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
3030 vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
3031 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
3032 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
3033 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
3034 return (B_TRUE);
3035 }
3036 } else {
3037 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3038 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
3039
3040 /* Resilver not initiated by attach */
3041 if (vd->vdev_resilver_txg == 0)
3042 return (B_TRUE);
3043
3044 /*
3045 * When a resilver is initiated the scan will assign the
3046 * scn_max_txg value to the highest txg value that exists
3047 * in all DTLs. If this device's max DTL is not part of this
3048 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3049 * then it is not eligible for excision.
3050 */
3051 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
3052 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
3053 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
3054 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
3055 return (B_TRUE);
3056 }
3057 }
3058
3059 return (B_FALSE);
3060 }
3061
3062 /*
3063 * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3064 * write operations will be issued to the pool.
3065 */
3066 void
3067 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3068 boolean_t scrub_done, boolean_t rebuild_done)
3069 {
3070 spa_t *spa = vd->vdev_spa;
3071 avl_tree_t reftree;
3072 int minref;
3073
3074 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3075
3076 for (int c = 0; c < vd->vdev_children; c++)
3077 vdev_dtl_reassess(vd->vdev_child[c], txg,
3078 scrub_txg, scrub_done, rebuild_done);
3079
3080 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3081 return;
3082
3083 if (vd->vdev_ops->vdev_op_leaf) {
3084 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3085 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3086 boolean_t check_excise = B_FALSE;
3087 boolean_t wasempty = B_TRUE;
3088
3089 mutex_enter(&vd->vdev_dtl_lock);
3090
3091 /*
3092 * If requested, pretend the scan or rebuild completed cleanly.
3093 */
3094 if (zfs_scan_ignore_errors) {
3095 if (scn != NULL)
3096 scn->scn_phys.scn_errors = 0;
3097 if (vr != NULL)
3098 vr->vr_rebuild_phys.vrp_errors = 0;
3099 }
3100
3101 if (scrub_txg != 0 &&
3102 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3103 wasempty = B_FALSE;
3104 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3105 "dtl:%llu/%llu errors:%llu",
3106 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3107 (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3108 (u_longlong_t)vdev_dtl_min(vd),
3109 (u_longlong_t)vdev_dtl_max(vd),
3110 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3111 }
3112
3113 /*
3114 * If we've completed a scrub/resilver or a rebuild cleanly
3115 * then determine if this vdev should remove any DTLs. We
3116 * only want to excise regions on vdevs that were available
3117 * during the entire duration of this scan.
3118 */
3119 if (rebuild_done &&
3120 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3121 check_excise = B_TRUE;
3122 } else {
3123 if (spa->spa_scrub_started ||
3124 (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3125 check_excise = B_TRUE;
3126 }
3127 }
3128
3129 if (scrub_txg && check_excise &&
3130 vdev_dtl_should_excise(vd, rebuild_done)) {
3131 /*
3132 * We completed a scrub, resilver or rebuild up to
3133 * scrub_txg. If we did it without rebooting, then
3134 * the scrub dtl will be valid, so excise the old
3135 * region and fold in the scrub dtl. Otherwise,
3136 * leave the dtl as-is if there was an error.
3137 *
3138 * There's little trick here: to excise the beginning
3139 * of the DTL_MISSING map, we put it into a reference
3140 * tree and then add a segment with refcnt -1 that
3141 * covers the range [0, scrub_txg). This means
3142 * that each txg in that range has refcnt -1 or 0.
3143 * We then add DTL_SCRUB with a refcnt of 2, so that
3144 * entries in the range [0, scrub_txg) will have a
3145 * positive refcnt -- either 1 or 2. We then convert
3146 * the reference tree into the new DTL_MISSING map.
3147 */
3148 space_reftree_create(&reftree);
3149 space_reftree_add_map(&reftree,
3150 vd->vdev_dtl[DTL_MISSING], 1);
3151 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3152 space_reftree_add_map(&reftree,
3153 vd->vdev_dtl[DTL_SCRUB], 2);
3154 space_reftree_generate_map(&reftree,
3155 vd->vdev_dtl[DTL_MISSING], 1);
3156 space_reftree_destroy(&reftree);
3157
3158 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3159 zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3160 (u_longlong_t)vdev_dtl_min(vd),
3161 (u_longlong_t)vdev_dtl_max(vd));
3162 } else if (!wasempty) {
3163 zfs_dbgmsg("DTL_MISSING is now empty");
3164 }
3165 }
3166 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3167 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3168 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3169 if (scrub_done)
3170 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
3171 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3172 if (!vdev_readable(vd))
3173 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3174 else
3175 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3176 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3177
3178 /*
3179 * If the vdev was resilvering or rebuilding and no longer
3180 * has any DTLs then reset the appropriate flag and dirty
3181 * the top level so that we persist the change.
3182 */
3183 if (txg != 0 &&
3184 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3185 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3186 if (vd->vdev_rebuild_txg != 0) {
3187 vd->vdev_rebuild_txg = 0;
3188 vdev_config_dirty(vd->vdev_top);
3189 } else if (vd->vdev_resilver_txg != 0) {
3190 vd->vdev_resilver_txg = 0;
3191 vdev_config_dirty(vd->vdev_top);
3192 }
3193 }
3194
3195 mutex_exit(&vd->vdev_dtl_lock);
3196
3197 if (txg != 0)
3198 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3199 return;
3200 }
3201
3202 mutex_enter(&vd->vdev_dtl_lock);
3203 for (int t = 0; t < DTL_TYPES; t++) {
3204 /* account for child's outage in parent's missing map */
3205 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3206 if (t == DTL_SCRUB)
3207 continue; /* leaf vdevs only */
3208 if (t == DTL_PARTIAL)
3209 minref = 1; /* i.e. non-zero */
3210 else if (vdev_get_nparity(vd) != 0)
3211 minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */
3212 else
3213 minref = vd->vdev_children; /* any kind of mirror */
3214 space_reftree_create(&reftree);
3215 for (int c = 0; c < vd->vdev_children; c++) {
3216 vdev_t *cvd = vd->vdev_child[c];
3217 mutex_enter(&cvd->vdev_dtl_lock);
3218 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
3219 mutex_exit(&cvd->vdev_dtl_lock);
3220 }
3221 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
3222 space_reftree_destroy(&reftree);
3223 }
3224 mutex_exit(&vd->vdev_dtl_lock);
3225 }
3226
3227 /*
3228 * Iterate over all the vdevs except spare, and post kobj events
3229 */
3230 void
3231 vdev_post_kobj_evt(vdev_t *vd)
3232 {
3233 if (vd->vdev_ops->vdev_op_kobj_evt_post &&
3234 vd->vdev_kobj_flag == B_FALSE) {
3235 vd->vdev_kobj_flag = B_TRUE;
3236 vd->vdev_ops->vdev_op_kobj_evt_post(vd);
3237 }
3238
3239 for (int c = 0; c < vd->vdev_children; c++)
3240 vdev_post_kobj_evt(vd->vdev_child[c]);
3241 }
3242
3243 /*
3244 * Iterate over all the vdevs except spare, and clear kobj events
3245 */
3246 void
3247 vdev_clear_kobj_evt(vdev_t *vd)
3248 {
3249 vd->vdev_kobj_flag = B_FALSE;
3250
3251 for (int c = 0; c < vd->vdev_children; c++)
3252 vdev_clear_kobj_evt(vd->vdev_child[c]);
3253 }
3254
3255 int
3256 vdev_dtl_load(vdev_t *vd)
3257 {
3258 spa_t *spa = vd->vdev_spa;
3259 objset_t *mos = spa->spa_meta_objset;
3260 range_tree_t *rt;
3261 int error = 0;
3262
3263 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3264 ASSERT(vdev_is_concrete(vd));
3265
3266 /*
3267 * If the dtl cannot be sync'd there is no need to open it.
3268 */
3269 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3270 return (0);
3271
3272 error = space_map_open(&vd->vdev_dtl_sm, mos,
3273 vd->vdev_dtl_object, 0, -1ULL, 0);
3274 if (error)
3275 return (error);
3276 ASSERT(vd->vdev_dtl_sm != NULL);
3277
3278 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3279 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3280 if (error == 0) {
3281 mutex_enter(&vd->vdev_dtl_lock);
3282 range_tree_walk(rt, range_tree_add,
3283 vd->vdev_dtl[DTL_MISSING]);
3284 mutex_exit(&vd->vdev_dtl_lock);
3285 }
3286
3287 range_tree_vacate(rt, NULL, NULL);
3288 range_tree_destroy(rt);
3289
3290 return (error);
3291 }
3292
3293 for (int c = 0; c < vd->vdev_children; c++) {
3294 error = vdev_dtl_load(vd->vdev_child[c]);
3295 if (error != 0)
3296 break;
3297 }
3298
3299 return (error);
3300 }
3301
3302 static void
3303 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3304 {
3305 spa_t *spa = vd->vdev_spa;
3306 objset_t *mos = spa->spa_meta_objset;
3307 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3308 const char *string;
3309
3310 ASSERT(alloc_bias != VDEV_BIAS_NONE);
3311
3312 string =
3313 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3314 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3315 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3316
3317 ASSERT(string != NULL);
3318 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3319 1, strlen(string) + 1, string, tx));
3320
3321 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3322 spa_activate_allocation_classes(spa, tx);
3323 }
3324 }
3325
3326 void
3327 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3328 {
3329 spa_t *spa = vd->vdev_spa;
3330
3331 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3332 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3333 zapobj, tx));
3334 }
3335
3336 uint64_t
3337 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3338 {
3339 spa_t *spa = vd->vdev_spa;
3340 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3341 DMU_OT_NONE, 0, tx);
3342
3343 ASSERT(zap != 0);
3344 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3345 zap, tx));
3346
3347 return (zap);
3348 }
3349
3350 void
3351 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3352 {
3353 if (vd->vdev_ops != &vdev_hole_ops &&
3354 vd->vdev_ops != &vdev_missing_ops &&
3355 vd->vdev_ops != &vdev_root_ops &&
3356 !vd->vdev_top->vdev_removing) {
3357 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3358 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3359 }
3360 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3361 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3362 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3363 vdev_zap_allocation_data(vd, tx);
3364 }
3365 }
3366 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 &&
3367 spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
3368 if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2))
3369 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx);
3370 vd->vdev_root_zap = vdev_create_link_zap(vd, tx);
3371 }
3372
3373 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3374 vdev_construct_zaps(vd->vdev_child[i], tx);
3375 }
3376 }
3377
3378 static void
3379 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3380 {
3381 spa_t *spa = vd->vdev_spa;
3382 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3383 objset_t *mos = spa->spa_meta_objset;
3384 range_tree_t *rtsync;
3385 dmu_tx_t *tx;
3386 uint64_t object = space_map_object(vd->vdev_dtl_sm);
3387
3388 ASSERT(vdev_is_concrete(vd));
3389 ASSERT(vd->vdev_ops->vdev_op_leaf);
3390
3391 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3392
3393 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3394 mutex_enter(&vd->vdev_dtl_lock);
3395 space_map_free(vd->vdev_dtl_sm, tx);
3396 space_map_close(vd->vdev_dtl_sm);
3397 vd->vdev_dtl_sm = NULL;
3398 mutex_exit(&vd->vdev_dtl_lock);
3399
3400 /*
3401 * We only destroy the leaf ZAP for detached leaves or for
3402 * removed log devices. Removed data devices handle leaf ZAP
3403 * cleanup later, once cancellation is no longer possible.
3404 */
3405 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3406 vd->vdev_top->vdev_islog)) {
3407 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3408 vd->vdev_leaf_zap = 0;
3409 }
3410
3411 dmu_tx_commit(tx);
3412 return;
3413 }
3414
3415 if (vd->vdev_dtl_sm == NULL) {
3416 uint64_t new_object;
3417
3418 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3419 VERIFY3U(new_object, !=, 0);
3420
3421 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3422 0, -1ULL, 0));
3423 ASSERT(vd->vdev_dtl_sm != NULL);
3424 }
3425
3426 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3427
3428 mutex_enter(&vd->vdev_dtl_lock);
3429 range_tree_walk(rt, range_tree_add, rtsync);
3430 mutex_exit(&vd->vdev_dtl_lock);
3431
3432 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3433 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3434 range_tree_vacate(rtsync, NULL, NULL);
3435
3436 range_tree_destroy(rtsync);
3437
3438 /*
3439 * If the object for the space map has changed then dirty
3440 * the top level so that we update the config.
3441 */
3442 if (object != space_map_object(vd->vdev_dtl_sm)) {
3443 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3444 "new object %llu", (u_longlong_t)txg, spa_name(spa),
3445 (u_longlong_t)object,
3446 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3447 vdev_config_dirty(vd->vdev_top);
3448 }
3449
3450 dmu_tx_commit(tx);
3451 }
3452
3453 /*
3454 * Determine whether the specified vdev can be offlined/detached/removed
3455 * without losing data.
3456 */
3457 boolean_t
3458 vdev_dtl_required(vdev_t *vd)
3459 {
3460 spa_t *spa = vd->vdev_spa;
3461 vdev_t *tvd = vd->vdev_top;
3462 uint8_t cant_read = vd->vdev_cant_read;
3463 boolean_t required;
3464
3465 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3466
3467 if (vd == spa->spa_root_vdev || vd == tvd)
3468 return (B_TRUE);
3469
3470 /*
3471 * Temporarily mark the device as unreadable, and then determine
3472 * whether this results in any DTL outages in the top-level vdev.
3473 * If not, we can safely offline/detach/remove the device.
3474 */
3475 vd->vdev_cant_read = B_TRUE;
3476 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3477 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3478 vd->vdev_cant_read = cant_read;
3479 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3480
3481 if (!required && zio_injection_enabled) {
3482 required = !!zio_handle_device_injection(vd, NULL,
3483 SET_ERROR(ECHILD));
3484 }
3485
3486 return (required);
3487 }
3488
3489 /*
3490 * Determine if resilver is needed, and if so the txg range.
3491 */
3492 boolean_t
3493 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3494 {
3495 boolean_t needed = B_FALSE;
3496 uint64_t thismin = UINT64_MAX;
3497 uint64_t thismax = 0;
3498
3499 if (vd->vdev_children == 0) {
3500 mutex_enter(&vd->vdev_dtl_lock);
3501 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3502 vdev_writeable(vd)) {
3503
3504 thismin = vdev_dtl_min(vd);
3505 thismax = vdev_dtl_max(vd);
3506 needed = B_TRUE;
3507 }
3508 mutex_exit(&vd->vdev_dtl_lock);
3509 } else {
3510 for (int c = 0; c < vd->vdev_children; c++) {
3511 vdev_t *cvd = vd->vdev_child[c];
3512 uint64_t cmin, cmax;
3513
3514 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3515 thismin = MIN(thismin, cmin);
3516 thismax = MAX(thismax, cmax);
3517 needed = B_TRUE;
3518 }
3519 }
3520 }
3521
3522 if (needed && minp) {
3523 *minp = thismin;
3524 *maxp = thismax;
3525 }
3526 return (needed);
3527 }
3528
3529 /*
3530 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
3531 * will contain either the checkpoint spacemap object or zero if none exists.
3532 * All other errors are returned to the caller.
3533 */
3534 int
3535 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3536 {
3537 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3538
3539 if (vd->vdev_top_zap == 0) {
3540 *sm_obj = 0;
3541 return (0);
3542 }
3543
3544 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3545 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3546 if (error == ENOENT) {
3547 *sm_obj = 0;
3548 error = 0;
3549 }
3550
3551 return (error);
3552 }
3553
3554 int
3555 vdev_load(vdev_t *vd)
3556 {
3557 int children = vd->vdev_children;
3558 int error = 0;
3559 taskq_t *tq = NULL;
3560
3561 /*
3562 * It's only worthwhile to use the taskq for the root vdev, because the
3563 * slow part is metaslab_init, and that only happens for top-level
3564 * vdevs.
3565 */
3566 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3567 tq = taskq_create("vdev_load", children, minclsyspri,
3568 children, children, TASKQ_PREPOPULATE);
3569 }
3570
3571 /*
3572 * Recursively load all children.
3573 */
3574 for (int c = 0; c < vd->vdev_children; c++) {
3575 vdev_t *cvd = vd->vdev_child[c];
3576
3577 if (tq == NULL || vdev_uses_zvols(cvd)) {
3578 cvd->vdev_load_error = vdev_load(cvd);
3579 } else {
3580 VERIFY(taskq_dispatch(tq, vdev_load_child,
3581 cvd, TQ_SLEEP) != TASKQID_INVALID);
3582 }
3583 }
3584
3585 if (tq != NULL) {
3586 taskq_wait(tq);
3587 taskq_destroy(tq);
3588 }
3589
3590 for (int c = 0; c < vd->vdev_children; c++) {
3591 int error = vd->vdev_child[c]->vdev_load_error;
3592
3593 if (error != 0)
3594 return (error);
3595 }
3596
3597 vdev_set_deflate_ratio(vd);
3598
3599 /*
3600 * On spa_load path, grab the allocation bias from our zap
3601 */
3602 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3603 spa_t *spa = vd->vdev_spa;
3604 char bias_str[64];
3605
3606 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3607 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3608 bias_str);
3609 if (error == 0) {
3610 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3611 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3612 } else if (error != ENOENT) {
3613 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3614 VDEV_AUX_CORRUPT_DATA);
3615 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3616 "failed [error=%d]",
3617 (u_longlong_t)vd->vdev_top_zap, error);
3618 return (error);
3619 }
3620 }
3621
3622 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3623 spa_t *spa = vd->vdev_spa;
3624 uint64_t failfast;
3625
3626 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3627 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
3628 1, &failfast);
3629 if (error == 0) {
3630 vd->vdev_failfast = failfast & 1;
3631 } else if (error == ENOENT) {
3632 vd->vdev_failfast = vdev_prop_default_numeric(
3633 VDEV_PROP_FAILFAST);
3634 } else {
3635 vdev_dbgmsg(vd,
3636 "vdev_load: zap_lookup(top_zap=%llu) "
3637 "failed [error=%d]",
3638 (u_longlong_t)vd->vdev_top_zap, error);
3639 }
3640 }
3641
3642 /*
3643 * Load any rebuild state from the top-level vdev zap.
3644 */
3645 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3646 error = vdev_rebuild_load(vd);
3647 if (error && error != ENOTSUP) {
3648 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3649 VDEV_AUX_CORRUPT_DATA);
3650 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3651 "failed [error=%d]", error);
3652 return (error);
3653 }
3654 }
3655
3656 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
3657 uint64_t zapobj;
3658
3659 if (vd->vdev_top_zap != 0)
3660 zapobj = vd->vdev_top_zap;
3661 else
3662 zapobj = vd->vdev_leaf_zap;
3663
3664 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
3665 &vd->vdev_checksum_n);
3666 if (error && error != ENOENT)
3667 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3668 "failed [error=%d]", (u_longlong_t)zapobj, error);
3669
3670 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
3671 &vd->vdev_checksum_t);
3672 if (error && error != ENOENT)
3673 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3674 "failed [error=%d]", (u_longlong_t)zapobj, error);
3675
3676 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
3677 &vd->vdev_io_n);
3678 if (error && error != ENOENT)
3679 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3680 "failed [error=%d]", (u_longlong_t)zapobj, error);
3681
3682 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
3683 &vd->vdev_io_t);
3684 if (error && error != ENOENT)
3685 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3686 "failed [error=%d]", (u_longlong_t)zapobj, error);
3687 }
3688
3689 /*
3690 * If this is a top-level vdev, initialize its metaslabs.
3691 */
3692 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3693 vdev_metaslab_group_create(vd);
3694
3695 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3696 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3697 VDEV_AUX_CORRUPT_DATA);
3698 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3699 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3700 (u_longlong_t)vd->vdev_asize);
3701 return (SET_ERROR(ENXIO));
3702 }
3703
3704 error = vdev_metaslab_init(vd, 0);
3705 if (error != 0) {
3706 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3707 "[error=%d]", error);
3708 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3709 VDEV_AUX_CORRUPT_DATA);
3710 return (error);
3711 }
3712
3713 uint64_t checkpoint_sm_obj;
3714 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3715 if (error == 0 && checkpoint_sm_obj != 0) {
3716 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3717 ASSERT(vd->vdev_asize != 0);
3718 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3719
3720 error = space_map_open(&vd->vdev_checkpoint_sm,
3721 mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3722 vd->vdev_ashift);
3723 if (error != 0) {
3724 vdev_dbgmsg(vd, "vdev_load: space_map_open "
3725 "failed for checkpoint spacemap (obj %llu) "
3726 "[error=%d]",
3727 (u_longlong_t)checkpoint_sm_obj, error);
3728 return (error);
3729 }
3730 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3731
3732 /*
3733 * Since the checkpoint_sm contains free entries
3734 * exclusively we can use space_map_allocated() to
3735 * indicate the cumulative checkpointed space that
3736 * has been freed.
3737 */
3738 vd->vdev_stat.vs_checkpoint_space =
3739 -space_map_allocated(vd->vdev_checkpoint_sm);
3740 vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3741 vd->vdev_stat.vs_checkpoint_space;
3742 } else if (error != 0) {
3743 vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3744 "checkpoint space map object from vdev ZAP "
3745 "[error=%d]", error);
3746 return (error);
3747 }
3748 }
3749
3750 /*
3751 * If this is a leaf vdev, load its DTL.
3752 */
3753 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3754 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3755 VDEV_AUX_CORRUPT_DATA);
3756 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3757 "[error=%d]", error);
3758 return (error);
3759 }
3760
3761 uint64_t obsolete_sm_object;
3762 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3763 if (error == 0 && obsolete_sm_object != 0) {
3764 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3765 ASSERT(vd->vdev_asize != 0);
3766 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3767
3768 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3769 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3770 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3771 VDEV_AUX_CORRUPT_DATA);
3772 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3773 "obsolete spacemap (obj %llu) [error=%d]",
3774 (u_longlong_t)obsolete_sm_object, error);
3775 return (error);
3776 }
3777 } else if (error != 0) {
3778 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3779 "space map object from vdev ZAP [error=%d]", error);
3780 return (error);
3781 }
3782
3783 return (0);
3784 }
3785
3786 /*
3787 * The special vdev case is used for hot spares and l2cache devices. Its
3788 * sole purpose it to set the vdev state for the associated vdev. To do this,
3789 * we make sure that we can open the underlying device, then try to read the
3790 * label, and make sure that the label is sane and that it hasn't been
3791 * repurposed to another pool.
3792 */
3793 int
3794 vdev_validate_aux(vdev_t *vd)
3795 {
3796 nvlist_t *label;
3797 uint64_t guid, version;
3798 uint64_t state;
3799
3800 if (!vdev_readable(vd))
3801 return (0);
3802
3803 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3804 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3805 VDEV_AUX_CORRUPT_DATA);
3806 return (-1);
3807 }
3808
3809 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3810 !SPA_VERSION_IS_SUPPORTED(version) ||
3811 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3812 guid != vd->vdev_guid ||
3813 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3814 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3815 VDEV_AUX_CORRUPT_DATA);
3816 nvlist_free(label);
3817 return (-1);
3818 }
3819
3820 /*
3821 * We don't actually check the pool state here. If it's in fact in
3822 * use by another pool, we update this fact on the fly when requested.
3823 */
3824 nvlist_free(label);
3825 return (0);
3826 }
3827
3828 static void
3829 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3830 {
3831 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3832
3833 if (vd->vdev_top_zap == 0)
3834 return;
3835
3836 uint64_t object = 0;
3837 int err = zap_lookup(mos, vd->vdev_top_zap,
3838 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3839 if (err == ENOENT)
3840 return;
3841 VERIFY0(err);
3842
3843 VERIFY0(dmu_object_free(mos, object, tx));
3844 VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3845 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3846 }
3847
3848 /*
3849 * Free the objects used to store this vdev's spacemaps, and the array
3850 * that points to them.
3851 */
3852 void
3853 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3854 {
3855 if (vd->vdev_ms_array == 0)
3856 return;
3857
3858 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3859 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3860 size_t array_bytes = array_count * sizeof (uint64_t);
3861 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3862 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3863 array_bytes, smobj_array, 0));
3864
3865 for (uint64_t i = 0; i < array_count; i++) {
3866 uint64_t smobj = smobj_array[i];
3867 if (smobj == 0)
3868 continue;
3869
3870 space_map_free_obj(mos, smobj, tx);
3871 }
3872
3873 kmem_free(smobj_array, array_bytes);
3874 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3875 vdev_destroy_ms_flush_data(vd, tx);
3876 vd->vdev_ms_array = 0;
3877 }
3878
3879 static void
3880 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3881 {
3882 spa_t *spa = vd->vdev_spa;
3883
3884 ASSERT(vd->vdev_islog);
3885 ASSERT(vd == vd->vdev_top);
3886 ASSERT3U(txg, ==, spa_syncing_txg(spa));
3887
3888 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3889
3890 vdev_destroy_spacemaps(vd, tx);
3891 if (vd->vdev_top_zap != 0) {
3892 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3893 vd->vdev_top_zap = 0;
3894 }
3895
3896 dmu_tx_commit(tx);
3897 }
3898
3899 void
3900 vdev_sync_done(vdev_t *vd, uint64_t txg)
3901 {
3902 metaslab_t *msp;
3903 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3904
3905 ASSERT(vdev_is_concrete(vd));
3906
3907 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3908 != NULL)
3909 metaslab_sync_done(msp, txg);
3910
3911 if (reassess) {
3912 metaslab_sync_reassess(vd->vdev_mg);
3913 if (vd->vdev_log_mg != NULL)
3914 metaslab_sync_reassess(vd->vdev_log_mg);
3915 }
3916 }
3917
3918 void
3919 vdev_sync(vdev_t *vd, uint64_t txg)
3920 {
3921 spa_t *spa = vd->vdev_spa;
3922 vdev_t *lvd;
3923 metaslab_t *msp;
3924
3925 ASSERT3U(txg, ==, spa->spa_syncing_txg);
3926 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3927 if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3928 ASSERT(vd->vdev_removing ||
3929 vd->vdev_ops == &vdev_indirect_ops);
3930
3931 vdev_indirect_sync_obsolete(vd, tx);
3932
3933 /*
3934 * If the vdev is indirect, it can't have dirty
3935 * metaslabs or DTLs.
3936 */
3937 if (vd->vdev_ops == &vdev_indirect_ops) {
3938 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3939 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3940 dmu_tx_commit(tx);
3941 return;
3942 }
3943 }
3944
3945 ASSERT(vdev_is_concrete(vd));
3946
3947 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3948 !vd->vdev_removing) {
3949 ASSERT(vd == vd->vdev_top);
3950 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3951 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3952 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3953 ASSERT(vd->vdev_ms_array != 0);
3954 vdev_config_dirty(vd);
3955 }
3956
3957 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3958 metaslab_sync(msp, txg);
3959 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3960 }
3961
3962 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3963 vdev_dtl_sync(lvd, txg);
3964
3965 /*
3966 * If this is an empty log device being removed, destroy the
3967 * metadata associated with it.
3968 */
3969 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3970 vdev_remove_empty_log(vd, txg);
3971
3972 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3973 dmu_tx_commit(tx);
3974 }
3975
3976 uint64_t
3977 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3978 {
3979 return (vd->vdev_ops->vdev_op_asize(vd, psize));
3980 }
3981
3982 /*
3983 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
3984 * not be opened, and no I/O is attempted.
3985 */
3986 int
3987 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3988 {
3989 vdev_t *vd, *tvd;
3990
3991 spa_vdev_state_enter(spa, SCL_NONE);
3992
3993 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3994 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3995
3996 if (!vd->vdev_ops->vdev_op_leaf)
3997 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3998
3999 tvd = vd->vdev_top;
4000
4001 /*
4002 * If user did a 'zpool offline -f' then make the fault persist across
4003 * reboots.
4004 */
4005 if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
4006 /*
4007 * There are two kinds of forced faults: temporary and
4008 * persistent. Temporary faults go away at pool import, while
4009 * persistent faults stay set. Both types of faults can be
4010 * cleared with a zpool clear.
4011 *
4012 * We tell if a vdev is persistently faulted by looking at the
4013 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
4014 * import then it's a persistent fault. Otherwise, it's
4015 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
4016 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
4017 * tells vdev_config_generate() (which gets run later) to set
4018 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
4019 */
4020 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
4021 vd->vdev_tmpoffline = B_FALSE;
4022 aux = VDEV_AUX_EXTERNAL;
4023 } else {
4024 vd->vdev_tmpoffline = B_TRUE;
4025 }
4026
4027 /*
4028 * We don't directly use the aux state here, but if we do a
4029 * vdev_reopen(), we need this value to be present to remember why we
4030 * were faulted.
4031 */
4032 vd->vdev_label_aux = aux;
4033
4034 /*
4035 * Faulted state takes precedence over degraded.
4036 */
4037 vd->vdev_delayed_close = B_FALSE;
4038 vd->vdev_faulted = 1ULL;
4039 vd->vdev_degraded = 0ULL;
4040 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
4041
4042 /*
4043 * If this device has the only valid copy of the data, then
4044 * back off and simply mark the vdev as degraded instead.
4045 */
4046 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
4047 vd->vdev_degraded = 1ULL;
4048 vd->vdev_faulted = 0ULL;
4049
4050 /*
4051 * If we reopen the device and it's not dead, only then do we
4052 * mark it degraded.
4053 */
4054 vdev_reopen(tvd);
4055
4056 if (vdev_readable(vd))
4057 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
4058 }
4059
4060 return (spa_vdev_state_exit(spa, vd, 0));
4061 }
4062
4063 /*
4064 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
4065 * user that something is wrong. The vdev continues to operate as normal as far
4066 * as I/O is concerned.
4067 */
4068 int
4069 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4070 {
4071 vdev_t *vd;
4072
4073 spa_vdev_state_enter(spa, SCL_NONE);
4074
4075 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4076 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4077
4078 if (!vd->vdev_ops->vdev_op_leaf)
4079 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4080
4081 /*
4082 * If the vdev is already faulted, then don't do anything.
4083 */
4084 if (vd->vdev_faulted || vd->vdev_degraded)
4085 return (spa_vdev_state_exit(spa, NULL, 0));
4086
4087 vd->vdev_degraded = 1ULL;
4088 if (!vdev_is_dead(vd))
4089 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
4090 aux);
4091
4092 return (spa_vdev_state_exit(spa, vd, 0));
4093 }
4094
4095 int
4096 vdev_remove_wanted(spa_t *spa, uint64_t guid)
4097 {
4098 vdev_t *vd;
4099
4100 spa_vdev_state_enter(spa, SCL_NONE);
4101
4102 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4103 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4104
4105 /*
4106 * If the vdev is already removed, or expanding which can trigger
4107 * repartition add/remove events, then don't do anything.
4108 */
4109 if (vd->vdev_removed || vd->vdev_expanding)
4110 return (spa_vdev_state_exit(spa, NULL, 0));
4111
4112 /*
4113 * Confirm the vdev has been removed, otherwise don't do anything.
4114 */
4115 if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL)))
4116 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST)));
4117
4118 vd->vdev_remove_wanted = B_TRUE;
4119 spa_async_request(spa, SPA_ASYNC_REMOVE);
4120
4121 return (spa_vdev_state_exit(spa, vd, 0));
4122 }
4123
4124
4125 /*
4126 * Online the given vdev.
4127 *
4128 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
4129 * spare device should be detached when the device finishes resilvering.
4130 * Second, the online should be treated like a 'test' online case, so no FMA
4131 * events are generated if the device fails to open.
4132 */
4133 int
4134 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
4135 {
4136 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
4137 boolean_t wasoffline;
4138 vdev_state_t oldstate;
4139
4140 spa_vdev_state_enter(spa, SCL_NONE);
4141
4142 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4143 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4144
4145 if (!vd->vdev_ops->vdev_op_leaf)
4146 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4147
4148 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
4149 oldstate = vd->vdev_state;
4150
4151 tvd = vd->vdev_top;
4152 vd->vdev_offline = B_FALSE;
4153 vd->vdev_tmpoffline = B_FALSE;
4154 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
4155 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
4156
4157 /* XXX - L2ARC 1.0 does not support expansion */
4158 if (!vd->vdev_aux) {
4159 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4160 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
4161 spa->spa_autoexpand);
4162 vd->vdev_expansion_time = gethrestime_sec();
4163 }
4164
4165 vdev_reopen(tvd);
4166 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
4167
4168 if (!vd->vdev_aux) {
4169 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4170 pvd->vdev_expanding = B_FALSE;
4171 }
4172
4173 if (newstate)
4174 *newstate = vd->vdev_state;
4175 if ((flags & ZFS_ONLINE_UNSPARE) &&
4176 !vdev_is_dead(vd) && vd->vdev_parent &&
4177 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4178 vd->vdev_parent->vdev_child[0] == vd)
4179 vd->vdev_unspare = B_TRUE;
4180
4181 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
4182
4183 /* XXX - L2ARC 1.0 does not support expansion */
4184 if (vd->vdev_aux)
4185 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
4186 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4187 }
4188
4189 /* Restart initializing if necessary */
4190 mutex_enter(&vd->vdev_initialize_lock);
4191 if (vdev_writeable(vd) &&
4192 vd->vdev_initialize_thread == NULL &&
4193 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
4194 (void) vdev_initialize(vd);
4195 }
4196 mutex_exit(&vd->vdev_initialize_lock);
4197
4198 /*
4199 * Restart trimming if necessary. We do not restart trimming for cache
4200 * devices here. This is triggered by l2arc_rebuild_vdev()
4201 * asynchronously for the whole device or in l2arc_evict() as it evicts
4202 * space for upcoming writes.
4203 */
4204 mutex_enter(&vd->vdev_trim_lock);
4205 if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4206 vd->vdev_trim_thread == NULL &&
4207 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4208 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4209 vd->vdev_trim_secure);
4210 }
4211 mutex_exit(&vd->vdev_trim_lock);
4212
4213 if (wasoffline ||
4214 (oldstate < VDEV_STATE_DEGRADED &&
4215 vd->vdev_state >= VDEV_STATE_DEGRADED)) {
4216 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4217
4218 /*
4219 * Asynchronously detach spare vdev if resilver or
4220 * rebuild is not required
4221 */
4222 if (vd->vdev_unspare &&
4223 !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4224 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) &&
4225 !vdev_rebuild_active(tvd))
4226 spa_async_request(spa, SPA_ASYNC_DETACH_SPARE);
4227 }
4228 return (spa_vdev_state_exit(spa, vd, 0));
4229 }
4230
4231 static int
4232 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4233 {
4234 vdev_t *vd, *tvd;
4235 int error = 0;
4236 uint64_t generation;
4237 metaslab_group_t *mg;
4238
4239 top:
4240 spa_vdev_state_enter(spa, SCL_ALLOC);
4241
4242 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4243 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4244
4245 if (!vd->vdev_ops->vdev_op_leaf)
4246 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4247
4248 if (vd->vdev_ops == &vdev_draid_spare_ops)
4249 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4250
4251 tvd = vd->vdev_top;
4252 mg = tvd->vdev_mg;
4253 generation = spa->spa_config_generation + 1;
4254
4255 /*
4256 * If the device isn't already offline, try to offline it.
4257 */
4258 if (!vd->vdev_offline) {
4259 /*
4260 * If this device has the only valid copy of some data,
4261 * don't allow it to be offlined. Log devices are always
4262 * expendable.
4263 */
4264 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4265 vdev_dtl_required(vd))
4266 return (spa_vdev_state_exit(spa, NULL,
4267 SET_ERROR(EBUSY)));
4268
4269 /*
4270 * If the top-level is a slog and it has had allocations
4271 * then proceed. We check that the vdev's metaslab group
4272 * is not NULL since it's possible that we may have just
4273 * added this vdev but not yet initialized its metaslabs.
4274 */
4275 if (tvd->vdev_islog && mg != NULL) {
4276 /*
4277 * Prevent any future allocations.
4278 */
4279 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4280 metaslab_group_passivate(mg);
4281 (void) spa_vdev_state_exit(spa, vd, 0);
4282
4283 error = spa_reset_logs(spa);
4284
4285 /*
4286 * If the log device was successfully reset but has
4287 * checkpointed data, do not offline it.
4288 */
4289 if (error == 0 &&
4290 tvd->vdev_checkpoint_sm != NULL) {
4291 ASSERT3U(space_map_allocated(
4292 tvd->vdev_checkpoint_sm), !=, 0);
4293 error = ZFS_ERR_CHECKPOINT_EXISTS;
4294 }
4295
4296 spa_vdev_state_enter(spa, SCL_ALLOC);
4297
4298 /*
4299 * Check to see if the config has changed.
4300 */
4301 if (error || generation != spa->spa_config_generation) {
4302 metaslab_group_activate(mg);
4303 if (error)
4304 return (spa_vdev_state_exit(spa,
4305 vd, error));
4306 (void) spa_vdev_state_exit(spa, vd, 0);
4307 goto top;
4308 }
4309 ASSERT0(tvd->vdev_stat.vs_alloc);
4310 }
4311
4312 /*
4313 * Offline this device and reopen its top-level vdev.
4314 * If the top-level vdev is a log device then just offline
4315 * it. Otherwise, if this action results in the top-level
4316 * vdev becoming unusable, undo it and fail the request.
4317 */
4318 vd->vdev_offline = B_TRUE;
4319 vdev_reopen(tvd);
4320
4321 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4322 vdev_is_dead(tvd)) {
4323 vd->vdev_offline = B_FALSE;
4324 vdev_reopen(tvd);
4325 return (spa_vdev_state_exit(spa, NULL,
4326 SET_ERROR(EBUSY)));
4327 }
4328
4329 /*
4330 * Add the device back into the metaslab rotor so that
4331 * once we online the device it's open for business.
4332 */
4333 if (tvd->vdev_islog && mg != NULL)
4334 metaslab_group_activate(mg);
4335 }
4336
4337 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4338
4339 return (spa_vdev_state_exit(spa, vd, 0));
4340 }
4341
4342 int
4343 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4344 {
4345 int error;
4346
4347 mutex_enter(&spa->spa_vdev_top_lock);
4348 error = vdev_offline_locked(spa, guid, flags);
4349 mutex_exit(&spa->spa_vdev_top_lock);
4350
4351 return (error);
4352 }
4353
4354 /*
4355 * Clear the error counts associated with this vdev. Unlike vdev_online() and
4356 * vdev_offline(), we assume the spa config is locked. We also clear all
4357 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
4358 */
4359 void
4360 vdev_clear(spa_t *spa, vdev_t *vd)
4361 {
4362 vdev_t *rvd = spa->spa_root_vdev;
4363
4364 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4365
4366 if (vd == NULL)
4367 vd = rvd;
4368
4369 vd->vdev_stat.vs_read_errors = 0;
4370 vd->vdev_stat.vs_write_errors = 0;
4371 vd->vdev_stat.vs_checksum_errors = 0;
4372 vd->vdev_stat.vs_slow_ios = 0;
4373
4374 for (int c = 0; c < vd->vdev_children; c++)
4375 vdev_clear(spa, vd->vdev_child[c]);
4376
4377 /*
4378 * It makes no sense to "clear" an indirect or removed vdev.
4379 */
4380 if (!vdev_is_concrete(vd) || vd->vdev_removed)
4381 return;
4382
4383 /*
4384 * If we're in the FAULTED state or have experienced failed I/O, then
4385 * clear the persistent state and attempt to reopen the device. We
4386 * also mark the vdev config dirty, so that the new faulted state is
4387 * written out to disk.
4388 */
4389 if (vd->vdev_faulted || vd->vdev_degraded ||
4390 !vdev_readable(vd) || !vdev_writeable(vd)) {
4391 /*
4392 * When reopening in response to a clear event, it may be due to
4393 * a fmadm repair request. In this case, if the device is
4394 * still broken, we want to still post the ereport again.
4395 */
4396 vd->vdev_forcefault = B_TRUE;
4397
4398 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4399 vd->vdev_cant_read = B_FALSE;
4400 vd->vdev_cant_write = B_FALSE;
4401 vd->vdev_stat.vs_aux = 0;
4402
4403 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4404
4405 vd->vdev_forcefault = B_FALSE;
4406
4407 if (vd != rvd && vdev_writeable(vd->vdev_top))
4408 vdev_state_dirty(vd->vdev_top);
4409
4410 /* If a resilver isn't required, check if vdevs can be culled */
4411 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4412 !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4413 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4414 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4415
4416 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4417 }
4418
4419 /*
4420 * When clearing a FMA-diagnosed fault, we always want to
4421 * unspare the device, as we assume that the original spare was
4422 * done in response to the FMA fault.
4423 */
4424 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4425 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4426 vd->vdev_parent->vdev_child[0] == vd)
4427 vd->vdev_unspare = B_TRUE;
4428
4429 /* Clear recent error events cache (i.e. duplicate events tracking) */
4430 zfs_ereport_clear(spa, vd);
4431 }
4432
4433 boolean_t
4434 vdev_is_dead(vdev_t *vd)
4435 {
4436 /*
4437 * Holes and missing devices are always considered "dead".
4438 * This simplifies the code since we don't have to check for
4439 * these types of devices in the various code paths.
4440 * Instead we rely on the fact that we skip over dead devices
4441 * before issuing I/O to them.
4442 */
4443 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4444 vd->vdev_ops == &vdev_hole_ops ||
4445 vd->vdev_ops == &vdev_missing_ops);
4446 }
4447
4448 boolean_t
4449 vdev_readable(vdev_t *vd)
4450 {
4451 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4452 }
4453
4454 boolean_t
4455 vdev_writeable(vdev_t *vd)
4456 {
4457 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4458 vdev_is_concrete(vd));
4459 }
4460
4461 boolean_t
4462 vdev_allocatable(vdev_t *vd)
4463 {
4464 uint64_t state = vd->vdev_state;
4465
4466 /*
4467 * We currently allow allocations from vdevs which may be in the
4468 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4469 * fails to reopen then we'll catch it later when we're holding
4470 * the proper locks. Note that we have to get the vdev state
4471 * in a local variable because although it changes atomically,
4472 * we're asking two separate questions about it.
4473 */
4474 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4475 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4476 vd->vdev_mg->mg_initialized);
4477 }
4478
4479 boolean_t
4480 vdev_accessible(vdev_t *vd, zio_t *zio)
4481 {
4482 ASSERT(zio->io_vd == vd);
4483
4484 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4485 return (B_FALSE);
4486
4487 if (zio->io_type == ZIO_TYPE_READ)
4488 return (!vd->vdev_cant_read);
4489
4490 if (zio->io_type == ZIO_TYPE_WRITE)
4491 return (!vd->vdev_cant_write);
4492
4493 return (B_TRUE);
4494 }
4495
4496 static void
4497 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4498 {
4499 /*
4500 * Exclude the dRAID spare when aggregating to avoid double counting
4501 * the ops and bytes. These IOs are counted by the physical leaves.
4502 */
4503 if (cvd->vdev_ops == &vdev_draid_spare_ops)
4504 return;
4505
4506 for (int t = 0; t < VS_ZIO_TYPES; t++) {
4507 vs->vs_ops[t] += cvs->vs_ops[t];
4508 vs->vs_bytes[t] += cvs->vs_bytes[t];
4509 }
4510
4511 cvs->vs_scan_removing = cvd->vdev_removing;
4512 }
4513
4514 /*
4515 * Get extended stats
4516 */
4517 static void
4518 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4519 {
4520 (void) cvd;
4521
4522 int t, b;
4523 for (t = 0; t < ZIO_TYPES; t++) {
4524 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4525 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4526
4527 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4528 vsx->vsx_total_histo[t][b] +=
4529 cvsx->vsx_total_histo[t][b];
4530 }
4531 }
4532
4533 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4534 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4535 vsx->vsx_queue_histo[t][b] +=
4536 cvsx->vsx_queue_histo[t][b];
4537 }
4538 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4539 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4540
4541 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4542 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4543
4544 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4545 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4546 }
4547
4548 }
4549
4550 boolean_t
4551 vdev_is_spacemap_addressable(vdev_t *vd)
4552 {
4553 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4554 return (B_TRUE);
4555
4556 /*
4557 * If double-word space map entries are not enabled we assume
4558 * 47 bits of the space map entry are dedicated to the entry's
4559 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4560 * to calculate the maximum address that can be described by a
4561 * space map entry for the given device.
4562 */
4563 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4564
4565 if (shift >= 63) /* detect potential overflow */
4566 return (B_TRUE);
4567
4568 return (vd->vdev_asize < (1ULL << shift));
4569 }
4570
4571 /*
4572 * Get statistics for the given vdev.
4573 */
4574 static void
4575 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4576 {
4577 int t;
4578 /*
4579 * If we're getting stats on the root vdev, aggregate the I/O counts
4580 * over all top-level vdevs (i.e. the direct children of the root).
4581 */
4582 if (!vd->vdev_ops->vdev_op_leaf) {
4583 if (vs) {
4584 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4585 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4586 }
4587 if (vsx)
4588 memset(vsx, 0, sizeof (*vsx));
4589
4590 for (int c = 0; c < vd->vdev_children; c++) {
4591 vdev_t *cvd = vd->vdev_child[c];
4592 vdev_stat_t *cvs = &cvd->vdev_stat;
4593 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4594
4595 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4596 if (vs)
4597 vdev_get_child_stat(cvd, vs, cvs);
4598 if (vsx)
4599 vdev_get_child_stat_ex(cvd, vsx, cvsx);
4600 }
4601 } else {
4602 /*
4603 * We're a leaf. Just copy our ZIO active queue stats in. The
4604 * other leaf stats are updated in vdev_stat_update().
4605 */
4606 if (!vsx)
4607 return;
4608
4609 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4610
4611 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4612 vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t];
4613 vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t);
4614 }
4615 }
4616 }
4617
4618 void
4619 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4620 {
4621 vdev_t *tvd = vd->vdev_top;
4622 mutex_enter(&vd->vdev_stat_lock);
4623 if (vs) {
4624 memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4625 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4626 vs->vs_state = vd->vdev_state;
4627 vs->vs_rsize = vdev_get_min_asize(vd);
4628
4629 if (vd->vdev_ops->vdev_op_leaf) {
4630 vs->vs_pspace = vd->vdev_psize;
4631 vs->vs_rsize += VDEV_LABEL_START_SIZE +
4632 VDEV_LABEL_END_SIZE;
4633 /*
4634 * Report initializing progress. Since we don't
4635 * have the initializing locks held, this is only
4636 * an estimate (although a fairly accurate one).
4637 */
4638 vs->vs_initialize_bytes_done =
4639 vd->vdev_initialize_bytes_done;
4640 vs->vs_initialize_bytes_est =
4641 vd->vdev_initialize_bytes_est;
4642 vs->vs_initialize_state = vd->vdev_initialize_state;
4643 vs->vs_initialize_action_time =
4644 vd->vdev_initialize_action_time;
4645
4646 /*
4647 * Report manual TRIM progress. Since we don't have
4648 * the manual TRIM locks held, this is only an
4649 * estimate (although fairly accurate one).
4650 */
4651 vs->vs_trim_notsup = !vd->vdev_has_trim;
4652 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4653 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4654 vs->vs_trim_state = vd->vdev_trim_state;
4655 vs->vs_trim_action_time = vd->vdev_trim_action_time;
4656
4657 /* Set when there is a deferred resilver. */
4658 vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4659 }
4660
4661 /*
4662 * Report expandable space on top-level, non-auxiliary devices
4663 * only. The expandable space is reported in terms of metaslab
4664 * sized units since that determines how much space the pool
4665 * can expand.
4666 */
4667 if (vd->vdev_aux == NULL && tvd != NULL) {
4668 vs->vs_esize = P2ALIGN(
4669 vd->vdev_max_asize - vd->vdev_asize,
4670 1ULL << tvd->vdev_ms_shift);
4671 }
4672
4673 vs->vs_configured_ashift = vd->vdev_top != NULL
4674 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4675 vs->vs_logical_ashift = vd->vdev_logical_ashift;
4676 if (vd->vdev_physical_ashift <= ASHIFT_MAX)
4677 vs->vs_physical_ashift = vd->vdev_physical_ashift;
4678 else
4679 vs->vs_physical_ashift = 0;
4680
4681 /*
4682 * Report fragmentation and rebuild progress for top-level,
4683 * non-auxiliary, concrete devices.
4684 */
4685 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4686 vdev_is_concrete(vd)) {
4687 /*
4688 * The vdev fragmentation rating doesn't take into
4689 * account the embedded slog metaslab (vdev_log_mg).
4690 * Since it's only one metaslab, it would have a tiny
4691 * impact on the overall fragmentation.
4692 */
4693 vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4694 vd->vdev_mg->mg_fragmentation : 0;
4695 }
4696 vs->vs_noalloc = MAX(vd->vdev_noalloc,
4697 tvd ? tvd->vdev_noalloc : 0);
4698 }
4699
4700 vdev_get_stats_ex_impl(vd, vs, vsx);
4701 mutex_exit(&vd->vdev_stat_lock);
4702 }
4703
4704 void
4705 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4706 {
4707 return (vdev_get_stats_ex(vd, vs, NULL));
4708 }
4709
4710 void
4711 vdev_clear_stats(vdev_t *vd)
4712 {
4713 mutex_enter(&vd->vdev_stat_lock);
4714 vd->vdev_stat.vs_space = 0;
4715 vd->vdev_stat.vs_dspace = 0;
4716 vd->vdev_stat.vs_alloc = 0;
4717 mutex_exit(&vd->vdev_stat_lock);
4718 }
4719
4720 void
4721 vdev_scan_stat_init(vdev_t *vd)
4722 {
4723 vdev_stat_t *vs = &vd->vdev_stat;
4724
4725 for (int c = 0; c < vd->vdev_children; c++)
4726 vdev_scan_stat_init(vd->vdev_child[c]);
4727
4728 mutex_enter(&vd->vdev_stat_lock);
4729 vs->vs_scan_processed = 0;
4730 mutex_exit(&vd->vdev_stat_lock);
4731 }
4732
4733 void
4734 vdev_stat_update(zio_t *zio, uint64_t psize)
4735 {
4736 spa_t *spa = zio->io_spa;
4737 vdev_t *rvd = spa->spa_root_vdev;
4738 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4739 vdev_t *pvd;
4740 uint64_t txg = zio->io_txg;
4741 /* Suppress ASAN false positive */
4742 #ifdef __SANITIZE_ADDRESS__
4743 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
4744 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
4745 #else
4746 vdev_stat_t *vs = &vd->vdev_stat;
4747 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4748 #endif
4749 zio_type_t type = zio->io_type;
4750 int flags = zio->io_flags;
4751
4752 /*
4753 * If this i/o is a gang leader, it didn't do any actual work.
4754 */
4755 if (zio->io_gang_tree)
4756 return;
4757
4758 if (zio->io_error == 0) {
4759 /*
4760 * If this is a root i/o, don't count it -- we've already
4761 * counted the top-level vdevs, and vdev_get_stats() will
4762 * aggregate them when asked. This reduces contention on
4763 * the root vdev_stat_lock and implicitly handles blocks
4764 * that compress away to holes, for which there is no i/o.
4765 * (Holes never create vdev children, so all the counters
4766 * remain zero, which is what we want.)
4767 *
4768 * Note: this only applies to successful i/o (io_error == 0)
4769 * because unlike i/o counts, errors are not additive.
4770 * When reading a ditto block, for example, failure of
4771 * one top-level vdev does not imply a root-level error.
4772 */
4773 if (vd == rvd)
4774 return;
4775
4776 ASSERT(vd == zio->io_vd);
4777
4778 if (flags & ZIO_FLAG_IO_BYPASS)
4779 return;
4780
4781 mutex_enter(&vd->vdev_stat_lock);
4782
4783 if (flags & ZIO_FLAG_IO_REPAIR) {
4784 /*
4785 * Repair is the result of a resilver issued by the
4786 * scan thread (spa_sync).
4787 */
4788 if (flags & ZIO_FLAG_SCAN_THREAD) {
4789 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4790 dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4791 uint64_t *processed = &scn_phys->scn_processed;
4792
4793 if (vd->vdev_ops->vdev_op_leaf)
4794 atomic_add_64(processed, psize);
4795 vs->vs_scan_processed += psize;
4796 }
4797
4798 /*
4799 * Repair is the result of a rebuild issued by the
4800 * rebuild thread (vdev_rebuild_thread). To avoid
4801 * double counting repaired bytes the virtual dRAID
4802 * spare vdev is excluded from the processed bytes.
4803 */
4804 if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4805 vdev_t *tvd = vd->vdev_top;
4806 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4807 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4808 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4809
4810 if (vd->vdev_ops->vdev_op_leaf &&
4811 vd->vdev_ops != &vdev_draid_spare_ops) {
4812 atomic_add_64(rebuilt, psize);
4813 }
4814 vs->vs_rebuild_processed += psize;
4815 }
4816
4817 if (flags & ZIO_FLAG_SELF_HEAL)
4818 vs->vs_self_healed += psize;
4819 }
4820
4821 /*
4822 * The bytes/ops/histograms are recorded at the leaf level and
4823 * aggregated into the higher level vdevs in vdev_get_stats().
4824 */
4825 if (vd->vdev_ops->vdev_op_leaf &&
4826 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4827 zio_type_t vs_type = type;
4828 zio_priority_t priority = zio->io_priority;
4829
4830 /*
4831 * TRIM ops and bytes are reported to user space as
4832 * ZIO_TYPE_IOCTL. This is done to preserve the
4833 * vdev_stat_t structure layout for user space.
4834 */
4835 if (type == ZIO_TYPE_TRIM)
4836 vs_type = ZIO_TYPE_IOCTL;
4837
4838 /*
4839 * Solely for the purposes of 'zpool iostat -lqrw'
4840 * reporting use the priority to categorize the IO.
4841 * Only the following are reported to user space:
4842 *
4843 * ZIO_PRIORITY_SYNC_READ,
4844 * ZIO_PRIORITY_SYNC_WRITE,
4845 * ZIO_PRIORITY_ASYNC_READ,
4846 * ZIO_PRIORITY_ASYNC_WRITE,
4847 * ZIO_PRIORITY_SCRUB,
4848 * ZIO_PRIORITY_TRIM,
4849 * ZIO_PRIORITY_REBUILD.
4850 */
4851 if (priority == ZIO_PRIORITY_INITIALIZING) {
4852 ASSERT3U(type, ==, ZIO_TYPE_WRITE);
4853 priority = ZIO_PRIORITY_ASYNC_WRITE;
4854 } else if (priority == ZIO_PRIORITY_REMOVAL) {
4855 priority = ((type == ZIO_TYPE_WRITE) ?
4856 ZIO_PRIORITY_ASYNC_WRITE :
4857 ZIO_PRIORITY_ASYNC_READ);
4858 }
4859
4860 vs->vs_ops[vs_type]++;
4861 vs->vs_bytes[vs_type] += psize;
4862
4863 if (flags & ZIO_FLAG_DELEGATED) {
4864 vsx->vsx_agg_histo[priority]
4865 [RQ_HISTO(zio->io_size)]++;
4866 } else {
4867 vsx->vsx_ind_histo[priority]
4868 [RQ_HISTO(zio->io_size)]++;
4869 }
4870
4871 if (zio->io_delta && zio->io_delay) {
4872 vsx->vsx_queue_histo[priority]
4873 [L_HISTO(zio->io_delta - zio->io_delay)]++;
4874 vsx->vsx_disk_histo[type]
4875 [L_HISTO(zio->io_delay)]++;
4876 vsx->vsx_total_histo[type]
4877 [L_HISTO(zio->io_delta)]++;
4878 }
4879 }
4880
4881 mutex_exit(&vd->vdev_stat_lock);
4882 return;
4883 }
4884
4885 if (flags & ZIO_FLAG_SPECULATIVE)
4886 return;
4887
4888 /*
4889 * If this is an I/O error that is going to be retried, then ignore the
4890 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
4891 * hard errors, when in reality they can happen for any number of
4892 * innocuous reasons (bus resets, MPxIO link failure, etc).
4893 */
4894 if (zio->io_error == EIO &&
4895 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4896 return;
4897
4898 /*
4899 * Intent logs writes won't propagate their error to the root
4900 * I/O so don't mark these types of failures as pool-level
4901 * errors.
4902 */
4903 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4904 return;
4905
4906 if (type == ZIO_TYPE_WRITE && txg != 0 &&
4907 (!(flags & ZIO_FLAG_IO_REPAIR) ||
4908 (flags & ZIO_FLAG_SCAN_THREAD) ||
4909 spa->spa_claiming)) {
4910 /*
4911 * This is either a normal write (not a repair), or it's
4912 * a repair induced by the scrub thread, or it's a repair
4913 * made by zil_claim() during spa_load() in the first txg.
4914 * In the normal case, we commit the DTL change in the same
4915 * txg as the block was born. In the scrub-induced repair
4916 * case, we know that scrubs run in first-pass syncing context,
4917 * so we commit the DTL change in spa_syncing_txg(spa).
4918 * In the zil_claim() case, we commit in spa_first_txg(spa).
4919 *
4920 * We currently do not make DTL entries for failed spontaneous
4921 * self-healing writes triggered by normal (non-scrubbing)
4922 * reads, because we have no transactional context in which to
4923 * do so -- and it's not clear that it'd be desirable anyway.
4924 */
4925 if (vd->vdev_ops->vdev_op_leaf) {
4926 uint64_t commit_txg = txg;
4927 if (flags & ZIO_FLAG_SCAN_THREAD) {
4928 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4929 ASSERT(spa_sync_pass(spa) == 1);
4930 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4931 commit_txg = spa_syncing_txg(spa);
4932 } else if (spa->spa_claiming) {
4933 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4934 commit_txg = spa_first_txg(spa);
4935 }
4936 ASSERT(commit_txg >= spa_syncing_txg(spa));
4937 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4938 return;
4939 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4940 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4941 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4942 }
4943 if (vd != rvd)
4944 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4945 }
4946 }
4947
4948 int64_t
4949 vdev_deflated_space(vdev_t *vd, int64_t space)
4950 {
4951 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4952 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4953
4954 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4955 }
4956
4957 /*
4958 * Update the in-core space usage stats for this vdev, its metaslab class,
4959 * and the root vdev.
4960 */
4961 void
4962 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4963 int64_t space_delta)
4964 {
4965 (void) defer_delta;
4966 int64_t dspace_delta;
4967 spa_t *spa = vd->vdev_spa;
4968 vdev_t *rvd = spa->spa_root_vdev;
4969
4970 ASSERT(vd == vd->vdev_top);
4971
4972 /*
4973 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4974 * factor. We must calculate this here and not at the root vdev
4975 * because the root vdev's psize-to-asize is simply the max of its
4976 * children's, thus not accurate enough for us.
4977 */
4978 dspace_delta = vdev_deflated_space(vd, space_delta);
4979
4980 mutex_enter(&vd->vdev_stat_lock);
4981 /* ensure we won't underflow */
4982 if (alloc_delta < 0) {
4983 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
4984 }
4985
4986 vd->vdev_stat.vs_alloc += alloc_delta;
4987 vd->vdev_stat.vs_space += space_delta;
4988 vd->vdev_stat.vs_dspace += dspace_delta;
4989 mutex_exit(&vd->vdev_stat_lock);
4990
4991 /* every class but log contributes to root space stats */
4992 if (vd->vdev_mg != NULL && !vd->vdev_islog) {
4993 ASSERT(!vd->vdev_isl2cache);
4994 mutex_enter(&rvd->vdev_stat_lock);
4995 rvd->vdev_stat.vs_alloc += alloc_delta;
4996 rvd->vdev_stat.vs_space += space_delta;
4997 rvd->vdev_stat.vs_dspace += dspace_delta;
4998 mutex_exit(&rvd->vdev_stat_lock);
4999 }
5000 /* Note: metaslab_class_space_update moved to metaslab_space_update */
5001 }
5002
5003 /*
5004 * Mark a top-level vdev's config as dirty, placing it on the dirty list
5005 * so that it will be written out next time the vdev configuration is synced.
5006 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
5007 */
5008 void
5009 vdev_config_dirty(vdev_t *vd)
5010 {
5011 spa_t *spa = vd->vdev_spa;
5012 vdev_t *rvd = spa->spa_root_vdev;
5013 int c;
5014
5015 ASSERT(spa_writeable(spa));
5016
5017 /*
5018 * If this is an aux vdev (as with l2cache and spare devices), then we
5019 * update the vdev config manually and set the sync flag.
5020 */
5021 if (vd->vdev_aux != NULL) {
5022 spa_aux_vdev_t *sav = vd->vdev_aux;
5023 nvlist_t **aux;
5024 uint_t naux;
5025
5026 for (c = 0; c < sav->sav_count; c++) {
5027 if (sav->sav_vdevs[c] == vd)
5028 break;
5029 }
5030
5031 if (c == sav->sav_count) {
5032 /*
5033 * We're being removed. There's nothing more to do.
5034 */
5035 ASSERT(sav->sav_sync == B_TRUE);
5036 return;
5037 }
5038
5039 sav->sav_sync = B_TRUE;
5040
5041 if (nvlist_lookup_nvlist_array(sav->sav_config,
5042 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
5043 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
5044 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
5045 }
5046
5047 ASSERT(c < naux);
5048
5049 /*
5050 * Setting the nvlist in the middle if the array is a little
5051 * sketchy, but it will work.
5052 */
5053 nvlist_free(aux[c]);
5054 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
5055
5056 return;
5057 }
5058
5059 /*
5060 * The dirty list is protected by the SCL_CONFIG lock. The caller
5061 * must either hold SCL_CONFIG as writer, or must be the sync thread
5062 * (which holds SCL_CONFIG as reader). There's only one sync thread,
5063 * so this is sufficient to ensure mutual exclusion.
5064 */
5065 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5066 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5067 spa_config_held(spa, SCL_CONFIG, RW_READER)));
5068
5069 if (vd == rvd) {
5070 for (c = 0; c < rvd->vdev_children; c++)
5071 vdev_config_dirty(rvd->vdev_child[c]);
5072 } else {
5073 ASSERT(vd == vd->vdev_top);
5074
5075 if (!list_link_active(&vd->vdev_config_dirty_node) &&
5076 vdev_is_concrete(vd)) {
5077 list_insert_head(&spa->spa_config_dirty_list, vd);
5078 }
5079 }
5080 }
5081
5082 void
5083 vdev_config_clean(vdev_t *vd)
5084 {
5085 spa_t *spa = vd->vdev_spa;
5086
5087 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5088 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5089 spa_config_held(spa, SCL_CONFIG, RW_READER)));
5090
5091 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
5092 list_remove(&spa->spa_config_dirty_list, vd);
5093 }
5094
5095 /*
5096 * Mark a top-level vdev's state as dirty, so that the next pass of
5097 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
5098 * the state changes from larger config changes because they require
5099 * much less locking, and are often needed for administrative actions.
5100 */
5101 void
5102 vdev_state_dirty(vdev_t *vd)
5103 {
5104 spa_t *spa = vd->vdev_spa;
5105
5106 ASSERT(spa_writeable(spa));
5107 ASSERT(vd == vd->vdev_top);
5108
5109 /*
5110 * The state list is protected by the SCL_STATE lock. The caller
5111 * must either hold SCL_STATE as writer, or must be the sync thread
5112 * (which holds SCL_STATE as reader). There's only one sync thread,
5113 * so this is sufficient to ensure mutual exclusion.
5114 */
5115 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5116 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5117 spa_config_held(spa, SCL_STATE, RW_READER)));
5118
5119 if (!list_link_active(&vd->vdev_state_dirty_node) &&
5120 vdev_is_concrete(vd))
5121 list_insert_head(&spa->spa_state_dirty_list, vd);
5122 }
5123
5124 void
5125 vdev_state_clean(vdev_t *vd)
5126 {
5127 spa_t *spa = vd->vdev_spa;
5128
5129 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5130 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5131 spa_config_held(spa, SCL_STATE, RW_READER)));
5132
5133 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
5134 list_remove(&spa->spa_state_dirty_list, vd);
5135 }
5136
5137 /*
5138 * Propagate vdev state up from children to parent.
5139 */
5140 void
5141 vdev_propagate_state(vdev_t *vd)
5142 {
5143 spa_t *spa = vd->vdev_spa;
5144 vdev_t *rvd = spa->spa_root_vdev;
5145 int degraded = 0, faulted = 0;
5146 int corrupted = 0;
5147 vdev_t *child;
5148
5149 if (vd->vdev_children > 0) {
5150 for (int c = 0; c < vd->vdev_children; c++) {
5151 child = vd->vdev_child[c];
5152
5153 /*
5154 * Don't factor holes or indirect vdevs into the
5155 * decision.
5156 */
5157 if (!vdev_is_concrete(child))
5158 continue;
5159
5160 if (!vdev_readable(child) ||
5161 (!vdev_writeable(child) && spa_writeable(spa))) {
5162 /*
5163 * Root special: if there is a top-level log
5164 * device, treat the root vdev as if it were
5165 * degraded.
5166 */
5167 if (child->vdev_islog && vd == rvd)
5168 degraded++;
5169 else
5170 faulted++;
5171 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
5172 degraded++;
5173 }
5174
5175 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
5176 corrupted++;
5177 }
5178
5179 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
5180
5181 /*
5182 * Root special: if there is a top-level vdev that cannot be
5183 * opened due to corrupted metadata, then propagate the root
5184 * vdev's aux state as 'corrupt' rather than 'insufficient
5185 * replicas'.
5186 */
5187 if (corrupted && vd == rvd &&
5188 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
5189 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
5190 VDEV_AUX_CORRUPT_DATA);
5191 }
5192
5193 if (vd->vdev_parent)
5194 vdev_propagate_state(vd->vdev_parent);
5195 }
5196
5197 /*
5198 * Set a vdev's state. If this is during an open, we don't update the parent
5199 * state, because we're in the process of opening children depth-first.
5200 * Otherwise, we propagate the change to the parent.
5201 *
5202 * If this routine places a device in a faulted state, an appropriate ereport is
5203 * generated.
5204 */
5205 void
5206 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
5207 {
5208 uint64_t save_state;
5209 spa_t *spa = vd->vdev_spa;
5210
5211 if (state == vd->vdev_state) {
5212 /*
5213 * Since vdev_offline() code path is already in an offline
5214 * state we can miss a statechange event to OFFLINE. Check
5215 * the previous state to catch this condition.
5216 */
5217 if (vd->vdev_ops->vdev_op_leaf &&
5218 (state == VDEV_STATE_OFFLINE) &&
5219 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5220 /* post an offline state change */
5221 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5222 }
5223 vd->vdev_stat.vs_aux = aux;
5224 return;
5225 }
5226
5227 save_state = vd->vdev_state;
5228
5229 vd->vdev_state = state;
5230 vd->vdev_stat.vs_aux = aux;
5231
5232 /*
5233 * If we are setting the vdev state to anything but an open state, then
5234 * always close the underlying device unless the device has requested
5235 * a delayed close (i.e. we're about to remove or fault the device).
5236 * Otherwise, we keep accessible but invalid devices open forever.
5237 * We don't call vdev_close() itself, because that implies some extra
5238 * checks (offline, etc) that we don't want here. This is limited to
5239 * leaf devices, because otherwise closing the device will affect other
5240 * children.
5241 */
5242 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5243 vd->vdev_ops->vdev_op_leaf)
5244 vd->vdev_ops->vdev_op_close(vd);
5245
5246 if (vd->vdev_removed &&
5247 state == VDEV_STATE_CANT_OPEN &&
5248 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5249 /*
5250 * If the previous state is set to VDEV_STATE_REMOVED, then this
5251 * device was previously marked removed and someone attempted to
5252 * reopen it. If this failed due to a nonexistent device, then
5253 * keep the device in the REMOVED state. We also let this be if
5254 * it is one of our special test online cases, which is only
5255 * attempting to online the device and shouldn't generate an FMA
5256 * fault.
5257 */
5258 vd->vdev_state = VDEV_STATE_REMOVED;
5259 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5260 } else if (state == VDEV_STATE_REMOVED) {
5261 vd->vdev_removed = B_TRUE;
5262 } else if (state == VDEV_STATE_CANT_OPEN) {
5263 /*
5264 * If we fail to open a vdev during an import or recovery, we
5265 * mark it as "not available", which signifies that it was
5266 * never there to begin with. Failure to open such a device
5267 * is not considered an error.
5268 */
5269 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5270 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5271 vd->vdev_ops->vdev_op_leaf)
5272 vd->vdev_not_present = 1;
5273
5274 /*
5275 * Post the appropriate ereport. If the 'prevstate' field is
5276 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5277 * that this is part of a vdev_reopen(). In this case, we don't
5278 * want to post the ereport if the device was already in the
5279 * CANT_OPEN state beforehand.
5280 *
5281 * If the 'checkremove' flag is set, then this is an attempt to
5282 * online the device in response to an insertion event. If we
5283 * hit this case, then we have detected an insertion event for a
5284 * faulted or offline device that wasn't in the removed state.
5285 * In this scenario, we don't post an ereport because we are
5286 * about to replace the device, or attempt an online with
5287 * vdev_forcefault, which will generate the fault for us.
5288 */
5289 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5290 !vd->vdev_not_present && !vd->vdev_checkremove &&
5291 vd != spa->spa_root_vdev) {
5292 const char *class;
5293
5294 switch (aux) {
5295 case VDEV_AUX_OPEN_FAILED:
5296 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5297 break;
5298 case VDEV_AUX_CORRUPT_DATA:
5299 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5300 break;
5301 case VDEV_AUX_NO_REPLICAS:
5302 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5303 break;
5304 case VDEV_AUX_BAD_GUID_SUM:
5305 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5306 break;
5307 case VDEV_AUX_TOO_SMALL:
5308 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5309 break;
5310 case VDEV_AUX_BAD_LABEL:
5311 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5312 break;
5313 case VDEV_AUX_BAD_ASHIFT:
5314 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5315 break;
5316 default:
5317 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5318 }
5319
5320 (void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5321 save_state);
5322 }
5323
5324 /* Erase any notion of persistent removed state */
5325 vd->vdev_removed = B_FALSE;
5326 } else {
5327 vd->vdev_removed = B_FALSE;
5328 }
5329
5330 /*
5331 * Notify ZED of any significant state-change on a leaf vdev.
5332 *
5333 */
5334 if (vd->vdev_ops->vdev_op_leaf) {
5335 /* preserve original state from a vdev_reopen() */
5336 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5337 (vd->vdev_prevstate != vd->vdev_state) &&
5338 (save_state <= VDEV_STATE_CLOSED))
5339 save_state = vd->vdev_prevstate;
5340
5341 /* filter out state change due to initial vdev_open */
5342 if (save_state > VDEV_STATE_CLOSED)
5343 zfs_post_state_change(spa, vd, save_state);
5344 }
5345
5346 if (!isopen && vd->vdev_parent)
5347 vdev_propagate_state(vd->vdev_parent);
5348 }
5349
5350 boolean_t
5351 vdev_children_are_offline(vdev_t *vd)
5352 {
5353 ASSERT(!vd->vdev_ops->vdev_op_leaf);
5354
5355 for (uint64_t i = 0; i < vd->vdev_children; i++) {
5356 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5357 return (B_FALSE);
5358 }
5359
5360 return (B_TRUE);
5361 }
5362
5363 /*
5364 * Check the vdev configuration to ensure that it's capable of supporting
5365 * a root pool. We do not support partial configuration.
5366 */
5367 boolean_t
5368 vdev_is_bootable(vdev_t *vd)
5369 {
5370 if (!vd->vdev_ops->vdev_op_leaf) {
5371 const char *vdev_type = vd->vdev_ops->vdev_op_type;
5372
5373 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5374 return (B_FALSE);
5375 }
5376
5377 for (int c = 0; c < vd->vdev_children; c++) {
5378 if (!vdev_is_bootable(vd->vdev_child[c]))
5379 return (B_FALSE);
5380 }
5381 return (B_TRUE);
5382 }
5383
5384 boolean_t
5385 vdev_is_concrete(vdev_t *vd)
5386 {
5387 vdev_ops_t *ops = vd->vdev_ops;
5388 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5389 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5390 return (B_FALSE);
5391 } else {
5392 return (B_TRUE);
5393 }
5394 }
5395
5396 /*
5397 * Determine if a log device has valid content. If the vdev was
5398 * removed or faulted in the MOS config then we know that
5399 * the content on the log device has already been written to the pool.
5400 */
5401 boolean_t
5402 vdev_log_state_valid(vdev_t *vd)
5403 {
5404 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5405 !vd->vdev_removed)
5406 return (B_TRUE);
5407
5408 for (int c = 0; c < vd->vdev_children; c++)
5409 if (vdev_log_state_valid(vd->vdev_child[c]))
5410 return (B_TRUE);
5411
5412 return (B_FALSE);
5413 }
5414
5415 /*
5416 * Expand a vdev if possible.
5417 */
5418 void
5419 vdev_expand(vdev_t *vd, uint64_t txg)
5420 {
5421 ASSERT(vd->vdev_top == vd);
5422 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5423 ASSERT(vdev_is_concrete(vd));
5424
5425 vdev_set_deflate_ratio(vd);
5426
5427 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5428 vdev_is_concrete(vd)) {
5429 vdev_metaslab_group_create(vd);
5430 VERIFY(vdev_metaslab_init(vd, txg) == 0);
5431 vdev_config_dirty(vd);
5432 }
5433 }
5434
5435 /*
5436 * Split a vdev.
5437 */
5438 void
5439 vdev_split(vdev_t *vd)
5440 {
5441 vdev_t *cvd, *pvd = vd->vdev_parent;
5442
5443 VERIFY3U(pvd->vdev_children, >, 1);
5444
5445 vdev_remove_child(pvd, vd);
5446 vdev_compact_children(pvd);
5447
5448 ASSERT3P(pvd->vdev_child, !=, NULL);
5449
5450 cvd = pvd->vdev_child[0];
5451 if (pvd->vdev_children == 1) {
5452 vdev_remove_parent(cvd);
5453 cvd->vdev_splitting = B_TRUE;
5454 }
5455 vdev_propagate_state(cvd);
5456 }
5457
5458 void
5459 vdev_deadman(vdev_t *vd, const char *tag)
5460 {
5461 for (int c = 0; c < vd->vdev_children; c++) {
5462 vdev_t *cvd = vd->vdev_child[c];
5463
5464 vdev_deadman(cvd, tag);
5465 }
5466
5467 if (vd->vdev_ops->vdev_op_leaf) {
5468 vdev_queue_t *vq = &vd->vdev_queue;
5469
5470 mutex_enter(&vq->vq_lock);
5471 if (vq->vq_active > 0) {
5472 spa_t *spa = vd->vdev_spa;
5473 zio_t *fio;
5474 uint64_t delta;
5475
5476 zfs_dbgmsg("slow vdev: %s has %u active IOs",
5477 vd->vdev_path, vq->vq_active);
5478
5479 /*
5480 * Look at the head of all the pending queues,
5481 * if any I/O has been outstanding for longer than
5482 * the spa_deadman_synctime invoke the deadman logic.
5483 */
5484 fio = list_head(&vq->vq_active_list);
5485 delta = gethrtime() - fio->io_timestamp;
5486 if (delta > spa_deadman_synctime(spa))
5487 zio_deadman(fio, tag);
5488 }
5489 mutex_exit(&vq->vq_lock);
5490 }
5491 }
5492
5493 void
5494 vdev_defer_resilver(vdev_t *vd)
5495 {
5496 ASSERT(vd->vdev_ops->vdev_op_leaf);
5497
5498 vd->vdev_resilver_deferred = B_TRUE;
5499 vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5500 }
5501
5502 /*
5503 * Clears the resilver deferred flag on all leaf devs under vd. Returns
5504 * B_TRUE if we have devices that need to be resilvered and are available to
5505 * accept resilver I/Os.
5506 */
5507 boolean_t
5508 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5509 {
5510 boolean_t resilver_needed = B_FALSE;
5511 spa_t *spa = vd->vdev_spa;
5512
5513 for (int c = 0; c < vd->vdev_children; c++) {
5514 vdev_t *cvd = vd->vdev_child[c];
5515 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5516 }
5517
5518 if (vd == spa->spa_root_vdev &&
5519 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5520 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5521 vdev_config_dirty(vd);
5522 spa->spa_resilver_deferred = B_FALSE;
5523 return (resilver_needed);
5524 }
5525
5526 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5527 !vd->vdev_ops->vdev_op_leaf)
5528 return (resilver_needed);
5529
5530 vd->vdev_resilver_deferred = B_FALSE;
5531
5532 return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5533 vdev_resilver_needed(vd, NULL, NULL));
5534 }
5535
5536 boolean_t
5537 vdev_xlate_is_empty(range_seg64_t *rs)
5538 {
5539 return (rs->rs_start == rs->rs_end);
5540 }
5541
5542 /*
5543 * Translate a logical range to the first contiguous physical range for the
5544 * specified vdev_t. This function is initially called with a leaf vdev and
5545 * will walk each parent vdev until it reaches a top-level vdev. Once the
5546 * top-level is reached the physical range is initialized and the recursive
5547 * function begins to unwind. As it unwinds it calls the parent's vdev
5548 * specific translation function to do the real conversion.
5549 */
5550 void
5551 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
5552 range_seg64_t *physical_rs, range_seg64_t *remain_rs)
5553 {
5554 /*
5555 * Walk up the vdev tree
5556 */
5557 if (vd != vd->vdev_top) {
5558 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5559 remain_rs);
5560 } else {
5561 /*
5562 * We've reached the top-level vdev, initialize the physical
5563 * range to the logical range and set an empty remaining
5564 * range then start to unwind.
5565 */
5566 physical_rs->rs_start = logical_rs->rs_start;
5567 physical_rs->rs_end = logical_rs->rs_end;
5568
5569 remain_rs->rs_start = logical_rs->rs_start;
5570 remain_rs->rs_end = logical_rs->rs_start;
5571
5572 return;
5573 }
5574
5575 vdev_t *pvd = vd->vdev_parent;
5576 ASSERT3P(pvd, !=, NULL);
5577 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5578
5579 /*
5580 * As this recursive function unwinds, translate the logical
5581 * range into its physical and any remaining components by calling
5582 * the vdev specific translate function.
5583 */
5584 range_seg64_t intermediate = { 0 };
5585 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5586
5587 physical_rs->rs_start = intermediate.rs_start;
5588 physical_rs->rs_end = intermediate.rs_end;
5589 }
5590
5591 void
5592 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
5593 vdev_xlate_func_t *func, void *arg)
5594 {
5595 range_seg64_t iter_rs = *logical_rs;
5596 range_seg64_t physical_rs;
5597 range_seg64_t remain_rs;
5598
5599 while (!vdev_xlate_is_empty(&iter_rs)) {
5600
5601 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5602
5603 /*
5604 * With raidz and dRAID, it's possible that the logical range
5605 * does not live on this leaf vdev. Only when there is a non-
5606 * zero physical size call the provided function.
5607 */
5608 if (!vdev_xlate_is_empty(&physical_rs))
5609 func(arg, &physical_rs);
5610
5611 iter_rs = remain_rs;
5612 }
5613 }
5614
5615 static char *
5616 vdev_name(vdev_t *vd, char *buf, int buflen)
5617 {
5618 if (vd->vdev_path == NULL) {
5619 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5620 strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5621 } else if (!vd->vdev_ops->vdev_op_leaf) {
5622 snprintf(buf, buflen, "%s-%llu",
5623 vd->vdev_ops->vdev_op_type,
5624 (u_longlong_t)vd->vdev_id);
5625 }
5626 } else {
5627 strlcpy(buf, vd->vdev_path, buflen);
5628 }
5629 return (buf);
5630 }
5631
5632 /*
5633 * Look at the vdev tree and determine whether any devices are currently being
5634 * replaced.
5635 */
5636 boolean_t
5637 vdev_replace_in_progress(vdev_t *vdev)
5638 {
5639 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5640
5641 if (vdev->vdev_ops == &vdev_replacing_ops)
5642 return (B_TRUE);
5643
5644 /*
5645 * A 'spare' vdev indicates that we have a replace in progress, unless
5646 * it has exactly two children, and the second, the hot spare, has
5647 * finished being resilvered.
5648 */
5649 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5650 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5651 return (B_TRUE);
5652
5653 for (int i = 0; i < vdev->vdev_children; i++) {
5654 if (vdev_replace_in_progress(vdev->vdev_child[i]))
5655 return (B_TRUE);
5656 }
5657
5658 return (B_FALSE);
5659 }
5660
5661 /*
5662 * Add a (source=src, propname=propval) list to an nvlist.
5663 */
5664 static void
5665 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval,
5666 uint64_t intval, zprop_source_t src)
5667 {
5668 nvlist_t *propval;
5669
5670 propval = fnvlist_alloc();
5671 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5672
5673 if (strval != NULL)
5674 fnvlist_add_string(propval, ZPROP_VALUE, strval);
5675 else
5676 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5677
5678 fnvlist_add_nvlist(nvl, propname, propval);
5679 nvlist_free(propval);
5680 }
5681
5682 static void
5683 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5684 {
5685 vdev_t *vd;
5686 nvlist_t *nvp = arg;
5687 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5688 objset_t *mos = spa->spa_meta_objset;
5689 nvpair_t *elem = NULL;
5690 uint64_t vdev_guid;
5691 nvlist_t *nvprops;
5692
5693 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
5694 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
5695 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
5696
5697 /* this vdev could get removed while waiting for this sync task */
5698 if (vd == NULL)
5699 return;
5700
5701 mutex_enter(&spa->spa_props_lock);
5702
5703 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5704 uint64_t intval, objid = 0;
5705 const char *strval;
5706 vdev_prop_t prop;
5707 const char *propname = nvpair_name(elem);
5708 zprop_type_t proptype;
5709
5710 /*
5711 * Set vdev property values in the vdev props mos object.
5712 */
5713 if (vd->vdev_root_zap != 0) {
5714 objid = vd->vdev_root_zap;
5715 } else if (vd->vdev_top_zap != 0) {
5716 objid = vd->vdev_top_zap;
5717 } else if (vd->vdev_leaf_zap != 0) {
5718 objid = vd->vdev_leaf_zap;
5719 } else {
5720 /*
5721 * XXX: implement vdev_props_set_check()
5722 */
5723 panic("vdev not root/top/leaf");
5724 }
5725
5726 switch (prop = vdev_name_to_prop(propname)) {
5727 case VDEV_PROP_USERPROP:
5728 if (vdev_prop_user(propname)) {
5729 strval = fnvpair_value_string(elem);
5730 if (strlen(strval) == 0) {
5731 /* remove the property if value == "" */
5732 (void) zap_remove(mos, objid, propname,
5733 tx);
5734 } else {
5735 VERIFY0(zap_update(mos, objid, propname,
5736 1, strlen(strval) + 1, strval, tx));
5737 }
5738 spa_history_log_internal(spa, "vdev set", tx,
5739 "vdev_guid=%llu: %s=%s",
5740 (u_longlong_t)vdev_guid, nvpair_name(elem),
5741 strval);
5742 }
5743 break;
5744 default:
5745 /* normalize the property name */
5746 propname = vdev_prop_to_name(prop);
5747 proptype = vdev_prop_get_type(prop);
5748
5749 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5750 ASSERT(proptype == PROP_TYPE_STRING);
5751 strval = fnvpair_value_string(elem);
5752 VERIFY0(zap_update(mos, objid, propname,
5753 1, strlen(strval) + 1, strval, tx));
5754 spa_history_log_internal(spa, "vdev set", tx,
5755 "vdev_guid=%llu: %s=%s",
5756 (u_longlong_t)vdev_guid, nvpair_name(elem),
5757 strval);
5758 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5759 intval = fnvpair_value_uint64(elem);
5760
5761 if (proptype == PROP_TYPE_INDEX) {
5762 const char *unused;
5763 VERIFY0(vdev_prop_index_to_string(
5764 prop, intval, &unused));
5765 }
5766 VERIFY0(zap_update(mos, objid, propname,
5767 sizeof (uint64_t), 1, &intval, tx));
5768 spa_history_log_internal(spa, "vdev set", tx,
5769 "vdev_guid=%llu: %s=%lld",
5770 (u_longlong_t)vdev_guid,
5771 nvpair_name(elem), (longlong_t)intval);
5772 } else {
5773 panic("invalid vdev property type %u",
5774 nvpair_type(elem));
5775 }
5776 }
5777
5778 }
5779
5780 mutex_exit(&spa->spa_props_lock);
5781 }
5782
5783 int
5784 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5785 {
5786 spa_t *spa = vd->vdev_spa;
5787 nvpair_t *elem = NULL;
5788 uint64_t vdev_guid;
5789 nvlist_t *nvprops;
5790 int error = 0;
5791
5792 ASSERT(vd != NULL);
5793
5794 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
5795 &vdev_guid) != 0)
5796 return (SET_ERROR(EINVAL));
5797
5798 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
5799 &nvprops) != 0)
5800 return (SET_ERROR(EINVAL));
5801
5802 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
5803 return (SET_ERROR(EINVAL));
5804
5805 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5806 const char *propname = nvpair_name(elem);
5807 vdev_prop_t prop = vdev_name_to_prop(propname);
5808 uint64_t intval = 0;
5809 const char *strval = NULL;
5810
5811 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
5812 error = EINVAL;
5813 goto end;
5814 }
5815
5816 if (vdev_prop_readonly(prop)) {
5817 error = EROFS;
5818 goto end;
5819 }
5820
5821 /* Special Processing */
5822 switch (prop) {
5823 case VDEV_PROP_PATH:
5824 if (vd->vdev_path == NULL) {
5825 error = EROFS;
5826 break;
5827 }
5828 if (nvpair_value_string(elem, &strval) != 0) {
5829 error = EINVAL;
5830 break;
5831 }
5832 /* New path must start with /dev/ */
5833 if (strncmp(strval, "/dev/", 5)) {
5834 error = EINVAL;
5835 break;
5836 }
5837 error = spa_vdev_setpath(spa, vdev_guid, strval);
5838 break;
5839 case VDEV_PROP_ALLOCATING:
5840 if (nvpair_value_uint64(elem, &intval) != 0) {
5841 error = EINVAL;
5842 break;
5843 }
5844 if (intval != vd->vdev_noalloc)
5845 break;
5846 if (intval == 0)
5847 error = spa_vdev_noalloc(spa, vdev_guid);
5848 else
5849 error = spa_vdev_alloc(spa, vdev_guid);
5850 break;
5851 case VDEV_PROP_FAILFAST:
5852 if (nvpair_value_uint64(elem, &intval) != 0) {
5853 error = EINVAL;
5854 break;
5855 }
5856 vd->vdev_failfast = intval & 1;
5857 break;
5858 case VDEV_PROP_CHECKSUM_N:
5859 if (nvpair_value_uint64(elem, &intval) != 0) {
5860 error = EINVAL;
5861 break;
5862 }
5863 vd->vdev_checksum_n = intval;
5864 break;
5865 case VDEV_PROP_CHECKSUM_T:
5866 if (nvpair_value_uint64(elem, &intval) != 0) {
5867 error = EINVAL;
5868 break;
5869 }
5870 vd->vdev_checksum_t = intval;
5871 break;
5872 case VDEV_PROP_IO_N:
5873 if (nvpair_value_uint64(elem, &intval) != 0) {
5874 error = EINVAL;
5875 break;
5876 }
5877 vd->vdev_io_n = intval;
5878 break;
5879 case VDEV_PROP_IO_T:
5880 if (nvpair_value_uint64(elem, &intval) != 0) {
5881 error = EINVAL;
5882 break;
5883 }
5884 vd->vdev_io_t = intval;
5885 break;
5886 default:
5887 /* Most processing is done in vdev_props_set_sync */
5888 break;
5889 }
5890 end:
5891 if (error != 0) {
5892 intval = error;
5893 vdev_prop_add_list(outnvl, propname, strval, intval, 0);
5894 return (error);
5895 }
5896 }
5897
5898 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
5899 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
5900 }
5901
5902 int
5903 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5904 {
5905 spa_t *spa = vd->vdev_spa;
5906 objset_t *mos = spa->spa_meta_objset;
5907 int err = 0;
5908 uint64_t objid;
5909 uint64_t vdev_guid;
5910 nvpair_t *elem = NULL;
5911 nvlist_t *nvprops = NULL;
5912 uint64_t intval = 0;
5913 char *strval = NULL;
5914 const char *propname = NULL;
5915 vdev_prop_t prop;
5916
5917 ASSERT(vd != NULL);
5918 ASSERT(mos != NULL);
5919
5920 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
5921 &vdev_guid) != 0)
5922 return (SET_ERROR(EINVAL));
5923
5924 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
5925
5926 if (vd->vdev_root_zap != 0) {
5927 objid = vd->vdev_root_zap;
5928 } else if (vd->vdev_top_zap != 0) {
5929 objid = vd->vdev_top_zap;
5930 } else if (vd->vdev_leaf_zap != 0) {
5931 objid = vd->vdev_leaf_zap;
5932 } else {
5933 return (SET_ERROR(EINVAL));
5934 }
5935 ASSERT(objid != 0);
5936
5937 mutex_enter(&spa->spa_props_lock);
5938
5939 if (nvprops != NULL) {
5940 char namebuf[64] = { 0 };
5941
5942 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5943 intval = 0;
5944 strval = NULL;
5945 propname = nvpair_name(elem);
5946 prop = vdev_name_to_prop(propname);
5947 zprop_source_t src = ZPROP_SRC_DEFAULT;
5948 uint64_t integer_size, num_integers;
5949
5950 switch (prop) {
5951 /* Special Read-only Properties */
5952 case VDEV_PROP_NAME:
5953 strval = vdev_name(vd, namebuf,
5954 sizeof (namebuf));
5955 if (strval == NULL)
5956 continue;
5957 vdev_prop_add_list(outnvl, propname, strval, 0,
5958 ZPROP_SRC_NONE);
5959 continue;
5960 case VDEV_PROP_CAPACITY:
5961 /* percent used */
5962 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
5963 (vd->vdev_stat.vs_alloc * 100 /
5964 vd->vdev_stat.vs_dspace);
5965 vdev_prop_add_list(outnvl, propname, NULL,
5966 intval, ZPROP_SRC_NONE);
5967 continue;
5968 case VDEV_PROP_STATE:
5969 vdev_prop_add_list(outnvl, propname, NULL,
5970 vd->vdev_state, ZPROP_SRC_NONE);
5971 continue;
5972 case VDEV_PROP_GUID:
5973 vdev_prop_add_list(outnvl, propname, NULL,
5974 vd->vdev_guid, ZPROP_SRC_NONE);
5975 continue;
5976 case VDEV_PROP_ASIZE:
5977 vdev_prop_add_list(outnvl, propname, NULL,
5978 vd->vdev_asize, ZPROP_SRC_NONE);
5979 continue;
5980 case VDEV_PROP_PSIZE:
5981 vdev_prop_add_list(outnvl, propname, NULL,
5982 vd->vdev_psize, ZPROP_SRC_NONE);
5983 continue;
5984 case VDEV_PROP_ASHIFT:
5985 vdev_prop_add_list(outnvl, propname, NULL,
5986 vd->vdev_ashift, ZPROP_SRC_NONE);
5987 continue;
5988 case VDEV_PROP_SIZE:
5989 vdev_prop_add_list(outnvl, propname, NULL,
5990 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
5991 continue;
5992 case VDEV_PROP_FREE:
5993 vdev_prop_add_list(outnvl, propname, NULL,
5994 vd->vdev_stat.vs_dspace -
5995 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
5996 continue;
5997 case VDEV_PROP_ALLOCATED:
5998 vdev_prop_add_list(outnvl, propname, NULL,
5999 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6000 continue;
6001 case VDEV_PROP_EXPANDSZ:
6002 vdev_prop_add_list(outnvl, propname, NULL,
6003 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
6004 continue;
6005 case VDEV_PROP_FRAGMENTATION:
6006 vdev_prop_add_list(outnvl, propname, NULL,
6007 vd->vdev_stat.vs_fragmentation,
6008 ZPROP_SRC_NONE);
6009 continue;
6010 case VDEV_PROP_PARITY:
6011 vdev_prop_add_list(outnvl, propname, NULL,
6012 vdev_get_nparity(vd), ZPROP_SRC_NONE);
6013 continue;
6014 case VDEV_PROP_PATH:
6015 if (vd->vdev_path == NULL)
6016 continue;
6017 vdev_prop_add_list(outnvl, propname,
6018 vd->vdev_path, 0, ZPROP_SRC_NONE);
6019 continue;
6020 case VDEV_PROP_DEVID:
6021 if (vd->vdev_devid == NULL)
6022 continue;
6023 vdev_prop_add_list(outnvl, propname,
6024 vd->vdev_devid, 0, ZPROP_SRC_NONE);
6025 continue;
6026 case VDEV_PROP_PHYS_PATH:
6027 if (vd->vdev_physpath == NULL)
6028 continue;
6029 vdev_prop_add_list(outnvl, propname,
6030 vd->vdev_physpath, 0, ZPROP_SRC_NONE);
6031 continue;
6032 case VDEV_PROP_ENC_PATH:
6033 if (vd->vdev_enc_sysfs_path == NULL)
6034 continue;
6035 vdev_prop_add_list(outnvl, propname,
6036 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
6037 continue;
6038 case VDEV_PROP_FRU:
6039 if (vd->vdev_fru == NULL)
6040 continue;
6041 vdev_prop_add_list(outnvl, propname,
6042 vd->vdev_fru, 0, ZPROP_SRC_NONE);
6043 continue;
6044 case VDEV_PROP_PARENT:
6045 if (vd->vdev_parent != NULL) {
6046 strval = vdev_name(vd->vdev_parent,
6047 namebuf, sizeof (namebuf));
6048 vdev_prop_add_list(outnvl, propname,
6049 strval, 0, ZPROP_SRC_NONE);
6050 }
6051 continue;
6052 case VDEV_PROP_CHILDREN:
6053 if (vd->vdev_children > 0)
6054 strval = kmem_zalloc(ZAP_MAXVALUELEN,
6055 KM_SLEEP);
6056 for (uint64_t i = 0; i < vd->vdev_children;
6057 i++) {
6058 const char *vname;
6059
6060 vname = vdev_name(vd->vdev_child[i],
6061 namebuf, sizeof (namebuf));
6062 if (vname == NULL)
6063 vname = "(unknown)";
6064 if (strlen(strval) > 0)
6065 strlcat(strval, ",",
6066 ZAP_MAXVALUELEN);
6067 strlcat(strval, vname, ZAP_MAXVALUELEN);
6068 }
6069 if (strval != NULL) {
6070 vdev_prop_add_list(outnvl, propname,
6071 strval, 0, ZPROP_SRC_NONE);
6072 kmem_free(strval, ZAP_MAXVALUELEN);
6073 }
6074 continue;
6075 case VDEV_PROP_NUMCHILDREN:
6076 vdev_prop_add_list(outnvl, propname, NULL,
6077 vd->vdev_children, ZPROP_SRC_NONE);
6078 continue;
6079 case VDEV_PROP_READ_ERRORS:
6080 vdev_prop_add_list(outnvl, propname, NULL,
6081 vd->vdev_stat.vs_read_errors,
6082 ZPROP_SRC_NONE);
6083 continue;
6084 case VDEV_PROP_WRITE_ERRORS:
6085 vdev_prop_add_list(outnvl, propname, NULL,
6086 vd->vdev_stat.vs_write_errors,
6087 ZPROP_SRC_NONE);
6088 continue;
6089 case VDEV_PROP_CHECKSUM_ERRORS:
6090 vdev_prop_add_list(outnvl, propname, NULL,
6091 vd->vdev_stat.vs_checksum_errors,
6092 ZPROP_SRC_NONE);
6093 continue;
6094 case VDEV_PROP_INITIALIZE_ERRORS:
6095 vdev_prop_add_list(outnvl, propname, NULL,
6096 vd->vdev_stat.vs_initialize_errors,
6097 ZPROP_SRC_NONE);
6098 continue;
6099 case VDEV_PROP_OPS_NULL:
6100 vdev_prop_add_list(outnvl, propname, NULL,
6101 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
6102 ZPROP_SRC_NONE);
6103 continue;
6104 case VDEV_PROP_OPS_READ:
6105 vdev_prop_add_list(outnvl, propname, NULL,
6106 vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
6107 ZPROP_SRC_NONE);
6108 continue;
6109 case VDEV_PROP_OPS_WRITE:
6110 vdev_prop_add_list(outnvl, propname, NULL,
6111 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
6112 ZPROP_SRC_NONE);
6113 continue;
6114 case VDEV_PROP_OPS_FREE:
6115 vdev_prop_add_list(outnvl, propname, NULL,
6116 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
6117 ZPROP_SRC_NONE);
6118 continue;
6119 case VDEV_PROP_OPS_CLAIM:
6120 vdev_prop_add_list(outnvl, propname, NULL,
6121 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
6122 ZPROP_SRC_NONE);
6123 continue;
6124 case VDEV_PROP_OPS_TRIM:
6125 /*
6126 * TRIM ops and bytes are reported to user
6127 * space as ZIO_TYPE_IOCTL. This is done to
6128 * preserve the vdev_stat_t structure layout
6129 * for user space.
6130 */
6131 vdev_prop_add_list(outnvl, propname, NULL,
6132 vd->vdev_stat.vs_ops[ZIO_TYPE_IOCTL],
6133 ZPROP_SRC_NONE);
6134 continue;
6135 case VDEV_PROP_BYTES_NULL:
6136 vdev_prop_add_list(outnvl, propname, NULL,
6137 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
6138 ZPROP_SRC_NONE);
6139 continue;
6140 case VDEV_PROP_BYTES_READ:
6141 vdev_prop_add_list(outnvl, propname, NULL,
6142 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
6143 ZPROP_SRC_NONE);
6144 continue;
6145 case VDEV_PROP_BYTES_WRITE:
6146 vdev_prop_add_list(outnvl, propname, NULL,
6147 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
6148 ZPROP_SRC_NONE);
6149 continue;
6150 case VDEV_PROP_BYTES_FREE:
6151 vdev_prop_add_list(outnvl, propname, NULL,
6152 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
6153 ZPROP_SRC_NONE);
6154 continue;
6155 case VDEV_PROP_BYTES_CLAIM:
6156 vdev_prop_add_list(outnvl, propname, NULL,
6157 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
6158 ZPROP_SRC_NONE);
6159 continue;
6160 case VDEV_PROP_BYTES_TRIM:
6161 /*
6162 * TRIM ops and bytes are reported to user
6163 * space as ZIO_TYPE_IOCTL. This is done to
6164 * preserve the vdev_stat_t structure layout
6165 * for user space.
6166 */
6167 vdev_prop_add_list(outnvl, propname, NULL,
6168 vd->vdev_stat.vs_bytes[ZIO_TYPE_IOCTL],
6169 ZPROP_SRC_NONE);
6170 continue;
6171 case VDEV_PROP_REMOVING:
6172 vdev_prop_add_list(outnvl, propname, NULL,
6173 vd->vdev_removing, ZPROP_SRC_NONE);
6174 continue;
6175 /* Numeric Properites */
6176 case VDEV_PROP_ALLOCATING:
6177 /* Leaf vdevs cannot have this property */
6178 if (vd->vdev_mg == NULL &&
6179 vd->vdev_top != NULL) {
6180 src = ZPROP_SRC_NONE;
6181 intval = ZPROP_BOOLEAN_NA;
6182 } else {
6183 err = vdev_prop_get_int(vd, prop,
6184 &intval);
6185 if (err && err != ENOENT)
6186 break;
6187
6188 if (intval ==
6189 vdev_prop_default_numeric(prop))
6190 src = ZPROP_SRC_DEFAULT;
6191 else
6192 src = ZPROP_SRC_LOCAL;
6193 }
6194
6195 vdev_prop_add_list(outnvl, propname, NULL,
6196 intval, src);
6197 break;
6198 case VDEV_PROP_FAILFAST:
6199 src = ZPROP_SRC_LOCAL;
6200 strval = NULL;
6201
6202 err = zap_lookup(mos, objid, nvpair_name(elem),
6203 sizeof (uint64_t), 1, &intval);
6204 if (err == ENOENT) {
6205 intval = vdev_prop_default_numeric(
6206 prop);
6207 err = 0;
6208 } else if (err) {
6209 break;
6210 }
6211 if (intval == vdev_prop_default_numeric(prop))
6212 src = ZPROP_SRC_DEFAULT;
6213
6214 vdev_prop_add_list(outnvl, propname, strval,
6215 intval, src);
6216 break;
6217 case VDEV_PROP_CHECKSUM_N:
6218 case VDEV_PROP_CHECKSUM_T:
6219 case VDEV_PROP_IO_N:
6220 case VDEV_PROP_IO_T:
6221 err = vdev_prop_get_int(vd, prop, &intval);
6222 if (err && err != ENOENT)
6223 break;
6224
6225 if (intval == vdev_prop_default_numeric(prop))
6226 src = ZPROP_SRC_DEFAULT;
6227 else
6228 src = ZPROP_SRC_LOCAL;
6229
6230 vdev_prop_add_list(outnvl, propname, NULL,
6231 intval, src);
6232 break;
6233 /* Text Properties */
6234 case VDEV_PROP_COMMENT:
6235 /* Exists in the ZAP below */
6236 /* FALLTHRU */
6237 case VDEV_PROP_USERPROP:
6238 /* User Properites */
6239 src = ZPROP_SRC_LOCAL;
6240
6241 err = zap_length(mos, objid, nvpair_name(elem),
6242 &integer_size, &num_integers);
6243 if (err)
6244 break;
6245
6246 switch (integer_size) {
6247 case 8:
6248 /* User properties cannot be integers */
6249 err = EINVAL;
6250 break;
6251 case 1:
6252 /* string property */
6253 strval = kmem_alloc(num_integers,
6254 KM_SLEEP);
6255 err = zap_lookup(mos, objid,
6256 nvpair_name(elem), 1,
6257 num_integers, strval);
6258 if (err) {
6259 kmem_free(strval,
6260 num_integers);
6261 break;
6262 }
6263 vdev_prop_add_list(outnvl, propname,
6264 strval, 0, src);
6265 kmem_free(strval, num_integers);
6266 break;
6267 }
6268 break;
6269 default:
6270 err = ENOENT;
6271 break;
6272 }
6273 if (err)
6274 break;
6275 }
6276 } else {
6277 /*
6278 * Get all properties from the MOS vdev property object.
6279 */
6280 zap_cursor_t zc;
6281 zap_attribute_t za;
6282 for (zap_cursor_init(&zc, mos, objid);
6283 (err = zap_cursor_retrieve(&zc, &za)) == 0;
6284 zap_cursor_advance(&zc)) {
6285 intval = 0;
6286 strval = NULL;
6287 zprop_source_t src = ZPROP_SRC_DEFAULT;
6288 propname = za.za_name;
6289
6290 switch (za.za_integer_length) {
6291 case 8:
6292 /* We do not allow integer user properties */
6293 /* This is likely an internal value */
6294 break;
6295 case 1:
6296 /* string property */
6297 strval = kmem_alloc(za.za_num_integers,
6298 KM_SLEEP);
6299 err = zap_lookup(mos, objid, za.za_name, 1,
6300 za.za_num_integers, strval);
6301 if (err) {
6302 kmem_free(strval, za.za_num_integers);
6303 break;
6304 }
6305 vdev_prop_add_list(outnvl, propname, strval, 0,
6306 src);
6307 kmem_free(strval, za.za_num_integers);
6308 break;
6309
6310 default:
6311 break;
6312 }
6313 }
6314 zap_cursor_fini(&zc);
6315 }
6316
6317 mutex_exit(&spa->spa_props_lock);
6318 if (err && err != ENOENT) {
6319 return (err);
6320 }
6321
6322 return (0);
6323 }
6324
6325 EXPORT_SYMBOL(vdev_fault);
6326 EXPORT_SYMBOL(vdev_degrade);
6327 EXPORT_SYMBOL(vdev_online);
6328 EXPORT_SYMBOL(vdev_offline);
6329 EXPORT_SYMBOL(vdev_clear);
6330
6331 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
6332 "Target number of metaslabs per top-level vdev");
6333
6334 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
6335 "Default lower limit for metaslab size");
6336
6337 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW,
6338 "Default upper limit for metaslab size");
6339
6340 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
6341 "Minimum number of metaslabs per top-level vdev");
6342
6343 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
6344 "Practical upper limit of total metaslabs per top-level vdev");
6345
6346 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6347 "Rate limit slow IO (delay) events to this many per second");
6348
6349 /* BEGIN CSTYLED */
6350 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6351 "Rate limit checksum events to this many checksum errors per second "
6352 "(do not set below ZED threshold).");
6353 /* END CSTYLED */
6354
6355 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6356 "Ignore errors during resilver/scrub");
6357
6358 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6359 "Bypass vdev_validate()");
6360
6361 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6362 "Disable cache flushes");
6363
6364 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
6365 "Minimum number of metaslabs required to dedicate one for log blocks");
6366
6367 /* BEGIN CSTYLED */
6368 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6369 param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
6370 "Minimum ashift used when creating new top-level vdevs");
6371
6372 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6373 param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
6374 "Maximum ashift used when optimizing for logical -> physical sector "
6375 "size on new top-level vdevs");
6376 /* END CSTYLED */