]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
OpenZFS 9084 - spa_*_ashift must ignore spare devices
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
29 */
30
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/spa_impl.h>
35 #include <sys/bpobj.h>
36 #include <sys/dmu.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/uberblock_impl.h>
41 #include <sys/metaslab.h>
42 #include <sys/metaslab_impl.h>
43 #include <sys/space_map.h>
44 #include <sys/space_reftree.h>
45 #include <sys/zio.h>
46 #include <sys/zap.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/arc.h>
49 #include <sys/zil.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/abd.h>
52 #include <sys/zvol.h>
53 #include <sys/zfs_ratelimit.h>
54
55 /*
56 * When a vdev is added, it will be divided into approximately (but no
57 * more than) this number of metaslabs.
58 */
59 int metaslabs_per_vdev = 200;
60
61 /*
62 * Rate limit delay events to this many IO delays per second.
63 */
64 unsigned int zfs_delays_per_second = 20;
65
66 /*
67 * Rate limit checksum events after this many checksum errors per second.
68 */
69 unsigned int zfs_checksums_per_second = 20;
70
71 /*
72 * Ignore errors during scrub/resilver. Allows to work around resilver
73 * upon import when there are pool errors.
74 */
75 int zfs_scan_ignore_errors = 0;
76
77 /*
78 * Virtual device management.
79 */
80
81 static vdev_ops_t *vdev_ops_table[] = {
82 &vdev_root_ops,
83 &vdev_raidz_ops,
84 &vdev_mirror_ops,
85 &vdev_replacing_ops,
86 &vdev_spare_ops,
87 &vdev_disk_ops,
88 &vdev_file_ops,
89 &vdev_missing_ops,
90 &vdev_hole_ops,
91 &vdev_indirect_ops,
92 NULL
93 };
94
95 /*
96 * Given a vdev type, return the appropriate ops vector.
97 */
98 static vdev_ops_t *
99 vdev_getops(const char *type)
100 {
101 vdev_ops_t *ops, **opspp;
102
103 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
104 if (strcmp(ops->vdev_op_type, type) == 0)
105 break;
106
107 return (ops);
108 }
109
110 /*
111 * Default asize function: return the MAX of psize with the asize of
112 * all children. This is what's used by anything other than RAID-Z.
113 */
114 uint64_t
115 vdev_default_asize(vdev_t *vd, uint64_t psize)
116 {
117 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
118 uint64_t csize;
119
120 for (int c = 0; c < vd->vdev_children; c++) {
121 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
122 asize = MAX(asize, csize);
123 }
124
125 return (asize);
126 }
127
128 /*
129 * Get the minimum allocatable size. We define the allocatable size as
130 * the vdev's asize rounded to the nearest metaslab. This allows us to
131 * replace or attach devices which don't have the same physical size but
132 * can still satisfy the same number of allocations.
133 */
134 uint64_t
135 vdev_get_min_asize(vdev_t *vd)
136 {
137 vdev_t *pvd = vd->vdev_parent;
138
139 /*
140 * If our parent is NULL (inactive spare or cache) or is the root,
141 * just return our own asize.
142 */
143 if (pvd == NULL)
144 return (vd->vdev_asize);
145
146 /*
147 * The top-level vdev just returns the allocatable size rounded
148 * to the nearest metaslab.
149 */
150 if (vd == vd->vdev_top)
151 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
152
153 /*
154 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
155 * so each child must provide at least 1/Nth of its asize.
156 */
157 if (pvd->vdev_ops == &vdev_raidz_ops)
158 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
159 pvd->vdev_children);
160
161 return (pvd->vdev_min_asize);
162 }
163
164 void
165 vdev_set_min_asize(vdev_t *vd)
166 {
167 vd->vdev_min_asize = vdev_get_min_asize(vd);
168
169 for (int c = 0; c < vd->vdev_children; c++)
170 vdev_set_min_asize(vd->vdev_child[c]);
171 }
172
173 vdev_t *
174 vdev_lookup_top(spa_t *spa, uint64_t vdev)
175 {
176 vdev_t *rvd = spa->spa_root_vdev;
177
178 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
179
180 if (vdev < rvd->vdev_children) {
181 ASSERT(rvd->vdev_child[vdev] != NULL);
182 return (rvd->vdev_child[vdev]);
183 }
184
185 return (NULL);
186 }
187
188 vdev_t *
189 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
190 {
191 vdev_t *mvd;
192
193 if (vd->vdev_guid == guid)
194 return (vd);
195
196 for (int c = 0; c < vd->vdev_children; c++)
197 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
198 NULL)
199 return (mvd);
200
201 return (NULL);
202 }
203
204 static int
205 vdev_count_leaves_impl(vdev_t *vd)
206 {
207 int n = 0;
208
209 if (vd->vdev_ops->vdev_op_leaf)
210 return (1);
211
212 for (int c = 0; c < vd->vdev_children; c++)
213 n += vdev_count_leaves_impl(vd->vdev_child[c]);
214
215 return (n);
216 }
217
218 int
219 vdev_count_leaves(spa_t *spa)
220 {
221 int rc;
222
223 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
224 rc = vdev_count_leaves_impl(spa->spa_root_vdev);
225 spa_config_exit(spa, SCL_VDEV, FTAG);
226
227 return (rc);
228 }
229
230 void
231 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
232 {
233 size_t oldsize, newsize;
234 uint64_t id = cvd->vdev_id;
235 vdev_t **newchild;
236
237 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
238 ASSERT(cvd->vdev_parent == NULL);
239
240 cvd->vdev_parent = pvd;
241
242 if (pvd == NULL)
243 return;
244
245 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
246
247 oldsize = pvd->vdev_children * sizeof (vdev_t *);
248 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
249 newsize = pvd->vdev_children * sizeof (vdev_t *);
250
251 newchild = kmem_alloc(newsize, KM_SLEEP);
252 if (pvd->vdev_child != NULL) {
253 bcopy(pvd->vdev_child, newchild, oldsize);
254 kmem_free(pvd->vdev_child, oldsize);
255 }
256
257 pvd->vdev_child = newchild;
258 pvd->vdev_child[id] = cvd;
259
260 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
261 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
262
263 /*
264 * Walk up all ancestors to update guid sum.
265 */
266 for (; pvd != NULL; pvd = pvd->vdev_parent)
267 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
268 }
269
270 void
271 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
272 {
273 int c;
274 uint_t id = cvd->vdev_id;
275
276 ASSERT(cvd->vdev_parent == pvd);
277
278 if (pvd == NULL)
279 return;
280
281 ASSERT(id < pvd->vdev_children);
282 ASSERT(pvd->vdev_child[id] == cvd);
283
284 pvd->vdev_child[id] = NULL;
285 cvd->vdev_parent = NULL;
286
287 for (c = 0; c < pvd->vdev_children; c++)
288 if (pvd->vdev_child[c])
289 break;
290
291 if (c == pvd->vdev_children) {
292 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
293 pvd->vdev_child = NULL;
294 pvd->vdev_children = 0;
295 }
296
297 /*
298 * Walk up all ancestors to update guid sum.
299 */
300 for (; pvd != NULL; pvd = pvd->vdev_parent)
301 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
302 }
303
304 /*
305 * Remove any holes in the child array.
306 */
307 void
308 vdev_compact_children(vdev_t *pvd)
309 {
310 vdev_t **newchild, *cvd;
311 int oldc = pvd->vdev_children;
312 int newc;
313
314 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
315
316 if (oldc == 0)
317 return;
318
319 for (int c = newc = 0; c < oldc; c++)
320 if (pvd->vdev_child[c])
321 newc++;
322
323 if (newc > 0) {
324 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
325
326 for (int c = newc = 0; c < oldc; c++) {
327 if ((cvd = pvd->vdev_child[c]) != NULL) {
328 newchild[newc] = cvd;
329 cvd->vdev_id = newc++;
330 }
331 }
332 } else {
333 newchild = NULL;
334 }
335
336 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
337 pvd->vdev_child = newchild;
338 pvd->vdev_children = newc;
339 }
340
341 /*
342 * Allocate and minimally initialize a vdev_t.
343 */
344 vdev_t *
345 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
346 {
347 vdev_t *vd;
348 vdev_indirect_config_t *vic;
349
350 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
351 vic = &vd->vdev_indirect_config;
352
353 if (spa->spa_root_vdev == NULL) {
354 ASSERT(ops == &vdev_root_ops);
355 spa->spa_root_vdev = vd;
356 spa->spa_load_guid = spa_generate_guid(NULL);
357 }
358
359 if (guid == 0 && ops != &vdev_hole_ops) {
360 if (spa->spa_root_vdev == vd) {
361 /*
362 * The root vdev's guid will also be the pool guid,
363 * which must be unique among all pools.
364 */
365 guid = spa_generate_guid(NULL);
366 } else {
367 /*
368 * Any other vdev's guid must be unique within the pool.
369 */
370 guid = spa_generate_guid(spa);
371 }
372 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
373 }
374
375 vd->vdev_spa = spa;
376 vd->vdev_id = id;
377 vd->vdev_guid = guid;
378 vd->vdev_guid_sum = guid;
379 vd->vdev_ops = ops;
380 vd->vdev_state = VDEV_STATE_CLOSED;
381 vd->vdev_ishole = (ops == &vdev_hole_ops);
382 vic->vic_prev_indirect_vdev = UINT64_MAX;
383
384 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
385 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
386 vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
387
388 /*
389 * Initialize rate limit structs for events. We rate limit ZIO delay
390 * and checksum events so that we don't overwhelm ZED with thousands
391 * of events when a disk is acting up.
392 */
393 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_delays_per_second, 1);
394 zfs_ratelimit_init(&vd->vdev_checksum_rl, &zfs_checksums_per_second, 1);
395
396 list_link_init(&vd->vdev_config_dirty_node);
397 list_link_init(&vd->vdev_state_dirty_node);
398 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
399 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
400 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
401 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
402 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
403
404 for (int t = 0; t < DTL_TYPES; t++) {
405 vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
406 }
407 txg_list_create(&vd->vdev_ms_list, spa,
408 offsetof(struct metaslab, ms_txg_node));
409 txg_list_create(&vd->vdev_dtl_list, spa,
410 offsetof(struct vdev, vdev_dtl_node));
411 vd->vdev_stat.vs_timestamp = gethrtime();
412 vdev_queue_init(vd);
413 vdev_cache_init(vd);
414
415 return (vd);
416 }
417
418 /*
419 * Allocate a new vdev. The 'alloctype' is used to control whether we are
420 * creating a new vdev or loading an existing one - the behavior is slightly
421 * different for each case.
422 */
423 int
424 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
425 int alloctype)
426 {
427 vdev_ops_t *ops;
428 char *type;
429 uint64_t guid = 0, islog, nparity;
430 vdev_t *vd;
431 vdev_indirect_config_t *vic;
432 char *tmp = NULL;
433 int rc;
434
435 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
436
437 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
438 return (SET_ERROR(EINVAL));
439
440 if ((ops = vdev_getops(type)) == NULL)
441 return (SET_ERROR(EINVAL));
442
443 /*
444 * If this is a load, get the vdev guid from the nvlist.
445 * Otherwise, vdev_alloc_common() will generate one for us.
446 */
447 if (alloctype == VDEV_ALLOC_LOAD) {
448 uint64_t label_id;
449
450 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
451 label_id != id)
452 return (SET_ERROR(EINVAL));
453
454 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
455 return (SET_ERROR(EINVAL));
456 } else if (alloctype == VDEV_ALLOC_SPARE) {
457 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
458 return (SET_ERROR(EINVAL));
459 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
460 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
461 return (SET_ERROR(EINVAL));
462 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
463 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
464 return (SET_ERROR(EINVAL));
465 }
466
467 /*
468 * The first allocated vdev must be of type 'root'.
469 */
470 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
471 return (SET_ERROR(EINVAL));
472
473 /*
474 * Determine whether we're a log vdev.
475 */
476 islog = 0;
477 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
478 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
479 return (SET_ERROR(ENOTSUP));
480
481 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
482 return (SET_ERROR(ENOTSUP));
483
484 /*
485 * Set the nparity property for RAID-Z vdevs.
486 */
487 nparity = -1ULL;
488 if (ops == &vdev_raidz_ops) {
489 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
490 &nparity) == 0) {
491 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
492 return (SET_ERROR(EINVAL));
493 /*
494 * Previous versions could only support 1 or 2 parity
495 * device.
496 */
497 if (nparity > 1 &&
498 spa_version(spa) < SPA_VERSION_RAIDZ2)
499 return (SET_ERROR(ENOTSUP));
500 if (nparity > 2 &&
501 spa_version(spa) < SPA_VERSION_RAIDZ3)
502 return (SET_ERROR(ENOTSUP));
503 } else {
504 /*
505 * We require the parity to be specified for SPAs that
506 * support multiple parity levels.
507 */
508 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
509 return (SET_ERROR(EINVAL));
510 /*
511 * Otherwise, we default to 1 parity device for RAID-Z.
512 */
513 nparity = 1;
514 }
515 } else {
516 nparity = 0;
517 }
518 ASSERT(nparity != -1ULL);
519
520 vd = vdev_alloc_common(spa, id, guid, ops);
521 vic = &vd->vdev_indirect_config;
522
523 vd->vdev_islog = islog;
524 vd->vdev_nparity = nparity;
525
526 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
527 vd->vdev_path = spa_strdup(vd->vdev_path);
528
529 /*
530 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
531 * fault on a vdev and want it to persist across imports (like with
532 * zpool offline -f).
533 */
534 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
535 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
536 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
537 vd->vdev_faulted = 1;
538 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
539 }
540
541 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
542 vd->vdev_devid = spa_strdup(vd->vdev_devid);
543 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
544 &vd->vdev_physpath) == 0)
545 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
546
547 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
548 &vd->vdev_enc_sysfs_path) == 0)
549 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
550
551 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
552 vd->vdev_fru = spa_strdup(vd->vdev_fru);
553
554 /*
555 * Set the whole_disk property. If it's not specified, leave the value
556 * as -1.
557 */
558 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
559 &vd->vdev_wholedisk) != 0)
560 vd->vdev_wholedisk = -1ULL;
561
562 ASSERT0(vic->vic_mapping_object);
563 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
564 &vic->vic_mapping_object);
565 ASSERT0(vic->vic_births_object);
566 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
567 &vic->vic_births_object);
568 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
569 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
570 &vic->vic_prev_indirect_vdev);
571
572 /*
573 * Look for the 'not present' flag. This will only be set if the device
574 * was not present at the time of import.
575 */
576 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
577 &vd->vdev_not_present);
578
579 /*
580 * Get the alignment requirement.
581 */
582 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
583
584 /*
585 * Retrieve the vdev creation time.
586 */
587 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
588 &vd->vdev_crtxg);
589
590 /*
591 * If we're a top-level vdev, try to load the allocation parameters.
592 */
593 if (parent && !parent->vdev_parent &&
594 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
595 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
596 &vd->vdev_ms_array);
597 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
598 &vd->vdev_ms_shift);
599 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
600 &vd->vdev_asize);
601 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
602 &vd->vdev_removing);
603 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
604 &vd->vdev_top_zap);
605 } else {
606 ASSERT0(vd->vdev_top_zap);
607 }
608
609 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
610 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
611 alloctype == VDEV_ALLOC_ADD ||
612 alloctype == VDEV_ALLOC_SPLIT ||
613 alloctype == VDEV_ALLOC_ROOTPOOL);
614 vd->vdev_mg = metaslab_group_create(islog ?
615 spa_log_class(spa) : spa_normal_class(spa), vd);
616 }
617
618 if (vd->vdev_ops->vdev_op_leaf &&
619 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
620 (void) nvlist_lookup_uint64(nv,
621 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
622 } else {
623 ASSERT0(vd->vdev_leaf_zap);
624 }
625
626 /*
627 * If we're a leaf vdev, try to load the DTL object and other state.
628 */
629
630 if (vd->vdev_ops->vdev_op_leaf &&
631 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
632 alloctype == VDEV_ALLOC_ROOTPOOL)) {
633 if (alloctype == VDEV_ALLOC_LOAD) {
634 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
635 &vd->vdev_dtl_object);
636 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
637 &vd->vdev_unspare);
638 }
639
640 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
641 uint64_t spare = 0;
642
643 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
644 &spare) == 0 && spare)
645 spa_spare_add(vd);
646 }
647
648 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
649 &vd->vdev_offline);
650
651 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
652 &vd->vdev_resilver_txg);
653
654 /*
655 * In general, when importing a pool we want to ignore the
656 * persistent fault state, as the diagnosis made on another
657 * system may not be valid in the current context. The only
658 * exception is if we forced a vdev to a persistently faulted
659 * state with 'zpool offline -f'. The persistent fault will
660 * remain across imports until cleared.
661 *
662 * Local vdevs will remain in the faulted state.
663 */
664 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
665 spa_load_state(spa) == SPA_LOAD_IMPORT) {
666 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
667 &vd->vdev_faulted);
668 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
669 &vd->vdev_degraded);
670 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
671 &vd->vdev_removed);
672
673 if (vd->vdev_faulted || vd->vdev_degraded) {
674 char *aux;
675
676 vd->vdev_label_aux =
677 VDEV_AUX_ERR_EXCEEDED;
678 if (nvlist_lookup_string(nv,
679 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
680 strcmp(aux, "external") == 0)
681 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
682 }
683 }
684 }
685
686 /*
687 * Add ourselves to the parent's list of children.
688 */
689 vdev_add_child(parent, vd);
690
691 *vdp = vd;
692
693 return (0);
694 }
695
696 void
697 vdev_free(vdev_t *vd)
698 {
699 spa_t *spa = vd->vdev_spa;
700
701 /*
702 * Scan queues are normally destroyed at the end of a scan. If the
703 * queue exists here, that implies the vdev is being removed while
704 * the scan is still running.
705 */
706 if (vd->vdev_scan_io_queue != NULL) {
707 mutex_enter(&vd->vdev_scan_io_queue_lock);
708 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
709 vd->vdev_scan_io_queue = NULL;
710 mutex_exit(&vd->vdev_scan_io_queue_lock);
711 }
712
713 /*
714 * vdev_free() implies closing the vdev first. This is simpler than
715 * trying to ensure complicated semantics for all callers.
716 */
717 vdev_close(vd);
718
719 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
720 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
721
722 /*
723 * Free all children.
724 */
725 for (int c = 0; c < vd->vdev_children; c++)
726 vdev_free(vd->vdev_child[c]);
727
728 ASSERT(vd->vdev_child == NULL);
729 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
730
731 /*
732 * Discard allocation state.
733 */
734 if (vd->vdev_mg != NULL) {
735 vdev_metaslab_fini(vd);
736 metaslab_group_destroy(vd->vdev_mg);
737 }
738
739 ASSERT0(vd->vdev_stat.vs_space);
740 ASSERT0(vd->vdev_stat.vs_dspace);
741 ASSERT0(vd->vdev_stat.vs_alloc);
742
743 /*
744 * Remove this vdev from its parent's child list.
745 */
746 vdev_remove_child(vd->vdev_parent, vd);
747
748 ASSERT(vd->vdev_parent == NULL);
749
750 /*
751 * Clean up vdev structure.
752 */
753 vdev_queue_fini(vd);
754 vdev_cache_fini(vd);
755
756 if (vd->vdev_path)
757 spa_strfree(vd->vdev_path);
758 if (vd->vdev_devid)
759 spa_strfree(vd->vdev_devid);
760 if (vd->vdev_physpath)
761 spa_strfree(vd->vdev_physpath);
762
763 if (vd->vdev_enc_sysfs_path)
764 spa_strfree(vd->vdev_enc_sysfs_path);
765
766 if (vd->vdev_fru)
767 spa_strfree(vd->vdev_fru);
768
769 if (vd->vdev_isspare)
770 spa_spare_remove(vd);
771 if (vd->vdev_isl2cache)
772 spa_l2cache_remove(vd);
773
774 txg_list_destroy(&vd->vdev_ms_list);
775 txg_list_destroy(&vd->vdev_dtl_list);
776
777 mutex_enter(&vd->vdev_dtl_lock);
778 space_map_close(vd->vdev_dtl_sm);
779 for (int t = 0; t < DTL_TYPES; t++) {
780 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
781 range_tree_destroy(vd->vdev_dtl[t]);
782 }
783 mutex_exit(&vd->vdev_dtl_lock);
784
785 EQUIV(vd->vdev_indirect_births != NULL,
786 vd->vdev_indirect_mapping != NULL);
787 if (vd->vdev_indirect_births != NULL) {
788 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
789 vdev_indirect_births_close(vd->vdev_indirect_births);
790 }
791
792 if (vd->vdev_obsolete_sm != NULL) {
793 ASSERT(vd->vdev_removing ||
794 vd->vdev_ops == &vdev_indirect_ops);
795 space_map_close(vd->vdev_obsolete_sm);
796 vd->vdev_obsolete_sm = NULL;
797 }
798 range_tree_destroy(vd->vdev_obsolete_segments);
799 rw_destroy(&vd->vdev_indirect_rwlock);
800 mutex_destroy(&vd->vdev_obsolete_lock);
801
802 mutex_destroy(&vd->vdev_queue_lock);
803 mutex_destroy(&vd->vdev_dtl_lock);
804 mutex_destroy(&vd->vdev_stat_lock);
805 mutex_destroy(&vd->vdev_probe_lock);
806 mutex_destroy(&vd->vdev_scan_io_queue_lock);
807
808 zfs_ratelimit_fini(&vd->vdev_delay_rl);
809 zfs_ratelimit_fini(&vd->vdev_checksum_rl);
810
811 if (vd == spa->spa_root_vdev)
812 spa->spa_root_vdev = NULL;
813
814 kmem_free(vd, sizeof (vdev_t));
815 }
816
817 /*
818 * Transfer top-level vdev state from svd to tvd.
819 */
820 static void
821 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
822 {
823 spa_t *spa = svd->vdev_spa;
824 metaslab_t *msp;
825 vdev_t *vd;
826 int t;
827
828 ASSERT(tvd == tvd->vdev_top);
829
830 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
831 tvd->vdev_ms_array = svd->vdev_ms_array;
832 tvd->vdev_ms_shift = svd->vdev_ms_shift;
833 tvd->vdev_ms_count = svd->vdev_ms_count;
834 tvd->vdev_top_zap = svd->vdev_top_zap;
835
836 svd->vdev_ms_array = 0;
837 svd->vdev_ms_shift = 0;
838 svd->vdev_ms_count = 0;
839 svd->vdev_top_zap = 0;
840
841 if (tvd->vdev_mg)
842 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
843 tvd->vdev_mg = svd->vdev_mg;
844 tvd->vdev_ms = svd->vdev_ms;
845
846 svd->vdev_mg = NULL;
847 svd->vdev_ms = NULL;
848
849 if (tvd->vdev_mg != NULL)
850 tvd->vdev_mg->mg_vd = tvd;
851
852 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
853 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
854 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
855
856 svd->vdev_stat.vs_alloc = 0;
857 svd->vdev_stat.vs_space = 0;
858 svd->vdev_stat.vs_dspace = 0;
859
860 /*
861 * State which may be set on a top-level vdev that's in the
862 * process of being removed.
863 */
864 ASSERT0(tvd->vdev_indirect_config.vic_births_object);
865 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
866 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
867 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
868 ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
869 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
870 ASSERT0(tvd->vdev_removing);
871 tvd->vdev_removing = svd->vdev_removing;
872 tvd->vdev_indirect_config = svd->vdev_indirect_config;
873 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
874 tvd->vdev_indirect_births = svd->vdev_indirect_births;
875 range_tree_swap(&svd->vdev_obsolete_segments,
876 &tvd->vdev_obsolete_segments);
877 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
878 svd->vdev_indirect_config.vic_mapping_object = 0;
879 svd->vdev_indirect_config.vic_births_object = 0;
880 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
881 svd->vdev_indirect_mapping = NULL;
882 svd->vdev_indirect_births = NULL;
883 svd->vdev_obsolete_sm = NULL;
884 svd->vdev_removing = 0;
885
886 for (t = 0; t < TXG_SIZE; t++) {
887 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
888 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
889 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
890 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
891 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
892 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
893 }
894
895 if (list_link_active(&svd->vdev_config_dirty_node)) {
896 vdev_config_clean(svd);
897 vdev_config_dirty(tvd);
898 }
899
900 if (list_link_active(&svd->vdev_state_dirty_node)) {
901 vdev_state_clean(svd);
902 vdev_state_dirty(tvd);
903 }
904
905 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
906 svd->vdev_deflate_ratio = 0;
907
908 tvd->vdev_islog = svd->vdev_islog;
909 svd->vdev_islog = 0;
910
911 dsl_scan_io_queue_vdev_xfer(svd, tvd);
912 }
913
914 static void
915 vdev_top_update(vdev_t *tvd, vdev_t *vd)
916 {
917 if (vd == NULL)
918 return;
919
920 vd->vdev_top = tvd;
921
922 for (int c = 0; c < vd->vdev_children; c++)
923 vdev_top_update(tvd, vd->vdev_child[c]);
924 }
925
926 /*
927 * Add a mirror/replacing vdev above an existing vdev.
928 */
929 vdev_t *
930 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
931 {
932 spa_t *spa = cvd->vdev_spa;
933 vdev_t *pvd = cvd->vdev_parent;
934 vdev_t *mvd;
935
936 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
937
938 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
939
940 mvd->vdev_asize = cvd->vdev_asize;
941 mvd->vdev_min_asize = cvd->vdev_min_asize;
942 mvd->vdev_max_asize = cvd->vdev_max_asize;
943 mvd->vdev_psize = cvd->vdev_psize;
944 mvd->vdev_ashift = cvd->vdev_ashift;
945 mvd->vdev_state = cvd->vdev_state;
946 mvd->vdev_crtxg = cvd->vdev_crtxg;
947
948 vdev_remove_child(pvd, cvd);
949 vdev_add_child(pvd, mvd);
950 cvd->vdev_id = mvd->vdev_children;
951 vdev_add_child(mvd, cvd);
952 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
953
954 if (mvd == mvd->vdev_top)
955 vdev_top_transfer(cvd, mvd);
956
957 return (mvd);
958 }
959
960 /*
961 * Remove a 1-way mirror/replacing vdev from the tree.
962 */
963 void
964 vdev_remove_parent(vdev_t *cvd)
965 {
966 vdev_t *mvd = cvd->vdev_parent;
967 vdev_t *pvd = mvd->vdev_parent;
968
969 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
970
971 ASSERT(mvd->vdev_children == 1);
972 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
973 mvd->vdev_ops == &vdev_replacing_ops ||
974 mvd->vdev_ops == &vdev_spare_ops);
975 cvd->vdev_ashift = mvd->vdev_ashift;
976
977 vdev_remove_child(mvd, cvd);
978 vdev_remove_child(pvd, mvd);
979
980 /*
981 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
982 * Otherwise, we could have detached an offline device, and when we
983 * go to import the pool we'll think we have two top-level vdevs,
984 * instead of a different version of the same top-level vdev.
985 */
986 if (mvd->vdev_top == mvd) {
987 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
988 cvd->vdev_orig_guid = cvd->vdev_guid;
989 cvd->vdev_guid += guid_delta;
990 cvd->vdev_guid_sum += guid_delta;
991
992 /*
993 * If pool not set for autoexpand, we need to also preserve
994 * mvd's asize to prevent automatic expansion of cvd.
995 * Otherwise if we are adjusting the mirror by attaching and
996 * detaching children of non-uniform sizes, the mirror could
997 * autoexpand, unexpectedly requiring larger devices to
998 * re-establish the mirror.
999 */
1000 if (!cvd->vdev_spa->spa_autoexpand)
1001 cvd->vdev_asize = mvd->vdev_asize;
1002 }
1003 cvd->vdev_id = mvd->vdev_id;
1004 vdev_add_child(pvd, cvd);
1005 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1006
1007 if (cvd == cvd->vdev_top)
1008 vdev_top_transfer(mvd, cvd);
1009
1010 ASSERT(mvd->vdev_children == 0);
1011 vdev_free(mvd);
1012 }
1013
1014 int
1015 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1016 {
1017 spa_t *spa = vd->vdev_spa;
1018 objset_t *mos = spa->spa_meta_objset;
1019 uint64_t m;
1020 uint64_t oldc = vd->vdev_ms_count;
1021 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1022 metaslab_t **mspp;
1023 int error;
1024
1025 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1026
1027 /*
1028 * This vdev is not being allocated from yet or is a hole.
1029 */
1030 if (vd->vdev_ms_shift == 0)
1031 return (0);
1032
1033 ASSERT(!vd->vdev_ishole);
1034
1035 ASSERT(oldc <= newc);
1036
1037 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1038
1039 if (oldc != 0) {
1040 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1041 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1042 }
1043
1044 vd->vdev_ms = mspp;
1045 vd->vdev_ms_count = newc;
1046
1047 for (m = oldc; m < newc; m++) {
1048 uint64_t object = 0;
1049
1050 /*
1051 * vdev_ms_array may be 0 if we are creating the "fake"
1052 * metaslabs for an indirect vdev for zdb's leak detection.
1053 * See zdb_leak_init().
1054 */
1055 if (txg == 0 && vd->vdev_ms_array != 0) {
1056 error = dmu_read(mos, vd->vdev_ms_array,
1057 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1058 DMU_READ_PREFETCH);
1059 if (error)
1060 return (error);
1061 }
1062
1063 error = metaslab_init(vd->vdev_mg, m, object, txg,
1064 &(vd->vdev_ms[m]));
1065 if (error)
1066 return (error);
1067 }
1068
1069 if (txg == 0)
1070 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1071
1072 /*
1073 * If the vdev is being removed we don't activate
1074 * the metaslabs since we want to ensure that no new
1075 * allocations are performed on this device.
1076 */
1077 if (oldc == 0 && !vd->vdev_removing)
1078 metaslab_group_activate(vd->vdev_mg);
1079
1080 if (txg == 0)
1081 spa_config_exit(spa, SCL_ALLOC, FTAG);
1082
1083 return (0);
1084 }
1085
1086 void
1087 vdev_metaslab_fini(vdev_t *vd)
1088 {
1089 if (vd->vdev_ms != NULL) {
1090 uint64_t count = vd->vdev_ms_count;
1091
1092 metaslab_group_passivate(vd->vdev_mg);
1093 for (uint64_t m = 0; m < count; m++) {
1094 metaslab_t *msp = vd->vdev_ms[m];
1095
1096 if (msp != NULL)
1097 metaslab_fini(msp);
1098 }
1099 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1100 vd->vdev_ms = NULL;
1101
1102 vd->vdev_ms_count = 0;
1103 }
1104 ASSERT0(vd->vdev_ms_count);
1105 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1106 }
1107
1108 typedef struct vdev_probe_stats {
1109 boolean_t vps_readable;
1110 boolean_t vps_writeable;
1111 int vps_flags;
1112 } vdev_probe_stats_t;
1113
1114 static void
1115 vdev_probe_done(zio_t *zio)
1116 {
1117 spa_t *spa = zio->io_spa;
1118 vdev_t *vd = zio->io_vd;
1119 vdev_probe_stats_t *vps = zio->io_private;
1120
1121 ASSERT(vd->vdev_probe_zio != NULL);
1122
1123 if (zio->io_type == ZIO_TYPE_READ) {
1124 if (zio->io_error == 0)
1125 vps->vps_readable = 1;
1126 if (zio->io_error == 0 && spa_writeable(spa)) {
1127 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1128 zio->io_offset, zio->io_size, zio->io_abd,
1129 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1130 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1131 } else {
1132 abd_free(zio->io_abd);
1133 }
1134 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1135 if (zio->io_error == 0)
1136 vps->vps_writeable = 1;
1137 abd_free(zio->io_abd);
1138 } else if (zio->io_type == ZIO_TYPE_NULL) {
1139 zio_t *pio;
1140 zio_link_t *zl;
1141
1142 vd->vdev_cant_read |= !vps->vps_readable;
1143 vd->vdev_cant_write |= !vps->vps_writeable;
1144
1145 if (vdev_readable(vd) &&
1146 (vdev_writeable(vd) || !spa_writeable(spa))) {
1147 zio->io_error = 0;
1148 } else {
1149 ASSERT(zio->io_error != 0);
1150 zfs_dbgmsg("failed probe on vdev %llu",
1151 (longlong_t)vd->vdev_id);
1152 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1153 spa, vd, NULL, NULL, 0, 0);
1154 zio->io_error = SET_ERROR(ENXIO);
1155 }
1156
1157 mutex_enter(&vd->vdev_probe_lock);
1158 ASSERT(vd->vdev_probe_zio == zio);
1159 vd->vdev_probe_zio = NULL;
1160 mutex_exit(&vd->vdev_probe_lock);
1161
1162 zl = NULL;
1163 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1164 if (!vdev_accessible(vd, pio))
1165 pio->io_error = SET_ERROR(ENXIO);
1166
1167 kmem_free(vps, sizeof (*vps));
1168 }
1169 }
1170
1171 /*
1172 * Determine whether this device is accessible.
1173 *
1174 * Read and write to several known locations: the pad regions of each
1175 * vdev label but the first, which we leave alone in case it contains
1176 * a VTOC.
1177 */
1178 zio_t *
1179 vdev_probe(vdev_t *vd, zio_t *zio)
1180 {
1181 spa_t *spa = vd->vdev_spa;
1182 vdev_probe_stats_t *vps = NULL;
1183 zio_t *pio;
1184
1185 ASSERT(vd->vdev_ops->vdev_op_leaf);
1186
1187 /*
1188 * Don't probe the probe.
1189 */
1190 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1191 return (NULL);
1192
1193 /*
1194 * To prevent 'probe storms' when a device fails, we create
1195 * just one probe i/o at a time. All zios that want to probe
1196 * this vdev will become parents of the probe io.
1197 */
1198 mutex_enter(&vd->vdev_probe_lock);
1199
1200 if ((pio = vd->vdev_probe_zio) == NULL) {
1201 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1202
1203 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1204 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1205 ZIO_FLAG_TRYHARD;
1206
1207 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1208 /*
1209 * vdev_cant_read and vdev_cant_write can only
1210 * transition from TRUE to FALSE when we have the
1211 * SCL_ZIO lock as writer; otherwise they can only
1212 * transition from FALSE to TRUE. This ensures that
1213 * any zio looking at these values can assume that
1214 * failures persist for the life of the I/O. That's
1215 * important because when a device has intermittent
1216 * connectivity problems, we want to ensure that
1217 * they're ascribed to the device (ENXIO) and not
1218 * the zio (EIO).
1219 *
1220 * Since we hold SCL_ZIO as writer here, clear both
1221 * values so the probe can reevaluate from first
1222 * principles.
1223 */
1224 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1225 vd->vdev_cant_read = B_FALSE;
1226 vd->vdev_cant_write = B_FALSE;
1227 }
1228
1229 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1230 vdev_probe_done, vps,
1231 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1232
1233 /*
1234 * We can't change the vdev state in this context, so we
1235 * kick off an async task to do it on our behalf.
1236 */
1237 if (zio != NULL) {
1238 vd->vdev_probe_wanted = B_TRUE;
1239 spa_async_request(spa, SPA_ASYNC_PROBE);
1240 }
1241 }
1242
1243 if (zio != NULL)
1244 zio_add_child(zio, pio);
1245
1246 mutex_exit(&vd->vdev_probe_lock);
1247
1248 if (vps == NULL) {
1249 ASSERT(zio != NULL);
1250 return (NULL);
1251 }
1252
1253 for (int l = 1; l < VDEV_LABELS; l++) {
1254 zio_nowait(zio_read_phys(pio, vd,
1255 vdev_label_offset(vd->vdev_psize, l,
1256 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1257 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1258 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1259 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1260 }
1261
1262 if (zio == NULL)
1263 return (pio);
1264
1265 zio_nowait(pio);
1266 return (NULL);
1267 }
1268
1269 static void
1270 vdev_open_child(void *arg)
1271 {
1272 vdev_t *vd = arg;
1273
1274 vd->vdev_open_thread = curthread;
1275 vd->vdev_open_error = vdev_open(vd);
1276 vd->vdev_open_thread = NULL;
1277 }
1278
1279 static boolean_t
1280 vdev_uses_zvols(vdev_t *vd)
1281 {
1282 #ifdef _KERNEL
1283 if (zvol_is_zvol(vd->vdev_path))
1284 return (B_TRUE);
1285 #endif
1286
1287 for (int c = 0; c < vd->vdev_children; c++)
1288 if (vdev_uses_zvols(vd->vdev_child[c]))
1289 return (B_TRUE);
1290
1291 return (B_FALSE);
1292 }
1293
1294 void
1295 vdev_open_children(vdev_t *vd)
1296 {
1297 taskq_t *tq;
1298 int children = vd->vdev_children;
1299
1300 /*
1301 * in order to handle pools on top of zvols, do the opens
1302 * in a single thread so that the same thread holds the
1303 * spa_namespace_lock
1304 */
1305 if (vdev_uses_zvols(vd)) {
1306 retry_sync:
1307 for (int c = 0; c < children; c++)
1308 vd->vdev_child[c]->vdev_open_error =
1309 vdev_open(vd->vdev_child[c]);
1310 } else {
1311 tq = taskq_create("vdev_open", children, minclsyspri,
1312 children, children, TASKQ_PREPOPULATE);
1313 if (tq == NULL)
1314 goto retry_sync;
1315
1316 for (int c = 0; c < children; c++)
1317 VERIFY(taskq_dispatch(tq, vdev_open_child,
1318 vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1319
1320 taskq_destroy(tq);
1321 }
1322
1323 vd->vdev_nonrot = B_TRUE;
1324
1325 for (int c = 0; c < children; c++)
1326 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1327 }
1328
1329 /*
1330 * Compute the raidz-deflation ratio. Note, we hard-code
1331 * in 128k (1 << 17) because it is the "typical" blocksize.
1332 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1333 * otherwise it would inconsistently account for existing bp's.
1334 */
1335 static void
1336 vdev_set_deflate_ratio(vdev_t *vd)
1337 {
1338 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1339 vd->vdev_deflate_ratio = (1 << 17) /
1340 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1341 }
1342 }
1343
1344 /*
1345 * Prepare a virtual device for access.
1346 */
1347 int
1348 vdev_open(vdev_t *vd)
1349 {
1350 spa_t *spa = vd->vdev_spa;
1351 int error;
1352 uint64_t osize = 0;
1353 uint64_t max_osize = 0;
1354 uint64_t asize, max_asize, psize;
1355 uint64_t ashift = 0;
1356
1357 ASSERT(vd->vdev_open_thread == curthread ||
1358 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1359 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1360 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1361 vd->vdev_state == VDEV_STATE_OFFLINE);
1362
1363 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1364 vd->vdev_cant_read = B_FALSE;
1365 vd->vdev_cant_write = B_FALSE;
1366 vd->vdev_min_asize = vdev_get_min_asize(vd);
1367
1368 /*
1369 * If this vdev is not removed, check its fault status. If it's
1370 * faulted, bail out of the open.
1371 */
1372 if (!vd->vdev_removed && vd->vdev_faulted) {
1373 ASSERT(vd->vdev_children == 0);
1374 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1375 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1376 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1377 vd->vdev_label_aux);
1378 return (SET_ERROR(ENXIO));
1379 } else if (vd->vdev_offline) {
1380 ASSERT(vd->vdev_children == 0);
1381 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1382 return (SET_ERROR(ENXIO));
1383 }
1384
1385 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1386
1387 /*
1388 * Reset the vdev_reopening flag so that we actually close
1389 * the vdev on error.
1390 */
1391 vd->vdev_reopening = B_FALSE;
1392 if (zio_injection_enabled && error == 0)
1393 error = zio_handle_device_injection(vd, NULL, ENXIO);
1394
1395 if (error) {
1396 if (vd->vdev_removed &&
1397 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1398 vd->vdev_removed = B_FALSE;
1399
1400 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1401 vd->vdev_stat.vs_aux);
1402 return (error);
1403 }
1404
1405 vd->vdev_removed = B_FALSE;
1406
1407 /*
1408 * Recheck the faulted flag now that we have confirmed that
1409 * the vdev is accessible. If we're faulted, bail.
1410 */
1411 if (vd->vdev_faulted) {
1412 ASSERT(vd->vdev_children == 0);
1413 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1414 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1415 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1416 vd->vdev_label_aux);
1417 return (SET_ERROR(ENXIO));
1418 }
1419
1420 if (vd->vdev_degraded) {
1421 ASSERT(vd->vdev_children == 0);
1422 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1423 VDEV_AUX_ERR_EXCEEDED);
1424 } else {
1425 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1426 }
1427
1428 /*
1429 * For hole or missing vdevs we just return success.
1430 */
1431 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1432 return (0);
1433
1434 for (int c = 0; c < vd->vdev_children; c++) {
1435 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1436 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1437 VDEV_AUX_NONE);
1438 break;
1439 }
1440 }
1441
1442 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1443 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1444
1445 if (vd->vdev_children == 0) {
1446 if (osize < SPA_MINDEVSIZE) {
1447 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1448 VDEV_AUX_TOO_SMALL);
1449 return (SET_ERROR(EOVERFLOW));
1450 }
1451 psize = osize;
1452 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1453 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1454 VDEV_LABEL_END_SIZE);
1455 } else {
1456 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1457 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1458 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1459 VDEV_AUX_TOO_SMALL);
1460 return (SET_ERROR(EOVERFLOW));
1461 }
1462 psize = 0;
1463 asize = osize;
1464 max_asize = max_osize;
1465 }
1466
1467 /*
1468 * If the vdev was expanded, record this so that we can re-create the
1469 * uberblock rings in labels {2,3}, during the next sync.
1470 */
1471 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
1472 vd->vdev_copy_uberblocks = B_TRUE;
1473
1474 vd->vdev_psize = psize;
1475
1476 /*
1477 * Make sure the allocatable size hasn't shrunk too much.
1478 */
1479 if (asize < vd->vdev_min_asize) {
1480 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1481 VDEV_AUX_BAD_LABEL);
1482 return (SET_ERROR(EINVAL));
1483 }
1484
1485 if (vd->vdev_asize == 0) {
1486 /*
1487 * This is the first-ever open, so use the computed values.
1488 * For compatibility, a different ashift can be requested.
1489 */
1490 vd->vdev_asize = asize;
1491 vd->vdev_max_asize = max_asize;
1492 if (vd->vdev_ashift == 0) {
1493 vd->vdev_ashift = ashift; /* use detected value */
1494 }
1495 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1496 vd->vdev_ashift > ASHIFT_MAX)) {
1497 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1498 VDEV_AUX_BAD_ASHIFT);
1499 return (SET_ERROR(EDOM));
1500 }
1501 } else {
1502 /*
1503 * Detect if the alignment requirement has increased.
1504 * We don't want to make the pool unavailable, just
1505 * post an event instead.
1506 */
1507 if (ashift > vd->vdev_top->vdev_ashift &&
1508 vd->vdev_ops->vdev_op_leaf) {
1509 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1510 spa, vd, NULL, NULL, 0, 0);
1511 }
1512
1513 vd->vdev_max_asize = max_asize;
1514 }
1515
1516 /*
1517 * If all children are healthy we update asize if either:
1518 * The asize has increased, due to a device expansion caused by dynamic
1519 * LUN growth or vdev replacement, and automatic expansion is enabled;
1520 * making the additional space available.
1521 *
1522 * The asize has decreased, due to a device shrink usually caused by a
1523 * vdev replace with a smaller device. This ensures that calculations
1524 * based of max_asize and asize e.g. esize are always valid. It's safe
1525 * to do this as we've already validated that asize is greater than
1526 * vdev_min_asize.
1527 */
1528 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1529 ((asize > vd->vdev_asize &&
1530 (vd->vdev_expanding || spa->spa_autoexpand)) ||
1531 (asize < vd->vdev_asize)))
1532 vd->vdev_asize = asize;
1533
1534 vdev_set_min_asize(vd);
1535
1536 /*
1537 * Ensure we can issue some IO before declaring the
1538 * vdev open for business.
1539 */
1540 if (vd->vdev_ops->vdev_op_leaf &&
1541 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1542 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1543 VDEV_AUX_ERR_EXCEEDED);
1544 return (error);
1545 }
1546
1547 /*
1548 * Track the min and max ashift values for normal data devices.
1549 */
1550 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1551 !vd->vdev_islog && vd->vdev_aux == NULL) {
1552 if (vd->vdev_ashift > spa->spa_max_ashift)
1553 spa->spa_max_ashift = vd->vdev_ashift;
1554 if (vd->vdev_ashift < spa->spa_min_ashift)
1555 spa->spa_min_ashift = vd->vdev_ashift;
1556 }
1557
1558 /*
1559 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1560 * resilver. But don't do this if we are doing a reopen for a scrub,
1561 * since this would just restart the scrub we are already doing.
1562 */
1563 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1564 vdev_resilver_needed(vd, NULL, NULL))
1565 spa_async_request(spa, SPA_ASYNC_RESILVER);
1566
1567 return (0);
1568 }
1569
1570 /*
1571 * Called once the vdevs are all opened, this routine validates the label
1572 * contents. This needs to be done before vdev_load() so that we don't
1573 * inadvertently do repair I/Os to the wrong device.
1574 *
1575 * If 'strict' is false ignore the spa guid check. This is necessary because
1576 * if the machine crashed during a re-guid the new guid might have been written
1577 * to all of the vdev labels, but not the cached config. The strict check
1578 * will be performed when the pool is opened again using the mos config.
1579 *
1580 * This function will only return failure if one of the vdevs indicates that it
1581 * has since been destroyed or exported. This is only possible if
1582 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1583 * will be updated but the function will return 0.
1584 */
1585 int
1586 vdev_validate(vdev_t *vd, boolean_t strict)
1587 {
1588 spa_t *spa = vd->vdev_spa;
1589 nvlist_t *label;
1590 uint64_t guid = 0, top_guid;
1591 uint64_t state;
1592
1593 for (int c = 0; c < vd->vdev_children; c++)
1594 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1595 return (SET_ERROR(EBADF));
1596
1597 /*
1598 * If the device has already failed, or was marked offline, don't do
1599 * any further validation. Otherwise, label I/O will fail and we will
1600 * overwrite the previous state.
1601 */
1602 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1603 uint64_t aux_guid = 0;
1604 nvlist_t *nvl;
1605 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1606 spa_last_synced_txg(spa) : -1ULL;
1607
1608 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1609 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1610 VDEV_AUX_BAD_LABEL);
1611 return (0);
1612 }
1613
1614 /*
1615 * Determine if this vdev has been split off into another
1616 * pool. If so, then refuse to open it.
1617 */
1618 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1619 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1620 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1621 VDEV_AUX_SPLIT_POOL);
1622 nvlist_free(label);
1623 return (0);
1624 }
1625
1626 if (strict && (nvlist_lookup_uint64(label,
1627 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1628 guid != spa_guid(spa))) {
1629 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1630 VDEV_AUX_CORRUPT_DATA);
1631 nvlist_free(label);
1632 return (0);
1633 }
1634
1635 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1636 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1637 &aux_guid) != 0)
1638 aux_guid = 0;
1639
1640 /*
1641 * If this vdev just became a top-level vdev because its
1642 * sibling was detached, it will have adopted the parent's
1643 * vdev guid -- but the label may or may not be on disk yet.
1644 * Fortunately, either version of the label will have the
1645 * same top guid, so if we're a top-level vdev, we can
1646 * safely compare to that instead.
1647 *
1648 * If we split this vdev off instead, then we also check the
1649 * original pool's guid. We don't want to consider the vdev
1650 * corrupt if it is partway through a split operation.
1651 */
1652 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1653 &guid) != 0 ||
1654 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1655 &top_guid) != 0 ||
1656 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1657 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1658 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1659 VDEV_AUX_CORRUPT_DATA);
1660 nvlist_free(label);
1661 return (0);
1662 }
1663
1664 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1665 &state) != 0) {
1666 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1667 VDEV_AUX_CORRUPT_DATA);
1668 nvlist_free(label);
1669 return (0);
1670 }
1671
1672 nvlist_free(label);
1673
1674 /*
1675 * If this is a verbatim import, no need to check the
1676 * state of the pool.
1677 */
1678 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1679 spa_load_state(spa) == SPA_LOAD_OPEN &&
1680 state != POOL_STATE_ACTIVE)
1681 return (SET_ERROR(EBADF));
1682
1683 /*
1684 * If we were able to open and validate a vdev that was
1685 * previously marked permanently unavailable, clear that state
1686 * now.
1687 */
1688 if (vd->vdev_not_present)
1689 vd->vdev_not_present = 0;
1690 }
1691
1692 return (0);
1693 }
1694
1695 /*
1696 * Close a virtual device.
1697 */
1698 void
1699 vdev_close(vdev_t *vd)
1700 {
1701 vdev_t *pvd = vd->vdev_parent;
1702 ASSERTV(spa_t *spa = vd->vdev_spa);
1703
1704 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1705
1706 /*
1707 * If our parent is reopening, then we are as well, unless we are
1708 * going offline.
1709 */
1710 if (pvd != NULL && pvd->vdev_reopening)
1711 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1712
1713 vd->vdev_ops->vdev_op_close(vd);
1714
1715 vdev_cache_purge(vd);
1716
1717 /*
1718 * We record the previous state before we close it, so that if we are
1719 * doing a reopen(), we don't generate FMA ereports if we notice that
1720 * it's still faulted.
1721 */
1722 vd->vdev_prevstate = vd->vdev_state;
1723
1724 if (vd->vdev_offline)
1725 vd->vdev_state = VDEV_STATE_OFFLINE;
1726 else
1727 vd->vdev_state = VDEV_STATE_CLOSED;
1728 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1729 }
1730
1731 void
1732 vdev_hold(vdev_t *vd)
1733 {
1734 spa_t *spa = vd->vdev_spa;
1735
1736 ASSERT(spa_is_root(spa));
1737 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1738 return;
1739
1740 for (int c = 0; c < vd->vdev_children; c++)
1741 vdev_hold(vd->vdev_child[c]);
1742
1743 if (vd->vdev_ops->vdev_op_leaf)
1744 vd->vdev_ops->vdev_op_hold(vd);
1745 }
1746
1747 void
1748 vdev_rele(vdev_t *vd)
1749 {
1750 ASSERT(spa_is_root(vd->vdev_spa));
1751 for (int c = 0; c < vd->vdev_children; c++)
1752 vdev_rele(vd->vdev_child[c]);
1753
1754 if (vd->vdev_ops->vdev_op_leaf)
1755 vd->vdev_ops->vdev_op_rele(vd);
1756 }
1757
1758 /*
1759 * Reopen all interior vdevs and any unopened leaves. We don't actually
1760 * reopen leaf vdevs which had previously been opened as they might deadlock
1761 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1762 * If the leaf has never been opened then open it, as usual.
1763 */
1764 void
1765 vdev_reopen(vdev_t *vd)
1766 {
1767 spa_t *spa = vd->vdev_spa;
1768
1769 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1770
1771 /* set the reopening flag unless we're taking the vdev offline */
1772 vd->vdev_reopening = !vd->vdev_offline;
1773 vdev_close(vd);
1774 (void) vdev_open(vd);
1775
1776 /*
1777 * Call vdev_validate() here to make sure we have the same device.
1778 * Otherwise, a device with an invalid label could be successfully
1779 * opened in response to vdev_reopen().
1780 */
1781 if (vd->vdev_aux) {
1782 (void) vdev_validate_aux(vd);
1783 if (vdev_readable(vd) && vdev_writeable(vd) &&
1784 vd->vdev_aux == &spa->spa_l2cache &&
1785 !l2arc_vdev_present(vd))
1786 l2arc_add_vdev(spa, vd);
1787 } else {
1788 (void) vdev_validate(vd, B_TRUE);
1789 }
1790
1791 /*
1792 * Reassess parent vdev's health.
1793 */
1794 vdev_propagate_state(vd);
1795 }
1796
1797 int
1798 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1799 {
1800 int error;
1801
1802 /*
1803 * Normally, partial opens (e.g. of a mirror) are allowed.
1804 * For a create, however, we want to fail the request if
1805 * there are any components we can't open.
1806 */
1807 error = vdev_open(vd);
1808
1809 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1810 vdev_close(vd);
1811 return (error ? error : ENXIO);
1812 }
1813
1814 /*
1815 * Recursively load DTLs and initialize all labels.
1816 */
1817 if ((error = vdev_dtl_load(vd)) != 0 ||
1818 (error = vdev_label_init(vd, txg, isreplacing ?
1819 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1820 vdev_close(vd);
1821 return (error);
1822 }
1823
1824 return (0);
1825 }
1826
1827 void
1828 vdev_metaslab_set_size(vdev_t *vd)
1829 {
1830 /*
1831 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1832 */
1833 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1834 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1835 }
1836
1837 void
1838 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1839 {
1840 ASSERT(vd == vd->vdev_top);
1841 /* indirect vdevs don't have metaslabs or dtls */
1842 ASSERT(vdev_is_concrete(vd) || flags == 0);
1843 ASSERT(ISP2(flags));
1844 ASSERT(spa_writeable(vd->vdev_spa));
1845
1846 if (flags & VDD_METASLAB)
1847 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1848
1849 if (flags & VDD_DTL)
1850 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1851
1852 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1853 }
1854
1855 void
1856 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1857 {
1858 for (int c = 0; c < vd->vdev_children; c++)
1859 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1860
1861 if (vd->vdev_ops->vdev_op_leaf)
1862 vdev_dirty(vd->vdev_top, flags, vd, txg);
1863 }
1864
1865 /*
1866 * DTLs.
1867 *
1868 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1869 * the vdev has less than perfect replication. There are four kinds of DTL:
1870 *
1871 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1872 *
1873 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1874 *
1875 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1876 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1877 * txgs that was scrubbed.
1878 *
1879 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1880 * persistent errors or just some device being offline.
1881 * Unlike the other three, the DTL_OUTAGE map is not generally
1882 * maintained; it's only computed when needed, typically to
1883 * determine whether a device can be detached.
1884 *
1885 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1886 * either has the data or it doesn't.
1887 *
1888 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1889 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1890 * if any child is less than fully replicated, then so is its parent.
1891 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1892 * comprising only those txgs which appear in 'maxfaults' or more children;
1893 * those are the txgs we don't have enough replication to read. For example,
1894 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1895 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1896 * two child DTL_MISSING maps.
1897 *
1898 * It should be clear from the above that to compute the DTLs and outage maps
1899 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1900 * Therefore, that is all we keep on disk. When loading the pool, or after
1901 * a configuration change, we generate all other DTLs from first principles.
1902 */
1903 void
1904 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1905 {
1906 range_tree_t *rt = vd->vdev_dtl[t];
1907
1908 ASSERT(t < DTL_TYPES);
1909 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1910 ASSERT(spa_writeable(vd->vdev_spa));
1911
1912 mutex_enter(&vd->vdev_dtl_lock);
1913 if (!range_tree_contains(rt, txg, size))
1914 range_tree_add(rt, txg, size);
1915 mutex_exit(&vd->vdev_dtl_lock);
1916 }
1917
1918 boolean_t
1919 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1920 {
1921 range_tree_t *rt = vd->vdev_dtl[t];
1922 boolean_t dirty = B_FALSE;
1923
1924 ASSERT(t < DTL_TYPES);
1925 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1926
1927 /*
1928 * While we are loading the pool, the DTLs have not been loaded yet.
1929 * Ignore the DTLs and try all devices. This avoids a recursive
1930 * mutex enter on the vdev_dtl_lock, and also makes us try hard
1931 * when loading the pool (relying on the checksum to ensure that
1932 * we get the right data -- note that we while loading, we are
1933 * only reading the MOS, which is always checksummed).
1934 */
1935 if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
1936 return (B_FALSE);
1937
1938 mutex_enter(&vd->vdev_dtl_lock);
1939 if (range_tree_space(rt) != 0)
1940 dirty = range_tree_contains(rt, txg, size);
1941 mutex_exit(&vd->vdev_dtl_lock);
1942
1943 return (dirty);
1944 }
1945
1946 boolean_t
1947 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1948 {
1949 range_tree_t *rt = vd->vdev_dtl[t];
1950 boolean_t empty;
1951
1952 mutex_enter(&vd->vdev_dtl_lock);
1953 empty = (range_tree_space(rt) == 0);
1954 mutex_exit(&vd->vdev_dtl_lock);
1955
1956 return (empty);
1957 }
1958
1959 /*
1960 * Returns B_TRUE if vdev determines offset needs to be resilvered.
1961 */
1962 boolean_t
1963 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
1964 {
1965 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1966
1967 if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
1968 vd->vdev_ops->vdev_op_leaf)
1969 return (B_TRUE);
1970
1971 return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
1972 }
1973
1974 /*
1975 * Returns the lowest txg in the DTL range.
1976 */
1977 static uint64_t
1978 vdev_dtl_min(vdev_t *vd)
1979 {
1980 range_seg_t *rs;
1981
1982 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1983 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1984 ASSERT0(vd->vdev_children);
1985
1986 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1987 return (rs->rs_start - 1);
1988 }
1989
1990 /*
1991 * Returns the highest txg in the DTL.
1992 */
1993 static uint64_t
1994 vdev_dtl_max(vdev_t *vd)
1995 {
1996 range_seg_t *rs;
1997
1998 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1999 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2000 ASSERT0(vd->vdev_children);
2001
2002 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2003 return (rs->rs_end);
2004 }
2005
2006 /*
2007 * Determine if a resilvering vdev should remove any DTL entries from
2008 * its range. If the vdev was resilvering for the entire duration of the
2009 * scan then it should excise that range from its DTLs. Otherwise, this
2010 * vdev is considered partially resilvered and should leave its DTL
2011 * entries intact. The comment in vdev_dtl_reassess() describes how we
2012 * excise the DTLs.
2013 */
2014 static boolean_t
2015 vdev_dtl_should_excise(vdev_t *vd)
2016 {
2017 spa_t *spa = vd->vdev_spa;
2018 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2019
2020 ASSERT0(scn->scn_phys.scn_errors);
2021 ASSERT0(vd->vdev_children);
2022
2023 if (vd->vdev_state < VDEV_STATE_DEGRADED)
2024 return (B_FALSE);
2025
2026 if (vd->vdev_resilver_txg == 0 ||
2027 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
2028 return (B_TRUE);
2029
2030 /*
2031 * When a resilver is initiated the scan will assign the scn_max_txg
2032 * value to the highest txg value that exists in all DTLs. If this
2033 * device's max DTL is not part of this scan (i.e. it is not in
2034 * the range (scn_min_txg, scn_max_txg] then it is not eligible
2035 * for excision.
2036 */
2037 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2038 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2039 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2040 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2041 return (B_TRUE);
2042 }
2043 return (B_FALSE);
2044 }
2045
2046 /*
2047 * Reassess DTLs after a config change or scrub completion.
2048 */
2049 void
2050 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2051 {
2052 spa_t *spa = vd->vdev_spa;
2053 avl_tree_t reftree;
2054 int minref;
2055
2056 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2057
2058 for (int c = 0; c < vd->vdev_children; c++)
2059 vdev_dtl_reassess(vd->vdev_child[c], txg,
2060 scrub_txg, scrub_done);
2061
2062 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2063 return;
2064
2065 if (vd->vdev_ops->vdev_op_leaf) {
2066 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2067
2068 mutex_enter(&vd->vdev_dtl_lock);
2069
2070 /*
2071 * If requested, pretend the scan completed cleanly.
2072 */
2073 if (zfs_scan_ignore_errors && scn)
2074 scn->scn_phys.scn_errors = 0;
2075
2076 /*
2077 * If we've completed a scan cleanly then determine
2078 * if this vdev should remove any DTLs. We only want to
2079 * excise regions on vdevs that were available during
2080 * the entire duration of this scan.
2081 */
2082 if (scrub_txg != 0 &&
2083 (spa->spa_scrub_started ||
2084 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2085 vdev_dtl_should_excise(vd)) {
2086 /*
2087 * We completed a scrub up to scrub_txg. If we
2088 * did it without rebooting, then the scrub dtl
2089 * will be valid, so excise the old region and
2090 * fold in the scrub dtl. Otherwise, leave the
2091 * dtl as-is if there was an error.
2092 *
2093 * There's little trick here: to excise the beginning
2094 * of the DTL_MISSING map, we put it into a reference
2095 * tree and then add a segment with refcnt -1 that
2096 * covers the range [0, scrub_txg). This means
2097 * that each txg in that range has refcnt -1 or 0.
2098 * We then add DTL_SCRUB with a refcnt of 2, so that
2099 * entries in the range [0, scrub_txg) will have a
2100 * positive refcnt -- either 1 or 2. We then convert
2101 * the reference tree into the new DTL_MISSING map.
2102 */
2103 space_reftree_create(&reftree);
2104 space_reftree_add_map(&reftree,
2105 vd->vdev_dtl[DTL_MISSING], 1);
2106 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2107 space_reftree_add_map(&reftree,
2108 vd->vdev_dtl[DTL_SCRUB], 2);
2109 space_reftree_generate_map(&reftree,
2110 vd->vdev_dtl[DTL_MISSING], 1);
2111 space_reftree_destroy(&reftree);
2112 }
2113 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2114 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2115 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2116 if (scrub_done)
2117 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2118 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2119 if (!vdev_readable(vd))
2120 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2121 else
2122 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2123 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2124
2125 /*
2126 * If the vdev was resilvering and no longer has any
2127 * DTLs then reset its resilvering flag and dirty
2128 * the top level so that we persist the change.
2129 */
2130 if (vd->vdev_resilver_txg != 0 &&
2131 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
2132 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
2133 vd->vdev_resilver_txg = 0;
2134 vdev_config_dirty(vd->vdev_top);
2135 }
2136
2137 mutex_exit(&vd->vdev_dtl_lock);
2138
2139 if (txg != 0)
2140 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2141 return;
2142 }
2143
2144 mutex_enter(&vd->vdev_dtl_lock);
2145 for (int t = 0; t < DTL_TYPES; t++) {
2146 /* account for child's outage in parent's missing map */
2147 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2148 if (t == DTL_SCRUB)
2149 continue; /* leaf vdevs only */
2150 if (t == DTL_PARTIAL)
2151 minref = 1; /* i.e. non-zero */
2152 else if (vd->vdev_nparity != 0)
2153 minref = vd->vdev_nparity + 1; /* RAID-Z */
2154 else
2155 minref = vd->vdev_children; /* any kind of mirror */
2156 space_reftree_create(&reftree);
2157 for (int c = 0; c < vd->vdev_children; c++) {
2158 vdev_t *cvd = vd->vdev_child[c];
2159 mutex_enter(&cvd->vdev_dtl_lock);
2160 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2161 mutex_exit(&cvd->vdev_dtl_lock);
2162 }
2163 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2164 space_reftree_destroy(&reftree);
2165 }
2166 mutex_exit(&vd->vdev_dtl_lock);
2167 }
2168
2169 int
2170 vdev_dtl_load(vdev_t *vd)
2171 {
2172 spa_t *spa = vd->vdev_spa;
2173 objset_t *mos = spa->spa_meta_objset;
2174 int error = 0;
2175
2176 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2177 ASSERT(vdev_is_concrete(vd));
2178
2179 error = space_map_open(&vd->vdev_dtl_sm, mos,
2180 vd->vdev_dtl_object, 0, -1ULL, 0);
2181 if (error)
2182 return (error);
2183 ASSERT(vd->vdev_dtl_sm != NULL);
2184
2185 mutex_enter(&vd->vdev_dtl_lock);
2186
2187 /*
2188 * Now that we've opened the space_map we need to update
2189 * the in-core DTL.
2190 */
2191 space_map_update(vd->vdev_dtl_sm);
2192
2193 error = space_map_load(vd->vdev_dtl_sm,
2194 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2195 mutex_exit(&vd->vdev_dtl_lock);
2196
2197 return (error);
2198 }
2199
2200 for (int c = 0; c < vd->vdev_children; c++) {
2201 error = vdev_dtl_load(vd->vdev_child[c]);
2202 if (error != 0)
2203 break;
2204 }
2205
2206 return (error);
2207 }
2208
2209 void
2210 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2211 {
2212 spa_t *spa = vd->vdev_spa;
2213
2214 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2215 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2216 zapobj, tx));
2217 }
2218
2219 uint64_t
2220 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2221 {
2222 spa_t *spa = vd->vdev_spa;
2223 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2224 DMU_OT_NONE, 0, tx);
2225
2226 ASSERT(zap != 0);
2227 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2228 zap, tx));
2229
2230 return (zap);
2231 }
2232
2233 void
2234 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2235 {
2236 if (vd->vdev_ops != &vdev_hole_ops &&
2237 vd->vdev_ops != &vdev_missing_ops &&
2238 vd->vdev_ops != &vdev_root_ops &&
2239 !vd->vdev_top->vdev_removing) {
2240 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2241 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2242 }
2243 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2244 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2245 }
2246 }
2247 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2248 vdev_construct_zaps(vd->vdev_child[i], tx);
2249 }
2250 }
2251
2252 void
2253 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2254 {
2255 spa_t *spa = vd->vdev_spa;
2256 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2257 objset_t *mos = spa->spa_meta_objset;
2258 range_tree_t *rtsync;
2259 dmu_tx_t *tx;
2260 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2261
2262 ASSERT(vdev_is_concrete(vd));
2263 ASSERT(vd->vdev_ops->vdev_op_leaf);
2264
2265 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2266
2267 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2268 mutex_enter(&vd->vdev_dtl_lock);
2269 space_map_free(vd->vdev_dtl_sm, tx);
2270 space_map_close(vd->vdev_dtl_sm);
2271 vd->vdev_dtl_sm = NULL;
2272 mutex_exit(&vd->vdev_dtl_lock);
2273
2274 /*
2275 * We only destroy the leaf ZAP for detached leaves or for
2276 * removed log devices. Removed data devices handle leaf ZAP
2277 * cleanup later, once cancellation is no longer possible.
2278 */
2279 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2280 vd->vdev_top->vdev_islog)) {
2281 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2282 vd->vdev_leaf_zap = 0;
2283 }
2284
2285 dmu_tx_commit(tx);
2286 return;
2287 }
2288
2289 if (vd->vdev_dtl_sm == NULL) {
2290 uint64_t new_object;
2291
2292 new_object = space_map_alloc(mos, tx);
2293 VERIFY3U(new_object, !=, 0);
2294
2295 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2296 0, -1ULL, 0));
2297 ASSERT(vd->vdev_dtl_sm != NULL);
2298 }
2299
2300 rtsync = range_tree_create(NULL, NULL);
2301
2302 mutex_enter(&vd->vdev_dtl_lock);
2303 range_tree_walk(rt, range_tree_add, rtsync);
2304 mutex_exit(&vd->vdev_dtl_lock);
2305
2306 space_map_truncate(vd->vdev_dtl_sm, tx);
2307 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2308 range_tree_vacate(rtsync, NULL, NULL);
2309
2310 range_tree_destroy(rtsync);
2311
2312 /*
2313 * If the object for the space map has changed then dirty
2314 * the top level so that we update the config.
2315 */
2316 if (object != space_map_object(vd->vdev_dtl_sm)) {
2317 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2318 "new object %llu", txg, spa_name(spa), object,
2319 space_map_object(vd->vdev_dtl_sm));
2320 vdev_config_dirty(vd->vdev_top);
2321 }
2322
2323 dmu_tx_commit(tx);
2324
2325 mutex_enter(&vd->vdev_dtl_lock);
2326 space_map_update(vd->vdev_dtl_sm);
2327 mutex_exit(&vd->vdev_dtl_lock);
2328 }
2329
2330 /*
2331 * Determine whether the specified vdev can be offlined/detached/removed
2332 * without losing data.
2333 */
2334 boolean_t
2335 vdev_dtl_required(vdev_t *vd)
2336 {
2337 spa_t *spa = vd->vdev_spa;
2338 vdev_t *tvd = vd->vdev_top;
2339 uint8_t cant_read = vd->vdev_cant_read;
2340 boolean_t required;
2341
2342 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2343
2344 if (vd == spa->spa_root_vdev || vd == tvd)
2345 return (B_TRUE);
2346
2347 /*
2348 * Temporarily mark the device as unreadable, and then determine
2349 * whether this results in any DTL outages in the top-level vdev.
2350 * If not, we can safely offline/detach/remove the device.
2351 */
2352 vd->vdev_cant_read = B_TRUE;
2353 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2354 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2355 vd->vdev_cant_read = cant_read;
2356 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2357
2358 if (!required && zio_injection_enabled)
2359 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2360
2361 return (required);
2362 }
2363
2364 /*
2365 * Determine if resilver is needed, and if so the txg range.
2366 */
2367 boolean_t
2368 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2369 {
2370 boolean_t needed = B_FALSE;
2371 uint64_t thismin = UINT64_MAX;
2372 uint64_t thismax = 0;
2373
2374 if (vd->vdev_children == 0) {
2375 mutex_enter(&vd->vdev_dtl_lock);
2376 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2377 vdev_writeable(vd)) {
2378
2379 thismin = vdev_dtl_min(vd);
2380 thismax = vdev_dtl_max(vd);
2381 needed = B_TRUE;
2382 }
2383 mutex_exit(&vd->vdev_dtl_lock);
2384 } else {
2385 for (int c = 0; c < vd->vdev_children; c++) {
2386 vdev_t *cvd = vd->vdev_child[c];
2387 uint64_t cmin, cmax;
2388
2389 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2390 thismin = MIN(thismin, cmin);
2391 thismax = MAX(thismax, cmax);
2392 needed = B_TRUE;
2393 }
2394 }
2395 }
2396
2397 if (needed && minp) {
2398 *minp = thismin;
2399 *maxp = thismax;
2400 }
2401 return (needed);
2402 }
2403
2404 int
2405 vdev_load(vdev_t *vd)
2406 {
2407 int error = 0;
2408
2409 /*
2410 * Recursively load all children.
2411 */
2412 for (int c = 0; c < vd->vdev_children; c++) {
2413 error = vdev_load(vd->vdev_child[c]);
2414 if (error != 0) {
2415 return (error);
2416 }
2417 }
2418
2419 vdev_set_deflate_ratio(vd);
2420
2421 /*
2422 * If this is a top-level vdev, initialize its metaslabs.
2423 */
2424 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2425 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2426 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2427 VDEV_AUX_CORRUPT_DATA);
2428 return (SET_ERROR(ENXIO));
2429 } else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2430 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2431 VDEV_AUX_CORRUPT_DATA);
2432 return (error);
2433 }
2434 }
2435
2436 /*
2437 * If this is a leaf vdev, load its DTL.
2438 */
2439 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2440 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2441 VDEV_AUX_CORRUPT_DATA);
2442 return (error);
2443 }
2444
2445 uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2446 if (obsolete_sm_object != 0) {
2447 objset_t *mos = vd->vdev_spa->spa_meta_objset;
2448 ASSERT(vd->vdev_asize != 0);
2449 ASSERT(vd->vdev_obsolete_sm == NULL);
2450
2451 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2452 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2453 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2454 VDEV_AUX_CORRUPT_DATA);
2455 return (error);
2456 }
2457 space_map_update(vd->vdev_obsolete_sm);
2458 }
2459
2460 return (0);
2461 }
2462
2463 /*
2464 * The special vdev case is used for hot spares and l2cache devices. Its
2465 * sole purpose it to set the vdev state for the associated vdev. To do this,
2466 * we make sure that we can open the underlying device, then try to read the
2467 * label, and make sure that the label is sane and that it hasn't been
2468 * repurposed to another pool.
2469 */
2470 int
2471 vdev_validate_aux(vdev_t *vd)
2472 {
2473 nvlist_t *label;
2474 uint64_t guid, version;
2475 uint64_t state;
2476
2477 if (!vdev_readable(vd))
2478 return (0);
2479
2480 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2481 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2482 VDEV_AUX_CORRUPT_DATA);
2483 return (-1);
2484 }
2485
2486 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2487 !SPA_VERSION_IS_SUPPORTED(version) ||
2488 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2489 guid != vd->vdev_guid ||
2490 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2491 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2492 VDEV_AUX_CORRUPT_DATA);
2493 nvlist_free(label);
2494 return (-1);
2495 }
2496
2497 /*
2498 * We don't actually check the pool state here. If it's in fact in
2499 * use by another pool, we update this fact on the fly when requested.
2500 */
2501 nvlist_free(label);
2502 return (0);
2503 }
2504
2505 /*
2506 * Free the objects used to store this vdev's spacemaps, and the array
2507 * that points to them.
2508 */
2509 void
2510 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
2511 {
2512 if (vd->vdev_ms_array == 0)
2513 return;
2514
2515 objset_t *mos = vd->vdev_spa->spa_meta_objset;
2516 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
2517 size_t array_bytes = array_count * sizeof (uint64_t);
2518 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
2519 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
2520 array_bytes, smobj_array, 0));
2521
2522 for (uint64_t i = 0; i < array_count; i++) {
2523 uint64_t smobj = smobj_array[i];
2524 if (smobj == 0)
2525 continue;
2526
2527 space_map_free_obj(mos, smobj, tx);
2528 }
2529
2530 kmem_free(smobj_array, array_bytes);
2531 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
2532 vd->vdev_ms_array = 0;
2533 }
2534
2535 static void
2536 vdev_remove_empty(vdev_t *vd, uint64_t txg)
2537 {
2538 spa_t *spa = vd->vdev_spa;
2539 dmu_tx_t *tx;
2540
2541 ASSERT(vd == vd->vdev_top);
2542 ASSERT3U(txg, ==, spa_syncing_txg(spa));
2543
2544 if (vd->vdev_ms != NULL) {
2545 metaslab_group_t *mg = vd->vdev_mg;
2546
2547 metaslab_group_histogram_verify(mg);
2548 metaslab_class_histogram_verify(mg->mg_class);
2549
2550 for (int m = 0; m < vd->vdev_ms_count; m++) {
2551 metaslab_t *msp = vd->vdev_ms[m];
2552
2553 if (msp == NULL || msp->ms_sm == NULL)
2554 continue;
2555
2556 mutex_enter(&msp->ms_lock);
2557 /*
2558 * If the metaslab was not loaded when the vdev
2559 * was removed then the histogram accounting may
2560 * not be accurate. Update the histogram information
2561 * here so that we ensure that the metaslab group
2562 * and metaslab class are up-to-date.
2563 */
2564 metaslab_group_histogram_remove(mg, msp);
2565
2566 VERIFY0(space_map_allocated(msp->ms_sm));
2567 space_map_close(msp->ms_sm);
2568 msp->ms_sm = NULL;
2569 mutex_exit(&msp->ms_lock);
2570 }
2571
2572 metaslab_group_histogram_verify(mg);
2573 metaslab_class_histogram_verify(mg->mg_class);
2574 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2575 ASSERT0(mg->mg_histogram[i]);
2576 }
2577
2578 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2579 vdev_destroy_spacemaps(vd, tx);
2580
2581 if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2582 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2583 vd->vdev_top_zap = 0;
2584 }
2585 dmu_tx_commit(tx);
2586 }
2587
2588 void
2589 vdev_sync_done(vdev_t *vd, uint64_t txg)
2590 {
2591 metaslab_t *msp;
2592 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2593
2594 ASSERT(vdev_is_concrete(vd));
2595
2596 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2597 metaslab_sync_done(msp, txg);
2598
2599 if (reassess)
2600 metaslab_sync_reassess(vd->vdev_mg);
2601 }
2602
2603 void
2604 vdev_sync(vdev_t *vd, uint64_t txg)
2605 {
2606 spa_t *spa = vd->vdev_spa;
2607 vdev_t *lvd;
2608 metaslab_t *msp;
2609 dmu_tx_t *tx;
2610
2611 if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
2612 dmu_tx_t *tx;
2613
2614 ASSERT(vd->vdev_removing ||
2615 vd->vdev_ops == &vdev_indirect_ops);
2616
2617 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2618 vdev_indirect_sync_obsolete(vd, tx);
2619 dmu_tx_commit(tx);
2620
2621 /*
2622 * If the vdev is indirect, it can't have dirty
2623 * metaslabs or DTLs.
2624 */
2625 if (vd->vdev_ops == &vdev_indirect_ops) {
2626 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
2627 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
2628 return;
2629 }
2630 }
2631
2632 ASSERT(vdev_is_concrete(vd));
2633
2634 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
2635 !vd->vdev_removing) {
2636 ASSERT(vd == vd->vdev_top);
2637 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
2638 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2639 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2640 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2641 ASSERT(vd->vdev_ms_array != 0);
2642 vdev_config_dirty(vd);
2643 dmu_tx_commit(tx);
2644 }
2645
2646 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2647 metaslab_sync(msp, txg);
2648 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2649 }
2650
2651 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2652 vdev_dtl_sync(lvd, txg);
2653
2654 /*
2655 * Remove the metadata associated with this vdev once it's empty.
2656 * Note that this is typically used for log/cache device removal;
2657 * we don't empty toplevel vdevs when removing them. But if
2658 * a toplevel happens to be emptied, this is not harmful.
2659 */
2660 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) {
2661 vdev_remove_empty(vd, txg);
2662 }
2663
2664 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2665 }
2666
2667 uint64_t
2668 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2669 {
2670 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2671 }
2672
2673 /*
2674 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2675 * not be opened, and no I/O is attempted.
2676 */
2677 int
2678 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2679 {
2680 vdev_t *vd, *tvd;
2681
2682 spa_vdev_state_enter(spa, SCL_NONE);
2683
2684 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2685 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2686
2687 if (!vd->vdev_ops->vdev_op_leaf)
2688 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2689
2690 tvd = vd->vdev_top;
2691
2692 /*
2693 * If user did a 'zpool offline -f' then make the fault persist across
2694 * reboots.
2695 */
2696 if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
2697 /*
2698 * There are two kinds of forced faults: temporary and
2699 * persistent. Temporary faults go away at pool import, while
2700 * persistent faults stay set. Both types of faults can be
2701 * cleared with a zpool clear.
2702 *
2703 * We tell if a vdev is persistently faulted by looking at the
2704 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
2705 * import then it's a persistent fault. Otherwise, it's
2706 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
2707 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
2708 * tells vdev_config_generate() (which gets run later) to set
2709 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
2710 */
2711 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
2712 vd->vdev_tmpoffline = B_FALSE;
2713 aux = VDEV_AUX_EXTERNAL;
2714 } else {
2715 vd->vdev_tmpoffline = B_TRUE;
2716 }
2717
2718 /*
2719 * We don't directly use the aux state here, but if we do a
2720 * vdev_reopen(), we need this value to be present to remember why we
2721 * were faulted.
2722 */
2723 vd->vdev_label_aux = aux;
2724
2725 /*
2726 * Faulted state takes precedence over degraded.
2727 */
2728 vd->vdev_delayed_close = B_FALSE;
2729 vd->vdev_faulted = 1ULL;
2730 vd->vdev_degraded = 0ULL;
2731 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2732
2733 /*
2734 * If this device has the only valid copy of the data, then
2735 * back off and simply mark the vdev as degraded instead.
2736 */
2737 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2738 vd->vdev_degraded = 1ULL;
2739 vd->vdev_faulted = 0ULL;
2740
2741 /*
2742 * If we reopen the device and it's not dead, only then do we
2743 * mark it degraded.
2744 */
2745 vdev_reopen(tvd);
2746
2747 if (vdev_readable(vd))
2748 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2749 }
2750
2751 return (spa_vdev_state_exit(spa, vd, 0));
2752 }
2753
2754 /*
2755 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2756 * user that something is wrong. The vdev continues to operate as normal as far
2757 * as I/O is concerned.
2758 */
2759 int
2760 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2761 {
2762 vdev_t *vd;
2763
2764 spa_vdev_state_enter(spa, SCL_NONE);
2765
2766 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2767 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2768
2769 if (!vd->vdev_ops->vdev_op_leaf)
2770 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2771
2772 /*
2773 * If the vdev is already faulted, then don't do anything.
2774 */
2775 if (vd->vdev_faulted || vd->vdev_degraded)
2776 return (spa_vdev_state_exit(spa, NULL, 0));
2777
2778 vd->vdev_degraded = 1ULL;
2779 if (!vdev_is_dead(vd))
2780 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2781 aux);
2782
2783 return (spa_vdev_state_exit(spa, vd, 0));
2784 }
2785
2786 /*
2787 * Online the given vdev.
2788 *
2789 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2790 * spare device should be detached when the device finishes resilvering.
2791 * Second, the online should be treated like a 'test' online case, so no FMA
2792 * events are generated if the device fails to open.
2793 */
2794 int
2795 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2796 {
2797 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2798 boolean_t wasoffline;
2799 vdev_state_t oldstate;
2800
2801 spa_vdev_state_enter(spa, SCL_NONE);
2802
2803 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2804 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2805
2806 if (!vd->vdev_ops->vdev_op_leaf)
2807 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2808
2809 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
2810 oldstate = vd->vdev_state;
2811
2812 tvd = vd->vdev_top;
2813 vd->vdev_offline = B_FALSE;
2814 vd->vdev_tmpoffline = B_FALSE;
2815 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2816 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2817
2818 /* XXX - L2ARC 1.0 does not support expansion */
2819 if (!vd->vdev_aux) {
2820 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2821 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2822 }
2823
2824 vdev_reopen(tvd);
2825 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2826
2827 if (!vd->vdev_aux) {
2828 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2829 pvd->vdev_expanding = B_FALSE;
2830 }
2831
2832 if (newstate)
2833 *newstate = vd->vdev_state;
2834 if ((flags & ZFS_ONLINE_UNSPARE) &&
2835 !vdev_is_dead(vd) && vd->vdev_parent &&
2836 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2837 vd->vdev_parent->vdev_child[0] == vd)
2838 vd->vdev_unspare = B_TRUE;
2839
2840 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2841
2842 /* XXX - L2ARC 1.0 does not support expansion */
2843 if (vd->vdev_aux)
2844 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2845 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2846 }
2847
2848 if (wasoffline ||
2849 (oldstate < VDEV_STATE_DEGRADED &&
2850 vd->vdev_state >= VDEV_STATE_DEGRADED))
2851 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
2852
2853 return (spa_vdev_state_exit(spa, vd, 0));
2854 }
2855
2856 static int
2857 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2858 {
2859 vdev_t *vd, *tvd;
2860 int error = 0;
2861 uint64_t generation;
2862 metaslab_group_t *mg;
2863
2864 top:
2865 spa_vdev_state_enter(spa, SCL_ALLOC);
2866
2867 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2868 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2869
2870 if (!vd->vdev_ops->vdev_op_leaf)
2871 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2872
2873 tvd = vd->vdev_top;
2874 mg = tvd->vdev_mg;
2875 generation = spa->spa_config_generation + 1;
2876
2877 /*
2878 * If the device isn't already offline, try to offline it.
2879 */
2880 if (!vd->vdev_offline) {
2881 /*
2882 * If this device has the only valid copy of some data,
2883 * don't allow it to be offlined. Log devices are always
2884 * expendable.
2885 */
2886 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2887 vdev_dtl_required(vd))
2888 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2889
2890 /*
2891 * If the top-level is a slog and it has had allocations
2892 * then proceed. We check that the vdev's metaslab group
2893 * is not NULL since it's possible that we may have just
2894 * added this vdev but not yet initialized its metaslabs.
2895 */
2896 if (tvd->vdev_islog && mg != NULL) {
2897 /*
2898 * Prevent any future allocations.
2899 */
2900 metaslab_group_passivate(mg);
2901 (void) spa_vdev_state_exit(spa, vd, 0);
2902
2903 error = spa_reset_logs(spa);
2904
2905 spa_vdev_state_enter(spa, SCL_ALLOC);
2906
2907 /*
2908 * Check to see if the config has changed.
2909 */
2910 if (error || generation != spa->spa_config_generation) {
2911 metaslab_group_activate(mg);
2912 if (error)
2913 return (spa_vdev_state_exit(spa,
2914 vd, error));
2915 (void) spa_vdev_state_exit(spa, vd, 0);
2916 goto top;
2917 }
2918 ASSERT0(tvd->vdev_stat.vs_alloc);
2919 }
2920
2921 /*
2922 * Offline this device and reopen its top-level vdev.
2923 * If the top-level vdev is a log device then just offline
2924 * it. Otherwise, if this action results in the top-level
2925 * vdev becoming unusable, undo it and fail the request.
2926 */
2927 vd->vdev_offline = B_TRUE;
2928 vdev_reopen(tvd);
2929
2930 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2931 vdev_is_dead(tvd)) {
2932 vd->vdev_offline = B_FALSE;
2933 vdev_reopen(tvd);
2934 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2935 }
2936
2937 /*
2938 * Add the device back into the metaslab rotor so that
2939 * once we online the device it's open for business.
2940 */
2941 if (tvd->vdev_islog && mg != NULL)
2942 metaslab_group_activate(mg);
2943 }
2944
2945 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2946
2947 return (spa_vdev_state_exit(spa, vd, 0));
2948 }
2949
2950 int
2951 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2952 {
2953 int error;
2954
2955 mutex_enter(&spa->spa_vdev_top_lock);
2956 error = vdev_offline_locked(spa, guid, flags);
2957 mutex_exit(&spa->spa_vdev_top_lock);
2958
2959 return (error);
2960 }
2961
2962 /*
2963 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2964 * vdev_offline(), we assume the spa config is locked. We also clear all
2965 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2966 */
2967 void
2968 vdev_clear(spa_t *spa, vdev_t *vd)
2969 {
2970 vdev_t *rvd = spa->spa_root_vdev;
2971
2972 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2973
2974 if (vd == NULL)
2975 vd = rvd;
2976
2977 vd->vdev_stat.vs_read_errors = 0;
2978 vd->vdev_stat.vs_write_errors = 0;
2979 vd->vdev_stat.vs_checksum_errors = 0;
2980
2981 for (int c = 0; c < vd->vdev_children; c++)
2982 vdev_clear(spa, vd->vdev_child[c]);
2983
2984 /*
2985 * It makes no sense to "clear" an indirect vdev.
2986 */
2987 if (!vdev_is_concrete(vd))
2988 return;
2989
2990 /*
2991 * If we're in the FAULTED state or have experienced failed I/O, then
2992 * clear the persistent state and attempt to reopen the device. We
2993 * also mark the vdev config dirty, so that the new faulted state is
2994 * written out to disk.
2995 */
2996 if (vd->vdev_faulted || vd->vdev_degraded ||
2997 !vdev_readable(vd) || !vdev_writeable(vd)) {
2998 /*
2999 * When reopening in response to a clear event, it may be due to
3000 * a fmadm repair request. In this case, if the device is
3001 * still broken, we want to still post the ereport again.
3002 */
3003 vd->vdev_forcefault = B_TRUE;
3004
3005 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3006 vd->vdev_cant_read = B_FALSE;
3007 vd->vdev_cant_write = B_FALSE;
3008 vd->vdev_stat.vs_aux = 0;
3009
3010 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3011
3012 vd->vdev_forcefault = B_FALSE;
3013
3014 if (vd != rvd && vdev_writeable(vd->vdev_top))
3015 vdev_state_dirty(vd->vdev_top);
3016
3017 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
3018 spa_async_request(spa, SPA_ASYNC_RESILVER);
3019
3020 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3021 }
3022
3023 /*
3024 * When clearing a FMA-diagnosed fault, we always want to
3025 * unspare the device, as we assume that the original spare was
3026 * done in response to the FMA fault.
3027 */
3028 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3029 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3030 vd->vdev_parent->vdev_child[0] == vd)
3031 vd->vdev_unspare = B_TRUE;
3032 }
3033
3034 boolean_t
3035 vdev_is_dead(vdev_t *vd)
3036 {
3037 /*
3038 * Holes and missing devices are always considered "dead".
3039 * This simplifies the code since we don't have to check for
3040 * these types of devices in the various code paths.
3041 * Instead we rely on the fact that we skip over dead devices
3042 * before issuing I/O to them.
3043 */
3044 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3045 vd->vdev_ops == &vdev_hole_ops ||
3046 vd->vdev_ops == &vdev_missing_ops);
3047 }
3048
3049 boolean_t
3050 vdev_readable(vdev_t *vd)
3051 {
3052 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3053 }
3054
3055 boolean_t
3056 vdev_writeable(vdev_t *vd)
3057 {
3058 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3059 vdev_is_concrete(vd));
3060 }
3061
3062 boolean_t
3063 vdev_allocatable(vdev_t *vd)
3064 {
3065 uint64_t state = vd->vdev_state;
3066
3067 /*
3068 * We currently allow allocations from vdevs which may be in the
3069 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3070 * fails to reopen then we'll catch it later when we're holding
3071 * the proper locks. Note that we have to get the vdev state
3072 * in a local variable because although it changes atomically,
3073 * we're asking two separate questions about it.
3074 */
3075 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3076 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3077 vd->vdev_mg->mg_initialized);
3078 }
3079
3080 boolean_t
3081 vdev_accessible(vdev_t *vd, zio_t *zio)
3082 {
3083 ASSERT(zio->io_vd == vd);
3084
3085 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3086 return (B_FALSE);
3087
3088 if (zio->io_type == ZIO_TYPE_READ)
3089 return (!vd->vdev_cant_read);
3090
3091 if (zio->io_type == ZIO_TYPE_WRITE)
3092 return (!vd->vdev_cant_write);
3093
3094 return (B_TRUE);
3095 }
3096
3097 static void
3098 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
3099 {
3100 int t;
3101 for (t = 0; t < ZIO_TYPES; t++) {
3102 vs->vs_ops[t] += cvs->vs_ops[t];
3103 vs->vs_bytes[t] += cvs->vs_bytes[t];
3104 }
3105
3106 cvs->vs_scan_removing = cvd->vdev_removing;
3107 }
3108
3109 /*
3110 * Get extended stats
3111 */
3112 static void
3113 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
3114 {
3115 int t, b;
3116 for (t = 0; t < ZIO_TYPES; t++) {
3117 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
3118 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
3119
3120 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
3121 vsx->vsx_total_histo[t][b] +=
3122 cvsx->vsx_total_histo[t][b];
3123 }
3124 }
3125
3126 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
3127 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
3128 vsx->vsx_queue_histo[t][b] +=
3129 cvsx->vsx_queue_histo[t][b];
3130 }
3131 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
3132 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
3133
3134 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
3135 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
3136
3137 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
3138 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
3139 }
3140
3141 }
3142
3143 /*
3144 * Get statistics for the given vdev.
3145 */
3146 static void
3147 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
3148 {
3149 int t;
3150 /*
3151 * If we're getting stats on the root vdev, aggregate the I/O counts
3152 * over all top-level vdevs (i.e. the direct children of the root).
3153 */
3154 if (!vd->vdev_ops->vdev_op_leaf) {
3155 if (vs) {
3156 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
3157 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
3158 }
3159 if (vsx)
3160 memset(vsx, 0, sizeof (*vsx));
3161
3162 for (int c = 0; c < vd->vdev_children; c++) {
3163 vdev_t *cvd = vd->vdev_child[c];
3164 vdev_stat_t *cvs = &cvd->vdev_stat;
3165 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
3166
3167 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
3168 if (vs)
3169 vdev_get_child_stat(cvd, vs, cvs);
3170 if (vsx)
3171 vdev_get_child_stat_ex(cvd, vsx, cvsx);
3172
3173 }
3174 } else {
3175 /*
3176 * We're a leaf. Just copy our ZIO active queue stats in. The
3177 * other leaf stats are updated in vdev_stat_update().
3178 */
3179 if (!vsx)
3180 return;
3181
3182 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
3183
3184 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
3185 vsx->vsx_active_queue[t] =
3186 vd->vdev_queue.vq_class[t].vqc_active;
3187 vsx->vsx_pend_queue[t] = avl_numnodes(
3188 &vd->vdev_queue.vq_class[t].vqc_queued_tree);
3189 }
3190 }
3191 }
3192
3193 void
3194 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
3195 {
3196 vdev_t *tvd = vd->vdev_top;
3197 mutex_enter(&vd->vdev_stat_lock);
3198 if (vs) {
3199 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3200 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3201 vs->vs_state = vd->vdev_state;
3202 vs->vs_rsize = vdev_get_min_asize(vd);
3203 if (vd->vdev_ops->vdev_op_leaf)
3204 vs->vs_rsize += VDEV_LABEL_START_SIZE +
3205 VDEV_LABEL_END_SIZE;
3206 /*
3207 * Report expandable space on top-level, non-auxillary devices
3208 * only. The expandable space is reported in terms of metaslab
3209 * sized units since that determines how much space the pool
3210 * can expand.
3211 */
3212 if (vd->vdev_aux == NULL && tvd != NULL) {
3213 vs->vs_esize = P2ALIGN(
3214 vd->vdev_max_asize - vd->vdev_asize,
3215 1ULL << tvd->vdev_ms_shift);
3216 }
3217 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
3218 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3219 vdev_is_concrete(vd)) {
3220 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
3221 }
3222 }
3223
3224 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_READER) != 0);
3225 vdev_get_stats_ex_impl(vd, vs, vsx);
3226 mutex_exit(&vd->vdev_stat_lock);
3227 }
3228
3229 void
3230 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3231 {
3232 return (vdev_get_stats_ex(vd, vs, NULL));
3233 }
3234
3235 void
3236 vdev_clear_stats(vdev_t *vd)
3237 {
3238 mutex_enter(&vd->vdev_stat_lock);
3239 vd->vdev_stat.vs_space = 0;
3240 vd->vdev_stat.vs_dspace = 0;
3241 vd->vdev_stat.vs_alloc = 0;
3242 mutex_exit(&vd->vdev_stat_lock);
3243 }
3244
3245 void
3246 vdev_scan_stat_init(vdev_t *vd)
3247 {
3248 vdev_stat_t *vs = &vd->vdev_stat;
3249
3250 for (int c = 0; c < vd->vdev_children; c++)
3251 vdev_scan_stat_init(vd->vdev_child[c]);
3252
3253 mutex_enter(&vd->vdev_stat_lock);
3254 vs->vs_scan_processed = 0;
3255 mutex_exit(&vd->vdev_stat_lock);
3256 }
3257
3258 void
3259 vdev_stat_update(zio_t *zio, uint64_t psize)
3260 {
3261 spa_t *spa = zio->io_spa;
3262 vdev_t *rvd = spa->spa_root_vdev;
3263 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3264 vdev_t *pvd;
3265 uint64_t txg = zio->io_txg;
3266 vdev_stat_t *vs = &vd->vdev_stat;
3267 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
3268 zio_type_t type = zio->io_type;
3269 int flags = zio->io_flags;
3270
3271 /*
3272 * If this i/o is a gang leader, it didn't do any actual work.
3273 */
3274 if (zio->io_gang_tree)
3275 return;
3276
3277 if (zio->io_error == 0) {
3278 /*
3279 * If this is a root i/o, don't count it -- we've already
3280 * counted the top-level vdevs, and vdev_get_stats() will
3281 * aggregate them when asked. This reduces contention on
3282 * the root vdev_stat_lock and implicitly handles blocks
3283 * that compress away to holes, for which there is no i/o.
3284 * (Holes never create vdev children, so all the counters
3285 * remain zero, which is what we want.)
3286 *
3287 * Note: this only applies to successful i/o (io_error == 0)
3288 * because unlike i/o counts, errors are not additive.
3289 * When reading a ditto block, for example, failure of
3290 * one top-level vdev does not imply a root-level error.
3291 */
3292 if (vd == rvd)
3293 return;
3294
3295 ASSERT(vd == zio->io_vd);
3296
3297 if (flags & ZIO_FLAG_IO_BYPASS)
3298 return;
3299
3300 mutex_enter(&vd->vdev_stat_lock);
3301
3302 if (flags & ZIO_FLAG_IO_REPAIR) {
3303 if (flags & ZIO_FLAG_SCAN_THREAD) {
3304 dsl_scan_phys_t *scn_phys =
3305 &spa->spa_dsl_pool->dp_scan->scn_phys;
3306 uint64_t *processed = &scn_phys->scn_processed;
3307
3308 /* XXX cleanup? */
3309 if (vd->vdev_ops->vdev_op_leaf)
3310 atomic_add_64(processed, psize);
3311 vs->vs_scan_processed += psize;
3312 }
3313
3314 if (flags & ZIO_FLAG_SELF_HEAL)
3315 vs->vs_self_healed += psize;
3316 }
3317
3318 /*
3319 * The bytes/ops/histograms are recorded at the leaf level and
3320 * aggregated into the higher level vdevs in vdev_get_stats().
3321 */
3322 if (vd->vdev_ops->vdev_op_leaf &&
3323 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
3324
3325 vs->vs_ops[type]++;
3326 vs->vs_bytes[type] += psize;
3327
3328 if (flags & ZIO_FLAG_DELEGATED) {
3329 vsx->vsx_agg_histo[zio->io_priority]
3330 [RQ_HISTO(zio->io_size)]++;
3331 } else {
3332 vsx->vsx_ind_histo[zio->io_priority]
3333 [RQ_HISTO(zio->io_size)]++;
3334 }
3335
3336 if (zio->io_delta && zio->io_delay) {
3337 vsx->vsx_queue_histo[zio->io_priority]
3338 [L_HISTO(zio->io_delta - zio->io_delay)]++;
3339 vsx->vsx_disk_histo[type]
3340 [L_HISTO(zio->io_delay)]++;
3341 vsx->vsx_total_histo[type]
3342 [L_HISTO(zio->io_delta)]++;
3343 }
3344 }
3345
3346 mutex_exit(&vd->vdev_stat_lock);
3347 return;
3348 }
3349
3350 if (flags & ZIO_FLAG_SPECULATIVE)
3351 return;
3352
3353 /*
3354 * If this is an I/O error that is going to be retried, then ignore the
3355 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
3356 * hard errors, when in reality they can happen for any number of
3357 * innocuous reasons (bus resets, MPxIO link failure, etc).
3358 */
3359 if (zio->io_error == EIO &&
3360 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3361 return;
3362
3363 /*
3364 * Intent logs writes won't propagate their error to the root
3365 * I/O so don't mark these types of failures as pool-level
3366 * errors.
3367 */
3368 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3369 return;
3370
3371 mutex_enter(&vd->vdev_stat_lock);
3372 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3373 if (zio->io_error == ECKSUM)
3374 vs->vs_checksum_errors++;
3375 else
3376 vs->vs_read_errors++;
3377 }
3378 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3379 vs->vs_write_errors++;
3380 mutex_exit(&vd->vdev_stat_lock);
3381
3382 if (spa->spa_load_state == SPA_LOAD_NONE &&
3383 type == ZIO_TYPE_WRITE && txg != 0 &&
3384 (!(flags & ZIO_FLAG_IO_REPAIR) ||
3385 (flags & ZIO_FLAG_SCAN_THREAD) ||
3386 spa->spa_claiming)) {
3387 /*
3388 * This is either a normal write (not a repair), or it's
3389 * a repair induced by the scrub thread, or it's a repair
3390 * made by zil_claim() during spa_load() in the first txg.
3391 * In the normal case, we commit the DTL change in the same
3392 * txg as the block was born. In the scrub-induced repair
3393 * case, we know that scrubs run in first-pass syncing context,
3394 * so we commit the DTL change in spa_syncing_txg(spa).
3395 * In the zil_claim() case, we commit in spa_first_txg(spa).
3396 *
3397 * We currently do not make DTL entries for failed spontaneous
3398 * self-healing writes triggered by normal (non-scrubbing)
3399 * reads, because we have no transactional context in which to
3400 * do so -- and it's not clear that it'd be desirable anyway.
3401 */
3402 if (vd->vdev_ops->vdev_op_leaf) {
3403 uint64_t commit_txg = txg;
3404 if (flags & ZIO_FLAG_SCAN_THREAD) {
3405 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3406 ASSERT(spa_sync_pass(spa) == 1);
3407 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3408 commit_txg = spa_syncing_txg(spa);
3409 } else if (spa->spa_claiming) {
3410 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3411 commit_txg = spa_first_txg(spa);
3412 }
3413 ASSERT(commit_txg >= spa_syncing_txg(spa));
3414 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3415 return;
3416 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3417 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3418 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3419 }
3420 if (vd != rvd)
3421 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3422 }
3423 }
3424
3425 /*
3426 * Update the in-core space usage stats for this vdev, its metaslab class,
3427 * and the root vdev.
3428 */
3429 void
3430 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3431 int64_t space_delta)
3432 {
3433 int64_t dspace_delta = space_delta;
3434 spa_t *spa = vd->vdev_spa;
3435 vdev_t *rvd = spa->spa_root_vdev;
3436 metaslab_group_t *mg = vd->vdev_mg;
3437 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3438
3439 ASSERT(vd == vd->vdev_top);
3440
3441 /*
3442 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3443 * factor. We must calculate this here and not at the root vdev
3444 * because the root vdev's psize-to-asize is simply the max of its
3445 * childrens', thus not accurate enough for us.
3446 */
3447 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3448 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3449 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3450 vd->vdev_deflate_ratio;
3451
3452 mutex_enter(&vd->vdev_stat_lock);
3453 vd->vdev_stat.vs_alloc += alloc_delta;
3454 vd->vdev_stat.vs_space += space_delta;
3455 vd->vdev_stat.vs_dspace += dspace_delta;
3456 mutex_exit(&vd->vdev_stat_lock);
3457
3458 if (mc == spa_normal_class(spa)) {
3459 mutex_enter(&rvd->vdev_stat_lock);
3460 rvd->vdev_stat.vs_alloc += alloc_delta;
3461 rvd->vdev_stat.vs_space += space_delta;
3462 rvd->vdev_stat.vs_dspace += dspace_delta;
3463 mutex_exit(&rvd->vdev_stat_lock);
3464 }
3465
3466 if (mc != NULL) {
3467 ASSERT(rvd == vd->vdev_parent);
3468 ASSERT(vd->vdev_ms_count != 0);
3469
3470 metaslab_class_space_update(mc,
3471 alloc_delta, defer_delta, space_delta, dspace_delta);
3472 }
3473 }
3474
3475 /*
3476 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3477 * so that it will be written out next time the vdev configuration is synced.
3478 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3479 */
3480 void
3481 vdev_config_dirty(vdev_t *vd)
3482 {
3483 spa_t *spa = vd->vdev_spa;
3484 vdev_t *rvd = spa->spa_root_vdev;
3485 int c;
3486
3487 ASSERT(spa_writeable(spa));
3488
3489 /*
3490 * If this is an aux vdev (as with l2cache and spare devices), then we
3491 * update the vdev config manually and set the sync flag.
3492 */
3493 if (vd->vdev_aux != NULL) {
3494 spa_aux_vdev_t *sav = vd->vdev_aux;
3495 nvlist_t **aux;
3496 uint_t naux;
3497
3498 for (c = 0; c < sav->sav_count; c++) {
3499 if (sav->sav_vdevs[c] == vd)
3500 break;
3501 }
3502
3503 if (c == sav->sav_count) {
3504 /*
3505 * We're being removed. There's nothing more to do.
3506 */
3507 ASSERT(sav->sav_sync == B_TRUE);
3508 return;
3509 }
3510
3511 sav->sav_sync = B_TRUE;
3512
3513 if (nvlist_lookup_nvlist_array(sav->sav_config,
3514 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3515 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3516 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3517 }
3518
3519 ASSERT(c < naux);
3520
3521 /*
3522 * Setting the nvlist in the middle if the array is a little
3523 * sketchy, but it will work.
3524 */
3525 nvlist_free(aux[c]);
3526 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3527
3528 return;
3529 }
3530
3531 /*
3532 * The dirty list is protected by the SCL_CONFIG lock. The caller
3533 * must either hold SCL_CONFIG as writer, or must be the sync thread
3534 * (which holds SCL_CONFIG as reader). There's only one sync thread,
3535 * so this is sufficient to ensure mutual exclusion.
3536 */
3537 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3538 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3539 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3540
3541 if (vd == rvd) {
3542 for (c = 0; c < rvd->vdev_children; c++)
3543 vdev_config_dirty(rvd->vdev_child[c]);
3544 } else {
3545 ASSERT(vd == vd->vdev_top);
3546
3547 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3548 vdev_is_concrete(vd)) {
3549 list_insert_head(&spa->spa_config_dirty_list, vd);
3550 }
3551 }
3552 }
3553
3554 void
3555 vdev_config_clean(vdev_t *vd)
3556 {
3557 spa_t *spa = vd->vdev_spa;
3558
3559 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3560 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3561 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3562
3563 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3564 list_remove(&spa->spa_config_dirty_list, vd);
3565 }
3566
3567 /*
3568 * Mark a top-level vdev's state as dirty, so that the next pass of
3569 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3570 * the state changes from larger config changes because they require
3571 * much less locking, and are often needed for administrative actions.
3572 */
3573 void
3574 vdev_state_dirty(vdev_t *vd)
3575 {
3576 spa_t *spa = vd->vdev_spa;
3577
3578 ASSERT(spa_writeable(spa));
3579 ASSERT(vd == vd->vdev_top);
3580
3581 /*
3582 * The state list is protected by the SCL_STATE lock. The caller
3583 * must either hold SCL_STATE as writer, or must be the sync thread
3584 * (which holds SCL_STATE as reader). There's only one sync thread,
3585 * so this is sufficient to ensure mutual exclusion.
3586 */
3587 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3588 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3589 spa_config_held(spa, SCL_STATE, RW_READER)));
3590
3591 if (!list_link_active(&vd->vdev_state_dirty_node) &&
3592 vdev_is_concrete(vd))
3593 list_insert_head(&spa->spa_state_dirty_list, vd);
3594 }
3595
3596 void
3597 vdev_state_clean(vdev_t *vd)
3598 {
3599 spa_t *spa = vd->vdev_spa;
3600
3601 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3602 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3603 spa_config_held(spa, SCL_STATE, RW_READER)));
3604
3605 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3606 list_remove(&spa->spa_state_dirty_list, vd);
3607 }
3608
3609 /*
3610 * Propagate vdev state up from children to parent.
3611 */
3612 void
3613 vdev_propagate_state(vdev_t *vd)
3614 {
3615 spa_t *spa = vd->vdev_spa;
3616 vdev_t *rvd = spa->spa_root_vdev;
3617 int degraded = 0, faulted = 0;
3618 int corrupted = 0;
3619 vdev_t *child;
3620
3621 if (vd->vdev_children > 0) {
3622 for (int c = 0; c < vd->vdev_children; c++) {
3623 child = vd->vdev_child[c];
3624
3625 /*
3626 * Don't factor holes or indirect vdevs into the
3627 * decision.
3628 */
3629 if (!vdev_is_concrete(child))
3630 continue;
3631
3632 if (!vdev_readable(child) ||
3633 (!vdev_writeable(child) && spa_writeable(spa))) {
3634 /*
3635 * Root special: if there is a top-level log
3636 * device, treat the root vdev as if it were
3637 * degraded.
3638 */
3639 if (child->vdev_islog && vd == rvd)
3640 degraded++;
3641 else
3642 faulted++;
3643 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3644 degraded++;
3645 }
3646
3647 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3648 corrupted++;
3649 }
3650
3651 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3652
3653 /*
3654 * Root special: if there is a top-level vdev that cannot be
3655 * opened due to corrupted metadata, then propagate the root
3656 * vdev's aux state as 'corrupt' rather than 'insufficient
3657 * replicas'.
3658 */
3659 if (corrupted && vd == rvd &&
3660 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3661 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3662 VDEV_AUX_CORRUPT_DATA);
3663 }
3664
3665 if (vd->vdev_parent)
3666 vdev_propagate_state(vd->vdev_parent);
3667 }
3668
3669 /*
3670 * Set a vdev's state. If this is during an open, we don't update the parent
3671 * state, because we're in the process of opening children depth-first.
3672 * Otherwise, we propagate the change to the parent.
3673 *
3674 * If this routine places a device in a faulted state, an appropriate ereport is
3675 * generated.
3676 */
3677 void
3678 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3679 {
3680 uint64_t save_state;
3681 spa_t *spa = vd->vdev_spa;
3682
3683 if (state == vd->vdev_state) {
3684 /*
3685 * Since vdev_offline() code path is already in an offline
3686 * state we can miss a statechange event to OFFLINE. Check
3687 * the previous state to catch this condition.
3688 */
3689 if (vd->vdev_ops->vdev_op_leaf &&
3690 (state == VDEV_STATE_OFFLINE) &&
3691 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
3692 /* post an offline state change */
3693 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
3694 }
3695 vd->vdev_stat.vs_aux = aux;
3696 return;
3697 }
3698
3699 save_state = vd->vdev_state;
3700
3701 vd->vdev_state = state;
3702 vd->vdev_stat.vs_aux = aux;
3703
3704 /*
3705 * If we are setting the vdev state to anything but an open state, then
3706 * always close the underlying device unless the device has requested
3707 * a delayed close (i.e. we're about to remove or fault the device).
3708 * Otherwise, we keep accessible but invalid devices open forever.
3709 * We don't call vdev_close() itself, because that implies some extra
3710 * checks (offline, etc) that we don't want here. This is limited to
3711 * leaf devices, because otherwise closing the device will affect other
3712 * children.
3713 */
3714 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3715 vd->vdev_ops->vdev_op_leaf)
3716 vd->vdev_ops->vdev_op_close(vd);
3717
3718 if (vd->vdev_removed &&
3719 state == VDEV_STATE_CANT_OPEN &&
3720 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3721 /*
3722 * If the previous state is set to VDEV_STATE_REMOVED, then this
3723 * device was previously marked removed and someone attempted to
3724 * reopen it. If this failed due to a nonexistent device, then
3725 * keep the device in the REMOVED state. We also let this be if
3726 * it is one of our special test online cases, which is only
3727 * attempting to online the device and shouldn't generate an FMA
3728 * fault.
3729 */
3730 vd->vdev_state = VDEV_STATE_REMOVED;
3731 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3732 } else if (state == VDEV_STATE_REMOVED) {
3733 vd->vdev_removed = B_TRUE;
3734 } else if (state == VDEV_STATE_CANT_OPEN) {
3735 /*
3736 * If we fail to open a vdev during an import or recovery, we
3737 * mark it as "not available", which signifies that it was
3738 * never there to begin with. Failure to open such a device
3739 * is not considered an error.
3740 */
3741 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3742 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3743 vd->vdev_ops->vdev_op_leaf)
3744 vd->vdev_not_present = 1;
3745
3746 /*
3747 * Post the appropriate ereport. If the 'prevstate' field is
3748 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3749 * that this is part of a vdev_reopen(). In this case, we don't
3750 * want to post the ereport if the device was already in the
3751 * CANT_OPEN state beforehand.
3752 *
3753 * If the 'checkremove' flag is set, then this is an attempt to
3754 * online the device in response to an insertion event. If we
3755 * hit this case, then we have detected an insertion event for a
3756 * faulted or offline device that wasn't in the removed state.
3757 * In this scenario, we don't post an ereport because we are
3758 * about to replace the device, or attempt an online with
3759 * vdev_forcefault, which will generate the fault for us.
3760 */
3761 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3762 !vd->vdev_not_present && !vd->vdev_checkremove &&
3763 vd != spa->spa_root_vdev) {
3764 const char *class;
3765
3766 switch (aux) {
3767 case VDEV_AUX_OPEN_FAILED:
3768 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3769 break;
3770 case VDEV_AUX_CORRUPT_DATA:
3771 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3772 break;
3773 case VDEV_AUX_NO_REPLICAS:
3774 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3775 break;
3776 case VDEV_AUX_BAD_GUID_SUM:
3777 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3778 break;
3779 case VDEV_AUX_TOO_SMALL:
3780 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3781 break;
3782 case VDEV_AUX_BAD_LABEL:
3783 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3784 break;
3785 case VDEV_AUX_BAD_ASHIFT:
3786 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
3787 break;
3788 default:
3789 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3790 }
3791
3792 zfs_ereport_post(class, spa, vd, NULL, NULL,
3793 save_state, 0);
3794 }
3795
3796 /* Erase any notion of persistent removed state */
3797 vd->vdev_removed = B_FALSE;
3798 } else {
3799 vd->vdev_removed = B_FALSE;
3800 }
3801
3802 /*
3803 * Notify ZED of any significant state-change on a leaf vdev.
3804 *
3805 */
3806 if (vd->vdev_ops->vdev_op_leaf) {
3807 /* preserve original state from a vdev_reopen() */
3808 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
3809 (vd->vdev_prevstate != vd->vdev_state) &&
3810 (save_state <= VDEV_STATE_CLOSED))
3811 save_state = vd->vdev_prevstate;
3812
3813 /* filter out state change due to initial vdev_open */
3814 if (save_state > VDEV_STATE_CLOSED)
3815 zfs_post_state_change(spa, vd, save_state);
3816 }
3817
3818 if (!isopen && vd->vdev_parent)
3819 vdev_propagate_state(vd->vdev_parent);
3820 }
3821
3822 /*
3823 * Check the vdev configuration to ensure that it's capable of supporting
3824 * a root pool. We do not support partial configuration.
3825 */
3826 boolean_t
3827 vdev_is_bootable(vdev_t *vd)
3828 {
3829 if (!vd->vdev_ops->vdev_op_leaf) {
3830 const char *vdev_type = vd->vdev_ops->vdev_op_type;
3831
3832 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
3833 strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
3834 return (B_FALSE);
3835 }
3836 }
3837
3838 for (int c = 0; c < vd->vdev_children; c++) {
3839 if (!vdev_is_bootable(vd->vdev_child[c]))
3840 return (B_FALSE);
3841 }
3842 return (B_TRUE);
3843 }
3844
3845 boolean_t
3846 vdev_is_concrete(vdev_t *vd)
3847 {
3848 vdev_ops_t *ops = vd->vdev_ops;
3849 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
3850 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
3851 return (B_FALSE);
3852 } else {
3853 return (B_TRUE);
3854 }
3855 }
3856
3857 /*
3858 * Load the state from the original vdev tree (ovd) which
3859 * we've retrieved from the MOS config object. If the original
3860 * vdev was offline or faulted then we transfer that state to the
3861 * device in the current vdev tree (nvd).
3862 */
3863 void
3864 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3865 {
3866 ASSERT(nvd->vdev_top->vdev_islog);
3867 ASSERT(spa_config_held(nvd->vdev_spa,
3868 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3869 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3870
3871 for (int c = 0; c < nvd->vdev_children; c++)
3872 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3873
3874 if (nvd->vdev_ops->vdev_op_leaf) {
3875 /*
3876 * Restore the persistent vdev state
3877 */
3878 nvd->vdev_offline = ovd->vdev_offline;
3879 nvd->vdev_faulted = ovd->vdev_faulted;
3880 nvd->vdev_degraded = ovd->vdev_degraded;
3881 nvd->vdev_removed = ovd->vdev_removed;
3882 }
3883 }
3884
3885 /*
3886 * Determine if a log device has valid content. If the vdev was
3887 * removed or faulted in the MOS config then we know that
3888 * the content on the log device has already been written to the pool.
3889 */
3890 boolean_t
3891 vdev_log_state_valid(vdev_t *vd)
3892 {
3893 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3894 !vd->vdev_removed)
3895 return (B_TRUE);
3896
3897 for (int c = 0; c < vd->vdev_children; c++)
3898 if (vdev_log_state_valid(vd->vdev_child[c]))
3899 return (B_TRUE);
3900
3901 return (B_FALSE);
3902 }
3903
3904 /*
3905 * Expand a vdev if possible.
3906 */
3907 void
3908 vdev_expand(vdev_t *vd, uint64_t txg)
3909 {
3910 ASSERT(vd->vdev_top == vd);
3911 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3912
3913 vdev_set_deflate_ratio(vd);
3914
3915 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
3916 vdev_is_concrete(vd)) {
3917 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3918 vdev_config_dirty(vd);
3919 }
3920 }
3921
3922 /*
3923 * Split a vdev.
3924 */
3925 void
3926 vdev_split(vdev_t *vd)
3927 {
3928 vdev_t *cvd, *pvd = vd->vdev_parent;
3929
3930 vdev_remove_child(pvd, vd);
3931 vdev_compact_children(pvd);
3932
3933 cvd = pvd->vdev_child[0];
3934 if (pvd->vdev_children == 1) {
3935 vdev_remove_parent(cvd);
3936 cvd->vdev_splitting = B_TRUE;
3937 }
3938 vdev_propagate_state(cvd);
3939 }
3940
3941 void
3942 vdev_deadman(vdev_t *vd, char *tag)
3943 {
3944 for (int c = 0; c < vd->vdev_children; c++) {
3945 vdev_t *cvd = vd->vdev_child[c];
3946
3947 vdev_deadman(cvd, tag);
3948 }
3949
3950 if (vd->vdev_ops->vdev_op_leaf) {
3951 vdev_queue_t *vq = &vd->vdev_queue;
3952
3953 mutex_enter(&vq->vq_lock);
3954 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3955 spa_t *spa = vd->vdev_spa;
3956 zio_t *fio;
3957 uint64_t delta;
3958
3959 zfs_dbgmsg("slow vdev: %s has %d active IOs",
3960 vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
3961
3962 /*
3963 * Look at the head of all the pending queues,
3964 * if any I/O has been outstanding for longer than
3965 * the spa_deadman_synctime invoke the deadman logic.
3966 */
3967 fio = avl_first(&vq->vq_active_tree);
3968 delta = gethrtime() - fio->io_timestamp;
3969 if (delta > spa_deadman_synctime(spa))
3970 zio_deadman(fio, tag);
3971 }
3972 mutex_exit(&vq->vq_lock);
3973 }
3974 }
3975
3976 #if defined(_KERNEL) && defined(HAVE_SPL)
3977 EXPORT_SYMBOL(vdev_fault);
3978 EXPORT_SYMBOL(vdev_degrade);
3979 EXPORT_SYMBOL(vdev_online);
3980 EXPORT_SYMBOL(vdev_offline);
3981 EXPORT_SYMBOL(vdev_clear);
3982 /* BEGIN CSTYLED */
3983 module_param(metaslabs_per_vdev, int, 0644);
3984 MODULE_PARM_DESC(metaslabs_per_vdev,
3985 "Divide added vdev into approximately (but no more than) this number "
3986 "of metaslabs");
3987
3988 module_param(zfs_delays_per_second, uint, 0644);
3989 MODULE_PARM_DESC(zfs_delays_per_second, "Rate limit delay events to this many "
3990 "IO delays per second");
3991
3992 module_param(zfs_checksums_per_second, uint, 0644);
3993 MODULE_PARM_DESC(zfs_checksums_per_second, "Rate limit checksum events "
3994 "to this many checksum errors per second (do not set below zed"
3995 "threshold).");
3996
3997 module_param(zfs_scan_ignore_errors, int, 0644);
3998 MODULE_PARM_DESC(zfs_scan_ignore_errors,
3999 "Ignore errors during resilver/scrub");
4000 /* END CSTYLED */
4001 #endif