]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_cache.c
Update core ZFS code from build 121 to build 141.
[mirror_zfs.git] / module / zfs / vdev_cache.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #include <sys/zfs_context.h>
27 #include <sys/spa.h>
28 #include <sys/vdev_impl.h>
29 #include <sys/zio.h>
30 #include <sys/kstat.h>
31
32 /*
33 * Virtual device read-ahead caching.
34 *
35 * This file implements a simple LRU read-ahead cache. When the DMU reads
36 * a given block, it will often want other, nearby blocks soon thereafter.
37 * We take advantage of this by reading a larger disk region and caching
38 * the result. In the best case, this can turn 128 back-to-back 512-byte
39 * reads into a single 64k read followed by 127 cache hits; this reduces
40 * latency dramatically. In the worst case, it can turn an isolated 512-byte
41 * read into a 64k read, which doesn't affect latency all that much but is
42 * terribly wasteful of bandwidth. A more intelligent version of the cache
43 * could keep track of access patterns and not do read-ahead unless it sees
44 * at least two temporally close I/Os to the same region. Currently, only
45 * metadata I/O is inflated. A futher enhancement could take advantage of
46 * more semantic information about the I/O. And it could use something
47 * faster than an AVL tree; that was chosen solely for convenience.
48 *
49 * There are five cache operations: allocate, fill, read, write, evict.
50 *
51 * (1) Allocate. This reserves a cache entry for the specified region.
52 * We separate the allocate and fill operations so that multiple threads
53 * don't generate I/O for the same cache miss.
54 *
55 * (2) Fill. When the I/O for a cache miss completes, the fill routine
56 * places the data in the previously allocated cache entry.
57 *
58 * (3) Read. Read data from the cache.
59 *
60 * (4) Write. Update cache contents after write completion.
61 *
62 * (5) Evict. When allocating a new entry, we evict the oldest (LRU) entry
63 * if the total cache size exceeds zfs_vdev_cache_size.
64 */
65
66 /*
67 * These tunables are for performance analysis.
68 */
69 /*
70 * All i/os smaller than zfs_vdev_cache_max will be turned into
71 * 1<<zfs_vdev_cache_bshift byte reads by the vdev_cache (aka software
72 * track buffer). At most zfs_vdev_cache_size bytes will be kept in each
73 * vdev's vdev_cache.
74 */
75 int zfs_vdev_cache_max = 1<<14; /* 16KB */
76 int zfs_vdev_cache_size = 10ULL << 20; /* 10MB */
77 int zfs_vdev_cache_bshift = 16;
78
79 #define VCBS (1 << zfs_vdev_cache_bshift) /* 64KB */
80
81 kstat_t *vdc_ksp = NULL;
82
83 typedef struct vdc_stats {
84 kstat_named_t vdc_stat_delegations;
85 kstat_named_t vdc_stat_hits;
86 kstat_named_t vdc_stat_misses;
87 } vdc_stats_t;
88
89 static vdc_stats_t vdc_stats = {
90 { "delegations", KSTAT_DATA_UINT64 },
91 { "hits", KSTAT_DATA_UINT64 },
92 { "misses", KSTAT_DATA_UINT64 }
93 };
94
95 #define VDCSTAT_BUMP(stat) atomic_add_64(&vdc_stats.stat.value.ui64, 1);
96
97 static int
98 vdev_cache_offset_compare(const void *a1, const void *a2)
99 {
100 const vdev_cache_entry_t *ve1 = a1;
101 const vdev_cache_entry_t *ve2 = a2;
102
103 if (ve1->ve_offset < ve2->ve_offset)
104 return (-1);
105 if (ve1->ve_offset > ve2->ve_offset)
106 return (1);
107 return (0);
108 }
109
110 static int
111 vdev_cache_lastused_compare(const void *a1, const void *a2)
112 {
113 const vdev_cache_entry_t *ve1 = a1;
114 const vdev_cache_entry_t *ve2 = a2;
115
116 if (ve1->ve_lastused < ve2->ve_lastused)
117 return (-1);
118 if (ve1->ve_lastused > ve2->ve_lastused)
119 return (1);
120
121 /*
122 * Among equally old entries, sort by offset to ensure uniqueness.
123 */
124 return (vdev_cache_offset_compare(a1, a2));
125 }
126
127 /*
128 * Evict the specified entry from the cache.
129 */
130 static void
131 vdev_cache_evict(vdev_cache_t *vc, vdev_cache_entry_t *ve)
132 {
133 ASSERT(MUTEX_HELD(&vc->vc_lock));
134 ASSERT(ve->ve_fill_io == NULL);
135 ASSERT(ve->ve_data != NULL);
136
137 avl_remove(&vc->vc_lastused_tree, ve);
138 avl_remove(&vc->vc_offset_tree, ve);
139 zio_buf_free(ve->ve_data, VCBS);
140 kmem_free(ve, sizeof (vdev_cache_entry_t));
141 }
142
143 /*
144 * Allocate an entry in the cache. At the point we don't have the data,
145 * we're just creating a placeholder so that multiple threads don't all
146 * go off and read the same blocks.
147 */
148 static vdev_cache_entry_t *
149 vdev_cache_allocate(zio_t *zio)
150 {
151 vdev_cache_t *vc = &zio->io_vd->vdev_cache;
152 uint64_t offset = P2ALIGN(zio->io_offset, VCBS);
153 vdev_cache_entry_t *ve;
154
155 ASSERT(MUTEX_HELD(&vc->vc_lock));
156
157 if (zfs_vdev_cache_size == 0)
158 return (NULL);
159
160 /*
161 * If adding a new entry would exceed the cache size,
162 * evict the oldest entry (LRU).
163 */
164 if ((avl_numnodes(&vc->vc_lastused_tree) << zfs_vdev_cache_bshift) >
165 zfs_vdev_cache_size) {
166 ve = avl_first(&vc->vc_lastused_tree);
167 if (ve->ve_fill_io != NULL)
168 return (NULL);
169 ASSERT(ve->ve_hits != 0);
170 vdev_cache_evict(vc, ve);
171 }
172
173 ve = kmem_zalloc(sizeof (vdev_cache_entry_t), KM_SLEEP);
174 ve->ve_offset = offset;
175 ve->ve_lastused = ddi_get_lbolt();
176 ve->ve_data = zio_buf_alloc(VCBS);
177
178 avl_add(&vc->vc_offset_tree, ve);
179 avl_add(&vc->vc_lastused_tree, ve);
180
181 return (ve);
182 }
183
184 static void
185 vdev_cache_hit(vdev_cache_t *vc, vdev_cache_entry_t *ve, zio_t *zio)
186 {
187 uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
188
189 ASSERT(MUTEX_HELD(&vc->vc_lock));
190 ASSERT(ve->ve_fill_io == NULL);
191
192 if (ve->ve_lastused != ddi_get_lbolt()) {
193 avl_remove(&vc->vc_lastused_tree, ve);
194 ve->ve_lastused = ddi_get_lbolt();
195 avl_add(&vc->vc_lastused_tree, ve);
196 }
197
198 ve->ve_hits++;
199 bcopy(ve->ve_data + cache_phase, zio->io_data, zio->io_size);
200 }
201
202 /*
203 * Fill a previously allocated cache entry with data.
204 */
205 static void
206 vdev_cache_fill(zio_t *fio)
207 {
208 vdev_t *vd = fio->io_vd;
209 vdev_cache_t *vc = &vd->vdev_cache;
210 vdev_cache_entry_t *ve = fio->io_private;
211 zio_t *pio;
212
213 ASSERT(fio->io_size == VCBS);
214
215 /*
216 * Add data to the cache.
217 */
218 mutex_enter(&vc->vc_lock);
219
220 ASSERT(ve->ve_fill_io == fio);
221 ASSERT(ve->ve_offset == fio->io_offset);
222 ASSERT(ve->ve_data == fio->io_data);
223
224 ve->ve_fill_io = NULL;
225
226 /*
227 * Even if this cache line was invalidated by a missed write update,
228 * any reads that were queued up before the missed update are still
229 * valid, so we can satisfy them from this line before we evict it.
230 */
231 while ((pio = zio_walk_parents(fio)) != NULL)
232 vdev_cache_hit(vc, ve, pio);
233
234 if (fio->io_error || ve->ve_missed_update)
235 vdev_cache_evict(vc, ve);
236
237 mutex_exit(&vc->vc_lock);
238 }
239
240 /*
241 * Read data from the cache. Returns 0 on cache hit, errno on a miss.
242 */
243 int
244 vdev_cache_read(zio_t *zio)
245 {
246 vdev_cache_t *vc = &zio->io_vd->vdev_cache;
247 vdev_cache_entry_t *ve, ve_search;
248 uint64_t cache_offset = P2ALIGN(zio->io_offset, VCBS);
249 uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
250 zio_t *fio;
251
252 ASSERT(zio->io_type == ZIO_TYPE_READ);
253
254 if (zio->io_flags & ZIO_FLAG_DONT_CACHE)
255 return (EINVAL);
256
257 if (zio->io_size > zfs_vdev_cache_max)
258 return (EOVERFLOW);
259
260 /*
261 * If the I/O straddles two or more cache blocks, don't cache it.
262 */
263 if (P2BOUNDARY(zio->io_offset, zio->io_size, VCBS))
264 return (EXDEV);
265
266 ASSERT(cache_phase + zio->io_size <= VCBS);
267
268 mutex_enter(&vc->vc_lock);
269
270 ve_search.ve_offset = cache_offset;
271 ve = avl_find(&vc->vc_offset_tree, &ve_search, NULL);
272
273 if (ve != NULL) {
274 if (ve->ve_missed_update) {
275 mutex_exit(&vc->vc_lock);
276 return (ESTALE);
277 }
278
279 if ((fio = ve->ve_fill_io) != NULL) {
280 zio_vdev_io_bypass(zio);
281 zio_add_child(zio, fio);
282 mutex_exit(&vc->vc_lock);
283 VDCSTAT_BUMP(vdc_stat_delegations);
284 return (0);
285 }
286
287 vdev_cache_hit(vc, ve, zio);
288 zio_vdev_io_bypass(zio);
289
290 mutex_exit(&vc->vc_lock);
291 VDCSTAT_BUMP(vdc_stat_hits);
292 return (0);
293 }
294
295 ve = vdev_cache_allocate(zio);
296
297 if (ve == NULL) {
298 mutex_exit(&vc->vc_lock);
299 return (ENOMEM);
300 }
301
302 fio = zio_vdev_delegated_io(zio->io_vd, cache_offset,
303 ve->ve_data, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_CACHE_FILL,
304 ZIO_FLAG_DONT_CACHE, vdev_cache_fill, ve);
305
306 ve->ve_fill_io = fio;
307 zio_vdev_io_bypass(zio);
308 zio_add_child(zio, fio);
309
310 mutex_exit(&vc->vc_lock);
311 zio_nowait(fio);
312 VDCSTAT_BUMP(vdc_stat_misses);
313
314 return (0);
315 }
316
317 /*
318 * Update cache contents upon write completion.
319 */
320 void
321 vdev_cache_write(zio_t *zio)
322 {
323 vdev_cache_t *vc = &zio->io_vd->vdev_cache;
324 vdev_cache_entry_t *ve, ve_search;
325 uint64_t io_start = zio->io_offset;
326 uint64_t io_end = io_start + zio->io_size;
327 uint64_t min_offset = P2ALIGN(io_start, VCBS);
328 uint64_t max_offset = P2ROUNDUP(io_end, VCBS);
329 avl_index_t where;
330
331 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
332
333 mutex_enter(&vc->vc_lock);
334
335 ve_search.ve_offset = min_offset;
336 ve = avl_find(&vc->vc_offset_tree, &ve_search, &where);
337
338 if (ve == NULL)
339 ve = avl_nearest(&vc->vc_offset_tree, where, AVL_AFTER);
340
341 while (ve != NULL && ve->ve_offset < max_offset) {
342 uint64_t start = MAX(ve->ve_offset, io_start);
343 uint64_t end = MIN(ve->ve_offset + VCBS, io_end);
344
345 if (ve->ve_fill_io != NULL) {
346 ve->ve_missed_update = 1;
347 } else {
348 bcopy((char *)zio->io_data + start - io_start,
349 ve->ve_data + start - ve->ve_offset, end - start);
350 }
351 ve = AVL_NEXT(&vc->vc_offset_tree, ve);
352 }
353 mutex_exit(&vc->vc_lock);
354 }
355
356 void
357 vdev_cache_purge(vdev_t *vd)
358 {
359 vdev_cache_t *vc = &vd->vdev_cache;
360 vdev_cache_entry_t *ve;
361
362 mutex_enter(&vc->vc_lock);
363 while ((ve = avl_first(&vc->vc_offset_tree)) != NULL)
364 vdev_cache_evict(vc, ve);
365 mutex_exit(&vc->vc_lock);
366 }
367
368 void
369 vdev_cache_init(vdev_t *vd)
370 {
371 vdev_cache_t *vc = &vd->vdev_cache;
372
373 mutex_init(&vc->vc_lock, NULL, MUTEX_DEFAULT, NULL);
374
375 avl_create(&vc->vc_offset_tree, vdev_cache_offset_compare,
376 sizeof (vdev_cache_entry_t),
377 offsetof(struct vdev_cache_entry, ve_offset_node));
378
379 avl_create(&vc->vc_lastused_tree, vdev_cache_lastused_compare,
380 sizeof (vdev_cache_entry_t),
381 offsetof(struct vdev_cache_entry, ve_lastused_node));
382 }
383
384 void
385 vdev_cache_fini(vdev_t *vd)
386 {
387 vdev_cache_t *vc = &vd->vdev_cache;
388
389 vdev_cache_purge(vd);
390
391 avl_destroy(&vc->vc_offset_tree);
392 avl_destroy(&vc->vc_lastused_tree);
393
394 mutex_destroy(&vc->vc_lock);
395 }
396
397 void
398 vdev_cache_stat_init(void)
399 {
400 vdc_ksp = kstat_create("zfs", 0, "vdev_cache_stats", "misc",
401 KSTAT_TYPE_NAMED, sizeof (vdc_stats) / sizeof (kstat_named_t),
402 KSTAT_FLAG_VIRTUAL);
403 if (vdc_ksp != NULL) {
404 vdc_ksp->ks_data = &vdc_stats;
405 kstat_install(vdc_ksp);
406 }
407 }
408
409 void
410 vdev_cache_stat_fini(void)
411 {
412 if (vdc_ksp != NULL) {
413 kstat_delete(vdc_ksp);
414 vdc_ksp = NULL;
415 }
416 }