]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/vdev_disk.c
Imported Upstream version 0.6.2
[mirror_zfs-debian.git] / module / zfs / vdev_disk.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/vdev_disk.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/fs/zfs.h>
33 #include <sys/zio.h>
34 #include <sys/sunldi.h>
35
36 char *zfs_vdev_scheduler = VDEV_SCHEDULER;
37 static void *zfs_vdev_holder = VDEV_HOLDER;
38
39 /*
40 * Virtual device vector for disks.
41 */
42 typedef struct dio_request {
43 struct completion dr_comp; /* Completion for sync IO */
44 atomic_t dr_ref; /* References */
45 zio_t *dr_zio; /* Parent ZIO */
46 int dr_rw; /* Read/Write */
47 int dr_error; /* Bio error */
48 int dr_bio_count; /* Count of bio's */
49 struct bio *dr_bio[0]; /* Attached bio's */
50 } dio_request_t;
51
52
53 #ifdef HAVE_OPEN_BDEV_EXCLUSIVE
54 static fmode_t
55 vdev_bdev_mode(int smode)
56 {
57 fmode_t mode = 0;
58
59 ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
60
61 if (smode & FREAD)
62 mode |= FMODE_READ;
63
64 if (smode & FWRITE)
65 mode |= FMODE_WRITE;
66
67 return mode;
68 }
69 #else
70 static int
71 vdev_bdev_mode(int smode)
72 {
73 int mode = 0;
74
75 ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
76
77 if ((smode & FREAD) && !(smode & FWRITE))
78 mode = MS_RDONLY;
79
80 return mode;
81 }
82 #endif /* HAVE_OPEN_BDEV_EXCLUSIVE */
83
84 static uint64_t
85 bdev_capacity(struct block_device *bdev)
86 {
87 struct hd_struct *part = bdev->bd_part;
88
89 /* The partition capacity referenced by the block device */
90 if (part)
91 return (part->nr_sects << 9);
92
93 /* Otherwise assume the full device capacity */
94 return (get_capacity(bdev->bd_disk) << 9);
95 }
96
97 static void
98 vdev_disk_error(zio_t *zio)
99 {
100 #ifdef ZFS_DEBUG
101 printk("ZFS: zio error=%d type=%d offset=%llu size=%llu "
102 "flags=%x delay=%llu\n", zio->io_error, zio->io_type,
103 (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
104 zio->io_flags, (u_longlong_t)zio->io_delay);
105 #endif
106 }
107
108 /*
109 * Use the Linux 'noop' elevator for zfs managed block devices. This
110 * strikes the ideal balance by allowing the zfs elevator to do all
111 * request ordering and prioritization. While allowing the Linux
112 * elevator to do the maximum front/back merging allowed by the
113 * physical device. This yields the largest possible requests for
114 * the device with the lowest total overhead.
115 */
116 static int
117 vdev_elevator_switch(vdev_t *v, char *elevator)
118 {
119 vdev_disk_t *vd = v->vdev_tsd;
120 struct block_device *bdev = vd->vd_bdev;
121 struct request_queue *q = bdev_get_queue(bdev);
122 char *device = bdev->bd_disk->disk_name;
123 int error;
124
125 /*
126 * Skip devices which are not whole disks (partitions).
127 * Device-mapper devices are excepted since they may be whole
128 * disks despite the vdev_wholedisk flag, in which case we can
129 * and should switch the elevator. If the device-mapper device
130 * does not have an elevator (i.e. dm-raid, dm-crypt, etc.) the
131 * "Skip devices without schedulers" check below will fail.
132 */
133 if (!v->vdev_wholedisk && strncmp(device, "dm-", 3) != 0)
134 return (0);
135
136 /* Skip devices without schedulers (loop, ram, dm, etc) */
137 if (!q->elevator || !blk_queue_stackable(q))
138 return (0);
139
140 /* Leave existing scheduler when set to "none" */
141 if (!strncmp(elevator, "none", 4) && (strlen(elevator) == 4))
142 return (0);
143
144 #ifdef HAVE_ELEVATOR_CHANGE
145 error = elevator_change(q, elevator);
146 #else
147 /* For pre-2.6.36 kernels elevator_change() is not available.
148 * Therefore we fall back to using a usermodehelper to echo the
149 * elevator into sysfs; This requires /bin/echo and sysfs to be
150 * mounted which may not be true early in the boot process.
151 */
152 # define SET_SCHEDULER_CMD \
153 "exec 0</dev/null " \
154 " 1>/sys/block/%s/queue/scheduler " \
155 " 2>/dev/null; " \
156 "echo %s"
157
158 {
159 char *argv[] = { "/bin/sh", "-c", NULL, NULL };
160 char *envp[] = { NULL };
161
162 argv[2] = kmem_asprintf(SET_SCHEDULER_CMD, device, elevator);
163 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
164 strfree(argv[2]);
165 }
166 #endif /* HAVE_ELEVATOR_CHANGE */
167 if (error)
168 printk("ZFS: Unable to set \"%s\" scheduler for %s (%s): %d\n",
169 elevator, v->vdev_path, device, error);
170
171 return (error);
172 }
173
174 /*
175 * Expanding a whole disk vdev involves invoking BLKRRPART on the
176 * whole disk device. This poses a problem, because BLKRRPART will
177 * return EBUSY if one of the disk's partitions is open. That's why
178 * we have to do it here, just before opening the data partition.
179 * Unfortunately, BLKRRPART works by dropping all partitions and
180 * recreating them, which means that for a short time window, all
181 * /dev/sdxN device files disappear (until udev recreates them).
182 * This means two things:
183 * - When we open the data partition just after a BLKRRPART, we
184 * can't do it using the normal device file path because of the
185 * obvious race condition with udev. Instead, we use reliable
186 * kernel APIs to get a handle to the new partition device from
187 * the whole disk device.
188 * - Because vdev_disk_open() initially needs to find the device
189 * using its path, multiple vdev_disk_open() invocations in
190 * short succession on the same disk with BLKRRPARTs in the
191 * middle have a high probability of failure (because of the
192 * race condition with udev). A typical situation where this
193 * might happen is when the zpool userspace tool does a
194 * TRYIMPORT immediately followed by an IMPORT. For this
195 * reason, we only invoke BLKRRPART in the module when strictly
196 * necessary (zpool online -e case), and rely on userspace to
197 * do it when possible.
198 */
199 static struct block_device *
200 vdev_disk_rrpart(const char *path, int mode, vdev_disk_t *vd)
201 {
202 #if defined(HAVE_3ARG_BLKDEV_GET) && defined(HAVE_GET_GENDISK)
203 struct block_device *bdev, *result = ERR_PTR(-ENXIO);
204 struct gendisk *disk;
205 int error, partno;
206
207 bdev = vdev_bdev_open(path, vdev_bdev_mode(mode), zfs_vdev_holder);
208 if (IS_ERR(bdev))
209 return bdev;
210
211 disk = get_gendisk(bdev->bd_dev, &partno);
212 vdev_bdev_close(bdev, vdev_bdev_mode(mode));
213
214 if (disk) {
215 bdev = bdget(disk_devt(disk));
216 if (bdev) {
217 error = blkdev_get(bdev, vdev_bdev_mode(mode), vd);
218 if (error == 0)
219 error = ioctl_by_bdev(bdev, BLKRRPART, 0);
220 vdev_bdev_close(bdev, vdev_bdev_mode(mode));
221 }
222
223 bdev = bdget_disk(disk, partno);
224 if (bdev) {
225 error = blkdev_get(bdev,
226 vdev_bdev_mode(mode) | FMODE_EXCL, vd);
227 if (error == 0)
228 result = bdev;
229 }
230 put_disk(disk);
231 }
232
233 return result;
234 #else
235 return ERR_PTR(-EOPNOTSUPP);
236 #endif /* defined(HAVE_3ARG_BLKDEV_GET) && defined(HAVE_GET_GENDISK) */
237 }
238
239 static int
240 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
241 uint64_t *ashift)
242 {
243 struct block_device *bdev = ERR_PTR(-ENXIO);
244 vdev_disk_t *vd;
245 int mode, block_size;
246
247 /* Must have a pathname and it must be absolute. */
248 if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
249 v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
250 return EINVAL;
251 }
252
253 /*
254 * Reopen the device if it's not currently open. Otherwise,
255 * just update the physical size of the device.
256 */
257 if (v->vdev_tsd != NULL) {
258 ASSERT(v->vdev_reopening);
259 vd = v->vdev_tsd;
260 goto skip_open;
261 }
262
263 vd = kmem_zalloc(sizeof(vdev_disk_t), KM_PUSHPAGE);
264 if (vd == NULL)
265 return ENOMEM;
266
267 /*
268 * Devices are always opened by the path provided at configuration
269 * time. This means that if the provided path is a udev by-id path
270 * then drives may be recabled without an issue. If the provided
271 * path is a udev by-path path, then the physical location information
272 * will be preserved. This can be critical for more complicated
273 * configurations where drives are located in specific physical
274 * locations to maximize the systems tolerence to component failure.
275 * Alternatively, you can provide your own udev rule to flexibly map
276 * the drives as you see fit. It is not advised that you use the
277 * /dev/[hd]d devices which may be reordered due to probing order.
278 * Devices in the wrong locations will be detected by the higher
279 * level vdev validation.
280 */
281 mode = spa_mode(v->vdev_spa);
282 if (v->vdev_wholedisk && v->vdev_expanding)
283 bdev = vdev_disk_rrpart(v->vdev_path, mode, vd);
284 if (IS_ERR(bdev))
285 bdev = vdev_bdev_open(v->vdev_path,
286 vdev_bdev_mode(mode), zfs_vdev_holder);
287 if (IS_ERR(bdev)) {
288 kmem_free(vd, sizeof(vdev_disk_t));
289 return -PTR_ERR(bdev);
290 }
291
292 v->vdev_tsd = vd;
293 vd->vd_bdev = bdev;
294
295 skip_open:
296 /* Determine the physical block size */
297 block_size = vdev_bdev_block_size(vd->vd_bdev);
298
299 /* Clear the nowritecache bit, causes vdev_reopen() to try again. */
300 v->vdev_nowritecache = B_FALSE;
301
302 /* Physical volume size in bytes */
303 *psize = bdev_capacity(vd->vd_bdev);
304
305 /* TODO: report possible expansion size */
306 *max_psize = *psize;
307
308 /* Based on the minimum sector size set the block size */
309 *ashift = highbit(MAX(block_size, SPA_MINBLOCKSIZE)) - 1;
310
311 /* Try to set the io scheduler elevator algorithm */
312 (void) vdev_elevator_switch(v, zfs_vdev_scheduler);
313
314 return 0;
315 }
316
317 static void
318 vdev_disk_close(vdev_t *v)
319 {
320 vdev_disk_t *vd = v->vdev_tsd;
321
322 if (v->vdev_reopening || vd == NULL)
323 return;
324
325 if (vd->vd_bdev != NULL)
326 vdev_bdev_close(vd->vd_bdev,
327 vdev_bdev_mode(spa_mode(v->vdev_spa)));
328
329 kmem_free(vd, sizeof(vdev_disk_t));
330 v->vdev_tsd = NULL;
331 }
332
333 static dio_request_t *
334 vdev_disk_dio_alloc(int bio_count)
335 {
336 dio_request_t *dr;
337 int i;
338
339 dr = kmem_zalloc(sizeof(dio_request_t) +
340 sizeof(struct bio *) * bio_count, KM_PUSHPAGE);
341 if (dr) {
342 init_completion(&dr->dr_comp);
343 atomic_set(&dr->dr_ref, 0);
344 dr->dr_bio_count = bio_count;
345 dr->dr_error = 0;
346
347 for (i = 0; i < dr->dr_bio_count; i++)
348 dr->dr_bio[i] = NULL;
349 }
350
351 return dr;
352 }
353
354 static void
355 vdev_disk_dio_free(dio_request_t *dr)
356 {
357 int i;
358
359 for (i = 0; i < dr->dr_bio_count; i++)
360 if (dr->dr_bio[i])
361 bio_put(dr->dr_bio[i]);
362
363 kmem_free(dr, sizeof(dio_request_t) +
364 sizeof(struct bio *) * dr->dr_bio_count);
365 }
366
367 static int
368 vdev_disk_dio_is_sync(dio_request_t *dr)
369 {
370 #ifdef HAVE_BIO_RW_SYNC
371 /* BIO_RW_SYNC preferred interface from 2.6.12-2.6.29 */
372 return (dr->dr_rw & (1 << BIO_RW_SYNC));
373 #else
374 # ifdef HAVE_BIO_RW_SYNCIO
375 /* BIO_RW_SYNCIO preferred interface from 2.6.30-2.6.35 */
376 return (dr->dr_rw & (1 << BIO_RW_SYNCIO));
377 # else
378 # ifdef HAVE_REQ_SYNC
379 /* REQ_SYNC preferred interface from 2.6.36-2.6.xx */
380 return (dr->dr_rw & REQ_SYNC);
381 # else
382 # error "Unable to determine bio sync flag"
383 # endif /* HAVE_REQ_SYNC */
384 # endif /* HAVE_BIO_RW_SYNC */
385 #endif /* HAVE_BIO_RW_SYNCIO */
386 }
387
388 static void
389 vdev_disk_dio_get(dio_request_t *dr)
390 {
391 atomic_inc(&dr->dr_ref);
392 }
393
394 static int
395 vdev_disk_dio_put(dio_request_t *dr)
396 {
397 int rc = atomic_dec_return(&dr->dr_ref);
398
399 /*
400 * Free the dio_request when the last reference is dropped and
401 * ensure zio_interpret is called only once with the correct zio
402 */
403 if (rc == 0) {
404 zio_t *zio = dr->dr_zio;
405 int error = dr->dr_error;
406
407 vdev_disk_dio_free(dr);
408
409 if (zio) {
410 zio->io_delay = jiffies_64 - zio->io_delay;
411 zio->io_error = error;
412 ASSERT3S(zio->io_error, >=, 0);
413 if (zio->io_error)
414 vdev_disk_error(zio);
415 zio_interrupt(zio);
416 }
417 }
418
419 return rc;
420 }
421
422 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, size, error)
423 {
424 dio_request_t *dr = bio->bi_private;
425 int rc;
426
427 /* Fatal error but print some useful debugging before asserting */
428 if (dr == NULL)
429 PANIC("dr == NULL, bio->bi_private == NULL\n"
430 "bi_next: %p, bi_flags: %lx, bi_rw: %lu, bi_vcnt: %d\n"
431 "bi_idx: %d, bi_size: %d, bi_end_io: %p, bi_cnt: %d\n",
432 bio->bi_next, bio->bi_flags, bio->bi_rw, bio->bi_vcnt,
433 bio->bi_idx, bio->bi_size, bio->bi_end_io,
434 atomic_read(&bio->bi_cnt));
435
436 #ifndef HAVE_2ARGS_BIO_END_IO_T
437 if (bio->bi_size)
438 return 1;
439 #endif /* HAVE_2ARGS_BIO_END_IO_T */
440
441 if (error == 0 && !test_bit(BIO_UPTODATE, &bio->bi_flags))
442 error = -EIO;
443
444 if (dr->dr_error == 0)
445 dr->dr_error = -error;
446
447 /* Drop reference aquired by __vdev_disk_physio */
448 rc = vdev_disk_dio_put(dr);
449
450 /* Wake up synchronous waiter this is the last outstanding bio */
451 if ((rc == 1) && vdev_disk_dio_is_sync(dr))
452 complete(&dr->dr_comp);
453
454 BIO_END_IO_RETURN(0);
455 }
456
457 static inline unsigned long
458 bio_nr_pages(void *bio_ptr, unsigned int bio_size)
459 {
460 return ((((unsigned long)bio_ptr + bio_size + PAGE_SIZE - 1) >>
461 PAGE_SHIFT) - ((unsigned long)bio_ptr >> PAGE_SHIFT));
462 }
463
464 static unsigned int
465 bio_map(struct bio *bio, void *bio_ptr, unsigned int bio_size)
466 {
467 unsigned int offset, size, i;
468 struct page *page;
469
470 offset = offset_in_page(bio_ptr);
471 for (i = 0; i < bio->bi_max_vecs; i++) {
472 size = PAGE_SIZE - offset;
473
474 if (bio_size <= 0)
475 break;
476
477 if (size > bio_size)
478 size = bio_size;
479
480 if (kmem_virt(bio_ptr))
481 page = vmalloc_to_page(bio_ptr);
482 else
483 page = virt_to_page(bio_ptr);
484
485 if (bio_add_page(bio, page, size, offset) != size)
486 break;
487
488 bio_ptr += size;
489 bio_size -= size;
490 offset = 0;
491 }
492
493 return bio_size;
494 }
495
496 static int
497 __vdev_disk_physio(struct block_device *bdev, zio_t *zio, caddr_t kbuf_ptr,
498 size_t kbuf_size, uint64_t kbuf_offset, int flags)
499 {
500 dio_request_t *dr;
501 caddr_t bio_ptr;
502 uint64_t bio_offset;
503 int bio_size, bio_count = 16;
504 int i = 0, error = 0;
505
506 ASSERT3U(kbuf_offset + kbuf_size, <=, bdev->bd_inode->i_size);
507
508 retry:
509 dr = vdev_disk_dio_alloc(bio_count);
510 if (dr == NULL)
511 return ENOMEM;
512
513 if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
514 bio_set_flags_failfast(bdev, &flags);
515
516 dr->dr_zio = zio;
517 dr->dr_rw = flags;
518
519 /*
520 * When the IO size exceeds the maximum bio size for the request
521 * queue we are forced to break the IO in multiple bio's and wait
522 * for them all to complete. Ideally, all pool users will set
523 * their volume block size to match the maximum request size and
524 * the common case will be one bio per vdev IO request.
525 */
526 bio_ptr = kbuf_ptr;
527 bio_offset = kbuf_offset;
528 bio_size = kbuf_size;
529 for (i = 0; i <= dr->dr_bio_count; i++) {
530
531 /* Finished constructing bio's for given buffer */
532 if (bio_size <= 0)
533 break;
534
535 /*
536 * By default only 'bio_count' bio's per dio are allowed.
537 * However, if we find ourselves in a situation where more
538 * are needed we allocate a larger dio and warn the user.
539 */
540 if (dr->dr_bio_count == i) {
541 vdev_disk_dio_free(dr);
542 bio_count *= 2;
543 goto retry;
544 }
545
546 dr->dr_bio[i] = bio_alloc(GFP_NOIO,
547 bio_nr_pages(bio_ptr, bio_size));
548 if (dr->dr_bio[i] == NULL) {
549 vdev_disk_dio_free(dr);
550 return ENOMEM;
551 }
552
553 /* Matching put called by vdev_disk_physio_completion */
554 vdev_disk_dio_get(dr);
555
556 dr->dr_bio[i]->bi_bdev = bdev;
557 dr->dr_bio[i]->bi_sector = bio_offset >> 9;
558 dr->dr_bio[i]->bi_rw = dr->dr_rw;
559 dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
560 dr->dr_bio[i]->bi_private = dr;
561
562 /* Remaining size is returned to become the new size */
563 bio_size = bio_map(dr->dr_bio[i], bio_ptr, bio_size);
564
565 /* Advance in buffer and construct another bio if needed */
566 bio_ptr += dr->dr_bio[i]->bi_size;
567 bio_offset += dr->dr_bio[i]->bi_size;
568 }
569
570 /* Extra reference to protect dio_request during submit_bio */
571 vdev_disk_dio_get(dr);
572 if (zio)
573 zio->io_delay = jiffies_64;
574
575 /* Submit all bio's associated with this dio */
576 for (i = 0; i < dr->dr_bio_count; i++)
577 if (dr->dr_bio[i])
578 submit_bio(dr->dr_rw, dr->dr_bio[i]);
579
580 /*
581 * On synchronous blocking requests we wait for all bio the completion
582 * callbacks to run. We will be woken when the last callback runs
583 * for this dio. We are responsible for putting the last dio_request
584 * reference will in turn put back the last bio references. The
585 * only synchronous consumer is vdev_disk_read_rootlabel() all other
586 * IO originating from vdev_disk_io_start() is asynchronous.
587 */
588 if (vdev_disk_dio_is_sync(dr)) {
589 wait_for_completion(&dr->dr_comp);
590 error = dr->dr_error;
591 ASSERT3S(atomic_read(&dr->dr_ref), ==, 1);
592 }
593
594 (void)vdev_disk_dio_put(dr);
595
596 return error;
597 }
598
599 int
600 vdev_disk_physio(struct block_device *bdev, caddr_t kbuf,
601 size_t size, uint64_t offset, int flags)
602 {
603 bio_set_flags_failfast(bdev, &flags);
604 return __vdev_disk_physio(bdev, NULL, kbuf, size, offset, flags);
605 }
606
607 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, size, rc)
608 {
609 zio_t *zio = bio->bi_private;
610
611 zio->io_delay = jiffies_64 - zio->io_delay;
612 zio->io_error = -rc;
613 if (rc && (rc == -EOPNOTSUPP))
614 zio->io_vd->vdev_nowritecache = B_TRUE;
615
616 bio_put(bio);
617 ASSERT3S(zio->io_error, >=, 0);
618 if (zio->io_error)
619 vdev_disk_error(zio);
620 zio_interrupt(zio);
621
622 BIO_END_IO_RETURN(0);
623 }
624
625 static int
626 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
627 {
628 struct request_queue *q;
629 struct bio *bio;
630
631 q = bdev_get_queue(bdev);
632 if (!q)
633 return ENXIO;
634
635 bio = bio_alloc(GFP_NOIO, 0);
636 if (!bio)
637 return ENOMEM;
638
639 bio->bi_end_io = vdev_disk_io_flush_completion;
640 bio->bi_private = zio;
641 bio->bi_bdev = bdev;
642 zio->io_delay = jiffies_64;
643 submit_bio(VDEV_WRITE_FLUSH_FUA, bio);
644
645 return 0;
646 }
647
648 static int
649 vdev_disk_io_start(zio_t *zio)
650 {
651 vdev_t *v = zio->io_vd;
652 vdev_disk_t *vd = v->vdev_tsd;
653 int flags, error;
654
655 switch (zio->io_type) {
656 case ZIO_TYPE_IOCTL:
657
658 if (!vdev_readable(v)) {
659 zio->io_error = ENXIO;
660 return ZIO_PIPELINE_CONTINUE;
661 }
662
663 switch (zio->io_cmd) {
664 case DKIOCFLUSHWRITECACHE:
665
666 if (zfs_nocacheflush)
667 break;
668
669 if (v->vdev_nowritecache) {
670 zio->io_error = ENOTSUP;
671 break;
672 }
673
674 error = vdev_disk_io_flush(vd->vd_bdev, zio);
675 if (error == 0)
676 return ZIO_PIPELINE_STOP;
677
678 zio->io_error = error;
679 if (error == ENOTSUP)
680 v->vdev_nowritecache = B_TRUE;
681
682 break;
683
684 default:
685 zio->io_error = ENOTSUP;
686 }
687
688 return ZIO_PIPELINE_CONTINUE;
689
690 case ZIO_TYPE_WRITE:
691 flags = WRITE;
692 break;
693
694 case ZIO_TYPE_READ:
695 flags = READ;
696 break;
697
698 default:
699 zio->io_error = ENOTSUP;
700 return ZIO_PIPELINE_CONTINUE;
701 }
702
703 error = __vdev_disk_physio(vd->vd_bdev, zio, zio->io_data,
704 zio->io_size, zio->io_offset, flags);
705 if (error) {
706 zio->io_error = error;
707 return ZIO_PIPELINE_CONTINUE;
708 }
709
710 return ZIO_PIPELINE_STOP;
711 }
712
713 static void
714 vdev_disk_io_done(zio_t *zio)
715 {
716 /*
717 * If the device returned EIO, we revalidate the media. If it is
718 * determined the media has changed this triggers the asynchronous
719 * removal of the device from the configuration.
720 */
721 if (zio->io_error == EIO) {
722 vdev_t *v = zio->io_vd;
723 vdev_disk_t *vd = v->vdev_tsd;
724
725 if (check_disk_change(vd->vd_bdev)) {
726 vdev_bdev_invalidate(vd->vd_bdev);
727 v->vdev_remove_wanted = B_TRUE;
728 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
729 }
730 }
731 }
732
733 static void
734 vdev_disk_hold(vdev_t *vd)
735 {
736 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
737
738 /* We must have a pathname, and it must be absolute. */
739 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
740 return;
741
742 /*
743 * Only prefetch path and devid info if the device has
744 * never been opened.
745 */
746 if (vd->vdev_tsd != NULL)
747 return;
748
749 /* XXX: Implement me as a vnode lookup for the device */
750 vd->vdev_name_vp = NULL;
751 vd->vdev_devid_vp = NULL;
752 }
753
754 static void
755 vdev_disk_rele(vdev_t *vd)
756 {
757 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
758
759 /* XXX: Implement me as a vnode rele for the device */
760 }
761
762 vdev_ops_t vdev_disk_ops = {
763 vdev_disk_open,
764 vdev_disk_close,
765 vdev_default_asize,
766 vdev_disk_io_start,
767 vdev_disk_io_done,
768 NULL,
769 vdev_disk_hold,
770 vdev_disk_rele,
771 VDEV_TYPE_DISK, /* name of this vdev type */
772 B_TRUE /* leaf vdev */
773 };
774
775 /*
776 * Given the root disk device devid or pathname, read the label from
777 * the device, and construct a configuration nvlist.
778 */
779 int
780 vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config)
781 {
782 struct block_device *bdev;
783 vdev_label_t *label;
784 uint64_t s, size;
785 int i;
786
787 bdev = vdev_bdev_open(devpath, vdev_bdev_mode(FREAD), zfs_vdev_holder);
788 if (IS_ERR(bdev))
789 return -PTR_ERR(bdev);
790
791 s = bdev_capacity(bdev);
792 if (s == 0) {
793 vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
794 return EIO;
795 }
796
797 size = P2ALIGN_TYPED(s, sizeof(vdev_label_t), uint64_t);
798 label = vmem_alloc(sizeof(vdev_label_t), KM_PUSHPAGE);
799
800 for (i = 0; i < VDEV_LABELS; i++) {
801 uint64_t offset, state, txg = 0;
802
803 /* read vdev label */
804 offset = vdev_label_offset(size, i, 0);
805 if (vdev_disk_physio(bdev, (caddr_t)label,
806 VDEV_SKIP_SIZE + VDEV_PHYS_SIZE, offset, READ_SYNC) != 0)
807 continue;
808
809 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
810 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) {
811 *config = NULL;
812 continue;
813 }
814
815 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
816 &state) != 0 || state >= POOL_STATE_DESTROYED) {
817 nvlist_free(*config);
818 *config = NULL;
819 continue;
820 }
821
822 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
823 &txg) != 0 || txg == 0) {
824 nvlist_free(*config);
825 *config = NULL;
826 continue;
827 }
828
829 break;
830 }
831
832 vmem_free(label, sizeof(vdev_label_t));
833 vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
834
835 return 0;
836 }
837
838 module_param(zfs_vdev_scheduler, charp, 0644);
839 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");