]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Illumos 5161 - add tunable for number of metaslabs per vdev
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/space_reftree.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/zvol.h>
47
48 /*
49 * When a vdev is added, it will be divided into approximately (but no
50 * more than) this number of metaslabs.
51 */
52 int metaslabs_per_vdev = 200;
53
54 /*
55 * Virtual device management.
56 */
57
58 static vdev_ops_t *vdev_ops_table[] = {
59 &vdev_root_ops,
60 &vdev_raidz_ops,
61 &vdev_mirror_ops,
62 &vdev_replacing_ops,
63 &vdev_spare_ops,
64 &vdev_disk_ops,
65 &vdev_file_ops,
66 &vdev_missing_ops,
67 &vdev_hole_ops,
68 NULL
69 };
70
71 /*
72 * Given a vdev type, return the appropriate ops vector.
73 */
74 static vdev_ops_t *
75 vdev_getops(const char *type)
76 {
77 vdev_ops_t *ops, **opspp;
78
79 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
80 if (strcmp(ops->vdev_op_type, type) == 0)
81 break;
82
83 return (ops);
84 }
85
86 /*
87 * Default asize function: return the MAX of psize with the asize of
88 * all children. This is what's used by anything other than RAID-Z.
89 */
90 uint64_t
91 vdev_default_asize(vdev_t *vd, uint64_t psize)
92 {
93 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
94 uint64_t csize;
95 int c;
96
97 for (c = 0; c < vd->vdev_children; c++) {
98 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
99 asize = MAX(asize, csize);
100 }
101
102 return (asize);
103 }
104
105 /*
106 * Get the minimum allocatable size. We define the allocatable size as
107 * the vdev's asize rounded to the nearest metaslab. This allows us to
108 * replace or attach devices which don't have the same physical size but
109 * can still satisfy the same number of allocations.
110 */
111 uint64_t
112 vdev_get_min_asize(vdev_t *vd)
113 {
114 vdev_t *pvd = vd->vdev_parent;
115
116 /*
117 * If our parent is NULL (inactive spare or cache) or is the root,
118 * just return our own asize.
119 */
120 if (pvd == NULL)
121 return (vd->vdev_asize);
122
123 /*
124 * The top-level vdev just returns the allocatable size rounded
125 * to the nearest metaslab.
126 */
127 if (vd == vd->vdev_top)
128 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
129
130 /*
131 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
132 * so each child must provide at least 1/Nth of its asize.
133 */
134 if (pvd->vdev_ops == &vdev_raidz_ops)
135 return (pvd->vdev_min_asize / pvd->vdev_children);
136
137 return (pvd->vdev_min_asize);
138 }
139
140 void
141 vdev_set_min_asize(vdev_t *vd)
142 {
143 int c;
144 vd->vdev_min_asize = vdev_get_min_asize(vd);
145
146 for (c = 0; c < vd->vdev_children; c++)
147 vdev_set_min_asize(vd->vdev_child[c]);
148 }
149
150 vdev_t *
151 vdev_lookup_top(spa_t *spa, uint64_t vdev)
152 {
153 vdev_t *rvd = spa->spa_root_vdev;
154
155 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
156
157 if (vdev < rvd->vdev_children) {
158 ASSERT(rvd->vdev_child[vdev] != NULL);
159 return (rvd->vdev_child[vdev]);
160 }
161
162 return (NULL);
163 }
164
165 vdev_t *
166 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
167 {
168 vdev_t *mvd;
169 int c;
170
171 if (vd->vdev_guid == guid)
172 return (vd);
173
174 for (c = 0; c < vd->vdev_children; c++)
175 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
176 NULL)
177 return (mvd);
178
179 return (NULL);
180 }
181
182 void
183 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
184 {
185 size_t oldsize, newsize;
186 uint64_t id = cvd->vdev_id;
187 vdev_t **newchild;
188
189 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
190 ASSERT(cvd->vdev_parent == NULL);
191
192 cvd->vdev_parent = pvd;
193
194 if (pvd == NULL)
195 return;
196
197 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
198
199 oldsize = pvd->vdev_children * sizeof (vdev_t *);
200 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
201 newsize = pvd->vdev_children * sizeof (vdev_t *);
202
203 newchild = kmem_alloc(newsize, KM_PUSHPAGE);
204 if (pvd->vdev_child != NULL) {
205 bcopy(pvd->vdev_child, newchild, oldsize);
206 kmem_free(pvd->vdev_child, oldsize);
207 }
208
209 pvd->vdev_child = newchild;
210 pvd->vdev_child[id] = cvd;
211
212 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
213 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
214
215 /*
216 * Walk up all ancestors to update guid sum.
217 */
218 for (; pvd != NULL; pvd = pvd->vdev_parent)
219 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
220 }
221
222 void
223 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
224 {
225 int c;
226 uint_t id = cvd->vdev_id;
227
228 ASSERT(cvd->vdev_parent == pvd);
229
230 if (pvd == NULL)
231 return;
232
233 ASSERT(id < pvd->vdev_children);
234 ASSERT(pvd->vdev_child[id] == cvd);
235
236 pvd->vdev_child[id] = NULL;
237 cvd->vdev_parent = NULL;
238
239 for (c = 0; c < pvd->vdev_children; c++)
240 if (pvd->vdev_child[c])
241 break;
242
243 if (c == pvd->vdev_children) {
244 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
245 pvd->vdev_child = NULL;
246 pvd->vdev_children = 0;
247 }
248
249 /*
250 * Walk up all ancestors to update guid sum.
251 */
252 for (; pvd != NULL; pvd = pvd->vdev_parent)
253 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
254 }
255
256 /*
257 * Remove any holes in the child array.
258 */
259 void
260 vdev_compact_children(vdev_t *pvd)
261 {
262 vdev_t **newchild, *cvd;
263 int oldc = pvd->vdev_children;
264 int newc;
265 int c;
266
267 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
268
269 for (c = newc = 0; c < oldc; c++)
270 if (pvd->vdev_child[c])
271 newc++;
272
273 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_PUSHPAGE);
274
275 for (c = newc = 0; c < oldc; c++) {
276 if ((cvd = pvd->vdev_child[c]) != NULL) {
277 newchild[newc] = cvd;
278 cvd->vdev_id = newc++;
279 }
280 }
281
282 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
283 pvd->vdev_child = newchild;
284 pvd->vdev_children = newc;
285 }
286
287 /*
288 * Allocate and minimally initialize a vdev_t.
289 */
290 vdev_t *
291 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
292 {
293 vdev_t *vd;
294 int t;
295
296 vd = kmem_zalloc(sizeof (vdev_t), KM_PUSHPAGE);
297
298 if (spa->spa_root_vdev == NULL) {
299 ASSERT(ops == &vdev_root_ops);
300 spa->spa_root_vdev = vd;
301 spa->spa_load_guid = spa_generate_guid(NULL);
302 }
303
304 if (guid == 0 && ops != &vdev_hole_ops) {
305 if (spa->spa_root_vdev == vd) {
306 /*
307 * The root vdev's guid will also be the pool guid,
308 * which must be unique among all pools.
309 */
310 guid = spa_generate_guid(NULL);
311 } else {
312 /*
313 * Any other vdev's guid must be unique within the pool.
314 */
315 guid = spa_generate_guid(spa);
316 }
317 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
318 }
319
320 vd->vdev_spa = spa;
321 vd->vdev_id = id;
322 vd->vdev_guid = guid;
323 vd->vdev_guid_sum = guid;
324 vd->vdev_ops = ops;
325 vd->vdev_state = VDEV_STATE_CLOSED;
326 vd->vdev_ishole = (ops == &vdev_hole_ops);
327
328 list_link_init(&vd->vdev_config_dirty_node);
329 list_link_init(&vd->vdev_state_dirty_node);
330 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
331 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
332 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
333 for (t = 0; t < DTL_TYPES; t++) {
334 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
335 &vd->vdev_dtl_lock);
336 }
337 txg_list_create(&vd->vdev_ms_list,
338 offsetof(struct metaslab, ms_txg_node));
339 txg_list_create(&vd->vdev_dtl_list,
340 offsetof(struct vdev, vdev_dtl_node));
341 vd->vdev_stat.vs_timestamp = gethrtime();
342 vdev_queue_init(vd);
343 vdev_cache_init(vd);
344
345 return (vd);
346 }
347
348 /*
349 * Allocate a new vdev. The 'alloctype' is used to control whether we are
350 * creating a new vdev or loading an existing one - the behavior is slightly
351 * different for each case.
352 */
353 int
354 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
355 int alloctype)
356 {
357 vdev_ops_t *ops;
358 char *type;
359 uint64_t guid = 0, islog, nparity;
360 vdev_t *vd;
361
362 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
363
364 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
365 return (SET_ERROR(EINVAL));
366
367 if ((ops = vdev_getops(type)) == NULL)
368 return (SET_ERROR(EINVAL));
369
370 /*
371 * If this is a load, get the vdev guid from the nvlist.
372 * Otherwise, vdev_alloc_common() will generate one for us.
373 */
374 if (alloctype == VDEV_ALLOC_LOAD) {
375 uint64_t label_id;
376
377 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
378 label_id != id)
379 return (SET_ERROR(EINVAL));
380
381 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
382 return (SET_ERROR(EINVAL));
383 } else if (alloctype == VDEV_ALLOC_SPARE) {
384 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
385 return (SET_ERROR(EINVAL));
386 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
387 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
388 return (SET_ERROR(EINVAL));
389 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
390 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
391 return (SET_ERROR(EINVAL));
392 }
393
394 /*
395 * The first allocated vdev must be of type 'root'.
396 */
397 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
398 return (SET_ERROR(EINVAL));
399
400 /*
401 * Determine whether we're a log vdev.
402 */
403 islog = 0;
404 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
405 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
406 return (SET_ERROR(ENOTSUP));
407
408 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
409 return (SET_ERROR(ENOTSUP));
410
411 /*
412 * Set the nparity property for RAID-Z vdevs.
413 */
414 nparity = -1ULL;
415 if (ops == &vdev_raidz_ops) {
416 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
417 &nparity) == 0) {
418 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
419 return (SET_ERROR(EINVAL));
420 /*
421 * Previous versions could only support 1 or 2 parity
422 * device.
423 */
424 if (nparity > 1 &&
425 spa_version(spa) < SPA_VERSION_RAIDZ2)
426 return (SET_ERROR(ENOTSUP));
427 if (nparity > 2 &&
428 spa_version(spa) < SPA_VERSION_RAIDZ3)
429 return (SET_ERROR(ENOTSUP));
430 } else {
431 /*
432 * We require the parity to be specified for SPAs that
433 * support multiple parity levels.
434 */
435 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
436 return (SET_ERROR(EINVAL));
437 /*
438 * Otherwise, we default to 1 parity device for RAID-Z.
439 */
440 nparity = 1;
441 }
442 } else {
443 nparity = 0;
444 }
445 ASSERT(nparity != -1ULL);
446
447 vd = vdev_alloc_common(spa, id, guid, ops);
448
449 vd->vdev_islog = islog;
450 vd->vdev_nparity = nparity;
451
452 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
453 vd->vdev_path = spa_strdup(vd->vdev_path);
454 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
455 vd->vdev_devid = spa_strdup(vd->vdev_devid);
456 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
457 &vd->vdev_physpath) == 0)
458 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
459 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
460 vd->vdev_fru = spa_strdup(vd->vdev_fru);
461
462 /*
463 * Set the whole_disk property. If it's not specified, leave the value
464 * as -1.
465 */
466 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
467 &vd->vdev_wholedisk) != 0)
468 vd->vdev_wholedisk = -1ULL;
469
470 /*
471 * Look for the 'not present' flag. This will only be set if the device
472 * was not present at the time of import.
473 */
474 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
475 &vd->vdev_not_present);
476
477 /*
478 * Get the alignment requirement.
479 */
480 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
481
482 /*
483 * Retrieve the vdev creation time.
484 */
485 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
486 &vd->vdev_crtxg);
487
488 /*
489 * If we're a top-level vdev, try to load the allocation parameters.
490 */
491 if (parent && !parent->vdev_parent &&
492 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
493 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
494 &vd->vdev_ms_array);
495 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
496 &vd->vdev_ms_shift);
497 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
498 &vd->vdev_asize);
499 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
500 &vd->vdev_removing);
501 }
502
503 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
504 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
505 alloctype == VDEV_ALLOC_ADD ||
506 alloctype == VDEV_ALLOC_SPLIT ||
507 alloctype == VDEV_ALLOC_ROOTPOOL);
508 vd->vdev_mg = metaslab_group_create(islog ?
509 spa_log_class(spa) : spa_normal_class(spa), vd);
510 }
511
512 /*
513 * If we're a leaf vdev, try to load the DTL object and other state.
514 */
515 if (vd->vdev_ops->vdev_op_leaf &&
516 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
517 alloctype == VDEV_ALLOC_ROOTPOOL)) {
518 if (alloctype == VDEV_ALLOC_LOAD) {
519 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
520 &vd->vdev_dtl_object);
521 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
522 &vd->vdev_unspare);
523 }
524
525 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
526 uint64_t spare = 0;
527
528 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
529 &spare) == 0 && spare)
530 spa_spare_add(vd);
531 }
532
533 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
534 &vd->vdev_offline);
535
536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
537 &vd->vdev_resilver_txg);
538
539 /*
540 * When importing a pool, we want to ignore the persistent fault
541 * state, as the diagnosis made on another system may not be
542 * valid in the current context. Local vdevs will
543 * remain in the faulted state.
544 */
545 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
546 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
547 &vd->vdev_faulted);
548 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
549 &vd->vdev_degraded);
550 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
551 &vd->vdev_removed);
552
553 if (vd->vdev_faulted || vd->vdev_degraded) {
554 char *aux;
555
556 vd->vdev_label_aux =
557 VDEV_AUX_ERR_EXCEEDED;
558 if (nvlist_lookup_string(nv,
559 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
560 strcmp(aux, "external") == 0)
561 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
562 }
563 }
564 }
565
566 /*
567 * Add ourselves to the parent's list of children.
568 */
569 vdev_add_child(parent, vd);
570
571 *vdp = vd;
572
573 return (0);
574 }
575
576 void
577 vdev_free(vdev_t *vd)
578 {
579 int c, t;
580 spa_t *spa = vd->vdev_spa;
581
582 /*
583 * vdev_free() implies closing the vdev first. This is simpler than
584 * trying to ensure complicated semantics for all callers.
585 */
586 vdev_close(vd);
587
588 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
589 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
590
591 /*
592 * Free all children.
593 */
594 for (c = 0; c < vd->vdev_children; c++)
595 vdev_free(vd->vdev_child[c]);
596
597 ASSERT(vd->vdev_child == NULL);
598 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
599
600 /*
601 * Discard allocation state.
602 */
603 if (vd->vdev_mg != NULL) {
604 vdev_metaslab_fini(vd);
605 metaslab_group_destroy(vd->vdev_mg);
606 }
607
608 ASSERT0(vd->vdev_stat.vs_space);
609 ASSERT0(vd->vdev_stat.vs_dspace);
610 ASSERT0(vd->vdev_stat.vs_alloc);
611
612 /*
613 * Remove this vdev from its parent's child list.
614 */
615 vdev_remove_child(vd->vdev_parent, vd);
616
617 ASSERT(vd->vdev_parent == NULL);
618
619 /*
620 * Clean up vdev structure.
621 */
622 vdev_queue_fini(vd);
623 vdev_cache_fini(vd);
624
625 if (vd->vdev_path)
626 spa_strfree(vd->vdev_path);
627 if (vd->vdev_devid)
628 spa_strfree(vd->vdev_devid);
629 if (vd->vdev_physpath)
630 spa_strfree(vd->vdev_physpath);
631 if (vd->vdev_fru)
632 spa_strfree(vd->vdev_fru);
633
634 if (vd->vdev_isspare)
635 spa_spare_remove(vd);
636 if (vd->vdev_isl2cache)
637 spa_l2cache_remove(vd);
638
639 txg_list_destroy(&vd->vdev_ms_list);
640 txg_list_destroy(&vd->vdev_dtl_list);
641
642 mutex_enter(&vd->vdev_dtl_lock);
643 space_map_close(vd->vdev_dtl_sm);
644 for (t = 0; t < DTL_TYPES; t++) {
645 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
646 range_tree_destroy(vd->vdev_dtl[t]);
647 }
648 mutex_exit(&vd->vdev_dtl_lock);
649
650 mutex_destroy(&vd->vdev_dtl_lock);
651 mutex_destroy(&vd->vdev_stat_lock);
652 mutex_destroy(&vd->vdev_probe_lock);
653
654 if (vd == spa->spa_root_vdev)
655 spa->spa_root_vdev = NULL;
656
657 kmem_free(vd, sizeof (vdev_t));
658 }
659
660 /*
661 * Transfer top-level vdev state from svd to tvd.
662 */
663 static void
664 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
665 {
666 spa_t *spa = svd->vdev_spa;
667 metaslab_t *msp;
668 vdev_t *vd;
669 int t;
670
671 ASSERT(tvd == tvd->vdev_top);
672
673 tvd->vdev_ms_array = svd->vdev_ms_array;
674 tvd->vdev_ms_shift = svd->vdev_ms_shift;
675 tvd->vdev_ms_count = svd->vdev_ms_count;
676
677 svd->vdev_ms_array = 0;
678 svd->vdev_ms_shift = 0;
679 svd->vdev_ms_count = 0;
680
681 if (tvd->vdev_mg)
682 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
683 tvd->vdev_mg = svd->vdev_mg;
684 tvd->vdev_ms = svd->vdev_ms;
685
686 svd->vdev_mg = NULL;
687 svd->vdev_ms = NULL;
688
689 if (tvd->vdev_mg != NULL)
690 tvd->vdev_mg->mg_vd = tvd;
691
692 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
693 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
694 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
695
696 svd->vdev_stat.vs_alloc = 0;
697 svd->vdev_stat.vs_space = 0;
698 svd->vdev_stat.vs_dspace = 0;
699
700 for (t = 0; t < TXG_SIZE; t++) {
701 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
702 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
703 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
704 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
705 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
706 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
707 }
708
709 if (list_link_active(&svd->vdev_config_dirty_node)) {
710 vdev_config_clean(svd);
711 vdev_config_dirty(tvd);
712 }
713
714 if (list_link_active(&svd->vdev_state_dirty_node)) {
715 vdev_state_clean(svd);
716 vdev_state_dirty(tvd);
717 }
718
719 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
720 svd->vdev_deflate_ratio = 0;
721
722 tvd->vdev_islog = svd->vdev_islog;
723 svd->vdev_islog = 0;
724 }
725
726 static void
727 vdev_top_update(vdev_t *tvd, vdev_t *vd)
728 {
729 int c;
730
731 if (vd == NULL)
732 return;
733
734 vd->vdev_top = tvd;
735
736 for (c = 0; c < vd->vdev_children; c++)
737 vdev_top_update(tvd, vd->vdev_child[c]);
738 }
739
740 /*
741 * Add a mirror/replacing vdev above an existing vdev.
742 */
743 vdev_t *
744 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
745 {
746 spa_t *spa = cvd->vdev_spa;
747 vdev_t *pvd = cvd->vdev_parent;
748 vdev_t *mvd;
749
750 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
751
752 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
753
754 mvd->vdev_asize = cvd->vdev_asize;
755 mvd->vdev_min_asize = cvd->vdev_min_asize;
756 mvd->vdev_max_asize = cvd->vdev_max_asize;
757 mvd->vdev_ashift = cvd->vdev_ashift;
758 mvd->vdev_state = cvd->vdev_state;
759 mvd->vdev_crtxg = cvd->vdev_crtxg;
760
761 vdev_remove_child(pvd, cvd);
762 vdev_add_child(pvd, mvd);
763 cvd->vdev_id = mvd->vdev_children;
764 vdev_add_child(mvd, cvd);
765 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
766
767 if (mvd == mvd->vdev_top)
768 vdev_top_transfer(cvd, mvd);
769
770 return (mvd);
771 }
772
773 /*
774 * Remove a 1-way mirror/replacing vdev from the tree.
775 */
776 void
777 vdev_remove_parent(vdev_t *cvd)
778 {
779 vdev_t *mvd = cvd->vdev_parent;
780 vdev_t *pvd = mvd->vdev_parent;
781
782 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
783
784 ASSERT(mvd->vdev_children == 1);
785 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
786 mvd->vdev_ops == &vdev_replacing_ops ||
787 mvd->vdev_ops == &vdev_spare_ops);
788 cvd->vdev_ashift = mvd->vdev_ashift;
789
790 vdev_remove_child(mvd, cvd);
791 vdev_remove_child(pvd, mvd);
792
793 /*
794 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
795 * Otherwise, we could have detached an offline device, and when we
796 * go to import the pool we'll think we have two top-level vdevs,
797 * instead of a different version of the same top-level vdev.
798 */
799 if (mvd->vdev_top == mvd) {
800 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
801 cvd->vdev_orig_guid = cvd->vdev_guid;
802 cvd->vdev_guid += guid_delta;
803 cvd->vdev_guid_sum += guid_delta;
804
805 /*
806 * If pool not set for autoexpand, we need to also preserve
807 * mvd's asize to prevent automatic expansion of cvd.
808 * Otherwise if we are adjusting the mirror by attaching and
809 * detaching children of non-uniform sizes, the mirror could
810 * autoexpand, unexpectedly requiring larger devices to
811 * re-establish the mirror.
812 */
813 if (!cvd->vdev_spa->spa_autoexpand)
814 cvd->vdev_asize = mvd->vdev_asize;
815 }
816 cvd->vdev_id = mvd->vdev_id;
817 vdev_add_child(pvd, cvd);
818 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
819
820 if (cvd == cvd->vdev_top)
821 vdev_top_transfer(mvd, cvd);
822
823 ASSERT(mvd->vdev_children == 0);
824 vdev_free(mvd);
825 }
826
827 int
828 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
829 {
830 spa_t *spa = vd->vdev_spa;
831 objset_t *mos = spa->spa_meta_objset;
832 uint64_t m;
833 uint64_t oldc = vd->vdev_ms_count;
834 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
835 metaslab_t **mspp;
836 int error;
837
838 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
839
840 /*
841 * This vdev is not being allocated from yet or is a hole.
842 */
843 if (vd->vdev_ms_shift == 0)
844 return (0);
845
846 ASSERT(!vd->vdev_ishole);
847
848 /*
849 * Compute the raidz-deflation ratio. Note, we hard-code
850 * in 128k (1 << 17) because it is the current "typical" blocksize.
851 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
852 * or we will inconsistently account for existing bp's.
853 */
854 vd->vdev_deflate_ratio = (1 << 17) /
855 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
856
857 ASSERT(oldc <= newc);
858
859 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_PUSHPAGE | KM_NODEBUG);
860
861 if (oldc != 0) {
862 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
863 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
864 }
865
866 vd->vdev_ms = mspp;
867 vd->vdev_ms_count = newc;
868
869 for (m = oldc; m < newc; m++) {
870 uint64_t object = 0;
871
872 if (txg == 0) {
873 error = dmu_read(mos, vd->vdev_ms_array,
874 m * sizeof (uint64_t), sizeof (uint64_t), &object,
875 DMU_READ_PREFETCH);
876 if (error)
877 return (error);
878 }
879 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, m, object, txg);
880 }
881
882 if (txg == 0)
883 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
884
885 /*
886 * If the vdev is being removed we don't activate
887 * the metaslabs since we want to ensure that no new
888 * allocations are performed on this device.
889 */
890 if (oldc == 0 && !vd->vdev_removing)
891 metaslab_group_activate(vd->vdev_mg);
892
893 if (txg == 0)
894 spa_config_exit(spa, SCL_ALLOC, FTAG);
895
896 return (0);
897 }
898
899 void
900 vdev_metaslab_fini(vdev_t *vd)
901 {
902 uint64_t m;
903 uint64_t count = vd->vdev_ms_count;
904
905 if (vd->vdev_ms != NULL) {
906 metaslab_group_passivate(vd->vdev_mg);
907 for (m = 0; m < count; m++) {
908 metaslab_t *msp = vd->vdev_ms[m];
909
910 if (msp != NULL)
911 metaslab_fini(msp);
912 }
913 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
914 vd->vdev_ms = NULL;
915 }
916
917 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
918 }
919
920 typedef struct vdev_probe_stats {
921 boolean_t vps_readable;
922 boolean_t vps_writeable;
923 int vps_flags;
924 } vdev_probe_stats_t;
925
926 static void
927 vdev_probe_done(zio_t *zio)
928 {
929 spa_t *spa = zio->io_spa;
930 vdev_t *vd = zio->io_vd;
931 vdev_probe_stats_t *vps = zio->io_private;
932
933 ASSERT(vd->vdev_probe_zio != NULL);
934
935 if (zio->io_type == ZIO_TYPE_READ) {
936 if (zio->io_error == 0)
937 vps->vps_readable = 1;
938 if (zio->io_error == 0 && spa_writeable(spa)) {
939 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
940 zio->io_offset, zio->io_size, zio->io_data,
941 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
942 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
943 } else {
944 zio_buf_free(zio->io_data, zio->io_size);
945 }
946 } else if (zio->io_type == ZIO_TYPE_WRITE) {
947 if (zio->io_error == 0)
948 vps->vps_writeable = 1;
949 zio_buf_free(zio->io_data, zio->io_size);
950 } else if (zio->io_type == ZIO_TYPE_NULL) {
951 zio_t *pio;
952
953 vd->vdev_cant_read |= !vps->vps_readable;
954 vd->vdev_cant_write |= !vps->vps_writeable;
955
956 if (vdev_readable(vd) &&
957 (vdev_writeable(vd) || !spa_writeable(spa))) {
958 zio->io_error = 0;
959 } else {
960 ASSERT(zio->io_error != 0);
961 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
962 spa, vd, NULL, 0, 0);
963 zio->io_error = SET_ERROR(ENXIO);
964 }
965
966 mutex_enter(&vd->vdev_probe_lock);
967 ASSERT(vd->vdev_probe_zio == zio);
968 vd->vdev_probe_zio = NULL;
969 mutex_exit(&vd->vdev_probe_lock);
970
971 while ((pio = zio_walk_parents(zio)) != NULL)
972 if (!vdev_accessible(vd, pio))
973 pio->io_error = SET_ERROR(ENXIO);
974
975 kmem_free(vps, sizeof (*vps));
976 }
977 }
978
979 /*
980 * Determine whether this device is accessible.
981 *
982 * Read and write to several known locations: the pad regions of each
983 * vdev label but the first, which we leave alone in case it contains
984 * a VTOC.
985 */
986 zio_t *
987 vdev_probe(vdev_t *vd, zio_t *zio)
988 {
989 spa_t *spa = vd->vdev_spa;
990 vdev_probe_stats_t *vps = NULL;
991 zio_t *pio;
992 int l;
993
994 ASSERT(vd->vdev_ops->vdev_op_leaf);
995
996 /*
997 * Don't probe the probe.
998 */
999 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1000 return (NULL);
1001
1002 /*
1003 * To prevent 'probe storms' when a device fails, we create
1004 * just one probe i/o at a time. All zios that want to probe
1005 * this vdev will become parents of the probe io.
1006 */
1007 mutex_enter(&vd->vdev_probe_lock);
1008
1009 if ((pio = vd->vdev_probe_zio) == NULL) {
1010 vps = kmem_zalloc(sizeof (*vps), KM_PUSHPAGE);
1011
1012 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1013 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1014 ZIO_FLAG_TRYHARD;
1015
1016 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1017 /*
1018 * vdev_cant_read and vdev_cant_write can only
1019 * transition from TRUE to FALSE when we have the
1020 * SCL_ZIO lock as writer; otherwise they can only
1021 * transition from FALSE to TRUE. This ensures that
1022 * any zio looking at these values can assume that
1023 * failures persist for the life of the I/O. That's
1024 * important because when a device has intermittent
1025 * connectivity problems, we want to ensure that
1026 * they're ascribed to the device (ENXIO) and not
1027 * the zio (EIO).
1028 *
1029 * Since we hold SCL_ZIO as writer here, clear both
1030 * values so the probe can reevaluate from first
1031 * principles.
1032 */
1033 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1034 vd->vdev_cant_read = B_FALSE;
1035 vd->vdev_cant_write = B_FALSE;
1036 }
1037
1038 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1039 vdev_probe_done, vps,
1040 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1041
1042 /*
1043 * We can't change the vdev state in this context, so we
1044 * kick off an async task to do it on our behalf.
1045 */
1046 if (zio != NULL) {
1047 vd->vdev_probe_wanted = B_TRUE;
1048 spa_async_request(spa, SPA_ASYNC_PROBE);
1049 }
1050 }
1051
1052 if (zio != NULL)
1053 zio_add_child(zio, pio);
1054
1055 mutex_exit(&vd->vdev_probe_lock);
1056
1057 if (vps == NULL) {
1058 ASSERT(zio != NULL);
1059 return (NULL);
1060 }
1061
1062 for (l = 1; l < VDEV_LABELS; l++) {
1063 zio_nowait(zio_read_phys(pio, vd,
1064 vdev_label_offset(vd->vdev_psize, l,
1065 offsetof(vdev_label_t, vl_pad2)),
1066 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1067 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1068 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1069 }
1070
1071 if (zio == NULL)
1072 return (pio);
1073
1074 zio_nowait(pio);
1075 return (NULL);
1076 }
1077
1078 static void
1079 vdev_open_child(void *arg)
1080 {
1081 vdev_t *vd = arg;
1082
1083 vd->vdev_open_thread = curthread;
1084 vd->vdev_open_error = vdev_open(vd);
1085 vd->vdev_open_thread = NULL;
1086 }
1087
1088 static boolean_t
1089 vdev_uses_zvols(vdev_t *vd)
1090 {
1091 int c;
1092
1093 #ifdef _KERNEL
1094 if (zvol_is_zvol(vd->vdev_path))
1095 return (B_TRUE);
1096 #endif
1097
1098 for (c = 0; c < vd->vdev_children; c++)
1099 if (vdev_uses_zvols(vd->vdev_child[c]))
1100 return (B_TRUE);
1101
1102 return (B_FALSE);
1103 }
1104
1105 void
1106 vdev_open_children(vdev_t *vd)
1107 {
1108 taskq_t *tq;
1109 int children = vd->vdev_children;
1110 int c;
1111
1112 /*
1113 * in order to handle pools on top of zvols, do the opens
1114 * in a single thread so that the same thread holds the
1115 * spa_namespace_lock
1116 */
1117 if (vdev_uses_zvols(vd)) {
1118 for (c = 0; c < children; c++)
1119 vd->vdev_child[c]->vdev_open_error =
1120 vdev_open(vd->vdev_child[c]);
1121 return;
1122 }
1123 tq = taskq_create("vdev_open", children, minclsyspri,
1124 children, children, TASKQ_PREPOPULATE);
1125
1126 for (c = 0; c < children; c++)
1127 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1128 TQ_SLEEP) != 0);
1129
1130 taskq_destroy(tq);
1131 }
1132
1133 /*
1134 * Prepare a virtual device for access.
1135 */
1136 int
1137 vdev_open(vdev_t *vd)
1138 {
1139 spa_t *spa = vd->vdev_spa;
1140 int error;
1141 uint64_t osize = 0;
1142 uint64_t max_osize = 0;
1143 uint64_t asize, max_asize, psize;
1144 uint64_t ashift = 0;
1145 int c;
1146
1147 ASSERT(vd->vdev_open_thread == curthread ||
1148 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1149 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1150 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1151 vd->vdev_state == VDEV_STATE_OFFLINE);
1152
1153 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1154 vd->vdev_cant_read = B_FALSE;
1155 vd->vdev_cant_write = B_FALSE;
1156 vd->vdev_min_asize = vdev_get_min_asize(vd);
1157
1158 /*
1159 * If this vdev is not removed, check its fault status. If it's
1160 * faulted, bail out of the open.
1161 */
1162 if (!vd->vdev_removed && vd->vdev_faulted) {
1163 ASSERT(vd->vdev_children == 0);
1164 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1165 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1166 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1167 vd->vdev_label_aux);
1168 return (SET_ERROR(ENXIO));
1169 } else if (vd->vdev_offline) {
1170 ASSERT(vd->vdev_children == 0);
1171 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1172 return (SET_ERROR(ENXIO));
1173 }
1174
1175 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1176
1177 /*
1178 * Reset the vdev_reopening flag so that we actually close
1179 * the vdev on error.
1180 */
1181 vd->vdev_reopening = B_FALSE;
1182 if (zio_injection_enabled && error == 0)
1183 error = zio_handle_device_injection(vd, NULL, ENXIO);
1184
1185 if (error) {
1186 if (vd->vdev_removed &&
1187 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1188 vd->vdev_removed = B_FALSE;
1189
1190 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1191 vd->vdev_stat.vs_aux);
1192 return (error);
1193 }
1194
1195 vd->vdev_removed = B_FALSE;
1196
1197 /*
1198 * Recheck the faulted flag now that we have confirmed that
1199 * the vdev is accessible. If we're faulted, bail.
1200 */
1201 if (vd->vdev_faulted) {
1202 ASSERT(vd->vdev_children == 0);
1203 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1204 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1205 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1206 vd->vdev_label_aux);
1207 return (SET_ERROR(ENXIO));
1208 }
1209
1210 if (vd->vdev_degraded) {
1211 ASSERT(vd->vdev_children == 0);
1212 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1213 VDEV_AUX_ERR_EXCEEDED);
1214 } else {
1215 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1216 }
1217
1218 /*
1219 * For hole or missing vdevs we just return success.
1220 */
1221 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1222 return (0);
1223
1224 for (c = 0; c < vd->vdev_children; c++) {
1225 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1226 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1227 VDEV_AUX_NONE);
1228 break;
1229 }
1230 }
1231
1232 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1233 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1234
1235 if (vd->vdev_children == 0) {
1236 if (osize < SPA_MINDEVSIZE) {
1237 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1238 VDEV_AUX_TOO_SMALL);
1239 return (SET_ERROR(EOVERFLOW));
1240 }
1241 psize = osize;
1242 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1243 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1244 VDEV_LABEL_END_SIZE);
1245 } else {
1246 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1247 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1248 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1249 VDEV_AUX_TOO_SMALL);
1250 return (SET_ERROR(EOVERFLOW));
1251 }
1252 psize = 0;
1253 asize = osize;
1254 max_asize = max_osize;
1255 }
1256
1257 vd->vdev_psize = psize;
1258
1259 /*
1260 * Make sure the allocatable size hasn't shrunk.
1261 */
1262 if (asize < vd->vdev_min_asize) {
1263 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1264 VDEV_AUX_BAD_LABEL);
1265 return (SET_ERROR(EINVAL));
1266 }
1267
1268 if (vd->vdev_asize == 0) {
1269 /*
1270 * This is the first-ever open, so use the computed values.
1271 * For compatibility, a different ashift can be requested.
1272 */
1273 vd->vdev_asize = asize;
1274 vd->vdev_max_asize = max_asize;
1275 if (vd->vdev_ashift == 0)
1276 vd->vdev_ashift = ashift;
1277 } else {
1278 /*
1279 * Detect if the alignment requirement has increased.
1280 * We don't want to make the pool unavailable, just
1281 * post an event instead.
1282 */
1283 if (ashift > vd->vdev_top->vdev_ashift &&
1284 vd->vdev_ops->vdev_op_leaf) {
1285 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1286 spa, vd, NULL, 0, 0);
1287 }
1288
1289 vd->vdev_max_asize = max_asize;
1290 }
1291
1292 /*
1293 * If all children are healthy and the asize has increased,
1294 * then we've experienced dynamic LUN growth. If automatic
1295 * expansion is enabled then use the additional space.
1296 */
1297 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1298 (vd->vdev_expanding || spa->spa_autoexpand))
1299 vd->vdev_asize = asize;
1300
1301 vdev_set_min_asize(vd);
1302
1303 /*
1304 * Ensure we can issue some IO before declaring the
1305 * vdev open for business.
1306 */
1307 if (vd->vdev_ops->vdev_op_leaf &&
1308 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1309 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1310 VDEV_AUX_ERR_EXCEEDED);
1311 return (error);
1312 }
1313
1314 /*
1315 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1316 * resilver. But don't do this if we are doing a reopen for a scrub,
1317 * since this would just restart the scrub we are already doing.
1318 */
1319 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1320 vdev_resilver_needed(vd, NULL, NULL))
1321 spa_async_request(spa, SPA_ASYNC_RESILVER);
1322
1323 return (0);
1324 }
1325
1326 /*
1327 * Called once the vdevs are all opened, this routine validates the label
1328 * contents. This needs to be done before vdev_load() so that we don't
1329 * inadvertently do repair I/Os to the wrong device.
1330 *
1331 * If 'strict' is false ignore the spa guid check. This is necessary because
1332 * if the machine crashed during a re-guid the new guid might have been written
1333 * to all of the vdev labels, but not the cached config. The strict check
1334 * will be performed when the pool is opened again using the mos config.
1335 *
1336 * This function will only return failure if one of the vdevs indicates that it
1337 * has since been destroyed or exported. This is only possible if
1338 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1339 * will be updated but the function will return 0.
1340 */
1341 int
1342 vdev_validate(vdev_t *vd, boolean_t strict)
1343 {
1344 spa_t *spa = vd->vdev_spa;
1345 nvlist_t *label;
1346 uint64_t guid = 0, top_guid;
1347 uint64_t state;
1348 int c;
1349
1350 for (c = 0; c < vd->vdev_children; c++)
1351 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1352 return (SET_ERROR(EBADF));
1353
1354 /*
1355 * If the device has already failed, or was marked offline, don't do
1356 * any further validation. Otherwise, label I/O will fail and we will
1357 * overwrite the previous state.
1358 */
1359 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1360 uint64_t aux_guid = 0;
1361 nvlist_t *nvl;
1362 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1363 spa_last_synced_txg(spa) : -1ULL;
1364
1365 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1366 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1367 VDEV_AUX_BAD_LABEL);
1368 return (0);
1369 }
1370
1371 /*
1372 * Determine if this vdev has been split off into another
1373 * pool. If so, then refuse to open it.
1374 */
1375 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1376 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1377 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1378 VDEV_AUX_SPLIT_POOL);
1379 nvlist_free(label);
1380 return (0);
1381 }
1382
1383 if (strict && (nvlist_lookup_uint64(label,
1384 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1385 guid != spa_guid(spa))) {
1386 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1387 VDEV_AUX_CORRUPT_DATA);
1388 nvlist_free(label);
1389 return (0);
1390 }
1391
1392 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1393 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1394 &aux_guid) != 0)
1395 aux_guid = 0;
1396
1397 /*
1398 * If this vdev just became a top-level vdev because its
1399 * sibling was detached, it will have adopted the parent's
1400 * vdev guid -- but the label may or may not be on disk yet.
1401 * Fortunately, either version of the label will have the
1402 * same top guid, so if we're a top-level vdev, we can
1403 * safely compare to that instead.
1404 *
1405 * If we split this vdev off instead, then we also check the
1406 * original pool's guid. We don't want to consider the vdev
1407 * corrupt if it is partway through a split operation.
1408 */
1409 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1410 &guid) != 0 ||
1411 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1412 &top_guid) != 0 ||
1413 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1414 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1415 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1416 VDEV_AUX_CORRUPT_DATA);
1417 nvlist_free(label);
1418 return (0);
1419 }
1420
1421 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1422 &state) != 0) {
1423 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1424 VDEV_AUX_CORRUPT_DATA);
1425 nvlist_free(label);
1426 return (0);
1427 }
1428
1429 nvlist_free(label);
1430
1431 /*
1432 * If this is a verbatim import, no need to check the
1433 * state of the pool.
1434 */
1435 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1436 spa_load_state(spa) == SPA_LOAD_OPEN &&
1437 state != POOL_STATE_ACTIVE)
1438 return (SET_ERROR(EBADF));
1439
1440 /*
1441 * If we were able to open and validate a vdev that was
1442 * previously marked permanently unavailable, clear that state
1443 * now.
1444 */
1445 if (vd->vdev_not_present)
1446 vd->vdev_not_present = 0;
1447 }
1448
1449 return (0);
1450 }
1451
1452 /*
1453 * Close a virtual device.
1454 */
1455 void
1456 vdev_close(vdev_t *vd)
1457 {
1458 vdev_t *pvd = vd->vdev_parent;
1459 ASSERTV(spa_t *spa = vd->vdev_spa);
1460
1461 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1462
1463 /*
1464 * If our parent is reopening, then we are as well, unless we are
1465 * going offline.
1466 */
1467 if (pvd != NULL && pvd->vdev_reopening)
1468 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1469
1470 vd->vdev_ops->vdev_op_close(vd);
1471
1472 vdev_cache_purge(vd);
1473
1474 /*
1475 * We record the previous state before we close it, so that if we are
1476 * doing a reopen(), we don't generate FMA ereports if we notice that
1477 * it's still faulted.
1478 */
1479 vd->vdev_prevstate = vd->vdev_state;
1480
1481 if (vd->vdev_offline)
1482 vd->vdev_state = VDEV_STATE_OFFLINE;
1483 else
1484 vd->vdev_state = VDEV_STATE_CLOSED;
1485 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1486 }
1487
1488 void
1489 vdev_hold(vdev_t *vd)
1490 {
1491 spa_t *spa = vd->vdev_spa;
1492 int c;
1493
1494 ASSERT(spa_is_root(spa));
1495 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1496 return;
1497
1498 for (c = 0; c < vd->vdev_children; c++)
1499 vdev_hold(vd->vdev_child[c]);
1500
1501 if (vd->vdev_ops->vdev_op_leaf)
1502 vd->vdev_ops->vdev_op_hold(vd);
1503 }
1504
1505 void
1506 vdev_rele(vdev_t *vd)
1507 {
1508 int c;
1509
1510 ASSERT(spa_is_root(vd->vdev_spa));
1511 for (c = 0; c < vd->vdev_children; c++)
1512 vdev_rele(vd->vdev_child[c]);
1513
1514 if (vd->vdev_ops->vdev_op_leaf)
1515 vd->vdev_ops->vdev_op_rele(vd);
1516 }
1517
1518 /*
1519 * Reopen all interior vdevs and any unopened leaves. We don't actually
1520 * reopen leaf vdevs which had previously been opened as they might deadlock
1521 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1522 * If the leaf has never been opened then open it, as usual.
1523 */
1524 void
1525 vdev_reopen(vdev_t *vd)
1526 {
1527 spa_t *spa = vd->vdev_spa;
1528
1529 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1530
1531 /* set the reopening flag unless we're taking the vdev offline */
1532 vd->vdev_reopening = !vd->vdev_offline;
1533 vdev_close(vd);
1534 (void) vdev_open(vd);
1535
1536 /*
1537 * Call vdev_validate() here to make sure we have the same device.
1538 * Otherwise, a device with an invalid label could be successfully
1539 * opened in response to vdev_reopen().
1540 */
1541 if (vd->vdev_aux) {
1542 (void) vdev_validate_aux(vd);
1543 if (vdev_readable(vd) && vdev_writeable(vd) &&
1544 vd->vdev_aux == &spa->spa_l2cache &&
1545 !l2arc_vdev_present(vd))
1546 l2arc_add_vdev(spa, vd);
1547 } else {
1548 (void) vdev_validate(vd, B_TRUE);
1549 }
1550
1551 /*
1552 * Reassess parent vdev's health.
1553 */
1554 vdev_propagate_state(vd);
1555 }
1556
1557 int
1558 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1559 {
1560 int error;
1561
1562 /*
1563 * Normally, partial opens (e.g. of a mirror) are allowed.
1564 * For a create, however, we want to fail the request if
1565 * there are any components we can't open.
1566 */
1567 error = vdev_open(vd);
1568
1569 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1570 vdev_close(vd);
1571 return (error ? error : ENXIO);
1572 }
1573
1574 /*
1575 * Recursively load DTLs and initialize all labels.
1576 */
1577 if ((error = vdev_dtl_load(vd)) != 0 ||
1578 (error = vdev_label_init(vd, txg, isreplacing ?
1579 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1580 vdev_close(vd);
1581 return (error);
1582 }
1583
1584 return (0);
1585 }
1586
1587 void
1588 vdev_metaslab_set_size(vdev_t *vd)
1589 {
1590 /*
1591 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1592 */
1593 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1594 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1595 }
1596
1597 void
1598 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1599 {
1600 ASSERT(vd == vd->vdev_top);
1601 ASSERT(!vd->vdev_ishole);
1602 ASSERT(ISP2(flags));
1603 ASSERT(spa_writeable(vd->vdev_spa));
1604
1605 if (flags & VDD_METASLAB)
1606 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1607
1608 if (flags & VDD_DTL)
1609 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1610
1611 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1612 }
1613
1614 void
1615 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1616 {
1617 int c;
1618
1619 for (c = 0; c < vd->vdev_children; c++)
1620 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1621
1622 if (vd->vdev_ops->vdev_op_leaf)
1623 vdev_dirty(vd->vdev_top, flags, vd, txg);
1624 }
1625
1626 /*
1627 * DTLs.
1628 *
1629 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1630 * the vdev has less than perfect replication. There are four kinds of DTL:
1631 *
1632 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1633 *
1634 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1635 *
1636 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1637 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1638 * txgs that was scrubbed.
1639 *
1640 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1641 * persistent errors or just some device being offline.
1642 * Unlike the other three, the DTL_OUTAGE map is not generally
1643 * maintained; it's only computed when needed, typically to
1644 * determine whether a device can be detached.
1645 *
1646 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1647 * either has the data or it doesn't.
1648 *
1649 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1650 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1651 * if any child is less than fully replicated, then so is its parent.
1652 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1653 * comprising only those txgs which appear in 'maxfaults' or more children;
1654 * those are the txgs we don't have enough replication to read. For example,
1655 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1656 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1657 * two child DTL_MISSING maps.
1658 *
1659 * It should be clear from the above that to compute the DTLs and outage maps
1660 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1661 * Therefore, that is all we keep on disk. When loading the pool, or after
1662 * a configuration change, we generate all other DTLs from first principles.
1663 */
1664 void
1665 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1666 {
1667 range_tree_t *rt = vd->vdev_dtl[t];
1668
1669 ASSERT(t < DTL_TYPES);
1670 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1671 ASSERT(spa_writeable(vd->vdev_spa));
1672
1673 mutex_enter(rt->rt_lock);
1674 if (!range_tree_contains(rt, txg, size))
1675 range_tree_add(rt, txg, size);
1676 mutex_exit(rt->rt_lock);
1677 }
1678
1679 boolean_t
1680 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1681 {
1682 range_tree_t *rt = vd->vdev_dtl[t];
1683 boolean_t dirty = B_FALSE;
1684
1685 ASSERT(t < DTL_TYPES);
1686 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1687
1688 mutex_enter(rt->rt_lock);
1689 if (range_tree_space(rt) != 0)
1690 dirty = range_tree_contains(rt, txg, size);
1691 mutex_exit(rt->rt_lock);
1692
1693 return (dirty);
1694 }
1695
1696 boolean_t
1697 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1698 {
1699 range_tree_t *rt = vd->vdev_dtl[t];
1700 boolean_t empty;
1701
1702 mutex_enter(rt->rt_lock);
1703 empty = (range_tree_space(rt) == 0);
1704 mutex_exit(rt->rt_lock);
1705
1706 return (empty);
1707 }
1708
1709 /*
1710 * Returns the lowest txg in the DTL range.
1711 */
1712 static uint64_t
1713 vdev_dtl_min(vdev_t *vd)
1714 {
1715 range_seg_t *rs;
1716
1717 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1718 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1719 ASSERT0(vd->vdev_children);
1720
1721 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1722 return (rs->rs_start - 1);
1723 }
1724
1725 /*
1726 * Returns the highest txg in the DTL.
1727 */
1728 static uint64_t
1729 vdev_dtl_max(vdev_t *vd)
1730 {
1731 range_seg_t *rs;
1732
1733 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1734 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1735 ASSERT0(vd->vdev_children);
1736
1737 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1738 return (rs->rs_end);
1739 }
1740
1741 /*
1742 * Determine if a resilvering vdev should remove any DTL entries from
1743 * its range. If the vdev was resilvering for the entire duration of the
1744 * scan then it should excise that range from its DTLs. Otherwise, this
1745 * vdev is considered partially resilvered and should leave its DTL
1746 * entries intact. The comment in vdev_dtl_reassess() describes how we
1747 * excise the DTLs.
1748 */
1749 static boolean_t
1750 vdev_dtl_should_excise(vdev_t *vd)
1751 {
1752 spa_t *spa = vd->vdev_spa;
1753 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1754
1755 ASSERT0(scn->scn_phys.scn_errors);
1756 ASSERT0(vd->vdev_children);
1757
1758 if (vd->vdev_resilver_txg == 0 ||
1759 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1760 return (B_TRUE);
1761
1762 /*
1763 * When a resilver is initiated the scan will assign the scn_max_txg
1764 * value to the highest txg value that exists in all DTLs. If this
1765 * device's max DTL is not part of this scan (i.e. it is not in
1766 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1767 * for excision.
1768 */
1769 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1770 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1771 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1772 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1773 return (B_TRUE);
1774 }
1775 return (B_FALSE);
1776 }
1777
1778 /*
1779 * Reassess DTLs after a config change or scrub completion.
1780 */
1781 void
1782 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1783 {
1784 spa_t *spa = vd->vdev_spa;
1785 avl_tree_t reftree;
1786 int c, t, minref;
1787
1788 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1789
1790 for (c = 0; c < vd->vdev_children; c++)
1791 vdev_dtl_reassess(vd->vdev_child[c], txg,
1792 scrub_txg, scrub_done);
1793
1794 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1795 return;
1796
1797 if (vd->vdev_ops->vdev_op_leaf) {
1798 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1799
1800 mutex_enter(&vd->vdev_dtl_lock);
1801
1802 /*
1803 * If we've completed a scan cleanly then determine
1804 * if this vdev should remove any DTLs. We only want to
1805 * excise regions on vdevs that were available during
1806 * the entire duration of this scan.
1807 */
1808 if (scrub_txg != 0 &&
1809 (spa->spa_scrub_started ||
1810 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1811 vdev_dtl_should_excise(vd)) {
1812 /*
1813 * We completed a scrub up to scrub_txg. If we
1814 * did it without rebooting, then the scrub dtl
1815 * will be valid, so excise the old region and
1816 * fold in the scrub dtl. Otherwise, leave the
1817 * dtl as-is if there was an error.
1818 *
1819 * There's little trick here: to excise the beginning
1820 * of the DTL_MISSING map, we put it into a reference
1821 * tree and then add a segment with refcnt -1 that
1822 * covers the range [0, scrub_txg). This means
1823 * that each txg in that range has refcnt -1 or 0.
1824 * We then add DTL_SCRUB with a refcnt of 2, so that
1825 * entries in the range [0, scrub_txg) will have a
1826 * positive refcnt -- either 1 or 2. We then convert
1827 * the reference tree into the new DTL_MISSING map.
1828 */
1829 space_reftree_create(&reftree);
1830 space_reftree_add_map(&reftree,
1831 vd->vdev_dtl[DTL_MISSING], 1);
1832 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1833 space_reftree_add_map(&reftree,
1834 vd->vdev_dtl[DTL_SCRUB], 2);
1835 space_reftree_generate_map(&reftree,
1836 vd->vdev_dtl[DTL_MISSING], 1);
1837 space_reftree_destroy(&reftree);
1838 }
1839 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1840 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1841 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1842 if (scrub_done)
1843 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1844 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1845 if (!vdev_readable(vd))
1846 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1847 else
1848 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1849 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1850
1851 /*
1852 * If the vdev was resilvering and no longer has any
1853 * DTLs then reset its resilvering flag.
1854 */
1855 if (vd->vdev_resilver_txg != 0 &&
1856 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1857 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1858 vd->vdev_resilver_txg = 0;
1859
1860 mutex_exit(&vd->vdev_dtl_lock);
1861
1862 if (txg != 0)
1863 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1864 return;
1865 }
1866
1867 mutex_enter(&vd->vdev_dtl_lock);
1868 for (t = 0; t < DTL_TYPES; t++) {
1869 int c;
1870
1871 /* account for child's outage in parent's missing map */
1872 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1873 if (t == DTL_SCRUB)
1874 continue; /* leaf vdevs only */
1875 if (t == DTL_PARTIAL)
1876 minref = 1; /* i.e. non-zero */
1877 else if (vd->vdev_nparity != 0)
1878 minref = vd->vdev_nparity + 1; /* RAID-Z */
1879 else
1880 minref = vd->vdev_children; /* any kind of mirror */
1881 space_reftree_create(&reftree);
1882 for (c = 0; c < vd->vdev_children; c++) {
1883 vdev_t *cvd = vd->vdev_child[c];
1884 mutex_enter(&cvd->vdev_dtl_lock);
1885 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1886 mutex_exit(&cvd->vdev_dtl_lock);
1887 }
1888 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1889 space_reftree_destroy(&reftree);
1890 }
1891 mutex_exit(&vd->vdev_dtl_lock);
1892 }
1893
1894 int
1895 vdev_dtl_load(vdev_t *vd)
1896 {
1897 spa_t *spa = vd->vdev_spa;
1898 objset_t *mos = spa->spa_meta_objset;
1899 int error = 0;
1900 int c;
1901
1902 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1903 ASSERT(!vd->vdev_ishole);
1904
1905 error = space_map_open(&vd->vdev_dtl_sm, mos,
1906 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1907 if (error)
1908 return (error);
1909 ASSERT(vd->vdev_dtl_sm != NULL);
1910
1911 mutex_enter(&vd->vdev_dtl_lock);
1912
1913 /*
1914 * Now that we've opened the space_map we need to update
1915 * the in-core DTL.
1916 */
1917 space_map_update(vd->vdev_dtl_sm);
1918
1919 error = space_map_load(vd->vdev_dtl_sm,
1920 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1921 mutex_exit(&vd->vdev_dtl_lock);
1922
1923 return (error);
1924 }
1925
1926 for (c = 0; c < vd->vdev_children; c++) {
1927 error = vdev_dtl_load(vd->vdev_child[c]);
1928 if (error != 0)
1929 break;
1930 }
1931
1932 return (error);
1933 }
1934
1935 void
1936 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1937 {
1938 spa_t *spa = vd->vdev_spa;
1939 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
1940 objset_t *mos = spa->spa_meta_objset;
1941 range_tree_t *rtsync;
1942 kmutex_t rtlock;
1943 dmu_tx_t *tx;
1944 uint64_t object = space_map_object(vd->vdev_dtl_sm);
1945
1946 ASSERT(!vd->vdev_ishole);
1947 ASSERT(vd->vdev_ops->vdev_op_leaf);
1948
1949 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1950
1951 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
1952 mutex_enter(&vd->vdev_dtl_lock);
1953 space_map_free(vd->vdev_dtl_sm, tx);
1954 space_map_close(vd->vdev_dtl_sm);
1955 vd->vdev_dtl_sm = NULL;
1956 mutex_exit(&vd->vdev_dtl_lock);
1957 dmu_tx_commit(tx);
1958 return;
1959 }
1960
1961 if (vd->vdev_dtl_sm == NULL) {
1962 uint64_t new_object;
1963
1964 new_object = space_map_alloc(mos, tx);
1965 VERIFY3U(new_object, !=, 0);
1966
1967 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
1968 0, -1ULL, 0, &vd->vdev_dtl_lock));
1969 ASSERT(vd->vdev_dtl_sm != NULL);
1970 }
1971
1972 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
1973
1974 rtsync = range_tree_create(NULL, NULL, &rtlock);
1975
1976 mutex_enter(&rtlock);
1977
1978 mutex_enter(&vd->vdev_dtl_lock);
1979 range_tree_walk(rt, range_tree_add, rtsync);
1980 mutex_exit(&vd->vdev_dtl_lock);
1981
1982 space_map_truncate(vd->vdev_dtl_sm, tx);
1983 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
1984 range_tree_vacate(rtsync, NULL, NULL);
1985
1986 range_tree_destroy(rtsync);
1987
1988 mutex_exit(&rtlock);
1989 mutex_destroy(&rtlock);
1990
1991 /*
1992 * If the object for the space map has changed then dirty
1993 * the top level so that we update the config.
1994 */
1995 if (object != space_map_object(vd->vdev_dtl_sm)) {
1996 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
1997 "new object %llu", txg, spa_name(spa), object,
1998 space_map_object(vd->vdev_dtl_sm));
1999 vdev_config_dirty(vd->vdev_top);
2000 }
2001
2002 dmu_tx_commit(tx);
2003
2004 mutex_enter(&vd->vdev_dtl_lock);
2005 space_map_update(vd->vdev_dtl_sm);
2006 mutex_exit(&vd->vdev_dtl_lock);
2007 }
2008
2009 /*
2010 * Determine whether the specified vdev can be offlined/detached/removed
2011 * without losing data.
2012 */
2013 boolean_t
2014 vdev_dtl_required(vdev_t *vd)
2015 {
2016 spa_t *spa = vd->vdev_spa;
2017 vdev_t *tvd = vd->vdev_top;
2018 uint8_t cant_read = vd->vdev_cant_read;
2019 boolean_t required;
2020
2021 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2022
2023 if (vd == spa->spa_root_vdev || vd == tvd)
2024 return (B_TRUE);
2025
2026 /*
2027 * Temporarily mark the device as unreadable, and then determine
2028 * whether this results in any DTL outages in the top-level vdev.
2029 * If not, we can safely offline/detach/remove the device.
2030 */
2031 vd->vdev_cant_read = B_TRUE;
2032 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2033 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2034 vd->vdev_cant_read = cant_read;
2035 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2036
2037 if (!required && zio_injection_enabled)
2038 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2039
2040 return (required);
2041 }
2042
2043 /*
2044 * Determine if resilver is needed, and if so the txg range.
2045 */
2046 boolean_t
2047 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2048 {
2049 boolean_t needed = B_FALSE;
2050 uint64_t thismin = UINT64_MAX;
2051 uint64_t thismax = 0;
2052 int c;
2053
2054 if (vd->vdev_children == 0) {
2055 mutex_enter(&vd->vdev_dtl_lock);
2056 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2057 vdev_writeable(vd)) {
2058
2059 thismin = vdev_dtl_min(vd);
2060 thismax = vdev_dtl_max(vd);
2061 needed = B_TRUE;
2062 }
2063 mutex_exit(&vd->vdev_dtl_lock);
2064 } else {
2065 for (c = 0; c < vd->vdev_children; c++) {
2066 vdev_t *cvd = vd->vdev_child[c];
2067 uint64_t cmin, cmax;
2068
2069 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2070 thismin = MIN(thismin, cmin);
2071 thismax = MAX(thismax, cmax);
2072 needed = B_TRUE;
2073 }
2074 }
2075 }
2076
2077 if (needed && minp) {
2078 *minp = thismin;
2079 *maxp = thismax;
2080 }
2081 return (needed);
2082 }
2083
2084 void
2085 vdev_load(vdev_t *vd)
2086 {
2087 int c;
2088
2089 /*
2090 * Recursively load all children.
2091 */
2092 for (c = 0; c < vd->vdev_children; c++)
2093 vdev_load(vd->vdev_child[c]);
2094
2095 /*
2096 * If this is a top-level vdev, initialize its metaslabs.
2097 */
2098 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2099 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2100 vdev_metaslab_init(vd, 0) != 0))
2101 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2102 VDEV_AUX_CORRUPT_DATA);
2103
2104 /*
2105 * If this is a leaf vdev, load its DTL.
2106 */
2107 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2108 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2109 VDEV_AUX_CORRUPT_DATA);
2110 }
2111
2112 /*
2113 * The special vdev case is used for hot spares and l2cache devices. Its
2114 * sole purpose it to set the vdev state for the associated vdev. To do this,
2115 * we make sure that we can open the underlying device, then try to read the
2116 * label, and make sure that the label is sane and that it hasn't been
2117 * repurposed to another pool.
2118 */
2119 int
2120 vdev_validate_aux(vdev_t *vd)
2121 {
2122 nvlist_t *label;
2123 uint64_t guid, version;
2124 uint64_t state;
2125
2126 if (!vdev_readable(vd))
2127 return (0);
2128
2129 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2130 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2131 VDEV_AUX_CORRUPT_DATA);
2132 return (-1);
2133 }
2134
2135 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2136 !SPA_VERSION_IS_SUPPORTED(version) ||
2137 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2138 guid != vd->vdev_guid ||
2139 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2140 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2141 VDEV_AUX_CORRUPT_DATA);
2142 nvlist_free(label);
2143 return (-1);
2144 }
2145
2146 /*
2147 * We don't actually check the pool state here. If it's in fact in
2148 * use by another pool, we update this fact on the fly when requested.
2149 */
2150 nvlist_free(label);
2151 return (0);
2152 }
2153
2154 void
2155 vdev_remove(vdev_t *vd, uint64_t txg)
2156 {
2157 spa_t *spa = vd->vdev_spa;
2158 objset_t *mos = spa->spa_meta_objset;
2159 dmu_tx_t *tx;
2160 int m, i;
2161
2162 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2163
2164 if (vd->vdev_ms != NULL) {
2165 metaslab_group_t *mg = vd->vdev_mg;
2166
2167 metaslab_group_histogram_verify(mg);
2168 metaslab_class_histogram_verify(mg->mg_class);
2169
2170 for (m = 0; m < vd->vdev_ms_count; m++) {
2171 metaslab_t *msp = vd->vdev_ms[m];
2172
2173 if (msp == NULL || msp->ms_sm == NULL)
2174 continue;
2175
2176 mutex_enter(&msp->ms_lock);
2177 /*
2178 * If the metaslab was not loaded when the vdev
2179 * was removed then the histogram accounting may
2180 * not be accurate. Update the histogram information
2181 * here so that we ensure that the metaslab group
2182 * and metaslab class are up-to-date.
2183 */
2184 metaslab_group_histogram_remove(mg, msp);
2185
2186 VERIFY0(space_map_allocated(msp->ms_sm));
2187 space_map_free(msp->ms_sm, tx);
2188 space_map_close(msp->ms_sm);
2189 msp->ms_sm = NULL;
2190 mutex_exit(&msp->ms_lock);
2191 }
2192
2193 metaslab_group_histogram_verify(mg);
2194 metaslab_class_histogram_verify(mg->mg_class);
2195 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2196 ASSERT0(mg->mg_histogram[i]);
2197
2198 }
2199
2200 if (vd->vdev_ms_array) {
2201 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2202 vd->vdev_ms_array = 0;
2203 }
2204 dmu_tx_commit(tx);
2205 }
2206
2207 void
2208 vdev_sync_done(vdev_t *vd, uint64_t txg)
2209 {
2210 metaslab_t *msp;
2211 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2212
2213 ASSERT(!vd->vdev_ishole);
2214
2215 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2216 metaslab_sync_done(msp, txg);
2217
2218 if (reassess)
2219 metaslab_sync_reassess(vd->vdev_mg);
2220 }
2221
2222 void
2223 vdev_sync(vdev_t *vd, uint64_t txg)
2224 {
2225 spa_t *spa = vd->vdev_spa;
2226 vdev_t *lvd;
2227 metaslab_t *msp;
2228 dmu_tx_t *tx;
2229
2230 ASSERT(!vd->vdev_ishole);
2231
2232 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2233 ASSERT(vd == vd->vdev_top);
2234 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2235 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2236 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2237 ASSERT(vd->vdev_ms_array != 0);
2238 vdev_config_dirty(vd);
2239 dmu_tx_commit(tx);
2240 }
2241
2242 /*
2243 * Remove the metadata associated with this vdev once it's empty.
2244 */
2245 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2246 vdev_remove(vd, txg);
2247
2248 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2249 metaslab_sync(msp, txg);
2250 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2251 }
2252
2253 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2254 vdev_dtl_sync(lvd, txg);
2255
2256 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2257 }
2258
2259 uint64_t
2260 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2261 {
2262 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2263 }
2264
2265 /*
2266 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2267 * not be opened, and no I/O is attempted.
2268 */
2269 int
2270 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2271 {
2272 vdev_t *vd, *tvd;
2273
2274 spa_vdev_state_enter(spa, SCL_NONE);
2275
2276 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2277 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2278
2279 if (!vd->vdev_ops->vdev_op_leaf)
2280 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2281
2282 tvd = vd->vdev_top;
2283
2284 /*
2285 * We don't directly use the aux state here, but if we do a
2286 * vdev_reopen(), we need this value to be present to remember why we
2287 * were faulted.
2288 */
2289 vd->vdev_label_aux = aux;
2290
2291 /*
2292 * Faulted state takes precedence over degraded.
2293 */
2294 vd->vdev_delayed_close = B_FALSE;
2295 vd->vdev_faulted = 1ULL;
2296 vd->vdev_degraded = 0ULL;
2297 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2298
2299 /*
2300 * If this device has the only valid copy of the data, then
2301 * back off and simply mark the vdev as degraded instead.
2302 */
2303 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2304 vd->vdev_degraded = 1ULL;
2305 vd->vdev_faulted = 0ULL;
2306
2307 /*
2308 * If we reopen the device and it's not dead, only then do we
2309 * mark it degraded.
2310 */
2311 vdev_reopen(tvd);
2312
2313 if (vdev_readable(vd))
2314 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2315 }
2316
2317 return (spa_vdev_state_exit(spa, vd, 0));
2318 }
2319
2320 /*
2321 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2322 * user that something is wrong. The vdev continues to operate as normal as far
2323 * as I/O is concerned.
2324 */
2325 int
2326 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2327 {
2328 vdev_t *vd;
2329
2330 spa_vdev_state_enter(spa, SCL_NONE);
2331
2332 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2333 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2334
2335 if (!vd->vdev_ops->vdev_op_leaf)
2336 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2337
2338 /*
2339 * If the vdev is already faulted, then don't do anything.
2340 */
2341 if (vd->vdev_faulted || vd->vdev_degraded)
2342 return (spa_vdev_state_exit(spa, NULL, 0));
2343
2344 vd->vdev_degraded = 1ULL;
2345 if (!vdev_is_dead(vd))
2346 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2347 aux);
2348
2349 return (spa_vdev_state_exit(spa, vd, 0));
2350 }
2351
2352 /*
2353 * Online the given vdev.
2354 *
2355 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2356 * spare device should be detached when the device finishes resilvering.
2357 * Second, the online should be treated like a 'test' online case, so no FMA
2358 * events are generated if the device fails to open.
2359 */
2360 int
2361 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2362 {
2363 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2364
2365 spa_vdev_state_enter(spa, SCL_NONE);
2366
2367 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2368 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2369
2370 if (!vd->vdev_ops->vdev_op_leaf)
2371 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2372
2373 tvd = vd->vdev_top;
2374 vd->vdev_offline = B_FALSE;
2375 vd->vdev_tmpoffline = B_FALSE;
2376 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2377 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2378
2379 /* XXX - L2ARC 1.0 does not support expansion */
2380 if (!vd->vdev_aux) {
2381 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2382 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2383 }
2384
2385 vdev_reopen(tvd);
2386 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2387
2388 if (!vd->vdev_aux) {
2389 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2390 pvd->vdev_expanding = B_FALSE;
2391 }
2392
2393 if (newstate)
2394 *newstate = vd->vdev_state;
2395 if ((flags & ZFS_ONLINE_UNSPARE) &&
2396 !vdev_is_dead(vd) && vd->vdev_parent &&
2397 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2398 vd->vdev_parent->vdev_child[0] == vd)
2399 vd->vdev_unspare = B_TRUE;
2400
2401 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2402
2403 /* XXX - L2ARC 1.0 does not support expansion */
2404 if (vd->vdev_aux)
2405 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2406 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2407 }
2408 return (spa_vdev_state_exit(spa, vd, 0));
2409 }
2410
2411 static int
2412 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2413 {
2414 vdev_t *vd, *tvd;
2415 int error = 0;
2416 uint64_t generation;
2417 metaslab_group_t *mg;
2418
2419 top:
2420 spa_vdev_state_enter(spa, SCL_ALLOC);
2421
2422 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2423 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2424
2425 if (!vd->vdev_ops->vdev_op_leaf)
2426 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2427
2428 tvd = vd->vdev_top;
2429 mg = tvd->vdev_mg;
2430 generation = spa->spa_config_generation + 1;
2431
2432 /*
2433 * If the device isn't already offline, try to offline it.
2434 */
2435 if (!vd->vdev_offline) {
2436 /*
2437 * If this device has the only valid copy of some data,
2438 * don't allow it to be offlined. Log devices are always
2439 * expendable.
2440 */
2441 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2442 vdev_dtl_required(vd))
2443 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2444
2445 /*
2446 * If the top-level is a slog and it has had allocations
2447 * then proceed. We check that the vdev's metaslab group
2448 * is not NULL since it's possible that we may have just
2449 * added this vdev but not yet initialized its metaslabs.
2450 */
2451 if (tvd->vdev_islog && mg != NULL) {
2452 /*
2453 * Prevent any future allocations.
2454 */
2455 metaslab_group_passivate(mg);
2456 (void) spa_vdev_state_exit(spa, vd, 0);
2457
2458 error = spa_offline_log(spa);
2459
2460 spa_vdev_state_enter(spa, SCL_ALLOC);
2461
2462 /*
2463 * Check to see if the config has changed.
2464 */
2465 if (error || generation != spa->spa_config_generation) {
2466 metaslab_group_activate(mg);
2467 if (error)
2468 return (spa_vdev_state_exit(spa,
2469 vd, error));
2470 (void) spa_vdev_state_exit(spa, vd, 0);
2471 goto top;
2472 }
2473 ASSERT0(tvd->vdev_stat.vs_alloc);
2474 }
2475
2476 /*
2477 * Offline this device and reopen its top-level vdev.
2478 * If the top-level vdev is a log device then just offline
2479 * it. Otherwise, if this action results in the top-level
2480 * vdev becoming unusable, undo it and fail the request.
2481 */
2482 vd->vdev_offline = B_TRUE;
2483 vdev_reopen(tvd);
2484
2485 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2486 vdev_is_dead(tvd)) {
2487 vd->vdev_offline = B_FALSE;
2488 vdev_reopen(tvd);
2489 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2490 }
2491
2492 /*
2493 * Add the device back into the metaslab rotor so that
2494 * once we online the device it's open for business.
2495 */
2496 if (tvd->vdev_islog && mg != NULL)
2497 metaslab_group_activate(mg);
2498 }
2499
2500 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2501
2502 return (spa_vdev_state_exit(spa, vd, 0));
2503 }
2504
2505 int
2506 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2507 {
2508 int error;
2509
2510 mutex_enter(&spa->spa_vdev_top_lock);
2511 error = vdev_offline_locked(spa, guid, flags);
2512 mutex_exit(&spa->spa_vdev_top_lock);
2513
2514 return (error);
2515 }
2516
2517 /*
2518 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2519 * vdev_offline(), we assume the spa config is locked. We also clear all
2520 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2521 */
2522 void
2523 vdev_clear(spa_t *spa, vdev_t *vd)
2524 {
2525 vdev_t *rvd = spa->spa_root_vdev;
2526 int c;
2527
2528 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2529
2530 if (vd == NULL)
2531 vd = rvd;
2532
2533 vd->vdev_stat.vs_read_errors = 0;
2534 vd->vdev_stat.vs_write_errors = 0;
2535 vd->vdev_stat.vs_checksum_errors = 0;
2536
2537 for (c = 0; c < vd->vdev_children; c++)
2538 vdev_clear(spa, vd->vdev_child[c]);
2539
2540 /*
2541 * If we're in the FAULTED state or have experienced failed I/O, then
2542 * clear the persistent state and attempt to reopen the device. We
2543 * also mark the vdev config dirty, so that the new faulted state is
2544 * written out to disk.
2545 */
2546 if (vd->vdev_faulted || vd->vdev_degraded ||
2547 !vdev_readable(vd) || !vdev_writeable(vd)) {
2548
2549 /*
2550 * When reopening in reponse to a clear event, it may be due to
2551 * a fmadm repair request. In this case, if the device is
2552 * still broken, we want to still post the ereport again.
2553 */
2554 vd->vdev_forcefault = B_TRUE;
2555
2556 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2557 vd->vdev_cant_read = B_FALSE;
2558 vd->vdev_cant_write = B_FALSE;
2559
2560 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2561
2562 vd->vdev_forcefault = B_FALSE;
2563
2564 if (vd != rvd && vdev_writeable(vd->vdev_top))
2565 vdev_state_dirty(vd->vdev_top);
2566
2567 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2568 spa_async_request(spa, SPA_ASYNC_RESILVER);
2569
2570 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
2571 }
2572
2573 /*
2574 * When clearing a FMA-diagnosed fault, we always want to
2575 * unspare the device, as we assume that the original spare was
2576 * done in response to the FMA fault.
2577 */
2578 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2579 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2580 vd->vdev_parent->vdev_child[0] == vd)
2581 vd->vdev_unspare = B_TRUE;
2582 }
2583
2584 boolean_t
2585 vdev_is_dead(vdev_t *vd)
2586 {
2587 /*
2588 * Holes and missing devices are always considered "dead".
2589 * This simplifies the code since we don't have to check for
2590 * these types of devices in the various code paths.
2591 * Instead we rely on the fact that we skip over dead devices
2592 * before issuing I/O to them.
2593 */
2594 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2595 vd->vdev_ops == &vdev_missing_ops);
2596 }
2597
2598 boolean_t
2599 vdev_readable(vdev_t *vd)
2600 {
2601 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2602 }
2603
2604 boolean_t
2605 vdev_writeable(vdev_t *vd)
2606 {
2607 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2608 }
2609
2610 boolean_t
2611 vdev_allocatable(vdev_t *vd)
2612 {
2613 uint64_t state = vd->vdev_state;
2614
2615 /*
2616 * We currently allow allocations from vdevs which may be in the
2617 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2618 * fails to reopen then we'll catch it later when we're holding
2619 * the proper locks. Note that we have to get the vdev state
2620 * in a local variable because although it changes atomically,
2621 * we're asking two separate questions about it.
2622 */
2623 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2624 !vd->vdev_cant_write && !vd->vdev_ishole);
2625 }
2626
2627 boolean_t
2628 vdev_accessible(vdev_t *vd, zio_t *zio)
2629 {
2630 ASSERT(zio->io_vd == vd);
2631
2632 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2633 return (B_FALSE);
2634
2635 if (zio->io_type == ZIO_TYPE_READ)
2636 return (!vd->vdev_cant_read);
2637
2638 if (zio->io_type == ZIO_TYPE_WRITE)
2639 return (!vd->vdev_cant_write);
2640
2641 return (B_TRUE);
2642 }
2643
2644 /*
2645 * Get statistics for the given vdev.
2646 */
2647 void
2648 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2649 {
2650 spa_t *spa = vd->vdev_spa;
2651 vdev_t *rvd = spa->spa_root_vdev;
2652 int c, t;
2653
2654 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2655
2656 mutex_enter(&vd->vdev_stat_lock);
2657 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2658 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2659 vs->vs_state = vd->vdev_state;
2660 vs->vs_rsize = vdev_get_min_asize(vd);
2661 if (vd->vdev_ops->vdev_op_leaf)
2662 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2663 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2664 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2665 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2666 }
2667
2668 /*
2669 * If we're getting stats on the root vdev, aggregate the I/O counts
2670 * over all top-level vdevs (i.e. the direct children of the root).
2671 */
2672 if (vd == rvd) {
2673 for (c = 0; c < rvd->vdev_children; c++) {
2674 vdev_t *cvd = rvd->vdev_child[c];
2675 vdev_stat_t *cvs = &cvd->vdev_stat;
2676
2677 for (t = 0; t < ZIO_TYPES; t++) {
2678 vs->vs_ops[t] += cvs->vs_ops[t];
2679 vs->vs_bytes[t] += cvs->vs_bytes[t];
2680 }
2681 cvs->vs_scan_removing = cvd->vdev_removing;
2682 }
2683 }
2684 mutex_exit(&vd->vdev_stat_lock);
2685 }
2686
2687 void
2688 vdev_clear_stats(vdev_t *vd)
2689 {
2690 mutex_enter(&vd->vdev_stat_lock);
2691 vd->vdev_stat.vs_space = 0;
2692 vd->vdev_stat.vs_dspace = 0;
2693 vd->vdev_stat.vs_alloc = 0;
2694 mutex_exit(&vd->vdev_stat_lock);
2695 }
2696
2697 void
2698 vdev_scan_stat_init(vdev_t *vd)
2699 {
2700 vdev_stat_t *vs = &vd->vdev_stat;
2701 int c;
2702
2703 for (c = 0; c < vd->vdev_children; c++)
2704 vdev_scan_stat_init(vd->vdev_child[c]);
2705
2706 mutex_enter(&vd->vdev_stat_lock);
2707 vs->vs_scan_processed = 0;
2708 mutex_exit(&vd->vdev_stat_lock);
2709 }
2710
2711 void
2712 vdev_stat_update(zio_t *zio, uint64_t psize)
2713 {
2714 spa_t *spa = zio->io_spa;
2715 vdev_t *rvd = spa->spa_root_vdev;
2716 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2717 vdev_t *pvd;
2718 uint64_t txg = zio->io_txg;
2719 vdev_stat_t *vs = &vd->vdev_stat;
2720 zio_type_t type = zio->io_type;
2721 int flags = zio->io_flags;
2722
2723 /*
2724 * If this i/o is a gang leader, it didn't do any actual work.
2725 */
2726 if (zio->io_gang_tree)
2727 return;
2728
2729 if (zio->io_error == 0) {
2730 /*
2731 * If this is a root i/o, don't count it -- we've already
2732 * counted the top-level vdevs, and vdev_get_stats() will
2733 * aggregate them when asked. This reduces contention on
2734 * the root vdev_stat_lock and implicitly handles blocks
2735 * that compress away to holes, for which there is no i/o.
2736 * (Holes never create vdev children, so all the counters
2737 * remain zero, which is what we want.)
2738 *
2739 * Note: this only applies to successful i/o (io_error == 0)
2740 * because unlike i/o counts, errors are not additive.
2741 * When reading a ditto block, for example, failure of
2742 * one top-level vdev does not imply a root-level error.
2743 */
2744 if (vd == rvd)
2745 return;
2746
2747 ASSERT(vd == zio->io_vd);
2748
2749 if (flags & ZIO_FLAG_IO_BYPASS)
2750 return;
2751
2752 mutex_enter(&vd->vdev_stat_lock);
2753
2754 if (flags & ZIO_FLAG_IO_REPAIR) {
2755 if (flags & ZIO_FLAG_SCAN_THREAD) {
2756 dsl_scan_phys_t *scn_phys =
2757 &spa->spa_dsl_pool->dp_scan->scn_phys;
2758 uint64_t *processed = &scn_phys->scn_processed;
2759
2760 /* XXX cleanup? */
2761 if (vd->vdev_ops->vdev_op_leaf)
2762 atomic_add_64(processed, psize);
2763 vs->vs_scan_processed += psize;
2764 }
2765
2766 if (flags & ZIO_FLAG_SELF_HEAL)
2767 vs->vs_self_healed += psize;
2768 }
2769
2770 vs->vs_ops[type]++;
2771 vs->vs_bytes[type] += psize;
2772
2773 mutex_exit(&vd->vdev_stat_lock);
2774 return;
2775 }
2776
2777 if (flags & ZIO_FLAG_SPECULATIVE)
2778 return;
2779
2780 /*
2781 * If this is an I/O error that is going to be retried, then ignore the
2782 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2783 * hard errors, when in reality they can happen for any number of
2784 * innocuous reasons (bus resets, MPxIO link failure, etc).
2785 */
2786 if (zio->io_error == EIO &&
2787 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2788 return;
2789
2790 /*
2791 * Intent logs writes won't propagate their error to the root
2792 * I/O so don't mark these types of failures as pool-level
2793 * errors.
2794 */
2795 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2796 return;
2797
2798 mutex_enter(&vd->vdev_stat_lock);
2799 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2800 if (zio->io_error == ECKSUM)
2801 vs->vs_checksum_errors++;
2802 else
2803 vs->vs_read_errors++;
2804 }
2805 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2806 vs->vs_write_errors++;
2807 mutex_exit(&vd->vdev_stat_lock);
2808
2809 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2810 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2811 (flags & ZIO_FLAG_SCAN_THREAD) ||
2812 spa->spa_claiming)) {
2813 /*
2814 * This is either a normal write (not a repair), or it's
2815 * a repair induced by the scrub thread, or it's a repair
2816 * made by zil_claim() during spa_load() in the first txg.
2817 * In the normal case, we commit the DTL change in the same
2818 * txg as the block was born. In the scrub-induced repair
2819 * case, we know that scrubs run in first-pass syncing context,
2820 * so we commit the DTL change in spa_syncing_txg(spa).
2821 * In the zil_claim() case, we commit in spa_first_txg(spa).
2822 *
2823 * We currently do not make DTL entries for failed spontaneous
2824 * self-healing writes triggered by normal (non-scrubbing)
2825 * reads, because we have no transactional context in which to
2826 * do so -- and it's not clear that it'd be desirable anyway.
2827 */
2828 if (vd->vdev_ops->vdev_op_leaf) {
2829 uint64_t commit_txg = txg;
2830 if (flags & ZIO_FLAG_SCAN_THREAD) {
2831 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2832 ASSERT(spa_sync_pass(spa) == 1);
2833 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2834 commit_txg = spa_syncing_txg(spa);
2835 } else if (spa->spa_claiming) {
2836 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2837 commit_txg = spa_first_txg(spa);
2838 }
2839 ASSERT(commit_txg >= spa_syncing_txg(spa));
2840 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2841 return;
2842 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2843 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2844 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2845 }
2846 if (vd != rvd)
2847 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2848 }
2849 }
2850
2851 /*
2852 * Update the in-core space usage stats for this vdev, its metaslab class,
2853 * and the root vdev.
2854 */
2855 void
2856 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2857 int64_t space_delta)
2858 {
2859 int64_t dspace_delta = space_delta;
2860 spa_t *spa = vd->vdev_spa;
2861 vdev_t *rvd = spa->spa_root_vdev;
2862 metaslab_group_t *mg = vd->vdev_mg;
2863 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2864
2865 ASSERT(vd == vd->vdev_top);
2866
2867 /*
2868 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2869 * factor. We must calculate this here and not at the root vdev
2870 * because the root vdev's psize-to-asize is simply the max of its
2871 * childrens', thus not accurate enough for us.
2872 */
2873 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2874 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2875 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2876 vd->vdev_deflate_ratio;
2877
2878 mutex_enter(&vd->vdev_stat_lock);
2879 vd->vdev_stat.vs_alloc += alloc_delta;
2880 vd->vdev_stat.vs_space += space_delta;
2881 vd->vdev_stat.vs_dspace += dspace_delta;
2882 mutex_exit(&vd->vdev_stat_lock);
2883
2884 if (mc == spa_normal_class(spa)) {
2885 mutex_enter(&rvd->vdev_stat_lock);
2886 rvd->vdev_stat.vs_alloc += alloc_delta;
2887 rvd->vdev_stat.vs_space += space_delta;
2888 rvd->vdev_stat.vs_dspace += dspace_delta;
2889 mutex_exit(&rvd->vdev_stat_lock);
2890 }
2891
2892 if (mc != NULL) {
2893 ASSERT(rvd == vd->vdev_parent);
2894 ASSERT(vd->vdev_ms_count != 0);
2895
2896 metaslab_class_space_update(mc,
2897 alloc_delta, defer_delta, space_delta, dspace_delta);
2898 }
2899 }
2900
2901 /*
2902 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2903 * so that it will be written out next time the vdev configuration is synced.
2904 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2905 */
2906 void
2907 vdev_config_dirty(vdev_t *vd)
2908 {
2909 spa_t *spa = vd->vdev_spa;
2910 vdev_t *rvd = spa->spa_root_vdev;
2911 int c;
2912
2913 ASSERT(spa_writeable(spa));
2914
2915 /*
2916 * If this is an aux vdev (as with l2cache and spare devices), then we
2917 * update the vdev config manually and set the sync flag.
2918 */
2919 if (vd->vdev_aux != NULL) {
2920 spa_aux_vdev_t *sav = vd->vdev_aux;
2921 nvlist_t **aux;
2922 uint_t naux;
2923
2924 for (c = 0; c < sav->sav_count; c++) {
2925 if (sav->sav_vdevs[c] == vd)
2926 break;
2927 }
2928
2929 if (c == sav->sav_count) {
2930 /*
2931 * We're being removed. There's nothing more to do.
2932 */
2933 ASSERT(sav->sav_sync == B_TRUE);
2934 return;
2935 }
2936
2937 sav->sav_sync = B_TRUE;
2938
2939 if (nvlist_lookup_nvlist_array(sav->sav_config,
2940 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2941 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2942 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2943 }
2944
2945 ASSERT(c < naux);
2946
2947 /*
2948 * Setting the nvlist in the middle if the array is a little
2949 * sketchy, but it will work.
2950 */
2951 nvlist_free(aux[c]);
2952 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2953
2954 return;
2955 }
2956
2957 /*
2958 * The dirty list is protected by the SCL_CONFIG lock. The caller
2959 * must either hold SCL_CONFIG as writer, or must be the sync thread
2960 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2961 * so this is sufficient to ensure mutual exclusion.
2962 */
2963 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2964 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2965 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2966
2967 if (vd == rvd) {
2968 for (c = 0; c < rvd->vdev_children; c++)
2969 vdev_config_dirty(rvd->vdev_child[c]);
2970 } else {
2971 ASSERT(vd == vd->vdev_top);
2972
2973 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2974 !vd->vdev_ishole)
2975 list_insert_head(&spa->spa_config_dirty_list, vd);
2976 }
2977 }
2978
2979 void
2980 vdev_config_clean(vdev_t *vd)
2981 {
2982 spa_t *spa = vd->vdev_spa;
2983
2984 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2985 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2986 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2987
2988 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2989 list_remove(&spa->spa_config_dirty_list, vd);
2990 }
2991
2992 /*
2993 * Mark a top-level vdev's state as dirty, so that the next pass of
2994 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2995 * the state changes from larger config changes because they require
2996 * much less locking, and are often needed for administrative actions.
2997 */
2998 void
2999 vdev_state_dirty(vdev_t *vd)
3000 {
3001 spa_t *spa = vd->vdev_spa;
3002
3003 ASSERT(spa_writeable(spa));
3004 ASSERT(vd == vd->vdev_top);
3005
3006 /*
3007 * The state list is protected by the SCL_STATE lock. The caller
3008 * must either hold SCL_STATE as writer, or must be the sync thread
3009 * (which holds SCL_STATE as reader). There's only one sync thread,
3010 * so this is sufficient to ensure mutual exclusion.
3011 */
3012 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3013 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3014 spa_config_held(spa, SCL_STATE, RW_READER)));
3015
3016 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3017 list_insert_head(&spa->spa_state_dirty_list, vd);
3018 }
3019
3020 void
3021 vdev_state_clean(vdev_t *vd)
3022 {
3023 spa_t *spa = vd->vdev_spa;
3024
3025 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3026 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3027 spa_config_held(spa, SCL_STATE, RW_READER)));
3028
3029 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3030 list_remove(&spa->spa_state_dirty_list, vd);
3031 }
3032
3033 /*
3034 * Propagate vdev state up from children to parent.
3035 */
3036 void
3037 vdev_propagate_state(vdev_t *vd)
3038 {
3039 spa_t *spa = vd->vdev_spa;
3040 vdev_t *rvd = spa->spa_root_vdev;
3041 int degraded = 0, faulted = 0;
3042 int corrupted = 0;
3043 vdev_t *child;
3044 int c;
3045
3046 if (vd->vdev_children > 0) {
3047 for (c = 0; c < vd->vdev_children; c++) {
3048 child = vd->vdev_child[c];
3049
3050 /*
3051 * Don't factor holes into the decision.
3052 */
3053 if (child->vdev_ishole)
3054 continue;
3055
3056 if (!vdev_readable(child) ||
3057 (!vdev_writeable(child) && spa_writeable(spa))) {
3058 /*
3059 * Root special: if there is a top-level log
3060 * device, treat the root vdev as if it were
3061 * degraded.
3062 */
3063 if (child->vdev_islog && vd == rvd)
3064 degraded++;
3065 else
3066 faulted++;
3067 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3068 degraded++;
3069 }
3070
3071 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3072 corrupted++;
3073 }
3074
3075 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3076
3077 /*
3078 * Root special: if there is a top-level vdev that cannot be
3079 * opened due to corrupted metadata, then propagate the root
3080 * vdev's aux state as 'corrupt' rather than 'insufficient
3081 * replicas'.
3082 */
3083 if (corrupted && vd == rvd &&
3084 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3085 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3086 VDEV_AUX_CORRUPT_DATA);
3087 }
3088
3089 if (vd->vdev_parent)
3090 vdev_propagate_state(vd->vdev_parent);
3091 }
3092
3093 /*
3094 * Set a vdev's state. If this is during an open, we don't update the parent
3095 * state, because we're in the process of opening children depth-first.
3096 * Otherwise, we propagate the change to the parent.
3097 *
3098 * If this routine places a device in a faulted state, an appropriate ereport is
3099 * generated.
3100 */
3101 void
3102 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3103 {
3104 uint64_t save_state;
3105 spa_t *spa = vd->vdev_spa;
3106
3107 if (state == vd->vdev_state) {
3108 vd->vdev_stat.vs_aux = aux;
3109 return;
3110 }
3111
3112 save_state = vd->vdev_state;
3113
3114 vd->vdev_state = state;
3115 vd->vdev_stat.vs_aux = aux;
3116
3117 /*
3118 * If we are setting the vdev state to anything but an open state, then
3119 * always close the underlying device unless the device has requested
3120 * a delayed close (i.e. we're about to remove or fault the device).
3121 * Otherwise, we keep accessible but invalid devices open forever.
3122 * We don't call vdev_close() itself, because that implies some extra
3123 * checks (offline, etc) that we don't want here. This is limited to
3124 * leaf devices, because otherwise closing the device will affect other
3125 * children.
3126 */
3127 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3128 vd->vdev_ops->vdev_op_leaf)
3129 vd->vdev_ops->vdev_op_close(vd);
3130
3131 /*
3132 * If we have brought this vdev back into service, we need
3133 * to notify fmd so that it can gracefully repair any outstanding
3134 * cases due to a missing device. We do this in all cases, even those
3135 * that probably don't correlate to a repaired fault. This is sure to
3136 * catch all cases, and we let the zfs-retire agent sort it out. If
3137 * this is a transient state it's OK, as the retire agent will
3138 * double-check the state of the vdev before repairing it.
3139 */
3140 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3141 vd->vdev_prevstate != state)
3142 zfs_post_state_change(spa, vd);
3143
3144 if (vd->vdev_removed &&
3145 state == VDEV_STATE_CANT_OPEN &&
3146 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3147 /*
3148 * If the previous state is set to VDEV_STATE_REMOVED, then this
3149 * device was previously marked removed and someone attempted to
3150 * reopen it. If this failed due to a nonexistent device, then
3151 * keep the device in the REMOVED state. We also let this be if
3152 * it is one of our special test online cases, which is only
3153 * attempting to online the device and shouldn't generate an FMA
3154 * fault.
3155 */
3156 vd->vdev_state = VDEV_STATE_REMOVED;
3157 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3158 } else if (state == VDEV_STATE_REMOVED) {
3159 vd->vdev_removed = B_TRUE;
3160 } else if (state == VDEV_STATE_CANT_OPEN) {
3161 /*
3162 * If we fail to open a vdev during an import or recovery, we
3163 * mark it as "not available", which signifies that it was
3164 * never there to begin with. Failure to open such a device
3165 * is not considered an error.
3166 */
3167 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3168 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3169 vd->vdev_ops->vdev_op_leaf)
3170 vd->vdev_not_present = 1;
3171
3172 /*
3173 * Post the appropriate ereport. If the 'prevstate' field is
3174 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3175 * that this is part of a vdev_reopen(). In this case, we don't
3176 * want to post the ereport if the device was already in the
3177 * CANT_OPEN state beforehand.
3178 *
3179 * If the 'checkremove' flag is set, then this is an attempt to
3180 * online the device in response to an insertion event. If we
3181 * hit this case, then we have detected an insertion event for a
3182 * faulted or offline device that wasn't in the removed state.
3183 * In this scenario, we don't post an ereport because we are
3184 * about to replace the device, or attempt an online with
3185 * vdev_forcefault, which will generate the fault for us.
3186 */
3187 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3188 !vd->vdev_not_present && !vd->vdev_checkremove &&
3189 vd != spa->spa_root_vdev) {
3190 const char *class;
3191
3192 switch (aux) {
3193 case VDEV_AUX_OPEN_FAILED:
3194 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3195 break;
3196 case VDEV_AUX_CORRUPT_DATA:
3197 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3198 break;
3199 case VDEV_AUX_NO_REPLICAS:
3200 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3201 break;
3202 case VDEV_AUX_BAD_GUID_SUM:
3203 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3204 break;
3205 case VDEV_AUX_TOO_SMALL:
3206 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3207 break;
3208 case VDEV_AUX_BAD_LABEL:
3209 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3210 break;
3211 default:
3212 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3213 }
3214
3215 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3216 }
3217
3218 /* Erase any notion of persistent removed state */
3219 vd->vdev_removed = B_FALSE;
3220 } else {
3221 vd->vdev_removed = B_FALSE;
3222 }
3223
3224 if (!isopen && vd->vdev_parent)
3225 vdev_propagate_state(vd->vdev_parent);
3226 }
3227
3228 /*
3229 * Check the vdev configuration to ensure that it's capable of supporting
3230 * a root pool.
3231 */
3232 boolean_t
3233 vdev_is_bootable(vdev_t *vd)
3234 {
3235 #if defined(__sun__) || defined(__sun)
3236 /*
3237 * Currently, we do not support RAID-Z or partial configuration.
3238 * In addition, only a single top-level vdev is allowed and none of the
3239 * leaves can be wholedisks.
3240 */
3241 int c;
3242
3243 if (!vd->vdev_ops->vdev_op_leaf) {
3244 char *vdev_type = vd->vdev_ops->vdev_op_type;
3245
3246 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3247 vd->vdev_children > 1) {
3248 return (B_FALSE);
3249 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3250 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3251 return (B_FALSE);
3252 }
3253 } else if (vd->vdev_wholedisk == 1) {
3254 return (B_FALSE);
3255 }
3256
3257 for (c = 0; c < vd->vdev_children; c++) {
3258 if (!vdev_is_bootable(vd->vdev_child[c]))
3259 return (B_FALSE);
3260 }
3261 #endif /* __sun__ || __sun */
3262 return (B_TRUE);
3263 }
3264
3265 /*
3266 * Load the state from the original vdev tree (ovd) which
3267 * we've retrieved from the MOS config object. If the original
3268 * vdev was offline or faulted then we transfer that state to the
3269 * device in the current vdev tree (nvd).
3270 */
3271 void
3272 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3273 {
3274 int c;
3275
3276 ASSERT(nvd->vdev_top->vdev_islog);
3277 ASSERT(spa_config_held(nvd->vdev_spa,
3278 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3279 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3280
3281 for (c = 0; c < nvd->vdev_children; c++)
3282 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3283
3284 if (nvd->vdev_ops->vdev_op_leaf) {
3285 /*
3286 * Restore the persistent vdev state
3287 */
3288 nvd->vdev_offline = ovd->vdev_offline;
3289 nvd->vdev_faulted = ovd->vdev_faulted;
3290 nvd->vdev_degraded = ovd->vdev_degraded;
3291 nvd->vdev_removed = ovd->vdev_removed;
3292 }
3293 }
3294
3295 /*
3296 * Determine if a log device has valid content. If the vdev was
3297 * removed or faulted in the MOS config then we know that
3298 * the content on the log device has already been written to the pool.
3299 */
3300 boolean_t
3301 vdev_log_state_valid(vdev_t *vd)
3302 {
3303 int c;
3304
3305 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3306 !vd->vdev_removed)
3307 return (B_TRUE);
3308
3309 for (c = 0; c < vd->vdev_children; c++)
3310 if (vdev_log_state_valid(vd->vdev_child[c]))
3311 return (B_TRUE);
3312
3313 return (B_FALSE);
3314 }
3315
3316 /*
3317 * Expand a vdev if possible.
3318 */
3319 void
3320 vdev_expand(vdev_t *vd, uint64_t txg)
3321 {
3322 ASSERT(vd->vdev_top == vd);
3323 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3324
3325 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3326 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3327 vdev_config_dirty(vd);
3328 }
3329 }
3330
3331 /*
3332 * Split a vdev.
3333 */
3334 void
3335 vdev_split(vdev_t *vd)
3336 {
3337 vdev_t *cvd, *pvd = vd->vdev_parent;
3338
3339 vdev_remove_child(pvd, vd);
3340 vdev_compact_children(pvd);
3341
3342 cvd = pvd->vdev_child[0];
3343 if (pvd->vdev_children == 1) {
3344 vdev_remove_parent(cvd);
3345 cvd->vdev_splitting = B_TRUE;
3346 }
3347 vdev_propagate_state(cvd);
3348 }
3349
3350 void
3351 vdev_deadman(vdev_t *vd)
3352 {
3353 int c;
3354
3355 for (c = 0; c < vd->vdev_children; c++) {
3356 vdev_t *cvd = vd->vdev_child[c];
3357
3358 vdev_deadman(cvd);
3359 }
3360
3361 if (vd->vdev_ops->vdev_op_leaf) {
3362 vdev_queue_t *vq = &vd->vdev_queue;
3363
3364 mutex_enter(&vq->vq_lock);
3365 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3366 spa_t *spa = vd->vdev_spa;
3367 zio_t *fio;
3368 uint64_t delta;
3369
3370 /*
3371 * Look at the head of all the pending queues,
3372 * if any I/O has been outstanding for longer than
3373 * the spa_deadman_synctime we log a zevent.
3374 */
3375 fio = avl_first(&vq->vq_active_tree);
3376 delta = gethrtime() - fio->io_timestamp;
3377 if (delta > spa_deadman_synctime(spa)) {
3378 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3379 "delta %lluns, last io %lluns",
3380 fio->io_timestamp, delta,
3381 vq->vq_io_complete_ts);
3382 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3383 spa, vd, fio, 0, 0);
3384 }
3385 }
3386 mutex_exit(&vq->vq_lock);
3387 }
3388 }
3389
3390 #if defined(_KERNEL) && defined(HAVE_SPL)
3391 EXPORT_SYMBOL(vdev_fault);
3392 EXPORT_SYMBOL(vdev_degrade);
3393 EXPORT_SYMBOL(vdev_online);
3394 EXPORT_SYMBOL(vdev_offline);
3395 EXPORT_SYMBOL(vdev_clear);
3396
3397 module_param(metaslabs_per_vdev, int, 0644);
3398 MODULE_PARM_DESC(metaslabs_per_vdev,
3399 "Divide added vdev into approximately (but no more than) this number "
3400 "of metaslabs");
3401 #endif