]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Check ashift validity in 'zpool add'
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/space_reftree.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/abd.h>
47 #include <sys/zvol.h>
48 #include <sys/zfs_ratelimit.h>
49
50 /*
51 * When a vdev is added, it will be divided into approximately (but no
52 * more than) this number of metaslabs.
53 */
54 int metaslabs_per_vdev = 200;
55
56 /*
57 * Virtual device management.
58 */
59
60 static vdev_ops_t *vdev_ops_table[] = {
61 &vdev_root_ops,
62 &vdev_raidz_ops,
63 &vdev_mirror_ops,
64 &vdev_replacing_ops,
65 &vdev_spare_ops,
66 &vdev_disk_ops,
67 &vdev_file_ops,
68 &vdev_missing_ops,
69 &vdev_hole_ops,
70 NULL
71 };
72
73 /*
74 * Given a vdev type, return the appropriate ops vector.
75 */
76 static vdev_ops_t *
77 vdev_getops(const char *type)
78 {
79 vdev_ops_t *ops, **opspp;
80
81 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
82 if (strcmp(ops->vdev_op_type, type) == 0)
83 break;
84
85 return (ops);
86 }
87
88 /*
89 * Default asize function: return the MAX of psize with the asize of
90 * all children. This is what's used by anything other than RAID-Z.
91 */
92 uint64_t
93 vdev_default_asize(vdev_t *vd, uint64_t psize)
94 {
95 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
96 uint64_t csize;
97 int c;
98
99 for (c = 0; c < vd->vdev_children; c++) {
100 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
101 asize = MAX(asize, csize);
102 }
103
104 return (asize);
105 }
106
107 /*
108 * Get the minimum allocatable size. We define the allocatable size as
109 * the vdev's asize rounded to the nearest metaslab. This allows us to
110 * replace or attach devices which don't have the same physical size but
111 * can still satisfy the same number of allocations.
112 */
113 uint64_t
114 vdev_get_min_asize(vdev_t *vd)
115 {
116 vdev_t *pvd = vd->vdev_parent;
117
118 /*
119 * If our parent is NULL (inactive spare or cache) or is the root,
120 * just return our own asize.
121 */
122 if (pvd == NULL)
123 return (vd->vdev_asize);
124
125 /*
126 * The top-level vdev just returns the allocatable size rounded
127 * to the nearest metaslab.
128 */
129 if (vd == vd->vdev_top)
130 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
131
132 /*
133 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
134 * so each child must provide at least 1/Nth of its asize.
135 */
136 if (pvd->vdev_ops == &vdev_raidz_ops)
137 return (pvd->vdev_min_asize / pvd->vdev_children);
138
139 return (pvd->vdev_min_asize);
140 }
141
142 void
143 vdev_set_min_asize(vdev_t *vd)
144 {
145 int c;
146 vd->vdev_min_asize = vdev_get_min_asize(vd);
147
148 for (c = 0; c < vd->vdev_children; c++)
149 vdev_set_min_asize(vd->vdev_child[c]);
150 }
151
152 vdev_t *
153 vdev_lookup_top(spa_t *spa, uint64_t vdev)
154 {
155 vdev_t *rvd = spa->spa_root_vdev;
156
157 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
158
159 if (vdev < rvd->vdev_children) {
160 ASSERT(rvd->vdev_child[vdev] != NULL);
161 return (rvd->vdev_child[vdev]);
162 }
163
164 return (NULL);
165 }
166
167 vdev_t *
168 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
169 {
170 vdev_t *mvd;
171 int c;
172
173 if (vd->vdev_guid == guid)
174 return (vd);
175
176 for (c = 0; c < vd->vdev_children; c++)
177 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
178 NULL)
179 return (mvd);
180
181 return (NULL);
182 }
183
184 static int
185 vdev_count_leaves_impl(vdev_t *vd)
186 {
187 int n = 0;
188 int c;
189
190 if (vd->vdev_ops->vdev_op_leaf)
191 return (1);
192
193 for (c = 0; c < vd->vdev_children; c++)
194 n += vdev_count_leaves_impl(vd->vdev_child[c]);
195
196 return (n);
197 }
198
199 int
200 vdev_count_leaves(spa_t *spa)
201 {
202 return (vdev_count_leaves_impl(spa->spa_root_vdev));
203 }
204
205 void
206 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
207 {
208 size_t oldsize, newsize;
209 uint64_t id = cvd->vdev_id;
210 vdev_t **newchild;
211
212 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
213 ASSERT(cvd->vdev_parent == NULL);
214
215 cvd->vdev_parent = pvd;
216
217 if (pvd == NULL)
218 return;
219
220 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
221
222 oldsize = pvd->vdev_children * sizeof (vdev_t *);
223 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
224 newsize = pvd->vdev_children * sizeof (vdev_t *);
225
226 newchild = kmem_alloc(newsize, KM_SLEEP);
227 if (pvd->vdev_child != NULL) {
228 bcopy(pvd->vdev_child, newchild, oldsize);
229 kmem_free(pvd->vdev_child, oldsize);
230 }
231
232 pvd->vdev_child = newchild;
233 pvd->vdev_child[id] = cvd;
234
235 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
236 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
237
238 /*
239 * Walk up all ancestors to update guid sum.
240 */
241 for (; pvd != NULL; pvd = pvd->vdev_parent)
242 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
243 }
244
245 void
246 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
247 {
248 int c;
249 uint_t id = cvd->vdev_id;
250
251 ASSERT(cvd->vdev_parent == pvd);
252
253 if (pvd == NULL)
254 return;
255
256 ASSERT(id < pvd->vdev_children);
257 ASSERT(pvd->vdev_child[id] == cvd);
258
259 pvd->vdev_child[id] = NULL;
260 cvd->vdev_parent = NULL;
261
262 for (c = 0; c < pvd->vdev_children; c++)
263 if (pvd->vdev_child[c])
264 break;
265
266 if (c == pvd->vdev_children) {
267 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
268 pvd->vdev_child = NULL;
269 pvd->vdev_children = 0;
270 }
271
272 /*
273 * Walk up all ancestors to update guid sum.
274 */
275 for (; pvd != NULL; pvd = pvd->vdev_parent)
276 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
277 }
278
279 /*
280 * Remove any holes in the child array.
281 */
282 void
283 vdev_compact_children(vdev_t *pvd)
284 {
285 vdev_t **newchild, *cvd;
286 int oldc = pvd->vdev_children;
287 int newc;
288 int c;
289
290 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
291
292 for (c = newc = 0; c < oldc; c++)
293 if (pvd->vdev_child[c])
294 newc++;
295
296 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
297
298 for (c = newc = 0; c < oldc; c++) {
299 if ((cvd = pvd->vdev_child[c]) != NULL) {
300 newchild[newc] = cvd;
301 cvd->vdev_id = newc++;
302 }
303 }
304
305 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
306 pvd->vdev_child = newchild;
307 pvd->vdev_children = newc;
308 }
309
310 /*
311 * Allocate and minimally initialize a vdev_t.
312 */
313 vdev_t *
314 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
315 {
316 vdev_t *vd;
317 int t;
318
319 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
320
321 if (spa->spa_root_vdev == NULL) {
322 ASSERT(ops == &vdev_root_ops);
323 spa->spa_root_vdev = vd;
324 spa->spa_load_guid = spa_generate_guid(NULL);
325 }
326
327 if (guid == 0 && ops != &vdev_hole_ops) {
328 if (spa->spa_root_vdev == vd) {
329 /*
330 * The root vdev's guid will also be the pool guid,
331 * which must be unique among all pools.
332 */
333 guid = spa_generate_guid(NULL);
334 } else {
335 /*
336 * Any other vdev's guid must be unique within the pool.
337 */
338 guid = spa_generate_guid(spa);
339 }
340 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
341 }
342
343 vd->vdev_spa = spa;
344 vd->vdev_id = id;
345 vd->vdev_guid = guid;
346 vd->vdev_guid_sum = guid;
347 vd->vdev_ops = ops;
348 vd->vdev_state = VDEV_STATE_CLOSED;
349 vd->vdev_ishole = (ops == &vdev_hole_ops);
350
351 /*
352 * Initialize rate limit structs for events. We rate limit ZIO delay
353 * and checksum events so that we don't overwhelm ZED with thousands
354 * of events when a disk is acting up.
355 */
356 zfs_ratelimit_init(&vd->vdev_delay_rl, DELAYS_PER_SECOND, 1);
357 zfs_ratelimit_init(&vd->vdev_checksum_rl, CHECKSUMS_PER_SECOND, 1);
358
359 list_link_init(&vd->vdev_config_dirty_node);
360 list_link_init(&vd->vdev_state_dirty_node);
361 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
362 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
363 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
364 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
365
366 for (t = 0; t < DTL_TYPES; t++) {
367 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
368 &vd->vdev_dtl_lock);
369 }
370 txg_list_create(&vd->vdev_ms_list,
371 offsetof(struct metaslab, ms_txg_node));
372 txg_list_create(&vd->vdev_dtl_list,
373 offsetof(struct vdev, vdev_dtl_node));
374 vd->vdev_stat.vs_timestamp = gethrtime();
375 vdev_queue_init(vd);
376 vdev_cache_init(vd);
377
378 return (vd);
379 }
380
381 /*
382 * Allocate a new vdev. The 'alloctype' is used to control whether we are
383 * creating a new vdev or loading an existing one - the behavior is slightly
384 * different for each case.
385 */
386 int
387 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
388 int alloctype)
389 {
390 vdev_ops_t *ops;
391 char *type;
392 uint64_t guid = 0, islog, nparity;
393 vdev_t *vd;
394
395 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
396
397 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
398 return (SET_ERROR(EINVAL));
399
400 if ((ops = vdev_getops(type)) == NULL)
401 return (SET_ERROR(EINVAL));
402
403 /*
404 * If this is a load, get the vdev guid from the nvlist.
405 * Otherwise, vdev_alloc_common() will generate one for us.
406 */
407 if (alloctype == VDEV_ALLOC_LOAD) {
408 uint64_t label_id;
409
410 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
411 label_id != id)
412 return (SET_ERROR(EINVAL));
413
414 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
415 return (SET_ERROR(EINVAL));
416 } else if (alloctype == VDEV_ALLOC_SPARE) {
417 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
418 return (SET_ERROR(EINVAL));
419 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
420 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
421 return (SET_ERROR(EINVAL));
422 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
423 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
424 return (SET_ERROR(EINVAL));
425 }
426
427 /*
428 * The first allocated vdev must be of type 'root'.
429 */
430 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
431 return (SET_ERROR(EINVAL));
432
433 /*
434 * Determine whether we're a log vdev.
435 */
436 islog = 0;
437 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
438 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
439 return (SET_ERROR(ENOTSUP));
440
441 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
442 return (SET_ERROR(ENOTSUP));
443
444 /*
445 * Set the nparity property for RAID-Z vdevs.
446 */
447 nparity = -1ULL;
448 if (ops == &vdev_raidz_ops) {
449 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
450 &nparity) == 0) {
451 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
452 return (SET_ERROR(EINVAL));
453 /*
454 * Previous versions could only support 1 or 2 parity
455 * device.
456 */
457 if (nparity > 1 &&
458 spa_version(spa) < SPA_VERSION_RAIDZ2)
459 return (SET_ERROR(ENOTSUP));
460 if (nparity > 2 &&
461 spa_version(spa) < SPA_VERSION_RAIDZ3)
462 return (SET_ERROR(ENOTSUP));
463 } else {
464 /*
465 * We require the parity to be specified for SPAs that
466 * support multiple parity levels.
467 */
468 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
469 return (SET_ERROR(EINVAL));
470 /*
471 * Otherwise, we default to 1 parity device for RAID-Z.
472 */
473 nparity = 1;
474 }
475 } else {
476 nparity = 0;
477 }
478 ASSERT(nparity != -1ULL);
479
480 vd = vdev_alloc_common(spa, id, guid, ops);
481
482 vd->vdev_islog = islog;
483 vd->vdev_nparity = nparity;
484
485 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
486 vd->vdev_path = spa_strdup(vd->vdev_path);
487 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
488 vd->vdev_devid = spa_strdup(vd->vdev_devid);
489 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
490 &vd->vdev_physpath) == 0)
491 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
492
493 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
494 &vd->vdev_enc_sysfs_path) == 0)
495 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
496
497 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
498 vd->vdev_fru = spa_strdup(vd->vdev_fru);
499
500 /*
501 * Set the whole_disk property. If it's not specified, leave the value
502 * as -1.
503 */
504 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
505 &vd->vdev_wholedisk) != 0)
506 vd->vdev_wholedisk = -1ULL;
507
508 /*
509 * Look for the 'not present' flag. This will only be set if the device
510 * was not present at the time of import.
511 */
512 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
513 &vd->vdev_not_present);
514
515 /*
516 * Get the alignment requirement.
517 */
518 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
519
520 /*
521 * Retrieve the vdev creation time.
522 */
523 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
524 &vd->vdev_crtxg);
525
526 /*
527 * If we're a top-level vdev, try to load the allocation parameters.
528 */
529 if (parent && !parent->vdev_parent &&
530 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
531 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
532 &vd->vdev_ms_array);
533 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
534 &vd->vdev_ms_shift);
535 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
536 &vd->vdev_asize);
537 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
538 &vd->vdev_removing);
539 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
540 &vd->vdev_top_zap);
541 } else {
542 ASSERT0(vd->vdev_top_zap);
543 }
544
545 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
546 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
547 alloctype == VDEV_ALLOC_ADD ||
548 alloctype == VDEV_ALLOC_SPLIT ||
549 alloctype == VDEV_ALLOC_ROOTPOOL);
550 vd->vdev_mg = metaslab_group_create(islog ?
551 spa_log_class(spa) : spa_normal_class(spa), vd);
552 }
553
554 if (vd->vdev_ops->vdev_op_leaf &&
555 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
556 (void) nvlist_lookup_uint64(nv,
557 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
558 } else {
559 ASSERT0(vd->vdev_leaf_zap);
560 }
561
562 /*
563 * If we're a leaf vdev, try to load the DTL object and other state.
564 */
565
566 if (vd->vdev_ops->vdev_op_leaf &&
567 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
568 alloctype == VDEV_ALLOC_ROOTPOOL)) {
569 if (alloctype == VDEV_ALLOC_LOAD) {
570 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
571 &vd->vdev_dtl_object);
572 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
573 &vd->vdev_unspare);
574 }
575
576 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
577 uint64_t spare = 0;
578
579 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
580 &spare) == 0 && spare)
581 spa_spare_add(vd);
582 }
583
584 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
585 &vd->vdev_offline);
586
587 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
588 &vd->vdev_resilver_txg);
589
590 /*
591 * When importing a pool, we want to ignore the persistent fault
592 * state, as the diagnosis made on another system may not be
593 * valid in the current context. Local vdevs will
594 * remain in the faulted state.
595 */
596 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
597 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
598 &vd->vdev_faulted);
599 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
600 &vd->vdev_degraded);
601 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
602 &vd->vdev_removed);
603
604 if (vd->vdev_faulted || vd->vdev_degraded) {
605 char *aux;
606
607 vd->vdev_label_aux =
608 VDEV_AUX_ERR_EXCEEDED;
609 if (nvlist_lookup_string(nv,
610 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
611 strcmp(aux, "external") == 0)
612 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
613 }
614 }
615 }
616
617 /*
618 * Add ourselves to the parent's list of children.
619 */
620 vdev_add_child(parent, vd);
621
622 *vdp = vd;
623
624 return (0);
625 }
626
627 void
628 vdev_free(vdev_t *vd)
629 {
630 int c, t;
631 spa_t *spa = vd->vdev_spa;
632
633 /*
634 * vdev_free() implies closing the vdev first. This is simpler than
635 * trying to ensure complicated semantics for all callers.
636 */
637 vdev_close(vd);
638
639 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
640 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
641
642 /*
643 * Free all children.
644 */
645 for (c = 0; c < vd->vdev_children; c++)
646 vdev_free(vd->vdev_child[c]);
647
648 ASSERT(vd->vdev_child == NULL);
649 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
650
651 /*
652 * Discard allocation state.
653 */
654 if (vd->vdev_mg != NULL) {
655 vdev_metaslab_fini(vd);
656 metaslab_group_destroy(vd->vdev_mg);
657 }
658
659 ASSERT0(vd->vdev_stat.vs_space);
660 ASSERT0(vd->vdev_stat.vs_dspace);
661 ASSERT0(vd->vdev_stat.vs_alloc);
662
663 /*
664 * Remove this vdev from its parent's child list.
665 */
666 vdev_remove_child(vd->vdev_parent, vd);
667
668 ASSERT(vd->vdev_parent == NULL);
669
670 /*
671 * Clean up vdev structure.
672 */
673 vdev_queue_fini(vd);
674 vdev_cache_fini(vd);
675
676 if (vd->vdev_path)
677 spa_strfree(vd->vdev_path);
678 if (vd->vdev_devid)
679 spa_strfree(vd->vdev_devid);
680 if (vd->vdev_physpath)
681 spa_strfree(vd->vdev_physpath);
682
683 if (vd->vdev_enc_sysfs_path)
684 spa_strfree(vd->vdev_enc_sysfs_path);
685
686 if (vd->vdev_fru)
687 spa_strfree(vd->vdev_fru);
688
689 if (vd->vdev_isspare)
690 spa_spare_remove(vd);
691 if (vd->vdev_isl2cache)
692 spa_l2cache_remove(vd);
693
694 txg_list_destroy(&vd->vdev_ms_list);
695 txg_list_destroy(&vd->vdev_dtl_list);
696
697 mutex_enter(&vd->vdev_dtl_lock);
698 space_map_close(vd->vdev_dtl_sm);
699 for (t = 0; t < DTL_TYPES; t++) {
700 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
701 range_tree_destroy(vd->vdev_dtl[t]);
702 }
703 mutex_exit(&vd->vdev_dtl_lock);
704
705 mutex_destroy(&vd->vdev_queue_lock);
706 mutex_destroy(&vd->vdev_dtl_lock);
707 mutex_destroy(&vd->vdev_stat_lock);
708 mutex_destroy(&vd->vdev_probe_lock);
709
710 if (vd == spa->spa_root_vdev)
711 spa->spa_root_vdev = NULL;
712
713 kmem_free(vd, sizeof (vdev_t));
714 }
715
716 /*
717 * Transfer top-level vdev state from svd to tvd.
718 */
719 static void
720 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
721 {
722 spa_t *spa = svd->vdev_spa;
723 metaslab_t *msp;
724 vdev_t *vd;
725 int t;
726
727 ASSERT(tvd == tvd->vdev_top);
728
729 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
730 tvd->vdev_ms_array = svd->vdev_ms_array;
731 tvd->vdev_ms_shift = svd->vdev_ms_shift;
732 tvd->vdev_ms_count = svd->vdev_ms_count;
733 tvd->vdev_top_zap = svd->vdev_top_zap;
734
735 svd->vdev_ms_array = 0;
736 svd->vdev_ms_shift = 0;
737 svd->vdev_ms_count = 0;
738 svd->vdev_top_zap = 0;
739
740 if (tvd->vdev_mg)
741 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
742 tvd->vdev_mg = svd->vdev_mg;
743 tvd->vdev_ms = svd->vdev_ms;
744
745 svd->vdev_mg = NULL;
746 svd->vdev_ms = NULL;
747
748 if (tvd->vdev_mg != NULL)
749 tvd->vdev_mg->mg_vd = tvd;
750
751 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
752 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
753 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
754
755 svd->vdev_stat.vs_alloc = 0;
756 svd->vdev_stat.vs_space = 0;
757 svd->vdev_stat.vs_dspace = 0;
758
759 for (t = 0; t < TXG_SIZE; t++) {
760 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
761 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
762 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
763 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
764 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
765 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
766 }
767
768 if (list_link_active(&svd->vdev_config_dirty_node)) {
769 vdev_config_clean(svd);
770 vdev_config_dirty(tvd);
771 }
772
773 if (list_link_active(&svd->vdev_state_dirty_node)) {
774 vdev_state_clean(svd);
775 vdev_state_dirty(tvd);
776 }
777
778 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
779 svd->vdev_deflate_ratio = 0;
780
781 tvd->vdev_islog = svd->vdev_islog;
782 svd->vdev_islog = 0;
783 }
784
785 static void
786 vdev_top_update(vdev_t *tvd, vdev_t *vd)
787 {
788 int c;
789
790 if (vd == NULL)
791 return;
792
793 vd->vdev_top = tvd;
794
795 for (c = 0; c < vd->vdev_children; c++)
796 vdev_top_update(tvd, vd->vdev_child[c]);
797 }
798
799 /*
800 * Add a mirror/replacing vdev above an existing vdev.
801 */
802 vdev_t *
803 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
804 {
805 spa_t *spa = cvd->vdev_spa;
806 vdev_t *pvd = cvd->vdev_parent;
807 vdev_t *mvd;
808
809 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
810
811 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
812
813 mvd->vdev_asize = cvd->vdev_asize;
814 mvd->vdev_min_asize = cvd->vdev_min_asize;
815 mvd->vdev_max_asize = cvd->vdev_max_asize;
816 mvd->vdev_ashift = cvd->vdev_ashift;
817 mvd->vdev_state = cvd->vdev_state;
818 mvd->vdev_crtxg = cvd->vdev_crtxg;
819
820 vdev_remove_child(pvd, cvd);
821 vdev_add_child(pvd, mvd);
822 cvd->vdev_id = mvd->vdev_children;
823 vdev_add_child(mvd, cvd);
824 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
825
826 if (mvd == mvd->vdev_top)
827 vdev_top_transfer(cvd, mvd);
828
829 return (mvd);
830 }
831
832 /*
833 * Remove a 1-way mirror/replacing vdev from the tree.
834 */
835 void
836 vdev_remove_parent(vdev_t *cvd)
837 {
838 vdev_t *mvd = cvd->vdev_parent;
839 vdev_t *pvd = mvd->vdev_parent;
840
841 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
842
843 ASSERT(mvd->vdev_children == 1);
844 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
845 mvd->vdev_ops == &vdev_replacing_ops ||
846 mvd->vdev_ops == &vdev_spare_ops);
847 cvd->vdev_ashift = mvd->vdev_ashift;
848
849 vdev_remove_child(mvd, cvd);
850 vdev_remove_child(pvd, mvd);
851
852 /*
853 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
854 * Otherwise, we could have detached an offline device, and when we
855 * go to import the pool we'll think we have two top-level vdevs,
856 * instead of a different version of the same top-level vdev.
857 */
858 if (mvd->vdev_top == mvd) {
859 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
860 cvd->vdev_orig_guid = cvd->vdev_guid;
861 cvd->vdev_guid += guid_delta;
862 cvd->vdev_guid_sum += guid_delta;
863
864 /*
865 * If pool not set for autoexpand, we need to also preserve
866 * mvd's asize to prevent automatic expansion of cvd.
867 * Otherwise if we are adjusting the mirror by attaching and
868 * detaching children of non-uniform sizes, the mirror could
869 * autoexpand, unexpectedly requiring larger devices to
870 * re-establish the mirror.
871 */
872 if (!cvd->vdev_spa->spa_autoexpand)
873 cvd->vdev_asize = mvd->vdev_asize;
874 }
875 cvd->vdev_id = mvd->vdev_id;
876 vdev_add_child(pvd, cvd);
877 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
878
879 if (cvd == cvd->vdev_top)
880 vdev_top_transfer(mvd, cvd);
881
882 ASSERT(mvd->vdev_children == 0);
883 vdev_free(mvd);
884 }
885
886 int
887 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
888 {
889 spa_t *spa = vd->vdev_spa;
890 objset_t *mos = spa->spa_meta_objset;
891 uint64_t m;
892 uint64_t oldc = vd->vdev_ms_count;
893 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
894 metaslab_t **mspp;
895 int error;
896
897 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
898
899 /*
900 * This vdev is not being allocated from yet or is a hole.
901 */
902 if (vd->vdev_ms_shift == 0)
903 return (0);
904
905 ASSERT(!vd->vdev_ishole);
906
907 /*
908 * Compute the raidz-deflation ratio. Note, we hard-code
909 * in 128k (1 << 17) because it is the "typical" blocksize.
910 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
911 * otherwise it would inconsistently account for existing bp's.
912 */
913 vd->vdev_deflate_ratio = (1 << 17) /
914 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
915
916 ASSERT(oldc <= newc);
917
918 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
919
920 if (oldc != 0) {
921 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
922 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
923 }
924
925 vd->vdev_ms = mspp;
926 vd->vdev_ms_count = newc;
927
928 for (m = oldc; m < newc; m++) {
929 uint64_t object = 0;
930
931 if (txg == 0) {
932 error = dmu_read(mos, vd->vdev_ms_array,
933 m * sizeof (uint64_t), sizeof (uint64_t), &object,
934 DMU_READ_PREFETCH);
935 if (error)
936 return (error);
937 }
938
939 error = metaslab_init(vd->vdev_mg, m, object, txg,
940 &(vd->vdev_ms[m]));
941 if (error)
942 return (error);
943 }
944
945 if (txg == 0)
946 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
947
948 /*
949 * If the vdev is being removed we don't activate
950 * the metaslabs since we want to ensure that no new
951 * allocations are performed on this device.
952 */
953 if (oldc == 0 && !vd->vdev_removing)
954 metaslab_group_activate(vd->vdev_mg);
955
956 if (txg == 0)
957 spa_config_exit(spa, SCL_ALLOC, FTAG);
958
959 return (0);
960 }
961
962 void
963 vdev_metaslab_fini(vdev_t *vd)
964 {
965 uint64_t m;
966 uint64_t count = vd->vdev_ms_count;
967
968 if (vd->vdev_ms != NULL) {
969 metaslab_group_passivate(vd->vdev_mg);
970 for (m = 0; m < count; m++) {
971 metaslab_t *msp = vd->vdev_ms[m];
972
973 if (msp != NULL)
974 metaslab_fini(msp);
975 }
976 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
977 vd->vdev_ms = NULL;
978 }
979
980 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
981 }
982
983 typedef struct vdev_probe_stats {
984 boolean_t vps_readable;
985 boolean_t vps_writeable;
986 int vps_flags;
987 } vdev_probe_stats_t;
988
989 static void
990 vdev_probe_done(zio_t *zio)
991 {
992 spa_t *spa = zio->io_spa;
993 vdev_t *vd = zio->io_vd;
994 vdev_probe_stats_t *vps = zio->io_private;
995
996 ASSERT(vd->vdev_probe_zio != NULL);
997
998 if (zio->io_type == ZIO_TYPE_READ) {
999 if (zio->io_error == 0)
1000 vps->vps_readable = 1;
1001 if (zio->io_error == 0 && spa_writeable(spa)) {
1002 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1003 zio->io_offset, zio->io_size, zio->io_abd,
1004 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1005 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1006 } else {
1007 abd_free(zio->io_abd);
1008 }
1009 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1010 if (zio->io_error == 0)
1011 vps->vps_writeable = 1;
1012 abd_free(zio->io_abd);
1013 } else if (zio->io_type == ZIO_TYPE_NULL) {
1014 zio_t *pio;
1015 zio_link_t *zl;
1016
1017 vd->vdev_cant_read |= !vps->vps_readable;
1018 vd->vdev_cant_write |= !vps->vps_writeable;
1019
1020 if (vdev_readable(vd) &&
1021 (vdev_writeable(vd) || !spa_writeable(spa))) {
1022 zio->io_error = 0;
1023 } else {
1024 ASSERT(zio->io_error != 0);
1025 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1026 spa, vd, NULL, 0, 0);
1027 zio->io_error = SET_ERROR(ENXIO);
1028 }
1029
1030 mutex_enter(&vd->vdev_probe_lock);
1031 ASSERT(vd->vdev_probe_zio == zio);
1032 vd->vdev_probe_zio = NULL;
1033 mutex_exit(&vd->vdev_probe_lock);
1034
1035 zl = NULL;
1036 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1037 if (!vdev_accessible(vd, pio))
1038 pio->io_error = SET_ERROR(ENXIO);
1039
1040 kmem_free(vps, sizeof (*vps));
1041 }
1042 }
1043
1044 /*
1045 * Determine whether this device is accessible.
1046 *
1047 * Read and write to several known locations: the pad regions of each
1048 * vdev label but the first, which we leave alone in case it contains
1049 * a VTOC.
1050 */
1051 zio_t *
1052 vdev_probe(vdev_t *vd, zio_t *zio)
1053 {
1054 spa_t *spa = vd->vdev_spa;
1055 vdev_probe_stats_t *vps = NULL;
1056 zio_t *pio;
1057 int l;
1058
1059 ASSERT(vd->vdev_ops->vdev_op_leaf);
1060
1061 /*
1062 * Don't probe the probe.
1063 */
1064 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1065 return (NULL);
1066
1067 /*
1068 * To prevent 'probe storms' when a device fails, we create
1069 * just one probe i/o at a time. All zios that want to probe
1070 * this vdev will become parents of the probe io.
1071 */
1072 mutex_enter(&vd->vdev_probe_lock);
1073
1074 if ((pio = vd->vdev_probe_zio) == NULL) {
1075 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1076
1077 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1078 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1079 ZIO_FLAG_TRYHARD;
1080
1081 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1082 /*
1083 * vdev_cant_read and vdev_cant_write can only
1084 * transition from TRUE to FALSE when we have the
1085 * SCL_ZIO lock as writer; otherwise they can only
1086 * transition from FALSE to TRUE. This ensures that
1087 * any zio looking at these values can assume that
1088 * failures persist for the life of the I/O. That's
1089 * important because when a device has intermittent
1090 * connectivity problems, we want to ensure that
1091 * they're ascribed to the device (ENXIO) and not
1092 * the zio (EIO).
1093 *
1094 * Since we hold SCL_ZIO as writer here, clear both
1095 * values so the probe can reevaluate from first
1096 * principles.
1097 */
1098 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1099 vd->vdev_cant_read = B_FALSE;
1100 vd->vdev_cant_write = B_FALSE;
1101 }
1102
1103 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1104 vdev_probe_done, vps,
1105 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1106
1107 /*
1108 * We can't change the vdev state in this context, so we
1109 * kick off an async task to do it on our behalf.
1110 */
1111 if (zio != NULL) {
1112 vd->vdev_probe_wanted = B_TRUE;
1113 spa_async_request(spa, SPA_ASYNC_PROBE);
1114 }
1115 }
1116
1117 if (zio != NULL)
1118 zio_add_child(zio, pio);
1119
1120 mutex_exit(&vd->vdev_probe_lock);
1121
1122 if (vps == NULL) {
1123 ASSERT(zio != NULL);
1124 return (NULL);
1125 }
1126
1127 for (l = 1; l < VDEV_LABELS; l++) {
1128 zio_nowait(zio_read_phys(pio, vd,
1129 vdev_label_offset(vd->vdev_psize, l,
1130 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1131 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1132 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1133 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1134 }
1135
1136 if (zio == NULL)
1137 return (pio);
1138
1139 zio_nowait(pio);
1140 return (NULL);
1141 }
1142
1143 static void
1144 vdev_open_child(void *arg)
1145 {
1146 vdev_t *vd = arg;
1147
1148 vd->vdev_open_thread = curthread;
1149 vd->vdev_open_error = vdev_open(vd);
1150 vd->vdev_open_thread = NULL;
1151 }
1152
1153 static boolean_t
1154 vdev_uses_zvols(vdev_t *vd)
1155 {
1156 int c;
1157
1158 #ifdef _KERNEL
1159 if (zvol_is_zvol(vd->vdev_path))
1160 return (B_TRUE);
1161 #endif
1162
1163 for (c = 0; c < vd->vdev_children; c++)
1164 if (vdev_uses_zvols(vd->vdev_child[c]))
1165 return (B_TRUE);
1166
1167 return (B_FALSE);
1168 }
1169
1170 void
1171 vdev_open_children(vdev_t *vd)
1172 {
1173 taskq_t *tq;
1174 int children = vd->vdev_children;
1175 int c;
1176
1177 /*
1178 * in order to handle pools on top of zvols, do the opens
1179 * in a single thread so that the same thread holds the
1180 * spa_namespace_lock
1181 */
1182 if (vdev_uses_zvols(vd)) {
1183 retry_sync:
1184 for (c = 0; c < children; c++)
1185 vd->vdev_child[c]->vdev_open_error =
1186 vdev_open(vd->vdev_child[c]);
1187 } else {
1188 tq = taskq_create("vdev_open", children, minclsyspri,
1189 children, children, TASKQ_PREPOPULATE);
1190 if (tq == NULL)
1191 goto retry_sync;
1192
1193 for (c = 0; c < children; c++)
1194 VERIFY(taskq_dispatch(tq, vdev_open_child,
1195 vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1196
1197 taskq_destroy(tq);
1198 }
1199
1200 vd->vdev_nonrot = B_TRUE;
1201
1202 for (c = 0; c < children; c++)
1203 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1204 }
1205
1206 /*
1207 * Prepare a virtual device for access.
1208 */
1209 int
1210 vdev_open(vdev_t *vd)
1211 {
1212 spa_t *spa = vd->vdev_spa;
1213 int error;
1214 uint64_t osize = 0;
1215 uint64_t max_osize = 0;
1216 uint64_t asize, max_asize, psize;
1217 uint64_t ashift = 0;
1218 int c;
1219
1220 ASSERT(vd->vdev_open_thread == curthread ||
1221 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1222 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1223 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1224 vd->vdev_state == VDEV_STATE_OFFLINE);
1225
1226 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1227 vd->vdev_cant_read = B_FALSE;
1228 vd->vdev_cant_write = B_FALSE;
1229 vd->vdev_min_asize = vdev_get_min_asize(vd);
1230
1231 /*
1232 * If this vdev is not removed, check its fault status. If it's
1233 * faulted, bail out of the open.
1234 */
1235 if (!vd->vdev_removed && vd->vdev_faulted) {
1236 ASSERT(vd->vdev_children == 0);
1237 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1238 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1239 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1240 vd->vdev_label_aux);
1241 return (SET_ERROR(ENXIO));
1242 } else if (vd->vdev_offline) {
1243 ASSERT(vd->vdev_children == 0);
1244 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1245 return (SET_ERROR(ENXIO));
1246 }
1247
1248 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1249
1250 /*
1251 * Reset the vdev_reopening flag so that we actually close
1252 * the vdev on error.
1253 */
1254 vd->vdev_reopening = B_FALSE;
1255 if (zio_injection_enabled && error == 0)
1256 error = zio_handle_device_injection(vd, NULL, ENXIO);
1257
1258 if (error) {
1259 if (vd->vdev_removed &&
1260 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1261 vd->vdev_removed = B_FALSE;
1262
1263 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1264 vd->vdev_stat.vs_aux);
1265 return (error);
1266 }
1267
1268 vd->vdev_removed = B_FALSE;
1269
1270 /*
1271 * Recheck the faulted flag now that we have confirmed that
1272 * the vdev is accessible. If we're faulted, bail.
1273 */
1274 if (vd->vdev_faulted) {
1275 ASSERT(vd->vdev_children == 0);
1276 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1277 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1278 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1279 vd->vdev_label_aux);
1280 return (SET_ERROR(ENXIO));
1281 }
1282
1283 if (vd->vdev_degraded) {
1284 ASSERT(vd->vdev_children == 0);
1285 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1286 VDEV_AUX_ERR_EXCEEDED);
1287 } else {
1288 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1289 }
1290
1291 /*
1292 * For hole or missing vdevs we just return success.
1293 */
1294 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1295 return (0);
1296
1297 for (c = 0; c < vd->vdev_children; c++) {
1298 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1299 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1300 VDEV_AUX_NONE);
1301 break;
1302 }
1303 }
1304
1305 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1306 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1307
1308 if (vd->vdev_children == 0) {
1309 if (osize < SPA_MINDEVSIZE) {
1310 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1311 VDEV_AUX_TOO_SMALL);
1312 return (SET_ERROR(EOVERFLOW));
1313 }
1314 psize = osize;
1315 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1316 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1317 VDEV_LABEL_END_SIZE);
1318 } else {
1319 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1320 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1321 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1322 VDEV_AUX_TOO_SMALL);
1323 return (SET_ERROR(EOVERFLOW));
1324 }
1325 psize = 0;
1326 asize = osize;
1327 max_asize = max_osize;
1328 }
1329
1330 vd->vdev_psize = psize;
1331
1332 /*
1333 * Make sure the allocatable size hasn't shrunk.
1334 */
1335 if (asize < vd->vdev_min_asize) {
1336 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1337 VDEV_AUX_BAD_LABEL);
1338 return (SET_ERROR(EINVAL));
1339 }
1340
1341 if (vd->vdev_asize == 0) {
1342 /*
1343 * This is the first-ever open, so use the computed values.
1344 * For compatibility, a different ashift can be requested.
1345 */
1346 vd->vdev_asize = asize;
1347 vd->vdev_max_asize = max_asize;
1348 if (vd->vdev_ashift == 0) {
1349 vd->vdev_ashift = ashift; /* use detected value */
1350 }
1351 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1352 vd->vdev_ashift > ASHIFT_MAX)) {
1353 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1354 VDEV_AUX_BAD_ASHIFT);
1355 return (SET_ERROR(EDOM));
1356 }
1357 } else {
1358 /*
1359 * Detect if the alignment requirement has increased.
1360 * We don't want to make the pool unavailable, just
1361 * post an event instead.
1362 */
1363 if (ashift > vd->vdev_top->vdev_ashift &&
1364 vd->vdev_ops->vdev_op_leaf) {
1365 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1366 spa, vd, NULL, 0, 0);
1367 }
1368
1369 vd->vdev_max_asize = max_asize;
1370 }
1371
1372 /*
1373 * If all children are healthy and the asize has increased,
1374 * then we've experienced dynamic LUN growth. If automatic
1375 * expansion is enabled then use the additional space.
1376 */
1377 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1378 (vd->vdev_expanding || spa->spa_autoexpand))
1379 vd->vdev_asize = asize;
1380
1381 vdev_set_min_asize(vd);
1382
1383 /*
1384 * Ensure we can issue some IO before declaring the
1385 * vdev open for business.
1386 */
1387 if (vd->vdev_ops->vdev_op_leaf &&
1388 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1389 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1390 VDEV_AUX_ERR_EXCEEDED);
1391 return (error);
1392 }
1393
1394 /*
1395 * Track the min and max ashift values for normal data devices.
1396 */
1397 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1398 !vd->vdev_islog && vd->vdev_aux == NULL) {
1399 if (vd->vdev_ashift > spa->spa_max_ashift)
1400 spa->spa_max_ashift = vd->vdev_ashift;
1401 if (vd->vdev_ashift < spa->spa_min_ashift)
1402 spa->spa_min_ashift = vd->vdev_ashift;
1403 }
1404
1405 /*
1406 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1407 * resilver. But don't do this if we are doing a reopen for a scrub,
1408 * since this would just restart the scrub we are already doing.
1409 */
1410 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1411 vdev_resilver_needed(vd, NULL, NULL))
1412 spa_async_request(spa, SPA_ASYNC_RESILVER);
1413
1414 return (0);
1415 }
1416
1417 /*
1418 * Called once the vdevs are all opened, this routine validates the label
1419 * contents. This needs to be done before vdev_load() so that we don't
1420 * inadvertently do repair I/Os to the wrong device.
1421 *
1422 * If 'strict' is false ignore the spa guid check. This is necessary because
1423 * if the machine crashed during a re-guid the new guid might have been written
1424 * to all of the vdev labels, but not the cached config. The strict check
1425 * will be performed when the pool is opened again using the mos config.
1426 *
1427 * This function will only return failure if one of the vdevs indicates that it
1428 * has since been destroyed or exported. This is only possible if
1429 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1430 * will be updated but the function will return 0.
1431 */
1432 int
1433 vdev_validate(vdev_t *vd, boolean_t strict)
1434 {
1435 spa_t *spa = vd->vdev_spa;
1436 nvlist_t *label;
1437 uint64_t guid = 0, top_guid;
1438 uint64_t state;
1439 int c;
1440
1441 for (c = 0; c < vd->vdev_children; c++)
1442 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1443 return (SET_ERROR(EBADF));
1444
1445 /*
1446 * If the device has already failed, or was marked offline, don't do
1447 * any further validation. Otherwise, label I/O will fail and we will
1448 * overwrite the previous state.
1449 */
1450 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1451 uint64_t aux_guid = 0;
1452 nvlist_t *nvl;
1453 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1454 spa_last_synced_txg(spa) : -1ULL;
1455
1456 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1457 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1458 VDEV_AUX_BAD_LABEL);
1459 return (0);
1460 }
1461
1462 /*
1463 * Determine if this vdev has been split off into another
1464 * pool. If so, then refuse to open it.
1465 */
1466 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1467 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1468 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1469 VDEV_AUX_SPLIT_POOL);
1470 nvlist_free(label);
1471 return (0);
1472 }
1473
1474 if (strict && (nvlist_lookup_uint64(label,
1475 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1476 guid != spa_guid(spa))) {
1477 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1478 VDEV_AUX_CORRUPT_DATA);
1479 nvlist_free(label);
1480 return (0);
1481 }
1482
1483 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1484 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1485 &aux_guid) != 0)
1486 aux_guid = 0;
1487
1488 /*
1489 * If this vdev just became a top-level vdev because its
1490 * sibling was detached, it will have adopted the parent's
1491 * vdev guid -- but the label may or may not be on disk yet.
1492 * Fortunately, either version of the label will have the
1493 * same top guid, so if we're a top-level vdev, we can
1494 * safely compare to that instead.
1495 *
1496 * If we split this vdev off instead, then we also check the
1497 * original pool's guid. We don't want to consider the vdev
1498 * corrupt if it is partway through a split operation.
1499 */
1500 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1501 &guid) != 0 ||
1502 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1503 &top_guid) != 0 ||
1504 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1505 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1506 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1507 VDEV_AUX_CORRUPT_DATA);
1508 nvlist_free(label);
1509 return (0);
1510 }
1511
1512 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1513 &state) != 0) {
1514 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1515 VDEV_AUX_CORRUPT_DATA);
1516 nvlist_free(label);
1517 return (0);
1518 }
1519
1520 nvlist_free(label);
1521
1522 /*
1523 * If this is a verbatim import, no need to check the
1524 * state of the pool.
1525 */
1526 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1527 spa_load_state(spa) == SPA_LOAD_OPEN &&
1528 state != POOL_STATE_ACTIVE)
1529 return (SET_ERROR(EBADF));
1530
1531 /*
1532 * If we were able to open and validate a vdev that was
1533 * previously marked permanently unavailable, clear that state
1534 * now.
1535 */
1536 if (vd->vdev_not_present)
1537 vd->vdev_not_present = 0;
1538 }
1539
1540 return (0);
1541 }
1542
1543 /*
1544 * Close a virtual device.
1545 */
1546 void
1547 vdev_close(vdev_t *vd)
1548 {
1549 vdev_t *pvd = vd->vdev_parent;
1550 ASSERTV(spa_t *spa = vd->vdev_spa);
1551
1552 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1553
1554 /*
1555 * If our parent is reopening, then we are as well, unless we are
1556 * going offline.
1557 */
1558 if (pvd != NULL && pvd->vdev_reopening)
1559 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1560
1561 vd->vdev_ops->vdev_op_close(vd);
1562
1563 vdev_cache_purge(vd);
1564
1565 /*
1566 * We record the previous state before we close it, so that if we are
1567 * doing a reopen(), we don't generate FMA ereports if we notice that
1568 * it's still faulted.
1569 */
1570 vd->vdev_prevstate = vd->vdev_state;
1571
1572 if (vd->vdev_offline)
1573 vd->vdev_state = VDEV_STATE_OFFLINE;
1574 else
1575 vd->vdev_state = VDEV_STATE_CLOSED;
1576 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1577 }
1578
1579 void
1580 vdev_hold(vdev_t *vd)
1581 {
1582 spa_t *spa = vd->vdev_spa;
1583 int c;
1584
1585 ASSERT(spa_is_root(spa));
1586 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1587 return;
1588
1589 for (c = 0; c < vd->vdev_children; c++)
1590 vdev_hold(vd->vdev_child[c]);
1591
1592 if (vd->vdev_ops->vdev_op_leaf)
1593 vd->vdev_ops->vdev_op_hold(vd);
1594 }
1595
1596 void
1597 vdev_rele(vdev_t *vd)
1598 {
1599 int c;
1600
1601 ASSERT(spa_is_root(vd->vdev_spa));
1602 for (c = 0; c < vd->vdev_children; c++)
1603 vdev_rele(vd->vdev_child[c]);
1604
1605 if (vd->vdev_ops->vdev_op_leaf)
1606 vd->vdev_ops->vdev_op_rele(vd);
1607 }
1608
1609 /*
1610 * Reopen all interior vdevs and any unopened leaves. We don't actually
1611 * reopen leaf vdevs which had previously been opened as they might deadlock
1612 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1613 * If the leaf has never been opened then open it, as usual.
1614 */
1615 void
1616 vdev_reopen(vdev_t *vd)
1617 {
1618 spa_t *spa = vd->vdev_spa;
1619
1620 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1621
1622 /* set the reopening flag unless we're taking the vdev offline */
1623 vd->vdev_reopening = !vd->vdev_offline;
1624 vdev_close(vd);
1625 (void) vdev_open(vd);
1626
1627 /*
1628 * Call vdev_validate() here to make sure we have the same device.
1629 * Otherwise, a device with an invalid label could be successfully
1630 * opened in response to vdev_reopen().
1631 */
1632 if (vd->vdev_aux) {
1633 (void) vdev_validate_aux(vd);
1634 if (vdev_readable(vd) && vdev_writeable(vd) &&
1635 vd->vdev_aux == &spa->spa_l2cache &&
1636 !l2arc_vdev_present(vd))
1637 l2arc_add_vdev(spa, vd);
1638 } else {
1639 (void) vdev_validate(vd, B_TRUE);
1640 }
1641
1642 /*
1643 * Reassess parent vdev's health.
1644 */
1645 vdev_propagate_state(vd);
1646 }
1647
1648 int
1649 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1650 {
1651 int error;
1652
1653 /*
1654 * Normally, partial opens (e.g. of a mirror) are allowed.
1655 * For a create, however, we want to fail the request if
1656 * there are any components we can't open.
1657 */
1658 error = vdev_open(vd);
1659
1660 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1661 vdev_close(vd);
1662 return (error ? error : ENXIO);
1663 }
1664
1665 /*
1666 * Recursively load DTLs and initialize all labels.
1667 */
1668 if ((error = vdev_dtl_load(vd)) != 0 ||
1669 (error = vdev_label_init(vd, txg, isreplacing ?
1670 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1671 vdev_close(vd);
1672 return (error);
1673 }
1674
1675 return (0);
1676 }
1677
1678 void
1679 vdev_metaslab_set_size(vdev_t *vd)
1680 {
1681 /*
1682 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1683 */
1684 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1685 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1686 }
1687
1688 void
1689 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1690 {
1691 ASSERT(vd == vd->vdev_top);
1692 ASSERT(!vd->vdev_ishole);
1693 ASSERT(ISP2(flags));
1694 ASSERT(spa_writeable(vd->vdev_spa));
1695
1696 if (flags & VDD_METASLAB)
1697 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1698
1699 if (flags & VDD_DTL)
1700 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1701
1702 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1703 }
1704
1705 void
1706 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1707 {
1708 int c;
1709
1710 for (c = 0; c < vd->vdev_children; c++)
1711 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1712
1713 if (vd->vdev_ops->vdev_op_leaf)
1714 vdev_dirty(vd->vdev_top, flags, vd, txg);
1715 }
1716
1717 /*
1718 * DTLs.
1719 *
1720 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1721 * the vdev has less than perfect replication. There are four kinds of DTL:
1722 *
1723 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1724 *
1725 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1726 *
1727 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1728 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1729 * txgs that was scrubbed.
1730 *
1731 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1732 * persistent errors or just some device being offline.
1733 * Unlike the other three, the DTL_OUTAGE map is not generally
1734 * maintained; it's only computed when needed, typically to
1735 * determine whether a device can be detached.
1736 *
1737 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1738 * either has the data or it doesn't.
1739 *
1740 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1741 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1742 * if any child is less than fully replicated, then so is its parent.
1743 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1744 * comprising only those txgs which appear in 'maxfaults' or more children;
1745 * those are the txgs we don't have enough replication to read. For example,
1746 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1747 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1748 * two child DTL_MISSING maps.
1749 *
1750 * It should be clear from the above that to compute the DTLs and outage maps
1751 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1752 * Therefore, that is all we keep on disk. When loading the pool, or after
1753 * a configuration change, we generate all other DTLs from first principles.
1754 */
1755 void
1756 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1757 {
1758 range_tree_t *rt = vd->vdev_dtl[t];
1759
1760 ASSERT(t < DTL_TYPES);
1761 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1762 ASSERT(spa_writeable(vd->vdev_spa));
1763
1764 mutex_enter(rt->rt_lock);
1765 if (!range_tree_contains(rt, txg, size))
1766 range_tree_add(rt, txg, size);
1767 mutex_exit(rt->rt_lock);
1768 }
1769
1770 boolean_t
1771 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1772 {
1773 range_tree_t *rt = vd->vdev_dtl[t];
1774 boolean_t dirty = B_FALSE;
1775
1776 ASSERT(t < DTL_TYPES);
1777 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1778
1779 mutex_enter(rt->rt_lock);
1780 if (range_tree_space(rt) != 0)
1781 dirty = range_tree_contains(rt, txg, size);
1782 mutex_exit(rt->rt_lock);
1783
1784 return (dirty);
1785 }
1786
1787 boolean_t
1788 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1789 {
1790 range_tree_t *rt = vd->vdev_dtl[t];
1791 boolean_t empty;
1792
1793 mutex_enter(rt->rt_lock);
1794 empty = (range_tree_space(rt) == 0);
1795 mutex_exit(rt->rt_lock);
1796
1797 return (empty);
1798 }
1799
1800 /*
1801 * Returns the lowest txg in the DTL range.
1802 */
1803 static uint64_t
1804 vdev_dtl_min(vdev_t *vd)
1805 {
1806 range_seg_t *rs;
1807
1808 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1809 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1810 ASSERT0(vd->vdev_children);
1811
1812 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1813 return (rs->rs_start - 1);
1814 }
1815
1816 /*
1817 * Returns the highest txg in the DTL.
1818 */
1819 static uint64_t
1820 vdev_dtl_max(vdev_t *vd)
1821 {
1822 range_seg_t *rs;
1823
1824 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1825 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1826 ASSERT0(vd->vdev_children);
1827
1828 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1829 return (rs->rs_end);
1830 }
1831
1832 /*
1833 * Determine if a resilvering vdev should remove any DTL entries from
1834 * its range. If the vdev was resilvering for the entire duration of the
1835 * scan then it should excise that range from its DTLs. Otherwise, this
1836 * vdev is considered partially resilvered and should leave its DTL
1837 * entries intact. The comment in vdev_dtl_reassess() describes how we
1838 * excise the DTLs.
1839 */
1840 static boolean_t
1841 vdev_dtl_should_excise(vdev_t *vd)
1842 {
1843 spa_t *spa = vd->vdev_spa;
1844 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1845
1846 ASSERT0(scn->scn_phys.scn_errors);
1847 ASSERT0(vd->vdev_children);
1848
1849 if (vd->vdev_resilver_txg == 0 ||
1850 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1851 return (B_TRUE);
1852
1853 /*
1854 * When a resilver is initiated the scan will assign the scn_max_txg
1855 * value to the highest txg value that exists in all DTLs. If this
1856 * device's max DTL is not part of this scan (i.e. it is not in
1857 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1858 * for excision.
1859 */
1860 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1861 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1862 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1863 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1864 return (B_TRUE);
1865 }
1866 return (B_FALSE);
1867 }
1868
1869 /*
1870 * Reassess DTLs after a config change or scrub completion.
1871 */
1872 void
1873 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1874 {
1875 spa_t *spa = vd->vdev_spa;
1876 avl_tree_t reftree;
1877 int c, t, minref;
1878
1879 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1880
1881 for (c = 0; c < vd->vdev_children; c++)
1882 vdev_dtl_reassess(vd->vdev_child[c], txg,
1883 scrub_txg, scrub_done);
1884
1885 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1886 return;
1887
1888 if (vd->vdev_ops->vdev_op_leaf) {
1889 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1890
1891 mutex_enter(&vd->vdev_dtl_lock);
1892
1893 /*
1894 * If we've completed a scan cleanly then determine
1895 * if this vdev should remove any DTLs. We only want to
1896 * excise regions on vdevs that were available during
1897 * the entire duration of this scan.
1898 */
1899 if (scrub_txg != 0 &&
1900 (spa->spa_scrub_started ||
1901 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1902 vdev_dtl_should_excise(vd)) {
1903 /*
1904 * We completed a scrub up to scrub_txg. If we
1905 * did it without rebooting, then the scrub dtl
1906 * will be valid, so excise the old region and
1907 * fold in the scrub dtl. Otherwise, leave the
1908 * dtl as-is if there was an error.
1909 *
1910 * There's little trick here: to excise the beginning
1911 * of the DTL_MISSING map, we put it into a reference
1912 * tree and then add a segment with refcnt -1 that
1913 * covers the range [0, scrub_txg). This means
1914 * that each txg in that range has refcnt -1 or 0.
1915 * We then add DTL_SCRUB with a refcnt of 2, so that
1916 * entries in the range [0, scrub_txg) will have a
1917 * positive refcnt -- either 1 or 2. We then convert
1918 * the reference tree into the new DTL_MISSING map.
1919 */
1920 space_reftree_create(&reftree);
1921 space_reftree_add_map(&reftree,
1922 vd->vdev_dtl[DTL_MISSING], 1);
1923 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1924 space_reftree_add_map(&reftree,
1925 vd->vdev_dtl[DTL_SCRUB], 2);
1926 space_reftree_generate_map(&reftree,
1927 vd->vdev_dtl[DTL_MISSING], 1);
1928 space_reftree_destroy(&reftree);
1929 }
1930 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1931 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1932 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1933 if (scrub_done)
1934 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1935 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1936 if (!vdev_readable(vd))
1937 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1938 else
1939 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1940 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1941
1942 /*
1943 * If the vdev was resilvering and no longer has any
1944 * DTLs then reset its resilvering flag and dirty
1945 * the top level so that we persist the change.
1946 */
1947 if (vd->vdev_resilver_txg != 0 &&
1948 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1949 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
1950 vd->vdev_resilver_txg = 0;
1951 vdev_config_dirty(vd->vdev_top);
1952 }
1953
1954 mutex_exit(&vd->vdev_dtl_lock);
1955
1956 if (txg != 0)
1957 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1958 return;
1959 }
1960
1961 mutex_enter(&vd->vdev_dtl_lock);
1962 for (t = 0; t < DTL_TYPES; t++) {
1963 int c;
1964
1965 /* account for child's outage in parent's missing map */
1966 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1967 if (t == DTL_SCRUB)
1968 continue; /* leaf vdevs only */
1969 if (t == DTL_PARTIAL)
1970 minref = 1; /* i.e. non-zero */
1971 else if (vd->vdev_nparity != 0)
1972 minref = vd->vdev_nparity + 1; /* RAID-Z */
1973 else
1974 minref = vd->vdev_children; /* any kind of mirror */
1975 space_reftree_create(&reftree);
1976 for (c = 0; c < vd->vdev_children; c++) {
1977 vdev_t *cvd = vd->vdev_child[c];
1978 mutex_enter(&cvd->vdev_dtl_lock);
1979 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1980 mutex_exit(&cvd->vdev_dtl_lock);
1981 }
1982 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1983 space_reftree_destroy(&reftree);
1984 }
1985 mutex_exit(&vd->vdev_dtl_lock);
1986 }
1987
1988 int
1989 vdev_dtl_load(vdev_t *vd)
1990 {
1991 spa_t *spa = vd->vdev_spa;
1992 objset_t *mos = spa->spa_meta_objset;
1993 int error = 0;
1994 int c;
1995
1996 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1997 ASSERT(!vd->vdev_ishole);
1998
1999 error = space_map_open(&vd->vdev_dtl_sm, mos,
2000 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2001 if (error)
2002 return (error);
2003 ASSERT(vd->vdev_dtl_sm != NULL);
2004
2005 mutex_enter(&vd->vdev_dtl_lock);
2006
2007 /*
2008 * Now that we've opened the space_map we need to update
2009 * the in-core DTL.
2010 */
2011 space_map_update(vd->vdev_dtl_sm);
2012
2013 error = space_map_load(vd->vdev_dtl_sm,
2014 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2015 mutex_exit(&vd->vdev_dtl_lock);
2016
2017 return (error);
2018 }
2019
2020 for (c = 0; c < vd->vdev_children; c++) {
2021 error = vdev_dtl_load(vd->vdev_child[c]);
2022 if (error != 0)
2023 break;
2024 }
2025
2026 return (error);
2027 }
2028
2029 void
2030 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2031 {
2032 spa_t *spa = vd->vdev_spa;
2033
2034 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2035 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2036 zapobj, tx));
2037 }
2038
2039 uint64_t
2040 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2041 {
2042 spa_t *spa = vd->vdev_spa;
2043 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2044 DMU_OT_NONE, 0, tx);
2045
2046 ASSERT(zap != 0);
2047 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2048 zap, tx));
2049
2050 return (zap);
2051 }
2052
2053 void
2054 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2055 {
2056 uint64_t i;
2057
2058 if (vd->vdev_ops != &vdev_hole_ops &&
2059 vd->vdev_ops != &vdev_missing_ops &&
2060 vd->vdev_ops != &vdev_root_ops &&
2061 !vd->vdev_top->vdev_removing) {
2062 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2063 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2064 }
2065 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2066 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2067 }
2068 }
2069 for (i = 0; i < vd->vdev_children; i++) {
2070 vdev_construct_zaps(vd->vdev_child[i], tx);
2071 }
2072 }
2073
2074 void
2075 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2076 {
2077 spa_t *spa = vd->vdev_spa;
2078 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2079 objset_t *mos = spa->spa_meta_objset;
2080 range_tree_t *rtsync;
2081 kmutex_t rtlock;
2082 dmu_tx_t *tx;
2083 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2084
2085 ASSERT(!vd->vdev_ishole);
2086 ASSERT(vd->vdev_ops->vdev_op_leaf);
2087
2088 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2089
2090 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2091 mutex_enter(&vd->vdev_dtl_lock);
2092 space_map_free(vd->vdev_dtl_sm, tx);
2093 space_map_close(vd->vdev_dtl_sm);
2094 vd->vdev_dtl_sm = NULL;
2095 mutex_exit(&vd->vdev_dtl_lock);
2096
2097 /*
2098 * We only destroy the leaf ZAP for detached leaves or for
2099 * removed log devices. Removed data devices handle leaf ZAP
2100 * cleanup later, once cancellation is no longer possible.
2101 */
2102 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2103 vd->vdev_top->vdev_islog)) {
2104 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2105 vd->vdev_leaf_zap = 0;
2106 }
2107
2108 dmu_tx_commit(tx);
2109 return;
2110 }
2111
2112 if (vd->vdev_dtl_sm == NULL) {
2113 uint64_t new_object;
2114
2115 new_object = space_map_alloc(mos, tx);
2116 VERIFY3U(new_object, !=, 0);
2117
2118 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2119 0, -1ULL, 0, &vd->vdev_dtl_lock));
2120 ASSERT(vd->vdev_dtl_sm != NULL);
2121 }
2122
2123 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2124
2125 rtsync = range_tree_create(NULL, NULL, &rtlock);
2126
2127 mutex_enter(&rtlock);
2128
2129 mutex_enter(&vd->vdev_dtl_lock);
2130 range_tree_walk(rt, range_tree_add, rtsync);
2131 mutex_exit(&vd->vdev_dtl_lock);
2132
2133 space_map_truncate(vd->vdev_dtl_sm, tx);
2134 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2135 range_tree_vacate(rtsync, NULL, NULL);
2136
2137 range_tree_destroy(rtsync);
2138
2139 mutex_exit(&rtlock);
2140 mutex_destroy(&rtlock);
2141
2142 /*
2143 * If the object for the space map has changed then dirty
2144 * the top level so that we update the config.
2145 */
2146 if (object != space_map_object(vd->vdev_dtl_sm)) {
2147 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2148 "new object %llu", txg, spa_name(spa), object,
2149 space_map_object(vd->vdev_dtl_sm));
2150 vdev_config_dirty(vd->vdev_top);
2151 }
2152
2153 dmu_tx_commit(tx);
2154
2155 mutex_enter(&vd->vdev_dtl_lock);
2156 space_map_update(vd->vdev_dtl_sm);
2157 mutex_exit(&vd->vdev_dtl_lock);
2158 }
2159
2160 /*
2161 * Determine whether the specified vdev can be offlined/detached/removed
2162 * without losing data.
2163 */
2164 boolean_t
2165 vdev_dtl_required(vdev_t *vd)
2166 {
2167 spa_t *spa = vd->vdev_spa;
2168 vdev_t *tvd = vd->vdev_top;
2169 uint8_t cant_read = vd->vdev_cant_read;
2170 boolean_t required;
2171
2172 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2173
2174 if (vd == spa->spa_root_vdev || vd == tvd)
2175 return (B_TRUE);
2176
2177 /*
2178 * Temporarily mark the device as unreadable, and then determine
2179 * whether this results in any DTL outages in the top-level vdev.
2180 * If not, we can safely offline/detach/remove the device.
2181 */
2182 vd->vdev_cant_read = B_TRUE;
2183 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2184 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2185 vd->vdev_cant_read = cant_read;
2186 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2187
2188 if (!required && zio_injection_enabled)
2189 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2190
2191 return (required);
2192 }
2193
2194 /*
2195 * Determine if resilver is needed, and if so the txg range.
2196 */
2197 boolean_t
2198 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2199 {
2200 boolean_t needed = B_FALSE;
2201 uint64_t thismin = UINT64_MAX;
2202 uint64_t thismax = 0;
2203 int c;
2204
2205 if (vd->vdev_children == 0) {
2206 mutex_enter(&vd->vdev_dtl_lock);
2207 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2208 vdev_writeable(vd)) {
2209
2210 thismin = vdev_dtl_min(vd);
2211 thismax = vdev_dtl_max(vd);
2212 needed = B_TRUE;
2213 }
2214 mutex_exit(&vd->vdev_dtl_lock);
2215 } else {
2216 for (c = 0; c < vd->vdev_children; c++) {
2217 vdev_t *cvd = vd->vdev_child[c];
2218 uint64_t cmin, cmax;
2219
2220 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2221 thismin = MIN(thismin, cmin);
2222 thismax = MAX(thismax, cmax);
2223 needed = B_TRUE;
2224 }
2225 }
2226 }
2227
2228 if (needed && minp) {
2229 *minp = thismin;
2230 *maxp = thismax;
2231 }
2232 return (needed);
2233 }
2234
2235 void
2236 vdev_load(vdev_t *vd)
2237 {
2238 int c;
2239
2240 /*
2241 * Recursively load all children.
2242 */
2243 for (c = 0; c < vd->vdev_children; c++)
2244 vdev_load(vd->vdev_child[c]);
2245
2246 /*
2247 * If this is a top-level vdev, initialize its metaslabs.
2248 */
2249 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2250 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2251 vdev_metaslab_init(vd, 0) != 0))
2252 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2253 VDEV_AUX_CORRUPT_DATA);
2254 /*
2255 * If this is a leaf vdev, load its DTL.
2256 */
2257 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2258 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2259 VDEV_AUX_CORRUPT_DATA);
2260 }
2261
2262 /*
2263 * The special vdev case is used for hot spares and l2cache devices. Its
2264 * sole purpose it to set the vdev state for the associated vdev. To do this,
2265 * we make sure that we can open the underlying device, then try to read the
2266 * label, and make sure that the label is sane and that it hasn't been
2267 * repurposed to another pool.
2268 */
2269 int
2270 vdev_validate_aux(vdev_t *vd)
2271 {
2272 nvlist_t *label;
2273 uint64_t guid, version;
2274 uint64_t state;
2275
2276 if (!vdev_readable(vd))
2277 return (0);
2278
2279 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2280 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2281 VDEV_AUX_CORRUPT_DATA);
2282 return (-1);
2283 }
2284
2285 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2286 !SPA_VERSION_IS_SUPPORTED(version) ||
2287 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2288 guid != vd->vdev_guid ||
2289 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2290 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2291 VDEV_AUX_CORRUPT_DATA);
2292 nvlist_free(label);
2293 return (-1);
2294 }
2295
2296 /*
2297 * We don't actually check the pool state here. If it's in fact in
2298 * use by another pool, we update this fact on the fly when requested.
2299 */
2300 nvlist_free(label);
2301 return (0);
2302 }
2303
2304 void
2305 vdev_remove(vdev_t *vd, uint64_t txg)
2306 {
2307 spa_t *spa = vd->vdev_spa;
2308 objset_t *mos = spa->spa_meta_objset;
2309 dmu_tx_t *tx;
2310 int m, i;
2311
2312 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2313 ASSERT(vd == vd->vdev_top);
2314 ASSERT3U(txg, ==, spa_syncing_txg(spa));
2315
2316 if (vd->vdev_ms != NULL) {
2317 metaslab_group_t *mg = vd->vdev_mg;
2318
2319 metaslab_group_histogram_verify(mg);
2320 metaslab_class_histogram_verify(mg->mg_class);
2321
2322 for (m = 0; m < vd->vdev_ms_count; m++) {
2323 metaslab_t *msp = vd->vdev_ms[m];
2324
2325 if (msp == NULL || msp->ms_sm == NULL)
2326 continue;
2327
2328 mutex_enter(&msp->ms_lock);
2329 /*
2330 * If the metaslab was not loaded when the vdev
2331 * was removed then the histogram accounting may
2332 * not be accurate. Update the histogram information
2333 * here so that we ensure that the metaslab group
2334 * and metaslab class are up-to-date.
2335 */
2336 metaslab_group_histogram_remove(mg, msp);
2337
2338 VERIFY0(space_map_allocated(msp->ms_sm));
2339 space_map_free(msp->ms_sm, tx);
2340 space_map_close(msp->ms_sm);
2341 msp->ms_sm = NULL;
2342 mutex_exit(&msp->ms_lock);
2343 }
2344
2345 metaslab_group_histogram_verify(mg);
2346 metaslab_class_histogram_verify(mg->mg_class);
2347 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2348 ASSERT0(mg->mg_histogram[i]);
2349
2350 }
2351
2352 if (vd->vdev_ms_array) {
2353 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2354 vd->vdev_ms_array = 0;
2355 }
2356
2357 if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2358 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2359 vd->vdev_top_zap = 0;
2360 }
2361 dmu_tx_commit(tx);
2362 }
2363
2364 void
2365 vdev_sync_done(vdev_t *vd, uint64_t txg)
2366 {
2367 metaslab_t *msp;
2368 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2369
2370 ASSERT(!vd->vdev_ishole);
2371
2372 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2373 metaslab_sync_done(msp, txg);
2374
2375 if (reassess)
2376 metaslab_sync_reassess(vd->vdev_mg);
2377 }
2378
2379 void
2380 vdev_sync(vdev_t *vd, uint64_t txg)
2381 {
2382 spa_t *spa = vd->vdev_spa;
2383 vdev_t *lvd;
2384 metaslab_t *msp;
2385 dmu_tx_t *tx;
2386
2387 ASSERT(!vd->vdev_ishole);
2388
2389 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2390 ASSERT(vd == vd->vdev_top);
2391 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2392 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2393 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2394 ASSERT(vd->vdev_ms_array != 0);
2395 vdev_config_dirty(vd);
2396 dmu_tx_commit(tx);
2397 }
2398
2399 /*
2400 * Remove the metadata associated with this vdev once it's empty.
2401 */
2402 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2403 vdev_remove(vd, txg);
2404
2405 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2406 metaslab_sync(msp, txg);
2407 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2408 }
2409
2410 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2411 vdev_dtl_sync(lvd, txg);
2412
2413 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2414 }
2415
2416 uint64_t
2417 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2418 {
2419 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2420 }
2421
2422 /*
2423 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2424 * not be opened, and no I/O is attempted.
2425 */
2426 int
2427 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2428 {
2429 vdev_t *vd, *tvd;
2430
2431 spa_vdev_state_enter(spa, SCL_NONE);
2432
2433 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2434 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2435
2436 if (!vd->vdev_ops->vdev_op_leaf)
2437 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2438
2439 tvd = vd->vdev_top;
2440
2441 /*
2442 * We don't directly use the aux state here, but if we do a
2443 * vdev_reopen(), we need this value to be present to remember why we
2444 * were faulted.
2445 */
2446 vd->vdev_label_aux = aux;
2447
2448 /*
2449 * Faulted state takes precedence over degraded.
2450 */
2451 vd->vdev_delayed_close = B_FALSE;
2452 vd->vdev_faulted = 1ULL;
2453 vd->vdev_degraded = 0ULL;
2454 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2455
2456 /*
2457 * If this device has the only valid copy of the data, then
2458 * back off and simply mark the vdev as degraded instead.
2459 */
2460 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2461 vd->vdev_degraded = 1ULL;
2462 vd->vdev_faulted = 0ULL;
2463
2464 /*
2465 * If we reopen the device and it's not dead, only then do we
2466 * mark it degraded.
2467 */
2468 vdev_reopen(tvd);
2469
2470 if (vdev_readable(vd))
2471 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2472 }
2473
2474 return (spa_vdev_state_exit(spa, vd, 0));
2475 }
2476
2477 /*
2478 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2479 * user that something is wrong. The vdev continues to operate as normal as far
2480 * as I/O is concerned.
2481 */
2482 int
2483 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2484 {
2485 vdev_t *vd;
2486
2487 spa_vdev_state_enter(spa, SCL_NONE);
2488
2489 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2490 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2491
2492 if (!vd->vdev_ops->vdev_op_leaf)
2493 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2494
2495 /*
2496 * If the vdev is already faulted, then don't do anything.
2497 */
2498 if (vd->vdev_faulted || vd->vdev_degraded)
2499 return (spa_vdev_state_exit(spa, NULL, 0));
2500
2501 vd->vdev_degraded = 1ULL;
2502 if (!vdev_is_dead(vd))
2503 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2504 aux);
2505
2506 return (spa_vdev_state_exit(spa, vd, 0));
2507 }
2508
2509 /*
2510 * Online the given vdev.
2511 *
2512 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2513 * spare device should be detached when the device finishes resilvering.
2514 * Second, the online should be treated like a 'test' online case, so no FMA
2515 * events are generated if the device fails to open.
2516 */
2517 int
2518 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2519 {
2520 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2521 boolean_t postevent = B_FALSE;
2522
2523 spa_vdev_state_enter(spa, SCL_NONE);
2524
2525 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2526 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2527
2528 if (!vd->vdev_ops->vdev_op_leaf)
2529 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2530
2531 postevent =
2532 (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2533 B_TRUE : B_FALSE;
2534
2535 tvd = vd->vdev_top;
2536 vd->vdev_offline = B_FALSE;
2537 vd->vdev_tmpoffline = B_FALSE;
2538 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2539 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2540
2541 /* XXX - L2ARC 1.0 does not support expansion */
2542 if (!vd->vdev_aux) {
2543 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2544 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2545 }
2546
2547 vdev_reopen(tvd);
2548 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2549
2550 if (!vd->vdev_aux) {
2551 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2552 pvd->vdev_expanding = B_FALSE;
2553 }
2554
2555 if (newstate)
2556 *newstate = vd->vdev_state;
2557 if ((flags & ZFS_ONLINE_UNSPARE) &&
2558 !vdev_is_dead(vd) && vd->vdev_parent &&
2559 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2560 vd->vdev_parent->vdev_child[0] == vd)
2561 vd->vdev_unspare = B_TRUE;
2562
2563 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2564
2565 /* XXX - L2ARC 1.0 does not support expansion */
2566 if (vd->vdev_aux)
2567 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2568 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2569 }
2570
2571 if (postevent)
2572 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2573
2574 return (spa_vdev_state_exit(spa, vd, 0));
2575 }
2576
2577 static int
2578 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2579 {
2580 vdev_t *vd, *tvd;
2581 int error = 0;
2582 uint64_t generation;
2583 metaslab_group_t *mg;
2584
2585 top:
2586 spa_vdev_state_enter(spa, SCL_ALLOC);
2587
2588 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2589 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2590
2591 if (!vd->vdev_ops->vdev_op_leaf)
2592 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2593
2594 tvd = vd->vdev_top;
2595 mg = tvd->vdev_mg;
2596 generation = spa->spa_config_generation + 1;
2597
2598 /*
2599 * If the device isn't already offline, try to offline it.
2600 */
2601 if (!vd->vdev_offline) {
2602 /*
2603 * If this device has the only valid copy of some data,
2604 * don't allow it to be offlined. Log devices are always
2605 * expendable.
2606 */
2607 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2608 vdev_dtl_required(vd))
2609 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2610
2611 /*
2612 * If the top-level is a slog and it has had allocations
2613 * then proceed. We check that the vdev's metaslab group
2614 * is not NULL since it's possible that we may have just
2615 * added this vdev but not yet initialized its metaslabs.
2616 */
2617 if (tvd->vdev_islog && mg != NULL) {
2618 /*
2619 * Prevent any future allocations.
2620 */
2621 metaslab_group_passivate(mg);
2622 (void) spa_vdev_state_exit(spa, vd, 0);
2623
2624 error = spa_offline_log(spa);
2625
2626 spa_vdev_state_enter(spa, SCL_ALLOC);
2627
2628 /*
2629 * Check to see if the config has changed.
2630 */
2631 if (error || generation != spa->spa_config_generation) {
2632 metaslab_group_activate(mg);
2633 if (error)
2634 return (spa_vdev_state_exit(spa,
2635 vd, error));
2636 (void) spa_vdev_state_exit(spa, vd, 0);
2637 goto top;
2638 }
2639 ASSERT0(tvd->vdev_stat.vs_alloc);
2640 }
2641
2642 /*
2643 * Offline this device and reopen its top-level vdev.
2644 * If the top-level vdev is a log device then just offline
2645 * it. Otherwise, if this action results in the top-level
2646 * vdev becoming unusable, undo it and fail the request.
2647 */
2648 vd->vdev_offline = B_TRUE;
2649 vdev_reopen(tvd);
2650
2651 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2652 vdev_is_dead(tvd)) {
2653 vd->vdev_offline = B_FALSE;
2654 vdev_reopen(tvd);
2655 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2656 }
2657
2658 /*
2659 * Add the device back into the metaslab rotor so that
2660 * once we online the device it's open for business.
2661 */
2662 if (tvd->vdev_islog && mg != NULL)
2663 metaslab_group_activate(mg);
2664 }
2665
2666 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2667
2668 return (spa_vdev_state_exit(spa, vd, 0));
2669 }
2670
2671 int
2672 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2673 {
2674 int error;
2675
2676 mutex_enter(&spa->spa_vdev_top_lock);
2677 error = vdev_offline_locked(spa, guid, flags);
2678 mutex_exit(&spa->spa_vdev_top_lock);
2679
2680 return (error);
2681 }
2682
2683 /*
2684 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2685 * vdev_offline(), we assume the spa config is locked. We also clear all
2686 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2687 */
2688 void
2689 vdev_clear(spa_t *spa, vdev_t *vd)
2690 {
2691 vdev_t *rvd = spa->spa_root_vdev;
2692 int c;
2693
2694 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2695
2696 if (vd == NULL)
2697 vd = rvd;
2698
2699 vd->vdev_stat.vs_read_errors = 0;
2700 vd->vdev_stat.vs_write_errors = 0;
2701 vd->vdev_stat.vs_checksum_errors = 0;
2702
2703 for (c = 0; c < vd->vdev_children; c++)
2704 vdev_clear(spa, vd->vdev_child[c]);
2705
2706 /*
2707 * If we're in the FAULTED state or have experienced failed I/O, then
2708 * clear the persistent state and attempt to reopen the device. We
2709 * also mark the vdev config dirty, so that the new faulted state is
2710 * written out to disk.
2711 */
2712 if (vd->vdev_faulted || vd->vdev_degraded ||
2713 !vdev_readable(vd) || !vdev_writeable(vd)) {
2714
2715 /*
2716 * When reopening in response to a clear event, it may be due to
2717 * a fmadm repair request. In this case, if the device is
2718 * still broken, we want to still post the ereport again.
2719 */
2720 vd->vdev_forcefault = B_TRUE;
2721
2722 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2723 vd->vdev_cant_read = B_FALSE;
2724 vd->vdev_cant_write = B_FALSE;
2725
2726 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2727
2728 vd->vdev_forcefault = B_FALSE;
2729
2730 if (vd != rvd && vdev_writeable(vd->vdev_top))
2731 vdev_state_dirty(vd->vdev_top);
2732
2733 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2734 spa_async_request(spa, SPA_ASYNC_RESILVER);
2735
2736 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2737 }
2738
2739 /*
2740 * When clearing a FMA-diagnosed fault, we always want to
2741 * unspare the device, as we assume that the original spare was
2742 * done in response to the FMA fault.
2743 */
2744 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2745 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2746 vd->vdev_parent->vdev_child[0] == vd)
2747 vd->vdev_unspare = B_TRUE;
2748 }
2749
2750 boolean_t
2751 vdev_is_dead(vdev_t *vd)
2752 {
2753 /*
2754 * Holes and missing devices are always considered "dead".
2755 * This simplifies the code since we don't have to check for
2756 * these types of devices in the various code paths.
2757 * Instead we rely on the fact that we skip over dead devices
2758 * before issuing I/O to them.
2759 */
2760 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2761 vd->vdev_ops == &vdev_missing_ops);
2762 }
2763
2764 boolean_t
2765 vdev_readable(vdev_t *vd)
2766 {
2767 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2768 }
2769
2770 boolean_t
2771 vdev_writeable(vdev_t *vd)
2772 {
2773 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2774 }
2775
2776 boolean_t
2777 vdev_allocatable(vdev_t *vd)
2778 {
2779 uint64_t state = vd->vdev_state;
2780
2781 /*
2782 * We currently allow allocations from vdevs which may be in the
2783 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2784 * fails to reopen then we'll catch it later when we're holding
2785 * the proper locks. Note that we have to get the vdev state
2786 * in a local variable because although it changes atomically,
2787 * we're asking two separate questions about it.
2788 */
2789 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2790 !vd->vdev_cant_write && !vd->vdev_ishole &&
2791 vd->vdev_mg->mg_initialized);
2792 }
2793
2794 boolean_t
2795 vdev_accessible(vdev_t *vd, zio_t *zio)
2796 {
2797 ASSERT(zio->io_vd == vd);
2798
2799 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2800 return (B_FALSE);
2801
2802 if (zio->io_type == ZIO_TYPE_READ)
2803 return (!vd->vdev_cant_read);
2804
2805 if (zio->io_type == ZIO_TYPE_WRITE)
2806 return (!vd->vdev_cant_write);
2807
2808 return (B_TRUE);
2809 }
2810
2811 static void
2812 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
2813 {
2814 int t;
2815 for (t = 0; t < ZIO_TYPES; t++) {
2816 vs->vs_ops[t] += cvs->vs_ops[t];
2817 vs->vs_bytes[t] += cvs->vs_bytes[t];
2818 }
2819
2820 cvs->vs_scan_removing = cvd->vdev_removing;
2821 }
2822
2823 /*
2824 * Get extended stats
2825 */
2826 static void
2827 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
2828 {
2829 int t, b;
2830 for (t = 0; t < ZIO_TYPES; t++) {
2831 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
2832 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
2833
2834 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
2835 vsx->vsx_total_histo[t][b] +=
2836 cvsx->vsx_total_histo[t][b];
2837 }
2838 }
2839
2840 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
2841 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
2842 vsx->vsx_queue_histo[t][b] +=
2843 cvsx->vsx_queue_histo[t][b];
2844 }
2845 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
2846 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
2847
2848 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
2849 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
2850
2851 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
2852 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
2853 }
2854
2855 }
2856
2857 /*
2858 * Get statistics for the given vdev.
2859 */
2860 static void
2861 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2862 {
2863 int c, t;
2864 /*
2865 * If we're getting stats on the root vdev, aggregate the I/O counts
2866 * over all top-level vdevs (i.e. the direct children of the root).
2867 */
2868 if (!vd->vdev_ops->vdev_op_leaf) {
2869 if (vs) {
2870 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
2871 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
2872 }
2873 if (vsx)
2874 memset(vsx, 0, sizeof (*vsx));
2875
2876 for (c = 0; c < vd->vdev_children; c++) {
2877 vdev_t *cvd = vd->vdev_child[c];
2878 vdev_stat_t *cvs = &cvd->vdev_stat;
2879 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
2880
2881 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
2882 if (vs)
2883 vdev_get_child_stat(cvd, vs, cvs);
2884 if (vsx)
2885 vdev_get_child_stat_ex(cvd, vsx, cvsx);
2886
2887 }
2888 } else {
2889 /*
2890 * We're a leaf. Just copy our ZIO active queue stats in. The
2891 * other leaf stats are updated in vdev_stat_update().
2892 */
2893 if (!vsx)
2894 return;
2895
2896 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
2897
2898 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
2899 vsx->vsx_active_queue[t] =
2900 vd->vdev_queue.vq_class[t].vqc_active;
2901 vsx->vsx_pend_queue[t] = avl_numnodes(
2902 &vd->vdev_queue.vq_class[t].vqc_queued_tree);
2903 }
2904 }
2905 }
2906
2907 void
2908 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2909 {
2910 vdev_t *tvd = vd->vdev_top;
2911 mutex_enter(&vd->vdev_stat_lock);
2912 if (vs) {
2913 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2914 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2915 vs->vs_state = vd->vdev_state;
2916 vs->vs_rsize = vdev_get_min_asize(vd);
2917 if (vd->vdev_ops->vdev_op_leaf)
2918 vs->vs_rsize += VDEV_LABEL_START_SIZE +
2919 VDEV_LABEL_END_SIZE;
2920 /*
2921 * Report expandable space on top-level, non-auxillary devices
2922 * only. The expandable space is reported in terms of metaslab
2923 * sized units since that determines how much space the pool
2924 * can expand.
2925 */
2926 if (vd->vdev_aux == NULL && tvd != NULL) {
2927 vs->vs_esize = P2ALIGN(
2928 vd->vdev_max_asize - vd->vdev_asize,
2929 1ULL << tvd->vdev_ms_shift);
2930 }
2931 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2932 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
2933 !vd->vdev_ishole) {
2934 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2935 }
2936 }
2937
2938 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_READER) != 0);
2939 vdev_get_stats_ex_impl(vd, vs, vsx);
2940 mutex_exit(&vd->vdev_stat_lock);
2941 }
2942
2943 void
2944 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2945 {
2946 return (vdev_get_stats_ex(vd, vs, NULL));
2947 }
2948
2949 void
2950 vdev_clear_stats(vdev_t *vd)
2951 {
2952 mutex_enter(&vd->vdev_stat_lock);
2953 vd->vdev_stat.vs_space = 0;
2954 vd->vdev_stat.vs_dspace = 0;
2955 vd->vdev_stat.vs_alloc = 0;
2956 mutex_exit(&vd->vdev_stat_lock);
2957 }
2958
2959 void
2960 vdev_scan_stat_init(vdev_t *vd)
2961 {
2962 vdev_stat_t *vs = &vd->vdev_stat;
2963 int c;
2964
2965 for (c = 0; c < vd->vdev_children; c++)
2966 vdev_scan_stat_init(vd->vdev_child[c]);
2967
2968 mutex_enter(&vd->vdev_stat_lock);
2969 vs->vs_scan_processed = 0;
2970 mutex_exit(&vd->vdev_stat_lock);
2971 }
2972
2973 void
2974 vdev_stat_update(zio_t *zio, uint64_t psize)
2975 {
2976 spa_t *spa = zio->io_spa;
2977 vdev_t *rvd = spa->spa_root_vdev;
2978 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2979 vdev_t *pvd;
2980 uint64_t txg = zio->io_txg;
2981 vdev_stat_t *vs = &vd->vdev_stat;
2982 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
2983 zio_type_t type = zio->io_type;
2984 int flags = zio->io_flags;
2985
2986 /*
2987 * If this i/o is a gang leader, it didn't do any actual work.
2988 */
2989 if (zio->io_gang_tree)
2990 return;
2991
2992 if (zio->io_error == 0) {
2993 /*
2994 * If this is a root i/o, don't count it -- we've already
2995 * counted the top-level vdevs, and vdev_get_stats() will
2996 * aggregate them when asked. This reduces contention on
2997 * the root vdev_stat_lock and implicitly handles blocks
2998 * that compress away to holes, for which there is no i/o.
2999 * (Holes never create vdev children, so all the counters
3000 * remain zero, which is what we want.)
3001 *
3002 * Note: this only applies to successful i/o (io_error == 0)
3003 * because unlike i/o counts, errors are not additive.
3004 * When reading a ditto block, for example, failure of
3005 * one top-level vdev does not imply a root-level error.
3006 */
3007 if (vd == rvd)
3008 return;
3009
3010 ASSERT(vd == zio->io_vd);
3011
3012 if (flags & ZIO_FLAG_IO_BYPASS)
3013 return;
3014
3015 mutex_enter(&vd->vdev_stat_lock);
3016
3017 if (flags & ZIO_FLAG_IO_REPAIR) {
3018 if (flags & ZIO_FLAG_SCAN_THREAD) {
3019 dsl_scan_phys_t *scn_phys =
3020 &spa->spa_dsl_pool->dp_scan->scn_phys;
3021 uint64_t *processed = &scn_phys->scn_processed;
3022
3023 /* XXX cleanup? */
3024 if (vd->vdev_ops->vdev_op_leaf)
3025 atomic_add_64(processed, psize);
3026 vs->vs_scan_processed += psize;
3027 }
3028
3029 if (flags & ZIO_FLAG_SELF_HEAL)
3030 vs->vs_self_healed += psize;
3031 }
3032
3033 /*
3034 * The bytes/ops/histograms are recorded at the leaf level and
3035 * aggregated into the higher level vdevs in vdev_get_stats().
3036 */
3037 if (vd->vdev_ops->vdev_op_leaf &&
3038 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
3039
3040 vs->vs_ops[type]++;
3041 vs->vs_bytes[type] += psize;
3042
3043 if (flags & ZIO_FLAG_DELEGATED) {
3044 vsx->vsx_agg_histo[zio->io_priority]
3045 [RQ_HISTO(zio->io_size)]++;
3046 } else {
3047 vsx->vsx_ind_histo[zio->io_priority]
3048 [RQ_HISTO(zio->io_size)]++;
3049 }
3050
3051 if (zio->io_delta && zio->io_delay) {
3052 vsx->vsx_queue_histo[zio->io_priority]
3053 [L_HISTO(zio->io_delta - zio->io_delay)]++;
3054 vsx->vsx_disk_histo[type]
3055 [L_HISTO(zio->io_delay)]++;
3056 vsx->vsx_total_histo[type]
3057 [L_HISTO(zio->io_delta)]++;
3058 }
3059 }
3060
3061 mutex_exit(&vd->vdev_stat_lock);
3062 return;
3063 }
3064
3065 if (flags & ZIO_FLAG_SPECULATIVE)
3066 return;
3067
3068 /*
3069 * If this is an I/O error that is going to be retried, then ignore the
3070 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
3071 * hard errors, when in reality they can happen for any number of
3072 * innocuous reasons (bus resets, MPxIO link failure, etc).
3073 */
3074 if (zio->io_error == EIO &&
3075 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3076 return;
3077
3078 /*
3079 * Intent logs writes won't propagate their error to the root
3080 * I/O so don't mark these types of failures as pool-level
3081 * errors.
3082 */
3083 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3084 return;
3085
3086 mutex_enter(&vd->vdev_stat_lock);
3087 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3088 if (zio->io_error == ECKSUM)
3089 vs->vs_checksum_errors++;
3090 else
3091 vs->vs_read_errors++;
3092 }
3093 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3094 vs->vs_write_errors++;
3095 mutex_exit(&vd->vdev_stat_lock);
3096
3097 if (type == ZIO_TYPE_WRITE && txg != 0 &&
3098 (!(flags & ZIO_FLAG_IO_REPAIR) ||
3099 (flags & ZIO_FLAG_SCAN_THREAD) ||
3100 spa->spa_claiming)) {
3101 /*
3102 * This is either a normal write (not a repair), or it's
3103 * a repair induced by the scrub thread, or it's a repair
3104 * made by zil_claim() during spa_load() in the first txg.
3105 * In the normal case, we commit the DTL change in the same
3106 * txg as the block was born. In the scrub-induced repair
3107 * case, we know that scrubs run in first-pass syncing context,
3108 * so we commit the DTL change in spa_syncing_txg(spa).
3109 * In the zil_claim() case, we commit in spa_first_txg(spa).
3110 *
3111 * We currently do not make DTL entries for failed spontaneous
3112 * self-healing writes triggered by normal (non-scrubbing)
3113 * reads, because we have no transactional context in which to
3114 * do so -- and it's not clear that it'd be desirable anyway.
3115 */
3116 if (vd->vdev_ops->vdev_op_leaf) {
3117 uint64_t commit_txg = txg;
3118 if (flags & ZIO_FLAG_SCAN_THREAD) {
3119 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3120 ASSERT(spa_sync_pass(spa) == 1);
3121 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3122 commit_txg = spa_syncing_txg(spa);
3123 } else if (spa->spa_claiming) {
3124 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3125 commit_txg = spa_first_txg(spa);
3126 }
3127 ASSERT(commit_txg >= spa_syncing_txg(spa));
3128 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3129 return;
3130 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3131 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3132 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3133 }
3134 if (vd != rvd)
3135 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3136 }
3137 }
3138
3139 /*
3140 * Update the in-core space usage stats for this vdev, its metaslab class,
3141 * and the root vdev.
3142 */
3143 void
3144 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3145 int64_t space_delta)
3146 {
3147 int64_t dspace_delta = space_delta;
3148 spa_t *spa = vd->vdev_spa;
3149 vdev_t *rvd = spa->spa_root_vdev;
3150 metaslab_group_t *mg = vd->vdev_mg;
3151 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3152
3153 ASSERT(vd == vd->vdev_top);
3154
3155 /*
3156 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3157 * factor. We must calculate this here and not at the root vdev
3158 * because the root vdev's psize-to-asize is simply the max of its
3159 * childrens', thus not accurate enough for us.
3160 */
3161 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3162 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3163 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3164 vd->vdev_deflate_ratio;
3165
3166 mutex_enter(&vd->vdev_stat_lock);
3167 vd->vdev_stat.vs_alloc += alloc_delta;
3168 vd->vdev_stat.vs_space += space_delta;
3169 vd->vdev_stat.vs_dspace += dspace_delta;
3170 mutex_exit(&vd->vdev_stat_lock);
3171
3172 if (mc == spa_normal_class(spa)) {
3173 mutex_enter(&rvd->vdev_stat_lock);
3174 rvd->vdev_stat.vs_alloc += alloc_delta;
3175 rvd->vdev_stat.vs_space += space_delta;
3176 rvd->vdev_stat.vs_dspace += dspace_delta;
3177 mutex_exit(&rvd->vdev_stat_lock);
3178 }
3179
3180 if (mc != NULL) {
3181 ASSERT(rvd == vd->vdev_parent);
3182 ASSERT(vd->vdev_ms_count != 0);
3183
3184 metaslab_class_space_update(mc,
3185 alloc_delta, defer_delta, space_delta, dspace_delta);
3186 }
3187 }
3188
3189 /*
3190 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3191 * so that it will be written out next time the vdev configuration is synced.
3192 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3193 */
3194 void
3195 vdev_config_dirty(vdev_t *vd)
3196 {
3197 spa_t *spa = vd->vdev_spa;
3198 vdev_t *rvd = spa->spa_root_vdev;
3199 int c;
3200
3201 ASSERT(spa_writeable(spa));
3202
3203 /*
3204 * If this is an aux vdev (as with l2cache and spare devices), then we
3205 * update the vdev config manually and set the sync flag.
3206 */
3207 if (vd->vdev_aux != NULL) {
3208 spa_aux_vdev_t *sav = vd->vdev_aux;
3209 nvlist_t **aux;
3210 uint_t naux;
3211
3212 for (c = 0; c < sav->sav_count; c++) {
3213 if (sav->sav_vdevs[c] == vd)
3214 break;
3215 }
3216
3217 if (c == sav->sav_count) {
3218 /*
3219 * We're being removed. There's nothing more to do.
3220 */
3221 ASSERT(sav->sav_sync == B_TRUE);
3222 return;
3223 }
3224
3225 sav->sav_sync = B_TRUE;
3226
3227 if (nvlist_lookup_nvlist_array(sav->sav_config,
3228 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3229 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3230 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3231 }
3232
3233 ASSERT(c < naux);
3234
3235 /*
3236 * Setting the nvlist in the middle if the array is a little
3237 * sketchy, but it will work.
3238 */
3239 nvlist_free(aux[c]);
3240 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3241
3242 return;
3243 }
3244
3245 /*
3246 * The dirty list is protected by the SCL_CONFIG lock. The caller
3247 * must either hold SCL_CONFIG as writer, or must be the sync thread
3248 * (which holds SCL_CONFIG as reader). There's only one sync thread,
3249 * so this is sufficient to ensure mutual exclusion.
3250 */
3251 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3252 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3253 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3254
3255 if (vd == rvd) {
3256 for (c = 0; c < rvd->vdev_children; c++)
3257 vdev_config_dirty(rvd->vdev_child[c]);
3258 } else {
3259 ASSERT(vd == vd->vdev_top);
3260
3261 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3262 !vd->vdev_ishole)
3263 list_insert_head(&spa->spa_config_dirty_list, vd);
3264 }
3265 }
3266
3267 void
3268 vdev_config_clean(vdev_t *vd)
3269 {
3270 spa_t *spa = vd->vdev_spa;
3271
3272 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3273 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3274 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3275
3276 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3277 list_remove(&spa->spa_config_dirty_list, vd);
3278 }
3279
3280 /*
3281 * Mark a top-level vdev's state as dirty, so that the next pass of
3282 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3283 * the state changes from larger config changes because they require
3284 * much less locking, and are often needed for administrative actions.
3285 */
3286 void
3287 vdev_state_dirty(vdev_t *vd)
3288 {
3289 spa_t *spa = vd->vdev_spa;
3290
3291 ASSERT(spa_writeable(spa));
3292 ASSERT(vd == vd->vdev_top);
3293
3294 /*
3295 * The state list is protected by the SCL_STATE lock. The caller
3296 * must either hold SCL_STATE as writer, or must be the sync thread
3297 * (which holds SCL_STATE as reader). There's only one sync thread,
3298 * so this is sufficient to ensure mutual exclusion.
3299 */
3300 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3301 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3302 spa_config_held(spa, SCL_STATE, RW_READER)));
3303
3304 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3305 list_insert_head(&spa->spa_state_dirty_list, vd);
3306 }
3307
3308 void
3309 vdev_state_clean(vdev_t *vd)
3310 {
3311 spa_t *spa = vd->vdev_spa;
3312
3313 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3314 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3315 spa_config_held(spa, SCL_STATE, RW_READER)));
3316
3317 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3318 list_remove(&spa->spa_state_dirty_list, vd);
3319 }
3320
3321 /*
3322 * Propagate vdev state up from children to parent.
3323 */
3324 void
3325 vdev_propagate_state(vdev_t *vd)
3326 {
3327 spa_t *spa = vd->vdev_spa;
3328 vdev_t *rvd = spa->spa_root_vdev;
3329 int degraded = 0, faulted = 0;
3330 int corrupted = 0;
3331 vdev_t *child;
3332 int c;
3333
3334 if (vd->vdev_children > 0) {
3335 for (c = 0; c < vd->vdev_children; c++) {
3336 child = vd->vdev_child[c];
3337
3338 /*
3339 * Don't factor holes into the decision.
3340 */
3341 if (child->vdev_ishole)
3342 continue;
3343
3344 if (!vdev_readable(child) ||
3345 (!vdev_writeable(child) && spa_writeable(spa))) {
3346 /*
3347 * Root special: if there is a top-level log
3348 * device, treat the root vdev as if it were
3349 * degraded.
3350 */
3351 if (child->vdev_islog && vd == rvd)
3352 degraded++;
3353 else
3354 faulted++;
3355 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3356 degraded++;
3357 }
3358
3359 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3360 corrupted++;
3361 }
3362
3363 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3364
3365 /*
3366 * Root special: if there is a top-level vdev that cannot be
3367 * opened due to corrupted metadata, then propagate the root
3368 * vdev's aux state as 'corrupt' rather than 'insufficient
3369 * replicas'.
3370 */
3371 if (corrupted && vd == rvd &&
3372 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3373 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3374 VDEV_AUX_CORRUPT_DATA);
3375 }
3376
3377 if (vd->vdev_parent)
3378 vdev_propagate_state(vd->vdev_parent);
3379 }
3380
3381 /*
3382 * Set a vdev's state. If this is during an open, we don't update the parent
3383 * state, because we're in the process of opening children depth-first.
3384 * Otherwise, we propagate the change to the parent.
3385 *
3386 * If this routine places a device in a faulted state, an appropriate ereport is
3387 * generated.
3388 */
3389 void
3390 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3391 {
3392 uint64_t save_state;
3393 spa_t *spa = vd->vdev_spa;
3394
3395 if (state == vd->vdev_state) {
3396 /*
3397 * Since vdev_offline() code path is already in an offline
3398 * state we can miss a statechange event to OFFLINE. Check
3399 * the previous state to catch this condition.
3400 */
3401 if (vd->vdev_ops->vdev_op_leaf &&
3402 (state == VDEV_STATE_OFFLINE) &&
3403 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
3404 /* post an offline state change */
3405 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
3406 }
3407 vd->vdev_stat.vs_aux = aux;
3408 return;
3409 }
3410
3411 save_state = vd->vdev_state;
3412
3413 vd->vdev_state = state;
3414 vd->vdev_stat.vs_aux = aux;
3415
3416 /*
3417 * If we are setting the vdev state to anything but an open state, then
3418 * always close the underlying device unless the device has requested
3419 * a delayed close (i.e. we're about to remove or fault the device).
3420 * Otherwise, we keep accessible but invalid devices open forever.
3421 * We don't call vdev_close() itself, because that implies some extra
3422 * checks (offline, etc) that we don't want here. This is limited to
3423 * leaf devices, because otherwise closing the device will affect other
3424 * children.
3425 */
3426 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3427 vd->vdev_ops->vdev_op_leaf)
3428 vd->vdev_ops->vdev_op_close(vd);
3429
3430 if (vd->vdev_removed &&
3431 state == VDEV_STATE_CANT_OPEN &&
3432 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3433 /*
3434 * If the previous state is set to VDEV_STATE_REMOVED, then this
3435 * device was previously marked removed and someone attempted to
3436 * reopen it. If this failed due to a nonexistent device, then
3437 * keep the device in the REMOVED state. We also let this be if
3438 * it is one of our special test online cases, which is only
3439 * attempting to online the device and shouldn't generate an FMA
3440 * fault.
3441 */
3442 vd->vdev_state = VDEV_STATE_REMOVED;
3443 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3444 } else if (state == VDEV_STATE_REMOVED) {
3445 vd->vdev_removed = B_TRUE;
3446 } else if (state == VDEV_STATE_CANT_OPEN) {
3447 /*
3448 * If we fail to open a vdev during an import or recovery, we
3449 * mark it as "not available", which signifies that it was
3450 * never there to begin with. Failure to open such a device
3451 * is not considered an error.
3452 */
3453 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3454 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3455 vd->vdev_ops->vdev_op_leaf)
3456 vd->vdev_not_present = 1;
3457
3458 /*
3459 * Post the appropriate ereport. If the 'prevstate' field is
3460 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3461 * that this is part of a vdev_reopen(). In this case, we don't
3462 * want to post the ereport if the device was already in the
3463 * CANT_OPEN state beforehand.
3464 *
3465 * If the 'checkremove' flag is set, then this is an attempt to
3466 * online the device in response to an insertion event. If we
3467 * hit this case, then we have detected an insertion event for a
3468 * faulted or offline device that wasn't in the removed state.
3469 * In this scenario, we don't post an ereport because we are
3470 * about to replace the device, or attempt an online with
3471 * vdev_forcefault, which will generate the fault for us.
3472 */
3473 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3474 !vd->vdev_not_present && !vd->vdev_checkremove &&
3475 vd != spa->spa_root_vdev) {
3476 const char *class;
3477
3478 switch (aux) {
3479 case VDEV_AUX_OPEN_FAILED:
3480 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3481 break;
3482 case VDEV_AUX_CORRUPT_DATA:
3483 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3484 break;
3485 case VDEV_AUX_NO_REPLICAS:
3486 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3487 break;
3488 case VDEV_AUX_BAD_GUID_SUM:
3489 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3490 break;
3491 case VDEV_AUX_TOO_SMALL:
3492 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3493 break;
3494 case VDEV_AUX_BAD_LABEL:
3495 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3496 break;
3497 case VDEV_AUX_BAD_ASHIFT:
3498 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
3499 break;
3500 default:
3501 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3502 }
3503
3504 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3505 }
3506
3507 /* Erase any notion of persistent removed state */
3508 vd->vdev_removed = B_FALSE;
3509 } else {
3510 vd->vdev_removed = B_FALSE;
3511 }
3512
3513 /*
3514 * Notify ZED of any significant state-change on a leaf vdev.
3515 *
3516 */
3517 if (vd->vdev_ops->vdev_op_leaf) {
3518 /* preserve original state from a vdev_reopen() */
3519 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
3520 (vd->vdev_prevstate != vd->vdev_state) &&
3521 (save_state <= VDEV_STATE_CLOSED))
3522 save_state = vd->vdev_prevstate;
3523
3524 /* filter out state change due to initial vdev_open */
3525 if (save_state > VDEV_STATE_CLOSED)
3526 zfs_post_state_change(spa, vd, save_state);
3527 }
3528
3529 if (!isopen && vd->vdev_parent)
3530 vdev_propagate_state(vd->vdev_parent);
3531 }
3532
3533 /*
3534 * Check the vdev configuration to ensure that it's capable of supporting
3535 * a root pool.
3536 */
3537 boolean_t
3538 vdev_is_bootable(vdev_t *vd)
3539 {
3540 #if defined(__sun__) || defined(__sun)
3541 /*
3542 * Currently, we do not support RAID-Z or partial configuration.
3543 * In addition, only a single top-level vdev is allowed and none of the
3544 * leaves can be wholedisks.
3545 */
3546 int c;
3547
3548 if (!vd->vdev_ops->vdev_op_leaf) {
3549 char *vdev_type = vd->vdev_ops->vdev_op_type;
3550
3551 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3552 vd->vdev_children > 1) {
3553 return (B_FALSE);
3554 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3555 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3556 return (B_FALSE);
3557 }
3558 }
3559
3560 for (c = 0; c < vd->vdev_children; c++) {
3561 if (!vdev_is_bootable(vd->vdev_child[c]))
3562 return (B_FALSE);
3563 }
3564 #endif /* __sun__ || __sun */
3565 return (B_TRUE);
3566 }
3567
3568 /*
3569 * Load the state from the original vdev tree (ovd) which
3570 * we've retrieved from the MOS config object. If the original
3571 * vdev was offline or faulted then we transfer that state to the
3572 * device in the current vdev tree (nvd).
3573 */
3574 void
3575 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3576 {
3577 int c;
3578
3579 ASSERT(nvd->vdev_top->vdev_islog);
3580 ASSERT(spa_config_held(nvd->vdev_spa,
3581 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3582 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3583
3584 for (c = 0; c < nvd->vdev_children; c++)
3585 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3586
3587 if (nvd->vdev_ops->vdev_op_leaf) {
3588 /*
3589 * Restore the persistent vdev state
3590 */
3591 nvd->vdev_offline = ovd->vdev_offline;
3592 nvd->vdev_faulted = ovd->vdev_faulted;
3593 nvd->vdev_degraded = ovd->vdev_degraded;
3594 nvd->vdev_removed = ovd->vdev_removed;
3595 }
3596 }
3597
3598 /*
3599 * Determine if a log device has valid content. If the vdev was
3600 * removed or faulted in the MOS config then we know that
3601 * the content on the log device has already been written to the pool.
3602 */
3603 boolean_t
3604 vdev_log_state_valid(vdev_t *vd)
3605 {
3606 int c;
3607
3608 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3609 !vd->vdev_removed)
3610 return (B_TRUE);
3611
3612 for (c = 0; c < vd->vdev_children; c++)
3613 if (vdev_log_state_valid(vd->vdev_child[c]))
3614 return (B_TRUE);
3615
3616 return (B_FALSE);
3617 }
3618
3619 /*
3620 * Expand a vdev if possible.
3621 */
3622 void
3623 vdev_expand(vdev_t *vd, uint64_t txg)
3624 {
3625 ASSERT(vd->vdev_top == vd);
3626 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3627
3628 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3629 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3630 vdev_config_dirty(vd);
3631 }
3632 }
3633
3634 /*
3635 * Split a vdev.
3636 */
3637 void
3638 vdev_split(vdev_t *vd)
3639 {
3640 vdev_t *cvd, *pvd = vd->vdev_parent;
3641
3642 vdev_remove_child(pvd, vd);
3643 vdev_compact_children(pvd);
3644
3645 cvd = pvd->vdev_child[0];
3646 if (pvd->vdev_children == 1) {
3647 vdev_remove_parent(cvd);
3648 cvd->vdev_splitting = B_TRUE;
3649 }
3650 vdev_propagate_state(cvd);
3651 }
3652
3653 void
3654 vdev_deadman(vdev_t *vd)
3655 {
3656 int c;
3657
3658 for (c = 0; c < vd->vdev_children; c++) {
3659 vdev_t *cvd = vd->vdev_child[c];
3660
3661 vdev_deadman(cvd);
3662 }
3663
3664 if (vd->vdev_ops->vdev_op_leaf) {
3665 vdev_queue_t *vq = &vd->vdev_queue;
3666
3667 mutex_enter(&vq->vq_lock);
3668 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3669 spa_t *spa = vd->vdev_spa;
3670 zio_t *fio;
3671 uint64_t delta;
3672
3673 /*
3674 * Look at the head of all the pending queues,
3675 * if any I/O has been outstanding for longer than
3676 * the spa_deadman_synctime we log a zevent.
3677 */
3678 fio = avl_first(&vq->vq_active_tree);
3679 delta = gethrtime() - fio->io_timestamp;
3680 if (delta > spa_deadman_synctime(spa)) {
3681 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3682 "delta %lluns, last io %lluns",
3683 fio->io_timestamp, delta,
3684 vq->vq_io_complete_ts);
3685 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3686 spa, vd, fio, 0, 0);
3687 }
3688 }
3689 mutex_exit(&vq->vq_lock);
3690 }
3691 }
3692
3693 #if defined(_KERNEL) && defined(HAVE_SPL)
3694 EXPORT_SYMBOL(vdev_fault);
3695 EXPORT_SYMBOL(vdev_degrade);
3696 EXPORT_SYMBOL(vdev_online);
3697 EXPORT_SYMBOL(vdev_offline);
3698 EXPORT_SYMBOL(vdev_clear);
3699 /* BEGIN CSTYLED */
3700 module_param(metaslabs_per_vdev, int, 0644);
3701 MODULE_PARM_DESC(metaslabs_per_vdev,
3702 "Divide added vdev into approximately (but no more than) this number "
3703 "of metaslabs");
3704 /* END CSTYLED */
3705 #endif