]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Illumos 4976-4984 - metaslab improvements
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/space_reftree.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/zvol.h>
47
48 /*
49 * Virtual device management.
50 */
51
52 static vdev_ops_t *vdev_ops_table[] = {
53 &vdev_root_ops,
54 &vdev_raidz_ops,
55 &vdev_mirror_ops,
56 &vdev_replacing_ops,
57 &vdev_spare_ops,
58 &vdev_disk_ops,
59 &vdev_file_ops,
60 &vdev_missing_ops,
61 &vdev_hole_ops,
62 NULL
63 };
64
65 /*
66 * Given a vdev type, return the appropriate ops vector.
67 */
68 static vdev_ops_t *
69 vdev_getops(const char *type)
70 {
71 vdev_ops_t *ops, **opspp;
72
73 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
74 if (strcmp(ops->vdev_op_type, type) == 0)
75 break;
76
77 return (ops);
78 }
79
80 /*
81 * Default asize function: return the MAX of psize with the asize of
82 * all children. This is what's used by anything other than RAID-Z.
83 */
84 uint64_t
85 vdev_default_asize(vdev_t *vd, uint64_t psize)
86 {
87 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
88 uint64_t csize;
89 int c;
90
91 for (c = 0; c < vd->vdev_children; c++) {
92 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
93 asize = MAX(asize, csize);
94 }
95
96 return (asize);
97 }
98
99 /*
100 * Get the minimum allocatable size. We define the allocatable size as
101 * the vdev's asize rounded to the nearest metaslab. This allows us to
102 * replace or attach devices which don't have the same physical size but
103 * can still satisfy the same number of allocations.
104 */
105 uint64_t
106 vdev_get_min_asize(vdev_t *vd)
107 {
108 vdev_t *pvd = vd->vdev_parent;
109
110 /*
111 * If our parent is NULL (inactive spare or cache) or is the root,
112 * just return our own asize.
113 */
114 if (pvd == NULL)
115 return (vd->vdev_asize);
116
117 /*
118 * The top-level vdev just returns the allocatable size rounded
119 * to the nearest metaslab.
120 */
121 if (vd == vd->vdev_top)
122 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
123
124 /*
125 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
126 * so each child must provide at least 1/Nth of its asize.
127 */
128 if (pvd->vdev_ops == &vdev_raidz_ops)
129 return (pvd->vdev_min_asize / pvd->vdev_children);
130
131 return (pvd->vdev_min_asize);
132 }
133
134 void
135 vdev_set_min_asize(vdev_t *vd)
136 {
137 int c;
138 vd->vdev_min_asize = vdev_get_min_asize(vd);
139
140 for (c = 0; c < vd->vdev_children; c++)
141 vdev_set_min_asize(vd->vdev_child[c]);
142 }
143
144 vdev_t *
145 vdev_lookup_top(spa_t *spa, uint64_t vdev)
146 {
147 vdev_t *rvd = spa->spa_root_vdev;
148
149 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
150
151 if (vdev < rvd->vdev_children) {
152 ASSERT(rvd->vdev_child[vdev] != NULL);
153 return (rvd->vdev_child[vdev]);
154 }
155
156 return (NULL);
157 }
158
159 vdev_t *
160 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
161 {
162 vdev_t *mvd;
163 int c;
164
165 if (vd->vdev_guid == guid)
166 return (vd);
167
168 for (c = 0; c < vd->vdev_children; c++)
169 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
170 NULL)
171 return (mvd);
172
173 return (NULL);
174 }
175
176 void
177 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
178 {
179 size_t oldsize, newsize;
180 uint64_t id = cvd->vdev_id;
181 vdev_t **newchild;
182
183 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
184 ASSERT(cvd->vdev_parent == NULL);
185
186 cvd->vdev_parent = pvd;
187
188 if (pvd == NULL)
189 return;
190
191 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
192
193 oldsize = pvd->vdev_children * sizeof (vdev_t *);
194 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
195 newsize = pvd->vdev_children * sizeof (vdev_t *);
196
197 newchild = kmem_alloc(newsize, KM_PUSHPAGE);
198 if (pvd->vdev_child != NULL) {
199 bcopy(pvd->vdev_child, newchild, oldsize);
200 kmem_free(pvd->vdev_child, oldsize);
201 }
202
203 pvd->vdev_child = newchild;
204 pvd->vdev_child[id] = cvd;
205
206 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
207 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
208
209 /*
210 * Walk up all ancestors to update guid sum.
211 */
212 for (; pvd != NULL; pvd = pvd->vdev_parent)
213 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
214 }
215
216 void
217 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
218 {
219 int c;
220 uint_t id = cvd->vdev_id;
221
222 ASSERT(cvd->vdev_parent == pvd);
223
224 if (pvd == NULL)
225 return;
226
227 ASSERT(id < pvd->vdev_children);
228 ASSERT(pvd->vdev_child[id] == cvd);
229
230 pvd->vdev_child[id] = NULL;
231 cvd->vdev_parent = NULL;
232
233 for (c = 0; c < pvd->vdev_children; c++)
234 if (pvd->vdev_child[c])
235 break;
236
237 if (c == pvd->vdev_children) {
238 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
239 pvd->vdev_child = NULL;
240 pvd->vdev_children = 0;
241 }
242
243 /*
244 * Walk up all ancestors to update guid sum.
245 */
246 for (; pvd != NULL; pvd = pvd->vdev_parent)
247 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
248 }
249
250 /*
251 * Remove any holes in the child array.
252 */
253 void
254 vdev_compact_children(vdev_t *pvd)
255 {
256 vdev_t **newchild, *cvd;
257 int oldc = pvd->vdev_children;
258 int newc;
259 int c;
260
261 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
262
263 for (c = newc = 0; c < oldc; c++)
264 if (pvd->vdev_child[c])
265 newc++;
266
267 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_PUSHPAGE);
268
269 for (c = newc = 0; c < oldc; c++) {
270 if ((cvd = pvd->vdev_child[c]) != NULL) {
271 newchild[newc] = cvd;
272 cvd->vdev_id = newc++;
273 }
274 }
275
276 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
277 pvd->vdev_child = newchild;
278 pvd->vdev_children = newc;
279 }
280
281 /*
282 * Allocate and minimally initialize a vdev_t.
283 */
284 vdev_t *
285 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
286 {
287 vdev_t *vd;
288 int t;
289
290 vd = kmem_zalloc(sizeof (vdev_t), KM_PUSHPAGE);
291
292 if (spa->spa_root_vdev == NULL) {
293 ASSERT(ops == &vdev_root_ops);
294 spa->spa_root_vdev = vd;
295 spa->spa_load_guid = spa_generate_guid(NULL);
296 }
297
298 if (guid == 0 && ops != &vdev_hole_ops) {
299 if (spa->spa_root_vdev == vd) {
300 /*
301 * The root vdev's guid will also be the pool guid,
302 * which must be unique among all pools.
303 */
304 guid = spa_generate_guid(NULL);
305 } else {
306 /*
307 * Any other vdev's guid must be unique within the pool.
308 */
309 guid = spa_generate_guid(spa);
310 }
311 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
312 }
313
314 vd->vdev_spa = spa;
315 vd->vdev_id = id;
316 vd->vdev_guid = guid;
317 vd->vdev_guid_sum = guid;
318 vd->vdev_ops = ops;
319 vd->vdev_state = VDEV_STATE_CLOSED;
320 vd->vdev_ishole = (ops == &vdev_hole_ops);
321
322 list_link_init(&vd->vdev_config_dirty_node);
323 list_link_init(&vd->vdev_state_dirty_node);
324 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
325 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
326 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
327 for (t = 0; t < DTL_TYPES; t++) {
328 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
329 &vd->vdev_dtl_lock);
330 }
331 txg_list_create(&vd->vdev_ms_list,
332 offsetof(struct metaslab, ms_txg_node));
333 txg_list_create(&vd->vdev_dtl_list,
334 offsetof(struct vdev, vdev_dtl_node));
335 vd->vdev_stat.vs_timestamp = gethrtime();
336 vdev_queue_init(vd);
337 vdev_cache_init(vd);
338
339 return (vd);
340 }
341
342 /*
343 * Allocate a new vdev. The 'alloctype' is used to control whether we are
344 * creating a new vdev or loading an existing one - the behavior is slightly
345 * different for each case.
346 */
347 int
348 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
349 int alloctype)
350 {
351 vdev_ops_t *ops;
352 char *type;
353 uint64_t guid = 0, islog, nparity;
354 vdev_t *vd;
355
356 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
357
358 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
359 return (SET_ERROR(EINVAL));
360
361 if ((ops = vdev_getops(type)) == NULL)
362 return (SET_ERROR(EINVAL));
363
364 /*
365 * If this is a load, get the vdev guid from the nvlist.
366 * Otherwise, vdev_alloc_common() will generate one for us.
367 */
368 if (alloctype == VDEV_ALLOC_LOAD) {
369 uint64_t label_id;
370
371 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
372 label_id != id)
373 return (SET_ERROR(EINVAL));
374
375 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376 return (SET_ERROR(EINVAL));
377 } else if (alloctype == VDEV_ALLOC_SPARE) {
378 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
379 return (SET_ERROR(EINVAL));
380 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
381 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
382 return (SET_ERROR(EINVAL));
383 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
384 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
385 return (SET_ERROR(EINVAL));
386 }
387
388 /*
389 * The first allocated vdev must be of type 'root'.
390 */
391 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
392 return (SET_ERROR(EINVAL));
393
394 /*
395 * Determine whether we're a log vdev.
396 */
397 islog = 0;
398 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
399 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
400 return (SET_ERROR(ENOTSUP));
401
402 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
403 return (SET_ERROR(ENOTSUP));
404
405 /*
406 * Set the nparity property for RAID-Z vdevs.
407 */
408 nparity = -1ULL;
409 if (ops == &vdev_raidz_ops) {
410 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
411 &nparity) == 0) {
412 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
413 return (SET_ERROR(EINVAL));
414 /*
415 * Previous versions could only support 1 or 2 parity
416 * device.
417 */
418 if (nparity > 1 &&
419 spa_version(spa) < SPA_VERSION_RAIDZ2)
420 return (SET_ERROR(ENOTSUP));
421 if (nparity > 2 &&
422 spa_version(spa) < SPA_VERSION_RAIDZ3)
423 return (SET_ERROR(ENOTSUP));
424 } else {
425 /*
426 * We require the parity to be specified for SPAs that
427 * support multiple parity levels.
428 */
429 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
430 return (SET_ERROR(EINVAL));
431 /*
432 * Otherwise, we default to 1 parity device for RAID-Z.
433 */
434 nparity = 1;
435 }
436 } else {
437 nparity = 0;
438 }
439 ASSERT(nparity != -1ULL);
440
441 vd = vdev_alloc_common(spa, id, guid, ops);
442
443 vd->vdev_islog = islog;
444 vd->vdev_nparity = nparity;
445
446 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
447 vd->vdev_path = spa_strdup(vd->vdev_path);
448 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
449 vd->vdev_devid = spa_strdup(vd->vdev_devid);
450 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
451 &vd->vdev_physpath) == 0)
452 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
453 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
454 vd->vdev_fru = spa_strdup(vd->vdev_fru);
455
456 /*
457 * Set the whole_disk property. If it's not specified, leave the value
458 * as -1.
459 */
460 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
461 &vd->vdev_wholedisk) != 0)
462 vd->vdev_wholedisk = -1ULL;
463
464 /*
465 * Look for the 'not present' flag. This will only be set if the device
466 * was not present at the time of import.
467 */
468 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
469 &vd->vdev_not_present);
470
471 /*
472 * Get the alignment requirement.
473 */
474 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
475
476 /*
477 * Retrieve the vdev creation time.
478 */
479 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
480 &vd->vdev_crtxg);
481
482 /*
483 * If we're a top-level vdev, try to load the allocation parameters.
484 */
485 if (parent && !parent->vdev_parent &&
486 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
487 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
488 &vd->vdev_ms_array);
489 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
490 &vd->vdev_ms_shift);
491 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
492 &vd->vdev_asize);
493 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
494 &vd->vdev_removing);
495 }
496
497 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
498 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
499 alloctype == VDEV_ALLOC_ADD ||
500 alloctype == VDEV_ALLOC_SPLIT ||
501 alloctype == VDEV_ALLOC_ROOTPOOL);
502 vd->vdev_mg = metaslab_group_create(islog ?
503 spa_log_class(spa) : spa_normal_class(spa), vd);
504 }
505
506 /*
507 * If we're a leaf vdev, try to load the DTL object and other state.
508 */
509 if (vd->vdev_ops->vdev_op_leaf &&
510 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
511 alloctype == VDEV_ALLOC_ROOTPOOL)) {
512 if (alloctype == VDEV_ALLOC_LOAD) {
513 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
514 &vd->vdev_dtl_object);
515 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
516 &vd->vdev_unspare);
517 }
518
519 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
520 uint64_t spare = 0;
521
522 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
523 &spare) == 0 && spare)
524 spa_spare_add(vd);
525 }
526
527 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
528 &vd->vdev_offline);
529
530 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
531 &vd->vdev_resilver_txg);
532
533 /*
534 * When importing a pool, we want to ignore the persistent fault
535 * state, as the diagnosis made on another system may not be
536 * valid in the current context. Local vdevs will
537 * remain in the faulted state.
538 */
539 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
540 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
541 &vd->vdev_faulted);
542 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
543 &vd->vdev_degraded);
544 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
545 &vd->vdev_removed);
546
547 if (vd->vdev_faulted || vd->vdev_degraded) {
548 char *aux;
549
550 vd->vdev_label_aux =
551 VDEV_AUX_ERR_EXCEEDED;
552 if (nvlist_lookup_string(nv,
553 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
554 strcmp(aux, "external") == 0)
555 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
556 }
557 }
558 }
559
560 /*
561 * Add ourselves to the parent's list of children.
562 */
563 vdev_add_child(parent, vd);
564
565 *vdp = vd;
566
567 return (0);
568 }
569
570 void
571 vdev_free(vdev_t *vd)
572 {
573 int c, t;
574 spa_t *spa = vd->vdev_spa;
575
576 /*
577 * vdev_free() implies closing the vdev first. This is simpler than
578 * trying to ensure complicated semantics for all callers.
579 */
580 vdev_close(vd);
581
582 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
583 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
584
585 /*
586 * Free all children.
587 */
588 for (c = 0; c < vd->vdev_children; c++)
589 vdev_free(vd->vdev_child[c]);
590
591 ASSERT(vd->vdev_child == NULL);
592 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
593
594 /*
595 * Discard allocation state.
596 */
597 if (vd->vdev_mg != NULL) {
598 vdev_metaslab_fini(vd);
599 metaslab_group_destroy(vd->vdev_mg);
600 }
601
602 ASSERT0(vd->vdev_stat.vs_space);
603 ASSERT0(vd->vdev_stat.vs_dspace);
604 ASSERT0(vd->vdev_stat.vs_alloc);
605
606 /*
607 * Remove this vdev from its parent's child list.
608 */
609 vdev_remove_child(vd->vdev_parent, vd);
610
611 ASSERT(vd->vdev_parent == NULL);
612
613 /*
614 * Clean up vdev structure.
615 */
616 vdev_queue_fini(vd);
617 vdev_cache_fini(vd);
618
619 if (vd->vdev_path)
620 spa_strfree(vd->vdev_path);
621 if (vd->vdev_devid)
622 spa_strfree(vd->vdev_devid);
623 if (vd->vdev_physpath)
624 spa_strfree(vd->vdev_physpath);
625 if (vd->vdev_fru)
626 spa_strfree(vd->vdev_fru);
627
628 if (vd->vdev_isspare)
629 spa_spare_remove(vd);
630 if (vd->vdev_isl2cache)
631 spa_l2cache_remove(vd);
632
633 txg_list_destroy(&vd->vdev_ms_list);
634 txg_list_destroy(&vd->vdev_dtl_list);
635
636 mutex_enter(&vd->vdev_dtl_lock);
637 space_map_close(vd->vdev_dtl_sm);
638 for (t = 0; t < DTL_TYPES; t++) {
639 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
640 range_tree_destroy(vd->vdev_dtl[t]);
641 }
642 mutex_exit(&vd->vdev_dtl_lock);
643
644 mutex_destroy(&vd->vdev_dtl_lock);
645 mutex_destroy(&vd->vdev_stat_lock);
646 mutex_destroy(&vd->vdev_probe_lock);
647
648 if (vd == spa->spa_root_vdev)
649 spa->spa_root_vdev = NULL;
650
651 kmem_free(vd, sizeof (vdev_t));
652 }
653
654 /*
655 * Transfer top-level vdev state from svd to tvd.
656 */
657 static void
658 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
659 {
660 spa_t *spa = svd->vdev_spa;
661 metaslab_t *msp;
662 vdev_t *vd;
663 int t;
664
665 ASSERT(tvd == tvd->vdev_top);
666
667 tvd->vdev_ms_array = svd->vdev_ms_array;
668 tvd->vdev_ms_shift = svd->vdev_ms_shift;
669 tvd->vdev_ms_count = svd->vdev_ms_count;
670
671 svd->vdev_ms_array = 0;
672 svd->vdev_ms_shift = 0;
673 svd->vdev_ms_count = 0;
674
675 if (tvd->vdev_mg)
676 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
677 tvd->vdev_mg = svd->vdev_mg;
678 tvd->vdev_ms = svd->vdev_ms;
679
680 svd->vdev_mg = NULL;
681 svd->vdev_ms = NULL;
682
683 if (tvd->vdev_mg != NULL)
684 tvd->vdev_mg->mg_vd = tvd;
685
686 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
687 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
688 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
689
690 svd->vdev_stat.vs_alloc = 0;
691 svd->vdev_stat.vs_space = 0;
692 svd->vdev_stat.vs_dspace = 0;
693
694 for (t = 0; t < TXG_SIZE; t++) {
695 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
696 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
697 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
698 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
699 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
700 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
701 }
702
703 if (list_link_active(&svd->vdev_config_dirty_node)) {
704 vdev_config_clean(svd);
705 vdev_config_dirty(tvd);
706 }
707
708 if (list_link_active(&svd->vdev_state_dirty_node)) {
709 vdev_state_clean(svd);
710 vdev_state_dirty(tvd);
711 }
712
713 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
714 svd->vdev_deflate_ratio = 0;
715
716 tvd->vdev_islog = svd->vdev_islog;
717 svd->vdev_islog = 0;
718 }
719
720 static void
721 vdev_top_update(vdev_t *tvd, vdev_t *vd)
722 {
723 int c;
724
725 if (vd == NULL)
726 return;
727
728 vd->vdev_top = tvd;
729
730 for (c = 0; c < vd->vdev_children; c++)
731 vdev_top_update(tvd, vd->vdev_child[c]);
732 }
733
734 /*
735 * Add a mirror/replacing vdev above an existing vdev.
736 */
737 vdev_t *
738 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
739 {
740 spa_t *spa = cvd->vdev_spa;
741 vdev_t *pvd = cvd->vdev_parent;
742 vdev_t *mvd;
743
744 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
745
746 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
747
748 mvd->vdev_asize = cvd->vdev_asize;
749 mvd->vdev_min_asize = cvd->vdev_min_asize;
750 mvd->vdev_max_asize = cvd->vdev_max_asize;
751 mvd->vdev_ashift = cvd->vdev_ashift;
752 mvd->vdev_state = cvd->vdev_state;
753 mvd->vdev_crtxg = cvd->vdev_crtxg;
754
755 vdev_remove_child(pvd, cvd);
756 vdev_add_child(pvd, mvd);
757 cvd->vdev_id = mvd->vdev_children;
758 vdev_add_child(mvd, cvd);
759 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
760
761 if (mvd == mvd->vdev_top)
762 vdev_top_transfer(cvd, mvd);
763
764 return (mvd);
765 }
766
767 /*
768 * Remove a 1-way mirror/replacing vdev from the tree.
769 */
770 void
771 vdev_remove_parent(vdev_t *cvd)
772 {
773 vdev_t *mvd = cvd->vdev_parent;
774 vdev_t *pvd = mvd->vdev_parent;
775
776 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
777
778 ASSERT(mvd->vdev_children == 1);
779 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
780 mvd->vdev_ops == &vdev_replacing_ops ||
781 mvd->vdev_ops == &vdev_spare_ops);
782 cvd->vdev_ashift = mvd->vdev_ashift;
783
784 vdev_remove_child(mvd, cvd);
785 vdev_remove_child(pvd, mvd);
786
787 /*
788 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
789 * Otherwise, we could have detached an offline device, and when we
790 * go to import the pool we'll think we have two top-level vdevs,
791 * instead of a different version of the same top-level vdev.
792 */
793 if (mvd->vdev_top == mvd) {
794 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
795 cvd->vdev_orig_guid = cvd->vdev_guid;
796 cvd->vdev_guid += guid_delta;
797 cvd->vdev_guid_sum += guid_delta;
798
799 /*
800 * If pool not set for autoexpand, we need to also preserve
801 * mvd's asize to prevent automatic expansion of cvd.
802 * Otherwise if we are adjusting the mirror by attaching and
803 * detaching children of non-uniform sizes, the mirror could
804 * autoexpand, unexpectedly requiring larger devices to
805 * re-establish the mirror.
806 */
807 if (!cvd->vdev_spa->spa_autoexpand)
808 cvd->vdev_asize = mvd->vdev_asize;
809 }
810 cvd->vdev_id = mvd->vdev_id;
811 vdev_add_child(pvd, cvd);
812 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
813
814 if (cvd == cvd->vdev_top)
815 vdev_top_transfer(mvd, cvd);
816
817 ASSERT(mvd->vdev_children == 0);
818 vdev_free(mvd);
819 }
820
821 int
822 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
823 {
824 spa_t *spa = vd->vdev_spa;
825 objset_t *mos = spa->spa_meta_objset;
826 uint64_t m;
827 uint64_t oldc = vd->vdev_ms_count;
828 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
829 metaslab_t **mspp;
830 int error;
831
832 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
833
834 /*
835 * This vdev is not being allocated from yet or is a hole.
836 */
837 if (vd->vdev_ms_shift == 0)
838 return (0);
839
840 ASSERT(!vd->vdev_ishole);
841
842 /*
843 * Compute the raidz-deflation ratio. Note, we hard-code
844 * in 128k (1 << 17) because it is the current "typical" blocksize.
845 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
846 * or we will inconsistently account for existing bp's.
847 */
848 vd->vdev_deflate_ratio = (1 << 17) /
849 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
850
851 ASSERT(oldc <= newc);
852
853 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_PUSHPAGE | KM_NODEBUG);
854
855 if (oldc != 0) {
856 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
857 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
858 }
859
860 vd->vdev_ms = mspp;
861 vd->vdev_ms_count = newc;
862
863 for (m = oldc; m < newc; m++) {
864 uint64_t object = 0;
865
866 if (txg == 0) {
867 error = dmu_read(mos, vd->vdev_ms_array,
868 m * sizeof (uint64_t), sizeof (uint64_t), &object,
869 DMU_READ_PREFETCH);
870 if (error)
871 return (error);
872 }
873 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, m, object, txg);
874 }
875
876 if (txg == 0)
877 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
878
879 /*
880 * If the vdev is being removed we don't activate
881 * the metaslabs since we want to ensure that no new
882 * allocations are performed on this device.
883 */
884 if (oldc == 0 && !vd->vdev_removing)
885 metaslab_group_activate(vd->vdev_mg);
886
887 if (txg == 0)
888 spa_config_exit(spa, SCL_ALLOC, FTAG);
889
890 return (0);
891 }
892
893 void
894 vdev_metaslab_fini(vdev_t *vd)
895 {
896 uint64_t m;
897 uint64_t count = vd->vdev_ms_count;
898
899 if (vd->vdev_ms != NULL) {
900 metaslab_group_passivate(vd->vdev_mg);
901 for (m = 0; m < count; m++) {
902 metaslab_t *msp = vd->vdev_ms[m];
903
904 if (msp != NULL)
905 metaslab_fini(msp);
906 }
907 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
908 vd->vdev_ms = NULL;
909 }
910
911 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
912 }
913
914 typedef struct vdev_probe_stats {
915 boolean_t vps_readable;
916 boolean_t vps_writeable;
917 int vps_flags;
918 } vdev_probe_stats_t;
919
920 static void
921 vdev_probe_done(zio_t *zio)
922 {
923 spa_t *spa = zio->io_spa;
924 vdev_t *vd = zio->io_vd;
925 vdev_probe_stats_t *vps = zio->io_private;
926
927 ASSERT(vd->vdev_probe_zio != NULL);
928
929 if (zio->io_type == ZIO_TYPE_READ) {
930 if (zio->io_error == 0)
931 vps->vps_readable = 1;
932 if (zio->io_error == 0 && spa_writeable(spa)) {
933 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
934 zio->io_offset, zio->io_size, zio->io_data,
935 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
936 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
937 } else {
938 zio_buf_free(zio->io_data, zio->io_size);
939 }
940 } else if (zio->io_type == ZIO_TYPE_WRITE) {
941 if (zio->io_error == 0)
942 vps->vps_writeable = 1;
943 zio_buf_free(zio->io_data, zio->io_size);
944 } else if (zio->io_type == ZIO_TYPE_NULL) {
945 zio_t *pio;
946
947 vd->vdev_cant_read |= !vps->vps_readable;
948 vd->vdev_cant_write |= !vps->vps_writeable;
949
950 if (vdev_readable(vd) &&
951 (vdev_writeable(vd) || !spa_writeable(spa))) {
952 zio->io_error = 0;
953 } else {
954 ASSERT(zio->io_error != 0);
955 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
956 spa, vd, NULL, 0, 0);
957 zio->io_error = SET_ERROR(ENXIO);
958 }
959
960 mutex_enter(&vd->vdev_probe_lock);
961 ASSERT(vd->vdev_probe_zio == zio);
962 vd->vdev_probe_zio = NULL;
963 mutex_exit(&vd->vdev_probe_lock);
964
965 while ((pio = zio_walk_parents(zio)) != NULL)
966 if (!vdev_accessible(vd, pio))
967 pio->io_error = SET_ERROR(ENXIO);
968
969 kmem_free(vps, sizeof (*vps));
970 }
971 }
972
973 /*
974 * Determine whether this device is accessible.
975 *
976 * Read and write to several known locations: the pad regions of each
977 * vdev label but the first, which we leave alone in case it contains
978 * a VTOC.
979 */
980 zio_t *
981 vdev_probe(vdev_t *vd, zio_t *zio)
982 {
983 spa_t *spa = vd->vdev_spa;
984 vdev_probe_stats_t *vps = NULL;
985 zio_t *pio;
986 int l;
987
988 ASSERT(vd->vdev_ops->vdev_op_leaf);
989
990 /*
991 * Don't probe the probe.
992 */
993 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
994 return (NULL);
995
996 /*
997 * To prevent 'probe storms' when a device fails, we create
998 * just one probe i/o at a time. All zios that want to probe
999 * this vdev will become parents of the probe io.
1000 */
1001 mutex_enter(&vd->vdev_probe_lock);
1002
1003 if ((pio = vd->vdev_probe_zio) == NULL) {
1004 vps = kmem_zalloc(sizeof (*vps), KM_PUSHPAGE);
1005
1006 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1007 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1008 ZIO_FLAG_TRYHARD;
1009
1010 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1011 /*
1012 * vdev_cant_read and vdev_cant_write can only
1013 * transition from TRUE to FALSE when we have the
1014 * SCL_ZIO lock as writer; otherwise they can only
1015 * transition from FALSE to TRUE. This ensures that
1016 * any zio looking at these values can assume that
1017 * failures persist for the life of the I/O. That's
1018 * important because when a device has intermittent
1019 * connectivity problems, we want to ensure that
1020 * they're ascribed to the device (ENXIO) and not
1021 * the zio (EIO).
1022 *
1023 * Since we hold SCL_ZIO as writer here, clear both
1024 * values so the probe can reevaluate from first
1025 * principles.
1026 */
1027 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1028 vd->vdev_cant_read = B_FALSE;
1029 vd->vdev_cant_write = B_FALSE;
1030 }
1031
1032 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1033 vdev_probe_done, vps,
1034 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1035
1036 /*
1037 * We can't change the vdev state in this context, so we
1038 * kick off an async task to do it on our behalf.
1039 */
1040 if (zio != NULL) {
1041 vd->vdev_probe_wanted = B_TRUE;
1042 spa_async_request(spa, SPA_ASYNC_PROBE);
1043 }
1044 }
1045
1046 if (zio != NULL)
1047 zio_add_child(zio, pio);
1048
1049 mutex_exit(&vd->vdev_probe_lock);
1050
1051 if (vps == NULL) {
1052 ASSERT(zio != NULL);
1053 return (NULL);
1054 }
1055
1056 for (l = 1; l < VDEV_LABELS; l++) {
1057 zio_nowait(zio_read_phys(pio, vd,
1058 vdev_label_offset(vd->vdev_psize, l,
1059 offsetof(vdev_label_t, vl_pad2)),
1060 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1061 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1062 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1063 }
1064
1065 if (zio == NULL)
1066 return (pio);
1067
1068 zio_nowait(pio);
1069 return (NULL);
1070 }
1071
1072 static void
1073 vdev_open_child(void *arg)
1074 {
1075 vdev_t *vd = arg;
1076
1077 vd->vdev_open_thread = curthread;
1078 vd->vdev_open_error = vdev_open(vd);
1079 vd->vdev_open_thread = NULL;
1080 }
1081
1082 static boolean_t
1083 vdev_uses_zvols(vdev_t *vd)
1084 {
1085 int c;
1086
1087 #ifdef _KERNEL
1088 if (zvol_is_zvol(vd->vdev_path))
1089 return (B_TRUE);
1090 #endif
1091
1092 for (c = 0; c < vd->vdev_children; c++)
1093 if (vdev_uses_zvols(vd->vdev_child[c]))
1094 return (B_TRUE);
1095
1096 return (B_FALSE);
1097 }
1098
1099 void
1100 vdev_open_children(vdev_t *vd)
1101 {
1102 taskq_t *tq;
1103 int children = vd->vdev_children;
1104 int c;
1105
1106 /*
1107 * in order to handle pools on top of zvols, do the opens
1108 * in a single thread so that the same thread holds the
1109 * spa_namespace_lock
1110 */
1111 if (vdev_uses_zvols(vd)) {
1112 for (c = 0; c < children; c++)
1113 vd->vdev_child[c]->vdev_open_error =
1114 vdev_open(vd->vdev_child[c]);
1115 return;
1116 }
1117 tq = taskq_create("vdev_open", children, minclsyspri,
1118 children, children, TASKQ_PREPOPULATE);
1119
1120 for (c = 0; c < children; c++)
1121 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1122 TQ_SLEEP) != 0);
1123
1124 taskq_destroy(tq);
1125 }
1126
1127 /*
1128 * Prepare a virtual device for access.
1129 */
1130 int
1131 vdev_open(vdev_t *vd)
1132 {
1133 spa_t *spa = vd->vdev_spa;
1134 int error;
1135 uint64_t osize = 0;
1136 uint64_t max_osize = 0;
1137 uint64_t asize, max_asize, psize;
1138 uint64_t ashift = 0;
1139 int c;
1140
1141 ASSERT(vd->vdev_open_thread == curthread ||
1142 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1143 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1144 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1145 vd->vdev_state == VDEV_STATE_OFFLINE);
1146
1147 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1148 vd->vdev_cant_read = B_FALSE;
1149 vd->vdev_cant_write = B_FALSE;
1150 vd->vdev_min_asize = vdev_get_min_asize(vd);
1151
1152 /*
1153 * If this vdev is not removed, check its fault status. If it's
1154 * faulted, bail out of the open.
1155 */
1156 if (!vd->vdev_removed && vd->vdev_faulted) {
1157 ASSERT(vd->vdev_children == 0);
1158 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1159 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1160 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1161 vd->vdev_label_aux);
1162 return (SET_ERROR(ENXIO));
1163 } else if (vd->vdev_offline) {
1164 ASSERT(vd->vdev_children == 0);
1165 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1166 return (SET_ERROR(ENXIO));
1167 }
1168
1169 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1170
1171 /*
1172 * Reset the vdev_reopening flag so that we actually close
1173 * the vdev on error.
1174 */
1175 vd->vdev_reopening = B_FALSE;
1176 if (zio_injection_enabled && error == 0)
1177 error = zio_handle_device_injection(vd, NULL, ENXIO);
1178
1179 if (error) {
1180 if (vd->vdev_removed &&
1181 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1182 vd->vdev_removed = B_FALSE;
1183
1184 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1185 vd->vdev_stat.vs_aux);
1186 return (error);
1187 }
1188
1189 vd->vdev_removed = B_FALSE;
1190
1191 /*
1192 * Recheck the faulted flag now that we have confirmed that
1193 * the vdev is accessible. If we're faulted, bail.
1194 */
1195 if (vd->vdev_faulted) {
1196 ASSERT(vd->vdev_children == 0);
1197 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1198 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1199 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1200 vd->vdev_label_aux);
1201 return (SET_ERROR(ENXIO));
1202 }
1203
1204 if (vd->vdev_degraded) {
1205 ASSERT(vd->vdev_children == 0);
1206 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1207 VDEV_AUX_ERR_EXCEEDED);
1208 } else {
1209 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1210 }
1211
1212 /*
1213 * For hole or missing vdevs we just return success.
1214 */
1215 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1216 return (0);
1217
1218 for (c = 0; c < vd->vdev_children; c++) {
1219 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1220 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1221 VDEV_AUX_NONE);
1222 break;
1223 }
1224 }
1225
1226 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1227 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1228
1229 if (vd->vdev_children == 0) {
1230 if (osize < SPA_MINDEVSIZE) {
1231 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1232 VDEV_AUX_TOO_SMALL);
1233 return (SET_ERROR(EOVERFLOW));
1234 }
1235 psize = osize;
1236 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1237 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1238 VDEV_LABEL_END_SIZE);
1239 } else {
1240 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1241 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1242 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1243 VDEV_AUX_TOO_SMALL);
1244 return (SET_ERROR(EOVERFLOW));
1245 }
1246 psize = 0;
1247 asize = osize;
1248 max_asize = max_osize;
1249 }
1250
1251 vd->vdev_psize = psize;
1252
1253 /*
1254 * Make sure the allocatable size hasn't shrunk.
1255 */
1256 if (asize < vd->vdev_min_asize) {
1257 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1258 VDEV_AUX_BAD_LABEL);
1259 return (SET_ERROR(EINVAL));
1260 }
1261
1262 if (vd->vdev_asize == 0) {
1263 /*
1264 * This is the first-ever open, so use the computed values.
1265 * For compatibility, a different ashift can be requested.
1266 */
1267 vd->vdev_asize = asize;
1268 vd->vdev_max_asize = max_asize;
1269 if (vd->vdev_ashift == 0)
1270 vd->vdev_ashift = ashift;
1271 } else {
1272 /*
1273 * Detect if the alignment requirement has increased.
1274 * We don't want to make the pool unavailable, just
1275 * post an event instead.
1276 */
1277 if (ashift > vd->vdev_top->vdev_ashift &&
1278 vd->vdev_ops->vdev_op_leaf) {
1279 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1280 spa, vd, NULL, 0, 0);
1281 }
1282
1283 vd->vdev_max_asize = max_asize;
1284 }
1285
1286 /*
1287 * If all children are healthy and the asize has increased,
1288 * then we've experienced dynamic LUN growth. If automatic
1289 * expansion is enabled then use the additional space.
1290 */
1291 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1292 (vd->vdev_expanding || spa->spa_autoexpand))
1293 vd->vdev_asize = asize;
1294
1295 vdev_set_min_asize(vd);
1296
1297 /*
1298 * Ensure we can issue some IO before declaring the
1299 * vdev open for business.
1300 */
1301 if (vd->vdev_ops->vdev_op_leaf &&
1302 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1303 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1304 VDEV_AUX_ERR_EXCEEDED);
1305 return (error);
1306 }
1307
1308 /*
1309 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1310 * resilver. But don't do this if we are doing a reopen for a scrub,
1311 * since this would just restart the scrub we are already doing.
1312 */
1313 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1314 vdev_resilver_needed(vd, NULL, NULL))
1315 spa_async_request(spa, SPA_ASYNC_RESILVER);
1316
1317 return (0);
1318 }
1319
1320 /*
1321 * Called once the vdevs are all opened, this routine validates the label
1322 * contents. This needs to be done before vdev_load() so that we don't
1323 * inadvertently do repair I/Os to the wrong device.
1324 *
1325 * If 'strict' is false ignore the spa guid check. This is necessary because
1326 * if the machine crashed during a re-guid the new guid might have been written
1327 * to all of the vdev labels, but not the cached config. The strict check
1328 * will be performed when the pool is opened again using the mos config.
1329 *
1330 * This function will only return failure if one of the vdevs indicates that it
1331 * has since been destroyed or exported. This is only possible if
1332 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1333 * will be updated but the function will return 0.
1334 */
1335 int
1336 vdev_validate(vdev_t *vd, boolean_t strict)
1337 {
1338 spa_t *spa = vd->vdev_spa;
1339 nvlist_t *label;
1340 uint64_t guid = 0, top_guid;
1341 uint64_t state;
1342 int c;
1343
1344 for (c = 0; c < vd->vdev_children; c++)
1345 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1346 return (SET_ERROR(EBADF));
1347
1348 /*
1349 * If the device has already failed, or was marked offline, don't do
1350 * any further validation. Otherwise, label I/O will fail and we will
1351 * overwrite the previous state.
1352 */
1353 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1354 uint64_t aux_guid = 0;
1355 nvlist_t *nvl;
1356 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1357 spa_last_synced_txg(spa) : -1ULL;
1358
1359 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1360 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1361 VDEV_AUX_BAD_LABEL);
1362 return (0);
1363 }
1364
1365 /*
1366 * Determine if this vdev has been split off into another
1367 * pool. If so, then refuse to open it.
1368 */
1369 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1370 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1371 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1372 VDEV_AUX_SPLIT_POOL);
1373 nvlist_free(label);
1374 return (0);
1375 }
1376
1377 if (strict && (nvlist_lookup_uint64(label,
1378 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1379 guid != spa_guid(spa))) {
1380 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1381 VDEV_AUX_CORRUPT_DATA);
1382 nvlist_free(label);
1383 return (0);
1384 }
1385
1386 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1387 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1388 &aux_guid) != 0)
1389 aux_guid = 0;
1390
1391 /*
1392 * If this vdev just became a top-level vdev because its
1393 * sibling was detached, it will have adopted the parent's
1394 * vdev guid -- but the label may or may not be on disk yet.
1395 * Fortunately, either version of the label will have the
1396 * same top guid, so if we're a top-level vdev, we can
1397 * safely compare to that instead.
1398 *
1399 * If we split this vdev off instead, then we also check the
1400 * original pool's guid. We don't want to consider the vdev
1401 * corrupt if it is partway through a split operation.
1402 */
1403 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1404 &guid) != 0 ||
1405 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1406 &top_guid) != 0 ||
1407 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1408 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1409 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1410 VDEV_AUX_CORRUPT_DATA);
1411 nvlist_free(label);
1412 return (0);
1413 }
1414
1415 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1416 &state) != 0) {
1417 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1418 VDEV_AUX_CORRUPT_DATA);
1419 nvlist_free(label);
1420 return (0);
1421 }
1422
1423 nvlist_free(label);
1424
1425 /*
1426 * If this is a verbatim import, no need to check the
1427 * state of the pool.
1428 */
1429 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1430 spa_load_state(spa) == SPA_LOAD_OPEN &&
1431 state != POOL_STATE_ACTIVE)
1432 return (SET_ERROR(EBADF));
1433
1434 /*
1435 * If we were able to open and validate a vdev that was
1436 * previously marked permanently unavailable, clear that state
1437 * now.
1438 */
1439 if (vd->vdev_not_present)
1440 vd->vdev_not_present = 0;
1441 }
1442
1443 return (0);
1444 }
1445
1446 /*
1447 * Close a virtual device.
1448 */
1449 void
1450 vdev_close(vdev_t *vd)
1451 {
1452 vdev_t *pvd = vd->vdev_parent;
1453 ASSERTV(spa_t *spa = vd->vdev_spa);
1454
1455 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1456
1457 /*
1458 * If our parent is reopening, then we are as well, unless we are
1459 * going offline.
1460 */
1461 if (pvd != NULL && pvd->vdev_reopening)
1462 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1463
1464 vd->vdev_ops->vdev_op_close(vd);
1465
1466 vdev_cache_purge(vd);
1467
1468 /*
1469 * We record the previous state before we close it, so that if we are
1470 * doing a reopen(), we don't generate FMA ereports if we notice that
1471 * it's still faulted.
1472 */
1473 vd->vdev_prevstate = vd->vdev_state;
1474
1475 if (vd->vdev_offline)
1476 vd->vdev_state = VDEV_STATE_OFFLINE;
1477 else
1478 vd->vdev_state = VDEV_STATE_CLOSED;
1479 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1480 }
1481
1482 void
1483 vdev_hold(vdev_t *vd)
1484 {
1485 spa_t *spa = vd->vdev_spa;
1486 int c;
1487
1488 ASSERT(spa_is_root(spa));
1489 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1490 return;
1491
1492 for (c = 0; c < vd->vdev_children; c++)
1493 vdev_hold(vd->vdev_child[c]);
1494
1495 if (vd->vdev_ops->vdev_op_leaf)
1496 vd->vdev_ops->vdev_op_hold(vd);
1497 }
1498
1499 void
1500 vdev_rele(vdev_t *vd)
1501 {
1502 int c;
1503
1504 ASSERT(spa_is_root(vd->vdev_spa));
1505 for (c = 0; c < vd->vdev_children; c++)
1506 vdev_rele(vd->vdev_child[c]);
1507
1508 if (vd->vdev_ops->vdev_op_leaf)
1509 vd->vdev_ops->vdev_op_rele(vd);
1510 }
1511
1512 /*
1513 * Reopen all interior vdevs and any unopened leaves. We don't actually
1514 * reopen leaf vdevs which had previously been opened as they might deadlock
1515 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1516 * If the leaf has never been opened then open it, as usual.
1517 */
1518 void
1519 vdev_reopen(vdev_t *vd)
1520 {
1521 spa_t *spa = vd->vdev_spa;
1522
1523 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1524
1525 /* set the reopening flag unless we're taking the vdev offline */
1526 vd->vdev_reopening = !vd->vdev_offline;
1527 vdev_close(vd);
1528 (void) vdev_open(vd);
1529
1530 /*
1531 * Call vdev_validate() here to make sure we have the same device.
1532 * Otherwise, a device with an invalid label could be successfully
1533 * opened in response to vdev_reopen().
1534 */
1535 if (vd->vdev_aux) {
1536 (void) vdev_validate_aux(vd);
1537 if (vdev_readable(vd) && vdev_writeable(vd) &&
1538 vd->vdev_aux == &spa->spa_l2cache &&
1539 !l2arc_vdev_present(vd))
1540 l2arc_add_vdev(spa, vd);
1541 } else {
1542 (void) vdev_validate(vd, B_TRUE);
1543 }
1544
1545 /*
1546 * Reassess parent vdev's health.
1547 */
1548 vdev_propagate_state(vd);
1549 }
1550
1551 int
1552 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1553 {
1554 int error;
1555
1556 /*
1557 * Normally, partial opens (e.g. of a mirror) are allowed.
1558 * For a create, however, we want to fail the request if
1559 * there are any components we can't open.
1560 */
1561 error = vdev_open(vd);
1562
1563 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1564 vdev_close(vd);
1565 return (error ? error : ENXIO);
1566 }
1567
1568 /*
1569 * Recursively load DTLs and initialize all labels.
1570 */
1571 if ((error = vdev_dtl_load(vd)) != 0 ||
1572 (error = vdev_label_init(vd, txg, isreplacing ?
1573 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1574 vdev_close(vd);
1575 return (error);
1576 }
1577
1578 return (0);
1579 }
1580
1581 void
1582 vdev_metaslab_set_size(vdev_t *vd)
1583 {
1584 /*
1585 * Aim for roughly 200 metaslabs per vdev.
1586 */
1587 vd->vdev_ms_shift = highbit64(vd->vdev_asize / 200);
1588 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1589 }
1590
1591 void
1592 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1593 {
1594 ASSERT(vd == vd->vdev_top);
1595 ASSERT(!vd->vdev_ishole);
1596 ASSERT(ISP2(flags));
1597 ASSERT(spa_writeable(vd->vdev_spa));
1598
1599 if (flags & VDD_METASLAB)
1600 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1601
1602 if (flags & VDD_DTL)
1603 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1604
1605 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1606 }
1607
1608 void
1609 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1610 {
1611 int c;
1612
1613 for (c = 0; c < vd->vdev_children; c++)
1614 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1615
1616 if (vd->vdev_ops->vdev_op_leaf)
1617 vdev_dirty(vd->vdev_top, flags, vd, txg);
1618 }
1619
1620 /*
1621 * DTLs.
1622 *
1623 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1624 * the vdev has less than perfect replication. There are four kinds of DTL:
1625 *
1626 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1627 *
1628 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1629 *
1630 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1631 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1632 * txgs that was scrubbed.
1633 *
1634 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1635 * persistent errors or just some device being offline.
1636 * Unlike the other three, the DTL_OUTAGE map is not generally
1637 * maintained; it's only computed when needed, typically to
1638 * determine whether a device can be detached.
1639 *
1640 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1641 * either has the data or it doesn't.
1642 *
1643 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1644 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1645 * if any child is less than fully replicated, then so is its parent.
1646 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1647 * comprising only those txgs which appear in 'maxfaults' or more children;
1648 * those are the txgs we don't have enough replication to read. For example,
1649 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1650 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1651 * two child DTL_MISSING maps.
1652 *
1653 * It should be clear from the above that to compute the DTLs and outage maps
1654 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1655 * Therefore, that is all we keep on disk. When loading the pool, or after
1656 * a configuration change, we generate all other DTLs from first principles.
1657 */
1658 void
1659 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1660 {
1661 range_tree_t *rt = vd->vdev_dtl[t];
1662
1663 ASSERT(t < DTL_TYPES);
1664 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1665 ASSERT(spa_writeable(vd->vdev_spa));
1666
1667 mutex_enter(rt->rt_lock);
1668 if (!range_tree_contains(rt, txg, size))
1669 range_tree_add(rt, txg, size);
1670 mutex_exit(rt->rt_lock);
1671 }
1672
1673 boolean_t
1674 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1675 {
1676 range_tree_t *rt = vd->vdev_dtl[t];
1677 boolean_t dirty = B_FALSE;
1678
1679 ASSERT(t < DTL_TYPES);
1680 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1681
1682 mutex_enter(rt->rt_lock);
1683 if (range_tree_space(rt) != 0)
1684 dirty = range_tree_contains(rt, txg, size);
1685 mutex_exit(rt->rt_lock);
1686
1687 return (dirty);
1688 }
1689
1690 boolean_t
1691 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1692 {
1693 range_tree_t *rt = vd->vdev_dtl[t];
1694 boolean_t empty;
1695
1696 mutex_enter(rt->rt_lock);
1697 empty = (range_tree_space(rt) == 0);
1698 mutex_exit(rt->rt_lock);
1699
1700 return (empty);
1701 }
1702
1703 /*
1704 * Returns the lowest txg in the DTL range.
1705 */
1706 static uint64_t
1707 vdev_dtl_min(vdev_t *vd)
1708 {
1709 range_seg_t *rs;
1710
1711 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1712 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1713 ASSERT0(vd->vdev_children);
1714
1715 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1716 return (rs->rs_start - 1);
1717 }
1718
1719 /*
1720 * Returns the highest txg in the DTL.
1721 */
1722 static uint64_t
1723 vdev_dtl_max(vdev_t *vd)
1724 {
1725 range_seg_t *rs;
1726
1727 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1728 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1729 ASSERT0(vd->vdev_children);
1730
1731 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1732 return (rs->rs_end);
1733 }
1734
1735 /*
1736 * Determine if a resilvering vdev should remove any DTL entries from
1737 * its range. If the vdev was resilvering for the entire duration of the
1738 * scan then it should excise that range from its DTLs. Otherwise, this
1739 * vdev is considered partially resilvered and should leave its DTL
1740 * entries intact. The comment in vdev_dtl_reassess() describes how we
1741 * excise the DTLs.
1742 */
1743 static boolean_t
1744 vdev_dtl_should_excise(vdev_t *vd)
1745 {
1746 spa_t *spa = vd->vdev_spa;
1747 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1748
1749 ASSERT0(scn->scn_phys.scn_errors);
1750 ASSERT0(vd->vdev_children);
1751
1752 if (vd->vdev_resilver_txg == 0 ||
1753 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1754 return (B_TRUE);
1755
1756 /*
1757 * When a resilver is initiated the scan will assign the scn_max_txg
1758 * value to the highest txg value that exists in all DTLs. If this
1759 * device's max DTL is not part of this scan (i.e. it is not in
1760 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1761 * for excision.
1762 */
1763 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1764 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1765 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1766 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1767 return (B_TRUE);
1768 }
1769 return (B_FALSE);
1770 }
1771
1772 /*
1773 * Reassess DTLs after a config change or scrub completion.
1774 */
1775 void
1776 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1777 {
1778 spa_t *spa = vd->vdev_spa;
1779 avl_tree_t reftree;
1780 int c, t, minref;
1781
1782 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1783
1784 for (c = 0; c < vd->vdev_children; c++)
1785 vdev_dtl_reassess(vd->vdev_child[c], txg,
1786 scrub_txg, scrub_done);
1787
1788 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1789 return;
1790
1791 if (vd->vdev_ops->vdev_op_leaf) {
1792 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1793
1794 mutex_enter(&vd->vdev_dtl_lock);
1795
1796 /*
1797 * If we've completed a scan cleanly then determine
1798 * if this vdev should remove any DTLs. We only want to
1799 * excise regions on vdevs that were available during
1800 * the entire duration of this scan.
1801 */
1802 if (scrub_txg != 0 &&
1803 (spa->spa_scrub_started ||
1804 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1805 vdev_dtl_should_excise(vd)) {
1806 /*
1807 * We completed a scrub up to scrub_txg. If we
1808 * did it without rebooting, then the scrub dtl
1809 * will be valid, so excise the old region and
1810 * fold in the scrub dtl. Otherwise, leave the
1811 * dtl as-is if there was an error.
1812 *
1813 * There's little trick here: to excise the beginning
1814 * of the DTL_MISSING map, we put it into a reference
1815 * tree and then add a segment with refcnt -1 that
1816 * covers the range [0, scrub_txg). This means
1817 * that each txg in that range has refcnt -1 or 0.
1818 * We then add DTL_SCRUB with a refcnt of 2, so that
1819 * entries in the range [0, scrub_txg) will have a
1820 * positive refcnt -- either 1 or 2. We then convert
1821 * the reference tree into the new DTL_MISSING map.
1822 */
1823 space_reftree_create(&reftree);
1824 space_reftree_add_map(&reftree,
1825 vd->vdev_dtl[DTL_MISSING], 1);
1826 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1827 space_reftree_add_map(&reftree,
1828 vd->vdev_dtl[DTL_SCRUB], 2);
1829 space_reftree_generate_map(&reftree,
1830 vd->vdev_dtl[DTL_MISSING], 1);
1831 space_reftree_destroy(&reftree);
1832 }
1833 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1834 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1835 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1836 if (scrub_done)
1837 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1838 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1839 if (!vdev_readable(vd))
1840 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1841 else
1842 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1843 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1844
1845 /*
1846 * If the vdev was resilvering and no longer has any
1847 * DTLs then reset its resilvering flag.
1848 */
1849 if (vd->vdev_resilver_txg != 0 &&
1850 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1851 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1852 vd->vdev_resilver_txg = 0;
1853
1854 mutex_exit(&vd->vdev_dtl_lock);
1855
1856 if (txg != 0)
1857 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1858 return;
1859 }
1860
1861 mutex_enter(&vd->vdev_dtl_lock);
1862 for (t = 0; t < DTL_TYPES; t++) {
1863 int c;
1864
1865 /* account for child's outage in parent's missing map */
1866 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1867 if (t == DTL_SCRUB)
1868 continue; /* leaf vdevs only */
1869 if (t == DTL_PARTIAL)
1870 minref = 1; /* i.e. non-zero */
1871 else if (vd->vdev_nparity != 0)
1872 minref = vd->vdev_nparity + 1; /* RAID-Z */
1873 else
1874 minref = vd->vdev_children; /* any kind of mirror */
1875 space_reftree_create(&reftree);
1876 for (c = 0; c < vd->vdev_children; c++) {
1877 vdev_t *cvd = vd->vdev_child[c];
1878 mutex_enter(&cvd->vdev_dtl_lock);
1879 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1880 mutex_exit(&cvd->vdev_dtl_lock);
1881 }
1882 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1883 space_reftree_destroy(&reftree);
1884 }
1885 mutex_exit(&vd->vdev_dtl_lock);
1886 }
1887
1888 int
1889 vdev_dtl_load(vdev_t *vd)
1890 {
1891 spa_t *spa = vd->vdev_spa;
1892 objset_t *mos = spa->spa_meta_objset;
1893 int error = 0;
1894 int c;
1895
1896 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1897 ASSERT(!vd->vdev_ishole);
1898
1899 error = space_map_open(&vd->vdev_dtl_sm, mos,
1900 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1901 if (error)
1902 return (error);
1903 ASSERT(vd->vdev_dtl_sm != NULL);
1904
1905 mutex_enter(&vd->vdev_dtl_lock);
1906
1907 /*
1908 * Now that we've opened the space_map we need to update
1909 * the in-core DTL.
1910 */
1911 space_map_update(vd->vdev_dtl_sm);
1912
1913 error = space_map_load(vd->vdev_dtl_sm,
1914 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1915 mutex_exit(&vd->vdev_dtl_lock);
1916
1917 return (error);
1918 }
1919
1920 for (c = 0; c < vd->vdev_children; c++) {
1921 error = vdev_dtl_load(vd->vdev_child[c]);
1922 if (error != 0)
1923 break;
1924 }
1925
1926 return (error);
1927 }
1928
1929 void
1930 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1931 {
1932 spa_t *spa = vd->vdev_spa;
1933 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
1934 objset_t *mos = spa->spa_meta_objset;
1935 range_tree_t *rtsync;
1936 kmutex_t rtlock;
1937 dmu_tx_t *tx;
1938 uint64_t object = space_map_object(vd->vdev_dtl_sm);
1939
1940 ASSERT(!vd->vdev_ishole);
1941 ASSERT(vd->vdev_ops->vdev_op_leaf);
1942
1943 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1944
1945 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
1946 mutex_enter(&vd->vdev_dtl_lock);
1947 space_map_free(vd->vdev_dtl_sm, tx);
1948 space_map_close(vd->vdev_dtl_sm);
1949 vd->vdev_dtl_sm = NULL;
1950 mutex_exit(&vd->vdev_dtl_lock);
1951 dmu_tx_commit(tx);
1952 return;
1953 }
1954
1955 if (vd->vdev_dtl_sm == NULL) {
1956 uint64_t new_object;
1957
1958 new_object = space_map_alloc(mos, tx);
1959 VERIFY3U(new_object, !=, 0);
1960
1961 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
1962 0, -1ULL, 0, &vd->vdev_dtl_lock));
1963 ASSERT(vd->vdev_dtl_sm != NULL);
1964 }
1965
1966 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
1967
1968 rtsync = range_tree_create(NULL, NULL, &rtlock);
1969
1970 mutex_enter(&rtlock);
1971
1972 mutex_enter(&vd->vdev_dtl_lock);
1973 range_tree_walk(rt, range_tree_add, rtsync);
1974 mutex_exit(&vd->vdev_dtl_lock);
1975
1976 space_map_truncate(vd->vdev_dtl_sm, tx);
1977 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
1978 range_tree_vacate(rtsync, NULL, NULL);
1979
1980 range_tree_destroy(rtsync);
1981
1982 mutex_exit(&rtlock);
1983 mutex_destroy(&rtlock);
1984
1985 /*
1986 * If the object for the space map has changed then dirty
1987 * the top level so that we update the config.
1988 */
1989 if (object != space_map_object(vd->vdev_dtl_sm)) {
1990 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
1991 "new object %llu", txg, spa_name(spa), object,
1992 space_map_object(vd->vdev_dtl_sm));
1993 vdev_config_dirty(vd->vdev_top);
1994 }
1995
1996 dmu_tx_commit(tx);
1997
1998 mutex_enter(&vd->vdev_dtl_lock);
1999 space_map_update(vd->vdev_dtl_sm);
2000 mutex_exit(&vd->vdev_dtl_lock);
2001 }
2002
2003 /*
2004 * Determine whether the specified vdev can be offlined/detached/removed
2005 * without losing data.
2006 */
2007 boolean_t
2008 vdev_dtl_required(vdev_t *vd)
2009 {
2010 spa_t *spa = vd->vdev_spa;
2011 vdev_t *tvd = vd->vdev_top;
2012 uint8_t cant_read = vd->vdev_cant_read;
2013 boolean_t required;
2014
2015 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2016
2017 if (vd == spa->spa_root_vdev || vd == tvd)
2018 return (B_TRUE);
2019
2020 /*
2021 * Temporarily mark the device as unreadable, and then determine
2022 * whether this results in any DTL outages in the top-level vdev.
2023 * If not, we can safely offline/detach/remove the device.
2024 */
2025 vd->vdev_cant_read = B_TRUE;
2026 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2027 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2028 vd->vdev_cant_read = cant_read;
2029 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2030
2031 if (!required && zio_injection_enabled)
2032 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2033
2034 return (required);
2035 }
2036
2037 /*
2038 * Determine if resilver is needed, and if so the txg range.
2039 */
2040 boolean_t
2041 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2042 {
2043 boolean_t needed = B_FALSE;
2044 uint64_t thismin = UINT64_MAX;
2045 uint64_t thismax = 0;
2046 int c;
2047
2048 if (vd->vdev_children == 0) {
2049 mutex_enter(&vd->vdev_dtl_lock);
2050 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2051 vdev_writeable(vd)) {
2052
2053 thismin = vdev_dtl_min(vd);
2054 thismax = vdev_dtl_max(vd);
2055 needed = B_TRUE;
2056 }
2057 mutex_exit(&vd->vdev_dtl_lock);
2058 } else {
2059 for (c = 0; c < vd->vdev_children; c++) {
2060 vdev_t *cvd = vd->vdev_child[c];
2061 uint64_t cmin, cmax;
2062
2063 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2064 thismin = MIN(thismin, cmin);
2065 thismax = MAX(thismax, cmax);
2066 needed = B_TRUE;
2067 }
2068 }
2069 }
2070
2071 if (needed && minp) {
2072 *minp = thismin;
2073 *maxp = thismax;
2074 }
2075 return (needed);
2076 }
2077
2078 void
2079 vdev_load(vdev_t *vd)
2080 {
2081 int c;
2082
2083 /*
2084 * Recursively load all children.
2085 */
2086 for (c = 0; c < vd->vdev_children; c++)
2087 vdev_load(vd->vdev_child[c]);
2088
2089 /*
2090 * If this is a top-level vdev, initialize its metaslabs.
2091 */
2092 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2093 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2094 vdev_metaslab_init(vd, 0) != 0))
2095 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2096 VDEV_AUX_CORRUPT_DATA);
2097
2098 /*
2099 * If this is a leaf vdev, load its DTL.
2100 */
2101 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2102 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2103 VDEV_AUX_CORRUPT_DATA);
2104 }
2105
2106 /*
2107 * The special vdev case is used for hot spares and l2cache devices. Its
2108 * sole purpose it to set the vdev state for the associated vdev. To do this,
2109 * we make sure that we can open the underlying device, then try to read the
2110 * label, and make sure that the label is sane and that it hasn't been
2111 * repurposed to another pool.
2112 */
2113 int
2114 vdev_validate_aux(vdev_t *vd)
2115 {
2116 nvlist_t *label;
2117 uint64_t guid, version;
2118 uint64_t state;
2119
2120 if (!vdev_readable(vd))
2121 return (0);
2122
2123 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2124 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2125 VDEV_AUX_CORRUPT_DATA);
2126 return (-1);
2127 }
2128
2129 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2130 !SPA_VERSION_IS_SUPPORTED(version) ||
2131 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2132 guid != vd->vdev_guid ||
2133 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2134 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2135 VDEV_AUX_CORRUPT_DATA);
2136 nvlist_free(label);
2137 return (-1);
2138 }
2139
2140 /*
2141 * We don't actually check the pool state here. If it's in fact in
2142 * use by another pool, we update this fact on the fly when requested.
2143 */
2144 nvlist_free(label);
2145 return (0);
2146 }
2147
2148 void
2149 vdev_remove(vdev_t *vd, uint64_t txg)
2150 {
2151 spa_t *spa = vd->vdev_spa;
2152 objset_t *mos = spa->spa_meta_objset;
2153 dmu_tx_t *tx;
2154 int m, i;
2155
2156 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2157
2158 if (vd->vdev_ms != NULL) {
2159 metaslab_group_t *mg = vd->vdev_mg;
2160
2161 metaslab_group_histogram_verify(mg);
2162 metaslab_class_histogram_verify(mg->mg_class);
2163
2164 for (m = 0; m < vd->vdev_ms_count; m++) {
2165 metaslab_t *msp = vd->vdev_ms[m];
2166
2167 if (msp == NULL || msp->ms_sm == NULL)
2168 continue;
2169
2170 mutex_enter(&msp->ms_lock);
2171 /*
2172 * If the metaslab was not loaded when the vdev
2173 * was removed then the histogram accounting may
2174 * not be accurate. Update the histogram information
2175 * here so that we ensure that the metaslab group
2176 * and metaslab class are up-to-date.
2177 */
2178 metaslab_group_histogram_remove(mg, msp);
2179
2180 VERIFY0(space_map_allocated(msp->ms_sm));
2181 space_map_free(msp->ms_sm, tx);
2182 space_map_close(msp->ms_sm);
2183 msp->ms_sm = NULL;
2184 mutex_exit(&msp->ms_lock);
2185 }
2186
2187 metaslab_group_histogram_verify(mg);
2188 metaslab_class_histogram_verify(mg->mg_class);
2189 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2190 ASSERT0(mg->mg_histogram[i]);
2191
2192 }
2193
2194 if (vd->vdev_ms_array) {
2195 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2196 vd->vdev_ms_array = 0;
2197 }
2198 dmu_tx_commit(tx);
2199 }
2200
2201 void
2202 vdev_sync_done(vdev_t *vd, uint64_t txg)
2203 {
2204 metaslab_t *msp;
2205 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2206
2207 ASSERT(!vd->vdev_ishole);
2208
2209 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2210 metaslab_sync_done(msp, txg);
2211
2212 if (reassess)
2213 metaslab_sync_reassess(vd->vdev_mg);
2214 }
2215
2216 void
2217 vdev_sync(vdev_t *vd, uint64_t txg)
2218 {
2219 spa_t *spa = vd->vdev_spa;
2220 vdev_t *lvd;
2221 metaslab_t *msp;
2222 dmu_tx_t *tx;
2223
2224 ASSERT(!vd->vdev_ishole);
2225
2226 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2227 ASSERT(vd == vd->vdev_top);
2228 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2229 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2230 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2231 ASSERT(vd->vdev_ms_array != 0);
2232 vdev_config_dirty(vd);
2233 dmu_tx_commit(tx);
2234 }
2235
2236 /*
2237 * Remove the metadata associated with this vdev once it's empty.
2238 */
2239 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2240 vdev_remove(vd, txg);
2241
2242 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2243 metaslab_sync(msp, txg);
2244 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2245 }
2246
2247 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2248 vdev_dtl_sync(lvd, txg);
2249
2250 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2251 }
2252
2253 uint64_t
2254 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2255 {
2256 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2257 }
2258
2259 /*
2260 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2261 * not be opened, and no I/O is attempted.
2262 */
2263 int
2264 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2265 {
2266 vdev_t *vd, *tvd;
2267
2268 spa_vdev_state_enter(spa, SCL_NONE);
2269
2270 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2271 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2272
2273 if (!vd->vdev_ops->vdev_op_leaf)
2274 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2275
2276 tvd = vd->vdev_top;
2277
2278 /*
2279 * We don't directly use the aux state here, but if we do a
2280 * vdev_reopen(), we need this value to be present to remember why we
2281 * were faulted.
2282 */
2283 vd->vdev_label_aux = aux;
2284
2285 /*
2286 * Faulted state takes precedence over degraded.
2287 */
2288 vd->vdev_delayed_close = B_FALSE;
2289 vd->vdev_faulted = 1ULL;
2290 vd->vdev_degraded = 0ULL;
2291 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2292
2293 /*
2294 * If this device has the only valid copy of the data, then
2295 * back off and simply mark the vdev as degraded instead.
2296 */
2297 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2298 vd->vdev_degraded = 1ULL;
2299 vd->vdev_faulted = 0ULL;
2300
2301 /*
2302 * If we reopen the device and it's not dead, only then do we
2303 * mark it degraded.
2304 */
2305 vdev_reopen(tvd);
2306
2307 if (vdev_readable(vd))
2308 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2309 }
2310
2311 return (spa_vdev_state_exit(spa, vd, 0));
2312 }
2313
2314 /*
2315 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2316 * user that something is wrong. The vdev continues to operate as normal as far
2317 * as I/O is concerned.
2318 */
2319 int
2320 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2321 {
2322 vdev_t *vd;
2323
2324 spa_vdev_state_enter(spa, SCL_NONE);
2325
2326 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2327 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2328
2329 if (!vd->vdev_ops->vdev_op_leaf)
2330 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2331
2332 /*
2333 * If the vdev is already faulted, then don't do anything.
2334 */
2335 if (vd->vdev_faulted || vd->vdev_degraded)
2336 return (spa_vdev_state_exit(spa, NULL, 0));
2337
2338 vd->vdev_degraded = 1ULL;
2339 if (!vdev_is_dead(vd))
2340 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2341 aux);
2342
2343 return (spa_vdev_state_exit(spa, vd, 0));
2344 }
2345
2346 /*
2347 * Online the given vdev.
2348 *
2349 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2350 * spare device should be detached when the device finishes resilvering.
2351 * Second, the online should be treated like a 'test' online case, so no FMA
2352 * events are generated if the device fails to open.
2353 */
2354 int
2355 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2356 {
2357 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2358
2359 spa_vdev_state_enter(spa, SCL_NONE);
2360
2361 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2362 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2363
2364 if (!vd->vdev_ops->vdev_op_leaf)
2365 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2366
2367 tvd = vd->vdev_top;
2368 vd->vdev_offline = B_FALSE;
2369 vd->vdev_tmpoffline = B_FALSE;
2370 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2371 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2372
2373 /* XXX - L2ARC 1.0 does not support expansion */
2374 if (!vd->vdev_aux) {
2375 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2376 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2377 }
2378
2379 vdev_reopen(tvd);
2380 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2381
2382 if (!vd->vdev_aux) {
2383 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2384 pvd->vdev_expanding = B_FALSE;
2385 }
2386
2387 if (newstate)
2388 *newstate = vd->vdev_state;
2389 if ((flags & ZFS_ONLINE_UNSPARE) &&
2390 !vdev_is_dead(vd) && vd->vdev_parent &&
2391 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2392 vd->vdev_parent->vdev_child[0] == vd)
2393 vd->vdev_unspare = B_TRUE;
2394
2395 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2396
2397 /* XXX - L2ARC 1.0 does not support expansion */
2398 if (vd->vdev_aux)
2399 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2400 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2401 }
2402 return (spa_vdev_state_exit(spa, vd, 0));
2403 }
2404
2405 static int
2406 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2407 {
2408 vdev_t *vd, *tvd;
2409 int error = 0;
2410 uint64_t generation;
2411 metaslab_group_t *mg;
2412
2413 top:
2414 spa_vdev_state_enter(spa, SCL_ALLOC);
2415
2416 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2417 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2418
2419 if (!vd->vdev_ops->vdev_op_leaf)
2420 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2421
2422 tvd = vd->vdev_top;
2423 mg = tvd->vdev_mg;
2424 generation = spa->spa_config_generation + 1;
2425
2426 /*
2427 * If the device isn't already offline, try to offline it.
2428 */
2429 if (!vd->vdev_offline) {
2430 /*
2431 * If this device has the only valid copy of some data,
2432 * don't allow it to be offlined. Log devices are always
2433 * expendable.
2434 */
2435 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2436 vdev_dtl_required(vd))
2437 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2438
2439 /*
2440 * If the top-level is a slog and it has had allocations
2441 * then proceed. We check that the vdev's metaslab group
2442 * is not NULL since it's possible that we may have just
2443 * added this vdev but not yet initialized its metaslabs.
2444 */
2445 if (tvd->vdev_islog && mg != NULL) {
2446 /*
2447 * Prevent any future allocations.
2448 */
2449 metaslab_group_passivate(mg);
2450 (void) spa_vdev_state_exit(spa, vd, 0);
2451
2452 error = spa_offline_log(spa);
2453
2454 spa_vdev_state_enter(spa, SCL_ALLOC);
2455
2456 /*
2457 * Check to see if the config has changed.
2458 */
2459 if (error || generation != spa->spa_config_generation) {
2460 metaslab_group_activate(mg);
2461 if (error)
2462 return (spa_vdev_state_exit(spa,
2463 vd, error));
2464 (void) spa_vdev_state_exit(spa, vd, 0);
2465 goto top;
2466 }
2467 ASSERT0(tvd->vdev_stat.vs_alloc);
2468 }
2469
2470 /*
2471 * Offline this device and reopen its top-level vdev.
2472 * If the top-level vdev is a log device then just offline
2473 * it. Otherwise, if this action results in the top-level
2474 * vdev becoming unusable, undo it and fail the request.
2475 */
2476 vd->vdev_offline = B_TRUE;
2477 vdev_reopen(tvd);
2478
2479 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2480 vdev_is_dead(tvd)) {
2481 vd->vdev_offline = B_FALSE;
2482 vdev_reopen(tvd);
2483 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2484 }
2485
2486 /*
2487 * Add the device back into the metaslab rotor so that
2488 * once we online the device it's open for business.
2489 */
2490 if (tvd->vdev_islog && mg != NULL)
2491 metaslab_group_activate(mg);
2492 }
2493
2494 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2495
2496 return (spa_vdev_state_exit(spa, vd, 0));
2497 }
2498
2499 int
2500 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2501 {
2502 int error;
2503
2504 mutex_enter(&spa->spa_vdev_top_lock);
2505 error = vdev_offline_locked(spa, guid, flags);
2506 mutex_exit(&spa->spa_vdev_top_lock);
2507
2508 return (error);
2509 }
2510
2511 /*
2512 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2513 * vdev_offline(), we assume the spa config is locked. We also clear all
2514 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2515 */
2516 void
2517 vdev_clear(spa_t *spa, vdev_t *vd)
2518 {
2519 vdev_t *rvd = spa->spa_root_vdev;
2520 int c;
2521
2522 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2523
2524 if (vd == NULL)
2525 vd = rvd;
2526
2527 vd->vdev_stat.vs_read_errors = 0;
2528 vd->vdev_stat.vs_write_errors = 0;
2529 vd->vdev_stat.vs_checksum_errors = 0;
2530
2531 for (c = 0; c < vd->vdev_children; c++)
2532 vdev_clear(spa, vd->vdev_child[c]);
2533
2534 /*
2535 * If we're in the FAULTED state or have experienced failed I/O, then
2536 * clear the persistent state and attempt to reopen the device. We
2537 * also mark the vdev config dirty, so that the new faulted state is
2538 * written out to disk.
2539 */
2540 if (vd->vdev_faulted || vd->vdev_degraded ||
2541 !vdev_readable(vd) || !vdev_writeable(vd)) {
2542
2543 /*
2544 * When reopening in reponse to a clear event, it may be due to
2545 * a fmadm repair request. In this case, if the device is
2546 * still broken, we want to still post the ereport again.
2547 */
2548 vd->vdev_forcefault = B_TRUE;
2549
2550 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2551 vd->vdev_cant_read = B_FALSE;
2552 vd->vdev_cant_write = B_FALSE;
2553
2554 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2555
2556 vd->vdev_forcefault = B_FALSE;
2557
2558 if (vd != rvd && vdev_writeable(vd->vdev_top))
2559 vdev_state_dirty(vd->vdev_top);
2560
2561 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2562 spa_async_request(spa, SPA_ASYNC_RESILVER);
2563
2564 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
2565 }
2566
2567 /*
2568 * When clearing a FMA-diagnosed fault, we always want to
2569 * unspare the device, as we assume that the original spare was
2570 * done in response to the FMA fault.
2571 */
2572 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2573 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2574 vd->vdev_parent->vdev_child[0] == vd)
2575 vd->vdev_unspare = B_TRUE;
2576 }
2577
2578 boolean_t
2579 vdev_is_dead(vdev_t *vd)
2580 {
2581 /*
2582 * Holes and missing devices are always considered "dead".
2583 * This simplifies the code since we don't have to check for
2584 * these types of devices in the various code paths.
2585 * Instead we rely on the fact that we skip over dead devices
2586 * before issuing I/O to them.
2587 */
2588 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2589 vd->vdev_ops == &vdev_missing_ops);
2590 }
2591
2592 boolean_t
2593 vdev_readable(vdev_t *vd)
2594 {
2595 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2596 }
2597
2598 boolean_t
2599 vdev_writeable(vdev_t *vd)
2600 {
2601 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2602 }
2603
2604 boolean_t
2605 vdev_allocatable(vdev_t *vd)
2606 {
2607 uint64_t state = vd->vdev_state;
2608
2609 /*
2610 * We currently allow allocations from vdevs which may be in the
2611 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2612 * fails to reopen then we'll catch it later when we're holding
2613 * the proper locks. Note that we have to get the vdev state
2614 * in a local variable because although it changes atomically,
2615 * we're asking two separate questions about it.
2616 */
2617 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2618 !vd->vdev_cant_write && !vd->vdev_ishole);
2619 }
2620
2621 boolean_t
2622 vdev_accessible(vdev_t *vd, zio_t *zio)
2623 {
2624 ASSERT(zio->io_vd == vd);
2625
2626 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2627 return (B_FALSE);
2628
2629 if (zio->io_type == ZIO_TYPE_READ)
2630 return (!vd->vdev_cant_read);
2631
2632 if (zio->io_type == ZIO_TYPE_WRITE)
2633 return (!vd->vdev_cant_write);
2634
2635 return (B_TRUE);
2636 }
2637
2638 /*
2639 * Get statistics for the given vdev.
2640 */
2641 void
2642 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2643 {
2644 spa_t *spa = vd->vdev_spa;
2645 vdev_t *rvd = spa->spa_root_vdev;
2646 int c, t;
2647
2648 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2649
2650 mutex_enter(&vd->vdev_stat_lock);
2651 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2652 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2653 vs->vs_state = vd->vdev_state;
2654 vs->vs_rsize = vdev_get_min_asize(vd);
2655 if (vd->vdev_ops->vdev_op_leaf)
2656 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2657 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2658 if (vd->vdev_aux == NULL && vd == vd->vdev_top)
2659 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2660
2661 /*
2662 * If we're getting stats on the root vdev, aggregate the I/O counts
2663 * over all top-level vdevs (i.e. the direct children of the root).
2664 */
2665 if (vd == rvd) {
2666 for (c = 0; c < rvd->vdev_children; c++) {
2667 vdev_t *cvd = rvd->vdev_child[c];
2668 vdev_stat_t *cvs = &cvd->vdev_stat;
2669
2670 for (t = 0; t < ZIO_TYPES; t++) {
2671 vs->vs_ops[t] += cvs->vs_ops[t];
2672 vs->vs_bytes[t] += cvs->vs_bytes[t];
2673 }
2674 cvs->vs_scan_removing = cvd->vdev_removing;
2675 }
2676 }
2677 mutex_exit(&vd->vdev_stat_lock);
2678 }
2679
2680 void
2681 vdev_clear_stats(vdev_t *vd)
2682 {
2683 mutex_enter(&vd->vdev_stat_lock);
2684 vd->vdev_stat.vs_space = 0;
2685 vd->vdev_stat.vs_dspace = 0;
2686 vd->vdev_stat.vs_alloc = 0;
2687 mutex_exit(&vd->vdev_stat_lock);
2688 }
2689
2690 void
2691 vdev_scan_stat_init(vdev_t *vd)
2692 {
2693 vdev_stat_t *vs = &vd->vdev_stat;
2694 int c;
2695
2696 for (c = 0; c < vd->vdev_children; c++)
2697 vdev_scan_stat_init(vd->vdev_child[c]);
2698
2699 mutex_enter(&vd->vdev_stat_lock);
2700 vs->vs_scan_processed = 0;
2701 mutex_exit(&vd->vdev_stat_lock);
2702 }
2703
2704 void
2705 vdev_stat_update(zio_t *zio, uint64_t psize)
2706 {
2707 spa_t *spa = zio->io_spa;
2708 vdev_t *rvd = spa->spa_root_vdev;
2709 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2710 vdev_t *pvd;
2711 uint64_t txg = zio->io_txg;
2712 vdev_stat_t *vs = &vd->vdev_stat;
2713 zio_type_t type = zio->io_type;
2714 int flags = zio->io_flags;
2715
2716 /*
2717 * If this i/o is a gang leader, it didn't do any actual work.
2718 */
2719 if (zio->io_gang_tree)
2720 return;
2721
2722 if (zio->io_error == 0) {
2723 /*
2724 * If this is a root i/o, don't count it -- we've already
2725 * counted the top-level vdevs, and vdev_get_stats() will
2726 * aggregate them when asked. This reduces contention on
2727 * the root vdev_stat_lock and implicitly handles blocks
2728 * that compress away to holes, for which there is no i/o.
2729 * (Holes never create vdev children, so all the counters
2730 * remain zero, which is what we want.)
2731 *
2732 * Note: this only applies to successful i/o (io_error == 0)
2733 * because unlike i/o counts, errors are not additive.
2734 * When reading a ditto block, for example, failure of
2735 * one top-level vdev does not imply a root-level error.
2736 */
2737 if (vd == rvd)
2738 return;
2739
2740 ASSERT(vd == zio->io_vd);
2741
2742 if (flags & ZIO_FLAG_IO_BYPASS)
2743 return;
2744
2745 mutex_enter(&vd->vdev_stat_lock);
2746
2747 if (flags & ZIO_FLAG_IO_REPAIR) {
2748 if (flags & ZIO_FLAG_SCAN_THREAD) {
2749 dsl_scan_phys_t *scn_phys =
2750 &spa->spa_dsl_pool->dp_scan->scn_phys;
2751 uint64_t *processed = &scn_phys->scn_processed;
2752
2753 /* XXX cleanup? */
2754 if (vd->vdev_ops->vdev_op_leaf)
2755 atomic_add_64(processed, psize);
2756 vs->vs_scan_processed += psize;
2757 }
2758
2759 if (flags & ZIO_FLAG_SELF_HEAL)
2760 vs->vs_self_healed += psize;
2761 }
2762
2763 vs->vs_ops[type]++;
2764 vs->vs_bytes[type] += psize;
2765
2766 mutex_exit(&vd->vdev_stat_lock);
2767 return;
2768 }
2769
2770 if (flags & ZIO_FLAG_SPECULATIVE)
2771 return;
2772
2773 /*
2774 * If this is an I/O error that is going to be retried, then ignore the
2775 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2776 * hard errors, when in reality they can happen for any number of
2777 * innocuous reasons (bus resets, MPxIO link failure, etc).
2778 */
2779 if (zio->io_error == EIO &&
2780 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2781 return;
2782
2783 /*
2784 * Intent logs writes won't propagate their error to the root
2785 * I/O so don't mark these types of failures as pool-level
2786 * errors.
2787 */
2788 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2789 return;
2790
2791 mutex_enter(&vd->vdev_stat_lock);
2792 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2793 if (zio->io_error == ECKSUM)
2794 vs->vs_checksum_errors++;
2795 else
2796 vs->vs_read_errors++;
2797 }
2798 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2799 vs->vs_write_errors++;
2800 mutex_exit(&vd->vdev_stat_lock);
2801
2802 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2803 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2804 (flags & ZIO_FLAG_SCAN_THREAD) ||
2805 spa->spa_claiming)) {
2806 /*
2807 * This is either a normal write (not a repair), or it's
2808 * a repair induced by the scrub thread, or it's a repair
2809 * made by zil_claim() during spa_load() in the first txg.
2810 * In the normal case, we commit the DTL change in the same
2811 * txg as the block was born. In the scrub-induced repair
2812 * case, we know that scrubs run in first-pass syncing context,
2813 * so we commit the DTL change in spa_syncing_txg(spa).
2814 * In the zil_claim() case, we commit in spa_first_txg(spa).
2815 *
2816 * We currently do not make DTL entries for failed spontaneous
2817 * self-healing writes triggered by normal (non-scrubbing)
2818 * reads, because we have no transactional context in which to
2819 * do so -- and it's not clear that it'd be desirable anyway.
2820 */
2821 if (vd->vdev_ops->vdev_op_leaf) {
2822 uint64_t commit_txg = txg;
2823 if (flags & ZIO_FLAG_SCAN_THREAD) {
2824 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2825 ASSERT(spa_sync_pass(spa) == 1);
2826 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2827 commit_txg = spa_syncing_txg(spa);
2828 } else if (spa->spa_claiming) {
2829 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2830 commit_txg = spa_first_txg(spa);
2831 }
2832 ASSERT(commit_txg >= spa_syncing_txg(spa));
2833 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2834 return;
2835 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2836 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2837 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2838 }
2839 if (vd != rvd)
2840 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2841 }
2842 }
2843
2844 /*
2845 * Update the in-core space usage stats for this vdev, its metaslab class,
2846 * and the root vdev.
2847 */
2848 void
2849 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2850 int64_t space_delta)
2851 {
2852 int64_t dspace_delta = space_delta;
2853 spa_t *spa = vd->vdev_spa;
2854 vdev_t *rvd = spa->spa_root_vdev;
2855 metaslab_group_t *mg = vd->vdev_mg;
2856 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2857
2858 ASSERT(vd == vd->vdev_top);
2859
2860 /*
2861 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2862 * factor. We must calculate this here and not at the root vdev
2863 * because the root vdev's psize-to-asize is simply the max of its
2864 * childrens', thus not accurate enough for us.
2865 */
2866 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2867 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2868 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2869 vd->vdev_deflate_ratio;
2870
2871 mutex_enter(&vd->vdev_stat_lock);
2872 vd->vdev_stat.vs_alloc += alloc_delta;
2873 vd->vdev_stat.vs_space += space_delta;
2874 vd->vdev_stat.vs_dspace += dspace_delta;
2875 mutex_exit(&vd->vdev_stat_lock);
2876
2877 if (mc == spa_normal_class(spa)) {
2878 mutex_enter(&rvd->vdev_stat_lock);
2879 rvd->vdev_stat.vs_alloc += alloc_delta;
2880 rvd->vdev_stat.vs_space += space_delta;
2881 rvd->vdev_stat.vs_dspace += dspace_delta;
2882 mutex_exit(&rvd->vdev_stat_lock);
2883 }
2884
2885 if (mc != NULL) {
2886 ASSERT(rvd == vd->vdev_parent);
2887 ASSERT(vd->vdev_ms_count != 0);
2888
2889 metaslab_class_space_update(mc,
2890 alloc_delta, defer_delta, space_delta, dspace_delta);
2891 }
2892 }
2893
2894 /*
2895 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2896 * so that it will be written out next time the vdev configuration is synced.
2897 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2898 */
2899 void
2900 vdev_config_dirty(vdev_t *vd)
2901 {
2902 spa_t *spa = vd->vdev_spa;
2903 vdev_t *rvd = spa->spa_root_vdev;
2904 int c;
2905
2906 ASSERT(spa_writeable(spa));
2907
2908 /*
2909 * If this is an aux vdev (as with l2cache and spare devices), then we
2910 * update the vdev config manually and set the sync flag.
2911 */
2912 if (vd->vdev_aux != NULL) {
2913 spa_aux_vdev_t *sav = vd->vdev_aux;
2914 nvlist_t **aux;
2915 uint_t naux;
2916
2917 for (c = 0; c < sav->sav_count; c++) {
2918 if (sav->sav_vdevs[c] == vd)
2919 break;
2920 }
2921
2922 if (c == sav->sav_count) {
2923 /*
2924 * We're being removed. There's nothing more to do.
2925 */
2926 ASSERT(sav->sav_sync == B_TRUE);
2927 return;
2928 }
2929
2930 sav->sav_sync = B_TRUE;
2931
2932 if (nvlist_lookup_nvlist_array(sav->sav_config,
2933 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2934 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2935 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2936 }
2937
2938 ASSERT(c < naux);
2939
2940 /*
2941 * Setting the nvlist in the middle if the array is a little
2942 * sketchy, but it will work.
2943 */
2944 nvlist_free(aux[c]);
2945 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2946
2947 return;
2948 }
2949
2950 /*
2951 * The dirty list is protected by the SCL_CONFIG lock. The caller
2952 * must either hold SCL_CONFIG as writer, or must be the sync thread
2953 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2954 * so this is sufficient to ensure mutual exclusion.
2955 */
2956 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2957 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2958 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2959
2960 if (vd == rvd) {
2961 for (c = 0; c < rvd->vdev_children; c++)
2962 vdev_config_dirty(rvd->vdev_child[c]);
2963 } else {
2964 ASSERT(vd == vd->vdev_top);
2965
2966 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2967 !vd->vdev_ishole)
2968 list_insert_head(&spa->spa_config_dirty_list, vd);
2969 }
2970 }
2971
2972 void
2973 vdev_config_clean(vdev_t *vd)
2974 {
2975 spa_t *spa = vd->vdev_spa;
2976
2977 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2978 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2979 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2980
2981 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2982 list_remove(&spa->spa_config_dirty_list, vd);
2983 }
2984
2985 /*
2986 * Mark a top-level vdev's state as dirty, so that the next pass of
2987 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2988 * the state changes from larger config changes because they require
2989 * much less locking, and are often needed for administrative actions.
2990 */
2991 void
2992 vdev_state_dirty(vdev_t *vd)
2993 {
2994 spa_t *spa = vd->vdev_spa;
2995
2996 ASSERT(spa_writeable(spa));
2997 ASSERT(vd == vd->vdev_top);
2998
2999 /*
3000 * The state list is protected by the SCL_STATE lock. The caller
3001 * must either hold SCL_STATE as writer, or must be the sync thread
3002 * (which holds SCL_STATE as reader). There's only one sync thread,
3003 * so this is sufficient to ensure mutual exclusion.
3004 */
3005 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3006 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3007 spa_config_held(spa, SCL_STATE, RW_READER)));
3008
3009 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3010 list_insert_head(&spa->spa_state_dirty_list, vd);
3011 }
3012
3013 void
3014 vdev_state_clean(vdev_t *vd)
3015 {
3016 spa_t *spa = vd->vdev_spa;
3017
3018 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3019 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3020 spa_config_held(spa, SCL_STATE, RW_READER)));
3021
3022 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3023 list_remove(&spa->spa_state_dirty_list, vd);
3024 }
3025
3026 /*
3027 * Propagate vdev state up from children to parent.
3028 */
3029 void
3030 vdev_propagate_state(vdev_t *vd)
3031 {
3032 spa_t *spa = vd->vdev_spa;
3033 vdev_t *rvd = spa->spa_root_vdev;
3034 int degraded = 0, faulted = 0;
3035 int corrupted = 0;
3036 vdev_t *child;
3037 int c;
3038
3039 if (vd->vdev_children > 0) {
3040 for (c = 0; c < vd->vdev_children; c++) {
3041 child = vd->vdev_child[c];
3042
3043 /*
3044 * Don't factor holes into the decision.
3045 */
3046 if (child->vdev_ishole)
3047 continue;
3048
3049 if (!vdev_readable(child) ||
3050 (!vdev_writeable(child) && spa_writeable(spa))) {
3051 /*
3052 * Root special: if there is a top-level log
3053 * device, treat the root vdev as if it were
3054 * degraded.
3055 */
3056 if (child->vdev_islog && vd == rvd)
3057 degraded++;
3058 else
3059 faulted++;
3060 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3061 degraded++;
3062 }
3063
3064 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3065 corrupted++;
3066 }
3067
3068 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3069
3070 /*
3071 * Root special: if there is a top-level vdev that cannot be
3072 * opened due to corrupted metadata, then propagate the root
3073 * vdev's aux state as 'corrupt' rather than 'insufficient
3074 * replicas'.
3075 */
3076 if (corrupted && vd == rvd &&
3077 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3078 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3079 VDEV_AUX_CORRUPT_DATA);
3080 }
3081
3082 if (vd->vdev_parent)
3083 vdev_propagate_state(vd->vdev_parent);
3084 }
3085
3086 /*
3087 * Set a vdev's state. If this is during an open, we don't update the parent
3088 * state, because we're in the process of opening children depth-first.
3089 * Otherwise, we propagate the change to the parent.
3090 *
3091 * If this routine places a device in a faulted state, an appropriate ereport is
3092 * generated.
3093 */
3094 void
3095 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3096 {
3097 uint64_t save_state;
3098 spa_t *spa = vd->vdev_spa;
3099
3100 if (state == vd->vdev_state) {
3101 vd->vdev_stat.vs_aux = aux;
3102 return;
3103 }
3104
3105 save_state = vd->vdev_state;
3106
3107 vd->vdev_state = state;
3108 vd->vdev_stat.vs_aux = aux;
3109
3110 /*
3111 * If we are setting the vdev state to anything but an open state, then
3112 * always close the underlying device unless the device has requested
3113 * a delayed close (i.e. we're about to remove or fault the device).
3114 * Otherwise, we keep accessible but invalid devices open forever.
3115 * We don't call vdev_close() itself, because that implies some extra
3116 * checks (offline, etc) that we don't want here. This is limited to
3117 * leaf devices, because otherwise closing the device will affect other
3118 * children.
3119 */
3120 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3121 vd->vdev_ops->vdev_op_leaf)
3122 vd->vdev_ops->vdev_op_close(vd);
3123
3124 /*
3125 * If we have brought this vdev back into service, we need
3126 * to notify fmd so that it can gracefully repair any outstanding
3127 * cases due to a missing device. We do this in all cases, even those
3128 * that probably don't correlate to a repaired fault. This is sure to
3129 * catch all cases, and we let the zfs-retire agent sort it out. If
3130 * this is a transient state it's OK, as the retire agent will
3131 * double-check the state of the vdev before repairing it.
3132 */
3133 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3134 vd->vdev_prevstate != state)
3135 zfs_post_state_change(spa, vd);
3136
3137 if (vd->vdev_removed &&
3138 state == VDEV_STATE_CANT_OPEN &&
3139 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3140 /*
3141 * If the previous state is set to VDEV_STATE_REMOVED, then this
3142 * device was previously marked removed and someone attempted to
3143 * reopen it. If this failed due to a nonexistent device, then
3144 * keep the device in the REMOVED state. We also let this be if
3145 * it is one of our special test online cases, which is only
3146 * attempting to online the device and shouldn't generate an FMA
3147 * fault.
3148 */
3149 vd->vdev_state = VDEV_STATE_REMOVED;
3150 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3151 } else if (state == VDEV_STATE_REMOVED) {
3152 vd->vdev_removed = B_TRUE;
3153 } else if (state == VDEV_STATE_CANT_OPEN) {
3154 /*
3155 * If we fail to open a vdev during an import or recovery, we
3156 * mark it as "not available", which signifies that it was
3157 * never there to begin with. Failure to open such a device
3158 * is not considered an error.
3159 */
3160 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3161 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3162 vd->vdev_ops->vdev_op_leaf)
3163 vd->vdev_not_present = 1;
3164
3165 /*
3166 * Post the appropriate ereport. If the 'prevstate' field is
3167 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3168 * that this is part of a vdev_reopen(). In this case, we don't
3169 * want to post the ereport if the device was already in the
3170 * CANT_OPEN state beforehand.
3171 *
3172 * If the 'checkremove' flag is set, then this is an attempt to
3173 * online the device in response to an insertion event. If we
3174 * hit this case, then we have detected an insertion event for a
3175 * faulted or offline device that wasn't in the removed state.
3176 * In this scenario, we don't post an ereport because we are
3177 * about to replace the device, or attempt an online with
3178 * vdev_forcefault, which will generate the fault for us.
3179 */
3180 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3181 !vd->vdev_not_present && !vd->vdev_checkremove &&
3182 vd != spa->spa_root_vdev) {
3183 const char *class;
3184
3185 switch (aux) {
3186 case VDEV_AUX_OPEN_FAILED:
3187 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3188 break;
3189 case VDEV_AUX_CORRUPT_DATA:
3190 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3191 break;
3192 case VDEV_AUX_NO_REPLICAS:
3193 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3194 break;
3195 case VDEV_AUX_BAD_GUID_SUM:
3196 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3197 break;
3198 case VDEV_AUX_TOO_SMALL:
3199 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3200 break;
3201 case VDEV_AUX_BAD_LABEL:
3202 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3203 break;
3204 default:
3205 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3206 }
3207
3208 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3209 }
3210
3211 /* Erase any notion of persistent removed state */
3212 vd->vdev_removed = B_FALSE;
3213 } else {
3214 vd->vdev_removed = B_FALSE;
3215 }
3216
3217 if (!isopen && vd->vdev_parent)
3218 vdev_propagate_state(vd->vdev_parent);
3219 }
3220
3221 /*
3222 * Check the vdev configuration to ensure that it's capable of supporting
3223 * a root pool.
3224 */
3225 boolean_t
3226 vdev_is_bootable(vdev_t *vd)
3227 {
3228 #if defined(__sun__) || defined(__sun)
3229 /*
3230 * Currently, we do not support RAID-Z or partial configuration.
3231 * In addition, only a single top-level vdev is allowed and none of the
3232 * leaves can be wholedisks.
3233 */
3234 int c;
3235
3236 if (!vd->vdev_ops->vdev_op_leaf) {
3237 char *vdev_type = vd->vdev_ops->vdev_op_type;
3238
3239 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3240 vd->vdev_children > 1) {
3241 return (B_FALSE);
3242 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3243 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3244 return (B_FALSE);
3245 }
3246 } else if (vd->vdev_wholedisk == 1) {
3247 return (B_FALSE);
3248 }
3249
3250 for (c = 0; c < vd->vdev_children; c++) {
3251 if (!vdev_is_bootable(vd->vdev_child[c]))
3252 return (B_FALSE);
3253 }
3254 #endif /* __sun__ || __sun */
3255 return (B_TRUE);
3256 }
3257
3258 /*
3259 * Load the state from the original vdev tree (ovd) which
3260 * we've retrieved from the MOS config object. If the original
3261 * vdev was offline or faulted then we transfer that state to the
3262 * device in the current vdev tree (nvd).
3263 */
3264 void
3265 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3266 {
3267 int c;
3268
3269 ASSERT(nvd->vdev_top->vdev_islog);
3270 ASSERT(spa_config_held(nvd->vdev_spa,
3271 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3272 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3273
3274 for (c = 0; c < nvd->vdev_children; c++)
3275 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3276
3277 if (nvd->vdev_ops->vdev_op_leaf) {
3278 /*
3279 * Restore the persistent vdev state
3280 */
3281 nvd->vdev_offline = ovd->vdev_offline;
3282 nvd->vdev_faulted = ovd->vdev_faulted;
3283 nvd->vdev_degraded = ovd->vdev_degraded;
3284 nvd->vdev_removed = ovd->vdev_removed;
3285 }
3286 }
3287
3288 /*
3289 * Determine if a log device has valid content. If the vdev was
3290 * removed or faulted in the MOS config then we know that
3291 * the content on the log device has already been written to the pool.
3292 */
3293 boolean_t
3294 vdev_log_state_valid(vdev_t *vd)
3295 {
3296 int c;
3297
3298 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3299 !vd->vdev_removed)
3300 return (B_TRUE);
3301
3302 for (c = 0; c < vd->vdev_children; c++)
3303 if (vdev_log_state_valid(vd->vdev_child[c]))
3304 return (B_TRUE);
3305
3306 return (B_FALSE);
3307 }
3308
3309 /*
3310 * Expand a vdev if possible.
3311 */
3312 void
3313 vdev_expand(vdev_t *vd, uint64_t txg)
3314 {
3315 ASSERT(vd->vdev_top == vd);
3316 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3317
3318 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3319 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3320 vdev_config_dirty(vd);
3321 }
3322 }
3323
3324 /*
3325 * Split a vdev.
3326 */
3327 void
3328 vdev_split(vdev_t *vd)
3329 {
3330 vdev_t *cvd, *pvd = vd->vdev_parent;
3331
3332 vdev_remove_child(pvd, vd);
3333 vdev_compact_children(pvd);
3334
3335 cvd = pvd->vdev_child[0];
3336 if (pvd->vdev_children == 1) {
3337 vdev_remove_parent(cvd);
3338 cvd->vdev_splitting = B_TRUE;
3339 }
3340 vdev_propagate_state(cvd);
3341 }
3342
3343 void
3344 vdev_deadman(vdev_t *vd)
3345 {
3346 int c;
3347
3348 for (c = 0; c < vd->vdev_children; c++) {
3349 vdev_t *cvd = vd->vdev_child[c];
3350
3351 vdev_deadman(cvd);
3352 }
3353
3354 if (vd->vdev_ops->vdev_op_leaf) {
3355 vdev_queue_t *vq = &vd->vdev_queue;
3356
3357 mutex_enter(&vq->vq_lock);
3358 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3359 spa_t *spa = vd->vdev_spa;
3360 zio_t *fio;
3361 uint64_t delta;
3362
3363 /*
3364 * Look at the head of all the pending queues,
3365 * if any I/O has been outstanding for longer than
3366 * the spa_deadman_synctime we log a zevent.
3367 */
3368 fio = avl_first(&vq->vq_active_tree);
3369 delta = gethrtime() - fio->io_timestamp;
3370 if (delta > spa_deadman_synctime(spa)) {
3371 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3372 "delta %lluns, last io %lluns",
3373 fio->io_timestamp, delta,
3374 vq->vq_io_complete_ts);
3375 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3376 spa, vd, fio, 0, 0);
3377 }
3378 }
3379 mutex_exit(&vq->vq_lock);
3380 }
3381 }
3382
3383 #if defined(_KERNEL) && defined(HAVE_SPL)
3384 EXPORT_SYMBOL(vdev_fault);
3385 EXPORT_SYMBOL(vdev_degrade);
3386 EXPORT_SYMBOL(vdev_online);
3387 EXPORT_SYMBOL(vdev_offline);
3388 EXPORT_SYMBOL(vdev_clear);
3389 #endif